Remove last cleanups from stabsread.c
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "bcache.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = allocate_symbol (objfile);
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_SET_LINKAGE_NAME
430 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
431 name, pp - name));
432 pp += 2;
433 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 {
435 /* I don't think the linker does this with functions,
436 so as far as I know this is never executed.
437 But it doesn't hurt to check. */
438 SYMBOL_TYPE (sym) =
439 lookup_function_type (read_type (&pp, objfile));
440 }
441 else
442 {
443 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 }
445 add_symbol_to_list (sym, get_global_symbols ());
446 }
447 else
448 {
449 pp += 2;
450 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
451 {
452 SYMBOL_TYPE (sym) =
453 lookup_function_type (read_type (&pp, objfile));
454 }
455 else
456 {
457 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
458 }
459 }
460 }
461 }
462 }
463 \f
464
465 /* Read a number by which a type is referred to in dbx data,
466 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
467 Just a single number N is equivalent to (0,N).
468 Return the two numbers by storing them in the vector TYPENUMS.
469 TYPENUMS will then be used as an argument to dbx_lookup_type.
470
471 Returns 0 for success, -1 for error. */
472
473 static int
474 read_type_number (const char **pp, int *typenums)
475 {
476 int nbits;
477
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
485 if (nbits != 0)
486 return -1;
487 }
488 else
489 {
490 typenums[0] = 0;
491 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
492 if (nbits != 0)
493 return -1;
494 }
495 return 0;
496 }
497 \f
498
499 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
500 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
501 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
502 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503
504 /* Structure for storing pointers to reference definitions for fast lookup
505 during "process_later". */
506
507 struct ref_map
508 {
509 const char *stabs;
510 CORE_ADDR value;
511 struct symbol *sym;
512 };
513
514 #define MAX_CHUNK_REFS 100
515 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
516 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517
518 static struct ref_map *ref_map;
519
520 /* Ptr to free cell in chunk's linked list. */
521 static int ref_count = 0;
522
523 /* Number of chunks malloced. */
524 static int ref_chunk = 0;
525
526 /* This file maintains a cache of stabs aliases found in the symbol
527 table. If the symbol table changes, this cache must be cleared
528 or we are left holding onto data in invalid obstacks. */
529 void
530 stabsread_clear_cache (void)
531 {
532 ref_count = 0;
533 ref_chunk = 0;
534 }
535
536 /* Create array of pointers mapping refids to symbols and stab strings.
537 Add pointers to reference definition symbols and/or their values as we
538 find them, using their reference numbers as our index.
539 These will be used later when we resolve references. */
540 void
541 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
542 {
543 if (ref_count == 0)
544 ref_chunk = 0;
545 if (refnum >= ref_count)
546 ref_count = refnum + 1;
547 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 {
549 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
550 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551
552 ref_map = (struct ref_map *)
553 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
554 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
555 new_chunks * REF_CHUNK_SIZE);
556 ref_chunk += new_chunks;
557 }
558 ref_map[refnum].stabs = stabs;
559 ref_map[refnum].sym = sym;
560 ref_map[refnum].value = value;
561 }
562
563 /* Return defined sym for the reference REFNUM. */
564 struct symbol *
565 ref_search (int refnum)
566 {
567 if (refnum < 0 || refnum > ref_count)
568 return 0;
569 return ref_map[refnum].sym;
570 }
571
572 /* Parse a reference id in STRING and return the resulting
573 reference number. Move STRING beyond the reference id. */
574
575 static int
576 process_reference (const char **string)
577 {
578 const char *p;
579 int refnum = 0;
580
581 if (**string != '#')
582 return 0;
583
584 /* Advance beyond the initial '#'. */
585 p = *string + 1;
586
587 /* Read number as reference id. */
588 while (*p && isdigit (*p))
589 {
590 refnum = refnum * 10 + *p - '0';
591 p++;
592 }
593 *string = p;
594 return refnum;
595 }
596
597 /* If STRING defines a reference, store away a pointer to the reference
598 definition for later use. Return the reference number. */
599
600 int
601 symbol_reference_defined (const char **string)
602 {
603 const char *p = *string;
604 int refnum = 0;
605
606 refnum = process_reference (&p);
607
608 /* Defining symbols end in '='. */
609 if (*p == '=')
610 {
611 /* Symbol is being defined here. */
612 *string = p + 1;
613 return refnum;
614 }
615 else
616 {
617 /* Must be a reference. Either the symbol has already been defined,
618 or this is a forward reference to it. */
619 *string = p;
620 return -1;
621 }
622 }
623
624 static int
625 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 {
627 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628
629 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 {
631 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
632 SYMBOL_PRINT_NAME (sym));
633
634 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
635 }
636
637 return regno;
638 }
639
640 static const struct symbol_register_ops stab_register_funcs = {
641 stab_reg_to_regnum
642 };
643
644 /* The "aclass" indices for computed symbols. */
645
646 static int stab_register_index;
647 static int stab_regparm_index;
648
649 struct symbol *
650 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
651 struct objfile *objfile)
652 {
653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 struct symbol *sym;
655 const char *p = find_name_end (string);
656 int deftype;
657 int synonym = 0;
658 int i;
659
660 /* We would like to eliminate nameless symbols, but keep their types.
661 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
662 to type 2, but, should not create a symbol to address that type. Since
663 the symbol will be nameless, there is no way any user can refer to it. */
664
665 int nameless;
666
667 /* Ignore syms with empty names. */
668 if (string[0] == 0)
669 return 0;
670
671 /* Ignore old-style symbols from cc -go. */
672 if (p == 0)
673 return 0;
674
675 while (p[1] == ':')
676 {
677 p += 2;
678 p = strchr (p, ':');
679 if (p == NULL)
680 {
681 complaint (
682 _("Bad stabs string '%s'"), string);
683 return NULL;
684 }
685 }
686
687 /* If a nameless stab entry, all we need is the type, not the symbol.
