Update year range in copyright notice of all files owned by the GDB project.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 /* The routines that read and process a complete stabs for a C struct or
57 C++ class pass lists of data member fields and lists of member function
58 fields in an instance of a field_info structure, as defined below.
59 This is part of some reorganization of low level C++ support and is
60 expected to eventually go away... (FIXME) */
61
62 struct field_info
63 {
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 }
75 *list;
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 }
81 *fnlist;
82 };
83
84 static void
85 read_one_struct_field (struct field_info *, char **, char *,
86 struct type *, struct objfile *);
87
88 static struct type *dbx_alloc_type (int[2], struct objfile *);
89
90 static long read_huge_number (char **, int, int *, int);
91
92 static struct type *error_type (char **, struct objfile *);
93
94 static void
95 patch_block_stabs (struct pending *, struct pending_stabs *,
96 struct objfile *);
97
98 static void fix_common_block (struct symbol *, CORE_ADDR);
99
100 static int read_type_number (char **, int *);
101
102 static struct type *read_type (char **, struct objfile *);
103
104 static struct type *read_range_type (char **, int[2], int, struct objfile *);
105
106 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_floating_type (char **, int[2],
109 struct objfile *);
110
111 static struct type *read_enum_type (char **, struct type *, struct objfile *);
112
113 static struct type *rs6000_builtin_type (int, struct objfile *);
114
115 static int
116 read_member_functions (struct field_info *, char **, struct type *,
117 struct objfile *);
118
119 static int
120 read_struct_fields (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_baseclasses (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_tilde_fields (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int attach_fn_fields_to_type (struct field_info *, struct type *);
132
133 static int attach_fields_to_type (struct field_info *, struct type *,
134 struct objfile *);
135
136 static struct type *read_struct_type (char **, struct type *,
137 enum type_code,
138 struct objfile *);
139
140 static struct type *read_array_type (char **, struct type *,
141 struct objfile *);
142
143 static struct field *read_args (char **, int, struct objfile *, int *, int *);
144
145 static void add_undefined_type (struct type *, int[2]);
146
147 static int
148 read_cpp_abbrev (struct field_info *, char **, struct type *,
149 struct objfile *);
150
151 static char *find_name_end (char *name);
152
153 static int process_reference (char **string);
154
155 void stabsread_clear_cache (void);
156
157 static const char vptr_name[] = "_vptr$";
158 static const char vb_name[] = "_vb$";
159
160 static void
161 invalid_cpp_abbrev_complaint (const char *arg1)
162 {
163 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
164 }
165
166 static void
167 reg_value_complaint (int regnum, int num_regs, const char *sym)
168 {
169 complaint (&symfile_complaints,
170 _("register number %d too large (max %d) in symbol %s"),
171 regnum, num_regs - 1, sym);
172 }
173
174 static void
175 stabs_general_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, "%s", arg1);
178 }
179
180 /* Make a list of forward references which haven't been defined. */
181
182 static struct type **undef_types;
183 static int undef_types_allocated;
184 static int undef_types_length;
185 static struct symbol *current_symbol = NULL;
186
187 /* Make a list of nameless types that are undefined.
188 This happens when another type is referenced by its number
189 before this type is actually defined. For instance "t(0,1)=k(0,2)"
190 and type (0,2) is defined only later. */
191
192 struct nat
193 {
194 int typenums[2];
195 struct type *type;
196 };
197 static struct nat *noname_undefs;
198 static int noname_undefs_allocated;
199 static int noname_undefs_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207
208 /* Vector of types defined so far, indexed by their type numbers.
209 (In newer sun systems, dbx uses a pair of numbers in parens,
210 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
211 Then these numbers must be translated through the type_translations
212 hash table to get the index into the type vector.) */
213
214 static struct type **type_vector;
215
216 /* Number of elements allocated for type_vector currently. */
217
218 static int type_vector_length;
219
220 /* Initial size of type vector. Is realloc'd larger if needed, and
221 realloc'd down to the size actually used, when completed. */
222
223 #define INITIAL_TYPE_VECTOR_LENGTH 160
224 \f
225
226 /* Look up a dbx type-number pair. Return the address of the slot
227 where the type for that number-pair is stored.
228 The number-pair is in TYPENUMS.
229
230 This can be used for finding the type associated with that pair
231 or for associating a new type with the pair. */
232
233 static struct type **
234 dbx_lookup_type (int typenums[2], struct objfile *objfile)
235 {
236 int filenum = typenums[0];
237 int index = typenums[1];
238 unsigned old_len;
239 int real_filenum;
240 struct header_file *f;
241 int f_orig_length;
242
243 if (filenum == -1) /* -1,-1 is for temporary types. */
244 return 0;
245
246 if (filenum < 0 || filenum >= n_this_object_header_files)
247 {
248 complaint (&symfile_complaints,
249 _("Invalid symbol data: type number "
250 "(%d,%d) out of range at symtab pos %d."),
251 filenum, index, symnum);
252 goto error_return;
253 }
254
255 if (filenum == 0)
256 {
257 if (index < 0)
258 {
259 /* Caller wants address of address of type. We think
260 that negative (rs6k builtin) types will never appear as
261 "lvalues", (nor should they), so we stuff the real type
262 pointer into a temp, and return its address. If referenced,
263 this will do the right thing. */
264 static struct type *temp_type;
265
266 temp_type = rs6000_builtin_type (index, objfile);
267 return &temp_type;
268 }
269
270 /* Type is defined outside of header files.
271 Find it in this object file's type vector. */
272 if (index >= type_vector_length)
273 {
274 old_len = type_vector_length;
275 if (old_len == 0)
276 {
277 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
278 type_vector = (struct type **)
279 xmalloc (type_vector_length * sizeof (struct type *));
280 }
281 while (index >= type_vector_length)
282 {
283 type_vector_length *= 2;
284 }
285 type_vector = (struct type **)
286 xrealloc ((char *) type_vector,
287 (type_vector_length * sizeof (struct type *)));
288 memset (&type_vector[old_len], 0,
289 (type_vector_length - old_len) * sizeof (struct type *));
290 }
291 return (&type_vector[index]);
292 }
293 else
294 {
295 real_filenum = this_object_header_files[filenum];
296
297 if (real_filenum >= N_HEADER_FILES (objfile))
298 {
299 static struct type *temp_type;
300
301 warning (_("GDB internal error: bad real_filenum"));
302
303 error_return:
304 temp_type = objfile_type (objfile)->builtin_error;
305 return &temp_type;
306 }
307
308 f = HEADER_FILES (objfile) + real_filenum;
309
310 f_orig_length = f->length;
311 if (index >= f_orig_length)
312 {
313 while (index >= f->length)
314 {
315 f->length *= 2;
316 }
317 f->vector = (struct type **)
318 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
319 memset (&f->vector[f_orig_length], 0,
320 (f->length - f_orig_length) * sizeof (struct type *));
321 }
322 return (&f->vector[index]);
323 }
324 }
325
326 /* Make sure there is a type allocated for type numbers TYPENUMS
327 and return the type object.
328 This can create an empty (zeroed) type object.
329 TYPENUMS may be (-1, -1) to return a new type object that is not
330 put into the type vector, and so may not be referred to by number. */
331
332 static struct type *
333 dbx_alloc_type (int typenums[2], struct objfile *objfile)
334 {
335 struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums, objfile);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
360 struct objfile *objfile)
361 {
362 int ii;
363 char *name;
364 char *pp;
365 struct symbol *sym;
366
367 if (stabs)
368 {
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 gdb_assert (pp); /* Must find a ':' or game's over. */
377 while (pp[1] == ':')
378 {
379 pp += 2;
380 pp = (char *) strchr (pp, ':');
381 }
382 sym = find_symbol_in_list (symbols, name, pp - name);
383 if (!sym)
384 {
385 /* FIXME-maybe: it would be nice if we noticed whether
386 the variable was defined *anywhere*, not just whether
387 it is defined in this compilation unit. But neither
388 xlc or GCC seem to need such a definition, and until
389 we do psymtabs (so that the minimal symbols from all
390 compilation units are available now), I'm not sure
391 how to get the information. */
392
393 /* On xcoff, if a global is defined and never referenced,
394 ld will remove it from the executable. There is then
395 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
396 sym = allocate_symbol (objfile);
397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
398 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
399 SYMBOL_SET_LINKAGE_NAME
400 (sym, obstack_copy0 (&objfile->objfile_obstack,
401 name, pp - name));
402 pp += 2;
403 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
404 {
405 /* I don't think the linker does this with functions,
406 so as far as I know this is never executed.
407 But it doesn't hurt to check. */
408 SYMBOL_TYPE (sym) =
409 lookup_function_type (read_type (&pp, objfile));
410 }
411 else
412 {
413 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
414 }
415 add_symbol_to_list (sym, &global_symbols);
416 }
417 else
418 {
419 pp += 2;
420 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
421 {
422 SYMBOL_TYPE (sym) =
423 lookup_function_type (read_type (&pp, objfile));
424 }
425 else
426 {
427 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
428 }
429 }
430 }
431 }
432 }
433 \f
434
435 /* Read a number by which a type is referred to in dbx data,
436 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
437 Just a single number N is equivalent to (0,N).
438 Return the two numbers by storing them in the vector TYPENUMS.
439 TYPENUMS will then be used as an argument to dbx_lookup_type.
440
441 Returns 0 for success, -1 for error. */
442
443 static int
444 read_type_number (char **pp, int *typenums)
445 {
446 int nbits;
447
448 if (**pp == '(')
449 {
450 (*pp)++;
451 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
455 if (nbits != 0)
456 return -1;
457 }
458 else
459 {
460 typenums[0] = 0;
461 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
462 if (nbits != 0)
463 return -1;
464 }
465 return 0;
466 }
467 \f
468
469 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
470 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
471 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
472 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
473
474 /* Structure for storing pointers to reference definitions for fast lookup
475 during "process_later". */
476
477 struct ref_map
478 {
479 char *stabs;
480 CORE_ADDR value;
481 struct symbol *sym;
482 };
483
484 #define MAX_CHUNK_REFS 100
485 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
486 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
487
488 static struct ref_map *ref_map;
489
490 /* Ptr to free cell in chunk's linked list. */
491 static int ref_count = 0;
492
493 /* Number of chunks malloced. */
494 static int ref_chunk = 0;
495
496 /* This file maintains a cache of stabs aliases found in the symbol
497 table. If the symbol table changes, this cache must be cleared
498 or we are left holding onto data in invalid obstacks. */
499 void
500 stabsread_clear_cache (void)
501 {
502 ref_count = 0;
503 ref_chunk = 0;
504 }
505
506 /* Create array of pointers mapping refids to symbols and stab strings.
507 Add pointers to reference definition symbols and/or their values as we
508 find them, using their reference numbers as our index.
509 These will be used later when we resolve references. */
510 void
511 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
512 {
513 if (ref_count == 0)
514 ref_chunk = 0;
515 if (refnum >= ref_count)
516 ref_count = refnum + 1;
517 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
518 {
519 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
520 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
521
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
525 new_chunks * REF_CHUNK_SIZE);
526 ref_chunk += new_chunks;
527 }
528 ref_map[refnum].stabs = stabs;
529 ref_map[refnum].sym = sym;
530 ref_map[refnum].value = value;
531 }
532
533 /* Return defined sym for the reference REFNUM. */
534 struct symbol *
535 ref_search (int refnum)
536 {
537 if (refnum < 0 || refnum > ref_count)
538 return 0;
539 return ref_map[refnum].sym;
540 }
541
542 /* Parse a reference id in STRING and return the resulting
543 reference number. Move STRING beyond the reference id. */
544
545 static int
546 process_reference (char **string)
547 {
548 char *p;
549 int refnum = 0;
550
551 if (**string != '#')
552 return 0;
553
554 /* Advance beyond the initial '#'. */
555 p = *string + 1;
556
557 /* Read number as reference id. */
558 while (*p && isdigit (*p))
559 {
560 refnum = refnum * 10 + *p - '0';
561 p++;
562 }
563 *string = p;
564 return refnum;
565 }
566
567 /* If STRING defines a reference, store away a pointer to the reference
568 definition for later use. Return the reference number. */
569
570 int
571 symbol_reference_defined (char **string)
572 {
573 char *p = *string;
574 int refnum = 0;
575
576 refnum = process_reference (&p);
577
578 /* Defining symbols end in '='. */
579 if (*p == '=')
580 {
581 /* Symbol is being defined here. */
582 *string = p + 1;
583 return refnum;
584 }
585 else
586 {
587 /* Must be a reference. Either the symbol has already been defined,
588 or this is a forward reference to it. */
589 *string = p;
590 return -1;
591 }
592 }
593
594 static int
595 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
596 {
597 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
598
599 if (regno >= gdbarch_num_regs (gdbarch)
600 + gdbarch_num_pseudo_regs (gdbarch))
601 {
602 reg_value_complaint (regno,
603 gdbarch_num_regs (gdbarch)
604 + gdbarch_num_pseudo_regs (gdbarch),
605 SYMBOL_PRINT_NAME (sym));
606
607 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
608 }
609
610 return regno;
611 }
612
613 static const struct symbol_register_ops stab_register_funcs = {
614 stab_reg_to_regnum
615 };
616
617 /* The "aclass" indices for computed symbols. */
618
619 static int stab_register_index;
620 static int stab_regparm_index;
621
622 struct symbol *
623 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
624 struct objfile *objfile)
625 {
626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
627 struct symbol *sym;
628 char *p = (char *) find_name_end (string);
629 int deftype;
630 int synonym = 0;
631 int i;
632 char *new_name = NULL;
633
634 /* We would like to eliminate nameless symbols, but keep their types.
635 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
636 to type 2, but, should not create a symbol to address that type. Since
637 the symbol will be nameless, there is no way any user can refer to it. */
638
639 int nameless;
640
641 /* Ignore syms with empty names. */
642 if (string[0] == 0)
643 return 0;
644
645 /* Ignore old-style symbols from cc -go. */
646 if (p == 0)
647 return 0;
648
649 while (p[1] == ':')
650 {
651 p += 2;
652 p = strchr (p, ':');
653 if (p == NULL)
654 {
655 complaint (&symfile_complaints,
656 _("Bad stabs string '%s'"), string);
657 return NULL;
658 }
659 }
660
661 /* If a nameless stab entry, all we need is the type, not the symbol.
662 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
663 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
664
665 current_symbol = sym = allocate_symbol (objfile);
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 if (is_cplus_marker (string[0]))
679 {
680 /* Special GNU C++ names. */
681 switch (string[1])
682 {
683 case 't':
684 SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 break;
686
687 case 'v': /* $vtbl_ptr_type */
688 goto normal;
689
690 case 'e':
691 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 break;
693
694 case '_':
695 /* This was an anonymous type that was never fixed up. */
696 goto normal;
697
698 case 'X':
699 /* SunPRO (3.0 at least) static variable encoding. */
700 if (gdbarch_static_transform_name_p (gdbarch))
701 goto normal;
702 /* ... fall through ... */
703
704 default:
705 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 string);
707 goto normal; /* Do *something* with it. */
708 }
709 }
710 else
711 {
712 normal:
713 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
714 &objfile->objfile_obstack);
715 if (SYMBOL_LANGUAGE (sym) == language_cplus)
716 {
717 char *name = alloca (p - string + 1);
718
719 memcpy (name, string, p - string);
720 name[p - string] = '\0';
721 new_name = cp_canonicalize_string (name);
722 }
723 if (new_name != NULL)
724 {
725 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
726 xfree (new_name);
727 }
728 else
729 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
730
731 if (SYMBOL_LANGUAGE (sym) == language_cplus)
732 cp_scan_for_anonymous_namespaces (sym, objfile);
733
734 }
735 p++;
736
737 /* Determine the type of name being defined. */
738 #if 0
739 /* Getting GDB to correctly skip the symbol on an undefined symbol
740 descriptor and not ever dump core is a very dodgy proposition if
741 we do things this way. I say the acorn RISC machine can just
742 fix their compiler. */
743 /* The Acorn RISC machine's compiler can put out locals that don't
744 start with "234=" or "(3,4)=", so assume anything other than the
745 deftypes we know how to handle is a local. */
746 if (!strchr ("cfFGpPrStTvVXCR", *p))
747 #else
748 if (isdigit (*p) || *p == '(' || *p == '-')
749 #endif
750 deftype = 'l';
751 else
752 deftype = *p++;
753
754 switch (deftype)
755 {
756 case 'c':
757 /* c is a special case, not followed by a type-number.
