Add missing format for built-in floating-point types
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
358
359 static void
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
362 {
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
372
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
378 while (pp[1] == ':')
379 {
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
382 }
383 sym = find_symbol_in_list (symbols, name, pp - name);
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
393
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
403 pp += 2;
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433 }
434 \f
435
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444 static int
445 read_type_number (char **pp, int *typenums)
446 {
447 int nbits;
448
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532 }
533
534 /* Return defined sym for the reference REFNUM. */
535 struct symbol *
536 ref_search (int refnum)
537 {
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541 }
542
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
546 static int
547 process_reference (char **string)
548 {
549 char *p;
550 int refnum = 0;
551
552 if (**string != '#')
553 return 0;
554
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566 }
567
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571 int
572 symbol_reference_defined (char **string)
573 {
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
579 /* Defining symbols end in '='. */
580 if (*p == '=')
581 {
582 /* Symbol is being defined here. */
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593 }
594
595 static int
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597 {
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
610 }
611
612 return regno;
613 }
614
615 static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617 };
618
619 /* The "aclass" indices for computed symbols. */
620
621 static int stab_register_index;
622 static int stab_regparm_index;
623
624 struct symbol *
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
627 {
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
629 struct symbol *sym;
630 char *p = (char *) find_name_end (string);
631 int deftype;
632 int synonym = 0;
633 int i;
634 char *new_name = NULL;
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
647 /* Ignore old-style symbols from cc -go. */
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
653 p += 2;
654 p = strchr (p, ':');
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
667 current_symbol = sym = allocate_symbol (objfile);
668
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
674 }
675 else
676 {
677 SYMBOL_LINE (sym) = 0; /* unknown */
678 }
679
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = (char *) alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
879 }
880 break;
881
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
948
949 /* fall into process_prototype_types. */
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
991 }
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1018 {
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1057
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1068 break;
1069
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1071 {
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1077 {
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1082 }
1083 break;
1084 }
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
1095 /*FALLTHROUGH */
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1114 {
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
1129
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1138 {
1139 struct symbol *prev_sym;
1140
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1146 {
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
1156 add_symbol_to_list (sym, &local_symbols);
1157 }
1158 else
1159 add_symbol_to_list (sym, &file_symbols);
1160 break;
1161
1162 case 'S':
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1171 {
1172 struct bound_minimal_symbol msym;
1173
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
1176 if (msym.minsym != NULL)
1177 {
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1180
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
1206 /* Typedef */
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1211 if (nameless)
1212 return NULL;
1213
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
1227
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1267
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
1272 char *name1;
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1282 {
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285 }
1286 else
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = allocate_symbol (objfile);
1296
1297 *struct_sym = *sym;
1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1313 by 't' which means we are typedef'ing it as well. */
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1320
1321 /* For a nameless type, we don't want a create a symbol, thus we
1322 did not use `sym'. Return without further processing. */
1323 if (nameless)
1324 return NULL;
1325
1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1327 SYMBOL_VALUE (sym) = valu;
1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
1338 /* Clone the sym and then modify it. */
1339 struct symbol *typedef_sym = allocate_symbol (objfile);
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct bound_minimal_symbol msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym.minsym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1416 SYMBOL_VALUE (sym) = 0;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
1425
1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1427 && SYMBOL_IS_ARGUMENT (sym))
1428 {
1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1430 variables passed in a register). */
1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1437 }
1438
1439 return sym;
1440 }
1441
1442 /* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
1449 return error_type (pp, objfile);
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
1457 return error_type (pp, objfile);
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
1463 foo = error_type (pp, objfile);
1464 else
1465 ++*pp;
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471 static struct type *
1472 error_type (char **pp, struct objfile *objfile)
1473 {
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
1494 return objfile_type (objfile)->builtin_error;
1495 }
1496 \f
1497
1498 /* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
1504 static struct type *
1505 read_type (char **pp, struct objfile *objfile)
1506 {
1507 struct type *type = 0;
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
1516 /* Used to distinguish string and bitstring from char-array and set. */
1517 int is_string = 0;
1518
1519 /* Used to distinguish vector from array. */
1520 int is_vector = 0;
1521
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
1531
1532 if (**pp != '=')
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1543 add_undefined_type (type, typenums);
1544
1545 return type;
1546 }
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
1556 the definition, but don't put it in the type vector. */
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
1561 again:
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
1572
1573 /* Name including "struct", etc. */
1574 char *type_name;
1575
1576 {
1577 char *from, *to, *p, *q1, *q2;
1578
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
1595 complaint (&symfile_complaints,
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
1602
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
1610
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
1628
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *newobj = XALLOCA (struct type_list);
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2032 break;
2033
2034 default:
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051 }
2052 \f
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2055
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2063
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2072 }
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091 #endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_integer_type (objfile, 32, 0, "int");
2102 break;
2103 case 2:
2104 rettype = init_integer_type (objfile, 8, 0, "char");
2105 TYPE_NOSIGN (rettype) = 1;
2106 break;
2107 case 3:
2108 rettype = init_integer_type (objfile, 16, 0, "short");
2109 break;
2110 case 4:
2111 rettype = init_integer_type (objfile, 32, 0, "long");
2112 break;
2113 case 5:
2114 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2115 break;
2116 case 6:
2117 rettype = init_integer_type (objfile, 8, 0, "signed char");
2118 break;
2119 case 7:
2120 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2121 break;
2122 case 8:
2123 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2124 break;
2125 case 9:
2126 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2127 break;
2128 case 10:
2129 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2130 break;
2131 case 11:
2132 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
2136 rettype = init_float_type (objfile, 32, "float",
2137 floatformats_ieee_single);
2138 break;
2139 case 13:
2140 /* IEEE double precision (64 bit). */
2141 rettype = init_float_type (objfile, 64, "double",
2142 floatformats_ieee_double);
2143 break;
2144 case 14:
2145 /* This is an IEEE double on the RS/6000, and different machines with
2146 different sizes for "long double" should use different negative
2147 type numbers. See stabs.texinfo. */
2148 rettype = init_float_type (objfile, 64, "long double",
2149 floatformats_ieee_double);
2150 break;
2151 case 15:
2152 rettype = init_integer_type (objfile, 32, 0, "integer");
2153 break;
2154 case 16:
2155 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2156 break;
2157 case 17:
2158 rettype = init_float_type (objfile, 32, "short real",
2159 floatformats_ieee_single);
2160 break;
2161 case 18:
2162 rettype = init_float_type (objfile, 64, "real",
2163 floatformats_ieee_double);
2164 break;
2165 case 19:
2166 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2167 break;
2168 case 20:
2169 rettype = init_character_type (objfile, 8, 1, "character");
2170 break;
2171 case 21:
2172 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2173 break;
2174 case 22:
2175 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2176 break;
2177 case 23:
2178 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2179 break;
2180 case 24:
2181 rettype = init_boolean_type (objfile, 32, 1, "logical");
2182 break;
2183 case 25:
2184 /* Complex type consisting of two IEEE single precision values. */
2185 rettype = init_complex_type (objfile, "complex",
2186 rs6000_builtin_type (12, objfile));
2187 break;
2188 case 26:
2189 /* Complex type consisting of two IEEE double precision values. */
2190 rettype = init_complex_type (objfile, "double complex",
2191 rs6000_builtin_type (13, objfile));
2192 break;
2193 case 27:
2194 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2195 break;
2196 case 28:
2197 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2198 break;
2199 case 29:
2200 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2201 break;
2202 case 30:
2203 rettype = init_character_type (objfile, 16, 0, "wchar");
2204 break;
2205 case 31:
2206 rettype = init_integer_type (objfile, 64, 0, "long long");
2207 break;
2208 case 32:
2209 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2210 break;
2211 case 33:
2212 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2213 break;
2214 case 34:
2215 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2216 break;
2217 }
2218 negative_types[-typenum] = rettype;
2219 return rettype;
2220 }
2221 \f
2222 /* This page contains subroutines of read_type. */
2223
2224 /* Wrapper around method_name_from_physname to flag a complaint
2225 if there is an error. */
2226
2227 static char *
2228 stabs_method_name_from_physname (const char *physname)
2229 {
2230 char *method_name;
2231
2232 method_name = method_name_from_physname (physname);
2233
2234 if (method_name == NULL)
2235 {
2236 complaint (&symfile_complaints,
2237 _("Method has bad physname %s\n"), physname);
2238 return NULL;
2239 }
2240
2241 return method_name;
2242 }
2243
2244 /* Read member function stabs info for C++ classes. The form of each member
2245 function data is:
2246
2247 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2248
2249 An example with two member functions is:
2250
2251 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2252
2253 For the case of overloaded operators, the format is op$::*.funcs, where
2254 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2255 name (such as `+=') and `.' marks the end of the operator name.
2256
2257 Returns 1 for success, 0 for failure. */
2258
2259 static int
2260 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2261 struct objfile *objfile)
2262 {
2263 int nfn_fields = 0;
2264 int length = 0;
2265 int i;
2266 struct next_fnfield
2267 {
2268 struct next_fnfield *next;
2269 struct fn_field fn_field;
2270 }
2271 *sublist;
2272 struct type *look_ahead_type;
2273 struct next_fnfieldlist *new_fnlist;
2274 struct next_fnfield *new_sublist;
2275 char *main_fn_name;
2276 char *p;
2277
2278 /* Process each list until we find something that is not a member function
2279 or find the end of the functions. */
2280
2281 while (**pp != ';')
2282 {
2283 /* We should be positioned at the start of the function name.
2284 Scan forward to find the first ':' and if it is not the
2285 first of a "::" delimiter, then this is not a member function. */
2286 p = *pp;
2287 while (*p != ':')
2288 {
2289 p++;
2290 }
2291 if (p[1] != ':')
2292 {
2293 break;
2294 }
2295
2296 sublist = NULL;
2297 look_ahead_type = NULL;
2298 length = 0;
2299
2300 new_fnlist = XCNEW (struct next_fnfieldlist);
2301 make_cleanup (xfree, new_fnlist);
2302
2303 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2304 {
2305 /* This is a completely wierd case. In order to stuff in the
2306 names that might contain colons (the usual name delimiter),
2307 Mike Tiemann defined a different name format which is
2308 signalled if the identifier is "op$". In that case, the
2309 format is "op$::XXXX." where XXXX is the name. This is
2310 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2311 /* This lets the user type "break operator+".
2312 We could just put in "+" as the name, but that wouldn't
2313 work for "*". */
2314 static char opname[32] = "op$";
2315 char *o = opname + 3;
2316
2317 /* Skip past '::'. */
2318 *pp = p + 2;
2319
2320 STABS_CONTINUE (pp, objfile);
2321 p = *pp;
2322 while (*p != '.')