688 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
689 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690
691 current_symbol = sym = allocate_symbol (objfile);
692
693 if (processing_gcc_compilation)
694 {
695 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
696 number of bytes occupied by a type or object, which we ignore. */
697 SYMBOL_LINE (sym) = desc;
698 }
699 else
700 {
701 SYMBOL_LINE (sym) = 0; /* unknown */
702 }
703
704 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
705 &objfile->objfile_obstack);
706
707 if (is_cplus_marker (string[0]))
708 {
709 /* Special GNU C++ names. */
710 switch (string[1])
711 {
712 case 't':
713 SYMBOL_SET_LINKAGE_NAME (sym, "this");
714 break;
715
716 case 'v': /* $vtbl_ptr_type */
717 goto normal;
718
719 case 'e':
720 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
721 break;
722
723 case '_':
724 /* This was an anonymous type that was never fixed up. */
725 goto normal;
726
727 case 'X':
728 /* SunPRO (3.0 at least) static variable encoding. */
729 if (gdbarch_static_transform_name_p (gdbarch))
730 goto normal;
731 /* fall through */
732
733 default:
734 complaint (_("Unknown C++ symbol name `%s'"),
735 string);
736 goto normal; /* Do *something* with it. */
737 }
738 }
739 else
740 {
741 normal:
742 std::string new_name;
743
744 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 {
746 char *name = (char *) alloca (p - string + 1);
747
748 memcpy (name, string, p - string);
749 name[p - string] = '\0';
750 new_name = cp_canonicalize_string (name);
751 }
752 if (!new_name.empty ())
753 {
754 SYMBOL_SET_NAMES (sym,
755 new_name.c_str (), new_name.length (),
756 1, objfile);
757 }
758 else
759 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
760
761 if (SYMBOL_LANGUAGE (sym) == language_cplus)
762 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
763 objfile);
764
765 }
766 p++;
767
768 /* Determine the type of name being defined. */
769 #if 0
770 /* Getting GDB to correctly skip the symbol on an undefined symbol
771 descriptor and not ever dump core is a very dodgy proposition if
772 we do things this way. I say the acorn RISC machine can just
773 fix their compiler. */
774 /* The Acorn RISC machine's compiler can put out locals that don't
775 start with "234=" or "(3,4)=", so assume anything other than the
776 deftypes we know how to handle is a local. */
777 if (!strchr ("cfFGpPrStTvVXCR", *p))
778 #else
779 if (isdigit (*p) || *p == '(' || *p == '-')
780 #endif
781 deftype = 'l';
782 else
783 deftype = *p++;
784
785 switch (deftype)
786 {
787 case 'c':
788 /* c is a special case, not followed by a type-number.
789 SYMBOL:c=iVALUE for an integer constant symbol.
790 SYMBOL:c=rVALUE for a floating constant symbol.
791 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
792 e.g. "b:c=e6,0" for "const b = blob1"
793 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
794 if (*p != '=')
795 {
796 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
797 SYMBOL_TYPE (sym) = error_type (&p, objfile);
798 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
799 add_symbol_to_list (sym, get_file_symbols ());
800 return sym;
801 }
802 ++p;
803 switch (*p++)
804 {
805 case 'r':
806 {
807 gdb_byte *dbl_valu;
808 struct type *dbl_type;
809
810 dbl_type = objfile_type (objfile)->builtin_double;
811 dbl_valu
812 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
813 TYPE_LENGTH (dbl_type));
814
815 target_float_from_string (dbl_valu, dbl_type, std::string (p));
816
817 SYMBOL_TYPE (sym) = dbl_type;
818 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
819 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
820 }
821 break;
822 case 'i':
823 {
824 /* Defining integer constants this way is kind of silly,
825 since 'e' constants allows the compiler to give not
826 only the value, but the type as well. C has at least
827 int, long, unsigned int, and long long as constant
828 types; other languages probably should have at least
829 unsigned as well as signed constants. */
830
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
832 SYMBOL_VALUE (sym) = atoi (p);
833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
834 }
835 break;
836
837 case 'c':
838 {
839 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
840 SYMBOL_VALUE (sym) = atoi (p);
841 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
842 }
843 break;
844
845 case 's':
846 {
847 struct type *range_type;
848 int ind = 0;
849 char quote = *p++;
850 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
851 gdb_byte *string_value;
852
853 if (quote != '\'' && quote != '"')
854 {
855 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
856 SYMBOL_TYPE (sym) = error_type (&p, objfile);
857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
858 add_symbol_to_list (sym, get_file_symbols ());
859 return sym;
860 }
861
862 /* Find matching quote, rejecting escaped quotes. */
863 while (*p && *p != quote)
864 {
865 if (*p == '\\' && p[1] == quote)
866 {
867 string_local[ind] = (gdb_byte) quote;
868 ind++;
869 p += 2;
870 }
871 else if (*p)
872 {
873 string_local[ind] = (gdb_byte) (*p);
874 ind++;
875 p++;
876 }
877 }
878 if (*p != quote)
879 {
880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
881 SYMBOL_TYPE (sym) = error_type (&p, objfile);
882 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
883 add_symbol_to_list (sym, get_file_symbols ());
884 return sym;
885 }
886
887 /* NULL terminate the string. */
888 string_local[ind] = 0;
889 range_type
890 = create_static_range_type (NULL,
891 objfile_type (objfile)->builtin_int,
892 0, ind);
893 SYMBOL_TYPE (sym) = create_array_type (NULL,
894 objfile_type (objfile)->builtin_char,
895 range_type);
896 string_value
897 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
898 memcpy (string_value, string_local, ind + 1);
899 p++;
900
901 SYMBOL_VALUE_BYTES (sym) = string_value;
902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
903 }
904 break;
905
906 case 'e':
907 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
908 can be represented as integral.