758 SYMBOL:c=iVALUE for an integer constant symbol.
759 SYMBOL:c=rVALUE for a floating constant symbol.
760 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
761 e.g. "b:c=e6,0" for "const b = blob1"
762 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
763 if (*p != '=')
764 {
765 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
766 SYMBOL_TYPE (sym) = error_type (&p, objfile);
767 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
768 add_symbol_to_list (sym, &file_symbols);
769 return sym;
770 }
771 ++p;
772 switch (*p++)
773 {
774 case 'r':
775 {
776 double d = atof (p);
777 gdb_byte *dbl_valu;
778 struct type *dbl_type;
779
780 /* FIXME-if-picky-about-floating-accuracy: Should be using
781 target arithmetic to get the value. real.c in GCC
782 probably has the necessary code. */
783
784 dbl_type = objfile_type (objfile)->builtin_double;
785 dbl_valu =
786 obstack_alloc (&objfile->objfile_obstack,
787 TYPE_LENGTH (dbl_type));
788 store_typed_floating (dbl_valu, dbl_type, d);
789
790 SYMBOL_TYPE (sym) = dbl_type;
791 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
792 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
793 }
794 break;
795 case 'i':
796 {
797 /* Defining integer constants this way is kind of silly,
798 since 'e' constants allows the compiler to give not
799 only the value, but the type as well. C has at least
800 int, long, unsigned int, and long long as constant
801 types; other languages probably should have at least
802 unsigned as well as signed constants. */
803
804 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
805 SYMBOL_VALUE (sym) = atoi (p);
806 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
807 }
808 break;
809
810 case 'c':
811 {
812 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
813 SYMBOL_VALUE (sym) = atoi (p);
814 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
815 }
816 break;
817
818 case 's':
819 {
820 struct type *range_type;
821 int ind = 0;
822 char quote = *p++;
823 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
824 gdb_byte *string_value;
825
826 if (quote != '\'' && quote != '"')
827 {
828 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
829 SYMBOL_TYPE (sym) = error_type (&p, objfile);
830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 add_symbol_to_list (sym, &file_symbols);
832 return sym;
833 }
834
835 /* Find matching quote, rejecting escaped quotes. */
836 while (*p && *p != quote)
837 {
838 if (*p == '\\' && p[1] == quote)
839 {
840 string_local[ind] = (gdb_byte) quote;
841 ind++;
842 p += 2;
843 }
844 else if (*p)
845 {
846 string_local[ind] = (gdb_byte) (*p);
847 ind++;
848 p++;
849 }
850 }
851 if (*p != quote)
852 {
853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
854 SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 add_symbol_to_list (sym, &file_symbols);
857 return sym;
858 }
859
860 /* NULL terminate the string. */
861 string_local[ind] = 0;
862 range_type
863 = create_static_range_type (NULL,
864 objfile_type (objfile)->builtin_int,
865 0, ind);
866 SYMBOL_TYPE (sym) = create_array_type (NULL,
867 objfile_type (objfile)->builtin_char,
868 range_type);
869 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
870 memcpy (string_value, string_local, ind + 1);
871 p++;
872
873 SYMBOL_VALUE_BYTES (sym) = string_value;
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
875 }
876 break;
877
878 case 'e':
879 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
880 can be represented as integral.
881 e.g. "b:c=e6,0" for "const b = blob1"
882 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
883 {
884 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
885 SYMBOL_TYPE (sym) = read_type (&p, objfile);
886
887 if (*p != ',')
888 {
889 SYMBOL_TYPE (sym) = error_type (&p, objfile);
890 break;
891 }
892 ++p;
893
894 /* If the value is too big to fit in an int (perhaps because
895 it is unsigned), or something like that, we silently get
896 a bogus value. The type and everything else about it is
897 correct. Ideally, we should be using whatever we have
898 available for parsing unsigned and long long values,
899 however. */
900 SYMBOL_VALUE (sym) = atoi (p);
901 }
902 break;
903 default:
904 {
905 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
906 SYMBOL_TYPE (sym) = error_type (&p, objfile);
907 }
908 }
909 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
910 add_symbol_to_list (sym, &file_symbols);
911 return sym;
912
913 case 'C':
914 /* The name of a caught exception. */
915 SYMBOL_TYPE (sym) = read_type (&p, objfile);
916 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
917 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
918 SYMBOL_VALUE_ADDRESS (sym) = valu;
919 add_symbol_to_list (sym, &local_symbols);
920 break;
921
922 case 'f':
923 /* A static function definition. */
924 SYMBOL_TYPE (sym) = read_type (&p, objfile);
925 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927 add_symbol_to_list (sym, &file_symbols);
928 /* fall into process_function_types. */
929
930 process_function_types:
931 /* Function result types are described as the result type in stabs.
932 We need to convert this to the function-returning-type-X type
933 in GDB. E.g. "int" is converted to "function returning int". */
934 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
935 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
936
937 /* All functions in C++ have prototypes. Stabs does not offer an
938 explicit way to identify prototyped or unprototyped functions,
939 but both GCC and Sun CC emit stabs for the "call-as" type rather
940 than the "declared-as" type for unprototyped functions, so
941 we treat all functions as if they were prototyped. This is used
942 primarily for promotion when calling the function from GDB. */
943 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
944
945 /* fall into process_prototype_types. */
946
947 process_prototype_types:
948 /* Sun acc puts declared types of arguments here. */
949 if (*p == ';')
950 {
951 struct type *ftype = SYMBOL_TYPE (sym);
952 int nsemi = 0;
953 int nparams = 0;
954 char *p1 = p;
955
956 /* Obtain a worst case guess for the number of arguments
957 by counting the semicolons. */
958 while (*p1)
959 {
960 if (*p1++ == ';')
961 nsemi++;
962 }
963
964 /* Allocate parameter information fields and fill them in. */
965 TYPE_FIELDS (ftype) = (struct field *)
966 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
967 while (*p++ == ';')
968 {
969 struct type *ptype;
970
971 /* A type number of zero indicates the start of varargs.
972 FIXME: GDB currently ignores vararg functions. */
973 if (p[0] == '0' && p[1] == '\0')
974 break;
975 ptype = read_type (&p, objfile);
976
977 /* The Sun compilers mark integer arguments, which should
978 be promoted to the width of the calling conventions, with
979 a type which references itself. This type is turned into
980 a TYPE_CODE_VOID type by read_type, and we have to turn
981 it back into builtin_int here.
982 FIXME: Do we need a new builtin_promoted_int_arg ? */
983 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
984 ptype = objfile_type (objfile)->builtin_int;
985 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
986 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
987 }
988 TYPE_NFIELDS (ftype) = nparams;
989 TYPE_PROTOTYPED (ftype) = 1;
990 }
991 break;
992
993 case 'F':
994 /* A global function definition. */
995 SYMBOL_TYPE (sym) = read_type (&p, objfile);
996 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
997 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
998 add_symbol_to_list (sym, &global_symbols);
999 goto process_function_types;
1000
1001 case 'G':
1002 /* For a class G (global) symbol, it appears that the
1003 value is not correct. It is necessary to search for the
1004 corresponding linker definition to find the value.
1005 These definitions appear at the end of the namelist. */
1006 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1007 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1008 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1009 /* Don't add symbol references to global_sym_chain.
1010 Symbol references don't have valid names and wont't match up with
1011 minimal symbols when the global_sym_chain is relocated.
1012 We'll fixup symbol references when we fixup the defining symbol. */
1013 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1014 {
1015 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1016 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1017 global_sym_chain[i] = sym;
1018 }
1019 add_symbol_to_list (sym, &global_symbols);
1020 break;
1021
1022 /* This case is faked by a conditional above,
1023 when there is no code letter in the dbx data.
1024 Dbx data never actually contains 'l'. */
1025 case 's':
1026 case 'l':
1027 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1028 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1029 SYMBOL_VALUE (sym) = valu;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 add_symbol_to_list (sym, &local_symbols);
1032 break;
1033
1034 case 'p':
1035 if (*p == 'F')
1036 /* pF is a two-letter code that means a function parameter in Fortran.
1037 The type-number specifies the type of the return value.
1038 Translate it into a pointer-to-function type. */
1039 {
1040 p++;
1041 SYMBOL_TYPE (sym)
1042 = lookup_pointer_type
1043 (lookup_function_type (read_type (&p, objfile)));
1044 }
1045 else
1046 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1047
1048 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1049 SYMBOL_VALUE (sym) = valu;
1050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1051 SYMBOL_IS_ARGUMENT (sym) = 1;
1052 add_symbol_to_list (sym, &local_symbols);
1053
1054 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1055 {
1056 /* On little-endian machines, this crud is never necessary,
1057 and, if the extra bytes contain garbage, is harmful. */
1058 break;
1059 }
1060
1061 /* If it's gcc-compiled, if it says `short', believe it. */
1062 if (processing_gcc_compilation
1063 || gdbarch_believe_pcc_promotion (gdbarch))
1064 break;
1065
1066 if (!gdbarch_believe_pcc_promotion (gdbarch))
1067 {
1068 /* If PCC says a parameter is a short or a char, it is
1069 really an int. */
1070 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1071 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1072 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1073 {
1074 SYMBOL_TYPE (sym) =
1075 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1076 ? objfile_type (objfile)->builtin_unsigned_int
1077 : objfile_type (objfile)->builtin_int;
1078 }
1079 break;
1080 }
1081
1082 case 'P':
1083 /* acc seems to use P to declare the prototypes of functions that
1084 are referenced by this file. gdb is not prepared to deal
1085 with this extra information. FIXME, it ought to. */
1086 if (type == N_FUN)
1087 {
1088 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1089 goto process_prototype_types;
1090 }
1091 /*FALLTHROUGH */
1092
1093 case 'R':
1094 /* Parameter which is in a register. */
1095 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1096 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1097 SYMBOL_IS_ARGUMENT (sym) = 1;
1098 SYMBOL_VALUE (sym) = valu;
1099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100 add_symbol_to_list (sym, &local_symbols);
1101 break;
1102
1103 case 'r':
1104 /* Register variable (either global or local). */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1107 SYMBOL_VALUE (sym) = valu;
1108 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1109 if (within_function)
1110 {
1111 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1112 the same name to represent an argument passed in a
1113 register. GCC uses 'P' for the same case. So if we find
1114 such a symbol pair we combine it into one 'P' symbol.
1115 For Sun cc we need to do this regardless of
1116 stabs_argument_has_addr, because the compiler puts out
1117 the 'p' symbol even if it never saves the argument onto
1118 the stack.
1119
1120 On most machines, we want to preserve both symbols, so
1121 that we can still get information about what is going on
1122 with the stack (VAX for computing args_printed, using
1123 stack slots instead of saved registers in backtraces,
1124 etc.).
1125
1126 Note that this code illegally combines
1127 main(argc) struct foo argc; { register struct foo argc; }
1128 but this case is considered pathological and causes a warning
1129 from a decent compiler. */
1130
1131 if (local_symbols
1132 && local_symbols->nsyms > 0
1133 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1134 {
1135 struct symbol *prev_sym;
1136
1137 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1138 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1139 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1140 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1141 SYMBOL_LINKAGE_NAME (sym)) == 0)
1142 {
1143 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1144 /* Use the type from the LOC_REGISTER; that is the type
1145 that is actually in that register. */
1146 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1147 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1148 sym = prev_sym;
1149 break;
1150 }
1151 }
1152 add_symbol_to_list (sym, &local_symbols);
1153 }
1154 else
1155 add_symbol_to_list (sym, &file_symbols);
1156 break;
1157
1158 case 'S':
1159 /* Static symbol at top level of file. */
1160 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1161 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1162 SYMBOL_VALUE_ADDRESS (sym) = valu;
1163 if (gdbarch_static_transform_name_p (gdbarch)
1164 && gdbarch_static_transform_name (gdbarch,
1165 SYMBOL_LINKAGE_NAME (sym))
1166 != SYMBOL_LINKAGE_NAME (sym))
1167 {
1168 struct bound_minimal_symbol msym;
1169
1170 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1171 NULL, objfile);
1172 if (msym.minsym != NULL)
1173 {
1174 const char *new_name = gdbarch_static_transform_name
1175 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1176
1177 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1178 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1179 }
1180 }
1181 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1182 add_symbol_to_list (sym, &file_symbols);
1183 break;
1184
1185 case 't':
1186 /* In Ada, there is no distinction between typedef and non-typedef;
1187 any type declaration implicitly has the equivalent of a typedef,
1188 and thus 't' is in fact equivalent to 'Tt'.
1189
1190 Therefore, for Ada units, we check the character immediately
1191 before the 't', and if we do not find a 'T', then make sure to
1192 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1193 will be stored in the VAR_DOMAIN). If the symbol was indeed
1194 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1195 elsewhere, so we don't need to take care of that.
1196
1197 This is important to do, because of forward references:
1198 The cleanup of undefined types stored in undef_types only uses
1199 STRUCT_DOMAIN symbols to perform the replacement. */
1200 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1201
1202 /* Typedef */
1203 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1204
1205 /* For a nameless type, we don't want a create a symbol, thus we
1206 did not use `sym'. Return without further processing. */
1207 if (nameless)
1208 return NULL;
1209
1210 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1211 SYMBOL_VALUE (sym) = valu;
1212 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1213 /* C++ vagaries: we may have a type which is derived from
1214 a base type which did not have its name defined when the
1215 derived class was output. We fill in the derived class's
1216 base part member's name here in that case. */
1217 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1218 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1219 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1220 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1221 {
1222 int j;
1223
1224 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1225 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1226 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1227 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1228 }
1229
1230 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1231 {
1232 /* gcc-2.6 or later (when using -fvtable-thunks)
1233 emits a unique named type for a vtable entry.
1234 Some gdb code depends on that specific name. */
1235 extern const char vtbl_ptr_name[];
1236
1237 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1238 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1239 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1240 {
1241 /* If we are giving a name to a type such as "pointer to
1242 foo" or "function returning foo", we better not set
1243 the TYPE_NAME. If the program contains "typedef char
1244 *caddr_t;", we don't want all variables of type char
1245 * to print as caddr_t. This is not just a
1246 consequence of GDB's type management; PCC and GCC (at
1247 least through version 2.4) both output variables of
1248 either type char * or caddr_t with the type number
1249 defined in the 't' symbol for caddr_t. If a future
1250 compiler cleans this up it GDB is not ready for it
1251 yet, but if it becomes ready we somehow need to
1252 disable this check (without breaking the PCC/GCC2.4
1253 case).
1254
1255 Sigh.
1256
1257 Fortunately, this check seems not to be necessary
1258 for anything except pointers or functions. */
1259 /* ezannoni: 2000-10-26. This seems to apply for
1260 versions of gcc older than 2.8. This was the original
1261 problem: with the following code gdb would tell that
1262 the type for name1 is caddr_t, and func is char().
1263
1264 typedef char *caddr_t;
1265 char *name2;
1266 struct x
1267 {
1268 char *name1;
1269 } xx;
1270 char *func()
1271 {
1272 }
1273 main () {}
1274 */
1275
1276 /* Pascal accepts names for pointer types. */
1277 if (current_subfile->language == language_pascal)
1278 {
1279 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1280 }
1281 }
1282 else
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285
1286 add_symbol_to_list (sym, &file_symbols);
1287
1288 if (synonym)
1289 {
1290 /* Create the STRUCT_DOMAIN clone. */
1291 struct symbol *struct_sym = allocate_symbol (objfile);
1292
1293 *struct_sym = *sym;
1294 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1295 SYMBOL_VALUE (struct_sym) = valu;
1296 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1297 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1298 TYPE_NAME (SYMBOL_TYPE (sym))
1299 = obconcat (&objfile->objfile_obstack,
1300 SYMBOL_LINKAGE_NAME (sym),
1301 (char *) NULL);
1302 add_symbol_to_list (struct_sym, &file_symbols);
1303 }
1304
1305 break;
1306
1307 case 'T':
1308 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1309 by 't' which means we are typedef'ing it as well. */
1310 synonym = *p == 't';
1311
1312 if (synonym)
1313 p++;
1314
1315 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1316
1317 /* For a nameless type, we don't want a create a symbol, thus we
1318 did not use `sym'. Return without further processing. */
1319 if (nameless)
1320 return NULL;
1321
1322 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1323 SYMBOL_VALUE (sym) = valu;
1324 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1325 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1326 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1327 = obconcat (&objfile->objfile_obstack,
1328 SYMBOL_LINKAGE_NAME (sym),
1329 (char *) NULL);
1330 add_symbol_to_list (sym, &file_symbols);
1331
1332 if (synonym)
1333 {
1334 /* Clone the sym and then modify it. */
1335 struct symbol *typedef_sym = allocate_symbol (objfile);
1336
1337 *typedef_sym = *sym;
1338 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1339 SYMBOL_VALUE (typedef_sym) = valu;
1340 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1341 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1342 TYPE_NAME (SYMBOL_TYPE (sym))
1343 = obconcat (&objfile->objfile_obstack,
1344 SYMBOL_LINKAGE_NAME (sym),
1345 (char *) NULL);
1346 add_symbol_to_list (typedef_sym, &file_symbols);
1347 }
1348 break;
1349
1350 case 'V':
1351 /* Static symbol of local scope. */
1352 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1353 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1354 SYMBOL_VALUE_ADDRESS (sym) = valu;
1355 if (gdbarch_static_transform_name_p (gdbarch)
1356 && gdbarch_static_transform_name (gdbarch,
1357 SYMBOL_LINKAGE_NAME (sym))
1358 != SYMBOL_LINKAGE_NAME (sym))
1359 {
1360 struct bound_minimal_symbol msym;
1361
1362 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1363 NULL, objfile);
1364 if (msym.minsym != NULL)
1365 {
1366 const char *new_name = gdbarch_static_transform_name
1367 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1368
1369 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1370 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1371 }
1372 }
1373 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1374 add_symbol_to_list (sym, &local_symbols);
1375 break;
1376
1377 case 'v':
1378 /* Reference parameter */
1379 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1380 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1381 SYMBOL_IS_ARGUMENT (sym) = 1;
1382 SYMBOL_VALUE (sym) = valu;
1383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1384 add_symbol_to_list (sym, &local_symbols);
1385 break;
1386
1387 case 'a':
1388 /* Reference parameter which is in a register. */
1389 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1390 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1391 SYMBOL_IS_ARGUMENT (sym) = 1;
1392 SYMBOL_VALUE (sym) = valu;
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, &local_symbols);
1395 break;
1396
1397 case 'X':
1398 /* This is used by Sun FORTRAN for "function result value".
