2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obsavestring (name, pp - name,
391 &objfile->objfile_obstack));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '=' */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 struct objfile *objfile)
610 {
611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
612 struct symbol *sym;
613 char *p = (char *) find_name_end (string);
614 int deftype;
615 int synonym = 0;
616 int i;
617 char *new_name = NULL;
618
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
623
624 int nameless;
625
626 /* Ignore syms with empty names. */
627 if (string[0] == 0)
628 return 0;
629
630 /* Ignore old-style symbols from cc -go */
631 if (p == 0)
632 return 0;
633
634 while (p[1] == ':')
635 {
636 p += 2;
637 p = strchr (p, ':');
638 }
639
640 /* If a nameless stab entry, all we need is the type, not the symbol.
641 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
642 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
643
644 current_symbol = sym = (struct symbol *)
645 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
646 memset (sym, 0, sizeof (struct symbol));
647
648 switch (type & N_TYPE)
649 {
650 case N_TEXT:
651 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
652 break;
653 case N_DATA:
654 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
655 break;
656 case N_BSS:
657 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
658 break;
659 }
660
661 if (processing_gcc_compilation)
662 {
663 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
664 number of bytes occupied by a type or object, which we ignore. */
665 SYMBOL_LINE (sym) = desc;
666 }
667 else
668 {
669 SYMBOL_LINE (sym) = 0; /* unknown */
670 }
671
672 if (is_cplus_marker (string[0]))
673 {
674 /* Special GNU C++ names. */
675 switch (string[1])
676 {
677 case 't':
678 SYMBOL_SET_LINKAGE_NAME (sym, "this");
679 break;
680
681 case 'v': /* $vtbl_ptr_type */
682 goto normal;
683
684 case 'e':
685 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
686 break;
687
688 case '_':
689 /* This was an anonymous type that was never fixed up. */
690 goto normal;
691
692 case 'X':
693 /* SunPRO (3.0 at least) static variable encoding. */
694 if (gdbarch_static_transform_name_p (gdbarch))
695 goto normal;
696 /* ... fall through ... */
697
698 default:
699 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
700 string);
701 goto normal; /* Do *something* with it */
702 }
703 }
704 else
705 {
706 normal:
707 SYMBOL_LANGUAGE (sym) = current_subfile->language;
708 if (SYMBOL_LANGUAGE (sym) == language_cplus)
709 {
710 char *name = alloca (p - string + 1);
711
712 memcpy (name, string, p - string);
713 name[p - string] = '\0';
714 new_name = cp_canonicalize_string (name);
715 cp_scan_for_anonymous_namespaces (sym);
716 }
717 if (new_name != NULL)
718 {
719 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
720 xfree (new_name);
721 }
722 else
723 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
724 }
725 p++;
726
727 /* Determine the type of name being defined. */
728 #if 0
729 /* Getting GDB to correctly skip the symbol on an undefined symbol
730 descriptor and not ever dump core is a very dodgy proposition if
731 we do things this way. I say the acorn RISC machine can just
732 fix their compiler. */
733 /* The Acorn RISC machine's compiler can put out locals that don't
734 start with "234=" or "(3,4)=", so assume anything other than the
735 deftypes we know how to handle is a local. */
736 if (!strchr ("cfFGpPrStTvVXCR", *p))
737 #else
738 if (isdigit (*p) || *p == '(' || *p == '-')
739 #endif
740 deftype = 'l';
741 else
742 deftype = *p++;
743
744 switch (deftype)
745 {
746 case 'c':
747 /* c is a special case, not followed by a type-number.
748 SYMBOL:c=iVALUE for an integer constant symbol.
749 SYMBOL:c=rVALUE for a floating constant symbol.
750 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
751 e.g. "b:c=e6,0" for "const b = blob1"
752 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
753 if (*p != '=')
754 {
755 SYMBOL_CLASS (sym) = LOC_CONST;
756 SYMBOL_TYPE (sym) = error_type (&p, objfile);
757 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
758 add_symbol_to_list (sym, &file_symbols);
759 return sym;
760 }
761 ++p;
762 switch (*p++)
763 {
764 case 'r':
765 {
766 double d = atof (p);
767 gdb_byte *dbl_valu;
768 struct type *dbl_type;
769
770 /* FIXME-if-picky-about-floating-accuracy: Should be using
771 target arithmetic to get the value. real.c in GCC
772 probably has the necessary code. */
773
774 dbl_type = objfile_type (objfile)->builtin_double;
775 dbl_valu =
776 obstack_alloc (&objfile->objfile_obstack,
777 TYPE_LENGTH (dbl_type));
778 store_typed_floating (dbl_valu, dbl_type, d);
779
780 SYMBOL_TYPE (sym) = dbl_type;
781 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
782 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
783 }
784 break;
785 case 'i':
786 {
787 /* Defining integer constants this way is kind of silly,
788 since 'e' constants allows the compiler to give not
789 only the value, but the type as well. C has at least
790 int, long, unsigned int, and long long as constant
791 types; other languages probably should have at least
792 unsigned as well as signed constants. */
793
794 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
795 SYMBOL_VALUE (sym) = atoi (p);
796 SYMBOL_CLASS (sym) = LOC_CONST;
797 }
798 break;
799
800 case 'c':
801 {
802 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
803 SYMBOL_VALUE (sym) = atoi (p);
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 }
806 break;
807
808 case 's':
809 {
810 struct type *range_type;
811 int ind = 0;
812 char quote = *p++;
813 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
814 gdb_byte *string_value;
815
816 if (quote != '\'' && quote != '"')
817 {
818 SYMBOL_CLASS (sym) = LOC_CONST;
819 SYMBOL_TYPE (sym) = error_type (&p, objfile);
820 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
821 add_symbol_to_list (sym, &file_symbols);
822 return sym;
823 }
824
825 /* Find matching quote, rejecting escaped quotes. */
826 while (*p && *p != quote)
827 {
828 if (*p == '\\' && p[1] == quote)
829 {
830 string_local[ind] = (gdb_byte) quote;
831 ind++;
832 p += 2;
833 }
834 else if (*p)
835 {
836 string_local[ind] = (gdb_byte) (*p);
837 ind++;
838 p++;
839 }
840 }
841 if (*p != quote)
842 {
843 SYMBOL_CLASS (sym) = LOC_CONST;
844 SYMBOL_TYPE (sym) = error_type (&p, objfile);
845 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
846 add_symbol_to_list (sym, &file_symbols);
847 return sym;
848 }
849
850 /* NULL terminate the string. */
851 string_local[ind] = 0;
852 range_type = create_range_type (NULL,
853 objfile_type (objfile)->builtin_int,
854 0, ind);
855 SYMBOL_TYPE (sym) = create_array_type (NULL,
856 objfile_type (objfile)->builtin_char,
857 range_type);
858 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
859 memcpy (string_value, string_local, ind + 1);
860 p++;
861
862 SYMBOL_VALUE_BYTES (sym) = string_value;
863 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
864 }
865 break;
866
867 case 'e':
868 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
869 can be represented as integral.
870 e.g. "b:c=e6,0" for "const b = blob1"
871 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
872 {
873 SYMBOL_CLASS (sym) = LOC_CONST;
874 SYMBOL_TYPE (sym) = read_type (&p, objfile);
875
876 if (*p != ',')
877 {
878 SYMBOL_TYPE (sym) = error_type (&p, objfile);
879 break;
880 }
881 ++p;
882
883 /* If the value is too big to fit in an int (perhaps because
884 it is unsigned), or something like that, we silently get
885 a bogus value. The type and everything else about it is
886 correct. Ideally, we should be using whatever we have
887 available for parsing unsigned and long long values,
888 however. */
889 SYMBOL_VALUE (sym) = atoi (p);
890 }
891 break;
892 default:
893 {
894 SYMBOL_CLASS (sym) = LOC_CONST;
895 SYMBOL_TYPE (sym) = error_type (&p, objfile);
896 }
897 }
898 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
899 add_symbol_to_list (sym, &file_symbols);
900 return sym;
901
902 case 'C':
903 /* The name of a caught exception. */
904 SYMBOL_TYPE (sym) = read_type (&p, objfile);
905 SYMBOL_CLASS (sym) = LOC_LABEL;
906 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
907 SYMBOL_VALUE_ADDRESS (sym) = valu;
908 add_symbol_to_list (sym, &local_symbols);
909 break;
910
911 case 'f':
912 /* A static function definition. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_BLOCK;
915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916 add_symbol_to_list (sym, &file_symbols);
917 /* fall into process_function_types. */
918
919 process_function_types:
920 /* Function result types are described as the result type in stabs.
921 We need to convert this to the function-returning-type-X type
922 in GDB. E.g. "int" is converted to "function returning int". */
923 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
924 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
925
926 /* All functions in C++ have prototypes. Stabs does not offer an
927 explicit way to identify prototyped or unprototyped functions,
928 but both GCC and Sun CC emit stabs for the "call-as" type rather
929 than the "declared-as" type for unprototyped functions, so
930 we treat all functions as if they were prototyped. This is used
931 primarily for promotion when calling the function from GDB. */
932 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
933
934 /* fall into process_prototype_types */
935
936 process_prototype_types:
937 /* Sun acc puts declared types of arguments here. */
938 if (*p == ';')
939 {
940 struct type *ftype = SYMBOL_TYPE (sym);
941 int nsemi = 0;
942 int nparams = 0;
943 char *p1 = p;
944
945 /* Obtain a worst case guess for the number of arguments
946 by counting the semicolons. */
947 while (*p1)
948 {
949 if (*p1++ == ';')
950 nsemi++;
951 }
952
953 /* Allocate parameter information fields and fill them in. */
954 TYPE_FIELDS (ftype) = (struct field *)
955 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
956 while (*p++ == ';')
957 {
958 struct type *ptype;
959
960 /* A type number of zero indicates the start of varargs.
961 FIXME: GDB currently ignores vararg functions. */
962 if (p[0] == '0' && p[1] == '\0')
963 break;
964 ptype = read_type (&p, objfile);
965
966 /* The Sun compilers mark integer arguments, which should
967 be promoted to the width of the calling conventions, with
968 a type which references itself. This type is turned into
969 a TYPE_CODE_VOID type by read_type, and we have to turn
970 it back into builtin_int here.
971 FIXME: Do we need a new builtin_promoted_int_arg ? */
972 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
973 ptype = objfile_type (objfile)->builtin_int;
974 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
975 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
976 }
977 TYPE_NFIELDS (ftype) = nparams;
978 TYPE_PROTOTYPED (ftype) = 1;
979 }
980 break;
981
982 case 'F':
983 /* A global function definition. */
984 SYMBOL_TYPE (sym) = read_type (&p, objfile);
985 SYMBOL_CLASS (sym) = LOC_BLOCK;
986 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
987 add_symbol_to_list (sym, &global_symbols);
988 goto process_function_types;
989
990 case 'G':
991 /* For a class G (global) symbol, it appears that the
992 value is not correct. It is necessary to search for the
993 corresponding linker definition to find the value.
994 These definitions appear at the end of the namelist. */
995 SYMBOL_TYPE (sym) = read_type (&p, objfile);
996 SYMBOL_CLASS (sym) = LOC_STATIC;
997 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
998 /* Don't add symbol references to global_sym_chain.
999 Symbol references don't have valid names and wont't match up with
1000 minimal symbols when the global_sym_chain is relocated.
1001 We'll fixup symbol references when we fixup the defining symbol. */
1002 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1003 {
1004 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1005 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1006 global_sym_chain[i] = sym;
1007 }
1008 add_symbol_to_list (sym, &global_symbols);
1009 break;
1010
1011 /* This case is faked by a conditional above,
1012 when there is no code letter in the dbx data.
1013 Dbx data never actually contains 'l'. */
1014 case 's':
1015 case 'l':
1016 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1017 SYMBOL_CLASS (sym) = LOC_LOCAL;
1018 SYMBOL_VALUE (sym) = valu;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &local_symbols);
1021 break;
1022
1023 case 'p':
1024 if (*p == 'F')
1025 /* pF is a two-letter code that means a function parameter in Fortran.
1026 The type-number specifies the type of the return value.
1027 Translate it into a pointer-to-function type. */
1028 {
1029 p++;
1030 SYMBOL_TYPE (sym)
1031 = lookup_pointer_type
1032 (lookup_function_type (read_type (&p, objfile)));
1033 }
1034 else
1035 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1036
1037 SYMBOL_CLASS (sym) = LOC_ARG;
1038 SYMBOL_VALUE (sym) = valu;
1039 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1040 SYMBOL_IS_ARGUMENT (sym) = 1;
1041 add_symbol_to_list (sym, &local_symbols);
1042
1043 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1044 {
1045 /* On little-endian machines, this crud is never necessary,
1046 and, if the extra bytes contain garbage, is harmful. */
1047 break;
1048 }
1049
1050 /* If it's gcc-compiled, if it says `short', believe it. */
1051 if (processing_gcc_compilation
1052 || gdbarch_believe_pcc_promotion (gdbarch))
1053 break;
1054
1055 if (!gdbarch_believe_pcc_promotion (gdbarch))
1056 {
1057 /* If PCC says a parameter is a short or a char, it is
1058 really an int. */
1059 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1060 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1061 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1062 {
1063 SYMBOL_TYPE (sym) =
1064 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1065 ? objfile_type (objfile)->builtin_unsigned_int
1066 : objfile_type (objfile)->builtin_int;
1067 }
1068 break;
1069 }
1070
1071 case 'P':
1072 /* acc seems to use P to declare the prototypes of functions that
1073 are referenced by this file. gdb is not prepared to deal
1074 with this extra information. FIXME, it ought to. */
1075 if (type == N_FUN)
1076 {
1077 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1078 goto process_prototype_types;
1079 }
1080 /*FALLTHROUGH */
1081
1082 case 'R':
1083 /* Parameter which is in a register. */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_REGISTER;
1086 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1087 SYMBOL_IS_ARGUMENT (sym) = 1;
1088 SYMBOL_VALUE (sym) = valu;
1089 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1090 add_symbol_to_list (sym, &local_symbols);
1091 break;
1092
1093 case 'r':
1094 /* Register variable (either global or local). */
1095 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1096 SYMBOL_CLASS (sym) = LOC_REGISTER;
1097 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1098 SYMBOL_VALUE (sym) = valu;
1099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100 if (within_function)
1101 {
1102 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1103 the same name to represent an argument passed in a
1104 register. GCC uses 'P' for the same case. So if we find
1105 such a symbol pair we combine it into one 'P' symbol.
1106 For Sun cc we need to do this regardless of
1107 stabs_argument_has_addr, because the compiler puts out
1108 the 'p' symbol even if it never saves the argument onto
1109 the stack.
1110
1111 On most machines, we want to preserve both symbols, so
1112 that we can still get information about what is going on
1113 with the stack (VAX for computing args_printed, using
1114 stack slots instead of saved registers in backtraces,
1115 etc.).