909 e.g. "b:c=e6,0" for "const b = blob1"
910 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
911 {
912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914
915 if (*p != ',')
916 {
917 SYMBOL_TYPE (sym) = error_type (&p, objfile);
918 break;
919 }
920 ++p;
921
922 /* If the value is too big to fit in an int (perhaps because
923 it is unsigned), or something like that, we silently get
924 a bogus value. The type and everything else about it is
925 correct. Ideally, we should be using whatever we have
926 available for parsing unsigned and long long values,
927 however. */
928 SYMBOL_VALUE (sym) = atoi (p);
929 }
930 break;
931 default:
932 {
933 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
934 SYMBOL_TYPE (sym) = error_type (&p, objfile);
935 }
936 }
937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
938 add_symbol_to_list (sym, get_file_symbols ());
939 return sym;
940
941 case 'C':
942 /* The name of a caught exception. */
943 SYMBOL_TYPE (sym) = read_type (&p, objfile);
944 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
946 SYMBOL_VALUE_ADDRESS (sym) = valu;
947 add_symbol_to_list (sym, get_local_symbols ());
948 break;
949
950 case 'f':
951 /* A static function definition. */
952 SYMBOL_TYPE (sym) = read_type (&p, objfile);
953 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
954 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
955 add_symbol_to_list (sym, get_file_symbols ());
956 /* fall into process_function_types. */
957
958 process_function_types:
959 /* Function result types are described as the result type in stabs.
960 We need to convert this to the function-returning-type-X type
961 in GDB. E.g. "int" is converted to "function returning int". */
962 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
963 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
964
965 /* All functions in C++ have prototypes. Stabs does not offer an
966 explicit way to identify prototyped or unprototyped functions,
967 but both GCC and Sun CC emit stabs for the "call-as" type rather
968 than the "declared-as" type for unprototyped functions, so
969 we treat all functions as if they were prototyped. This is used
970 primarily for promotion when calling the function from GDB. */
971 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
972
973 /* fall into process_prototype_types. */
974
975 process_prototype_types:
976 /* Sun acc puts declared types of arguments here. */
977 if (*p == ';')
978 {
979 struct type *ftype = SYMBOL_TYPE (sym);
980 int nsemi = 0;
981 int nparams = 0;
982 const char *p1 = p;
983
984 /* Obtain a worst case guess for the number of arguments
985 by counting the semicolons. */
986 while (*p1)
987 {
988 if (*p1++ == ';')
989 nsemi++;
990 }
991
992 /* Allocate parameter information fields and fill them in. */
993 TYPE_FIELDS (ftype) = (struct field *)
994 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
995 while (*p++ == ';')
996 {
997 struct type *ptype;
998
999 /* A type number of zero indicates the start of varargs.
1000 FIXME: GDB currently ignores vararg functions. */
1001 if (p[0] == '0' && p[1] == '\0')
1002 break;
1003 ptype = read_type (&p, objfile);
1004
1005 /* The Sun compilers mark integer arguments, which should
1006 be promoted to the width of the calling conventions, with
1007 a type which references itself. This type is turned into
1008 a TYPE_CODE_VOID type by read_type, and we have to turn
1009 it back into builtin_int here.
1010 FIXME: Do we need a new builtin_promoted_int_arg ? */
1011 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1012 ptype = objfile_type (objfile)->builtin_int;
1013 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1014 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1015 }
1016 TYPE_NFIELDS (ftype) = nparams;
1017 TYPE_PROTOTYPED (ftype) = 1;
1018 }
1019 break;
1020
1021 case 'F':
1022 /* A global function definition. */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1025 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1026 add_symbol_to_list (sym, get_global_symbols ());
1027 goto process_function_types;
1028
1029 case 'G':
1030 /* For a class G (global) symbol, it appears that the
1031 value is not correct. It is necessary to search for the
1032 corresponding linker definition to find the value.
1033 These definitions appear at the end of the namelist. */
1034 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1035 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1037 /* Don't add symbol references to global_sym_chain.
1038 Symbol references don't have valid names and wont't match up with
1039 minimal symbols when the global_sym_chain is relocated.
1040 We'll fixup symbol references when we fixup the defining symbol. */
1041 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1042 {
1043 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1044 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1045 global_sym_chain[i] = sym;
1046 }
1047 add_symbol_to_list (sym, get_global_symbols ());
1048 break;
1049
1050 /* This case is faked by a conditional above,
1051 when there is no code letter in the dbx data.
1052 Dbx data never actually contains 'l'. */
1053 case 's':
1054 case 'l':
1055 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1056 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1057 SYMBOL_VALUE (sym) = valu;
1058 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1059 add_symbol_to_list (sym, get_local_symbols ());
1060 break;
1061
1062 case 'p':
1063 if (*p == 'F')
1064 /* pF is a two-letter code that means a function parameter in Fortran.
1065 The type-number specifies the type of the return value.
1066 Translate it into a pointer-to-function type. */
1067 {
1068 p++;
1069 SYMBOL_TYPE (sym)
1070 = lookup_pointer_type
1071 (lookup_function_type (read_type (&p, objfile)));
1072 }
1073 else
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075
1076 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1077 SYMBOL_VALUE (sym) = valu;
1078 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1079 SYMBOL_IS_ARGUMENT (sym) = 1;
1080 add_symbol_to_list (sym, get_local_symbols ());
1081
1082 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1083 {
1084 /* On little-endian machines, this crud is never necessary,
1085 and, if the extra bytes contain garbage, is harmful. */
1086 break;
1087 }
1088
1089 /* If it's gcc-compiled, if it says `short', believe it. */
1090 if (processing_gcc_compilation
1091 || gdbarch_believe_pcc_promotion (gdbarch))
1092 break;
1093
1094 if (!gdbarch_believe_pcc_promotion (gdbarch))
1095 {
1096 /* If PCC says a parameter is a short or a char, it is
1097 really an int. */
1098 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1099 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1100 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1101 {
1102 SYMBOL_TYPE (sym) =
1103 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1104 ? objfile_type (objfile)->builtin_unsigned_int
1105 : objfile_type (objfile)->builtin_int;
1106 }
1107 break;
1108 }
1109 /* Fall through. */
1110
1111 case 'P':
1112 /* acc seems to use P to declare the prototypes of functions that
1113 are referenced by this file. gdb is not prepared to deal
1114 with this extra information. FIXME, it ought to. */
1115 if (type == N_FUN)
1116 {
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 goto process_prototype_types;
1119 }
1120 /*FALLTHROUGH */
1121
1122 case 'R':
1123 /* Parameter which is in a register. */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1126 SYMBOL_IS_ARGUMENT (sym) = 1;
1127 SYMBOL_VALUE (sym) = valu;
1128 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1129 add_symbol_to_list (sym, get_local_symbols ());
1130 break;
1131
1132 case 'r':
1133 /* Register variable (either global or local). */
1134 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1135 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1136 SYMBOL_VALUE (sym) = valu;
1137 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1138 if (within_function)
1139 {
1140 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1141 the same name to represent an argument passed in a
1142 register. GCC uses 'P' for the same case. So if we find
1143 such a symbol pair we combine it into one 'P' symbol.