1399 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1400 that Pascal uses it too, but when I tried it Pascal used
1401 "x:3" (local symbol) instead. */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 default:
1410 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1411 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1412 SYMBOL_VALUE (sym) = 0;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, &file_symbols);
1415 break;
1416 }
1417
1418 /* Some systems pass variables of certain types by reference instead
1419 of by value, i.e. they will pass the address of a structure (in a
1420 register or on the stack) instead of the structure itself. */
1421
1422 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1423 && SYMBOL_IS_ARGUMENT (sym))
1424 {
1425 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1426 variables passed in a register). */
1427 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1428 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1429 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1430 and subsequent arguments on SPARC, for example). */
1431 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1433 }
1434
1435 return sym;
1436 }
1437
1438 /* Skip rest of this symbol and return an error type.
1439
1440 General notes on error recovery: error_type always skips to the
1441 end of the symbol (modulo cretinous dbx symbol name continuation).
1442 Thus code like this:
1443
1444 if (*(*pp)++ != ';')
1445 return error_type (pp, objfile);
1446
1447 is wrong because if *pp starts out pointing at '\0' (typically as the
1448 result of an earlier error), it will be incremented to point to the
1449 start of the next symbol, which might produce strange results, at least
1450 if you run off the end of the string table. Instead use
1451
1452 if (**pp != ';')
1453 return error_type (pp, objfile);
1454 ++*pp;
1455
1456 or
1457
1458 if (**pp != ';')
1459 foo = error_type (pp, objfile);
1460 else
1461 ++*pp;
1462
1463 And in case it isn't obvious, the point of all this hair is so the compiler
1464 can define new types and new syntaxes, and old versions of the
1465 debugger will be able to read the new symbol tables. */
1466
1467 static struct type *
1468 error_type (char **pp, struct objfile *objfile)
1469 {
1470 complaint (&symfile_complaints,
1471 _("couldn't parse type; debugger out of date?"));
1472 while (1)
1473 {
1474 /* Skip to end of symbol. */
1475 while (**pp != '\0')
1476 {
1477 (*pp)++;
1478 }
1479
1480 /* Check for and handle cretinous dbx symbol name continuation! */
1481 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1482 {
1483 *pp = next_symbol_text (objfile);
1484 }
1485 else
1486 {
1487 break;
1488 }
1489 }
1490 return objfile_type (objfile)->builtin_error;
1491 }
1492 \f
1493
1494 /* Read type information or a type definition; return the type. Even
1495 though this routine accepts either type information or a type
1496 definition, the distinction is relevant--some parts of stabsread.c
1497 assume that type information starts with a digit, '-', or '(' in
1498 deciding whether to call read_type. */
1499
1500 static struct type *
1501 read_type (char **pp, struct objfile *objfile)
1502 {
1503 struct type *type = 0;
1504 struct type *type1;
1505 int typenums[2];
1506 char type_descriptor;
1507
1508 /* Size in bits of type if specified by a type attribute, or -1 if
1509 there is no size attribute. */
1510 int type_size = -1;
1511
1512 /* Used to distinguish string and bitstring from char-array and set. */
1513 int is_string = 0;
1514
1515 /* Used to distinguish vector from array. */
1516 int is_vector = 0;
1517
1518 /* Read type number if present. The type number may be omitted.
1519 for instance in a two-dimensional array declared with type
1520 "ar1;1;10;ar1;1;10;4". */
1521 if ((**pp >= '0' && **pp <= '9')
1522 || **pp == '('
1523 || **pp == '-')
1524 {
1525 if (read_type_number (pp, typenums) != 0)
1526 return error_type (pp, objfile);
1527
1528 if (**pp != '=')
1529 {
1530 /* Type is not being defined here. Either it already
1531 exists, or this is a forward reference to it.
1532 dbx_alloc_type handles both cases. */
1533 type = dbx_alloc_type (typenums, objfile);
1534
1535 /* If this is a forward reference, arrange to complain if it
1536 doesn't get patched up by the time we're done
1537 reading. */
1538 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1539 add_undefined_type (type, typenums);
1540
1541 return type;
1542 }
1543
1544 /* Type is being defined here. */
1545 /* Skip the '='.
1546 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1547 (*pp) += 2;
1548 }
1549 else
1550 {
1551 /* 'typenums=' not present, type is anonymous. Read and return
1552 the definition, but don't put it in the type vector. */
1553 typenums[0] = typenums[1] = -1;
1554 (*pp)++;
1555 }
1556
1557 again:
1558 type_descriptor = (*pp)[-1];
1559 switch (type_descriptor)
1560 {
1561 case 'x':
1562 {
1563 enum type_code code;
1564
1565 /* Used to index through file_symbols. */
1566 struct pending *ppt;
1567 int i;
1568
1569 /* Name including "struct", etc. */
1570 char *type_name;
1571
1572 {
1573 char *from, *to, *p, *q1, *q2;
1574
1575 /* Set the type code according to the following letter. */
1576 switch ((*pp)[0])
1577 {
1578 case 's':
1579 code = TYPE_CODE_STRUCT;
1580 break;
1581 case 'u':
1582 code = TYPE_CODE_UNION;
1583 break;
1584 case 'e':
1585 code = TYPE_CODE_ENUM;
1586 break;
1587 default:
1588 {
1589 /* Complain and keep going, so compilers can invent new
1590 cross-reference types. */
1591 complaint (&symfile_complaints,
1592 _("Unrecognized cross-reference type `%c'"),
1593 (*pp)[0]);
1594 code = TYPE_CODE_STRUCT;
1595 break;
1596 }
1597 }
1598
1599 q1 = strchr (*pp, '<');
1600 p = strchr (*pp, ':');
1601 if (p == NULL)
1602 return error_type (pp, objfile);
1603 if (q1 && p > q1 && p[1] == ':')
1604 {
1605 int nesting_level = 0;
1606
1607 for (q2 = q1; *q2; q2++)
1608 {
1609 if (*q2 == '<')
1610 nesting_level++;
1611 else if (*q2 == '>')
1612 nesting_level--;
1613 else if (*q2 == ':' && nesting_level == 0)
1614 break;
1615 }
1616 p = q2;
1617 if (*p != ':')
1618 return error_type (pp, objfile);
1619 }
1620 type_name = NULL;
1621 if (current_subfile->language == language_cplus)
1622 {
1623 char *new_name, *name = alloca (p - *pp + 1);
1624
1625 memcpy (name, *pp, p - *pp);
1626 name[p - *pp] = '\0';
1627 new_name = cp_canonicalize_string (name);
1628 if (new_name != NULL)
1629 {
1630 type_name = obstack_copy0 (&objfile->objfile_obstack,
1631 new_name, strlen (new_name));
1632 xfree (new_name);
1633 }
1634 }
1635 if (type_name == NULL)
1636 {
1637 to = type_name = (char *)
1638 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1639
1640 /* Copy the name. */
1641 from = *pp + 1;
1642 while (from < p)
1643 *to++ = *from++;
1644 *to = '\0';
1645 }
1646
1647 /* Set the pointer ahead of the name which we just read, and
1648 the colon. */
1649 *pp = p + 1;
1650 }
1651
1652 /* If this type has already been declared, then reuse the same
1653 type, rather than allocating a new one. This saves some
1654 memory. */
1655
1656 for (ppt = file_symbols; ppt; ppt = ppt->next)
1657 for (i = 0; i < ppt->nsyms; i++)
1658 {
1659 struct symbol *sym = ppt->symbol[i];
1660
1661 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1662 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1663 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1664 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1665 {
1666 obstack_free (&objfile->objfile_obstack, type_name);
1667 type = SYMBOL_TYPE (sym);
1668 if (typenums[0] != -1)
1669 *dbx_lookup_type (typenums, objfile) = type;
1670 return type;
1671 }
1672 }
1673
1674 /* Didn't find the type to which this refers, so we must
1675 be dealing with a forward reference. Allocate a type
1676 structure for it, and keep track of it so we can
1677 fill in the rest of the fields when we get the full
1678 type. */
1679 type = dbx_alloc_type (typenums, objfile);
1680 TYPE_CODE (type) = code;
1681 TYPE_TAG_NAME (type) = type_name;
1682 INIT_CPLUS_SPECIFIC (type);
1683 TYPE_STUB (type) = 1;
1684
1685 add_undefined_type (type, typenums);
1686 return type;
1687 }
1688
1689 case '-': /* RS/6000 built-in type */
1690 case '0':
1691 case '1':
1692 case '2':
1693 case '3':
1694 case '4':
1695 case '5':
1696 case '6':
1697 case '7':
1698 case '8':
1699 case '9':
1700 case '(':
1701 (*pp)--;
1702
1703 /* We deal with something like t(1,2)=(3,4)=... which
1704 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1705
1706 /* Allocate and enter the typedef type first.
1707 This handles recursive types. */
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1710 {
1711 struct type *xtype = read_type (pp, objfile);
1712
1713 if (type == xtype)
1714 {
1715 /* It's being defined as itself. That means it is "void". */
1716 TYPE_CODE (type) = TYPE_CODE_VOID;
1717 TYPE_LENGTH (type) = 1;
1718 }
1719 else if (type_size >= 0 || is_string)
1720 {
1721 /* This is the absolute wrong way to construct types. Every
1722 other debug format has found a way around this problem and
1723 the related problems with unnecessarily stubbed types;
1724 someone motivated should attempt to clean up the issue
1725 here as well. Once a type pointed to has been created it
1726 should not be modified.
1727
1728 Well, it's not *absolutely* wrong. Constructing recursive
1729 types (trees, linked lists) necessarily entails modifying
1730 types after creating them. Constructing any loop structure
1731 entails side effects. The Dwarf 2 reader does handle this
1732 more gracefully (it never constructs more than once
1733 instance of a type object, so it doesn't have to copy type
1734 objects wholesale), but it still mutates type objects after
1735 other folks have references to them.
1736
1737 Keep in mind that this circularity/mutation issue shows up
1738 at the source language level, too: C's "incomplete types",
1739 for example. So the proper cleanup, I think, would be to
1740 limit GDB's type smashing to match exactly those required
1741 by the source language. So GDB could have a
1742 "complete_this_type" function, but never create unnecessary
1743 copies of a type otherwise. */
1744 replace_type (type, xtype);
1745 TYPE_NAME (type) = NULL;
1746 TYPE_TAG_NAME (type) = NULL;
1747 }
1748 else
1749 {
1750 TYPE_TARGET_STUB (type) = 1;
1751 TYPE_TARGET_TYPE (type) = xtype;
1752 }
1753 }
1754 break;
1755
1756 /* In the following types, we must be sure to overwrite any existing
1757 type that the typenums refer to, rather than allocating a new one
1758 and making the typenums point to the new one. This is because there
1759 may already be pointers to the existing type (if it had been
1760 forward-referenced), and we must change it to a pointer, function,
1761 reference, or whatever, *in-place*. */
1762
1763 case '*': /* Pointer to another type */
1764 type1 = read_type (pp, objfile);
1765 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1766 break;
1767
1768 case '&': /* Reference to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case 'f': /* Function returning another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'g': /* Prototyped function. (Sun) */
1779 {
1780 /* Unresolved questions:
1781
1782 - According to Sun's ``STABS Interface Manual'', for 'f'
1783 and 'F' symbol descriptors, a `0' in the argument type list
1784 indicates a varargs function. But it doesn't say how 'g'
1785 type descriptors represent that info. Someone with access
1786 to Sun's toolchain should try it out.