1116
1117 Note that this code illegally combines
1118 main(argc) struct foo argc; { register struct foo argc; }
1119 but this case is considered pathological and causes a warning
1120 from a decent compiler. */
1121
1122 if (local_symbols
1123 && local_symbols->nsyms > 0
1124 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1125 {
1126 struct symbol *prev_sym;
1127
1128 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1129 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1130 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1131 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1132 SYMBOL_LINKAGE_NAME (sym)) == 0)
1133 {
1134 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1135 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1136 /* Use the type from the LOC_REGISTER; that is the type
1137 that is actually in that register. */
1138 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1139 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1140 sym = prev_sym;
1141 break;
1142 }
1143 }
1144 add_symbol_to_list (sym, &local_symbols);
1145 }
1146 else
1147 add_symbol_to_list (sym, &file_symbols);
1148 break;
1149
1150 case 'S':
1151 /* Static symbol at top level of file */
1152 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1153 SYMBOL_CLASS (sym) = LOC_STATIC;
1154 SYMBOL_VALUE_ADDRESS (sym) = valu;
1155 if (gdbarch_static_transform_name_p (gdbarch)
1156 && gdbarch_static_transform_name (gdbarch,
1157 SYMBOL_LINKAGE_NAME (sym))
1158 != SYMBOL_LINKAGE_NAME (sym))
1159 {
1160 struct minimal_symbol *msym;
1161
1162 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1163 if (msym != NULL)
1164 {
1165 char *new_name = gdbarch_static_transform_name
1166 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1167
1168 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1169 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1170 }
1171 }
1172 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1173 add_symbol_to_list (sym, &file_symbols);
1174 break;
1175
1176 case 't':
1177 /* In Ada, there is no distinction between typedef and non-typedef;
1178 any type declaration implicitly has the equivalent of a typedef,
1179 and thus 't' is in fact equivalent to 'Tt'.
1180
1181 Therefore, for Ada units, we check the character immediately
1182 before the 't', and if we do not find a 'T', then make sure to
1183 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1184 will be stored in the VAR_DOMAIN). If the symbol was indeed
1185 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1186 elsewhere, so we don't need to take care of that.
1187
1188 This is important to do, because of forward references:
1189 The cleanup of undefined types stored in undef_types only uses
1190 STRUCT_DOMAIN symbols to perform the replacement. */
1191 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1192
1193 /* Typedef */
1194 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1195
1196 /* For a nameless type, we don't want a create a symbol, thus we
1197 did not use `sym'. Return without further processing. */
1198 if (nameless)
1199 return NULL;
1200
1201 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1202 SYMBOL_VALUE (sym) = valu;
1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204 /* C++ vagaries: we may have a type which is derived from
1205 a base type which did not have its name defined when the
1206 derived class was output. We fill in the derived class's
1207 base part member's name here in that case. */
1208 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1209 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1210 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1211 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1212 {
1213 int j;
1214
1215 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1216 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1217 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1218 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1219 }
1220
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1222 {
1223 /* gcc-2.6 or later (when using -fvtable-thunks)
1224 emits a unique named type for a vtable entry.
1225 Some gdb code depends on that specific name. */
1226 extern const char vtbl_ptr_name[];
1227
1228 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1229 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1230 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1231 {
1232 /* If we are giving a name to a type such as "pointer to
1233 foo" or "function returning foo", we better not set
1234 the TYPE_NAME. If the program contains "typedef char
1235 *caddr_t;", we don't want all variables of type char
1236 * to print as caddr_t. This is not just a
1237 consequence of GDB's type management; PCC and GCC (at
1238 least through version 2.4) both output variables of
1239 either type char * or caddr_t with the type number
1240 defined in the 't' symbol for caddr_t. If a future
1241 compiler cleans this up it GDB is not ready for it
1242 yet, but if it becomes ready we somehow need to
1243 disable this check (without breaking the PCC/GCC2.4
1244 case).
1245
1246 Sigh.
1247
1248 Fortunately, this check seems not to be necessary
1249 for anything except pointers or functions. */
1250 /* ezannoni: 2000-10-26. This seems to apply for
1251 versions of gcc older than 2.8. This was the original
1252 problem: with the following code gdb would tell that
1253 the type for name1 is caddr_t, and func is char()
1254 typedef char *caddr_t;
1255 char *name2;
1256 struct x
1257 {
1258 char *name1;
1259 } xx;
1260 char *func()
1261 {
1262 }
1263 main () {}
1264 */
1265
1266 /* Pascal accepts names for pointer types. */
1267 if (current_subfile->language == language_pascal)
1268 {
1269 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1270 }
1271 }
1272 else
1273 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1274 }
1275
1276 add_symbol_to_list (sym, &file_symbols);
1277
1278 if (synonym)
1279 {
1280 /* Create the STRUCT_DOMAIN clone. */
1281 struct symbol *struct_sym = (struct symbol *)
1282 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1283
1284 *struct_sym = *sym;
1285 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1286 SYMBOL_VALUE (struct_sym) = valu;
1287 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1288 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1289 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1290 SYMBOL_LINKAGE_NAME (sym),
1291 (char *) NULL);
1292 add_symbol_to_list (struct_sym, &file_symbols);
1293 }
1294
1295 break;
1296
1297 case 'T':
1298 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1299 by 't' which means we are typedef'ing it as well. */
1300 synonym = *p == 't';
1301
1302 if (synonym)
1303 p++;
1304
1305 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1306
1307 /* For a nameless type, we don't want a create a symbol, thus we
1308 did not use `sym'. Return without further processing. */
1309 if (nameless)
1310 return NULL;
1311
1312 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1313 SYMBOL_VALUE (sym) = valu;
1314 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1315 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1316 TYPE_TAG_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1317 SYMBOL_LINKAGE_NAME (sym),
1318 (char *) NULL);
1319 add_symbol_to_list (sym, &file_symbols);
1320
1321 if (synonym)
1322 {
1323 /* Clone the sym and then modify it. */
1324 struct symbol *typedef_sym = (struct symbol *)
1325 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1326
1327 *typedef_sym = *sym;
1328 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1329 SYMBOL_VALUE (typedef_sym) = valu;
1330 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1331 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1332 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1333 SYMBOL_LINKAGE_NAME (sym),
1334 (char *) NULL);
1335 add_symbol_to_list (typedef_sym, &file_symbols);
1336 }
1337 break;
1338
1339 case 'V':
1340 /* Static symbol of local scope */
1341 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1342 SYMBOL_CLASS (sym) = LOC_STATIC;
1343 SYMBOL_VALUE_ADDRESS (sym) = valu;
1344 if (gdbarch_static_transform_name_p (gdbarch)
1345 && gdbarch_static_transform_name (gdbarch,
1346 SYMBOL_LINKAGE_NAME (sym))
1347 != SYMBOL_LINKAGE_NAME (sym))
1348 {
1349 struct minimal_symbol *msym;
1350
1351 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1352 NULL, objfile);
1353 if (msym != NULL)
1354 {
1355 char *new_name = gdbarch_static_transform_name
1356 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1357
1358 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1359 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1360 }
1361 }
1362 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1363 add_symbol_to_list (sym, &local_symbols);
1364 break;
1365
1366 case 'v':
1367 /* Reference parameter */
1368 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1369 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1370 SYMBOL_IS_ARGUMENT (sym) = 1;
1371 SYMBOL_VALUE (sym) = valu;
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'a':
1377 /* Reference parameter which is in a register. */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1380 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1381 SYMBOL_IS_ARGUMENT (sym) = 1;
1382 SYMBOL_VALUE (sym) = valu;
1383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1384 add_symbol_to_list (sym, &local_symbols);
1385 break;
1386
1387 case 'X':
1388 /* This is used by Sun FORTRAN for "function result value".
1389 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1390 that Pascal uses it too, but when I tried it Pascal used
1391 "x:3" (local symbol) instead. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1393 SYMBOL_CLASS (sym) = LOC_LOCAL;
1394 SYMBOL_VALUE (sym) = valu;
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, &local_symbols);
1397 break;
1398
1399 default:
1400 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1401 SYMBOL_CLASS (sym) = LOC_CONST;
1402 SYMBOL_VALUE (sym) = 0;
1403 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404 add_symbol_to_list (sym, &file_symbols);
1405 break;
1406 }
1407
1408 /* Some systems pass variables of certain types by reference instead
1409 of by value, i.e. they will pass the address of a structure (in a
1410 register or on the stack) instead of the structure itself. */
1411
1412 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1413 && SYMBOL_IS_ARGUMENT (sym))
1414 {
1415 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1416 variables passed in a register). */
1417 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1418 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1419 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1420 and subsequent arguments on SPARC, for example). */
1421 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1422 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1423 }
1424
1425 return sym;
1426 }
1427
1428 /* Skip rest of this symbol and return an error type.
1429
1430 General notes on error recovery: error_type always skips to the
1431 end of the symbol (modulo cretinous dbx symbol name continuation).
1432 Thus code like this:
1433
1434 if (*(*pp)++ != ';')
1435 return error_type (pp, objfile);
1436
1437 is wrong because if *pp starts out pointing at '\0' (typically as the
1438 result of an earlier error), it will be incremented to point to the
1439 start of the next symbol, which might produce strange results, at least
1440 if you run off the end of the string table. Instead use
1441
1442 if (**pp != ';')
1443 return error_type (pp, objfile);
1444 ++*pp;
1445
1446 or
1447
1448 if (**pp != ';')
1449 foo = error_type (pp, objfile);
1450 else
1451 ++*pp;
1452
1453 And in case it isn't obvious, the point of all this hair is so the compiler
1454 can define new types and new syntaxes, and old versions of the
1455 debugger will be able to read the new symbol tables. */
1456
1457 static struct type *
1458 error_type (char **pp, struct objfile *objfile)
1459 {
1460 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1461 while (1)
1462 {
1463 /* Skip to end of symbol. */
1464 while (**pp != '\0')
1465 {
1466 (*pp)++;
1467 }
1468
1469 /* Check for and handle cretinous dbx symbol name continuation! */
1470 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1471 {
1472 *pp = next_symbol_text (objfile);
1473 }
1474 else
1475 {
1476 break;
1477 }
1478 }
1479 return objfile_type (objfile)->builtin_error;
1480 }
1481 \f
1482
1483 /* Read type information or a type definition; return the type. Even
1484 though this routine accepts either type information or a type
1485 definition, the distinction is relevant--some parts of stabsread.c
1486 assume that type information starts with a digit, '-', or '(' in
1487 deciding whether to call read_type. */
1488
1489 static struct type *
1490 read_type (char **pp, struct objfile *objfile)
1491 {
1492 struct type *type = 0;
1493 struct type *type1;
1494 int typenums[2];
1495 char type_descriptor;
1496
1497 /* Size in bits of type if specified by a type attribute, or -1 if
1498 there is no size attribute. */
1499 int type_size = -1;
1500
1501 /* Used to distinguish string and bitstring from char-array and set. */
1502 int is_string = 0;
1503
1504 /* Used to distinguish vector from array. */
1505 int is_vector = 0;
1506
1507 /* Read type number if present. The type number may be omitted.
1508 for instance in a two-dimensional array declared with type
1509 "ar1;1;10;ar1;1;10;4". */
1510 if ((**pp >= '0' && **pp <= '9')
1511 || **pp == '('
1512 || **pp == '-')
1513 {
1514 if (read_type_number (pp, typenums) != 0)
1515 return error_type (pp, objfile);
1516
1517 if (**pp != '=')
1518 {
1519 /* Type is not being defined here. Either it already
1520 exists, or this is a forward reference to it.
1521 dbx_alloc_type handles both cases. */
1522 type = dbx_alloc_type (typenums, objfile);
1523
1524 /* If this is a forward reference, arrange to complain if it
1525 doesn't get patched up by the time we're done
1526 reading. */
1527 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1528 add_undefined_type (type, typenums);
1529
1530 return type;
1531 }
1532
1533 /* Type is being defined here. */
1534 /* Skip the '='.
1535 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1536 (*pp) += 2;
1537 }
1538 else
1539 {
1540 /* 'typenums=' not present, type is anonymous. Read and return
1541 the definition, but don't put it in the type vector. */
1542 typenums[0] = typenums[1] = -1;
1543 (*pp)++;
1544 }
1545
1546 again:
1547 type_descriptor = (*pp)[-1];
1548 switch (type_descriptor)
1549 {
1550 case 'x':
1551 {
1552 enum type_code code;
1553
1554 /* Used to index through file_symbols. */
1555 struct pending *ppt;
1556 int i;
1557
1558 /* Name including "struct", etc. */
1559 char *type_name;
1560
1561 {
1562 char *from, *to, *p, *q1, *q2;
1563
1564 /* Set the type code according to the following letter. */
1565 switch ((*pp)[0])
1566 {
1567 case 's':
1568 code = TYPE_CODE_STRUCT;
1569 break;
1570 case 'u':
1571 code = TYPE_CODE_UNION;
1572 break;
1573 case 'e':
1574 code = TYPE_CODE_ENUM;
1575 break;
1576 default:
1577 {
1578 /* Complain and keep going, so compilers can invent new
1579 cross-reference types. */
1580 complaint (&symfile_complaints,
1581 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 }
1585 }
1586
1587 q1 = strchr (*pp, '<');
1588 p = strchr (*pp, ':');
1589 if (p == NULL)
1590 return error_type (pp, objfile);
1591 if (q1 && p > q1 && p[1] == ':')
1592 {
1593 int nesting_level = 0;
1594
1595 for (q2 = q1; *q2; q2++)
1596 {
1597 if (*q2 == '<')
1598 nesting_level++;
1599 else if (*q2 == '>')
1600 nesting_level--;
1601 else if (*q2 == ':' && nesting_level == 0)
1602 break;
1603 }
1604 p = q2;
1605 if (*p != ':')
1606 return error_type (pp, objfile);
1607 }
1608 type_name = NULL;
1609 if (current_subfile->language == language_cplus)
1610 {
1611 char *new_name, *name = alloca (p - *pp + 1);
1612
1613 memcpy (name, *pp, p - *pp);
1614 name[p - *pp] = '\0';
1615 new_name = cp_canonicalize_string (name);
1616 if (new_name != NULL)
1617 {
1618 type_name = obsavestring (new_name, strlen (new_name),
1619 &objfile->objfile_obstack);
1620 xfree (new_name);
1621 }
1622 }
1623 if (type_name == NULL)
1624 {
1625 to = type_name =
1626 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1627
1628 /* Copy the name. */
1629 from = *pp + 1;
1630 while (from < p)
1631 *to++ = *from++;
1632 *to = '\0';
1633 }
1634
1635 /* Set the pointer ahead of the name which we just read, and
1636 the colon. */
1637 *pp = p + 1;
1638 }
1639
1640 /* If this type has already been declared, then reuse the same
1641 type, rather than allocating a new one. This saves some
1642 memory. */
1643
1644 for (ppt = file_symbols; ppt; ppt = ppt->next)
1645 for (i = 0; i < ppt->nsyms; i++)
1646 {
1647 struct symbol *sym = ppt->symbol[i];
1648
1649 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1650 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1651 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1652 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1653 {
1654 obstack_free (&objfile->objfile_obstack, type_name);
1655 type = SYMBOL_TYPE (sym);
1656 if (typenums[0] != -1)
1657 *dbx_lookup_type (typenums, objfile) = type;
1658 return type;
1659 }
1660 }
1661
1662 /* Didn't find the type to which this refers, so we must
1663 be dealing with a forward reference. Allocate a type
1664 structure for it, and keep track of it so we can
1665 fill in the rest of the fields when we get the full
1666 type. */
1667 type = dbx_alloc_type (typenums, objfile);
1668 TYPE_CODE (type) = code;
1669 TYPE_TAG_NAME (type) = type_name;
1670 INIT_CPLUS_SPECIFIC (type);
1671 TYPE_STUB (type) = 1;
1672
1673 add_undefined_type (type, typenums);
1674 return type;
1675 }
1676
1677 case '-': /* RS/6000 built-in type */
1678 case '0':
1679 case '1':
1680 case '2':
1681 case '3':
1682 case '4':
1683 case '5':
1684 case '6':
1685 case '7':
1686 case '8':
1687 case '9':
1688 case '(':
1689 (*pp)--;
1690
1691 /* We deal with something like t(1,2)=(3,4)=... which
1692 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1693
1694 /* Allocate and enter the typedef type first.