1144 For Sun cc we need to do this regardless of
1145 stabs_argument_has_addr, because the compiler puts out
1146 the 'p' symbol even if it never saves the argument onto
1147 the stack.
1148
1149 On most machines, we want to preserve both symbols, so
1150 that we can still get information about what is going on
1151 with the stack (VAX for computing args_printed, using
1152 stack slots instead of saved registers in backtraces,
1153 etc.).
1154
1155 Note that this code illegally combines
1156 main(argc) struct foo argc; { register struct foo argc; }
1157 but this case is considered pathological and causes a warning
1158 from a decent compiler. */
1159
1160 struct pending *local_symbols = *get_local_symbols ();
1161 if (local_symbols
1162 && local_symbols->nsyms > 0
1163 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1164 {
1165 struct symbol *prev_sym;
1166
1167 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1168 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1169 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1170 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1171 SYMBOL_LINKAGE_NAME (sym)) == 0)
1172 {
1173 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1174 /* Use the type from the LOC_REGISTER; that is the type
1175 that is actually in that register. */
1176 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1177 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1178 sym = prev_sym;
1179 break;
1180 }
1181 }
1182 add_symbol_to_list (sym, get_local_symbols ());
1183 }
1184 else
1185 add_symbol_to_list (sym, get_file_symbols ());
1186 break;
1187
1188 case 'S':
1189 /* Static symbol at top level of file. */
1190 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1191 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1192 SYMBOL_VALUE_ADDRESS (sym) = valu;
1193 if (gdbarch_static_transform_name_p (gdbarch)
1194 && gdbarch_static_transform_name (gdbarch,
1195 SYMBOL_LINKAGE_NAME (sym))
1196 != SYMBOL_LINKAGE_NAME (sym))
1197 {
1198 struct bound_minimal_symbol msym;
1199
1200 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1201 NULL, objfile);
1202 if (msym.minsym != NULL)
1203 {
1204 const char *new_name = gdbarch_static_transform_name
1205 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1206
1207 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1208 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1209 }
1210 }
1211 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1212 add_symbol_to_list (sym, get_file_symbols ());
1213 break;
1214
1215 case 't':
1216 /* In Ada, there is no distinction between typedef and non-typedef;
1217 any type declaration implicitly has the equivalent of a typedef,
1218 and thus 't' is in fact equivalent to 'Tt'.
1219
1220 Therefore, for Ada units, we check the character immediately
1221 before the 't', and if we do not find a 'T', then make sure to
1222 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1223 will be stored in the VAR_DOMAIN). If the symbol was indeed
1224 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1225 elsewhere, so we don't need to take care of that.
1226
1227 This is important to do, because of forward references:
1228 The cleanup of undefined types stored in undef_types only uses
1229 STRUCT_DOMAIN symbols to perform the replacement. */
1230 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1231
1232 /* Typedef */
1233 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1234
1235 /* For a nameless type, we don't want a create a symbol, thus we
1236 did not use `sym'. Return without further processing. */
1237 if (nameless)
1238 return NULL;
1239
1240 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1241 SYMBOL_VALUE (sym) = valu;
1242 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1243 /* C++ vagaries: we may have a type which is derived from
1244 a base type which did not have its name defined when the
1245 derived class was output. We fill in the derived class's
1246 base part member's name here in that case. */
1247 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1248 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1249 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1250 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1251 {
1252 int j;
1253
1254 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1255 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1256 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1257 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1258 }
1259
1260 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1261 {
1262 /* gcc-2.6 or later (when using -fvtable-thunks)
1263 emits a unique named type for a vtable entry.
1264 Some gdb code depends on that specific name. */
1265 extern const char vtbl_ptr_name[];
1266
1267 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1268 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1269 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1270 {
1271 /* If we are giving a name to a type such as "pointer to
1272 foo" or "function returning foo", we better not set
1273 the TYPE_NAME. If the program contains "typedef char
1274 *caddr_t;", we don't want all variables of type char
1275 * to print as caddr_t. This is not just a
1276 consequence of GDB's type management; PCC and GCC (at
1277 least through version 2.4) both output variables of
1278 either type char * or caddr_t with the type number
1279 defined in the 't' symbol for caddr_t. If a future
1280 compiler cleans this up it GDB is not ready for it
1281 yet, but if it becomes ready we somehow need to
1282 disable this check (without breaking the PCC/GCC2.4
1283 case).
1284
1285 Sigh.
1286
1287 Fortunately, this check seems not to be necessary
1288 for anything except pointers or functions. */
1289 /* ezannoni: 2000-10-26. This seems to apply for
1290 versions of gcc older than 2.8. This was the original
1291 problem: with the following code gdb would tell that
1292 the type for name1 is caddr_t, and func is char().