2323 {
2324 *o++ = *p++;
2325 }
2326 main_fn_name = savestring (opname, o - opname);
2327 /* Skip past '.' */
2328 *pp = p + 1;
2329 }
2330 else
2331 {
2332 main_fn_name = savestring (*pp, p - *pp);
2333 /* Skip past '::'. */
2334 *pp = p + 2;
2335 }
2336 new_fnlist->fn_fieldlist.name = main_fn_name;
2337
2338 do
2339 {
2340 new_sublist = XCNEW (struct next_fnfield);
2341 make_cleanup (xfree, new_sublist);
2342
2343 /* Check for and handle cretinous dbx symbol name continuation! */
2344 if (look_ahead_type == NULL)
2345 {
2346 /* Normal case. */
2347 STABS_CONTINUE (pp, objfile);
2348
2349 new_sublist->fn_field.type = read_type (pp, objfile);
2350 if (**pp != ':')
2351 {
2352 /* Invalid symtab info for member function. */
2353 return 0;
2354 }
2355 }
2356 else
2357 {
2358 /* g++ version 1 kludge */
2359 new_sublist->fn_field.type = look_ahead_type;
2360 look_ahead_type = NULL;
2361 }
2362
2363 (*pp)++;
2364 p = *pp;
2365 while (*p != ';')
2366 {
2367 p++;
2368 }
2369
2370 /* These are methods, not functions. */
2371 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2372 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2373 else
2374 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2375 == TYPE_CODE_METHOD);
2376
2377 /* If this is just a stub, then we don't have the real name here. */
2378 if (TYPE_STUB (new_sublist->fn_field.type))
2379 {
2380 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2381 set_type_self_type (new_sublist->fn_field.type, type);
2382 new_sublist->fn_field.is_stub = 1;
2383 }
2384
2385 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2386 *pp = p + 1;
2387
2388 /* Set this member function's visibility fields. */
2389 switch (*(*pp)++)
2390 {
2391 case VISIBILITY_PRIVATE:
2392 new_sublist->fn_field.is_private = 1;
2393 break;
2394 case VISIBILITY_PROTECTED:
2395 new_sublist->fn_field.is_protected = 1;
2396 break;
2397 }
2398
2399 STABS_CONTINUE (pp, objfile);
2400 switch (**pp)
2401 {
2402 case 'A': /* Normal functions. */
2403 new_sublist->fn_field.is_const = 0;
2404 new_sublist->fn_field.is_volatile = 0;
2405 (*pp)++;
2406 break;
2407 case 'B': /* `const' member functions. */
2408 new_sublist->fn_field.is_const = 1;
2409 new_sublist->fn_field.is_volatile = 0;
2410 (*pp)++;
2411 break;
2412 case 'C': /* `volatile' member function. */
2413 new_sublist->fn_field.is_const = 0;
2414 new_sublist->fn_field.is_volatile = 1;
2415 (*pp)++;
2416 break;
2417 case 'D': /* `const volatile' member function. */
2418 new_sublist->fn_field.is_const = 1;
2419 new_sublist->fn_field.is_volatile = 1;
2420 (*pp)++;
2421 break;
2422 case '*': /* File compiled with g++ version 1 --
2423 no info. */
2424 case '?':
2425 case '.':
2426 break;
2427 default:
2428 complaint (&symfile_complaints,
2429 _("const/volatile indicator missing, got '%c'"),
2430 **pp);
2431 break;
2432 }
2433
2434 switch (*(*pp)++)
2435 {
2436 case '*':
2437 {
2438 int nbits;
2439 /* virtual member function, followed by index.
2440 The sign bit is set to distinguish pointers-to-methods
2441 from virtual function indicies. Since the array is
2442 in words, the quantity must be shifted left by 1
2443 on 16 bit machine, and by 2 on 32 bit machine, forcing
2444 the sign bit out, and usable as a valid index into
2445 the array. Remove the sign bit here. */
2446 new_sublist->fn_field.voffset =
2447 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2448 if (nbits != 0)
2449 return 0;
2450
2451 STABS_CONTINUE (pp, objfile);
2452 if (**pp == ';' || **pp == '\0')
2453 {
2454 /* Must be g++ version 1. */
2455 new_sublist->fn_field.fcontext = 0;
2456 }
2457 else
2458 {
2459 /* Figure out from whence this virtual function came.
2460 It may belong to virtual function table of
2461 one of its baseclasses. */
2462 look_ahead_type = read_type (pp, objfile);
2463 if (**pp == ':')
2464 {
2465 /* g++ version 1 overloaded methods. */
2466 }
2467 else
2468 {
2469 new_sublist->fn_field.fcontext = look_ahead_type;
2470 if (**pp != ';')
2471 {
2472 return 0;
2473 }
2474 else
2475 {
2476 ++*pp;
2477 }
2478 look_ahead_type = NULL;
2479 }
2480 }
2481 break;
2482 }
2483 case '?':
2484 /* static member function. */
2485 {
2486 int slen = strlen (main_fn_name);
2487
2488 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2489
2490 /* For static member functions, we can't tell if they
2491 are stubbed, as they are put out as functions, and not as
2492 methods.
2493 GCC v2 emits the fully mangled name if
2494 dbxout.c:flag_minimal_debug is not set, so we have to
2495 detect a fully mangled physname here and set is_stub
2496 accordingly. Fully mangled physnames in v2 start with
2497 the member function name, followed by two underscores.
2498 GCC v3 currently always emits stubbed member functions,
2499 but with fully mangled physnames, which start with _Z. */
2500 if (!(strncmp (new_sublist->fn_field.physname,
2501 main_fn_name, slen) == 0
2502 && new_sublist->fn_field.physname[slen] == '_'
2503 && new_sublist->fn_field.physname[slen + 1] == '_'))
2504 {
2505 new_sublist->fn_field.is_stub = 1;
2506 }
2507 break;
2508 }
2509
2510 default:
2511 /* error */
2512 complaint (&symfile_complaints,
2513 _("member function type missing, got '%c'"),
2514 (*pp)[-1]);
2515 /* Fall through into normal member function. */
2516
2517 case '.':
2518 /* normal member function. */
2519 new_sublist->fn_field.voffset = 0;
2520 new_sublist->fn_field.fcontext = 0;
2521 break;
2522 }
2523
2524 new_sublist->next = sublist;
2525 sublist = new_sublist;
2526 length++;
2527 STABS_CONTINUE (pp, objfile);
2528 }
2529 while (**pp != ';' && **pp != '\0');
2530
2531 (*pp)++;
2532 STABS_CONTINUE (pp, objfile);
2533
2534 /* Skip GCC 3.X member functions which are duplicates of the callable
2535 constructor/destructor. */
2536 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2537 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2538 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2539 {
2540 xfree (main_fn_name);
2541 }
2542 else
2543 {
2544 int has_stub = 0;
2545 int has_destructor = 0, has_other = 0;
2546 int is_v3 = 0;
2547 struct next_fnfield *tmp_sublist;
2548
2549 /* Various versions of GCC emit various mostly-useless
2550 strings in the name field for special member functions.
2551
2552 For stub methods, we need to defer correcting the name
2553 until we are ready to unstub the method, because the current
2554 name string is used by gdb_mangle_name. The only stub methods
2555 of concern here are GNU v2 operators; other methods have their
2556 names correct (see caveat below).
2557
2558 For non-stub methods, in GNU v3, we have a complete physname.
2559 Therefore we can safely correct the name now. This primarily
2560 affects constructors and destructors, whose name will be
2561 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2562 operators will also have incorrect names; for instance,
2563 "operator int" will be named "operator i" (i.e. the type is
2564 mangled).
2565
2566 For non-stub methods in GNU v2, we have no easy way to
2567 know if we have a complete physname or not. For most
2568 methods the result depends on the platform (if CPLUS_MARKER
2569 can be `$' or `.', it will use minimal debug information, or
2570 otherwise the full physname will be included).
2571
2572 Rather than dealing with this, we take a different approach.
2573 For v3 mangled names, we can use the full physname; for v2,
2574 we use cplus_demangle_opname (which is actually v2 specific),
2575 because the only interesting names are all operators - once again
2576 barring the caveat below. Skip this process if any method in the
2577 group is a stub, to prevent our fouling up the workings of
2578 gdb_mangle_name.
2579
2580 The caveat: GCC 2.95.x (and earlier?) put constructors and
2581 destructors in the same method group. We need to split this
2582 into two groups, because they should have different names.
2583 So for each method group we check whether it contains both
2584 routines whose physname appears to be a destructor (the physnames
2585 for and destructors are always provided, due to quirks in v2
2586 mangling) and routines whose physname does not appear to be a
2587 destructor. If so then we break up the list into two halves.
2588 Even if the constructors and destructors aren't in the same group
2589 the destructor will still lack the leading tilde, so that also
2590 needs to be fixed.