1787
1788 - According to the comment in define_symbol (search for
1789 `process_prototype_types:'), Sun emits integer arguments as
1790 types which ref themselves --- like `void' types. Do we
1791 have to deal with that here, too? Again, someone with
1792 access to Sun's toolchain should try it out and let us
1793 know. */
1794
1795 const char *type_start = (*pp) - 1;
1796 struct type *return_type = read_type (pp, objfile);
1797 struct type *func_type
1798 = make_function_type (return_type,
1799 dbx_lookup_type (typenums, objfile));
1800 struct type_list {
1801 struct type *type;
1802 struct type_list *next;
1803 } *arg_types = 0;
1804 int num_args = 0;
1805
1806 while (**pp && **pp != '#')
1807 {
1808 struct type *arg_type = read_type (pp, objfile);
1809 struct type_list *new = alloca (sizeof (*new));
1810 new->type = arg_type;
1811 new->next = arg_types;
1812 arg_types = new;
1813 num_args++;
1814 }
1815 if (**pp == '#')
1816 ++*pp;
1817 else
1818 {
1819 complaint (&symfile_complaints,
1820 _("Prototyped function type didn't "
1821 "end arguments with `#':\n%s"),
1822 type_start);
1823 }
1824
1825 /* If there is just one argument whose type is `void', then
1826 that's just an empty argument list. */
1827 if (arg_types
1828 && ! arg_types->next
1829 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1830 num_args = 0;
1831
1832 TYPE_FIELDS (func_type)
1833 = (struct field *) TYPE_ALLOC (func_type,
1834 num_args * sizeof (struct field));
1835 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1836 {
1837 int i;
1838 struct type_list *t;
1839
1840 /* We stuck each argument type onto the front of the list
1841 when we read it, so the list is reversed. Build the
1842 fields array right-to-left. */
1843 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1844 TYPE_FIELD_TYPE (func_type, i) = t->type;
1845 }
1846 TYPE_NFIELDS (func_type) = num_args;
1847 TYPE_PROTOTYPED (func_type) = 1;
1848
1849 type = func_type;
1850 break;
1851 }
1852
1853 case 'k': /* Const qualifier on some type (Sun) */
1854 type = read_type (pp, objfile);
1855 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1856 dbx_lookup_type (typenums, objfile));
1857 break;
1858
1859 case 'B': /* Volatile qual on some type (Sun) */
1860 type = read_type (pp, objfile);
1861 type = make_cv_type (TYPE_CONST (type), 1, type,
1862 dbx_lookup_type (typenums, objfile));
1863 break;
1864
1865 case '@':
1866 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1867 { /* Member (class & variable) type */
1868 /* FIXME -- we should be doing smash_to_XXX types here. */
1869
1870 struct type *domain = read_type (pp, objfile);
1871 struct type *memtype;
1872
1873 if (**pp != ',')
1874 /* Invalid member type data format. */
1875 return error_type (pp, objfile);
1876 ++*pp;
1877
1878 memtype = read_type (pp, objfile);
1879 type = dbx_alloc_type (typenums, objfile);
1880 smash_to_memberptr_type (type, domain, memtype);
1881 }
1882 else
1883 /* type attribute */
1884 {
1885 char *attr = *pp;
1886
1887 /* Skip to the semicolon. */
1888 while (**pp != ';' && **pp != '\0')
1889 ++(*pp);
1890 if (**pp == '\0')
1891 return error_type (pp, objfile);
1892 else
1893 ++ * pp; /* Skip the semicolon. */
1894
1895 switch (*attr)
1896 {
1897 case 's': /* Size attribute */
1898 type_size = atoi (attr + 1);
1899 if (type_size <= 0)
1900 type_size = -1;
1901 break;
1902
1903 case 'S': /* String attribute */
1904 /* FIXME: check to see if following type is array? */
1905 is_string = 1;
1906 break;
1907
1908 case 'V': /* Vector attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_vector = 1;
1911 break;
1912
1913 default:
1914 /* Ignore unrecognized type attributes, so future compilers
1915 can invent new ones. */
1916 break;
1917 }
1918 ++*pp;
1919 goto again;
1920 }
1921 break;
1922
1923 case '#': /* Method (class & fn) type */
1924 if ((*pp)[0] == '#')
1925 {
1926 /* We'll get the parameter types from the name. */
1927 struct type *return_type;
1928
1929 (*pp)++;
1930 return_type = read_type (pp, objfile);
1931 if (*(*pp)++ != ';')
1932 complaint (&symfile_complaints,
1933 _("invalid (minimal) member type "
1934 "data format at symtab pos %d."),
1935 symnum);
1936 type = allocate_stub_method (return_type);
1937 if (typenums[0] != -1)
1938 *dbx_lookup_type (typenums, objfile) = type;
1939 }
1940 else
1941 {
1942 struct type *domain = read_type (pp, objfile);
1943 struct type *return_type;
1944 struct field *args;
1945 int nargs, varargs;
1946
1947 if (**pp != ',')
1948 /* Invalid member type data format. */
1949 return error_type (pp, objfile);
1950 else
1951 ++(*pp);
1952
1953 return_type = read_type (pp, objfile);
1954 args = read_args (pp, ';', objfile, &nargs, &varargs);
1955 if (args == NULL)
1956 return error_type (pp, objfile);
1957 type = dbx_alloc_type (typenums, objfile);
1958 smash_to_method_type (type, domain, return_type, args,
1959 nargs, varargs);
1960 }
1961 break;
1962
1963 case 'r': /* Range type */
1964 type = read_range_type (pp, typenums, type_size, objfile);
1965 if (typenums[0] != -1)
1966 *dbx_lookup_type (typenums, objfile) = type;
1967 break;
1968
1969 case 'b':
1970 {
1971 /* Sun ACC builtin int type */
1972 type = read_sun_builtin_type (pp, typenums, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 }
1976 break;
1977
1978 case 'R': /* Sun ACC builtin float type */
1979 type = read_sun_floating_type (pp, typenums, objfile);
1980 if (typenums[0] != -1)
1981 *dbx_lookup_type (typenums, objfile) = type;
1982 break;
1983
1984 case 'e': /* Enumeration type */
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_enum_type (pp, type, objfile);
1987 if (typenums[0] != -1)
1988 *dbx_lookup_type (typenums, objfile) = type;
1989 break;
1990
1991 case 's': /* Struct type */
1992 case 'u': /* Union type */
1993 {
1994 enum type_code type_code = TYPE_CODE_UNDEF;
1995 type = dbx_alloc_type (typenums, objfile);
1996 switch (type_descriptor)
1997 {
1998 case 's':
1999 type_code = TYPE_CODE_STRUCT;
2000 break;
2001 case 'u':
2002 type_code = TYPE_CODE_UNION;
2003 break;
2004 }
2005 type = read_struct_type (pp, type, type_code, objfile);
2006 break;
2007 }
2008
2009 case 'a': /* Array type */
2010 if (**pp != 'r')
2011 return error_type (pp, objfile);
2012 ++*pp;
2013
2014 type = dbx_alloc_type (typenums, objfile);
2015 type = read_array_type (pp, type, objfile);
2016 if (is_string)
2017 TYPE_CODE (type) = TYPE_CODE_STRING;
2018 if (is_vector)
2019 make_vector_type (type);
2020 break;
2021
2022 case 'S': /* Set type */
2023 type1 = read_type (pp, objfile);
2024 type = create_set_type ((struct type *) NULL, type1);
2025 if (typenums[0] != -1)
2026 *dbx_lookup_type (typenums, objfile) = type;
2027 break;
2028
2029 default:
2030 --*pp; /* Go back to the symbol in error. */
2031 /* Particularly important if it was \0! */
2032 return error_type (pp, objfile);
2033 }
2034
2035 if (type == 0)
2036 {
2037 warning (_("GDB internal error, type is NULL in stabsread.c."));
2038 return error_type (pp, objfile);
2039 }
2040
2041 /* Size specified in a type attribute overrides any other size. */
2042 if (type_size != -1)
2043 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2044
2045 return type;
2046 }
2047 \f
2048 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2049 Return the proper type node for a given builtin type number. */
2050
2051 static const struct objfile_data *rs6000_builtin_type_data;
2052
2053 static struct type *
2054 rs6000_builtin_type (int typenum, struct objfile *objfile)
2055 {
2056 struct type **negative_types = objfile_data (objfile,
2057 rs6000_builtin_type_data);
2058
2059 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2060 #define NUMBER_RECOGNIZED 34
2061 struct type *rettype = NULL;
2062
2063 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2064 {
2065 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2066 return objfile_type (objfile)->builtin_error;
2067 }
2068
2069 if (!negative_types)
2070 {
2071 /* This includes an empty slot for type number -0. */
2072 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2073 NUMBER_RECOGNIZED + 1, struct type *);
2074 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2075 }
2076
2077 if (negative_types[-typenum] != NULL)
2078 return negative_types[-typenum];
2079
2080 #if TARGET_CHAR_BIT != 8
2081 #error This code wrong for TARGET_CHAR_BIT not 8
2082 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2083 that if that ever becomes not true, the correct fix will be to
2084 make the size in the struct type to be in bits, not in units of
2085 TARGET_CHAR_BIT. */
2086 #endif
2087
2088 switch (-typenum)
2089 {
2090 case 1:
2091 /* The size of this and all the other types are fixed, defined
2092 by the debugging format. If there is a type called "int" which
2093 is other than 32 bits, then it should use a new negative type
2094 number (or avoid negative type numbers for that case).
2095 See stabs.texinfo. */
2096 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2097 break;
2098 case 2:
2099 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2100 break;
2101 case 3:
2102 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2103 break;
2104 case 4:
2105 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2106 break;
2107 case 5:
2108 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2109 "unsigned char", objfile);
2110 break;
2111 case 6:
2112 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2113 break;
2114 case 7:
2115 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2116 "unsigned short", objfile);
2117 break;
2118 case 8:
2119 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2120 "unsigned int", objfile);
2121 break;
2122 case 9:
2123 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2124 "unsigned", objfile);
2125 break;
2126 case 10:
2127 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2128 "unsigned long", objfile);
2129 break;
2130 case 11:
2131 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2132 break;
2133 case 12:
2134 /* IEEE single precision (32 bit). */
2135 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2136 break;
2137 case 13:
2138 /* IEEE double precision (64 bit). */
2139 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2140 break;
2141 case 14:
2142 /* This is an IEEE double on the RS/6000, and different machines with
2143 different sizes for "long double" should use different negative
2144 type numbers. See stabs.texinfo. */
2145 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2146 break;
2147 case 15:
2148 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2149 break;
2150 case 16:
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2152 "boolean", objfile);
2153 break;
2154 case 17:
2155 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2156 break;
2157 case 18:
2158 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2159 break;
2160 case 19:
2161 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2162 break;
2163 case 20:
2164 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2165 "character", objfile);
2166 break;
2167 case 21:
2168 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2169 "logical*1", objfile);
2170 break;
2171 case 22:
2172 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2173 "logical*2", objfile);
2174 break;
2175 case 23:
2176 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2177 "logical*4", objfile);
2178 break;
2179 case 24:
2180 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2181 "logical", objfile);
2182 break;
2183 case 25:
2184 /* Complex type consisting of two IEEE single precision values. */
2185 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2186 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2187 objfile);
2188 break;
2189 case 26:
2190 /* Complex type consisting of two IEEE double precision values. */
2191 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2192 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2193 objfile);
2194 break;
2195 case 27:
2196 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2197 break;
2198 case 28:
2199 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2200 break;
2201 case 29:
2202 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2203 break;
2204 case 30:
2205 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2206 break;
2207 case 31:
2208 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2209 break;
2210 case 32:
2211 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2212 "unsigned long long", objfile);
2213 break;
2214 case 33:
2215 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2216 "logical*8", objfile);
2217 break;
2218 case 34:
2219 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2220 break;
2221 }
2222 negative_types[-typenum] = rettype;
2223 return rettype;
2224 }
2225 \f
2226 /* This page contains subroutines of read_type. */
2227
2228 /* Wrapper around method_name_from_physname to flag a complaint
2229 if there is an error. */
2230
2231 static char *
2232 stabs_method_name_from_physname (const char *physname)
2233 {
2234 char *method_name;
2235
2236 method_name = method_name_from_physname (physname);
2237
2238 if (method_name == NULL)
2239 {
2240 complaint (&symfile_complaints,
2241 _("Method has bad physname %s\n"), physname);
2242 return NULL;
2243 }
2244
2245 return method_name;
2246 }
2247
2248 /* Read member function stabs info for C++ classes. The form of each member
2249 function data is:
2250
2251 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2252
2253 An example with two member functions is:
2254
2255 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2256
2257 For the case of overloaded operators, the format is op$::*.funcs, where
2258 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2259 name (such as `+=') and `.' marks the end of the operator name.
2260
2261 Returns 1 for success, 0 for failure. */
2262
2263 static int
2264 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2265 struct objfile *objfile)
2266 {
2267 int nfn_fields = 0;
2268 int length = 0;
2269 int i;
2270 struct next_fnfield
2271 {
2272 struct next_fnfield *next;
2273 struct fn_field fn_field;
2274 }
2275 *sublist;
2276 struct type *look_ahead_type;
2277 struct next_fnfieldlist *new_fnlist;
2278 struct next_fnfield *new_sublist;
2279 char *main_fn_name;
2280 char *p;
2281
2282 /* Process each list until we find something that is not a member function
2283 or find the end of the functions. */
2284
2285 while (**pp != ';')
2286 {
2287 /* We should be positioned at the start of the function name.
2288 Scan forward to find the first ':' and if it is not the
2289 first of a "::" delimiter, then this is not a member function. */
2290 p = *pp;
2291 while (*p != ':')
2292 {
2293 p++;
2294 }
2295 if (p[1] != ':')
2296 {
2297 break;
2298 }
2299
2300 sublist = NULL;
2301 look_ahead_type = NULL;
2302 length = 0;
2303
2304 new_fnlist = (struct next_fnfieldlist *)
2305 xmalloc (sizeof (struct next_fnfieldlist));
2306 make_cleanup (xfree, new_fnlist);
2307 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2308
2309 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2310 {
2311 /* This is a completely wierd case. In order to stuff in the
2312 names that might contain colons (the usual name delimiter),
2313 Mike Tiemann defined a different name format which is
2314 signalled if the identifier is "op$". In that case, the
2315 format is "op$::XXXX." where XXXX is the name. This is
2316 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2317 /* This lets the user type "break operator+".
2318 We could just put in "+" as the name, but that wouldn't
2319 work for "*". */
2320 static char opname[32] = "op$";
2321 char *o = opname + 3;
2322
2323 /* Skip past '::'. */
2324 *pp = p + 2;
2325
2326 STABS_CONTINUE (pp, objfile);
2327 p = *pp;
2328 while (*p != '.')
2329 {
2330 *o++ = *p++;
2331 }
2332 main_fn_name = savestring (opname, o - opname);
2333 /* Skip past '.' */
2334 *pp = p + 1;
2335 }
2336 else
2337 {
2338 main_fn_name = savestring (*pp, p - *pp);
2339 /* Skip past '::'. */
2340 *pp = p + 2;
2341 }
2342 new_fnlist->fn_fieldlist.name = main_fn_name;
2343
2344 do
2345 {
2346 new_sublist =
2347 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2348 make_cleanup (xfree, new_sublist);
2349 memset (new_sublist, 0, sizeof (struct next_fnfield));
2350
2351 /* Check for and handle cretinous dbx symbol name continuation! */
2352 if (look_ahead_type == NULL)
2353 {
2354 /* Normal case. */
2355 STABS_CONTINUE (pp, objfile);
2356
2357 new_sublist->fn_field.type = read_type (pp, objfile);
2358 if (**pp != ':')
2359 {
2360 /* Invalid symtab info for member function. */
2361 return 0;
2362 }
2363 }
2364 else
2365 {
2366 /* g++ version 1 kludge */
2367 new_sublist->fn_field.type = look_ahead_type;
2368 look_ahead_type = NULL;
2369 }
2370
2371 (*pp)++;
2372 p = *pp;
2373 while (*p != ';')
2374 {
2375 p++;
2376 }
2377
2378 /* If this is just a stub, then we don't have the real name here. */
2379
2380 if (TYPE_STUB (new_sublist->fn_field.type))
2381 {
2382 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2383 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2384 new_sublist->fn_field.is_stub = 1;
2385 }
2386 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2387 *pp = p + 1;
2388
2389 /* Set this member function's visibility fields. */
2390 switch (*(*pp)++)
2391 {
2392 case VISIBILITY_PRIVATE:
2393 new_sublist->fn_field.is_private = 1;
2394 break;
2395 case VISIBILITY_PROTECTED:
2396 new_sublist->fn_field.is_protected = 1;
2397 break;
2398 }
2399
2400 STABS_CONTINUE (pp, objfile);
2401 switch (**pp)
2402 {
2403 case 'A': /* Normal functions. */
2404 new_sublist->fn_field.is_const = 0;
2405 new_sublist->fn_field.is_volatile = 0;
2406 (*pp)++;
2407 break;
2408 case 'B': /* `const' member functions. */
2409 new_sublist->fn_field.is_const = 1;
2410 new_sublist->fn_field.is_volatile = 0;
2411 (*pp)++;
2412 break;
2413 case 'C': /* `volatile' member function. */
2414 new_sublist->fn_field.is_const = 0;
2415 new_sublist->fn_field.is_volatile = 1;
2416 (*pp)++;
2417 break;
2418 case 'D': /* `const volatile' member function. */
2419 new_sublist->fn_field.is_const = 1;
2420 new_sublist->fn_field.is_volatile = 1;
2421 (*pp)++;
2422 break;
2423 case '*': /* File compiled with g++ version 1 --
2424 no info. */
2425 case '?':
2426 case '.':
2427 break;
2428 default:
2429 complaint (&symfile_complaints,
2430 _("const/volatile indicator missing, got '%c'"),
2431 **pp);
2432 break;
2433 }
2434
2435 switch (*(*pp)++)
2436 {
2437 case '*':
2438 {
2439 int nbits;
2440 /* virtual member function, followed by index.
2441 The sign bit is set to distinguish pointers-to-methods
2442 from virtual function indicies. Since the array is
2443 in words, the quantity must be shifted left by 1
2444 on 16 bit machine, and by 2 on 32 bit machine, forcing
2445 the sign bit out, and usable as a valid index into
2446 the array. Remove the sign bit here. */
2447 new_sublist->fn_field.voffset =
2448 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2449 if (nbits != 0)
2450 return 0;
2451
2452 STABS_CONTINUE (pp, objfile);
2453 if (**pp == ';' || **pp == '\0')
2454 {
2455 /* Must be g++ version 1. */
2456 new_sublist->fn_field.fcontext = 0;
2457 }
2458 else
2459 {
2460 /* Figure out from whence this virtual function came.
2461 It may belong to virtual function table of
2462 one of its baseclasses. */
2463 look_ahead_type = read_type (pp, objfile);
2464 if (**pp == ':')
2465 {
2466 /* g++ version 1 overloaded methods. */
2467 }
2468 else
2469 {
2470 new_sublist->fn_field.fcontext = look_ahead_type;
2471 if (**pp != ';')
2472 {
2473 return 0;
2474 }
2475 else
2476 {
2477 ++*pp;
2478 }
2479 look_ahead_type = NULL;
2480 }
2481 }
2482 break;
2483 }
2484 case '?':
2485 /* static member function. */
2486 {
2487 int slen = strlen (main_fn_name);
2488
2489 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2490
2491 /* For static member functions, we can't tell if they
2492 are stubbed, as they are put out as functions, and not as
2493 methods.
2494 GCC v2 emits the fully mangled name if
2495 dbxout.c:flag_minimal_debug is not set, so we have to
2496 detect a fully mangled physname here and set is_stub
2497 accordingly. Fully mangled physnames in v2 start with
2498 the member function name, followed by two underscores.
2499 GCC v3 currently always emits stubbed member functions,
2500 but with fully mangled physnames, which start with _Z. */
2501 if (!(strncmp (new_sublist->fn_field.physname,
2502 main_fn_name, slen) == 0
2503 && new_sublist->fn_field.physname[slen] == '_'
2504 && new_sublist->fn_field.physname[slen + 1] == '_'))
2505 {
2506 new_sublist->fn_field.is_stub = 1;
2507 }
2508 break;
2509 }
2510
2511 default:
2512 /* error */
2513 complaint (&symfile_complaints,
2514 _("member function type missing, got '%c'"),
2515 (*pp)[-1]);
2516 /* Fall through into normal member function. */
2517
2518 case '.':
2519 /* normal member function. */
2520 new_sublist->fn_field.voffset = 0;
2521 new_sublist->fn_field.fcontext = 0;
2522 break;
2523 }
2524
2525 new_sublist->next = sublist;
2526 sublist = new_sublist;
2527 length++;
2528 STABS_CONTINUE (pp, objfile);
2529 }
2530 while (**pp != ';' && **pp != '\0');
2531
2532 (*pp)++;
2533 STABS_CONTINUE (pp, objfile);
2534
2535 /* Skip GCC 3.X member functions which are duplicates of the callable
2536 constructor/destructor. */
2537 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2538 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2539 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2540 {
2541 xfree (main_fn_name);
2542 }
2543 else
2544 {
2545 int has_stub = 0;
2546 int has_destructor = 0, has_other = 0;
2547 int is_v3 = 0;
2548 struct next_fnfield *tmp_sublist;
2549
2550 /* Various versions of GCC emit various mostly-useless
2551 strings in the name field for special member functions.