1293
1294 typedef char *caddr_t;
1295 char *name2;
1296 struct x
1297 {
1298 char *name1;
1299 } xx;
1300 char *func()
1301 {
1302 }
1303 main () {}
1304 */
1305
1306 /* Pascal accepts names for pointer types. */
1307 if (get_current_subfile ()->language == language_pascal)
1308 {
1309 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1310 }
1311 }
1312 else
1313 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1314 }
1315
1316 add_symbol_to_list (sym, get_file_symbols ());
1317
1318 if (synonym)
1319 {
1320 /* Create the STRUCT_DOMAIN clone. */
1321 struct symbol *struct_sym = allocate_symbol (objfile);
1322
1323 *struct_sym = *sym;
1324 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1325 SYMBOL_VALUE (struct_sym) = valu;
1326 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1327 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1328 TYPE_NAME (SYMBOL_TYPE (sym))
1329 = obconcat (&objfile->objfile_obstack,
1330 SYMBOL_LINKAGE_NAME (sym),
1331 (char *) NULL);
1332 add_symbol_to_list (struct_sym, get_file_symbols ());
1333 }
1334
1335 break;
1336
1337 case 'T':
1338 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1339 by 't' which means we are typedef'ing it as well. */
1340 synonym = *p == 't';
1341
1342 if (synonym)
1343 p++;
1344
1345 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346
1347 /* For a nameless type, we don't want a create a symbol, thus we
1348 did not use `sym'. Return without further processing. */
1349 if (nameless)
1350 return NULL;
1351
1352 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1353 SYMBOL_VALUE (sym) = valu;
1354 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1355 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1356 TYPE_NAME (SYMBOL_TYPE (sym))
1357 = obconcat (&objfile->objfile_obstack,
1358 SYMBOL_LINKAGE_NAME (sym),
1359 (char *) NULL);
1360 add_symbol_to_list (sym, get_file_symbols ());
1361
1362 if (synonym)
1363 {
1364 /* Clone the sym and then modify it. */
1365 struct symbol *typedef_sym = allocate_symbol (objfile);
1366
1367 *typedef_sym = *sym;
1368 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1369 SYMBOL_VALUE (typedef_sym) = valu;
1370 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1371 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1372 TYPE_NAME (SYMBOL_TYPE (sym))
1373 = obconcat (&objfile->objfile_obstack,
1374 SYMBOL_LINKAGE_NAME (sym),
1375 (char *) NULL);
1376 add_symbol_to_list (typedef_sym, get_file_symbols ());
1377 }
1378 break;
1379
1380 case 'V':
1381 /* Static symbol of local scope. */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1384 SYMBOL_VALUE_ADDRESS (sym) = valu;
1385 if (gdbarch_static_transform_name_p (gdbarch)
1386 && gdbarch_static_transform_name (gdbarch,
1387 SYMBOL_LINKAGE_NAME (sym))
1388 != SYMBOL_LINKAGE_NAME (sym))
1389 {
1390 struct bound_minimal_symbol msym;
1391
1392 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1393 NULL, objfile);
1394 if (msym.minsym != NULL)
1395 {
1396 const char *new_name = gdbarch_static_transform_name
1397 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1398
1399 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1400 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1401 }
1402 }
1403 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404 add_symbol_to_list (sym, get_local_symbols ());
1405 break;
1406
1407 case 'v':
1408 /* Reference parameter */
1409 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1410 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1411 SYMBOL_IS_ARGUMENT (sym) = 1;
1412 SYMBOL_VALUE (sym) = valu;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, get_local_symbols ());
1415 break;
1416
1417 case 'a':
1418 /* Reference parameter which is in a register. */
1419 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1420 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1421 SYMBOL_IS_ARGUMENT (sym) = 1;
1422 SYMBOL_VALUE (sym) = valu;
1423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1424 add_symbol_to_list (sym, get_local_symbols ());
1425 break;
1426
1427 case 'X':
1428 /* This is used by Sun FORTRAN for "function result value".
1429 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1430 that Pascal uses it too, but when I tried it Pascal used
1431 "x:3" (local symbol) instead. */
1432 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1434 SYMBOL_VALUE (sym) = valu;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, get_local_symbols ());
1437 break;
1438
1439 default:
1440 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1441 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1442 SYMBOL_VALUE (sym) = 0;
1443 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1444 add_symbol_to_list (sym, get_file_symbols ());
1445 break;
1446 }
1447
1448 /* Some systems pass variables of certain types by reference instead
1449 of by value, i.e. they will pass the address of a structure (in a
1450 register or on the stack) instead of the structure itself. */
1451
1452 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1453 && SYMBOL_IS_ARGUMENT (sym))
1454 {
1455 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1456 variables passed in a register). */
1457 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1458 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1459 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1460 and subsequent arguments on SPARC, for example). */
1461 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1462 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1463 }
1464
1465 return sym;
1466 }
1467
1468 /* Skip rest of this symbol and return an error type.
1469
1470 General notes on error recovery: error_type always skips to the
1471 end of the symbol (modulo cretinous dbx symbol name continuation).
1472 Thus code like this:
1473
1474 if (*(*pp)++ != ';')
1475 return error_type (pp, objfile);
1476
1477 is wrong because if *pp starts out pointing at '\0' (typically as the
1478 result of an earlier error), it will be incremented to point to the
1479 start of the next symbol, which might produce strange results, at least
1480 if you run off the end of the string table. Instead use
1481
1482 if (**pp != ';')
1483 return error_type (pp, objfile);
1484 ++*pp;
1485
1486 or
1487
1488 if (**pp != ';')
1489 foo = error_type (pp, objfile);
1490 else
1491 ++*pp;
1492
1493 And in case it isn't obvious, the point of all this hair is so the compiler
1494 can define new types and new syntaxes, and old versions of the
1495 debugger will be able to read the new symbol tables. */
1496
1497 static struct type *
1498 error_type (const char **pp, struct objfile *objfile)
1499 {
1500 complaint (_("couldn't parse type; debugger out of date?"));
1501 while (1)
1502 {
1503 /* Skip to end of symbol. */
1504 while (**pp != '\0')
1505 {
1506 (*pp)++;
1507 }
1508
1509 /* Check for and handle cretinous dbx symbol name continuation! */
1510 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1511 {
1512 *pp = next_symbol_text (objfile);
1513 }
1514 else
1515 {
1516 break;
1517 }
1518 }
1519 return objfile_type (objfile)->builtin_error;
1520 }
1521 \f
1522
1523 /* Read type information or a type definition; return the type. Even
1524 though this routine accepts either type information or a type
1525 definition, the distinction is relevant--some parts of stabsread.c
1526 assume that type information starts with a digit, '-', or '(' in
1527 deciding whether to call read_type. */
1528
1529 static struct type *
1530 read_type (const char **pp, struct objfile *objfile)
1531 {
1532 struct type *type = 0;
1533 struct type *type1;
1534 int typenums[2];
1535 char type_descriptor;
1536
1537 /* Size in bits of type if specified by a type attribute, or -1 if
1538 there is no size attribute. */
1539 int type_size = -1;
1540
1541 /* Used to distinguish string and bitstring from char-array and set. */
1542 int is_string = 0;
1543
1544 /* Used to distinguish vector from array. */
1545 int is_vector = 0;
1546
1547 /* Read type number if present. The type number may be omitted.