1695 This handles recursive types. */
1696 type = dbx_alloc_type (typenums, objfile);
1697 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1698 {
1699 struct type *xtype = read_type (pp, objfile);
1700
1701 if (type == xtype)
1702 {
1703 /* It's being defined as itself. That means it is "void". */
1704 TYPE_CODE (type) = TYPE_CODE_VOID;
1705 TYPE_LENGTH (type) = 1;
1706 }
1707 else if (type_size >= 0 || is_string)
1708 {
1709 /* This is the absolute wrong way to construct types. Every
1710 other debug format has found a way around this problem and
1711 the related problems with unnecessarily stubbed types;
1712 someone motivated should attempt to clean up the issue
1713 here as well. Once a type pointed to has been created it
1714 should not be modified.
1715
1716 Well, it's not *absolutely* wrong. Constructing recursive
1717 types (trees, linked lists) necessarily entails modifying
1718 types after creating them. Constructing any loop structure
1719 entails side effects. The Dwarf 2 reader does handle this
1720 more gracefully (it never constructs more than once
1721 instance of a type object, so it doesn't have to copy type
1722 objects wholesale), but it still mutates type objects after
1723 other folks have references to them.
1724
1725 Keep in mind that this circularity/mutation issue shows up
1726 at the source language level, too: C's "incomplete types",
1727 for example. So the proper cleanup, I think, would be to
1728 limit GDB's type smashing to match exactly those required
1729 by the source language. So GDB could have a
1730 "complete_this_type" function, but never create unnecessary
1731 copies of a type otherwise. */
1732 replace_type (type, xtype);
1733 TYPE_NAME (type) = NULL;
1734 TYPE_TAG_NAME (type) = NULL;
1735 }
1736 else
1737 {
1738 TYPE_TARGET_STUB (type) = 1;
1739 TYPE_TARGET_TYPE (type) = xtype;
1740 }
1741 }
1742 break;
1743
1744 /* In the following types, we must be sure to overwrite any existing
1745 type that the typenums refer to, rather than allocating a new one
1746 and making the typenums point to the new one. This is because there
1747 may already be pointers to the existing type (if it had been
1748 forward-referenced), and we must change it to a pointer, function,
1749 reference, or whatever, *in-place*. */
1750
1751 case '*': /* Pointer to another type */
1752 type1 = read_type (pp, objfile);
1753 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1754 break;
1755
1756 case '&': /* Reference to another type */
1757 type1 = read_type (pp, objfile);
1758 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1759 break;
1760
1761 case 'f': /* Function returning another type */
1762 type1 = read_type (pp, objfile);
1763 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1764 break;
1765
1766 case 'g': /* Prototyped function. (Sun) */
1767 {
1768 /* Unresolved questions:
1769
1770 - According to Sun's ``STABS Interface Manual'', for 'f'
1771 and 'F' symbol descriptors, a `0' in the argument type list
1772 indicates a varargs function. But it doesn't say how 'g'
1773 type descriptors represent that info. Someone with access
1774 to Sun's toolchain should try it out.
1775
1776 - According to the comment in define_symbol (search for
1777 `process_prototype_types:'), Sun emits integer arguments as
1778 types which ref themselves --- like `void' types. Do we
1779 have to deal with that here, too? Again, someone with
1780 access to Sun's toolchain should try it out and let us
1781 know. */
1782
1783 const char *type_start = (*pp) - 1;
1784 struct type *return_type = read_type (pp, objfile);
1785 struct type *func_type
1786 = make_function_type (return_type,
1787 dbx_lookup_type (typenums, objfile));
1788 struct type_list {
1789 struct type *type;
1790 struct type_list *next;
1791 } *arg_types = 0;
1792 int num_args = 0;
1793
1794 while (**pp && **pp != '#')
1795 {
1796 struct type *arg_type = read_type (pp, objfile);
1797 struct type_list *new = alloca (sizeof (*new));
1798 new->type = arg_type;
1799 new->next = arg_types;
1800 arg_types = new;
1801 num_args++;
1802 }
1803 if (**pp == '#')
1804 ++*pp;
1805 else
1806 {
1807 complaint (&symfile_complaints,
1808 _("Prototyped function type didn't end arguments with `#':\n%s"),
1809 type_start);
1810 }
1811
1812 /* If there is just one argument whose type is `void', then
1813 that's just an empty argument list. */
1814 if (arg_types
1815 && ! arg_types->next
1816 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1817 num_args = 0;
1818
1819 TYPE_FIELDS (func_type)
1820 = (struct field *) TYPE_ALLOC (func_type,
1821 num_args * sizeof (struct field));
1822 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1823 {
1824 int i;
1825 struct type_list *t;
1826
1827 /* We stuck each argument type onto the front of the list
1828 when we read it, so the list is reversed. Build the
1829 fields array right-to-left. */
1830 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1831 TYPE_FIELD_TYPE (func_type, i) = t->type;
1832 }
1833 TYPE_NFIELDS (func_type) = num_args;
1834 TYPE_PROTOTYPED (func_type) = 1;
1835
1836 type = func_type;
1837 break;
1838 }
1839
1840 case 'k': /* Const qualifier on some type (Sun) */
1841 type = read_type (pp, objfile);
1842 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1843 dbx_lookup_type (typenums, objfile));
1844 break;
1845
1846 case 'B': /* Volatile qual on some type (Sun) */
1847 type = read_type (pp, objfile);
1848 type = make_cv_type (TYPE_CONST (type), 1, type,
1849 dbx_lookup_type (typenums, objfile));
1850 break;
1851
1852 case '@':
1853 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1854 { /* Member (class & variable) type */
1855 /* FIXME -- we should be doing smash_to_XXX types here. */
1856
1857 struct type *domain = read_type (pp, objfile);
1858 struct type *memtype;
1859
1860 if (**pp != ',')
1861 /* Invalid member type data format. */
1862 return error_type (pp, objfile);
1863 ++*pp;
1864
1865 memtype = read_type (pp, objfile);
1866 type = dbx_alloc_type (typenums, objfile);
1867 smash_to_memberptr_type (type, domain, memtype);
1868 }
1869 else
1870 /* type attribute */
1871 {
1872 char *attr = *pp;
1873
1874 /* Skip to the semicolon. */
1875 while (**pp != ';' && **pp != '\0')
1876 ++(*pp);
1877 if (**pp == '\0')
1878 return error_type (pp, objfile);
1879 else
1880 ++ * pp; /* Skip the semicolon. */
1881
1882 switch (*attr)
1883 {
1884 case 's': /* Size attribute */
1885 type_size = atoi (attr + 1);
1886 if (type_size <= 0)
1887 type_size = -1;
1888 break;
1889
1890 case 'S': /* String attribute */
1891 /* FIXME: check to see if following type is array? */
1892 is_string = 1;
1893 break;
1894
1895 case 'V': /* Vector attribute */
1896 /* FIXME: check to see if following type is array? */
1897 is_vector = 1;
1898 break;
1899
1900 default:
1901 /* Ignore unrecognized type attributes, so future compilers
1902 can invent new ones. */
1903 break;
1904 }
1905 ++*pp;
1906 goto again;
1907 }
1908 break;
1909
1910 case '#': /* Method (class & fn) type */
1911 if ((*pp)[0] == '#')
1912 {
1913 /* We'll get the parameter types from the name. */
1914 struct type *return_type;
1915
1916 (*pp)++;
1917 return_type = read_type (pp, objfile);
1918 if (*(*pp)++ != ';')
1919 complaint (&symfile_complaints,
1920 _("invalid (minimal) member type data format at symtab pos %d."),
1921 symnum);
1922 type = allocate_stub_method (return_type);
1923 if (typenums[0] != -1)
1924 *dbx_lookup_type (typenums, objfile) = type;
1925 }
1926 else
1927 {
1928 struct type *domain = read_type (pp, objfile);
1929 struct type *return_type;
1930 struct field *args;
1931 int nargs, varargs;
1932
1933 if (**pp != ',')
1934 /* Invalid member type data format. */
1935 return error_type (pp, objfile);
1936 else
1937 ++(*pp);
1938
1939 return_type = read_type (pp, objfile);
1940 args = read_args (pp, ';', objfile, &nargs, &varargs);
1941 if (args == NULL)
1942 return error_type (pp, objfile);
1943 type = dbx_alloc_type (typenums, objfile);
1944 smash_to_method_type (type, domain, return_type, args,
1945 nargs, varargs);
1946 }
1947 break;
1948
1949 case 'r': /* Range type */
1950 type = read_range_type (pp, typenums, type_size, objfile);
1951 if (typenums[0] != -1)
1952 *dbx_lookup_type (typenums, objfile) = type;
1953 break;
1954
1955 case 'b':
1956 {
1957 /* Sun ACC builtin int type */
1958 type = read_sun_builtin_type (pp, typenums, objfile);
1959 if (typenums[0] != -1)
1960 *dbx_lookup_type (typenums, objfile) = type;
1961 }
1962 break;
1963
1964 case 'R': /* Sun ACC builtin float type */
1965 type = read_sun_floating_type (pp, typenums, objfile);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1968 break;
1969
1970 case 'e': /* Enumeration type */
1971 type = dbx_alloc_type (typenums, objfile);
1972 type = read_enum_type (pp, type, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 break;
1976
1977 case 's': /* Struct type */
1978 case 'u': /* Union type */
1979 {
1980 enum type_code type_code = TYPE_CODE_UNDEF;
1981 type = dbx_alloc_type (typenums, objfile);
1982 switch (type_descriptor)
1983 {
1984 case 's':
1985 type_code = TYPE_CODE_STRUCT;
1986 break;
1987 case 'u':
1988 type_code = TYPE_CODE_UNION;
1989 break;
1990 }
1991 type = read_struct_type (pp, type, type_code, objfile);
1992 break;
1993 }
1994
1995 case 'a': /* Array type */
1996 if (**pp != 'r')
1997 return error_type (pp, objfile);
1998 ++*pp;
1999
2000 type = dbx_alloc_type (typenums, objfile);
2001 type = read_array_type (pp, type, objfile);
2002 if (is_string)
2003 TYPE_CODE (type) = TYPE_CODE_STRING;
2004 if (is_vector)
2005 make_vector_type (type);
2006 break;
2007
2008 case 'S': /* Set or bitstring type */
2009 type1 = read_type (pp, objfile);
2010 type = create_set_type ((struct type *) NULL, type1);
2011 if (is_string)
2012 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2015 break;
2016
2017 default:
2018 --*pp; /* Go back to the symbol in error */
2019 /* Particularly important if it was \0! */
2020 return error_type (pp, objfile);
2021 }
2022
2023 if (type == 0)
2024 {
2025 warning (_("GDB internal error, type is NULL in stabsread.c."));
2026 return error_type (pp, objfile);
2027 }
2028
2029 /* Size specified in a type attribute overrides any other size. */
2030 if (type_size != -1)
2031 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2032
2033 return type;
2034 }
2035 \f
2036 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2037 Return the proper type node for a given builtin type number. */
2038
2039 static const struct objfile_data *rs6000_builtin_type_data;
2040
2041 static struct type *
2042 rs6000_builtin_type (int typenum, struct objfile *objfile)
2043 {
2044 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2045
2046 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2047 #define NUMBER_RECOGNIZED 34
2048 struct type *rettype = NULL;
2049
2050 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2051 {
2052 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2053 return objfile_type (objfile)->builtin_error;
2054 }
2055
2056 if (!negative_types)
2057 {
2058 /* This includes an empty slot for type number -0. */
2059 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2060 NUMBER_RECOGNIZED + 1, struct type *);
2061 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2062 }
2063
2064 if (negative_types[-typenum] != NULL)
2065 return negative_types[-typenum];
2066
2067 #if TARGET_CHAR_BIT != 8
2068 #error This code wrong for TARGET_CHAR_BIT not 8
2069 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2070 that if that ever becomes not true, the correct fix will be to
2071 make the size in the struct type to be in bits, not in units of
2072 TARGET_CHAR_BIT. */
2073 #endif
2074
2075 switch (-typenum)
2076 {
2077 case 1:
2078 /* The size of this and all the other types are fixed, defined
2079 by the debugging format. If there is a type called "int" which
2080 is other than 32 bits, then it should use a new negative type
2081 number (or avoid negative type numbers for that case).
2082 See stabs.texinfo. */
2083 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2084 break;
2085 case 2:
2086 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2087 break;
2088 case 3:
2089 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2090 break;
2091 case 4:
2092 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2093 break;
2094 case 5:
2095 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2096 "unsigned char", objfile);
2097 break;
2098 case 6:
2099 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2100 break;
2101 case 7:
2102 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2103 "unsigned short", objfile);
2104 break;
2105 case 8:
2106 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2107 "unsigned int", objfile);
2108 break;
2109 case 9:
2110 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2111 "unsigned", objfile);
2112 case 10:
2113 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2114 "unsigned long", objfile);
2115 break;
2116 case 11:
2117 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2118 break;
2119 case 12:
2120 /* IEEE single precision (32 bit). */
2121 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2122 break;
2123 case 13:
2124 /* IEEE double precision (64 bit). */
2125 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2126 break;
2127 case 14:
2128 /* This is an IEEE double on the RS/6000, and different machines with
2129 different sizes for "long double" should use different negative
2130 type numbers. See stabs.texinfo. */
2131 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2132 break;
2133 case 15:
2134 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2135 break;
2136 case 16:
2137 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2138 "boolean", objfile);
2139 break;
2140 case 17:
2141 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2142 break;
2143 case 18:
2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2145 break;
2146 case 19:
2147 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2148 break;
2149 case 20:
2150 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2151 "character", objfile);
2152 break;
2153 case 21:
2154 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2155 "logical*1", objfile);
2156 break;
2157 case 22:
2158 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2159 "logical*2", objfile);
2160 break;
2161 case 23:
2162 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2163 "logical*4", objfile);
2164 break;
2165 case 24:
2166 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2167 "logical", objfile);
2168 break;
2169 case 25:
2170 /* Complex type consisting of two IEEE single precision values. */
2171 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2172 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2173 objfile);
2174 break;
2175 case 26:
2176 /* Complex type consisting of two IEEE double precision values. */
2177 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2178 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2179 objfile);
2180 break;
2181 case 27:
2182 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2183 break;
2184 case 28:
2185 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2186 break;
2187 case 29:
2188 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2189 break;
2190 case 30:
2191 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2192 break;
2193 case 31:
2194 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2195 break;
2196 case 32:
2197 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2198 "unsigned long long", objfile);
2199 break;
2200 case 33:
2201 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2202 "logical*8", objfile);
2203 break;
2204 case 34:
2205 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2206 break;
2207 }
2208 negative_types[-typenum] = rettype;
2209 return rettype;
2210 }
2211 \f
2212 /* This page contains subroutines of read_type. */
2213
2214 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2215
2216 static void
2217 update_method_name_from_physname (char **old_name, char *physname)
2218 {
2219 char *method_name;
2220
2221 method_name = method_name_from_physname (physname);
2222
2223 if (method_name == NULL)
2224 {
2225 complaint (&symfile_complaints,
2226 _("Method has bad physname %s\n"), physname);
2227 return;
2228 }
2229
2230 if (strcmp (*old_name, method_name) != 0)
2231 {
2232 xfree (*old_name);
2233 *old_name = method_name;
2234 }
2235 else
2236 xfree (method_name);
2237 }
2238
2239 /* Read member function stabs info for C++ classes. The form of each member
2240 function data is:
2241
2242 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2243
2244 An example with two member functions is:
2245
2246 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2247
2248 For the case of overloaded operators, the format is op$::*.funcs, where
2249 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2250 name (such as `+=') and `.' marks the end of the operator name.