2591
2592 So, to summarize what we expect and handle here:
2593
2594 Given Given Real Real Action
2595 method name physname physname method name
2596
2597 __opi [none] __opi__3Foo operator int opname
2598 [now or later]
2599 Foo _._3Foo _._3Foo ~Foo separate and
2600 rename
2601 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2602 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2603 */
2604
2605 tmp_sublist = sublist;
2606 while (tmp_sublist != NULL)
2607 {
2608 if (tmp_sublist->fn_field.is_stub)
2609 has_stub = 1;
2610 if (tmp_sublist->fn_field.physname[0] == '_'
2611 && tmp_sublist->fn_field.physname[1] == 'Z')
2612 is_v3 = 1;
2613
2614 if (is_destructor_name (tmp_sublist->fn_field.physname))
2615 has_destructor++;
2616 else
2617 has_other++;
2618
2619 tmp_sublist = tmp_sublist->next;
2620 }
2621
2622 if (has_destructor && has_other)
2623 {
2624 struct next_fnfieldlist *destr_fnlist;
2625 struct next_fnfield *last_sublist;
2626
2627 /* Create a new fn_fieldlist for the destructors. */
2628
2629 destr_fnlist = XCNEW (struct next_fnfieldlist);
2630 make_cleanup (xfree, destr_fnlist);
2631
2632 destr_fnlist->fn_fieldlist.name
2633 = obconcat (&objfile->objfile_obstack, "~",
2634 new_fnlist->fn_fieldlist.name, (char *) NULL);
2635
2636 destr_fnlist->fn_fieldlist.fn_fields =
2637 XOBNEWVEC (&objfile->objfile_obstack,
2638 struct fn_field, has_destructor);
2639 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2640 sizeof (struct fn_field) * has_destructor);
2641 tmp_sublist = sublist;
2642 last_sublist = NULL;
2643 i = 0;
2644 while (tmp_sublist != NULL)
2645 {
2646 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2647 {
2648 tmp_sublist = tmp_sublist->next;
2649 continue;
2650 }
2651
2652 destr_fnlist->fn_fieldlist.fn_fields[i++]
2653 = tmp_sublist->fn_field;
2654 if (last_sublist)
2655 last_sublist->next = tmp_sublist->next;
2656 else
2657 sublist = tmp_sublist->next;
2658 last_sublist = tmp_sublist;
2659 tmp_sublist = tmp_sublist->next;
2660 }
2661
2662 destr_fnlist->fn_fieldlist.length = has_destructor;
2663 destr_fnlist->next = fip->fnlist;
2664 fip->fnlist = destr_fnlist;
2665 nfn_fields++;
2666 length -= has_destructor;
2667 }
2668 else if (is_v3)
2669 {
2670 /* v3 mangling prevents the use of abbreviated physnames,
2671 so we can do this here. There are stubbed methods in v3
2672 only:
2673 - in -gstabs instead of -gstabs+
2674 - or for static methods, which are output as a function type
2675 instead of a method type. */
2676 char *new_method_name =
2677 stabs_method_name_from_physname (sublist->fn_field.physname);
2678
2679 if (new_method_name != NULL
2680 && strcmp (new_method_name,
2681 new_fnlist->fn_fieldlist.name) != 0)
2682 {
2683 new_fnlist->fn_fieldlist.name = new_method_name;
2684 xfree (main_fn_name);
2685 }
2686 else
2687 xfree (new_method_name);
2688 }
2689 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2690 {
2691 new_fnlist->fn_fieldlist.name =
2692 obconcat (&objfile->objfile_obstack,
2693 "~", main_fn_name, (char *)NULL);
2694 xfree (main_fn_name);
2695 }
2696 else if (!has_stub)
2697 {
2698 char dem_opname[256];
2699 int ret;
2700
2701 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2702 dem_opname, DMGL_ANSI);
2703 if (!ret)
2704 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2705 dem_opname, 0);
2706 if (ret)
2707 new_fnlist->fn_fieldlist.name
2708 = ((const char *)
2709 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2710 strlen (dem_opname)));
2711 xfree (main_fn_name);
2712 }
2713
2714 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2715 obstack_alloc (&objfile->objfile_obstack,
2716 sizeof (struct fn_field) * length);
2717 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2718 sizeof (struct fn_field) * length);
2719 for (i = length; (i--, sublist); sublist = sublist->next)
2720 {
2721 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2722 }
2723
2724 new_fnlist->fn_fieldlist.length = length;
2725 new_fnlist->next = fip->fnlist;
2726 fip->fnlist = new_fnlist;
2727 nfn_fields++;
2728 }
2729 }
2730
2731 if (nfn_fields)
2732 {
2733 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2734 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2735 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2736 memset (TYPE_FN_FIELDLISTS (type), 0,
2737 sizeof (struct fn_fieldlist) * nfn_fields);
2738 TYPE_NFN_FIELDS (type) = nfn_fields;
2739 }
2740
2741 return 1;
2742 }
2743
2744 /* Special GNU C++ name.
2745
2746 Returns 1 for success, 0 for failure. "failure" means that we can't
2747 keep parsing and it's time for error_type(). */
2748
2749 static int
2750 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2751 struct objfile *objfile)
2752 {
2753 char *p;
2754 const char *name;
2755 char cpp_abbrev;
2756 struct type *context;
2757
2758 p = *pp;
2759 if (*++p == 'v')
2760 {
2761 name = NULL;
2762 cpp_abbrev = *++p;
2763
2764 *pp = p + 1;
2765
2766 /* At this point, *pp points to something like "22:23=*22...",
2767 where the type number before the ':' is the "context" and
2768 everything after is a regular type definition. Lookup the
2769 type, find it's name, and construct the field name. */
2770
2771 context = read_type (pp, objfile);
2772
2773 switch (cpp_abbrev)
2774 {
2775 case 'f': /* $vf -- a virtual function table pointer */
2776 name = type_name_no_tag (context);
2777 if (name == NULL)
2778 {
2779 name = "";
2780 }
2781 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2782 vptr_name, name, (char *) NULL);
2783 break;
2784
2785 case 'b': /* $vb -- a virtual bsomethingorother */
2786 name = type_name_no_tag (context);
2787 if (name == NULL)
2788 {
2789 complaint (&symfile_complaints,
2790 _("C++ abbreviated type name "
2791 "unknown at symtab pos %d"),
2792 symnum);
2793 name = "FOO";
2794 }
2795 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2796 name, (char *) NULL);
2797 break;
2798
2799 default:
2800 invalid_cpp_abbrev_complaint (*pp);
2801 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2802 "INVALID_CPLUSPLUS_ABBREV",
2803 (char *) NULL);
2804 break;
2805 }
2806
2807 /* At this point, *pp points to the ':'. Skip it and read the
2808 field type. */
2809
2810 p = ++(*pp);
2811 if (p[-1] != ':')
2812 {
2813 invalid_cpp_abbrev_complaint (*pp);
2814 return 0;
2815 }
2816 fip->list->field.type = read_type (pp, objfile);
2817 if (**pp == ',')
2818 (*pp)++; /* Skip the comma. */
2819 else
2820 return 0;
2821
2822 {
2823 int nbits;
2824
2825 SET_FIELD_BITPOS (fip->list->field,
2826 read_huge_number (pp, ';', &nbits, 0));
2827 if (nbits != 0)
2828 return 0;
2829 }
2830 /* This field is unpacked. */
2831 FIELD_BITSIZE (fip->list->field) = 0;
2832 fip->list->visibility = VISIBILITY_PRIVATE;
2833 }
2834 else
2835 {
2836 invalid_cpp_abbrev_complaint (*pp);
2837 /* We have no idea what syntax an unrecognized abbrev would have, so
2838 better return 0. If we returned 1, we would need to at least advance
2839 *pp to avoid an infinite loop. */
2840 return 0;
2841 }
2842 return 1;
2843 }
2844
2845 static void
2846 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2847 struct type *type, struct objfile *objfile)
2848 {
2849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2850
2851 fip->list->field.name
2852 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2853 *pp = p + 1;
2854
2855 /* This means we have a visibility for a field coming. */
2856 if (**pp == '/')
2857 {
2858 (*pp)++;
2859 fip->list->visibility = *(*pp)++;
2860 }
2861 else
2862 {
2863 /* normal dbx-style format, no explicit visibility */
2864 fip->list->visibility = VISIBILITY_PUBLIC;
2865 }
2866
2867 fip->list->field.type = read_type (pp, objfile);
2868 if (**pp == ':')
2869 {
2870 p = ++(*pp);
2871 #if 0
2872 /* Possible future hook for nested types. */
2873 if (**pp == '!')
2874 {
2875 fip->list->field.bitpos = (long) -2; /* nested type */
2876 p = ++(*pp);
2877 }
2878 else
2879 ...;
2880 #endif
2881 while (*p != ';')
2882 {
2883 p++;
2884 }
2885 /* Static class member. */
2886 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2887 *pp = p + 1;
2888 return;
2889 }
2890 else if (**pp != ',')
2891 {
2892 /* Bad structure-type format. */
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2895 }
2896
2897 (*pp)++; /* Skip the comma. */
2898
2899 {
2900 int nbits;
2901
2902 SET_FIELD_BITPOS (fip->list->field,
2903 read_huge_number (pp, ',', &nbits, 0));
2904 if (nbits != 0)
2905 {
2906 stabs_general_complaint ("bad structure-type format");
2907 return;
2908 }
2909 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2910 if (nbits != 0)
2911 {
2912 stabs_general_complaint ("bad structure-type format");
2913 return;
2914 }
2915 }
2916
2917 if (FIELD_BITPOS (fip->list->field) == 0
2918 && FIELD_BITSIZE (fip->list->field) == 0)
2919 {
2920 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2921 it is a field which has been optimized out. The correct stab for
2922 this case is to use VISIBILITY_IGNORE, but that is a recent
2923 invention. (2) It is a 0-size array. For example
2924 union { int num; char str[0]; } foo. Printing _("<no value>" for
2925 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2926 will continue to work, and a 0-size array as a whole doesn't
2927 have any contents to print.
2928
2929 I suspect this probably could also happen with gcc -gstabs (not
2930 -gstabs+) for static fields, and perhaps other C++ extensions.
2931 Hopefully few people use -gstabs with gdb, since it is intended
2932 for dbx compatibility. */
2933
2934 /* Ignore this field. */
2935 fip->list->visibility = VISIBILITY_IGNORE;
2936 }
2937 else
2938 {
2939 /* Detect an unpacked field and mark it as such.
2940 dbx gives a bit size for all fields.
2941 Note that forward refs cannot be packed,
2942 and treat enums as if they had the width of ints. */
2943
2944 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2945
2946 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2947 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2948 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2949 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2950 {
2951 FIELD_BITSIZE (fip->list->field) = 0;
2952 }
2953 if ((FIELD_BITSIZE (fip->list->field)
2954 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2955 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2956 && FIELD_BITSIZE (fip->list->field)
2957 == gdbarch_int_bit (gdbarch))
2958 )
2959 &&
2960 FIELD_BITPOS (fip->list->field) % 8 == 0)
2961 {
2962 FIELD_BITSIZE (fip->list->field) = 0;
2963 }
2964 }
2965 }
2966
2967
2968 /* Read struct or class data fields. They have the form:
2969
2970 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2971
2972 At the end, we see a semicolon instead of a field.
2973
2974 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2975 a static field.
2976
2977 The optional VISIBILITY is one of:
2978
2979 '/0' (VISIBILITY_PRIVATE)
2980 '/1' (VISIBILITY_PROTECTED)
2981 '/2' (VISIBILITY_PUBLIC)
2982 '/9' (VISIBILITY_IGNORE)
2983
2984 or nothing, for C style fields with public visibility.