2552
2553 For stub methods, we need to defer correcting the name
2554 until we are ready to unstub the method, because the current
2555 name string is used by gdb_mangle_name. The only stub methods
2556 of concern here are GNU v2 operators; other methods have their
2557 names correct (see caveat below).
2558
2559 For non-stub methods, in GNU v3, we have a complete physname.
2560 Therefore we can safely correct the name now. This primarily
2561 affects constructors and destructors, whose name will be
2562 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2563 operators will also have incorrect names; for instance,
2564 "operator int" will be named "operator i" (i.e. the type is
2565 mangled).
2566
2567 For non-stub methods in GNU v2, we have no easy way to
2568 know if we have a complete physname or not. For most
2569 methods the result depends on the platform (if CPLUS_MARKER
2570 can be `$' or `.', it will use minimal debug information, or
2571 otherwise the full physname will be included).
2572
2573 Rather than dealing with this, we take a different approach.
2574 For v3 mangled names, we can use the full physname; for v2,
2575 we use cplus_demangle_opname (which is actually v2 specific),
2576 because the only interesting names are all operators - once again
2577 barring the caveat below. Skip this process if any method in the
2578 group is a stub, to prevent our fouling up the workings of
2579 gdb_mangle_name.
2580
2581 The caveat: GCC 2.95.x (and earlier?) put constructors and
2582 destructors in the same method group. We need to split this
2583 into two groups, because they should have different names.
2584 So for each method group we check whether it contains both
2585 routines whose physname appears to be a destructor (the physnames
2586 for and destructors are always provided, due to quirks in v2
2587 mangling) and routines whose physname does not appear to be a
2588 destructor. If so then we break up the list into two halves.
2589 Even if the constructors and destructors aren't in the same group
2590 the destructor will still lack the leading tilde, so that also
2591 needs to be fixed.
2592
2593 So, to summarize what we expect and handle here:
2594
2595 Given Given Real Real Action
2596 method name physname physname method name
2597
2598 __opi [none] __opi__3Foo operator int opname
2599 [now or later]
2600 Foo _._3Foo _._3Foo ~Foo separate and
2601 rename
2602 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2603 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2604 */
2605
2606 tmp_sublist = sublist;
2607 while (tmp_sublist != NULL)
2608 {
2609 if (tmp_sublist->fn_field.is_stub)
2610 has_stub = 1;
2611 if (tmp_sublist->fn_field.physname[0] == '_'
2612 && tmp_sublist->fn_field.physname[1] == 'Z')
2613 is_v3 = 1;
2614
2615 if (is_destructor_name (tmp_sublist->fn_field.physname))
2616 has_destructor++;
2617 else
2618 has_other++;
2619
2620 tmp_sublist = tmp_sublist->next;
2621 }
2622
2623 if (has_destructor && has_other)
2624 {
2625 struct next_fnfieldlist *destr_fnlist;
2626 struct next_fnfield *last_sublist;
2627
2628 /* Create a new fn_fieldlist for the destructors. */
2629
2630 destr_fnlist = (struct next_fnfieldlist *)
2631 xmalloc (sizeof (struct next_fnfieldlist));
2632 make_cleanup (xfree, destr_fnlist);
2633 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2634 destr_fnlist->fn_fieldlist.name
2635 = obconcat (&objfile->objfile_obstack, "~",
2636 new_fnlist->fn_fieldlist.name, (char *) NULL);
2637
2638 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2639 obstack_alloc (&objfile->objfile_obstack,
2640 sizeof (struct fn_field) * has_destructor);
2641 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2642 sizeof (struct fn_field) * has_destructor);
2643 tmp_sublist = sublist;
2644 last_sublist = NULL;
2645 i = 0;
2646 while (tmp_sublist != NULL)
2647 {
2648 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2649 {
2650 tmp_sublist = tmp_sublist->next;
2651 continue;
2652 }
2653
2654 destr_fnlist->fn_fieldlist.fn_fields[i++]
2655 = tmp_sublist->fn_field;
2656 if (last_sublist)
2657 last_sublist->next = tmp_sublist->next;
2658 else
2659 sublist = tmp_sublist->next;
2660 last_sublist = tmp_sublist;
2661 tmp_sublist = tmp_sublist->next;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.length = has_destructor;
2665 destr_fnlist->next = fip->fnlist;
2666 fip->fnlist = destr_fnlist;
2667 nfn_fields++;
2668 length -= has_destructor;
2669 }
2670 else if (is_v3)
2671 {
2672 /* v3 mangling prevents the use of abbreviated physnames,
2673 so we can do this here. There are stubbed methods in v3
2674 only:
2675 - in -gstabs instead of -gstabs+
2676 - or for static methods, which are output as a function type
2677 instead of a method type. */
2678 char *new_method_name =
2679 stabs_method_name_from_physname (sublist->fn_field.physname);
2680
2681 if (new_method_name != NULL
2682 && strcmp (new_method_name,
2683 new_fnlist->fn_fieldlist.name) != 0)
2684 {
2685 new_fnlist->fn_fieldlist.name = new_method_name;
2686 xfree (main_fn_name);
2687 }
2688 else
2689 xfree (new_method_name);
2690 }
2691 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2692 {
2693 new_fnlist->fn_fieldlist.name =
2694 obconcat (&objfile->objfile_obstack,
2695 "~", main_fn_name, (char *)NULL);
2696 xfree (main_fn_name);
2697 }
2698 else if (!has_stub)
2699 {
2700 char dem_opname[256];
2701 int ret;
2702
2703 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2704 dem_opname, DMGL_ANSI);
2705 if (!ret)
2706 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2707 dem_opname, 0);
2708 if (ret)
2709 new_fnlist->fn_fieldlist.name
2710 = obstack_copy0 (&objfile->objfile_obstack,
2711 dem_opname, strlen (dem_opname));
2712 xfree (main_fn_name);
2713 }
2714
2715 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2716 obstack_alloc (&objfile->objfile_obstack,
2717 sizeof (struct fn_field) * length);
2718 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2719 sizeof (struct fn_field) * length);
2720 for (i = length; (i--, sublist); sublist = sublist->next)
2721 {
2722 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2723 }
2724
2725 new_fnlist->fn_fieldlist.length = length;
2726 new_fnlist->next = fip->fnlist;
2727 fip->fnlist = new_fnlist;
2728 nfn_fields++;
2729 }
2730 }
2731
2732 if (nfn_fields)
2733 {
2734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2735 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2736 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2737 memset (TYPE_FN_FIELDLISTS (type), 0,
2738 sizeof (struct fn_fieldlist) * nfn_fields);
2739 TYPE_NFN_FIELDS (type) = nfn_fields;
2740 }
2741
2742 return 1;
2743 }
2744
2745 /* Special GNU C++ name.
2746
2747 Returns 1 for success, 0 for failure. "failure" means that we can't
2748 keep parsing and it's time for error_type(). */
2749
2750 static int
2751 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2752 struct objfile *objfile)
2753 {
2754 char *p;
2755 const char *name;
2756 char cpp_abbrev;
2757 struct type *context;
2758
2759 p = *pp;
2760 if (*++p == 'v')
2761 {
2762 name = NULL;
2763 cpp_abbrev = *++p;
2764
2765 *pp = p + 1;
2766
2767 /* At this point, *pp points to something like "22:23=*22...",
2768 where the type number before the ':' is the "context" and
2769 everything after is a regular type definition. Lookup the
2770 type, find it's name, and construct the field name. */
2771
2772 context = read_type (pp, objfile);
2773
2774 switch (cpp_abbrev)
2775 {
2776 case 'f': /* $vf -- a virtual function table pointer */
2777 name = type_name_no_tag (context);
2778 if (name == NULL)
2779 {
2780 name = "";
2781 }
2782 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2783 vptr_name, name, (char *) NULL);
2784 break;
2785
2786 case 'b': /* $vb -- a virtual bsomethingorother */
2787 name = type_name_no_tag (context);
2788 if (name == NULL)
2789 {
2790 complaint (&symfile_complaints,
2791 _("C++ abbreviated type name "
2792 "unknown at symtab pos %d"),
2793 symnum);
2794 name = "FOO";
2795 }
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2797 name, (char *) NULL);
2798 break;
2799
2800 default:
2801 invalid_cpp_abbrev_complaint (*pp);
2802 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2803 "INVALID_CPLUSPLUS_ABBREV",
2804 (char *) NULL);
2805 break;
2806 }
2807
2808 /* At this point, *pp points to the ':'. Skip it and read the
2809 field type. */
2810
2811 p = ++(*pp);
2812 if (p[-1] != ':')
2813 {
2814 invalid_cpp_abbrev_complaint (*pp);
2815 return 0;
2816 }
2817 fip->list->field.type = read_type (pp, objfile);
2818 if (**pp == ',')
2819 (*pp)++; /* Skip the comma. */
2820 else
2821 return 0;
2822
2823 {
2824 int nbits;
2825
2826 SET_FIELD_BITPOS (fip->list->field,
2827 read_huge_number (pp, ';', &nbits, 0));
2828 if (nbits != 0)
2829 return 0;
2830 }
2831 /* This field is unpacked. */
2832 FIELD_BITSIZE (fip->list->field) = 0;
2833 fip->list->visibility = VISIBILITY_PRIVATE;
2834 }
2835 else
2836 {
2837 invalid_cpp_abbrev_complaint (*pp);
2838 /* We have no idea what syntax an unrecognized abbrev would have, so
2839 better return 0. If we returned 1, we would need to at least advance
2840 *pp to avoid an infinite loop. */
2841 return 0;
2842 }
2843 return 1;
2844 }
2845
2846 static void
2847 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2848 struct type *type, struct objfile *objfile)
2849 {
2850 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2851
2852 fip->list->field.name =
2853 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2854 *pp = p + 1;
2855
2856 /* This means we have a visibility for a field coming. */
2857 if (**pp == '/')
2858 {
2859 (*pp)++;
2860 fip->list->visibility = *(*pp)++;
2861 }
2862 else
2863 {
2864 /* normal dbx-style format, no explicit visibility */
2865 fip->list->visibility = VISIBILITY_PUBLIC;
2866 }
2867
2868 fip->list->field.type = read_type (pp, objfile);
2869 if (**pp == ':')
2870 {
2871 p = ++(*pp);
2872 #if 0
2873 /* Possible future hook for nested types. */
2874 if (**pp == '!')
2875 {
2876 fip->list->field.bitpos = (long) -2; /* nested type */
2877 p = ++(*pp);
2878 }
2879 else
2880 ...;
2881 #endif
2882 while (*p != ';')
2883 {
2884 p++;
2885 }
2886 /* Static class member. */
2887 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2888 *pp = p + 1;
2889 return;
2890 }
2891 else if (**pp != ',')
2892 {
2893 /* Bad structure-type format. */
2894 stabs_general_complaint ("bad structure-type format");
2895 return;
2896 }
2897
2898 (*pp)++; /* Skip the comma. */
2899
2900 {
2901 int nbits;
2902
2903 SET_FIELD_BITPOS (fip->list->field,
2904 read_huge_number (pp, ',', &nbits, 0));
2905 if (nbits != 0)
2906 {
2907 stabs_general_complaint ("bad structure-type format");
2908 return;
2909 }
2910 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2911 if (nbits != 0)
2912 {
2913 stabs_general_complaint ("bad structure-type format");
2914 return;
2915 }
2916 }
2917
2918 if (FIELD_BITPOS (fip->list->field) == 0
2919 && FIELD_BITSIZE (fip->list->field) == 0)
2920 {
2921 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2922 it is a field which has been optimized out. The correct stab for
2923 this case is to use VISIBILITY_IGNORE, but that is a recent
2924 invention. (2) It is a 0-size array. For example
2925 union { int num; char str[0]; } foo. Printing _("<no value>" for
2926 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2927 will continue to work, and a 0-size array as a whole doesn't
2928 have any contents to print.
2929
2930 I suspect this probably could also happen with gcc -gstabs (not
2931 -gstabs+) for static fields, and perhaps other C++ extensions.
2932 Hopefully few people use -gstabs with gdb, since it is intended
2933 for dbx compatibility. */
2934
2935 /* Ignore this field. */
2936 fip->list->visibility = VISIBILITY_IGNORE;
2937 }
2938 else
2939 {
2940 /* Detect an unpacked field and mark it as such.
2941 dbx gives a bit size for all fields.
2942 Note that forward refs cannot be packed,
2943 and treat enums as if they had the width of ints. */
2944
2945 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2946
2947 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2948 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2949 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2950 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2951 {
2952 FIELD_BITSIZE (fip->list->field) = 0;
2953 }
2954 if ((FIELD_BITSIZE (fip->list->field)
2955 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2956 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2957 && FIELD_BITSIZE (fip->list->field)
2958 == gdbarch_int_bit (gdbarch))
2959 )
2960 &&
2961 FIELD_BITPOS (fip->list->field) % 8 == 0)
2962 {
2963 FIELD_BITSIZE (fip->list->field) = 0;
2964 }
2965 }
2966 }
2967
2968
2969 /* Read struct or class data fields. They have the form:
2970
2971 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2972
2973 At the end, we see a semicolon instead of a field.
2974
2975 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2976 a static field.
2977
2978 The optional VISIBILITY is one of:
2979
2980 '/0' (VISIBILITY_PRIVATE)
2981 '/1' (VISIBILITY_PROTECTED)
2982 '/2' (VISIBILITY_PUBLIC)
2983 '/9' (VISIBILITY_IGNORE)
2984
2985 or nothing, for C style fields with public visibility.
2986
2987 Returns 1 for success, 0 for failure. */
2988
2989 static int
2990 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2991 struct objfile *objfile)
2992 {
2993 char *p;
2994 struct nextfield *new;
2995
2996 /* We better set p right now, in case there are no fields at all... */
2997
2998 p = *pp;
2999
3000 /* Read each data member type until we find the terminating ';' at the end of
3001 the data member list, or break for some other reason such as finding the
3002 start of the member function list. */
3003 /* Stab string for structure/union does not end with two ';' in
3004 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3005
3006 while (**pp != ';' && **pp != '\0')
3007 {
3008 STABS_CONTINUE (pp, objfile);
3009 /* Get space to record the next field's data. */
3010 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3011 make_cleanup (xfree, new);
3012 memset (new, 0, sizeof (struct nextfield));
3013 new->next = fip->list;
3014 fip->list = new;
3015
3016 /* Get the field name. */
3017 p = *pp;
3018
3019 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3020 unless the CPLUS_MARKER is followed by an underscore, in
3021 which case it is just the name of an anonymous type, which we
3022 should handle like any other type name. */
3023
3024 if (is_cplus_marker (p[0]) && p[1] != '_')
3025 {
3026 if (!read_cpp_abbrev (fip, pp, type, objfile))
3027 return 0;
3028 continue;
3029 }
3030
3031 /* Look for the ':' that separates the field name from the field
3032 values. Data members are delimited by a single ':', while member
3033 functions are delimited by a pair of ':'s. When we hit the member
3034 functions (if any), terminate scan loop and return. */
3035
3036 while (*p != ':' && *p != '\0')
3037 {
3038 p++;
3039 }
3040 if (*p == '\0')
3041 return 0;
3042
3043 /* Check to see if we have hit the member functions yet. */
3044 if (p[1] == ':')
3045 {
3046 break;
3047 }
3048 read_one_struct_field (fip, pp, p, type, objfile);
3049 }
3050 if (p[0] == ':' && p[1] == ':')
3051 {
3052 /* (the deleted) chill the list of fields: the last entry (at
3053 the head) is a partially constructed entry which we now
3054 scrub. */
3055 fip->list = fip->list->next;
3056 }
3057 return 1;
3058 }
3059 /* *INDENT-OFF* */
3060 /* The stabs for C++ derived classes contain baseclass information which
3061 is marked by a '!' character after the total size. This function is
3062 called when we encounter the baseclass marker, and slurps up all the
3063 baseclass information.
3064
3065 Immediately following the '!' marker is the number of base classes that
3066 the class is derived from, followed by information for each base class.
3067 For each base class, there are two visibility specifiers, a bit offset
3068 to the base class information within the derived class, a reference to
3069 the type for the base class, and a terminating semicolon.