2251
2252 Returns 1 for success, 0 for failure. */
2253
2254 static int
2255 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2256 struct objfile *objfile)
2257 {
2258 int nfn_fields = 0;
2259 int length = 0;
2260 /* Total number of member functions defined in this class. If the class
2261 defines two `f' functions, and one `g' function, then this will have
2262 the value 3. */
2263 int total_length = 0;
2264 int i;
2265 struct next_fnfield
2266 {
2267 struct next_fnfield *next;
2268 struct fn_field fn_field;
2269 }
2270 *sublist;
2271 struct type *look_ahead_type;
2272 struct next_fnfieldlist *new_fnlist;
2273 struct next_fnfield *new_sublist;
2274 char *main_fn_name;
2275 char *p;
2276
2277 /* Process each list until we find something that is not a member function
2278 or find the end of the functions. */
2279
2280 while (**pp != ';')
2281 {
2282 /* We should be positioned at the start of the function name.
2283 Scan forward to find the first ':' and if it is not the
2284 first of a "::" delimiter, then this is not a member function. */
2285 p = *pp;
2286 while (*p != ':')
2287 {
2288 p++;
2289 }
2290 if (p[1] != ':')
2291 {
2292 break;
2293 }
2294
2295 sublist = NULL;
2296 look_ahead_type = NULL;
2297 length = 0;
2298
2299 new_fnlist = (struct next_fnfieldlist *)
2300 xmalloc (sizeof (struct next_fnfieldlist));
2301 make_cleanup (xfree, new_fnlist);
2302 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2303
2304 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2305 {
2306 /* This is a completely wierd case. In order to stuff in the
2307 names that might contain colons (the usual name delimiter),
2308 Mike Tiemann defined a different name format which is
2309 signalled if the identifier is "op$". In that case, the
2310 format is "op$::XXXX." where XXXX is the name. This is
2311 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2312 /* This lets the user type "break operator+".
2313 We could just put in "+" as the name, but that wouldn't
2314 work for "*". */
2315 static char opname[32] = "op$";
2316 char *o = opname + 3;
2317
2318 /* Skip past '::'. */
2319 *pp = p + 2;
2320
2321 STABS_CONTINUE (pp, objfile);
2322 p = *pp;
2323 while (*p != '.')
2324 {
2325 *o++ = *p++;
2326 }
2327 main_fn_name = savestring (opname, o - opname);
2328 /* Skip past '.' */
2329 *pp = p + 1;
2330 }
2331 else
2332 {
2333 main_fn_name = savestring (*pp, p - *pp);
2334 /* Skip past '::'. */
2335 *pp = p + 2;
2336 }
2337 new_fnlist->fn_fieldlist.name = main_fn_name;
2338
2339 do
2340 {
2341 new_sublist =
2342 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2343 make_cleanup (xfree, new_sublist);
2344 memset (new_sublist, 0, sizeof (struct next_fnfield));
2345
2346 /* Check for and handle cretinous dbx symbol name continuation! */
2347 if (look_ahead_type == NULL)
2348 {
2349 /* Normal case. */
2350 STABS_CONTINUE (pp, objfile);
2351
2352 new_sublist->fn_field.type = read_type (pp, objfile);
2353 if (**pp != ':')
2354 {
2355 /* Invalid symtab info for member function. */
2356 return 0;
2357 }
2358 }
2359 else
2360 {
2361 /* g++ version 1 kludge */
2362 new_sublist->fn_field.type = look_ahead_type;
2363 look_ahead_type = NULL;
2364 }
2365
2366 (*pp)++;
2367 p = *pp;
2368 while (*p != ';')
2369 {
2370 p++;
2371 }
2372
2373 /* If this is just a stub, then we don't have the real name here. */
2374
2375 if (TYPE_STUB (new_sublist->fn_field.type))
2376 {
2377 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2378 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2379 new_sublist->fn_field.is_stub = 1;
2380 }
2381 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2382 *pp = p + 1;
2383
2384 /* Set this member function's visibility fields. */
2385 switch (*(*pp)++)
2386 {
2387 case VISIBILITY_PRIVATE:
2388 new_sublist->fn_field.is_private = 1;
2389 break;
2390 case VISIBILITY_PROTECTED:
2391 new_sublist->fn_field.is_protected = 1;
2392 break;
2393 }
2394
2395 STABS_CONTINUE (pp, objfile);
2396 switch (**pp)
2397 {
2398 case 'A': /* Normal functions. */
2399 new_sublist->fn_field.is_const = 0;
2400 new_sublist->fn_field.is_volatile = 0;
2401 (*pp)++;
2402 break;
2403 case 'B': /* `const' member functions. */
2404 new_sublist->fn_field.is_const = 1;
2405 new_sublist->fn_field.is_volatile = 0;
2406 (*pp)++;
2407 break;
2408 case 'C': /* `volatile' member function. */
2409 new_sublist->fn_field.is_const = 0;
2410 new_sublist->fn_field.is_volatile = 1;
2411 (*pp)++;
2412 break;
2413 case 'D': /* `const volatile' member function. */
2414 new_sublist->fn_field.is_const = 1;
2415 new_sublist->fn_field.is_volatile = 1;
2416 (*pp)++;
2417 break;
2418 case '*': /* File compiled with g++ version 1 -- no info */
2419 case '?':
2420 case '.':
2421 break;
2422 default:
2423 complaint (&symfile_complaints,
2424 _("const/volatile indicator missing, got '%c'"), **pp);
2425 break;
2426 }
2427
2428 switch (*(*pp)++)
2429 {
2430 case '*':
2431 {
2432 int nbits;
2433 /* virtual member function, followed by index.
2434 The sign bit is set to distinguish pointers-to-methods
2435 from virtual function indicies. Since the array is
2436 in words, the quantity must be shifted left by 1
2437 on 16 bit machine, and by 2 on 32 bit machine, forcing
2438 the sign bit out, and usable as a valid index into
2439 the array. Remove the sign bit here. */
2440 new_sublist->fn_field.voffset =
2441 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2442 if (nbits != 0)
2443 return 0;
2444
2445 STABS_CONTINUE (pp, objfile);
2446 if (**pp == ';' || **pp == '\0')
2447 {
2448 /* Must be g++ version 1. */
2449 new_sublist->fn_field.fcontext = 0;
2450 }
2451 else
2452 {
2453 /* Figure out from whence this virtual function came.
2454 It may belong to virtual function table of
2455 one of its baseclasses. */
2456 look_ahead_type = read_type (pp, objfile);
2457 if (**pp == ':')
2458 {
2459 /* g++ version 1 overloaded methods. */
2460 }
2461 else
2462 {
2463 new_sublist->fn_field.fcontext = look_ahead_type;
2464 if (**pp != ';')
2465 {
2466 return 0;
2467 }
2468 else
2469 {
2470 ++*pp;
2471 }
2472 look_ahead_type = NULL;
2473 }
2474 }
2475 break;
2476 }
2477 case '?':
2478 /* static member function. */
2479 {
2480 int slen = strlen (main_fn_name);
2481
2482 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2483
2484 /* For static member functions, we can't tell if they
2485 are stubbed, as they are put out as functions, and not as
2486 methods.
2487 GCC v2 emits the fully mangled name if
2488 dbxout.c:flag_minimal_debug is not set, so we have to
2489 detect a fully mangled physname here and set is_stub
2490 accordingly. Fully mangled physnames in v2 start with
2491 the member function name, followed by two underscores.
2492 GCC v3 currently always emits stubbed member functions,
2493 but with fully mangled physnames, which start with _Z. */
2494 if (!(strncmp (new_sublist->fn_field.physname,
2495 main_fn_name, slen) == 0
2496 && new_sublist->fn_field.physname[slen] == '_'
2497 && new_sublist->fn_field.physname[slen + 1] == '_'))
2498 {
2499 new_sublist->fn_field.is_stub = 1;
2500 }
2501 break;
2502 }
2503
2504 default:
2505 /* error */
2506 complaint (&symfile_complaints,
2507 _("member function type missing, got '%c'"), (*pp)[-1]);
2508 /* Fall through into normal member function. */
2509
2510 case '.':
2511 /* normal member function. */
2512 new_sublist->fn_field.voffset = 0;
2513 new_sublist->fn_field.fcontext = 0;
2514 break;
2515 }
2516
2517 new_sublist->next = sublist;
2518 sublist = new_sublist;
2519 length++;
2520 STABS_CONTINUE (pp, objfile);
2521 }
2522 while (**pp != ';' && **pp != '\0');
2523
2524 (*pp)++;
2525 STABS_CONTINUE (pp, objfile);
2526
2527 /* Skip GCC 3.X member functions which are duplicates of the callable
2528 constructor/destructor. */
2529 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2530 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2531 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2532 {
2533 xfree (main_fn_name);
2534 }
2535 else
2536 {
2537 int has_stub = 0;
2538 int has_destructor = 0, has_other = 0;
2539 int is_v3 = 0;
2540 struct next_fnfield *tmp_sublist;
2541
2542 /* Various versions of GCC emit various mostly-useless
2543 strings in the name field for special member functions.
2544
2545 For stub methods, we need to defer correcting the name
2546 until we are ready to unstub the method, because the current
2547 name string is used by gdb_mangle_name. The only stub methods
2548 of concern here are GNU v2 operators; other methods have their
2549 names correct (see caveat below).
2550
2551 For non-stub methods, in GNU v3, we have a complete physname.
2552 Therefore we can safely correct the name now. This primarily
2553 affects constructors and destructors, whose name will be
2554 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2555 operators will also have incorrect names; for instance,
2556 "operator int" will be named "operator i" (i.e. the type is
2557 mangled).
2558
2559 For non-stub methods in GNU v2, we have no easy way to
2560 know if we have a complete physname or not. For most
2561 methods the result depends on the platform (if CPLUS_MARKER
2562 can be `$' or `.', it will use minimal debug information, or
2563 otherwise the full physname will be included).
2564
2565 Rather than dealing with this, we take a different approach.
2566 For v3 mangled names, we can use the full physname; for v2,
2567 we use cplus_demangle_opname (which is actually v2 specific),
2568 because the only interesting names are all operators - once again
2569 barring the caveat below. Skip this process if any method in the
2570 group is a stub, to prevent our fouling up the workings of
2571 gdb_mangle_name.
2572
2573 The caveat: GCC 2.95.x (and earlier?) put constructors and
2574 destructors in the same method group. We need to split this
2575 into two groups, because they should have different names.
2576 So for each method group we check whether it contains both
2577 routines whose physname appears to be a destructor (the physnames
2578 for and destructors are always provided, due to quirks in v2
2579 mangling) and routines whose physname does not appear to be a
2580 destructor. If so then we break up the list into two halves.
2581 Even if the constructors and destructors aren't in the same group
2582 the destructor will still lack the leading tilde, so that also
2583 needs to be fixed.
2584
2585 So, to summarize what we expect and handle here:
2586
2587 Given Given Real Real Action
2588 method name physname physname method name
2589
2590 __opi [none] __opi__3Foo operator int opname
2591 [now or later]
2592 Foo _._3Foo _._3Foo ~Foo separate and
2593 rename
2594 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2595 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2596 */
2597
2598 tmp_sublist = sublist;
2599 while (tmp_sublist != NULL)
2600 {
2601 if (tmp_sublist->fn_field.is_stub)
2602 has_stub = 1;
2603 if (tmp_sublist->fn_field.physname[0] == '_'
2604 && tmp_sublist->fn_field.physname[1] == 'Z')
2605 is_v3 = 1;
2606
2607 if (is_destructor_name (tmp_sublist->fn_field.physname))
2608 has_destructor++;
2609 else
2610 has_other++;
2611
2612 tmp_sublist = tmp_sublist->next;
2613 }
2614
2615 if (has_destructor && has_other)
2616 {
2617 struct next_fnfieldlist *destr_fnlist;
2618 struct next_fnfield *last_sublist;
2619
2620 /* Create a new fn_fieldlist for the destructors. */
2621
2622 destr_fnlist = (struct next_fnfieldlist *)
2623 xmalloc (sizeof (struct next_fnfieldlist));
2624 make_cleanup (xfree, destr_fnlist);
2625 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2626 destr_fnlist->fn_fieldlist.name
2627 = obconcat (&objfile->objfile_obstack, "~",
2628 new_fnlist->fn_fieldlist.name, (char *) NULL);
2629
2630 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2631 obstack_alloc (&objfile->objfile_obstack,
2632 sizeof (struct fn_field) * has_destructor);
2633 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2634 sizeof (struct fn_field) * has_destructor);
2635 tmp_sublist = sublist;
2636 last_sublist = NULL;
2637 i = 0;
2638 while (tmp_sublist != NULL)
2639 {
2640 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2641 {
2642 tmp_sublist = tmp_sublist->next;
2643 continue;
2644 }
2645
2646 destr_fnlist->fn_fieldlist.fn_fields[i++]
2647 = tmp_sublist->fn_field;
2648 if (last_sublist)
2649 last_sublist->next = tmp_sublist->next;
2650 else
2651 sublist = tmp_sublist->next;
2652 last_sublist = tmp_sublist;
2653 tmp_sublist = tmp_sublist->next;
2654 }
2655
2656 destr_fnlist->fn_fieldlist.length = has_destructor;
2657 destr_fnlist->next = fip->fnlist;
2658 fip->fnlist = destr_fnlist;
2659 nfn_fields++;
2660 total_length += has_destructor;
2661 length -= has_destructor;
2662 }
2663 else if (is_v3)
2664 {
2665 /* v3 mangling prevents the use of abbreviated physnames,
2666 so we can do this here. There are stubbed methods in v3
2667 only:
2668 - in -gstabs instead of -gstabs+
2669 - or for static methods, which are output as a function type
2670 instead of a method type. */
2671
2672 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2673 sublist->fn_field.physname);
2674 }
2675 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2676 {
2677 new_fnlist->fn_fieldlist.name =
2678 concat ("~", main_fn_name, (char *)NULL);
2679 xfree (main_fn_name);
2680 }
2681 else if (!has_stub)
2682 {
2683 char dem_opname[256];
2684 int ret;
2685
2686 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2687 dem_opname, DMGL_ANSI);
2688 if (!ret)
2689 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2690 dem_opname, 0);
2691 if (ret)
2692 new_fnlist->fn_fieldlist.name
2693 = obsavestring (dem_opname, strlen (dem_opname),
2694 &objfile->objfile_obstack);
2695 }
2696
2697 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2698 obstack_alloc (&objfile->objfile_obstack,
2699 sizeof (struct fn_field) * length);
2700 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2701 sizeof (struct fn_field) * length);
2702 for (i = length; (i--, sublist); sublist = sublist->next)
2703 {
2704 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2705 }
2706
2707 new_fnlist->fn_fieldlist.length = length;
2708 new_fnlist->next = fip->fnlist;
2709 fip->fnlist = new_fnlist;
2710 nfn_fields++;
2711 total_length += length;
2712 }
2713 }
2714
2715 if (nfn_fields)
2716 {
2717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2720 memset (TYPE_FN_FIELDLISTS (type), 0,
2721 sizeof (struct fn_fieldlist) * nfn_fields);
2722 TYPE_NFN_FIELDS (type) = nfn_fields;
2723 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2724 }
2725
2726 return 1;
2727 }
2728
2729 /* Special GNU C++ name.