2985
2986 Returns 1 for success, 0 for failure. */
2987
2988 static int
2989 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2990 struct objfile *objfile)
2991 {
2992 char *p;
2993 struct nextfield *newobj;
2994
2995 /* We better set p right now, in case there are no fields at all... */
2996
2997 p = *pp;
2998
2999 /* Read each data member type until we find the terminating ';' at the end of
3000 the data member list, or break for some other reason such as finding the
3001 start of the member function list. */
3002 /* Stab string for structure/union does not end with two ';' in
3003 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3004
3005 while (**pp != ';' && **pp != '\0')
3006 {
3007 STABS_CONTINUE (pp, objfile);
3008 /* Get space to record the next field's data. */
3009 newobj = XCNEW (struct nextfield);
3010 make_cleanup (xfree, newobj);
3011
3012 newobj->next = fip->list;
3013 fip->list = newobj;
3014
3015 /* Get the field name. */
3016 p = *pp;
3017
3018 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3019 unless the CPLUS_MARKER is followed by an underscore, in
3020 which case it is just the name of an anonymous type, which we
3021 should handle like any other type name. */
3022
3023 if (is_cplus_marker (p[0]) && p[1] != '_')
3024 {
3025 if (!read_cpp_abbrev (fip, pp, type, objfile))
3026 return 0;
3027 continue;
3028 }
3029
3030 /* Look for the ':' that separates the field name from the field
3031 values. Data members are delimited by a single ':', while member
3032 functions are delimited by a pair of ':'s. When we hit the member
3033 functions (if any), terminate scan loop and return. */
3034
3035 while (*p != ':' && *p != '\0')
3036 {
3037 p++;
3038 }
3039 if (*p == '\0')
3040 return 0;
3041
3042 /* Check to see if we have hit the member functions yet. */
3043 if (p[1] == ':')
3044 {
3045 break;
3046 }
3047 read_one_struct_field (fip, pp, p, type, objfile);
3048 }
3049 if (p[0] == ':' && p[1] == ':')
3050 {
3051 /* (the deleted) chill the list of fields: the last entry (at
3052 the head) is a partially constructed entry which we now
3053 scrub. */
3054 fip->list = fip->list->next;
3055 }
3056 return 1;
3057 }
3058 /* *INDENT-OFF* */
3059 /* The stabs for C++ derived classes contain baseclass information which
3060 is marked by a '!' character after the total size. This function is
3061 called when we encounter the baseclass marker, and slurps up all the
3062 baseclass information.
3063
3064 Immediately following the '!' marker is the number of base classes that
3065 the class is derived from, followed by information for each base class.
3066 For each base class, there are two visibility specifiers, a bit offset
3067 to the base class information within the derived class, a reference to
3068 the type for the base class, and a terminating semicolon.
3069
3070 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3071 ^^ ^ ^ ^ ^ ^ ^
3072 Baseclass information marker __________________|| | | | | | |
3073 Number of baseclasses __________________________| | | | | | |
3074 Visibility specifiers (2) ________________________| | | | | |
3075 Offset in bits from start of class _________________| | | | |
3076 Type number for base class ___________________________| | | |
3077 Visibility specifiers (2) _______________________________| | |
3078 Offset in bits from start of class ________________________| |
3079 Type number of base class ____________________________________|
3080
3081 Return 1 for success, 0 for (error-type-inducing) failure. */
3082 /* *INDENT-ON* */
3083
3084
3085
3086 static int
3087 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3088 struct objfile *objfile)
3089 {
3090 int i;
3091 struct nextfield *newobj;
3092
3093 if (**pp != '!')
3094 {
3095 return 1;
3096 }
3097 else
3098 {
3099 /* Skip the '!' baseclass information marker. */
3100 (*pp)++;
3101 }
3102
3103 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3104 {
3105 int nbits;
3106
3107 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3108 if (nbits != 0)
3109 return 0;
3110 }
3111
3112 #if 0
3113 /* Some stupid compilers have trouble with the following, so break
3114 it up into simpler expressions. */
3115 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3116 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3117 #else
3118 {
3119 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3120 char *pointer;
3121
3122 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3124 }
3125 #endif /* 0 */
3126
3127 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3128
3129 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3130 {
3131 newobj = XCNEW (struct nextfield);
3132 make_cleanup (xfree, newobj);
3133
3134 newobj->next = fip->list;
3135 fip->list = newobj;
3136 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3137 field! */
3138
3139 STABS_CONTINUE (pp, objfile);
3140 switch (**pp)
3141 {
3142 case '0':
3143 /* Nothing to do. */
3144 break;
3145 case '1':
3146 SET_TYPE_FIELD_VIRTUAL (type, i);
3147 break;
3148 default:
3149 /* Unknown character. Complain and treat it as non-virtual. */
3150 {
3151 complaint (&symfile_complaints,
3152 _("Unknown virtual character `%c' for baseclass"),
3153 **pp);
3154 }
3155 }
3156 ++(*pp);
3157
3158 newobj->visibility = *(*pp)++;
3159 switch (newobj->visibility)
3160 {
3161 case VISIBILITY_PRIVATE:
3162 case VISIBILITY_PROTECTED:
3163 case VISIBILITY_PUBLIC:
3164 break;
3165 default:
3166 /* Bad visibility format. Complain and treat it as
3167 public. */
3168 {
3169 complaint (&symfile_complaints,
3170 _("Unknown visibility `%c' for baseclass"),
3171 newobj->visibility);
3172 newobj->visibility = VISIBILITY_PUBLIC;
3173 }
3174 }
3175
3176 {
3177 int nbits;
3178
3179 /* The remaining value is the bit offset of the portion of the object
3180 corresponding to this baseclass. Always zero in the absence of
3181 multiple inheritance. */
3182
3183 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3184 if (nbits != 0)
3185 return 0;
3186 }
3187
3188 /* The last piece of baseclass information is the type of the
3189 base class. Read it, and remember it's type name as this
3190 field's name. */
3191
3192 newobj->field.type = read_type (pp, objfile);
3193 newobj->field.name = type_name_no_tag (newobj->field.type);
3194
3195 /* Skip trailing ';' and bump count of number of fields seen. */
3196 if (**pp == ';')
3197 (*pp)++;
3198 else
3199 return 0;
3200 }
3201 return 1;
3202 }
3203
3204 /* The tail end of stabs for C++ classes that contain a virtual function
3205 pointer contains a tilde, a %, and a type number.
3206 The type number refers to the base class (possibly this class itself) which
3207 contains the vtable pointer for the current class.
3208
3209 This function is called when we have parsed all the method declarations,
3210 so we can look for the vptr base class info. */
3211
3212 static int
3213 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3214 struct objfile *objfile)
3215 {
3216 char *p;
3217
3218 STABS_CONTINUE (pp, objfile);
3219
3220 /* If we are positioned at a ';', then skip it. */
3221 if (**pp == ';')
3222 {
3223 (*pp)++;
3224 }
3225
3226 if (**pp == '~')
3227 {
3228 (*pp)++;
3229
3230 if (**pp == '=' || **pp == '+' || **pp == '-')
3231 {
3232 /* Obsolete flags that used to indicate the presence
3233 of constructors and/or destructors. */
3234 (*pp)++;
3235 }
3236
3237 /* Read either a '%' or the final ';'. */
3238 if (*(*pp)++ == '%')
3239 {
3240 /* The next number is the type number of the base class
3241 (possibly our own class) which supplies the vtable for
3242 this class. Parse it out, and search that class to find
3243 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3244 and TYPE_VPTR_FIELDNO. */
3245
3246 struct type *t;
3247 int i;
3248
3249 t = read_type (pp, objfile);
3250 p = (*pp)++;
3251 while (*p != '\0' && *p != ';')
3252 {
3253 p++;
3254 }
3255 if (*p == '\0')
3256 {
3257 /* Premature end of symbol. */
3258 return 0;
3259 }
3260
3261 set_type_vptr_basetype (type, t);
3262 if (type == t) /* Our own class provides vtbl ptr. */
3263 {
3264 for (i = TYPE_NFIELDS (t) - 1;
3265 i >= TYPE_N_BASECLASSES (t);
3266 --i)
3267 {
3268 const char *name = TYPE_FIELD_NAME (t, i);
3269
3270 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3271 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3272 {
3273 set_type_vptr_fieldno (type, i);
3274 goto gotit;
3275 }
3276 }
3277 /* Virtual function table field not found. */
3278 complaint (&symfile_complaints,
3279 _("virtual function table pointer "
3280 "not found when defining class `%s'"),
3281 TYPE_NAME (type));
3282 return 0;
3283 }
3284 else
3285 {
3286 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3287 }
3288
3289 gotit:
3290 *pp = p + 1;
3291 }
3292 }
3293 return 1;
3294 }
3295
3296 static int
3297 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3298 {
3299 int n;
3300
3301 for (n = TYPE_NFN_FIELDS (type);
3302 fip->fnlist != NULL;
3303 fip->fnlist = fip->fnlist->next)
3304 {
3305 --n; /* Circumvent Sun3 compiler bug. */
3306 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3307 }
3308 return 1;
3309 }
3310
3311 /* Create the vector of fields, and record how big it is.
3312 We need this info to record proper virtual function table information
3313 for this class's virtual functions. */
3314
3315 static int
3316 attach_fields_to_type (struct field_info *fip, struct type *type,
3317 struct objfile *objfile)
3318 {
3319 int nfields = 0;
3320 int non_public_fields = 0;
3321 struct nextfield *scan;
3322
3323 /* Count up the number of fields that we have, as well as taking note of
3324 whether or not there are any non-public fields, which requires us to
3325 allocate and build the private_field_bits and protected_field_bits
3326 bitfields. */
3327
3328 for (scan = fip->list; scan != NULL; scan = scan->next)
3329 {
3330 nfields++;
3331 if (scan->visibility != VISIBILITY_PUBLIC)
3332 {
3333 non_public_fields++;
3334 }
3335 }
3336
3337 /* Now we know how many fields there are, and whether or not there are any
3338 non-public fields. Record the field count, allocate space for the
3339 array of fields, and create blank visibility bitfields if necessary. */
3340
3341 TYPE_NFIELDS (type) = nfields;
3342 TYPE_FIELDS (type) = (struct field *)
3343 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3344 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3345
3346 if (non_public_fields)
3347 {
3348 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3349
3350 TYPE_FIELD_PRIVATE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3353
3354 TYPE_FIELD_PROTECTED_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3357
3358 TYPE_FIELD_IGNORE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3361 }
3362
3363 /* Copy the saved-up fields into the field vector. Start from the
3364 head of the list, adding to the tail of the field array, so that
3365 they end up in the same order in the array in which they were
3366 added to the list. */
3367
3368 while (nfields-- > 0)
3369 {
3370 TYPE_FIELD (type, nfields) = fip->list->field;
3371 switch (fip->list->visibility)
3372 {
3373 case VISIBILITY_PRIVATE:
3374 SET_TYPE_FIELD_PRIVATE (type, nfields);
3375 break;
3376
3377 case VISIBILITY_PROTECTED:
3378 SET_TYPE_FIELD_PROTECTED (type, nfields);
3379 break;
3380
3381 case VISIBILITY_IGNORE:
3382 SET_TYPE_FIELD_IGNORE (type, nfields);
3383 break;
3384
3385 case VISIBILITY_PUBLIC:
3386 break;
3387
3388 default:
3389 /* Unknown visibility. Complain and treat it as public. */
3390 {
3391 complaint (&symfile_complaints,
3392 _("Unknown visibility `%c' for field"),
3393 fip->list->visibility);
3394 }
3395 break;
3396 }
3397 fip->list = fip->list->next;
3398 }
3399 return 1;
3400 }
3401
3402
3403 /* Complain that the compiler has emitted more than one definition for the
3404 structure type TYPE. */
3405 static void
3406 complain_about_struct_wipeout (struct type *type)
3407 {
3408 const char *name = "";
3409 const char *kind = "";
3410
3411 if (TYPE_TAG_NAME (type))
3412 {
3413 name = TYPE_TAG_NAME (type);
3414 switch (TYPE_CODE (type))
3415 {
3416 case TYPE_CODE_STRUCT: kind = "struct "; break;
3417 case TYPE_CODE_UNION: kind = "union "; break;
3418 case TYPE_CODE_ENUM: kind = "enum "; break;
3419 default: kind = "";
3420 }
3421 }
3422 else if (TYPE_NAME (type))
3423 {
3424 name = TYPE_NAME (type);
3425 kind = "";
3426 }
3427 else
3428 {
3429 name = "<unknown>";
3430 kind = "";
3431 }
3432
3433 complaint (&symfile_complaints,
3434 _("struct/union type gets multiply defined: %s%s"), kind, name);
3435 }
3436
3437 /* Set the length for all variants of a same main_type, which are
3438 connected in the closed chain.