3070
3071 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3072 ^^ ^ ^ ^ ^ ^ ^
3073 Baseclass information marker __________________|| | | | | | |
3074 Number of baseclasses __________________________| | | | | | |
3075 Visibility specifiers (2) ________________________| | | | | |
3076 Offset in bits from start of class _________________| | | | |
3077 Type number for base class ___________________________| | | |
3078 Visibility specifiers (2) _______________________________| | |
3079 Offset in bits from start of class ________________________| |
3080 Type number of base class ____________________________________|
3081
3082 Return 1 for success, 0 for (error-type-inducing) failure. */
3083 /* *INDENT-ON* */
3084
3085
3086
3087 static int
3088 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3089 struct objfile *objfile)
3090 {
3091 int i;
3092 struct nextfield *new;
3093
3094 if (**pp != '!')
3095 {
3096 return 1;
3097 }
3098 else
3099 {
3100 /* Skip the '!' baseclass information marker. */
3101 (*pp)++;
3102 }
3103
3104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3105 {
3106 int nbits;
3107
3108 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3109 if (nbits != 0)
3110 return 0;
3111 }
3112
3113 #if 0
3114 /* Some stupid compilers have trouble with the following, so break
3115 it up into simpler expressions. */
3116 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3117 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3118 #else
3119 {
3120 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3121 char *pointer;
3122
3123 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3125 }
3126 #endif /* 0 */
3127
3128 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3129
3130 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3131 {
3132 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3133 make_cleanup (xfree, new);
3134 memset (new, 0, sizeof (struct nextfield));
3135 new->next = fip->list;
3136 fip->list = new;
3137 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3138 field! */
3139
3140 STABS_CONTINUE (pp, objfile);
3141 switch (**pp)
3142 {
3143 case '0':
3144 /* Nothing to do. */
3145 break;
3146 case '1':
3147 SET_TYPE_FIELD_VIRTUAL (type, i);
3148 break;
3149 default:
3150 /* Unknown character. Complain and treat it as non-virtual. */
3151 {
3152 complaint (&symfile_complaints,
3153 _("Unknown virtual character `%c' for baseclass"),
3154 **pp);
3155 }
3156 }
3157 ++(*pp);
3158
3159 new->visibility = *(*pp)++;
3160 switch (new->visibility)
3161 {
3162 case VISIBILITY_PRIVATE:
3163 case VISIBILITY_PROTECTED:
3164 case VISIBILITY_PUBLIC:
3165 break;
3166 default:
3167 /* Bad visibility format. Complain and treat it as
3168 public. */
3169 {
3170 complaint (&symfile_complaints,
3171 _("Unknown visibility `%c' for baseclass"),
3172 new->visibility);
3173 new->visibility = VISIBILITY_PUBLIC;
3174 }
3175 }
3176
3177 {
3178 int nbits;
3179
3180 /* The remaining value is the bit offset of the portion of the object
3181 corresponding to this baseclass. Always zero in the absence of
3182 multiple inheritance. */
3183
3184 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3185 if (nbits != 0)
3186 return 0;
3187 }
3188
3189 /* The last piece of baseclass information is the type of the
3190 base class. Read it, and remember it's type name as this
3191 field's name. */
3192
3193 new->field.type = read_type (pp, objfile);
3194 new->field.name = type_name_no_tag (new->field.type);
3195
3196 /* Skip trailing ';' and bump count of number of fields seen. */
3197 if (**pp == ';')
3198 (*pp)++;
3199 else
3200 return 0;
3201 }
3202 return 1;
3203 }
3204
3205 /* The tail end of stabs for C++ classes that contain a virtual function
3206 pointer contains a tilde, a %, and a type number.
3207 The type number refers to the base class (possibly this class itself) which
3208 contains the vtable pointer for the current class.
3209
3210 This function is called when we have parsed all the method declarations,
3211 so we can look for the vptr base class info. */
3212
3213 static int
3214 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3215 struct objfile *objfile)
3216 {
3217 char *p;
3218
3219 STABS_CONTINUE (pp, objfile);
3220
3221 /* If we are positioned at a ';', then skip it. */
3222 if (**pp == ';')
3223 {
3224 (*pp)++;
3225 }
3226
3227 if (**pp == '~')
3228 {
3229 (*pp)++;
3230
3231 if (**pp == '=' || **pp == '+' || **pp == '-')
3232 {
3233 /* Obsolete flags that used to indicate the presence
3234 of constructors and/or destructors. */
3235 (*pp)++;
3236 }
3237
3238 /* Read either a '%' or the final ';'. */
3239 if (*(*pp)++ == '%')
3240 {
3241 /* The next number is the type number of the base class
3242 (possibly our own class) which supplies the vtable for
3243 this class. Parse it out, and search that class to find
3244 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3245 and TYPE_VPTR_FIELDNO. */
3246
3247 struct type *t;
3248 int i;
3249
3250 t = read_type (pp, objfile);
3251 p = (*pp)++;
3252 while (*p != '\0' && *p != ';')
3253 {
3254 p++;
3255 }
3256 if (*p == '\0')
3257 {
3258 /* Premature end of symbol. */
3259 return 0;
3260 }
3261
3262 TYPE_VPTR_BASETYPE (type) = t;
3263 if (type == t) /* Our own class provides vtbl ptr. */
3264 {
3265 for (i = TYPE_NFIELDS (t) - 1;
3266 i >= TYPE_N_BASECLASSES (t);
3267 --i)
3268 {
3269 const char *name = TYPE_FIELD_NAME (t, i);
3270
3271 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3272 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3273 {
3274 TYPE_VPTR_FIELDNO (type) = i;
3275 goto gotit;
3276 }
3277 }
3278 /* Virtual function table field not found. */
3279 complaint (&symfile_complaints,
3280 _("virtual function table pointer "
3281 "not found when defining class `%s'"),
3282 TYPE_NAME (type));
3283 return 0;
3284 }
3285 else
3286 {
3287 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3288 }
3289
3290 gotit:
3291 *pp = p + 1;
3292 }
3293 }
3294 return 1;
3295 }
3296
3297 static int
3298 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3299 {
3300 int n;
3301
3302 for (n = TYPE_NFN_FIELDS (type);
3303 fip->fnlist != NULL;
3304 fip->fnlist = fip->fnlist->next)
3305 {
3306 --n; /* Circumvent Sun3 compiler bug. */
3307 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3308 }
3309 return 1;
3310 }
3311
3312 /* Create the vector of fields, and record how big it is.
3313 We need this info to record proper virtual function table information
3314 for this class's virtual functions. */
3315
3316 static int
3317 attach_fields_to_type (struct field_info *fip, struct type *type,
3318 struct objfile *objfile)
3319 {
3320 int nfields = 0;
3321 int non_public_fields = 0;
3322 struct nextfield *scan;
3323
3324 /* Count up the number of fields that we have, as well as taking note of
3325 whether or not there are any non-public fields, which requires us to
3326 allocate and build the private_field_bits and protected_field_bits
3327 bitfields. */
3328
3329 for (scan = fip->list; scan != NULL; scan = scan->next)
3330 {
3331 nfields++;
3332 if (scan->visibility != VISIBILITY_PUBLIC)
3333 {
3334 non_public_fields++;
3335 }
3336 }
3337
3338 /* Now we know how many fields there are, and whether or not there are any
3339 non-public fields. Record the field count, allocate space for the
3340 array of fields, and create blank visibility bitfields if necessary. */
3341
3342 TYPE_NFIELDS (type) = nfields;
3343 TYPE_FIELDS (type) = (struct field *)
3344 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3345 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3346
3347 if (non_public_fields)
3348 {
3349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3350
3351 TYPE_FIELD_PRIVATE_BITS (type) =
3352 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3353 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3354
3355 TYPE_FIELD_PROTECTED_BITS (type) =
3356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3357 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3358
3359 TYPE_FIELD_IGNORE_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3362 }
3363
3364 /* Copy the saved-up fields into the field vector. Start from the
3365 head of the list, adding to the tail of the field array, so that
3366 they end up in the same order in the array in which they were
3367 added to the list. */
3368
3369 while (nfields-- > 0)
3370 {
3371 TYPE_FIELD (type, nfields) = fip->list->field;
3372 switch (fip->list->visibility)
3373 {
3374 case VISIBILITY_PRIVATE:
3375 SET_TYPE_FIELD_PRIVATE (type, nfields);
3376 break;
3377
3378 case VISIBILITY_PROTECTED:
3379 SET_TYPE_FIELD_PROTECTED (type, nfields);
3380 break;
3381
3382 case VISIBILITY_IGNORE:
3383 SET_TYPE_FIELD_IGNORE (type, nfields);
3384 break;
3385
3386 case VISIBILITY_PUBLIC:
3387 break;
3388
3389 default:
3390 /* Unknown visibility. Complain and treat it as public. */
3391 {
3392 complaint (&symfile_complaints,
3393 _("Unknown visibility `%c' for field"),
3394 fip->list->visibility);
3395 }
3396 break;
3397 }
3398 fip->list = fip->list->next;
3399 }
3400 return 1;
3401 }
3402
3403
3404 /* Complain that the compiler has emitted more than one definition for the
3405 structure type TYPE. */
3406 static void
3407 complain_about_struct_wipeout (struct type *type)
3408 {
3409 const char *name = "";
3410 const char *kind = "";
3411
3412 if (TYPE_TAG_NAME (type))
3413 {
3414 name = TYPE_TAG_NAME (type);
3415 switch (TYPE_CODE (type))
3416 {
3417 case TYPE_CODE_STRUCT: kind = "struct "; break;
3418 case TYPE_CODE_UNION: kind = "union "; break;
3419 case TYPE_CODE_ENUM: kind = "enum "; break;
3420 default: kind = "";
3421 }
3422 }
3423 else if (TYPE_NAME (type))
3424 {
3425 name = TYPE_NAME (type);
3426 kind = "";
3427 }
3428 else
3429 {
3430 name = "<unknown>";
3431 kind = "";
3432 }
3433
3434 complaint (&symfile_complaints,
3435 _("struct/union type gets multiply defined: %s%s"), kind, name);
3436 }
3437
3438 /* Set the length for all variants of a same main_type, which are
3439 connected in the closed chain.
3440
3441 This is something that needs to be done when a type is defined *after*
3442 some cross references to this type have already been read. Consider
3443 for instance the following scenario where we have the following two
3444 stabs entries:
3445
3446 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3447 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3448
3449 A stubbed version of type dummy is created while processing the first
3450 stabs entry. The length of that type is initially set to zero, since
3451 it is unknown at this point. Also, a "constant" variation of type
3452 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3453 the stabs line).
3454
3455 The second stabs entry allows us to replace the stubbed definition
3456 with the real definition. However, we still need to adjust the length
3457 of the "constant" variation of that type, as its length was left
3458 untouched during the main type replacement... */
3459
3460 static void
3461 set_length_in_type_chain (struct type *type)
3462 {
3463 struct type *ntype = TYPE_CHAIN (type);
3464
3465 while (ntype != type)
3466 {
3467 if (TYPE_LENGTH(ntype) == 0)
3468 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3469 else
3470 complain_about_struct_wipeout (ntype);
3471 ntype = TYPE_CHAIN (ntype);
3472 }
3473 }
3474
3475 /* Read the description of a structure (or union type) and return an object
3476 describing the type.
3477
3478 PP points to a character pointer that points to the next unconsumed token
3479 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3480 *PP will point to "4a:1,0,32;;".
3481
3482 TYPE points to an incomplete type that needs to be filled in.
3483
3484 OBJFILE points to the current objfile from which the stabs information is
3485 being read. (Note that it is redundant in that TYPE also contains a pointer
3486 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3487 */
3488
3489 static struct type *
3490 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3491 struct objfile *objfile)
3492 {
3493 struct cleanup *back_to;
3494 struct field_info fi;
3495
3496 fi.list = NULL;
3497 fi.fnlist = NULL;
3498
3499 /* When describing struct/union/class types in stabs, G++ always drops
3500 all qualifications from the name. So if you've got:
3501 struct A { ... struct B { ... }; ... };
3502 then G++ will emit stabs for `struct A::B' that call it simply
3503 `struct B'. Obviously, if you've got a real top-level definition for
3504 `struct B', or other nested definitions, this is going to cause
3505 problems.
3506
3507 Obviously, GDB can't fix this by itself, but it can at least avoid
3508 scribbling on existing structure type objects when new definitions
3509 appear. */
3510 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3511 || TYPE_STUB (type)))
3512 {
3513 complain_about_struct_wipeout (type);
3514
3515 /* It's probably best to return the type unchanged. */
3516 return type;
3517 }
3518
3519 back_to = make_cleanup (null_cleanup, 0);
3520
3521 INIT_CPLUS_SPECIFIC (type);
3522 TYPE_CODE (type) = type_code;
3523 TYPE_STUB (type) = 0;
3524
3525 /* First comes the total size in bytes. */
3526
3527 {
3528 int nbits;
3529
3530 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3531 if (nbits != 0)
3532 {
3533 do_cleanups (back_to);
3534 return error_type (pp, objfile);
3535 }
3536 set_length_in_type_chain (type);
3537 }
3538
3539 /* Now read the baseclasses, if any, read the regular C struct or C++
3540 class member fields, attach the fields to the type, read the C++
3541 member functions, attach them to the type, and then read any tilde
3542 field (baseclass specifier for the class holding the main vtable). */
3543
3544 if (!read_baseclasses (&fi, pp, type, objfile)
3545 || !read_struct_fields (&fi, pp, type, objfile)
3546 || !attach_fields_to_type (&fi, type, objfile)
3547 || !read_member_functions (&fi, pp, type, objfile)
3548 || !attach_fn_fields_to_type (&fi, type)
3549 || !read_tilde_fields (&fi, pp, type, objfile))
3550 {
3551 type = error_type (pp, objfile);
3552 }
3553
3554 do_cleanups (back_to);
3555 return (type);
3556 }
3557
3558 /* Read a definition of an array type,
3559 and create and return a suitable type object.
3560 Also creates a range type which represents the bounds of that
3561 array. */
3562
3563 static struct type *
3564 read_array_type (char **pp, struct type *type,
3565 struct objfile *objfile)
3566 {
3567 struct type *index_type, *element_type, *range_type;
3568 int lower, upper;
3569 int adjustable = 0;
3570 int nbits;
3571
3572 /* Format of an array type:
3573 "ar<index type>;lower;upper;<array_contents_type>".
3574 OS9000: "arlower,upper;<array_contents_type>".
3575
3576 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3577 for these, produce a type like float[][]. */
3578
3579 {
3580 index_type = read_type (pp, objfile);
3581 if (**pp != ';')
3582 /* Improper format of array type decl. */
3583 return error_type (pp, objfile);
3584 ++*pp;
3585 }
3586
3587 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3588 {
3589 (*pp)++;
3590 adjustable = 1;
3591 }
3592 lower = read_huge_number (pp, ';', &nbits, 0);
3593
3594 if (nbits != 0)
3595 return error_type (pp, objfile);
3596
3597 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3598 {
3599 (*pp)++;
3600 adjustable = 1;
3601 }
3602 upper = read_huge_number (pp, ';', &nbits, 0);
3603 if (nbits != 0)
3604 return error_type (pp, objfile);
3605
3606 element_type = read_type (pp, objfile);
3607
3608 if (adjustable)
3609 {
3610 lower = 0;
3611 upper = -1;
3612 }
3613
3614 range_type =
3615 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3616 type = create_array_type (type, element_type, range_type);
3617
3618 return type;
3619 }
3620
3621
3622 /* Read a definition of an enumeration type,
3623 and create and return a suitable type object.
3624 Also defines the symbols that represent the values of the type. */
3625
3626 static struct type *
3627 read_enum_type (char **pp, struct type *type,
3628 struct objfile *objfile)
3629 {
3630 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3631 char *p;
3632 char *name;
3633 long n;
3634 struct symbol *sym;
3635 int nsyms = 0;
3636 struct pending **symlist;
3637 struct pending *osyms, *syms;
3638 int o_nsyms;
3639 int nbits;
3640 int unsigned_enum = 1;
3641
3642 #if 0
3643 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3644 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3645 to do? For now, force all enum values to file scope. */
3646 if (within_function)
3647 symlist = &local_symbols;
3648 else
3649 #endif
3650 symlist = &file_symbols;
3651 osyms = *symlist;
3652 o_nsyms = osyms ? osyms->nsyms : 0;
3653
3654 /* The aix4 compiler emits an extra field before the enum members;
3655 my guess is it's a type of some sort. Just ignore it. */
3656 if (**pp == '-')
3657 {
3658 /* Skip over the type. */
3659 while (**pp != ':')
3660 (*pp)++;
3661
3662 /* Skip over the colon. */
3663 (*pp)++;
3664 }
3665
3666 /* Read the value-names and their values.