2730
2731 Returns 1 for success, 0 for failure. "failure" means that we can't
2732 keep parsing and it's time for error_type(). */
2733
2734 static int
2735 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2736 struct objfile *objfile)
2737 {
2738 char *p;
2739 char *name;
2740 char cpp_abbrev;
2741 struct type *context;
2742
2743 p = *pp;
2744 if (*++p == 'v')
2745 {
2746 name = NULL;
2747 cpp_abbrev = *++p;
2748
2749 *pp = p + 1;
2750
2751 /* At this point, *pp points to something like "22:23=*22...",
2752 where the type number before the ':' is the "context" and
2753 everything after is a regular type definition. Lookup the
2754 type, find it's name, and construct the field name. */
2755
2756 context = read_type (pp, objfile);
2757
2758 switch (cpp_abbrev)
2759 {
2760 case 'f': /* $vf -- a virtual function table pointer */
2761 name = type_name_no_tag (context);
2762 if (name == NULL)
2763 {
2764 name = "";
2765 }
2766 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2767 vptr_name, name, (char *) NULL);
2768 break;
2769
2770 case 'b': /* $vb -- a virtual bsomethingorother */
2771 name = type_name_no_tag (context);
2772 if (name == NULL)
2773 {
2774 complaint (&symfile_complaints,
2775 _("C++ abbreviated type name unknown at symtab pos %d"),
2776 symnum);
2777 name = "FOO";
2778 }
2779 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2780 name, (char *) NULL);
2781 break;
2782
2783 default:
2784 invalid_cpp_abbrev_complaint (*pp);
2785 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2786 "INVALID_CPLUSPLUS_ABBREV",
2787 (char *) NULL);
2788 break;
2789 }
2790
2791 /* At this point, *pp points to the ':'. Skip it and read the
2792 field type. */
2793
2794 p = ++(*pp);
2795 if (p[-1] != ':')
2796 {
2797 invalid_cpp_abbrev_complaint (*pp);
2798 return 0;
2799 }
2800 fip->list->field.type = read_type (pp, objfile);
2801 if (**pp == ',')
2802 (*pp)++; /* Skip the comma. */
2803 else
2804 return 0;
2805
2806 {
2807 int nbits;
2808
2809 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2810 0);
2811 if (nbits != 0)
2812 return 0;
2813 }
2814 /* This field is unpacked. */
2815 FIELD_BITSIZE (fip->list->field) = 0;
2816 fip->list->visibility = VISIBILITY_PRIVATE;
2817 }
2818 else
2819 {
2820 invalid_cpp_abbrev_complaint (*pp);
2821 /* We have no idea what syntax an unrecognized abbrev would have, so
2822 better return 0. If we returned 1, we would need to at least advance
2823 *pp to avoid an infinite loop. */
2824 return 0;
2825 }
2826 return 1;
2827 }
2828
2829 static void
2830 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2831 struct type *type, struct objfile *objfile)
2832 {
2833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2834
2835 fip->list->field.name =
2836 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2837 *pp = p + 1;
2838
2839 /* This means we have a visibility for a field coming. */
2840 if (**pp == '/')
2841 {
2842 (*pp)++;
2843 fip->list->visibility = *(*pp)++;
2844 }
2845 else
2846 {
2847 /* normal dbx-style format, no explicit visibility */
2848 fip->list->visibility = VISIBILITY_PUBLIC;
2849 }
2850
2851 fip->list->field.type = read_type (pp, objfile);
2852 if (**pp == ':')
2853 {
2854 p = ++(*pp);
2855 #if 0
2856 /* Possible future hook for nested types. */
2857 if (**pp == '!')
2858 {
2859 fip->list->field.bitpos = (long) -2; /* nested type */
2860 p = ++(*pp);
2861 }
2862 else
2863 ...;
2864 #endif
2865 while (*p != ';')
2866 {
2867 p++;
2868 }
2869 /* Static class member. */
2870 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2871 *pp = p + 1;
2872 return;
2873 }
2874 else if (**pp != ',')
2875 {
2876 /* Bad structure-type format. */
2877 stabs_general_complaint ("bad structure-type format");
2878 return;
2879 }
2880
2881 (*pp)++; /* Skip the comma. */
2882
2883 {
2884 int nbits;
2885
2886 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2887 if (nbits != 0)
2888 {
2889 stabs_general_complaint ("bad structure-type format");
2890 return;
2891 }
2892 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2893 if (nbits != 0)
2894 {
2895 stabs_general_complaint ("bad structure-type format");
2896 return;
2897 }
2898 }
2899
2900 if (FIELD_BITPOS (fip->list->field) == 0
2901 && FIELD_BITSIZE (fip->list->field) == 0)
2902 {
2903 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2904 it is a field which has been optimized out. The correct stab for
2905 this case is to use VISIBILITY_IGNORE, but that is a recent
2906 invention. (2) It is a 0-size array. For example
2907 union { int num; char str[0]; } foo. Printing _("<no value>" for
2908 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2909 will continue to work, and a 0-size array as a whole doesn't
2910 have any contents to print.
2911
2912 I suspect this probably could also happen with gcc -gstabs (not
2913 -gstabs+) for static fields, and perhaps other C++ extensions.
2914 Hopefully few people use -gstabs with gdb, since it is intended
2915 for dbx compatibility. */
2916
2917 /* Ignore this field. */
2918 fip->list->visibility = VISIBILITY_IGNORE;
2919 }
2920 else
2921 {
2922 /* Detect an unpacked field and mark it as such.
2923 dbx gives a bit size for all fields.
2924 Note that forward refs cannot be packed,
2925 and treat enums as if they had the width of ints. */
2926
2927 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2928
2929 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2930 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2931 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2932 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2933 {
2934 FIELD_BITSIZE (fip->list->field) = 0;
2935 }
2936 if ((FIELD_BITSIZE (fip->list->field)
2937 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2938 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2939 && FIELD_BITSIZE (fip->list->field)
2940 == gdbarch_int_bit (gdbarch))
2941 )
2942 &&
2943 FIELD_BITPOS (fip->list->field) % 8 == 0)
2944 {
2945 FIELD_BITSIZE (fip->list->field) = 0;
2946 }
2947 }
2948 }
2949
2950
2951 /* Read struct or class data fields. They have the form:
2952
2953 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2954
2955 At the end, we see a semicolon instead of a field.
2956
2957 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2958 a static field.
2959
2960 The optional VISIBILITY is one of:
2961
2962 '/0' (VISIBILITY_PRIVATE)
2963 '/1' (VISIBILITY_PROTECTED)
2964 '/2' (VISIBILITY_PUBLIC)
2965 '/9' (VISIBILITY_IGNORE)
2966
2967 or nothing, for C style fields with public visibility.
2968
2969 Returns 1 for success, 0 for failure. */
2970
2971 static int
2972 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2973 struct objfile *objfile)
2974 {
2975 char *p;
2976 struct nextfield *new;
2977
2978 /* We better set p right now, in case there are no fields at all... */
2979
2980 p = *pp;
2981
2982 /* Read each data member type until we find the terminating ';' at the end of
2983 the data member list, or break for some other reason such as finding the
2984 start of the member function list. */
2985 /* Stab string for structure/union does not end with two ';' in
2986 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2987
2988 while (**pp != ';' && **pp != '\0')
2989 {
2990 STABS_CONTINUE (pp, objfile);
2991 /* Get space to record the next field's data. */
2992 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2993 make_cleanup (xfree, new);
2994 memset (new, 0, sizeof (struct nextfield));
2995 new->next = fip->list;
2996 fip->list = new;
2997
2998 /* Get the field name. */
2999 p = *pp;
3000
3001 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3002 unless the CPLUS_MARKER is followed by an underscore, in
3003 which case it is just the name of an anonymous type, which we
3004 should handle like any other type name. */
3005
3006 if (is_cplus_marker (p[0]) && p[1] != '_')
3007 {
3008 if (!read_cpp_abbrev (fip, pp, type, objfile))
3009 return 0;
3010 continue;
3011 }
3012
3013 /* Look for the ':' that separates the field name from the field
3014 values. Data members are delimited by a single ':', while member
3015 functions are delimited by a pair of ':'s. When we hit the member
3016 functions (if any), terminate scan loop and return. */
3017
3018 while (*p != ':' && *p != '\0')
3019 {
3020 p++;
3021 }
3022 if (*p == '\0')
3023 return 0;
3024
3025 /* Check to see if we have hit the member functions yet. */
3026 if (p[1] == ':')
3027 {
3028 break;
3029 }
3030 read_one_struct_field (fip, pp, p, type, objfile);
3031 }
3032 if (p[0] == ':' && p[1] == ':')
3033 {
3034 /* (the deleted) chill the list of fields: the last entry (at
3035 the head) is a partially constructed entry which we now
3036 scrub. */
3037 fip->list = fip->list->next;
3038 }
3039 return 1;
3040 }
3041 /* *INDENT-OFF* */
3042 /* The stabs for C++ derived classes contain baseclass information which
3043 is marked by a '!' character after the total size. This function is
3044 called when we encounter the baseclass marker, and slurps up all the
3045 baseclass information.
3046
3047 Immediately following the '!' marker is the number of base classes that
3048 the class is derived from, followed by information for each base class.
3049 For each base class, there are two visibility specifiers, a bit offset
3050 to the base class information within the derived class, a reference to
3051 the type for the base class, and a terminating semicolon.
3052
3053 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3054 ^^ ^ ^ ^ ^ ^ ^
3055 Baseclass information marker __________________|| | | | | | |
3056 Number of baseclasses __________________________| | | | | | |
3057 Visibility specifiers (2) ________________________| | | | | |
3058 Offset in bits from start of class _________________| | | | |
3059 Type number for base class ___________________________| | | |
3060 Visibility specifiers (2) _______________________________| | |
3061 Offset in bits from start of class ________________________| |
3062 Type number of base class ____________________________________|
3063
3064 Return 1 for success, 0 for (error-type-inducing) failure. */
3065 /* *INDENT-ON* */
3066
3067
3068
3069 static int
3070 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3071 struct objfile *objfile)
3072 {
3073 int i;
3074 struct nextfield *new;
3075
3076 if (**pp != '!')
3077 {
3078 return 1;
3079 }
3080 else
3081 {
3082 /* Skip the '!' baseclass information marker. */
3083 (*pp)++;
3084 }
3085
3086 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3087 {
3088 int nbits;
3089
3090 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3091 if (nbits != 0)
3092 return 0;
3093 }
3094
3095 #if 0
3096 /* Some stupid compilers have trouble with the following, so break
3097 it up into simpler expressions. */
3098 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3099 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3100 #else
3101 {
3102 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3103 char *pointer;
3104
3105 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3106 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3107 }
3108 #endif /* 0 */
3109
3110 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3111
3112 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3113 {
3114 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3115 make_cleanup (xfree, new);
3116 memset (new, 0, sizeof (struct nextfield));
3117 new->next = fip->list;
3118 fip->list = new;
3119 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3120
3121 STABS_CONTINUE (pp, objfile);
3122 switch (**pp)
3123 {
3124 case '0':
3125 /* Nothing to do. */
3126 break;
3127 case '1':
3128 SET_TYPE_FIELD_VIRTUAL (type, i);
3129 break;
3130 default:
3131 /* Unknown character. Complain and treat it as non-virtual. */
3132 {
3133 complaint (&symfile_complaints,
3134 _("Unknown virtual character `%c' for baseclass"), **pp);
3135 }
3136 }
3137 ++(*pp);
3138
3139 new->visibility = *(*pp)++;
3140 switch (new->visibility)
3141 {
3142 case VISIBILITY_PRIVATE:
3143 case VISIBILITY_PROTECTED:
3144 case VISIBILITY_PUBLIC:
3145 break;
3146 default:
3147 /* Bad visibility format. Complain and treat it as
3148 public. */
3149 {
3150 complaint (&symfile_complaints,
3151 _("Unknown visibility `%c' for baseclass"),
3152 new->visibility);
3153 new->visibility = VISIBILITY_PUBLIC;
3154 }
3155 }
3156
3157 {
3158 int nbits;
3159
3160 /* The remaining value is the bit offset of the portion of the object
3161 corresponding to this baseclass. Always zero in the absence of
3162 multiple inheritance. */
3163
3164 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3165 if (nbits != 0)
3166 return 0;
3167 }
3168
3169 /* The last piece of baseclass information is the type of the
3170 base class. Read it, and remember it's type name as this
3171 field's name. */
3172
3173 new->field.type = read_type (pp, objfile);
3174 new->field.name = type_name_no_tag (new->field.type);
3175
3176 /* skip trailing ';' and bump count of number of fields seen */
3177 if (**pp == ';')
3178 (*pp)++;
3179 else
3180 return 0;
3181 }
3182 return 1;
3183 }
3184
3185 /* The tail end of stabs for C++ classes that contain a virtual function
3186 pointer contains a tilde, a %, and a type number.
3187 The type number refers to the base class (possibly this class itself) which
3188 contains the vtable pointer for the current class.
3189
3190 This function is called when we have parsed all the method declarations,
3191 so we can look for the vptr base class info. */
3192
3193 static int
3194 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3195 struct objfile *objfile)
3196 {
3197 char *p;
3198
3199 STABS_CONTINUE (pp, objfile);
3200
3201 /* If we are positioned at a ';', then skip it. */
3202 if (**pp == ';')
3203 {
3204 (*pp)++;
3205 }
3206
3207 if (**pp == '~')
3208 {
3209 (*pp)++;
3210
3211 if (**pp == '=' || **pp == '+' || **pp == '-')
3212 {
3213 /* Obsolete flags that used to indicate the presence
3214 of constructors and/or destructors. */
3215 (*pp)++;
3216 }
3217
3218 /* Read either a '%' or the final ';'. */
3219 if (*(*pp)++ == '%')
3220 {
3221 /* The next number is the type number of the base class
3222 (possibly our own class) which supplies the vtable for
3223 this class. Parse it out, and search that class to find
3224 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3225 and TYPE_VPTR_FIELDNO. */
3226
3227 struct type *t;
3228 int i;
3229
3230 t = read_type (pp, objfile);
3231 p = (*pp)++;
3232 while (*p != '\0' && *p != ';')
3233 {
3234 p++;
3235 }
3236 if (*p == '\0')
3237 {
3238 /* Premature end of symbol. */
3239 return 0;
3240 }
3241
3242 TYPE_VPTR_BASETYPE (type) = t;
3243 if (type == t) /* Our own class provides vtbl ptr */
3244 {
3245 for (i = TYPE_NFIELDS (t) - 1;
3246 i >= TYPE_N_BASECLASSES (t);
3247 --i)
3248 {
3249 char *name = TYPE_FIELD_NAME (t, i);
3250
3251 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3252 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3253 {
3254 TYPE_VPTR_FIELDNO (type) = i;
3255 goto gotit;
3256 }
3257 }
3258 /* Virtual function table field not found. */
3259 complaint (&symfile_complaints,
3260 _("virtual function table pointer not found when defining class `%s'"),
3261 TYPE_NAME (type));
3262 return 0;
3263 }
3264 else
3265 {
3266 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3267 }
3268
3269 gotit:
3270 *pp = p + 1;
3271 }
3272 }
3273 return 1;
3274 }
3275
3276 static int
3277 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3278 {
3279 int n;
3280
3281 for (n = TYPE_NFN_FIELDS (type);
3282 fip->fnlist != NULL;
3283 fip->fnlist = fip->fnlist->next)
3284 {
3285 --n; /* Circumvent Sun3 compiler bug */
3286 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3287 }
3288 return 1;
3289 }
3290
3291 /* Create the vector of fields, and record how big it is.