3439
3440 This is something that needs to be done when a type is defined *after*
3441 some cross references to this type have already been read. Consider
3442 for instance the following scenario where we have the following two
3443 stabs entries:
3444
3445 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3446 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3447
3448 A stubbed version of type dummy is created while processing the first
3449 stabs entry. The length of that type is initially set to zero, since
3450 it is unknown at this point. Also, a "constant" variation of type
3451 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3452 the stabs line).
3453
3454 The second stabs entry allows us to replace the stubbed definition
3455 with the real definition. However, we still need to adjust the length
3456 of the "constant" variation of that type, as its length was left
3457 untouched during the main type replacement... */
3458
3459 static void
3460 set_length_in_type_chain (struct type *type)
3461 {
3462 struct type *ntype = TYPE_CHAIN (type);
3463
3464 while (ntype != type)
3465 {
3466 if (TYPE_LENGTH(ntype) == 0)
3467 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3468 else
3469 complain_about_struct_wipeout (ntype);
3470 ntype = TYPE_CHAIN (ntype);
3471 }
3472 }
3473
3474 /* Read the description of a structure (or union type) and return an object
3475 describing the type.
3476
3477 PP points to a character pointer that points to the next unconsumed token
3478 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3479 *PP will point to "4a:1,0,32;;".
3480
3481 TYPE points to an incomplete type that needs to be filled in.
3482
3483 OBJFILE points to the current objfile from which the stabs information is
3484 being read. (Note that it is redundant in that TYPE also contains a pointer
3485 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3486 */
3487
3488 static struct type *
3489 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3490 struct objfile *objfile)
3491 {
3492 struct cleanup *back_to;
3493 struct field_info fi;
3494
3495 fi.list = NULL;
3496 fi.fnlist = NULL;
3497
3498 /* When describing struct/union/class types in stabs, G++ always drops
3499 all qualifications from the name. So if you've got:
3500 struct A { ... struct B { ... }; ... };
3501 then G++ will emit stabs for `struct A::B' that call it simply
3502 `struct B'. Obviously, if you've got a real top-level definition for
3503 `struct B', or other nested definitions, this is going to cause
3504 problems.
3505
3506 Obviously, GDB can't fix this by itself, but it can at least avoid
3507 scribbling on existing structure type objects when new definitions
3508 appear. */
3509 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3510 || TYPE_STUB (type)))
3511 {
3512 complain_about_struct_wipeout (type);
3513
3514 /* It's probably best to return the type unchanged. */
3515 return type;
3516 }
3517
3518 back_to = make_cleanup (null_cleanup, 0);
3519
3520 INIT_CPLUS_SPECIFIC (type);
3521 TYPE_CODE (type) = type_code;
3522 TYPE_STUB (type) = 0;
3523
3524 /* First comes the total size in bytes. */
3525
3526 {
3527 int nbits;
3528
3529 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3530 if (nbits != 0)
3531 {
3532 do_cleanups (back_to);
3533 return error_type (pp, objfile);
3534 }
3535 set_length_in_type_chain (type);
3536 }
3537
3538 /* Now read the baseclasses, if any, read the regular C struct or C++
3539 class member fields, attach the fields to the type, read the C++
3540 member functions, attach them to the type, and then read any tilde
3541 field (baseclass specifier for the class holding the main vtable). */
3542
3543 if (!read_baseclasses (&fi, pp, type, objfile)
3544 || !read_struct_fields (&fi, pp, type, objfile)
3545 || !attach_fields_to_type (&fi, type, objfile)
3546 || !read_member_functions (&fi, pp, type, objfile)
3547 || !attach_fn_fields_to_type (&fi, type)
3548 || !read_tilde_fields (&fi, pp, type, objfile))
3549 {
3550 type = error_type (pp, objfile);
3551 }
3552
3553 do_cleanups (back_to);
3554 return (type);
3555 }
3556
3557 /* Read a definition of an array type,
3558 and create and return a suitable type object.
3559 Also creates a range type which represents the bounds of that
3560 array. */
3561
3562 static struct type *
3563 read_array_type (char **pp, struct type *type,
3564 struct objfile *objfile)
3565 {
3566 struct type *index_type, *element_type, *range_type;
3567 int lower, upper;
3568 int adjustable = 0;
3569 int nbits;
3570
3571 /* Format of an array type:
3572 "ar<index type>;lower;upper;<array_contents_type>".
3573 OS9000: "arlower,upper;<array_contents_type>".
3574
3575 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3576 for these, produce a type like float[][]. */
3577
3578 {
3579 index_type = read_type (pp, objfile);
3580 if (**pp != ';')
3581 /* Improper format of array type decl. */
3582 return error_type (pp, objfile);
3583 ++*pp;
3584 }
3585
3586 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3587 {
3588 (*pp)++;
3589 adjustable = 1;
3590 }
3591 lower = read_huge_number (pp, ';', &nbits, 0);
3592
3593 if (nbits != 0)
3594 return error_type (pp, objfile);
3595
3596 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3597 {
3598 (*pp)++;
3599 adjustable = 1;
3600 }
3601 upper = read_huge_number (pp, ';', &nbits, 0);
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 element_type = read_type (pp, objfile);
3606
3607 if (adjustable)
3608 {
3609 lower = 0;
3610 upper = -1;
3611 }
3612
3613 range_type =
3614 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3615 type = create_array_type (type, element_type, range_type);
3616
3617 return type;
3618 }
3619
3620
3621 /* Read a definition of an enumeration type,
3622 and create and return a suitable type object.
3623 Also defines the symbols that represent the values of the type. */
3624
3625 static struct type *
3626 read_enum_type (char **pp, struct type *type,
3627 struct objfile *objfile)
3628 {
3629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3630 char *p;
3631 char *name;
3632 long n;
3633 struct symbol *sym;
3634 int nsyms = 0;
3635 struct pending **symlist;
3636 struct pending *osyms, *syms;
3637 int o_nsyms;
3638 int nbits;
3639 int unsigned_enum = 1;
3640
3641 #if 0
3642 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3643 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3644 to do? For now, force all enum values to file scope. */
3645 if (within_function)
3646 symlist = &local_symbols;
3647 else
3648 #endif
3649 symlist = &file_symbols;
3650 osyms = *symlist;
3651 o_nsyms = osyms ? osyms->nsyms : 0;
3652
3653 /* The aix4 compiler emits an extra field before the enum members;
3654 my guess is it's a type of some sort. Just ignore it. */
3655 if (**pp == '-')
3656 {
3657 /* Skip over the type. */
3658 while (**pp != ':')
3659 (*pp)++;
3660
3661 /* Skip over the colon. */
3662 (*pp)++;
3663 }
3664
3665 /* Read the value-names and their values.
3666 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3667 A semicolon or comma instead of a NAME means the end. */
3668 while (**pp && **pp != ';' && **pp != ',')
3669 {
3670 STABS_CONTINUE (pp, objfile);
3671 p = *pp;
3672 while (*p != ':')
3673 p++;
3674 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3675 *pp = p + 1;
3676 n = read_huge_number (pp, ',', &nbits, 0);
3677 if (nbits != 0)
3678 return error_type (pp, objfile);
3679
3680 sym = allocate_symbol (objfile);
3681 SYMBOL_SET_LINKAGE_NAME (sym, name);
3682 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3683 &objfile->objfile_obstack);
3684 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3685 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3686 SYMBOL_VALUE (sym) = n;
3687 if (n < 0)
3688 unsigned_enum = 0;
3689 add_symbol_to_list (sym, symlist);
3690 nsyms++;
3691 }
3692
3693 if (**pp == ';')
3694 (*pp)++; /* Skip the semicolon. */
3695
3696 /* Now fill in the fields of the type-structure. */
3697
3698 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3699 set_length_in_type_chain (type);
3700 TYPE_CODE (type) = TYPE_CODE_ENUM;
3701 TYPE_STUB (type) = 0;
3702 if (unsigned_enum)
3703 TYPE_UNSIGNED (type) = 1;
3704 TYPE_NFIELDS (type) = nsyms;
3705 TYPE_FIELDS (type) = (struct field *)
3706 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3707 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3708
3709 /* Find the symbols for the values and put them into the type.
3710 The symbols can be found in the symlist that we put them on
3711 to cause them to be defined. osyms contains the old value
3712 of that symlist; everything up to there was defined by us. */
3713 /* Note that we preserve the order of the enum constants, so
3714 that in something like "enum {FOO, LAST_THING=FOO}" we print
3715 FOO, not LAST_THING. */
3716
3717 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3718 {
3719 int last = syms == osyms ? o_nsyms : 0;
3720 int j = syms->nsyms;
3721
3722 for (; --j >= last; --n)
3723 {
3724 struct symbol *xsym = syms->symbol[j];
3725
3726 SYMBOL_TYPE (xsym) = type;
3727 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3728 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3729 TYPE_FIELD_BITSIZE (type, n) = 0;
3730 }
3731 if (syms == osyms)
3732 break;
3733 }
3734
3735 return type;
3736 }
3737
3738 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3739 typedefs in every file (for int, long, etc):
3740
3741 type = b <signed> <width> <format type>; <offset>; <nbits>
3742 signed = u or s.