3667 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3668 A semicolon or comma instead of a NAME means the end. */
3669 while (**pp && **pp != ';' && **pp != ',')
3670 {
3671 STABS_CONTINUE (pp, objfile);
3672 p = *pp;
3673 while (*p != ':')
3674 p++;
3675 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3676 *pp = p + 1;
3677 n = read_huge_number (pp, ',', &nbits, 0);
3678 if (nbits != 0)
3679 return error_type (pp, objfile);
3680
3681 sym = allocate_symbol (objfile);
3682 SYMBOL_SET_LINKAGE_NAME (sym, name);
3683 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3684 &objfile->objfile_obstack);
3685 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3686 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3687 SYMBOL_VALUE (sym) = n;
3688 if (n < 0)
3689 unsigned_enum = 0;
3690 add_symbol_to_list (sym, symlist);
3691 nsyms++;
3692 }
3693
3694 if (**pp == ';')
3695 (*pp)++; /* Skip the semicolon. */
3696
3697 /* Now fill in the fields of the type-structure. */
3698
3699 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3700 set_length_in_type_chain (type);
3701 TYPE_CODE (type) = TYPE_CODE_ENUM;
3702 TYPE_STUB (type) = 0;
3703 if (unsigned_enum)
3704 TYPE_UNSIGNED (type) = 1;
3705 TYPE_NFIELDS (type) = nsyms;
3706 TYPE_FIELDS (type) = (struct field *)
3707 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3708 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3709
3710 /* Find the symbols for the values and put them into the type.
3711 The symbols can be found in the symlist that we put them on
3712 to cause them to be defined. osyms contains the old value
3713 of that symlist; everything up to there was defined by us. */
3714 /* Note that we preserve the order of the enum constants, so
3715 that in something like "enum {FOO, LAST_THING=FOO}" we print
3716 FOO, not LAST_THING. */
3717
3718 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3719 {
3720 int last = syms == osyms ? o_nsyms : 0;
3721 int j = syms->nsyms;
3722
3723 for (; --j >= last; --n)
3724 {
3725 struct symbol *xsym = syms->symbol[j];
3726
3727 SYMBOL_TYPE (xsym) = type;
3728 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3729 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3730 TYPE_FIELD_BITSIZE (type, n) = 0;
3731 }
3732 if (syms == osyms)
3733 break;
3734 }
3735
3736 return type;
3737 }
3738
3739 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3740 typedefs in every file (for int, long, etc):
3741
3742 type = b <signed> <width> <format type>; <offset>; <nbits>
3743 signed = u or s.
3744 optional format type = c or b for char or boolean.
3745 offset = offset from high order bit to start bit of type.
3746 width is # bytes in object of this type, nbits is # bits in type.
3747
3748 The width/offset stuff appears to be for small objects stored in
3749 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3750 FIXME. */
3751
3752 static struct type *
3753 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3754 {
3755 int type_bits;
3756 int nbits;
3757 int signed_type;
3758 enum type_code code = TYPE_CODE_INT;
3759
3760 switch (**pp)
3761 {
3762 case 's':
3763 signed_type = 1;
3764 break;
3765 case 'u':
3766 signed_type = 0;
3767 break;
3768 default:
3769 return error_type (pp, objfile);
3770 }
3771 (*pp)++;
3772
3773 /* For some odd reason, all forms of char put a c here. This is strange
3774 because no other type has this honor. We can safely ignore this because
3775 we actually determine 'char'acterness by the number of bits specified in
3776 the descriptor.
3777 Boolean forms, e.g Fortran logical*X, put a b here. */
3778
3779 if (**pp == 'c')
3780 (*pp)++;
3781 else if (**pp == 'b')
3782 {
3783 code = TYPE_CODE_BOOL;
3784 (*pp)++;
3785 }
3786
3787 /* The first number appears to be the number of bytes occupied
3788 by this type, except that unsigned short is 4 instead of 2.
3789 Since this information is redundant with the third number,
3790 we will ignore it. */
3791 read_huge_number (pp, ';', &nbits, 0);
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 /* The second number is always 0, so ignore it too. */
3796 read_huge_number (pp, ';', &nbits, 0);
3797 if (nbits != 0)
3798 return error_type (pp, objfile);
3799
3800 /* The third number is the number of bits for this type. */
3801 type_bits = read_huge_number (pp, 0, &nbits, 0);
3802 if (nbits != 0)
3803 return error_type (pp, objfile);
3804 /* The type *should* end with a semicolon. If it are embedded
3805 in a larger type the semicolon may be the only way to know where
3806 the type ends. If this type is at the end of the stabstring we
3807 can deal with the omitted semicolon (but we don't have to like
3808 it). Don't bother to complain(), Sun's compiler omits the semicolon
3809 for "void". */
3810 if (**pp == ';')
3811 ++(*pp);
3812
3813 if (type_bits == 0)
3814 return init_type (TYPE_CODE_VOID, 1,
3815 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3816 objfile);
3817 else
3818 return init_type (code,
3819 type_bits / TARGET_CHAR_BIT,
3820 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3821 objfile);
3822 }
3823
3824 static struct type *
3825 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3826 {
3827 int nbits;
3828 int details;
3829 int nbytes;
3830 struct type *rettype;
3831
3832 /* The first number has more details about the type, for example
3833 FN_COMPLEX. */
3834 details = read_huge_number (pp, ';', &nbits, 0);
3835 if (nbits != 0)
3836 return error_type (pp, objfile);
3837
3838 /* The second number is the number of bytes occupied by this type. */
3839 nbytes = read_huge_number (pp, ';', &nbits, 0);
3840 if (nbits != 0)
3841 return error_type (pp, objfile);
3842
3843 if (details == NF_COMPLEX || details == NF_COMPLEX16
3844 || details == NF_COMPLEX32)
3845 {
3846 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3847 TYPE_TARGET_TYPE (rettype)
3848 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3849 return rettype;
3850 }
3851
3852 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3853 }
3854
3855 /* Read a number from the string pointed to by *PP.
3856 The value of *PP is advanced over the number.
3857 If END is nonzero, the character that ends the
3858 number must match END, or an error happens;
3859 and that character is skipped if it does match.
3860 If END is zero, *PP is left pointing to that character.
3861
3862 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3863 the number is represented in an octal representation, assume that
3864 it is represented in a 2's complement representation with a size of
3865 TWOS_COMPLEMENT_BITS.
3866
3867 If the number fits in a long, set *BITS to 0 and return the value.
3868 If not, set *BITS to be the number of bits in the number and return 0.
3869
3870 If encounter garbage, set *BITS to -1 and return 0. */
3871
3872 static long
3873 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3874 {
3875 char *p = *pp;
3876 int sign = 1;
3877 int sign_bit = 0;
3878 long n = 0;
3879 int radix = 10;
3880 char overflow = 0;
3881 int nbits = 0;
3882 int c;
3883 long upper_limit;
3884 int twos_complement_representation = 0;
3885
3886 if (*p == '-')
3887 {
3888 sign = -1;
3889 p++;
3890 }
3891
3892 /* Leading zero means octal. GCC uses this to output values larger
3893 than an int (because that would be hard in decimal). */
3894 if (*p == '0')
3895 {
3896 radix = 8;
3897 p++;
3898 }
3899
3900 /* Skip extra zeros. */
3901 while (*p == '0')
3902 p++;
3903
3904 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3905 {
3906 /* Octal, possibly signed. Check if we have enough chars for a
3907 negative number. */
3908
3909 size_t len;
3910 char *p1 = p;
3911
3912 while ((c = *p1) >= '0' && c < '8')
3913 p1++;
3914
3915 len = p1 - p;
3916 if (len > twos_complement_bits / 3
3917 || (twos_complement_bits % 3 == 0
3918 && len == twos_complement_bits / 3))
3919 {
3920 /* Ok, we have enough characters for a signed value, check
3921 for signness by testing if the sign bit is set. */
3922 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3923 c = *p - '0';
3924 if (c & (1 << sign_bit))
3925 {
3926 /* Definitely signed. */
3927 twos_complement_representation = 1;
3928 sign = -1;
3929 }
3930 }
3931 }
3932
3933 upper_limit = LONG_MAX / radix;
3934
3935 while ((c = *p++) >= '0' && c < ('0' + radix))
3936 {
3937 if (n <= upper_limit)
3938 {
3939 if (twos_complement_representation)
3940 {
3941 /* Octal, signed, twos complement representation. In
3942 this case, n is the corresponding absolute value. */
3943 if (n == 0)
3944 {
3945 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3946
3947 n = -sn;
3948 }
3949 else
3950 {
3951 n *= radix;
3952 n -= c - '0';
3953 }
3954 }
3955 else
3956 {
3957 /* unsigned representation */
3958 n *= radix;
3959 n += c - '0'; /* FIXME this overflows anyway. */
3960 }
3961 }
3962 else
3963 overflow = 1;
3964
3965 /* This depends on large values being output in octal, which is
3966 what GCC does. */
3967 if (radix == 8)
3968 {
3969 if (nbits == 0)
3970 {
3971 if (c == '0')
3972 /* Ignore leading zeroes. */
3973 ;
3974 else if (c == '1')
3975 nbits = 1;
3976 else if (c == '2' || c == '3')
3977 nbits = 2;
3978 else
3979 nbits = 3;
3980 }
3981 else
3982 nbits += 3;
3983 }
3984 }
3985 if (end)
3986 {
3987 if (c && c != end)
3988 {
3989 if (bits != NULL)
3990 *bits = -1;
3991 return 0;
3992 }
3993 }
3994 else
3995 --p;
3996
3997 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3998 {
3999 /* We were supposed to parse a number with maximum
4000 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4001 if (bits != NULL)
4002 *bits = -1;
4003 return 0;
4004 }
4005
4006 *pp = p;
4007 if (overflow)
4008 {
4009 if (nbits == 0)
4010 {
4011 /* Large decimal constants are an error (because it is hard to
4012 count how many bits are in them). */
4013 if (bits != NULL)
4014 *bits = -1;
4015 return 0;
4016 }
4017
4018 /* -0x7f is the same as 0x80. So deal with it by adding one to
4019 the number of bits. Two's complement represention octals
4020 can't have a '-' in front. */
4021 if (sign == -1 && !twos_complement_representation)
4022 ++nbits;
4023 if (bits)
4024 *bits = nbits;
4025 }
4026 else
4027 {
4028 if (bits)
4029 *bits = 0;
4030 return n * sign;
4031 }
4032 /* It's *BITS which has the interesting information. */
4033 return 0;
4034 }
4035
4036 static struct type *
4037 read_range_type (char **pp, int typenums[2], int type_size,
4038 struct objfile *objfile)
4039 {
4040 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4041 char *orig_pp = *pp;
4042 int rangenums[2];
4043 long n2, n3;
4044 int n2bits, n3bits;
4045 int self_subrange;
4046 struct type *result_type;
4047 struct type *index_type = NULL;
4048
4049 /* First comes a type we are a subrange of.
4050 In C it is usually 0, 1 or the type being defined. */
4051 if (read_type_number (pp, rangenums) != 0)
4052 return error_type (pp, objfile);
4053 self_subrange = (rangenums[0] == typenums[0] &&
4054 rangenums[1] == typenums[1]);
4055
4056 if (**pp == '=')
4057 {
4058 *pp = orig_pp;
4059 index_type = read_type (pp, objfile);
4060 }
4061
4062 /* A semicolon should now follow; skip it. */
4063 if (**pp == ';')
4064 (*pp)++;
4065
4066 /* The remaining two operands are usually lower and upper bounds
4067 of the range. But in some special cases they mean something else. */
4068 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4069 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4070
4071 if (n2bits == -1 || n3bits == -1)
4072 return error_type (pp, objfile);
4073
4074 if (index_type)
4075 goto handle_true_range;
4076
4077 /* If limits are huge, must be large integral type. */
4078 if (n2bits != 0 || n3bits != 0)
4079 {
4080 char got_signed = 0;
4081 char got_unsigned = 0;
4082 /* Number of bits in the type. */
4083 int nbits = 0;
4084
4085 /* If a type size attribute has been specified, the bounds of
4086 the range should fit in this size. If the lower bounds needs
4087 more bits than the upper bound, then the type is signed. */
4088 if (n2bits <= type_size && n3bits <= type_size)
4089 {
4090 if (n2bits == type_size && n2bits > n3bits)
4091 got_signed = 1;
4092 else
4093 got_unsigned = 1;
4094 nbits = type_size;
4095 }
4096 /* Range from 0 to <large number> is an unsigned large integral type. */
4097 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4098 {
4099 got_unsigned = 1;
4100 nbits = n3bits;
4101 }
4102 /* Range from <large number> to <large number>-1 is a large signed
4103 integral type. Take care of the case where <large number> doesn't
4104 fit in a long but <large number>-1 does. */
4105 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4106 || (n2bits != 0 && n3bits == 0
4107 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4108 && n3 == LONG_MAX))
4109 {
4110 got_signed = 1;
4111 nbits = n2bits;
4112 }
4113
4114 if (got_signed || got_unsigned)
4115 {
4116 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4117 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4118 objfile);
4119 }
4120 else
4121 return error_type (pp, objfile);
4122 }
4123
4124 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4125 if (self_subrange && n2 == 0 && n3 == 0)
4126 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4127
4128 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4129 is the width in bytes.
4130
4131 Fortran programs appear to use this for complex types also. To
4132 distinguish between floats and complex, g77 (and others?) seem
4133 to use self-subranges for the complexes, and subranges of int for
4134 the floats.