3292 We need this info to record proper virtual function table information
3293 for this class's virtual functions. */
3294
3295 static int
3296 attach_fields_to_type (struct field_info *fip, struct type *type,
3297 struct objfile *objfile)
3298 {
3299 int nfields = 0;
3300 int non_public_fields = 0;
3301 struct nextfield *scan;
3302
3303 /* Count up the number of fields that we have, as well as taking note of
3304 whether or not there are any non-public fields, which requires us to
3305 allocate and build the private_field_bits and protected_field_bits
3306 bitfields. */
3307
3308 for (scan = fip->list; scan != NULL; scan = scan->next)
3309 {
3310 nfields++;
3311 if (scan->visibility != VISIBILITY_PUBLIC)
3312 {
3313 non_public_fields++;
3314 }
3315 }
3316
3317 /* Now we know how many fields there are, and whether or not there are any
3318 non-public fields. Record the field count, allocate space for the
3319 array of fields, and create blank visibility bitfields if necessary. */
3320
3321 TYPE_NFIELDS (type) = nfields;
3322 TYPE_FIELDS (type) = (struct field *)
3323 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3324 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3325
3326 if (non_public_fields)
3327 {
3328 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3329
3330 TYPE_FIELD_PRIVATE_BITS (type) =
3331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3332 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3333
3334 TYPE_FIELD_PROTECTED_BITS (type) =
3335 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3336 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3337
3338 TYPE_FIELD_IGNORE_BITS (type) =
3339 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3340 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3341 }
3342
3343 /* Copy the saved-up fields into the field vector. Start from the head
3344 of the list, adding to the tail of the field array, so that they end
3345 up in the same order in the array in which they were added to the list. */
3346
3347 while (nfields-- > 0)
3348 {
3349 TYPE_FIELD (type, nfields) = fip->list->field;
3350 switch (fip->list->visibility)
3351 {
3352 case VISIBILITY_PRIVATE:
3353 SET_TYPE_FIELD_PRIVATE (type, nfields);
3354 break;
3355
3356 case VISIBILITY_PROTECTED:
3357 SET_TYPE_FIELD_PROTECTED (type, nfields);
3358 break;
3359
3360 case VISIBILITY_IGNORE:
3361 SET_TYPE_FIELD_IGNORE (type, nfields);
3362 break;
3363
3364 case VISIBILITY_PUBLIC:
3365 break;
3366
3367 default:
3368 /* Unknown visibility. Complain and treat it as public. */
3369 {
3370 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3371 fip->list->visibility);
3372 }
3373 break;
3374 }
3375 fip->list = fip->list->next;
3376 }
3377 return 1;
3378 }
3379
3380
3381 /* Complain that the compiler has emitted more than one definition for the
3382 structure type TYPE. */
3383 static void
3384 complain_about_struct_wipeout (struct type *type)
3385 {
3386 char *name = "";
3387 char *kind = "";
3388
3389 if (TYPE_TAG_NAME (type))
3390 {
3391 name = TYPE_TAG_NAME (type);
3392 switch (TYPE_CODE (type))
3393 {
3394 case TYPE_CODE_STRUCT: kind = "struct "; break;
3395 case TYPE_CODE_UNION: kind = "union "; break;
3396 case TYPE_CODE_ENUM: kind = "enum "; break;
3397 default: kind = "";
3398 }
3399 }
3400 else if (TYPE_NAME (type))
3401 {
3402 name = TYPE_NAME (type);
3403 kind = "";
3404 }
3405 else
3406 {
3407 name = "<unknown>";
3408 kind = "";
3409 }
3410
3411 complaint (&symfile_complaints,
3412 _("struct/union type gets multiply defined: %s%s"), kind, name);
3413 }
3414
3415 /* Set the length for all variants of a same main_type, which are
3416 connected in the closed chain.
3417
3418 This is something that needs to be done when a type is defined *after*
3419 some cross references to this type have already been read. Consider
3420 for instance the following scenario where we have the following two
3421 stabs entries:
3422
3423 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3424 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3425
3426 A stubbed version of type dummy is created while processing the first
3427 stabs entry. The length of that type is initially set to zero, since
3428 it is unknown at this point. Also, a "constant" variation of type
3429 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3430 the stabs line).
3431
3432 The second stabs entry allows us to replace the stubbed definition
3433 with the real definition. However, we still need to adjust the length
3434 of the "constant" variation of that type, as its length was left
3435 untouched during the main type replacement... */
3436
3437 static void
3438 set_length_in_type_chain (struct type *type)
3439 {
3440 struct type *ntype = TYPE_CHAIN (type);
3441
3442 while (ntype != type)
3443 {
3444 if (TYPE_LENGTH(ntype) == 0)
3445 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3446 else
3447 complain_about_struct_wipeout (ntype);
3448 ntype = TYPE_CHAIN (ntype);
3449 }
3450 }
3451
3452 /* Read the description of a structure (or union type) and return an object
3453 describing the type.
3454
3455 PP points to a character pointer that points to the next unconsumed token
3456 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3457 *PP will point to "4a:1,0,32;;".
3458
3459 TYPE points to an incomplete type that needs to be filled in.
3460
3461 OBJFILE points to the current objfile from which the stabs information is
3462 being read. (Note that it is redundant in that TYPE also contains a pointer
3463 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3464 */
3465
3466 static struct type *
3467 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3468 struct objfile *objfile)
3469 {
3470 struct cleanup *back_to;
3471 struct field_info fi;
3472
3473 fi.list = NULL;
3474 fi.fnlist = NULL;
3475
3476 /* When describing struct/union/class types in stabs, G++ always drops
3477 all qualifications from the name. So if you've got:
3478 struct A { ... struct B { ... }; ... };
3479 then G++ will emit stabs for `struct A::B' that call it simply
3480 `struct B'. Obviously, if you've got a real top-level definition for
3481 `struct B', or other nested definitions, this is going to cause
3482 problems.
3483
3484 Obviously, GDB can't fix this by itself, but it can at least avoid
3485 scribbling on existing structure type objects when new definitions
3486 appear. */
3487 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3488 || TYPE_STUB (type)))
3489 {
3490 complain_about_struct_wipeout (type);
3491
3492 /* It's probably best to return the type unchanged. */
3493 return type;
3494 }
3495
3496 back_to = make_cleanup (null_cleanup, 0);
3497
3498 INIT_CPLUS_SPECIFIC (type);
3499 TYPE_CODE (type) = type_code;
3500 TYPE_STUB (type) = 0;
3501
3502 /* First comes the total size in bytes. */
3503
3504 {
3505 int nbits;
3506
3507 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3508 if (nbits != 0)
3509 return error_type (pp, objfile);
3510 set_length_in_type_chain (type);
3511 }
3512
3513 /* Now read the baseclasses, if any, read the regular C struct or C++
3514 class member fields, attach the fields to the type, read the C++
3515 member functions, attach them to the type, and then read any tilde
3516 field (baseclass specifier for the class holding the main vtable). */
3517
3518 if (!read_baseclasses (&fi, pp, type, objfile)
3519 || !read_struct_fields (&fi, pp, type, objfile)
3520 || !attach_fields_to_type (&fi, type, objfile)
3521 || !read_member_functions (&fi, pp, type, objfile)
3522 || !attach_fn_fields_to_type (&fi, type)
3523 || !read_tilde_fields (&fi, pp, type, objfile))
3524 {
3525 type = error_type (pp, objfile);
3526 }
3527
3528 do_cleanups (back_to);
3529 return (type);
3530 }
3531
3532 /* Read a definition of an array type,
3533 and create and return a suitable type object.
3534 Also creates a range type which represents the bounds of that
3535 array. */
3536
3537 static struct type *
3538 read_array_type (char **pp, struct type *type,
3539 struct objfile *objfile)
3540 {
3541 struct type *index_type, *element_type, *range_type;
3542 int lower, upper;
3543 int adjustable = 0;
3544 int nbits;
3545
3546 /* Format of an array type:
3547 "ar<index type>;lower;upper;<array_contents_type>".
3548 OS9000: "arlower,upper;<array_contents_type>".
3549
3550 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3551 for these, produce a type like float[][]. */
3552
3553 {
3554 index_type = read_type (pp, objfile);
3555 if (**pp != ';')
3556 /* Improper format of array type decl. */
3557 return error_type (pp, objfile);
3558 ++*pp;
3559 }
3560
3561 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3562 {
3563 (*pp)++;
3564 adjustable = 1;
3565 }
3566 lower = read_huge_number (pp, ';', &nbits, 0);
3567
3568 if (nbits != 0)
3569 return error_type (pp, objfile);
3570
3571 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3572 {
3573 (*pp)++;
3574 adjustable = 1;
3575 }
3576 upper = read_huge_number (pp, ';', &nbits, 0);
3577 if (nbits != 0)
3578 return error_type (pp, objfile);
3579
3580 element_type = read_type (pp, objfile);
3581
3582 if (adjustable)
3583 {
3584 lower = 0;
3585 upper = -1;
3586 }
3587
3588 range_type =
3589 create_range_type ((struct type *) NULL, index_type, lower, upper);
3590 type = create_array_type (type, element_type, range_type);
3591
3592 return type;
3593 }
3594
3595
3596 /* Read a definition of an enumeration type,
3597 and create and return a suitable type object.
3598 Also defines the symbols that represent the values of the type. */
3599
3600 static struct type *
3601 read_enum_type (char **pp, struct type *type,
3602 struct objfile *objfile)
3603 {
3604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3605 char *p;
3606 char *name;
3607 long n;
3608 struct symbol *sym;
3609 int nsyms = 0;
3610 struct pending **symlist;
3611 struct pending *osyms, *syms;
3612 int o_nsyms;
3613 int nbits;
3614 int unsigned_enum = 1;
3615
3616 #if 0
3617 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3618 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3619 to do? For now, force all enum values to file scope. */
3620 if (within_function)
3621 symlist = &local_symbols;
3622 else
3623 #endif
3624 symlist = &file_symbols;
3625 osyms = *symlist;
3626 o_nsyms = osyms ? osyms->nsyms : 0;
3627
3628 /* The aix4 compiler emits an extra field before the enum members;
3629 my guess is it's a type of some sort. Just ignore it. */
3630 if (**pp == '-')
3631 {
3632 /* Skip over the type. */
3633 while (**pp != ':')
3634 (*pp)++;
3635
3636 /* Skip over the colon. */
3637 (*pp)++;
3638 }
3639
3640 /* Read the value-names and their values.
3641 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3642 A semicolon or comma instead of a NAME means the end. */
3643 while (**pp && **pp != ';' && **pp != ',')
3644 {
3645 STABS_CONTINUE (pp, objfile);
3646 p = *pp;
3647 while (*p != ':')
3648 p++;
3649 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3650 *pp = p + 1;
3651 n = read_huge_number (pp, ',', &nbits, 0);
3652 if (nbits != 0)
3653 return error_type (pp, objfile);
3654
3655 sym = (struct symbol *)
3656 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3657 memset (sym, 0, sizeof (struct symbol));
3658 SYMBOL_SET_LINKAGE_NAME (sym, name);
3659 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3660 SYMBOL_CLASS (sym) = LOC_CONST;
3661 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3662 SYMBOL_VALUE (sym) = n;
3663 if (n < 0)
3664 unsigned_enum = 0;
3665 add_symbol_to_list (sym, symlist);
3666 nsyms++;
3667 }
3668
3669 if (**pp == ';')
3670 (*pp)++; /* Skip the semicolon. */
3671
3672 /* Now fill in the fields of the type-structure. */
3673
3674 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3675 set_length_in_type_chain (type);
3676 TYPE_CODE (type) = TYPE_CODE_ENUM;
3677 TYPE_STUB (type) = 0;
3678 if (unsigned_enum)
3679 TYPE_UNSIGNED (type) = 1;
3680 TYPE_NFIELDS (type) = nsyms;
3681 TYPE_FIELDS (type) = (struct field *)
3682 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3683 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3684
3685 /* Find the symbols for the values and put them into the type.
3686 The symbols can be found in the symlist that we put them on
3687 to cause them to be defined. osyms contains the old value
3688 of that symlist; everything up to there was defined by us. */
3689 /* Note that we preserve the order of the enum constants, so
3690 that in something like "enum {FOO, LAST_THING=FOO}" we print
3691 FOO, not LAST_THING. */
3692
3693 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3694 {
3695 int last = syms == osyms ? o_nsyms : 0;
3696 int j = syms->nsyms;
3697
3698 for (; --j >= last; --n)
3699 {
3700 struct symbol *xsym = syms->symbol[j];
3701
3702 SYMBOL_TYPE (xsym) = type;
3703 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3704 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3705 TYPE_FIELD_BITSIZE (type, n) = 0;
3706 }
3707 if (syms == osyms)
3708 break;
3709 }
3710
3711 return type;
3712 }
3713
3714 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3715 typedefs in every file (for int, long, etc):
3716
3717 type = b <signed> <width> <format type>; <offset>; <nbits>
3718 signed = u or s.
3719 optional format type = c or b for char or boolean.
3720 offset = offset from high order bit to start bit of type.
3721 width is # bytes in object of this type, nbits is # bits in type.
3722
3723 The width/offset stuff appears to be for small objects stored in
3724 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3725 FIXME. */
3726
3727 static struct type *
3728 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3729 {
3730 int type_bits;
3731 int nbits;
3732 int signed_type;
3733 enum type_code code = TYPE_CODE_INT;
3734
3735 switch (**pp)
3736 {
3737 case 's':
3738 signed_type = 1;
3739 break;
3740 case 'u':
3741 signed_type = 0;
3742 break;
3743 default:
3744 return error_type (pp, objfile);
3745 }
3746 (*pp)++;
3747
3748 /* For some odd reason, all forms of char put a c here. This is strange
3749 because no other type has this honor. We can safely ignore this because
3750 we actually determine 'char'acterness by the number of bits specified in
3751 the descriptor.