3743 optional format type = c or b for char or boolean.
3744 offset = offset from high order bit to start bit of type.
3745 width is # bytes in object of this type, nbits is # bits in type.
3746
3747 The width/offset stuff appears to be for small objects stored in
3748 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3749 FIXME. */
3750
3751 static struct type *
3752 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3753 {
3754 int type_bits;
3755 int nbits;
3756 int unsigned_type;
3757 int boolean_type = 0;
3758
3759 switch (**pp)
3760 {
3761 case 's':
3762 unsigned_type = 0;
3763 break;
3764 case 'u':
3765 unsigned_type = 1;
3766 break;
3767 default:
3768 return error_type (pp, objfile);
3769 }
3770 (*pp)++;
3771
3772 /* For some odd reason, all forms of char put a c here. This is strange
3773 because no other type has this honor. We can safely ignore this because
3774 we actually determine 'char'acterness by the number of bits specified in
3775 the descriptor.
3776 Boolean forms, e.g Fortran logical*X, put a b here. */
3777
3778 if (**pp == 'c')
3779 (*pp)++;
3780 else if (**pp == 'b')
3781 {
3782 boolean_type = 1;
3783 (*pp)++;
3784 }
3785
3786 /* The first number appears to be the number of bytes occupied
3787 by this type, except that unsigned short is 4 instead of 2.
3788 Since this information is redundant with the third number,
3789 we will ignore it. */
3790 read_huge_number (pp, ';', &nbits, 0);
3791 if (nbits != 0)
3792 return error_type (pp, objfile);
3793
3794 /* The second number is always 0, so ignore it too. */
3795 read_huge_number (pp, ';', &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798
3799 /* The third number is the number of bits for this type. */
3800 type_bits = read_huge_number (pp, 0, &nbits, 0);
3801 if (nbits != 0)
3802 return error_type (pp, objfile);
3803 /* The type *should* end with a semicolon. If it are embedded
3804 in a larger type the semicolon may be the only way to know where
3805 the type ends. If this type is at the end of the stabstring we
3806 can deal with the omitted semicolon (but we don't have to like
3807 it). Don't bother to complain(), Sun's compiler omits the semicolon
3808 for "void". */
3809 if (**pp == ';')
3810 ++(*pp);
3811
3812 if (type_bits == 0)
3813 {
3814 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3815 if (unsigned_type)
3816 TYPE_UNSIGNED (type) = 1;
3817 return type;
3818 }
3819
3820 if (boolean_type)
3821 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3822 else
3823 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3824 }
3825
3826 static struct type *
3827 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3828 {
3829 int nbits;
3830 int details;
3831 int nbytes;
3832 struct type *rettype;
3833
3834 /* The first number has more details about the type, for example
3835 FN_COMPLEX. */
3836 details = read_huge_number (pp, ';', &nbits, 0);
3837 if (nbits != 0)
3838 return error_type (pp, objfile);
3839
3840 /* The second number is the number of bytes occupied by this type. */
3841 nbytes = read_huge_number (pp, ';', &nbits, 0);
3842 if (nbits != 0)
3843 return error_type (pp, objfile);
3844
3845 nbits = nbytes * TARGET_CHAR_BIT;
3846
3847 if (details == NF_COMPLEX || details == NF_COMPLEX16
3848 || details == NF_COMPLEX32)
3849 {
3850 rettype = init_float_type (objfile, nbits / 2, NULL, NULL);
3851 return init_complex_type (objfile, NULL, rettype);
3852 }
3853
3854 return init_float_type (objfile, nbits, NULL, NULL);
3855 }
3856
3857 /* Read a number from the string pointed to by *PP.
3858 The value of *PP is advanced over the number.
3859 If END is nonzero, the character that ends the
3860 number must match END, or an error happens;
3861 and that character is skipped if it does match.
3862 If END is zero, *PP is left pointing to that character.
3863
3864 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3865 the number is represented in an octal representation, assume that
3866 it is represented in a 2's complement representation with a size of
3867 TWOS_COMPLEMENT_BITS.
3868
3869 If the number fits in a long, set *BITS to 0 and return the value.
3870 If not, set *BITS to be the number of bits in the number and return 0.
3871
3872 If encounter garbage, set *BITS to -1 and return 0. */
3873
3874 static long
3875 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3876 {
3877 char *p = *pp;
3878 int sign = 1;
3879 int sign_bit = 0;
3880 long n = 0;
3881 int radix = 10;
3882 char overflow = 0;
3883 int nbits = 0;
3884 int c;
3885 long upper_limit;
3886 int twos_complement_representation = 0;
3887
3888 if (*p == '-')
3889 {
3890 sign = -1;
3891 p++;
3892 }
3893
3894 /* Leading zero means octal. GCC uses this to output values larger
3895 than an int (because that would be hard in decimal). */
3896 if (*p == '0')
3897 {
3898 radix = 8;
3899 p++;
3900 }
3901
3902 /* Skip extra zeros. */
3903 while (*p == '0')
3904 p++;
3905
3906 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3907 {
3908 /* Octal, possibly signed. Check if we have enough chars for a
3909 negative number. */
3910
3911 size_t len;
3912 char *p1 = p;
3913
3914 while ((c = *p1) >= '0' && c < '8')
3915 p1++;
3916
3917 len = p1 - p;
3918 if (len > twos_complement_bits / 3
3919 || (twos_complement_bits % 3 == 0
3920 && len == twos_complement_bits / 3))
3921 {
3922 /* Ok, we have enough characters for a signed value, check
3923 for signness by testing if the sign bit is set. */
3924 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3925 c = *p - '0';
3926 if (c & (1 << sign_bit))
3927 {
3928 /* Definitely signed. */
3929 twos_complement_representation = 1;
3930 sign = -1;
3931 }
3932 }
3933 }
3934
3935 upper_limit = LONG_MAX / radix;
3936
3937 while ((c = *p++) >= '0' && c < ('0' + radix))
3938 {
3939 if (n <= upper_limit)
3940 {
3941 if (twos_complement_representation)
3942 {
3943 /* Octal, signed, twos complement representation. In
3944 this case, n is the corresponding absolute value. */
3945 if (n == 0)
3946 {
3947 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3948
3949 n = -sn;
3950 }
3951 else
3952 {
3953 n *= radix;
3954 n -= c - '0';
3955 }
3956 }
3957 else
3958 {
3959 /* unsigned representation */
3960 n *= radix;
3961 n += c - '0'; /* FIXME this overflows anyway. */
3962 }
3963 }
3964 else
3965 overflow = 1;
3966
3967 /* This depends on large values being output in octal, which is
3968 what GCC does. */
3969 if (radix == 8)
3970 {
3971 if (nbits == 0)
3972 {
3973 if (c == '0')
3974 /* Ignore leading zeroes. */
3975 ;
3976 else if (c == '1')
3977 nbits = 1;
3978 else if (c == '2' || c == '3')
3979 nbits = 2;
3980 else
3981 nbits = 3;
3982 }
3983 else
3984 nbits += 3;
3985 }
3986 }
3987 if (end)
3988 {
3989 if (c && c != end)
3990 {
3991 if (bits != NULL)
3992 *bits = -1;
3993 return 0;
3994 }
3995 }
3996 else
3997 --p;
3998
3999 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4000 {
4001 /* We were supposed to parse a number with maximum
4002 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4003 if (bits != NULL)
4004 *bits = -1;
4005 return 0;
4006 }
4007
4008 *pp = p;
4009 if (overflow)
4010 {
4011 if (nbits == 0)
4012 {
4013 /* Large decimal constants are an error (because it is hard to
4014 count how many bits are in them). */
4015 if (bits != NULL)
4016 *bits = -1;
4017 return 0;
4018 }
4019
4020 /* -0x7f is the same as 0x80. So deal with it by adding one to
4021 the number of bits. Two's complement represention octals
4022 can't have a '-' in front. */
4023 if (sign == -1 && !twos_complement_representation)
4024 ++nbits;
4025 if (bits)
4026 *bits = nbits;
4027 }
4028 else
4029 {
4030 if (bits)
4031 *bits = 0;
4032 return n * sign;
4033 }
4034 /* It's *BITS which has the interesting information. */
4035 return 0;
4036 }
4037
4038 static struct type *
4039 read_range_type (char **pp, int typenums[2], int type_size,
4040 struct objfile *objfile)
4041 {
4042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4043 char *orig_pp = *pp;
4044 int rangenums[2];
4045 long n2, n3;
4046 int n2bits, n3bits;
4047 int self_subrange;
4048 struct type *result_type;
4049 struct type *index_type = NULL;
4050
4051 /* First comes a type we are a subrange of.
4052 In C it is usually 0, 1 or the type being defined. */
4053 if (read_type_number (pp, rangenums) != 0)
4054 return error_type (pp, objfile);
4055 self_subrange = (rangenums[0] == typenums[0] &&
4056 rangenums[1] == typenums[1]);
4057
4058 if (**pp == '=')
4059 {
4060 *pp = orig_pp;
4061 index_type = read_type (pp, objfile);
4062 }
4063
4064 /* A semicolon should now follow; skip it. */
4065 if (**pp == ';')
4066 (*pp)++;
4067
4068 /* The remaining two operands are usually lower and upper bounds
4069 of the range. But in some special cases they mean something else. */
4070 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4071 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4072
4073 if (n2bits == -1 || n3bits == -1)
4074 return error_type (pp, objfile);
4075
4076 if (index_type)
4077 goto handle_true_range;
4078
4079 /* If limits are huge, must be large integral type. */
4080 if (n2bits != 0 || n3bits != 0)
4081 {
4082 char got_signed = 0;
4083 char got_unsigned = 0;
4084 /* Number of bits in the type. */
4085 int nbits = 0;
4086
4087 /* If a type size attribute has been specified, the bounds of
4088 the range should fit in this size. If the lower bounds needs
4089 more bits than the upper bound, then the type is signed. */
4090 if (n2bits <= type_size && n3bits <= type_size)
4091 {
4092 if (n2bits == type_size && n2bits > n3bits)
4093 got_signed = 1;
4094 else
4095 got_unsigned = 1;
4096 nbits = type_size;
4097 }
4098 /* Range from 0 to <large number> is an unsigned large integral type. */
4099 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4100 {
4101 got_unsigned = 1;
4102 nbits = n3bits;
4103 }
4104 /* Range from <large number> to <large number>-1 is a large signed
4105 integral type. Take care of the case where <large number> doesn't
4106 fit in a long but <large number>-1 does. */
4107 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4108 || (n2bits != 0 && n3bits == 0
4109 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4110 && n3 == LONG_MAX))
4111 {
4112 got_signed = 1;
4113 nbits = n2bits;
4114 }
4115
4116 if (got_signed || got_unsigned)
4117 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4118 else
4119 return error_type (pp, objfile);
4120 }
4121
4122 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4123 if (self_subrange && n2 == 0 && n3 == 0)
4124 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4125
4126 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4127 is the width in bytes.