4135
4136 Also note that for complexes, g77 sets n2 to the size of one of
4137 the member floats, not the whole complex beast. My guess is that
4138 this was to work well with pre-COMPLEX versions of gdb. */
4139
4140 if (n3 == 0 && n2 > 0)
4141 {
4142 struct type *float_type
4143 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4144
4145 if (self_subrange)
4146 {
4147 struct type *complex_type =
4148 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4149
4150 TYPE_TARGET_TYPE (complex_type) = float_type;
4151 return complex_type;
4152 }
4153 else
4154 return float_type;
4155 }
4156
4157 /* If the upper bound is -1, it must really be an unsigned integral. */
4158
4159 else if (n2 == 0 && n3 == -1)
4160 {
4161 int bits = type_size;
4162
4163 if (bits <= 0)
4164 {
4165 /* We don't know its size. It is unsigned int or unsigned
4166 long. GCC 2.3.3 uses this for long long too, but that is
4167 just a GDB 3.5 compatibility hack. */
4168 bits = gdbarch_int_bit (gdbarch);
4169 }
4170
4171 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4172 TYPE_FLAG_UNSIGNED, NULL, objfile);
4173 }
4174
4175 /* Special case: char is defined (Who knows why) as a subrange of
4176 itself with range 0-127. */
4177 else if (self_subrange && n2 == 0 && n3 == 127)
4178 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4179
4180 /* We used to do this only for subrange of self or subrange of int. */
4181 else if (n2 == 0)
4182 {
4183 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4184 "unsigned long", and we already checked for that,
4185 so don't need to test for it here. */
4186
4187 if (n3 < 0)
4188 /* n3 actually gives the size. */
4189 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4190 NULL, objfile);
4191
4192 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4193 unsigned n-byte integer. But do require n to be a power of
4194 two; we don't want 3- and 5-byte integers flying around. */
4195 {
4196 int bytes;
4197 unsigned long bits;
4198
4199 bits = n3;
4200 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4201 bits >>= 8;
4202 if (bits == 0
4203 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4204 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4205 objfile);
4206 }
4207 }
4208 /* I think this is for Convex "long long". Since I don't know whether
4209 Convex sets self_subrange, I also accept that particular size regardless
4210 of self_subrange. */
4211 else if (n3 == 0 && n2 < 0
4212 && (self_subrange
4213 || n2 == -gdbarch_long_long_bit
4214 (gdbarch) / TARGET_CHAR_BIT))
4215 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4216 else if (n2 == -n3 - 1)
4217 {
4218 if (n3 == 0x7f)
4219 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4220 if (n3 == 0x7fff)
4221 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4222 if (n3 == 0x7fffffff)
4223 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4224 }
4225
4226 /* We have a real range type on our hands. Allocate space and
4227 return a real pointer. */
4228 handle_true_range:
4229
4230 if (self_subrange)
4231 index_type = objfile_type (objfile)->builtin_int;
4232 else
4233 index_type = *dbx_lookup_type (rangenums, objfile);
4234 if (index_type == NULL)
4235 {
4236 /* Does this actually ever happen? Is that why we are worrying
4237 about dealing with it rather than just calling error_type? */
4238
4239 complaint (&symfile_complaints,
4240 _("base type %d of range type is not defined"), rangenums[1]);
4241
4242 index_type = objfile_type (objfile)->builtin_int;
4243 }
4244
4245 result_type
4246 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4247 return (result_type);
4248 }
4249
4250 /* Read in an argument list. This is a list of types, separated by commas
4251 and terminated with END. Return the list of types read in, or NULL
4252 if there is an error. */
4253
4254 static struct field *
4255 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4256 int *varargsp)
4257 {
4258 /* FIXME! Remove this arbitrary limit! */
4259 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4260 int n = 0, i;
4261 struct field *rval;
4262
4263 while (**pp != end)
4264 {
4265 if (**pp != ',')
4266 /* Invalid argument list: no ','. */
4267 return NULL;
4268 (*pp)++;
4269 STABS_CONTINUE (pp, objfile);
4270 types[n++] = read_type (pp, objfile);
4271 }
4272 (*pp)++; /* get past `end' (the ':' character). */
4273
4274 if (n == 0)
4275 {
4276 /* We should read at least the THIS parameter here. Some broken stabs
4277 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4278 have been present ";-16,(0,43)" reference instead. This way the
4279 excessive ";" marker prematurely stops the parameters parsing. */
4280
4281 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4282 *varargsp = 0;
4283 }
4284 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4285 *varargsp = 1;
4286 else
4287 {
4288 n--;
4289 *varargsp = 0;
4290 }
4291
4292 rval = (struct field *) xmalloc (n * sizeof (struct field));
4293 memset (rval, 0, n * sizeof (struct field));
4294 for (i = 0; i < n; i++)
4295 rval[i].type = types[i];
4296 *nargsp = n;
4297 return rval;
4298 }
4299 \f
4300 /* Common block handling. */
4301
4302 /* List of symbols declared since the last BCOMM. This list is a tail
4303 of local_symbols. When ECOMM is seen, the symbols on the list
4304 are noted so their proper addresses can be filled in later,
4305 using the common block base address gotten from the assembler
4306 stabs. */
4307
4308 static struct pending *common_block;
4309 static int common_block_i;
4310
4311 /* Name of the current common block. We get it from the BCOMM instead of the
4312 ECOMM to match IBM documentation (even though IBM puts the name both places
4313 like everyone else). */
4314 static char *common_block_name;
4315
4316 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4317 to remain after this function returns. */
4318
4319 void
4320 common_block_start (char *name, struct objfile *objfile)
4321 {
4322 if (common_block_name != NULL)
4323 {
4324 complaint (&symfile_complaints,
4325 _("Invalid symbol data: common block within common block"));
4326 }
4327 common_block = local_symbols;
4328 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4329 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4330 name, strlen (name));
4331 }
4332
4333 /* Process a N_ECOMM symbol. */
4334
4335 void
4336 common_block_end (struct objfile *objfile)
4337 {
4338 /* Symbols declared since the BCOMM are to have the common block
4339 start address added in when we know it. common_block and
4340 common_block_i point to the first symbol after the BCOMM in
4341 the local_symbols list; copy the list and hang it off the
4342 symbol for the common block name for later fixup. */
4343 int i;
4344 struct symbol *sym;
4345 struct pending *new = 0;
4346 struct pending *next;
4347 int j;
4348
4349 if (common_block_name == NULL)
4350 {
4351 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4352 return;
4353 }
4354
4355 sym = allocate_symbol (objfile);
4356 /* Note: common_block_name already saved on objfile_obstack. */
4357 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4358 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4359
4360 /* Now we copy all the symbols which have been defined since the BCOMM. */
4361
4362 /* Copy all the struct pendings before common_block. */
4363 for (next = local_symbols;
4364 next != NULL && next != common_block;
4365 next = next->next)
4366 {
4367 for (j = 0; j < next->nsyms; j++)
4368 add_symbol_to_list (next->symbol[j], &new);
4369 }
4370
4371 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4372 NULL, it means copy all the local symbols (which we already did
4373 above). */
4374
4375 if (common_block != NULL)
4376 for (j = common_block_i; j < common_block->nsyms; j++)
4377 add_symbol_to_list (common_block->symbol[j], &new);
4378
4379 SYMBOL_TYPE (sym) = (struct type *) new;
4380
4381 /* Should we be putting local_symbols back to what it was?
4382 Does it matter? */
4383
4384 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4385 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4386 global_sym_chain[i] = sym;
4387 common_block_name = NULL;
4388 }
4389
4390 /* Add a common block's start address to the offset of each symbol
4391 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4392 the common block name). */
4393
4394 static void
4395 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4396 {
4397 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4398
4399 for (; next; next = next->next)
4400 {
4401 int j;
4402
4403 for (j = next->nsyms - 1; j >= 0; j--)
4404 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4405 }
4406 }
4407 \f
4408
4409
4410 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4411 See add_undefined_type for more details. */
4412
4413 static void
4414 add_undefined_type_noname (struct type *type, int typenums[2])
4415 {
4416 struct nat nat;
4417
4418 nat.typenums[0] = typenums [0];
4419 nat.typenums[1] = typenums [1];
4420 nat.type = type;
4421
4422 if (noname_undefs_length == noname_undefs_allocated)
4423 {
4424 noname_undefs_allocated *= 2;
4425 noname_undefs = (struct nat *)
4426 xrealloc ((char *) noname_undefs,
4427 noname_undefs_allocated * sizeof (struct nat));
4428 }
4429 noname_undefs[noname_undefs_length++] = nat;
4430 }
4431
4432 /* Add TYPE to the UNDEF_TYPES vector.
4433 See add_undefined_type for more details. */
4434
4435 static void
4436 add_undefined_type_1 (struct type *type)
4437 {
4438 if (undef_types_length == undef_types_allocated)
4439 {
4440 undef_types_allocated *= 2;
4441 undef_types = (struct type **)
4442 xrealloc ((char *) undef_types,
4443 undef_types_allocated * sizeof (struct type *));
4444 }
4445 undef_types[undef_types_length++] = type;
4446 }
4447
4448 /* What about types defined as forward references inside of a small lexical
4449 scope? */
4450 /* Add a type to the list of undefined types to be checked through
4451 once this file has been read in.
4452
4453 In practice, we actually maintain two such lists: The first list
4454 (UNDEF_TYPES) is used for types whose name has been provided, and
4455 concerns forward references (eg 'xs' or 'xu' forward references);
4456 the second list (NONAME_UNDEFS) is used for types whose name is
4457 unknown at creation time, because they were referenced through
4458 their type number before the actual type was declared.
4459 This function actually adds the given type to the proper list. */
4460
4461 static void
4462 add_undefined_type (struct type *type, int typenums[2])
4463 {
4464 if (TYPE_TAG_NAME (type) == NULL)
4465 add_undefined_type_noname (type, typenums);
4466 else
4467 add_undefined_type_1 (type);
4468 }
4469
4470 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4471
4472 static void
4473 cleanup_undefined_types_noname (struct objfile *objfile)
4474 {
4475 int i;
4476
4477 for (i = 0; i < noname_undefs_length; i++)
4478 {
4479 struct nat nat = noname_undefs[i];
4480 struct type **type;
4481
4482 type = dbx_lookup_type (nat.typenums, objfile);
4483 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4484 {
4485 /* The instance flags of the undefined type are still unset,
4486 and needs to be copied over from the reference type.
4487 Since replace_type expects them to be identical, we need
4488 to set these flags manually before hand. */
4489 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4490 replace_type (nat.type, *type);
4491 }
4492 }
4493
4494 noname_undefs_length = 0;
4495 }
4496
4497 /* Go through each undefined type, see if it's still undefined, and fix it
4498 up if possible. We have two kinds of undefined types:
4499
4500 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4501 Fix: update array length using the element bounds
4502 and the target type's length.
4503 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4504 yet defined at the time a pointer to it was made.
4505 Fix: Do a full lookup on the struct/union tag. */
4506
4507 static void
4508 cleanup_undefined_types_1 (void)
4509 {
4510 struct type **type;
4511
4512 /* Iterate over every undefined type, and look for a symbol whose type
4513 matches our undefined type. The symbol matches if:
4514 1. It is a typedef in the STRUCT domain;
4515 2. It has the same name, and same type code;
4516 3. The instance flags are identical.
4517
4518 It is important to check the instance flags, because we have seen
4519 examples where the debug info contained definitions such as:
4520
4521 "foo_t:t30=B31=xefoo_t:"
4522
4523 In this case, we have created an undefined type named "foo_t" whose
4524 instance flags is null (when processing "xefoo_t"), and then created
4525 another type with the same name, but with different instance flags
4526 ('B' means volatile). I think that the definition above is wrong,
4527 since the same type cannot be volatile and non-volatile at the same
4528 time, but we need to be able to cope with it when it happens. The
4529 approach taken here is to treat these two types as different. */
4530
4531 for (type = undef_types; type < undef_types + undef_types_length; type++)
4532 {
4533 switch (TYPE_CODE (*type))
4534 {
4535
4536 case TYPE_CODE_STRUCT:
4537 case TYPE_CODE_UNION:
4538 case TYPE_CODE_ENUM:
4539 {
4540 /* Check if it has been defined since. Need to do this here
4541 as well as in check_typedef to deal with the (legitimate in
4542 C though not C++) case of several types with the same name
4543 in different source files. */
4544 if (TYPE_STUB (*type))
4545 {
4546 struct pending *ppt;
4547 int i;
4548 /* Name of the type, without "struct" or "union". */
4549 const char *typename = TYPE_TAG_NAME (*type);
4550
4551 if (typename == NULL)
4552 {
4553 complaint (&symfile_complaints, _("need a type name"));
4554 break;
4555 }
4556 for (ppt = file_symbols; ppt; ppt = ppt->next)
4557 {
4558 for (i = 0; i < ppt->nsyms; i++)
4559 {
4560 struct symbol *sym = ppt->symbol[i];
4561
4562 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4563 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4564 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4565 TYPE_CODE (*type))
4566 && (TYPE_INSTANCE_FLAGS (*type) ==
4567 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4568 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4569 typename) == 0)
4570 replace_type (*type, SYMBOL_TYPE (sym));
4571 }
4572 }
4573 }
4574 }
4575 break;
4576
4577 default:
4578 {
4579 complaint (&symfile_complaints,
4580 _("forward-referenced types left unresolved, "
4581 "type code %d."),
4582 TYPE_CODE (*type));
4583 }
4584 break;
4585 }
4586 }
4587
4588 undef_types_length = 0;
4589 }
4590
4591 /* Try to fix all the undefined types we ecountered while processing
4592 this unit. */
4593
4594 void
4595 cleanup_undefined_stabs_types (struct objfile *objfile)
4596 {
4597 cleanup_undefined_types_1 ();
4598 cleanup_undefined_types_noname (objfile);
4599 }
4600
4601 /* Scan through all of the global symbols defined in the object file,
4602 assigning values to the debugging symbols that need to be assigned
4603 to. Get these symbols from the minimal symbol table. */
4604
4605 void
4606 scan_file_globals (struct objfile *objfile)
4607 {
4608 int hash;
4609 struct minimal_symbol *msymbol;
4610 struct symbol *sym, *prev;
4611 struct objfile *resolve_objfile;
4612
4613 /* SVR4 based linkers copy referenced global symbols from shared
4614 libraries to the main executable.
4615 If we are scanning the symbols for a shared library, try to resolve
4616 them from the minimal symbols of the main executable first. */
4617
4618 if (symfile_objfile && objfile != symfile_objfile)
4619 resolve_objfile = symfile_objfile;
4620 else
4621 resolve_objfile = objfile;
4622
4623 while (1)
4624 {
4625 /* Avoid expensive loop through all minimal symbols if there are
4626 no unresolved symbols. */
4627 for (hash = 0; hash < HASHSIZE; hash++)
4628 {
4629 if (global_sym_chain[hash])
4630 break;
4631 }
4632 if (hash >= HASHSIZE)
4633 return;
4634
4635 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4636 {
4637 QUIT;
4638
4639 /* Skip static symbols. */
4640 switch (MSYMBOL_TYPE (msymbol))
4641 {
4642 case mst_file_text:
4643 case mst_file_data:
4644 case mst_file_bss:
4645 continue;
4646 default:
4647 break;
4648 }
4649
4650 prev = NULL;
4651
4652 /* Get the hash index and check all the symbols
4653 under that hash index. */
4654
4655 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4656
4657 for (sym = global_sym_chain[hash]; sym;)
4658 {
4659 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4660 SYMBOL_LINKAGE_NAME (sym)) == 0)
4661 {
4662 /* Splice this symbol out of the hash chain and
4663 assign the value we have to it. */
4664 if (prev)
4665 {
4666 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4667 }
4668 else
4669 {
4670 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4671 }
4672
4673 /* Check to see whether we need to fix up a common block. */
4674 /* Note: this code might be executed several times for
4675 the same symbol if there are multiple references. */
4676 if (sym)
4677 {
4678 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4679 {
4680 fix_common_block (sym,
4681 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4682 msymbol));
4683 }
4684 else
4685 {
4686 SYMBOL_VALUE_ADDRESS (sym)
4687 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4688 }
4689 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4690 }
4691
4692 if (prev)
4693 {
4694 sym = SYMBOL_VALUE_CHAIN (prev);
4695 }
4696 else
4697 {
4698 sym = global_sym_chain[hash];
4699 }
4700 }
4701 else
4702 {
4703 prev = sym;
4704 sym = SYMBOL_VALUE_CHAIN (sym);
4705 }
4706 }
4707 }
4708 if (resolve_objfile == objfile)
4709 break;
4710 resolve_objfile = objfile;
4711 }
4712
4713 /* Change the storage class of any remaining unresolved globals to
4714 LOC_UNRESOLVED and remove them from the chain. */
4715 for (hash = 0; hash < HASHSIZE; hash++)
4716 {
4717 sym = global_sym_chain[hash];
4718 while (sym)
4719 {
4720 prev = sym;
4721 sym = SYMBOL_VALUE_CHAIN (sym);
4722
4723 /* Change the symbol address from the misleading chain value
4724 to address zero. */
4725 SYMBOL_VALUE_ADDRESS (prev) = 0;
4726
4727 /* Complain about unresolved common block symbols. */
4728 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4729 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4730 else
4731 complaint (&symfile_complaints,
4732 _("%s: common block `%s' from "
4733 "global_sym_chain unresolved"),
4734 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4735 }
4736 }
4737 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4738 }
4739
4740 /* Initialize anything that needs initializing when starting to read
4741 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4742 to a psymtab. */
4743
4744 void
4745 stabsread_init (void)
4746 {
4747 }
4748
4749 /* Initialize anything that needs initializing when a completely new
4750 symbol file is specified (not just adding some symbols from another
4751 file, e.g. a shared library). */
4752
4753 void
4754 stabsread_new_init (void)
4755 {
4756 /* Empty the hash table of global syms looking for values. */
4757 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4758 }
4759
4760 /* Initialize anything that needs initializing at the same time as
4761 start_symtab() is called. */
4762
4763 void
4764 start_stabs (void)
4765 {
4766 global_stabs = NULL; /* AIX COFF */
4767 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4768 n_this_object_header_files = 1;
4769 type_vector_length = 0;
4770 type_vector = (struct type **) 0;
4771
4772 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4773 common_block_name = NULL;
4774 }
4775
4776 /* Call after end_symtab(). */
4777
4778 void
4779 end_stabs (void)
4780 {
4781 if (type_vector)
4782 {
4783 xfree (type_vector);
4784 }
4785 type_vector = 0;
4786 type_vector_length = 0;
4787 previous_stab_code = 0;
4788 }
4789
4790 void
4791 finish_global_stabs (struct objfile *objfile)
4792 {
4793 if (global_stabs)
4794 {
4795 patch_block_stabs (global_symbols, global_stabs, objfile);
4796 xfree (global_stabs);
4797 global_stabs = NULL;
4798 }
4799 }
4800
4801 /* Find the end of the name, delimited by a ':', but don't match
4802 ObjC symbols which look like -[Foo bar::]:bla. */
4803 static char *
4804 find_name_end (char *name)
4805 {
4806 char *s = name;
4807
4808 if (s[0] == '-' || *s == '+')
4809 {
4810 /* Must be an ObjC method symbol. */
4811 if (s[1] != '[')
4812 {
4813 error (_("invalid symbol name \"%s\""), name);
4814 }
4815 s = strchr (s, ']');
4816 if (s == NULL)
4817 {
4818 error (_("invalid symbol name \"%s\""), name);
4819 }
4820 return strchr (s, ':');
4821 }
4822 else
4823 {
4824 return strchr (s, ':');
4825 }
4826 }
4827
4828 /* Initializer for this module. */
4829
4830 void
4831 _initialize_stabsread (void)
4832 {
4833 rs6000_builtin_type_data = register_objfile_data ();
4834
4835 undef_types_allocated = 20;
4836 undef_types_length = 0;
4837 undef_types = (struct type **)
4838 xmalloc (undef_types_allocated * sizeof (struct type *));
4839
4840 noname_undefs_allocated = 20;
4841 noname_undefs_length = 0;
4842 noname_undefs = (struct nat *)
4843 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4844
4845 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4846 &stab_register_funcs);
4847 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4848 &stab_register_funcs);
4849 }
This page took 0.133536 seconds and 5 git commands to generate.