3752 Boolean forms, e.g Fortran logical*X, put a b here. */
3753
3754 if (**pp == 'c')
3755 (*pp)++;
3756 else if (**pp == 'b')
3757 {
3758 code = TYPE_CODE_BOOL;
3759 (*pp)++;
3760 }
3761
3762 /* The first number appears to be the number of bytes occupied
3763 by this type, except that unsigned short is 4 instead of 2.
3764 Since this information is redundant with the third number,
3765 we will ignore it. */
3766 read_huge_number (pp, ';', &nbits, 0);
3767 if (nbits != 0)
3768 return error_type (pp, objfile);
3769
3770 /* The second number is always 0, so ignore it too. */
3771 read_huge_number (pp, ';', &nbits, 0);
3772 if (nbits != 0)
3773 return error_type (pp, objfile);
3774
3775 /* The third number is the number of bits for this type. */
3776 type_bits = read_huge_number (pp, 0, &nbits, 0);
3777 if (nbits != 0)
3778 return error_type (pp, objfile);
3779 /* The type *should* end with a semicolon. If it are embedded
3780 in a larger type the semicolon may be the only way to know where
3781 the type ends. If this type is at the end of the stabstring we
3782 can deal with the omitted semicolon (but we don't have to like
3783 it). Don't bother to complain(), Sun's compiler omits the semicolon
3784 for "void". */
3785 if (**pp == ';')
3786 ++(*pp);
3787
3788 if (type_bits == 0)
3789 return init_type (TYPE_CODE_VOID, 1,
3790 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3791 objfile);
3792 else
3793 return init_type (code,
3794 type_bits / TARGET_CHAR_BIT,
3795 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3796 objfile);
3797 }
3798
3799 static struct type *
3800 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3801 {
3802 int nbits;
3803 int details;
3804 int nbytes;
3805 struct type *rettype;
3806
3807 /* The first number has more details about the type, for example
3808 FN_COMPLEX. */
3809 details = read_huge_number (pp, ';', &nbits, 0);
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812
3813 /* The second number is the number of bytes occupied by this type */
3814 nbytes = read_huge_number (pp, ';', &nbits, 0);
3815 if (nbits != 0)
3816 return error_type (pp, objfile);
3817
3818 if (details == NF_COMPLEX || details == NF_COMPLEX16
3819 || details == NF_COMPLEX32)
3820 {
3821 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3822 TYPE_TARGET_TYPE (rettype)
3823 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3824 return rettype;
3825 }
3826
3827 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3828 }
3829
3830 /* Read a number from the string pointed to by *PP.
3831 The value of *PP is advanced over the number.
3832 If END is nonzero, the character that ends the
3833 number must match END, or an error happens;
3834 and that character is skipped if it does match.
3835 If END is zero, *PP is left pointing to that character.
3836
3837 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3838 the number is represented in an octal representation, assume that
3839 it is represented in a 2's complement representation with a size of
3840 TWOS_COMPLEMENT_BITS.
3841
3842 If the number fits in a long, set *BITS to 0 and return the value.
3843 If not, set *BITS to be the number of bits in the number and return 0.
3844
3845 If encounter garbage, set *BITS to -1 and return 0. */
3846
3847 static long
3848 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3849 {
3850 char *p = *pp;
3851 int sign = 1;
3852 int sign_bit = 0;
3853 long n = 0;
3854 int radix = 10;
3855 char overflow = 0;
3856 int nbits = 0;
3857 int c;
3858 long upper_limit;
3859 int twos_complement_representation = 0;
3860
3861 if (*p == '-')
3862 {
3863 sign = -1;
3864 p++;
3865 }
3866
3867 /* Leading zero means octal. GCC uses this to output values larger
3868 than an int (because that would be hard in decimal). */
3869 if (*p == '0')
3870 {
3871 radix = 8;
3872 p++;
3873 }
3874
3875 /* Skip extra zeros. */
3876 while (*p == '0')
3877 p++;
3878
3879 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3880 {
3881 /* Octal, possibly signed. Check if we have enough chars for a
3882 negative number. */
3883
3884 size_t len;
3885 char *p1 = p;
3886
3887 while ((c = *p1) >= '0' && c < '8')
3888 p1++;
3889
3890 len = p1 - p;
3891 if (len > twos_complement_bits / 3
3892 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3893 {
3894 /* Ok, we have enough characters for a signed value, check
3895 for signness by testing if the sign bit is set. */
3896 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3897 c = *p - '0';
3898 if (c & (1 << sign_bit))
3899 {
3900 /* Definitely signed. */
3901 twos_complement_representation = 1;
3902 sign = -1;
3903 }
3904 }
3905 }
3906
3907 upper_limit = LONG_MAX / radix;
3908
3909 while ((c = *p++) >= '0' && c < ('0' + radix))
3910 {
3911 if (n <= upper_limit)
3912 {
3913 if (twos_complement_representation)
3914 {
3915 /* Octal, signed, twos complement representation. In
3916 this case, n is the corresponding absolute value. */
3917 if (n == 0)
3918 {
3919 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3920
3921 n = -sn;
3922 }
3923 else
3924 {
3925 n *= radix;
3926 n -= c - '0';
3927 }
3928 }
3929 else
3930 {
3931 /* unsigned representation */
3932 n *= radix;
3933 n += c - '0'; /* FIXME this overflows anyway */
3934 }
3935 }
3936 else
3937 overflow = 1;
3938
3939 /* This depends on large values being output in octal, which is
3940 what GCC does. */
3941 if (radix == 8)
3942 {
3943 if (nbits == 0)
3944 {
3945 if (c == '0')
3946 /* Ignore leading zeroes. */
3947 ;
3948 else if (c == '1')
3949 nbits = 1;
3950 else if (c == '2' || c == '3')
3951 nbits = 2;
3952 else
3953 nbits = 3;
3954 }
3955 else
3956 nbits += 3;
3957 }
3958 }
3959 if (end)
3960 {
3961 if (c && c != end)
3962 {
3963 if (bits != NULL)
3964 *bits = -1;
3965 return 0;
3966 }
3967 }
3968 else
3969 --p;
3970
3971 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3972 {
3973 /* We were supposed to parse a number with maximum
3974 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3975 if (bits != NULL)
3976 *bits = -1;
3977 return 0;
3978 }
3979
3980 *pp = p;
3981 if (overflow)
3982 {
3983 if (nbits == 0)
3984 {
3985 /* Large decimal constants are an error (because it is hard to
3986 count how many bits are in them). */
3987 if (bits != NULL)
3988 *bits = -1;
3989 return 0;
3990 }
3991
3992 /* -0x7f is the same as 0x80. So deal with it by adding one to
3993 the number of bits. Two's complement represention octals
3994 can't have a '-' in front. */
3995 if (sign == -1 && !twos_complement_representation)
3996 ++nbits;
3997 if (bits)
3998 *bits = nbits;
3999 }
4000 else
4001 {
4002 if (bits)
4003 *bits = 0;
4004 return n * sign;
4005 }
4006 /* It's *BITS which has the interesting information. */
4007 return 0;
4008 }
4009
4010 static struct type *
4011 read_range_type (char **pp, int typenums[2], int type_size,
4012 struct objfile *objfile)
4013 {
4014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4015 char *orig_pp = *pp;
4016 int rangenums[2];
4017 long n2, n3;
4018 int n2bits, n3bits;
4019 int self_subrange;
4020 struct type *result_type;
4021 struct type *index_type = NULL;
4022
4023 /* First comes a type we are a subrange of.
4024 In C it is usually 0, 1 or the type being defined. */
4025 if (read_type_number (pp, rangenums) != 0)
4026 return error_type (pp, objfile);
4027 self_subrange = (rangenums[0] == typenums[0] &&
4028 rangenums[1] == typenums[1]);
4029
4030 if (**pp == '=')
4031 {
4032 *pp = orig_pp;
4033 index_type = read_type (pp, objfile);
4034 }
4035
4036 /* A semicolon should now follow; skip it. */
4037 if (**pp == ';')
4038 (*pp)++;
4039
4040 /* The remaining two operands are usually lower and upper bounds
4041 of the range. But in some special cases they mean something else. */
4042 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4043 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4044
4045 if (n2bits == -1 || n3bits == -1)
4046 return error_type (pp, objfile);
4047
4048 if (index_type)
4049 goto handle_true_range;
4050
4051 /* If limits are huge, must be large integral type. */
4052 if (n2bits != 0 || n3bits != 0)
4053 {
4054 char got_signed = 0;
4055 char got_unsigned = 0;
4056 /* Number of bits in the type. */
4057 int nbits = 0;
4058
4059 /* If a type size attribute has been specified, the bounds of
4060 the range should fit in this size. If the lower bounds needs
4061 more bits than the upper bound, then the type is signed. */
4062 if (n2bits <= type_size && n3bits <= type_size)
4063 {
4064 if (n2bits == type_size && n2bits > n3bits)
4065 got_signed = 1;
4066 else
4067 got_unsigned = 1;
4068 nbits = type_size;
4069 }
4070 /* Range from 0 to <large number> is an unsigned large integral type. */
4071 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4072 {
4073 got_unsigned = 1;
4074 nbits = n3bits;
4075 }
4076 /* Range from <large number> to <large number>-1 is a large signed
4077 integral type. Take care of the case where <large number> doesn't
4078 fit in a long but <large number>-1 does. */
4079 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4080 || (n2bits != 0 && n3bits == 0
4081 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4082 && n3 == LONG_MAX))
4083 {
4084 got_signed = 1;
4085 nbits = n2bits;
4086 }
4087
4088 if (got_signed || got_unsigned)
4089 {
4090 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4091 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4092 objfile);
4093 }
4094 else
4095 return error_type (pp, objfile);
4096 }
4097
4098 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4099 if (self_subrange && n2 == 0 && n3 == 0)
4100 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4101
4102 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4103 is the width in bytes.
4104
4105 Fortran programs appear to use this for complex types also. To
4106 distinguish between floats and complex, g77 (and others?) seem
4107 to use self-subranges for the complexes, and subranges of int for
4108 the floats.
4109
4110 Also note that for complexes, g77 sets n2 to the size of one of
4111 the member floats, not the whole complex beast. My guess is that
4112 this was to work well with pre-COMPLEX versions of gdb. */
4113
4114 if (n3 == 0 && n2 > 0)
4115 {
4116 struct type *float_type
4117 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4118
4119 if (self_subrange)
4120 {
4121 struct type *complex_type =
4122 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4123
4124 TYPE_TARGET_TYPE (complex_type) = float_type;
4125 return complex_type;
4126 }
4127 else
4128 return float_type;
4129 }
4130
4131 /* If the upper bound is -1, it must really be an unsigned integral. */
4132
4133 else if (n2 == 0 && n3 == -1)
4134 {
4135 int bits = type_size;
4136
4137 if (bits <= 0)
4138 {
4139 /* We don't know its size. It is unsigned int or unsigned
4140 long. GCC 2.3.3 uses this for long long too, but that is
4141 just a GDB 3.5 compatibility hack. */
4142 bits = gdbarch_int_bit (gdbarch);
4143 }
4144
4145 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4146 TYPE_FLAG_UNSIGNED, NULL, objfile);
4147 }
4148
4149 /* Special case: char is defined (Who knows why) as a subrange of
4150 itself with range 0-127. */
4151 else if (self_subrange && n2 == 0 && n3 == 127)
4152 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4153
4154 /* We used to do this only for subrange of self or subrange of int. */
4155 else if (n2 == 0)
4156 {
4157 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4158 "unsigned long", and we already checked for that,
4159 so don't need to test for it here. */
4160
4161 if (n3 < 0)
4162 /* n3 actually gives the size. */
4163 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4164 NULL, objfile);
4165
4166 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4167 unsigned n-byte integer. But do require n to be a power of
4168 two; we don't want 3- and 5-byte integers flying around. */
4169 {
4170 int bytes;
4171 unsigned long bits;
4172
4173 bits = n3;
4174 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4175 bits >>= 8;
4176 if (bits == 0
4177 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4178 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4179 objfile);
4180 }
4181 }
4182 /* I think this is for Convex "long long". Since I don't know whether
4183 Convex sets self_subrange, I also accept that particular size regardless
4184 of self_subrange. */
4185 else if (n3 == 0 && n2 < 0
4186 && (self_subrange
4187 || n2 == -gdbarch_long_long_bit
4188 (gdbarch) / TARGET_CHAR_BIT))
4189 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4190 else if (n2 == -n3 - 1)
4191 {
4192 if (n3 == 0x7f)
4193 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4194 if (n3 == 0x7fff)
4195 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4196 if (n3 == 0x7fffffff)
4197 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4198 }
4199
4200 /* We have a real range type on our hands. Allocate space and
4201 return a real pointer. */
4202 handle_true_range:
4203
4204 if (self_subrange)
4205 index_type = objfile_type (objfile)->builtin_int;
4206 else
4207 index_type = *dbx_lookup_type (rangenums, objfile);
4208 if (index_type == NULL)
4209 {
4210 /* Does this actually ever happen? Is that why we are worrying
4211 about dealing with it rather than just calling error_type? */
4212
4213 complaint (&symfile_complaints,
4214 _("base type %d of range type is not defined"), rangenums[1]);
4215
4216 index_type = objfile_type (objfile)->builtin_int;
4217 }
4218
4219 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4220 return (result_type);
4221 }
4222
4223 /* Read in an argument list. This is a list of types, separated by commas
4224 and terminated with END. Return the list of types read in, or NULL
4225 if there is an error. */
4226
4227 static struct field *
4228 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4229 int *varargsp)
4230 {
4231 /* FIXME! Remove this arbitrary limit! */
4232 struct type *types[1024]; /* allow for fns of 1023 parameters */
4233 int n = 0, i;
4234 struct field *rval;
4235
4236 while (**pp != end)
4237 {
4238 if (**pp != ',')
4239 /* Invalid argument list: no ','. */
4240 return NULL;
4241 (*pp)++;
4242 STABS_CONTINUE (pp, objfile);
4243 types[n++] = read_type (pp, objfile);
4244 }
4245 (*pp)++; /* get past `end' (the ':' character) */
4246
4247 if (n == 0)
4248 {
4249 /* We should read at least the THIS parameter here. Some broken stabs
4250 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4251 have been present ";-16,(0,43)" reference instead. This way the
4252 excessive ";" marker prematurely stops the parameters parsing. */
4253
4254 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4255 *varargsp = 0;
4256 }
4257 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4258 *varargsp = 1;
4259 else
4260 {
4261 n--;
4262 *varargsp = 0;
4263 }
4264
4265 rval = (struct field *) xmalloc (n * sizeof (struct field));
4266 memset (rval, 0, n * sizeof (struct field));
4267 for (i = 0; i < n; i++)
4268 rval[i].type = types[i];
4269 *nargsp = n;
4270 return rval;
4271 }
4272 \f
4273 /* Common block handling. */
4274
4275 /* List of symbols declared since the last BCOMM. This list is a tail
4276 of local_symbols. When ECOMM is seen, the symbols on the list
4277 are noted so their proper addresses can be filled in later,
4278 using the common block base address gotten from the assembler
4279 stabs. */
4280
4281 static struct pending *common_block;
4282 static int common_block_i;
4283
4284 /* Name of the current common block. We get it from the BCOMM instead of the
4285 ECOMM to match IBM documentation (even though IBM puts the name both places
4286 like everyone else). */
4287 static char *common_block_name;
4288
4289 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4290 to remain after this function returns. */
4291
4292 void
4293 common_block_start (char *name, struct objfile *objfile)
4294 {
4295 if (common_block_name != NULL)
4296 {
4297 complaint (&symfile_complaints,
4298 _("Invalid symbol data: common block within common block"));
4299 }
4300 common_block = local_symbols;
4301 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4302 common_block_name = obsavestring (name, strlen (name),
4303 &objfile->objfile_obstack);
4304 }
4305
4306 /* Process a N_ECOMM symbol. */
4307
4308 void
4309 common_block_end (struct objfile *objfile)
4310 {
4311 /* Symbols declared since the BCOMM are to have the common block
4312 start address added in when we know it. common_block and
4313 common_block_i point to the first symbol after the BCOMM in
4314 the local_symbols list; copy the list and hang it off the
4315 symbol for the common block name for later fixup. */
4316 int i;
4317 struct symbol *sym;
4318 struct pending *new = 0;
4319 struct pending *next;
4320 int j;
4321
4322 if (common_block_name == NULL)
4323 {
4324 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4325 return;
4326 }
4327
4328 sym = (struct symbol *)
4329 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4330 memset (sym, 0, sizeof (struct symbol));
4331 /* Note: common_block_name already saved on objfile_obstack */
4332 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4333 SYMBOL_CLASS (sym) = LOC_BLOCK;
4334
4335 /* Now we copy all the symbols which have been defined since the BCOMM. */
4336
4337 /* Copy all the struct pendings before common_block. */
4338 for (next = local_symbols;
4339 next != NULL && next != common_block;
4340 next = next->next)
4341 {
4342 for (j = 0; j < next->nsyms; j++)
4343 add_symbol_to_list (next->symbol[j], &new);
4344 }
4345
4346 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4347 NULL, it means copy all the local symbols (which we already did
4348 above). */
4349
4350 if (common_block != NULL)
4351 for (j = common_block_i; j < common_block->nsyms; j++)
4352 add_symbol_to_list (common_block->symbol[j], &new);
4353
4354 SYMBOL_TYPE (sym) = (struct type *) new;
4355
4356 /* Should we be putting local_symbols back to what it was?