4128
4129 Fortran programs appear to use this for complex types also. To
4130 distinguish between floats and complex, g77 (and others?) seem
4131 to use self-subranges for the complexes, and subranges of int for
4132 the floats.
4133
4134 Also note that for complexes, g77 sets n2 to the size of one of
4135 the member floats, not the whole complex beast. My guess is that
4136 this was to work well with pre-COMPLEX versions of gdb. */
4137
4138 if (n3 == 0 && n2 > 0)
4139 {
4140 struct type *float_type
4141 = init_float_type (objfile, n2 * TARGET_CHAR_BIT, NULL, NULL);
4142
4143 if (self_subrange)
4144 return init_complex_type (objfile, NULL, float_type);
4145 else
4146 return float_type;
4147 }
4148
4149 /* If the upper bound is -1, it must really be an unsigned integral. */
4150
4151 else if (n2 == 0 && n3 == -1)
4152 {
4153 int bits = type_size;
4154
4155 if (bits <= 0)
4156 {
4157 /* We don't know its size. It is unsigned int or unsigned
4158 long. GCC 2.3.3 uses this for long long too, but that is
4159 just a GDB 3.5 compatibility hack. */
4160 bits = gdbarch_int_bit (gdbarch);
4161 }
4162
4163 return init_integer_type (objfile, bits, 1, NULL);
4164 }
4165
4166 /* Special case: char is defined (Who knows why) as a subrange of
4167 itself with range 0-127. */
4168 else if (self_subrange && n2 == 0 && n3 == 127)
4169 {
4170 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4171 TYPE_NOSIGN (type) = 1;
4172 return type;
4173 }
4174 /* We used to do this only for subrange of self or subrange of int. */
4175 else if (n2 == 0)
4176 {
4177 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4178 "unsigned long", and we already checked for that,
4179 so don't need to test for it here. */
4180
4181 if (n3 < 0)
4182 /* n3 actually gives the size. */
4183 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4184
4185 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4186 unsigned n-byte integer. But do require n to be a power of
4187 two; we don't want 3- and 5-byte integers flying around. */
4188 {
4189 int bytes;
4190 unsigned long bits;
4191
4192 bits = n3;
4193 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4194 bits >>= 8;
4195 if (bits == 0
4196 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4197 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4198 }
4199 }
4200 /* I think this is for Convex "long long". Since I don't know whether
4201 Convex sets self_subrange, I also accept that particular size regardless
4202 of self_subrange. */
4203 else if (n3 == 0 && n2 < 0
4204 && (self_subrange
4205 || n2 == -gdbarch_long_long_bit
4206 (gdbarch) / TARGET_CHAR_BIT))
4207 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4208 else if (n2 == -n3 - 1)
4209 {
4210 if (n3 == 0x7f)
4211 return init_integer_type (objfile, 8, 0, NULL);
4212 if (n3 == 0x7fff)
4213 return init_integer_type (objfile, 16, 0, NULL);
4214 if (n3 == 0x7fffffff)
4215 return init_integer_type (objfile, 32, 0, NULL);
4216 }
4217
4218 /* We have a real range type on our hands. Allocate space and
4219 return a real pointer. */
4220 handle_true_range:
4221
4222 if (self_subrange)
4223 index_type = objfile_type (objfile)->builtin_int;
4224 else
4225 index_type = *dbx_lookup_type (rangenums, objfile);
4226 if (index_type == NULL)
4227 {
4228 /* Does this actually ever happen? Is that why we are worrying
4229 about dealing with it rather than just calling error_type? */
4230
4231 complaint (&symfile_complaints,
4232 _("base type %d of range type is not defined"), rangenums[1]);
4233
4234 index_type = objfile_type (objfile)->builtin_int;
4235 }
4236
4237 result_type
4238 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4239 return (result_type);
4240 }
4241
4242 /* Read in an argument list. This is a list of types, separated by commas
4243 and terminated with END. Return the list of types read in, or NULL
4244 if there is an error. */
4245
4246 static struct field *
4247 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4248 int *varargsp)
4249 {
4250 /* FIXME! Remove this arbitrary limit! */
4251 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4252 int n = 0, i;
4253 struct field *rval;
4254
4255 while (**pp != end)
4256 {
4257 if (**pp != ',')
4258 /* Invalid argument list: no ','. */
4259 return NULL;
4260 (*pp)++;
4261 STABS_CONTINUE (pp, objfile);
4262 types[n++] = read_type (pp, objfile);
4263 }
4264 (*pp)++; /* get past `end' (the ':' character). */
4265
4266 if (n == 0)
4267 {
4268 /* We should read at least the THIS parameter here. Some broken stabs
4269 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4270 have been present ";-16,(0,43)" reference instead. This way the
4271 excessive ";" marker prematurely stops the parameters parsing. */
4272
4273 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4274 *varargsp = 0;
4275 }
4276 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4277 *varargsp = 1;
4278 else
4279 {
4280 n--;
4281 *varargsp = 0;
4282 }
4283
4284 rval = XCNEWVEC (struct field, n);
4285 for (i = 0; i < n; i++)
4286 rval[i].type = types[i];
4287 *nargsp = n;
4288 return rval;
4289 }
4290 \f
4291 /* Common block handling. */
4292
4293 /* List of symbols declared since the last BCOMM. This list is a tail
4294 of local_symbols. When ECOMM is seen, the symbols on the list
4295 are noted so their proper addresses can be filled in later,
4296 using the common block base address gotten from the assembler
4297 stabs. */
4298
4299 static struct pending *common_block;
4300 static int common_block_i;
4301
4302 /* Name of the current common block. We get it from the BCOMM instead of the
4303 ECOMM to match IBM documentation (even though IBM puts the name both places
4304 like everyone else). */
4305 static char *common_block_name;
4306
4307 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4308 to remain after this function returns. */
4309
4310 void
4311 common_block_start (char *name, struct objfile *objfile)
4312 {
4313 if (common_block_name != NULL)
4314 {
4315 complaint (&symfile_complaints,
4316 _("Invalid symbol data: common block within common block"));
4317 }
4318 common_block = local_symbols;
4319 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4320 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4321 strlen (name));
4322 }
4323
4324 /* Process a N_ECOMM symbol. */
4325
4326 void
4327 common_block_end (struct objfile *objfile)
4328 {
4329 /* Symbols declared since the BCOMM are to have the common block
4330 start address added in when we know it. common_block and
4331 common_block_i point to the first symbol after the BCOMM in
4332 the local_symbols list; copy the list and hang it off the
4333 symbol for the common block name for later fixup. */
4334 int i;
4335 struct symbol *sym;
4336 struct pending *newobj = 0;
4337 struct pending *next;
4338 int j;
4339
4340 if (common_block_name == NULL)
4341 {
4342 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4343 return;
4344 }
4345
4346 sym = allocate_symbol (objfile);
4347 /* Note: common_block_name already saved on objfile_obstack. */
4348 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4349 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4350
4351 /* Now we copy all the symbols which have been defined since the BCOMM. */
4352
4353 /* Copy all the struct pendings before common_block. */
4354 for (next = local_symbols;
4355 next != NULL && next != common_block;
4356 next = next->next)
4357 {
4358 for (j = 0; j < next->nsyms; j++)
4359 add_symbol_to_list (next->symbol[j], &newobj);
4360 }
4361
4362 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4363 NULL, it means copy all the local symbols (which we already did
4364 above). */
4365
4366 if (common_block != NULL)
4367 for (j = common_block_i; j < common_block->nsyms; j++)
4368 add_symbol_to_list (common_block->symbol[j], &newobj);
4369
4370 SYMBOL_TYPE (sym) = (struct type *) newobj;
4371
4372 /* Should we be putting local_symbols back to what it was?
4373 Does it matter? */
4374
4375 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4376 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4377 global_sym_chain[i] = sym;
4378 common_block_name = NULL;
4379 }
4380
4381 /* Add a common block's start address to the offset of each symbol
4382 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4383 the common block name). */
4384
4385 static void
4386 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4387 {
4388 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4389
4390 for (; next; next = next->next)
4391 {
4392 int j;
4393
4394 for (j = next->nsyms - 1; j >= 0; j--)
4395 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4396 }
4397 }
4398 \f
4399
4400
4401 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4402 See add_undefined_type for more details. */
4403
4404 static void
4405 add_undefined_type_noname (struct type *type, int typenums[2])
4406 {
4407 struct nat nat;
4408
4409 nat.typenums[0] = typenums [0];
4410 nat.typenums[1] = typenums [1];
4411 nat.type = type;
4412
4413 if (noname_undefs_length == noname_undefs_allocated)
4414 {
4415 noname_undefs_allocated *= 2;
4416 noname_undefs = (struct nat *)
4417 xrealloc ((char *) noname_undefs,
4418 noname_undefs_allocated * sizeof (struct nat));
4419 }
4420 noname_undefs[noname_undefs_length++] = nat;
4421 }
4422
4423 /* Add TYPE to the UNDEF_TYPES vector.
4424 See add_undefined_type for more details. */
4425
4426 static void
4427 add_undefined_type_1 (struct type *type)
4428 {
4429 if (undef_types_length == undef_types_allocated)
4430 {
4431 undef_types_allocated *= 2;
4432 undef_types = (struct type **)
4433 xrealloc ((char *) undef_types,
4434 undef_types_allocated * sizeof (struct type *));
4435 }
4436 undef_types[undef_types_length++] = type;
4437 }
4438
4439 /* What about types defined as forward references inside of a small lexical
4440 scope? */
4441 /* Add a type to the list of undefined types to be checked through
4442 once this file has been read in.
4443
4444 In practice, we actually maintain two such lists: The first list
4445 (UNDEF_TYPES) is used for types whose name has been provided, and
4446 concerns forward references (eg 'xs' or 'xu' forward references);
4447 the second list (NONAME_UNDEFS) is used for types whose name is
4448 unknown at creation time, because they were referenced through
4449 their type number before the actual type was declared.