1548 for instance in a two-dimensional array declared with type
1549 "ar1;1;10;ar1;1;10;4". */
1550 if ((**pp >= '0' && **pp <= '9')
1551 || **pp == '('
1552 || **pp == '-')
1553 {
1554 if (read_type_number (pp, typenums) != 0)
1555 return error_type (pp, objfile);
1556
1557 if (**pp != '=')
1558 {
1559 /* Type is not being defined here. Either it already
1560 exists, or this is a forward reference to it.
1561 dbx_alloc_type handles both cases. */
1562 type = dbx_alloc_type (typenums, objfile);
1563
1564 /* If this is a forward reference, arrange to complain if it
1565 doesn't get patched up by the time we're done
1566 reading. */
1567 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1568 add_undefined_type (type, typenums);
1569
1570 return type;
1571 }
1572
1573 /* Type is being defined here. */
1574 /* Skip the '='.
1575 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1576 (*pp) += 2;
1577 }
1578 else
1579 {
1580 /* 'typenums=' not present, type is anonymous. Read and return
1581 the definition, but don't put it in the type vector. */
1582 typenums[0] = typenums[1] = -1;
1583 (*pp)++;
1584 }
1585
1586 again:
1587 type_descriptor = (*pp)[-1];
1588 switch (type_descriptor)
1589 {
1590 case 'x':
1591 {
1592 enum type_code code;
1593
1594 /* Used to index through file_symbols. */
1595 struct pending *ppt;
1596 int i;
1597
1598 /* Name including "struct", etc. */
1599 char *type_name;
1600
1601 {
1602 const char *from, *p, *q1, *q2;
1603
1604 /* Set the type code according to the following letter. */
1605 switch ((*pp)[0])
1606 {
1607 case 's':
1608 code = TYPE_CODE_STRUCT;
1609 break;
1610 case 'u':
1611 code = TYPE_CODE_UNION;
1612 break;
1613 case 'e':
1614 code = TYPE_CODE_ENUM;
1615 break;
1616 default:
1617 {
1618 /* Complain and keep going, so compilers can invent new
1619 cross-reference types. */
1620 complaint (_("Unrecognized cross-reference type `%c'"),
1621 (*pp)[0]);
1622 code = TYPE_CODE_STRUCT;
1623 break;
1624 }
1625 }
1626
1627 q1 = strchr (*pp, '<');
1628 p = strchr (*pp, ':');
1629 if (p == NULL)
1630 return error_type (pp, objfile);
1631 if (q1 && p > q1 && p[1] == ':')
1632 {
1633 int nesting_level = 0;
1634
1635 for (q2 = q1; *q2; q2++)
1636 {
1637 if (*q2 == '<')
1638 nesting_level++;
1639 else if (*q2 == '>')
1640 nesting_level--;
1641 else if (*q2 == ':' && nesting_level == 0)
1642 break;
1643 }
1644 p = q2;
1645 if (*p != ':')
1646 return error_type (pp, objfile);
1647 }
1648 type_name = NULL;
1649 if (get_current_subfile ()->language == language_cplus)
1650 {
1651 char *name = (char *) alloca (p - *pp + 1);
1652
1653 memcpy (name, *pp, p - *pp);
1654 name[p - *pp] = '\0';
1655
1656 std::string new_name = cp_canonicalize_string (name);
1657 if (!new_name.empty ())
1658 {
1659 type_name
1660 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1661 new_name.c_str (),
1662 new_name.length ());
1663 }
1664 }
1665 if (type_name == NULL)
1666 {
1667 char *to = type_name = (char *)
1668 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1669
1670 /* Copy the name. */
1671 from = *pp + 1;
1672 while (from < p)
1673 *to++ = *from++;
1674 *to = '\0';
1675 }
1676
1677 /* Set the pointer ahead of the name which we just read, and
1678 the colon. */
1679 *pp = p + 1;
1680 }
1681
1682 /* If this type has already been declared, then reuse the same
1683 type, rather than allocating a new one. This saves some
1684 memory. */
1685
1686 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1687 for (i = 0; i < ppt->nsyms; i++)
1688 {
1689 struct symbol *sym = ppt->symbol[i];
1690
1691 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1692 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1693 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1694 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1695 {
1696 obstack_free (&objfile->objfile_obstack, type_name);
1697 type = SYMBOL_TYPE (sym);
1698 if (typenums[0] != -1)
1699 *dbx_lookup_type (typenums, objfile) = type;
1700 return type;
1701 }
1702 }
1703
1704 /* Didn't find the type to which this refers, so we must
1705 be dealing with a forward reference. Allocate a type
1706 structure for it, and keep track of it so we can
1707 fill in the rest of the fields when we get the full
1708 type. */
1709 type = dbx_alloc_type (typenums, objfile);
1710 TYPE_CODE (type) = code;
1711 TYPE_NAME (type) = type_name;
1712 INIT_CPLUS_SPECIFIC (type);
1713 TYPE_STUB (type) = 1;
1714
1715 add_undefined_type (type, typenums);
1716 return type;
1717 }
1718
1719 case '-': /* RS/6000 built-in type */
1720 case '0':
1721 case '1':
1722 case '2':
1723 case '3':
1724 case '4':
1725 case '5':
1726 case '6':
1727 case '7':
1728 case '8':
1729 case '9':
1730 case '(':
1731 (*pp)--;
1732
1733 /* We deal with something like t(1,2)=(3,4)=... which
1734 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1735
1736 /* Allocate and enter the typedef type first.