4357 Does it matter? */
4358
4359 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4360 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4361 global_sym_chain[i] = sym;
4362 common_block_name = NULL;
4363 }
4364
4365 /* Add a common block's start address to the offset of each symbol
4366 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4367 the common block name). */
4368
4369 static void
4370 fix_common_block (struct symbol *sym, int valu)
4371 {
4372 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4373
4374 for (; next; next = next->next)
4375 {
4376 int j;
4377
4378 for (j = next->nsyms - 1; j >= 0; j--)
4379 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4380 }
4381 }
4382 \f
4383
4384
4385 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4386 See add_undefined_type for more details. */
4387
4388 static void
4389 add_undefined_type_noname (struct type *type, int typenums[2])
4390 {
4391 struct nat nat;
4392
4393 nat.typenums[0] = typenums [0];
4394 nat.typenums[1] = typenums [1];
4395 nat.type = type;
4396
4397 if (noname_undefs_length == noname_undefs_allocated)
4398 {
4399 noname_undefs_allocated *= 2;
4400 noname_undefs = (struct nat *)
4401 xrealloc ((char *) noname_undefs,
4402 noname_undefs_allocated * sizeof (struct nat));
4403 }
4404 noname_undefs[noname_undefs_length++] = nat;
4405 }
4406
4407 /* Add TYPE to the UNDEF_TYPES vector.
4408 See add_undefined_type for more details. */
4409
4410 static void
4411 add_undefined_type_1 (struct type *type)
4412 {
4413 if (undef_types_length == undef_types_allocated)
4414 {
4415 undef_types_allocated *= 2;
4416 undef_types = (struct type **)
4417 xrealloc ((char *) undef_types,
4418 undef_types_allocated * sizeof (struct type *));
4419 }
4420 undef_types[undef_types_length++] = type;
4421 }
4422
4423 /* What about types defined as forward references inside of a small lexical
4424 scope? */
4425 /* Add a type to the list of undefined types to be checked through
4426 once this file has been read in.
4427
4428 In practice, we actually maintain two such lists: The first list
4429 (UNDEF_TYPES) is used for types whose name has been provided, and
4430 concerns forward references (eg 'xs' or 'xu' forward references);
4431 the second list (NONAME_UNDEFS) is used for types whose name is
4432 unknown at creation time, because they were referenced through
4433 their type number before the actual type was declared.
4434 This function actually adds the given type to the proper list. */
4435
4436 static void
4437 add_undefined_type (struct type *type, int typenums[2])
4438 {
4439 if (TYPE_TAG_NAME (type) == NULL)
4440 add_undefined_type_noname (type, typenums);
4441 else
4442 add_undefined_type_1 (type);
4443 }
4444
4445 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4446
4447 static void
4448 cleanup_undefined_types_noname (struct objfile *objfile)
4449 {
4450 int i;
4451
4452 for (i = 0; i < noname_undefs_length; i++)
4453 {
4454 struct nat nat = noname_undefs[i];
4455 struct type **type;
4456
4457 type = dbx_lookup_type (nat.typenums, objfile);
4458 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4459 {
4460 /* The instance flags of the undefined type are still unset,
4461 and needs to be copied over from the reference type.
4462 Since replace_type expects them to be identical, we need
4463 to set these flags manually before hand. */
4464 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4465 replace_type (nat.type, *type);
4466 }
4467 }
4468
4469 noname_undefs_length = 0;
4470 }
4471
4472 /* Go through each undefined type, see if it's still undefined, and fix it
4473 up if possible. We have two kinds of undefined types:
4474
4475 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4476 Fix: update array length using the element bounds
4477 and the target type's length.
4478 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4479 yet defined at the time a pointer to it was made.
4480 Fix: Do a full lookup on the struct/union tag. */
4481
4482 static void
4483 cleanup_undefined_types_1 (void)
4484 {
4485 struct type **type;
4486
4487 /* Iterate over every undefined type, and look for a symbol whose type
4488 matches our undefined type. The symbol matches if:
4489 1. It is a typedef in the STRUCT domain;
4490 2. It has the same name, and same type code;
4491 3. The instance flags are identical.
4492
4493 It is important to check the instance flags, because we have seen
4494 examples where the debug info contained definitions such as:
4495
4496 "foo_t:t30=B31=xefoo_t:"
4497
4498 In this case, we have created an undefined type named "foo_t" whose
4499 instance flags is null (when processing "xefoo_t"), and then created
4500 another type with the same name, but with different instance flags
4501 ('B' means volatile). I think that the definition above is wrong,
4502 since the same type cannot be volatile and non-volatile at the same
4503 time, but we need to be able to cope with it when it happens. The
4504 approach taken here is to treat these two types as different. */
4505
4506 for (type = undef_types; type < undef_types + undef_types_length; type++)
4507 {
4508 switch (TYPE_CODE (*type))
4509 {
4510
4511 case TYPE_CODE_STRUCT:
4512 case TYPE_CODE_UNION:
4513 case TYPE_CODE_ENUM:
4514 {
4515 /* Check if it has been defined since. Need to do this here
4516 as well as in check_typedef to deal with the (legitimate in
4517 C though not C++) case of several types with the same name
4518 in different source files. */
4519 if (TYPE_STUB (*type))
4520 {
4521 struct pending *ppt;
4522 int i;
4523 /* Name of the type, without "struct" or "union" */
4524 char *typename = TYPE_TAG_NAME (*type);
4525
4526 if (typename == NULL)
4527 {
4528 complaint (&symfile_complaints, _("need a type name"));
4529 break;
4530 }
4531 for (ppt = file_symbols; ppt; ppt = ppt->next)
4532 {
4533 for (i = 0; i < ppt->nsyms; i++)
4534 {
4535 struct symbol *sym = ppt->symbol[i];
4536
4537 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4538 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4539 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4540 TYPE_CODE (*type))
4541 && (TYPE_INSTANCE_FLAGS (*type) ==
4542 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4543 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4544 typename) == 0)
4545 replace_type (*type, SYMBOL_TYPE (sym));
4546 }
4547 }
4548 }
4549 }
4550 break;
4551
4552 default:
4553 {
4554 complaint (&symfile_complaints,
4555 _("forward-referenced types left unresolved, "
4556 "type code %d."),
4557 TYPE_CODE (*type));
4558 }
4559 break;
4560 }
4561 }
4562
4563 undef_types_length = 0;
4564 }
4565
4566 /* Try to fix all the undefined types we ecountered while processing
4567 this unit. */
4568
4569 void
4570 cleanup_undefined_types (struct objfile *objfile)
4571 {
4572 cleanup_undefined_types_1 ();
4573 cleanup_undefined_types_noname (objfile);
4574 }
4575
4576 /* Scan through all of the global symbols defined in the object file,
4577 assigning values to the debugging symbols that need to be assigned
4578 to. Get these symbols from the minimal symbol table. */
4579
4580 void
4581 scan_file_globals (struct objfile *objfile)
4582 {
4583 int hash;
4584 struct minimal_symbol *msymbol;
4585 struct symbol *sym, *prev;
4586 struct objfile *resolve_objfile;
4587
4588 /* SVR4 based linkers copy referenced global symbols from shared
4589 libraries to the main executable.
4590 If we are scanning the symbols for a shared library, try to resolve
4591 them from the minimal symbols of the main executable first. */
4592
4593 if (symfile_objfile && objfile != symfile_objfile)
4594 resolve_objfile = symfile_objfile;
4595 else
4596 resolve_objfile = objfile;
4597
4598 while (1)
4599 {
4600 /* Avoid expensive loop through all minimal symbols if there are
4601 no unresolved symbols. */
4602 for (hash = 0; hash < HASHSIZE; hash++)
4603 {
4604 if (global_sym_chain[hash])
4605 break;
4606 }
4607 if (hash >= HASHSIZE)
4608 return;
4609
4610 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4611 {
4612 QUIT;
4613
4614 /* Skip static symbols. */
4615 switch (MSYMBOL_TYPE (msymbol))
4616 {
4617 case mst_file_text:
4618 case mst_file_data:
4619 case mst_file_bss:
4620 continue;
4621 default:
4622 break;
4623 }
4624
4625 prev = NULL;
4626
4627 /* Get the hash index and check all the symbols
4628 under that hash index. */
4629
4630 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4631
4632 for (sym = global_sym_chain[hash]; sym;)
4633 {
4634 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4635 SYMBOL_LINKAGE_NAME (sym)) == 0)
4636 {
4637 /* Splice this symbol out of the hash chain and
4638 assign the value we have to it. */
4639 if (prev)
4640 {
4641 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4642 }
4643 else
4644 {
4645 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4646 }
4647
4648 /* Check to see whether we need to fix up a common block. */
4649 /* Note: this code might be executed several times for
4650 the same symbol if there are multiple references. */
4651 if (sym)
4652 {
4653 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4654 {
4655 fix_common_block (sym,
4656 SYMBOL_VALUE_ADDRESS (msymbol));
4657 }
4658 else
4659 {
4660 SYMBOL_VALUE_ADDRESS (sym)
4661 = SYMBOL_VALUE_ADDRESS (msymbol);
4662 }
4663 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4664 }
4665
4666 if (prev)
4667 {
4668 sym = SYMBOL_VALUE_CHAIN (prev);
4669 }
4670 else
4671 {
4672 sym = global_sym_chain[hash];
4673 }
4674 }
4675 else
4676 {
4677 prev = sym;
4678 sym = SYMBOL_VALUE_CHAIN (sym);
4679 }
4680 }
4681 }
4682 if (resolve_objfile == objfile)
4683 break;
4684 resolve_objfile = objfile;
4685 }
4686
4687 /* Change the storage class of any remaining unresolved globals to
4688 LOC_UNRESOLVED and remove them from the chain. */
4689 for (hash = 0; hash < HASHSIZE; hash++)
4690 {
4691 sym = global_sym_chain[hash];
4692 while (sym)
4693 {
4694 prev = sym;
4695 sym = SYMBOL_VALUE_CHAIN (sym);
4696
4697 /* Change the symbol address from the misleading chain value
4698 to address zero. */
4699 SYMBOL_VALUE_ADDRESS (prev) = 0;
4700
4701 /* Complain about unresolved common block symbols. */
4702 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4703 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4704 else
4705 complaint (&symfile_complaints,
4706 _("%s: common block `%s' from global_sym_chain unresolved"),
4707 objfile->name, SYMBOL_PRINT_NAME (prev));
4708 }
4709 }
4710 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4711 }
4712
4713 /* Initialize anything that needs initializing when starting to read
4714 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4715 to a psymtab. */
4716
4717 void
4718 stabsread_init (void)
4719 {
4720 }
4721
4722 /* Initialize anything that needs initializing when a completely new
4723 symbol file is specified (not just adding some symbols from another
4724 file, e.g. a shared library). */
4725
4726 void
4727 stabsread_new_init (void)
4728 {
4729 /* Empty the hash table of global syms looking for values. */
4730 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4731 }
4732
4733 /* Initialize anything that needs initializing at the same time as
4734 start_symtab() is called. */
4735
4736 void
4737 start_stabs (void)
4738 {
4739 global_stabs = NULL; /* AIX COFF */
4740 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4741 n_this_object_header_files = 1;
4742 type_vector_length = 0;
4743 type_vector = (struct type **) 0;
4744
4745 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4746 common_block_name = NULL;
4747 }
4748
4749 /* Call after end_symtab() */
4750
4751 void
4752 end_stabs (void)
4753 {
4754 if (type_vector)
4755 {
4756 xfree (type_vector);
4757 }
4758 type_vector = 0;
4759 type_vector_length = 0;
4760 previous_stab_code = 0;
4761 }
4762
4763 void
4764 finish_global_stabs (struct objfile *objfile)
4765 {
4766 if (global_stabs)
4767 {
4768 patch_block_stabs (global_symbols, global_stabs, objfile);
4769 xfree (global_stabs);
4770 global_stabs = NULL;
4771 }
4772 }
4773
4774 /* Find the end of the name, delimited by a ':', but don't match
4775 ObjC symbols which look like -[Foo bar::]:bla. */
4776 static char *
4777 find_name_end (char *name)
4778 {
4779 char *s = name;
4780
4781 if (s[0] == '-' || *s == '+')
4782 {
4783 /* Must be an ObjC method symbol. */
4784 if (s[1] != '[')
4785 {
4786 error (_("invalid symbol name \"%s\""), name);
4787 }
4788 s = strchr (s, ']');
4789 if (s == NULL)
4790 {
4791 error (_("invalid symbol name \"%s\""), name);
4792 }
4793 return strchr (s, ':');
4794 }
4795 else
4796 {
4797 return strchr (s, ':');
4798 }
4799 }
4800
4801 /* Initializer for this module */
4802
4803 void
4804 _initialize_stabsread (void)
4805 {
4806 rs6000_builtin_type_data = register_objfile_data ();
4807
4808 undef_types_allocated = 20;
4809 undef_types_length = 0;
4810 undef_types = (struct type **)
4811 xmalloc (undef_types_allocated * sizeof (struct type *));
4812
4813 noname_undefs_allocated = 20;
4814 noname_undefs_length = 0;
4815 noname_undefs = (struct nat *)
4816 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4817 }
This page took 0.15565 seconds and 5 git commands to generate.