4450 This function actually adds the given type to the proper list. */
4451
4452 static void
4453 add_undefined_type (struct type *type, int typenums[2])
4454 {
4455 if (TYPE_TAG_NAME (type) == NULL)
4456 add_undefined_type_noname (type, typenums);
4457 else
4458 add_undefined_type_1 (type);
4459 }
4460
4461 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4462
4463 static void
4464 cleanup_undefined_types_noname (struct objfile *objfile)
4465 {
4466 int i;
4467
4468 for (i = 0; i < noname_undefs_length; i++)
4469 {
4470 struct nat nat = noname_undefs[i];
4471 struct type **type;
4472
4473 type = dbx_lookup_type (nat.typenums, objfile);
4474 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4475 {
4476 /* The instance flags of the undefined type are still unset,
4477 and needs to be copied over from the reference type.
4478 Since replace_type expects them to be identical, we need
4479 to set these flags manually before hand. */
4480 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4481 replace_type (nat.type, *type);
4482 }
4483 }
4484
4485 noname_undefs_length = 0;
4486 }
4487
4488 /* Go through each undefined type, see if it's still undefined, and fix it
4489 up if possible. We have two kinds of undefined types:
4490
4491 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4492 Fix: update array length using the element bounds
4493 and the target type's length.
4494 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4495 yet defined at the time a pointer to it was made.
4496 Fix: Do a full lookup on the struct/union tag. */
4497
4498 static void
4499 cleanup_undefined_types_1 (void)
4500 {
4501 struct type **type;
4502
4503 /* Iterate over every undefined type, and look for a symbol whose type
4504 matches our undefined type. The symbol matches if:
4505 1. It is a typedef in the STRUCT domain;
4506 2. It has the same name, and same type code;
4507 3. The instance flags are identical.
4508
4509 It is important to check the instance flags, because we have seen
4510 examples where the debug info contained definitions such as:
4511
4512 "foo_t:t30=B31=xefoo_t:"
4513
4514 In this case, we have created an undefined type named "foo_t" whose
4515 instance flags is null (when processing "xefoo_t"), and then created
4516 another type with the same name, but with different instance flags
4517 ('B' means volatile). I think that the definition above is wrong,
4518 since the same type cannot be volatile and non-volatile at the same
4519 time, but we need to be able to cope with it when it happens. The
4520 approach taken here is to treat these two types as different. */
4521
4522 for (type = undef_types; type < undef_types + undef_types_length; type++)
4523 {
4524 switch (TYPE_CODE (*type))
4525 {
4526
4527 case TYPE_CODE_STRUCT:
4528 case TYPE_CODE_UNION:
4529 case TYPE_CODE_ENUM:
4530 {
4531 /* Check if it has been defined since. Need to do this here
4532 as well as in check_typedef to deal with the (legitimate in
4533 C though not C++) case of several types with the same name
4534 in different source files. */
4535 if (TYPE_STUB (*type))
4536 {
4537 struct pending *ppt;
4538 int i;
4539 /* Name of the type, without "struct" or "union". */
4540 const char *type_name = TYPE_TAG_NAME (*type);
4541
4542 if (type_name == NULL)
4543 {
4544 complaint (&symfile_complaints, _("need a type name"));
4545 break;
4546 }
4547 for (ppt = file_symbols; ppt; ppt = ppt->next)
4548 {
4549 for (i = 0; i < ppt->nsyms; i++)
4550 {
4551 struct symbol *sym = ppt->symbol[i];
4552
4553 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4554 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4555 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4556 TYPE_CODE (*type))
4557 && (TYPE_INSTANCE_FLAGS (*type) ==
4558 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4559 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4560 type_name) == 0)
4561 replace_type (*type, SYMBOL_TYPE (sym));
4562 }
4563 }
4564 }
4565 }
4566 break;
4567
4568 default:
4569 {
4570 complaint (&symfile_complaints,
4571 _("forward-referenced types left unresolved, "
4572 "type code %d."),
4573 TYPE_CODE (*type));
4574 }
4575 break;
4576 }
4577 }
4578
4579 undef_types_length = 0;
4580 }
4581
4582 /* Try to fix all the undefined types we ecountered while processing
4583 this unit. */
4584
4585 void
4586 cleanup_undefined_stabs_types (struct objfile *objfile)
4587 {
4588 cleanup_undefined_types_1 ();
4589 cleanup_undefined_types_noname (objfile);
4590 }
4591
4592 /* Scan through all of the global symbols defined in the object file,
4593 assigning values to the debugging symbols that need to be assigned
4594 to. Get these symbols from the minimal symbol table. */
4595
4596 void
4597 scan_file_globals (struct objfile *objfile)
4598 {
4599 int hash;
4600 struct minimal_symbol *msymbol;
4601 struct symbol *sym, *prev;
4602 struct objfile *resolve_objfile;
4603
4604 /* SVR4 based linkers copy referenced global symbols from shared
4605 libraries to the main executable.
4606 If we are scanning the symbols for a shared library, try to resolve
4607 them from the minimal symbols of the main executable first. */
4608
4609 if (symfile_objfile && objfile != symfile_objfile)
4610 resolve_objfile = symfile_objfile;
4611 else
4612 resolve_objfile = objfile;
4613
4614 while (1)
4615 {
4616 /* Avoid expensive loop through all minimal symbols if there are
4617 no unresolved symbols. */
4618 for (hash = 0; hash < HASHSIZE; hash++)
4619 {
4620 if (global_sym_chain[hash])
4621 break;
4622 }
4623 if (hash >= HASHSIZE)
4624 return;
4625
4626 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4627 {
4628 QUIT;
4629
4630 /* Skip static symbols. */
4631 switch (MSYMBOL_TYPE (msymbol))
4632 {
4633 case mst_file_text:
4634 case mst_file_data:
4635 case mst_file_bss:
4636 continue;
4637 default:
4638 break;
4639 }
4640
4641 prev = NULL;
4642
4643 /* Get the hash index and check all the symbols
4644 under that hash index. */
4645
4646 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4647
4648 for (sym = global_sym_chain[hash]; sym;)
4649 {
4650 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4651 SYMBOL_LINKAGE_NAME (sym)) == 0)
4652 {
4653 /* Splice this symbol out of the hash chain and
4654 assign the value we have to it. */
4655 if (prev)
4656 {
4657 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4658 }
4659 else
4660 {
4661 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4662 }
4663
4664 /* Check to see whether we need to fix up a common block. */
4665 /* Note: this code might be executed several times for
4666 the same symbol if there are multiple references. */
4667 if (sym)
4668 {
4669 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4670 {
4671 fix_common_block (sym,
4672 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4673 msymbol));
4674 }
4675 else
4676 {
4677 SYMBOL_VALUE_ADDRESS (sym)
4678 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4679 }
4680 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4681 }
4682
4683 if (prev)
4684 {
4685 sym = SYMBOL_VALUE_CHAIN (prev);
4686 }
4687 else
4688 {
4689 sym = global_sym_chain[hash];
4690 }
4691 }
4692 else
4693 {
4694 prev = sym;
4695 sym = SYMBOL_VALUE_CHAIN (sym);
4696 }
4697 }
4698 }
4699 if (resolve_objfile == objfile)
4700 break;
4701 resolve_objfile = objfile;
4702 }
4703
4704 /* Change the storage class of any remaining unresolved globals to
4705 LOC_UNRESOLVED and remove them from the chain. */
4706 for (hash = 0; hash < HASHSIZE; hash++)
4707 {
4708 sym = global_sym_chain[hash];
4709 while (sym)
4710 {
4711 prev = sym;
4712 sym = SYMBOL_VALUE_CHAIN (sym);
4713
4714 /* Change the symbol address from the misleading chain value
4715 to address zero. */
4716 SYMBOL_VALUE_ADDRESS (prev) = 0;
4717
4718 /* Complain about unresolved common block symbols. */
4719 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4720 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4721 else
4722 complaint (&symfile_complaints,
4723 _("%s: common block `%s' from "
4724 "global_sym_chain unresolved"),
4725 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4726 }
4727 }
4728 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4729 }
4730
4731 /* Initialize anything that needs initializing when starting to read
4732 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4733 to a psymtab. */
4734
4735 void
4736 stabsread_init (void)
4737 {
4738 }
4739
4740 /* Initialize anything that needs initializing when a completely new
4741 symbol file is specified (not just adding some symbols from another
4742 file, e.g. a shared library). */
4743
4744 void
4745 stabsread_new_init (void)
4746 {
4747 /* Empty the hash table of global syms looking for values. */
4748 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4749 }
4750
4751 /* Initialize anything that needs initializing at the same time as
4752 start_symtab() is called. */
4753
4754 void
4755 start_stabs (void)
4756 {
4757 global_stabs = NULL; /* AIX COFF */
4758 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4759 n_this_object_header_files = 1;
4760 type_vector_length = 0;
4761 type_vector = (struct type **) 0;
4762
4763 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4764 common_block_name = NULL;
4765 }
4766
4767 /* Call after end_symtab(). */
4768
4769 void
4770 end_stabs (void)
4771 {
4772 if (type_vector)
4773 {
4774 xfree (type_vector);
4775 }
4776 type_vector = 0;
4777 type_vector_length = 0;
4778 previous_stab_code = 0;
4779 }
4780
4781 void
4782 finish_global_stabs (struct objfile *objfile)
4783 {
4784 if (global_stabs)
4785 {
4786 patch_block_stabs (global_symbols, global_stabs, objfile);
4787 xfree (global_stabs);
4788 global_stabs = NULL;
4789 }
4790 }
4791
4792 /* Find the end of the name, delimited by a ':', but don't match
4793 ObjC symbols which look like -[Foo bar::]:bla. */
4794 static char *
4795 find_name_end (char *name)
4796 {
4797 char *s = name;
4798
4799 if (s[0] == '-' || *s == '+')
4800 {
4801 /* Must be an ObjC method symbol. */
4802 if (s[1] != '[')
4803 {
4804 error (_("invalid symbol name \"%s\""), name);
4805 }
4806 s = strchr (s, ']');
4807 if (s == NULL)
4808 {
4809 error (_("invalid symbol name \"%s\""), name);
4810 }
4811 return strchr (s, ':');
4812 }
4813 else
4814 {
4815 return strchr (s, ':');
4816 }
4817 }
4818
4819 /* Initializer for this module. */
4820
4821 void
4822 _initialize_stabsread (void)
4823 {
4824 rs6000_builtin_type_data = register_objfile_data ();
4825
4826 undef_types_allocated = 20;
4827 undef_types_length = 0;
4828 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4829
4830 noname_undefs_allocated = 20;
4831 noname_undefs_length = 0;
4832 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4833
4834 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4835 &stab_register_funcs);
4836 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4837 &stab_register_funcs);
4838 }
This page took 0.126688 seconds and 5 git commands to generate.