1737 This handles recursive types. */
1738 type = dbx_alloc_type (typenums, objfile);
1739 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1740 {
1741 struct type *xtype = read_type (pp, objfile);
1742
1743 if (type == xtype)
1744 {
1745 /* It's being defined as itself. That means it is "void". */
1746 TYPE_CODE (type) = TYPE_CODE_VOID;
1747 TYPE_LENGTH (type) = 1;
1748 }
1749 else if (type_size >= 0 || is_string)
1750 {
1751 /* This is the absolute wrong way to construct types. Every
1752 other debug format has found a way around this problem and
1753 the related problems with unnecessarily stubbed types;
1754 someone motivated should attempt to clean up the issue
1755 here as well. Once a type pointed to has been created it
1756 should not be modified.
1757
1758 Well, it's not *absolutely* wrong. Constructing recursive
1759 types (trees, linked lists) necessarily entails modifying
1760 types after creating them. Constructing any loop structure
1761 entails side effects. The Dwarf 2 reader does handle this
1762 more gracefully (it never constructs more than once
1763 instance of a type object, so it doesn't have to copy type
1764 objects wholesale), but it still mutates type objects after
1765 other folks have references to them.
1766
1767 Keep in mind that this circularity/mutation issue shows up
1768 at the source language level, too: C's "incomplete types",
1769 for example. So the proper cleanup, I think, would be to
1770 limit GDB's type smashing to match exactly those required
1771 by the source language. So GDB could have a
1772 "complete_this_type" function, but never create unnecessary
1773 copies of a type otherwise. */
1774 replace_type (type, xtype);
1775 TYPE_NAME (type) = NULL;
1776 }
1777 else
1778 {
1779 TYPE_TARGET_STUB (type) = 1;
1780 TYPE_TARGET_TYPE (type) = xtype;
1781 }
1782 }
1783 break;
1784
1785 /* In the following types, we must be sure to overwrite any existing
1786 type that the typenums refer to, rather than allocating a new one
1787 and making the typenums point to the new one. This is because there
1788 may already be pointers to the existing type (if it had been
1789 forward-referenced), and we must change it to a pointer, function,
1790 reference, or whatever, *in-place*. */
1791
1792 case '*': /* Pointer to another type */
1793 type1 = read_type (pp, objfile);
1794 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1795 break;
1796
1797 case '&': /* Reference to another type */
1798 type1 = read_type (pp, objfile);
1799 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1800 TYPE_CODE_REF);
1801 break;
1802
1803 case 'f': /* Function returning another type */
1804 type1 = read_type (pp, objfile);
1805 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1806 break;
1807
1808 case 'g': /* Prototyped function. (Sun) */
1809 {
1810 /* Unresolved questions:
1811
1812 - According to Sun's ``STABS Interface Manual'', for 'f'
1813 and 'F' symbol descriptors, a `0' in the argument type list
1814 indicates a varargs function. But it doesn't say how 'g'
1815 type descriptors represent that info. Someone with access
1816 to Sun's toolchain should try it out.
1817
1818 - According to the comment in define_symbol (search for
1819 `process_prototype_types:'), Sun emits integer arguments as
1820 types which ref themselves --- like `void' types. Do we
1821 have to deal with that here, too? Again, someone with
1822 access to Sun's toolchain should try it out and let us
1823 know. */
1824
1825 const char *type_start = (*pp) - 1;
1826 struct type *return_type = read_type (pp, objfile);
1827 struct type *func_type
1828 = make_function_type (return_type,
1829 dbx_lookup_type (typenums, objfile));
1830 struct type_list {
1831 struct type *type;
1832 struct type_list *next;
1833 } *arg_types = 0;
1834 int num_args = 0;
1835
1836 while (**pp && **pp != '#')
1837 {
1838 struct type *arg_type = read_type (pp, objfile);
1839 struct type_list *newobj = XALLOCA (struct type_list);
1840 newobj->type = arg_type;
1841 newobj->next = arg_types;
1842 arg_types = newobj;
1843 num_args++;
1844 }
1845 if (**pp == '#')
1846 ++*pp;
1847 else
1848 {
1849 complaint (_("Prototyped function type didn't "
1850 "end arguments with `#':\n%s"),
1851 type_start);
1852 }
1853
1854 /* If there is just one argument whose type is `void', then
1855 that's just an empty argument list. */
1856 if (arg_types
1857 && ! arg_types->next
1858 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1859 num_args = 0;
1860
1861 TYPE_FIELDS (func_type)
1862 = (struct field *) TYPE_ALLOC (func_type,
1863 num_args * sizeof (struct field));
1864 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1865 {
1866 int i;
1867 struct type_list *t;
1868
1869 /* We stuck each argument type onto the front of the list
1870 when we read it, so the list is reversed. Build the
1871 fields array right-to-left. */
1872 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1873 TYPE_FIELD_TYPE (func_type, i) = t->type;
1874 }
1875 TYPE_NFIELDS (func_type) = num_args;
1876 TYPE_PROTOTYPED (func_type) = 1;
1877
1878 type = func_type;
1879 break;
1880 }
1881
1882 case 'k': /* Const qualifier on some type (Sun) */
1883 type = read_type (pp, objfile);
1884 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1885 dbx_lookup_type (typenums, objfile));
1886 break;
1887
1888 case 'B': /* Volatile qual on some type (Sun) */
1889 type = read_type (pp, objfile);
1890 type = make_cv_type (TYPE_CONST (type), 1, type,
1891 dbx_lookup_type (typenums, objfile));
1892 break;
1893
1894 case '@':
1895 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1896 { /* Member (class & variable) type */
1897 /* FIXME -- we should be doing smash_to_XXX types here. */
1898
1899 struct type *domain = read_type (pp, objfile);
1900 struct type *memtype;
1901
1902 if (**pp != ',')
1903 /* Invalid member type data format. */
1904 return error_type (pp, objfile);
1905 ++*pp;
1906
1907 memtype = read_type (pp, objfile);
1908 type = dbx_alloc_type (typenums, objfile);
1909 smash_to_memberptr_type (type, domain, memtype);
1910 }
1911 else
1912 /* type attribute */
1913 {
1914 const char *attr = *pp;
1915
1916 /* Skip to the semicolon. */
1917 while (**pp != ';' && **pp != '\0')
1918 ++(*pp);
1919 if (**pp == '\0')
1920 return error_type (pp, objfile);
1921 else
1922 ++ * pp; /* Skip the semicolon. */
1923
1924 switch (*attr)
1925 {
1926 case 's': /* Size attribute */
1927 type_size = atoi (attr + 1);
1928 if (type_size <= 0)
1929 type_size = -1;
1930 break;
1931
1932 case 'S': /* String attribute */
1933 /* FIXME: check to see if following type is array? */
1934 is_string = 1;
1935 break;
1936
1937 case 'V': /* Vector attribute */
1938 /* FIXME: check to see if following type is array? */
1939 is_vector = 1;
1940 break;
1941
1942 default:
1943 /* Ignore unrecognized type attributes, so future compilers
1944 can invent new ones. */
1945 break;
1946 }
1947 ++*pp;
1948 goto again;
1949 }
1950 break;
1951
1952 case '#': /* Method (class & fn) type */
1953 if ((*pp)[0] == '#')
1954 {
1955 /* We'll get the parameter types from the name. */
1956 struct type *return_type;
1957
1958 (*pp)++;
1959 return_type = read_type (pp, objfile);
1960 if (*(*pp)++ != ';')
1961 complaint (_("invalid (minimal) member type "
1962 "data format at symtab pos %d."),
1963 symnum);
1964 type = allocate_stub_method (return_type);
1965 if (typenums[0] != -1)
1966 *dbx_lookup_type (typenums, objfile) = type;
1967 }
1968 else
1969 {
1970 struct type *domain = read_type (pp, objfile);
1971 struct type *return_type;
1972 struct field *args;
1973 int nargs, varargs;
1974
1975 if (**pp != ',')
1976 /* Invalid member type data format. */
1977 return error_type (pp, objfile);
1978 else
1979 ++(*pp);
1980
1981 return_type = read_type (pp, objfile);
1982 args = read_args (pp, ';', objfile, &nargs, &varargs);
1983 if (args == NULL)
1984 return error_type (pp, objfile);
1985 type = dbx_alloc_type (typenums, objfile);
1986 smash_to_method_type (type, domain, return_type, args,
1987 nargs, varargs);
1988 }
1989 break;
1990
1991 case 'r': /* Range type */
1992 type = read_range_type (pp, typenums, type_size, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 case 'b':
1998 {
1999 /* Sun ACC builtin int type */
2000 type = read_sun_builtin_type (pp, typenums, objfile);
2001 if (typenums[0] != -1)
2002 *dbx_lookup_type (typenums, objfile) = type;
2003 }
2004 break;
2005
2006 case 'R': /* Sun ACC builtin float type */
2007 type = read_sun_floating_type (pp, typenums, objfile);
2008 if (typenums[0] != -1)
2009 *dbx_lookup_type (typenums, objfile) = type;
2010 break;
2011
2012 case 'e': /* Enumeration type */
2013 type = dbx_alloc_type (typenums, objfile);
2014 type = read_enum_type (pp, type, objfile);
2015 if (typenums[0] != -1)
2016 *dbx_lookup_type (typenums, objfile) = type;
2017 break;
2018
2019 case 's': /* Struct type */
2020 case 'u': /* Union type */
2021 {
2022 enum type_code type_code = TYPE_CODE_UNDEF;
2023 type = dbx_alloc_type (typenums, objfile);
2024 switch (type_descriptor)
2025 {
2026 case 's':
2027 type_code = TYPE_CODE_STRUCT;
2028 break;
2029 case 'u':
2030 type_code = TYPE_CODE_UNION;
2031 break;
2032 }
2033 type = read_struct_type (pp, type, type_code, objfile);
2034 break;
2035 }
2036
2037 case 'a': /* Array type */
2038 if (**pp != 'r')
2039 return error_type (pp, objfile);
2040 ++*pp;
2041
2042 type = dbx_alloc_type (typenums, objfile);
2043 type = read_array_type (pp, type, objfile);
2044 if (is_string)
2045 TYPE_CODE (type) = TYPE_CODE_STRING;
2046 if (is_vector)
2047 make_vector_type (type);
2048 break;
2049
2050 case 'S': /* Set type */
2051 type1 = read_type (pp, objfile);
2052 type = create_set_type ((struct type *) NULL, type1);
2053 if (typenums[0] != -1)
2054 *dbx_lookup_type (typenums, objfile) = type;
2055 break;
2056
2057 default:
2058 --*pp; /* Go back to the symbol in error. */
2059 /* Particularly important if it was \0! */
2060 return error_type (pp, objfile);
2061 }
2062
2063 if (type == 0)
2064 {
2065 warning (_("GDB internal error, type is NULL in stabsread.c."));
2066 return error_type (pp, objfile);
2067 }
2068
2069 /* Size specified in a type attribute overrides any other size. */
2070 if (type_size != -1)
2071 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2072
2073 return type;
2074 }
2075 \f
2076 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2077 Return the proper type node for a given builtin type number. */
2078
2079 static const struct objfile_data *rs6000_builtin_type_data;
2080
2081 static struct type *
2082 rs6000_builtin_type (int typenum, struct objfile *objfile)
2083 {
2084 struct type **negative_types
2085 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2086
2087 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2088 #define NUMBER_RECOGNIZED 34
2089 struct type *rettype = NULL;
2090
2091 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2092 {
2093 complaint (_("Unknown builtin type %d"), typenum);
2094 return objfile_type (objfile)->builtin_error;
2095 }
2096
2097 if (!negative_types)
2098 {
2099 /* This includes an empty slot for type number -0. */
2100 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2101 NUMBER_RECOGNIZED + 1, struct type *);
2102 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2103 }
2104
2105 if (negative_types[-typenum] != NULL)
2106 return negative_types[-typenum];
2107
2108 #if TARGET_CHAR_BIT != 8
2109 #error This code wrong for TARGET_CHAR_BIT not 8
2110 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2111 that if that ever becomes not true, the correct fix will be to
2112 make the size in the struct type to be in bits, not in units of
2113 TARGET_CHAR_BIT. */
2114 #endif
2115
2116 switch (-typenum)
2117 {
2118 case 1:
2119 /* The size of this and all the other types are fixed, defined
2120 by the debugging format. If there is a type called "int" which
2121 is other than 32 bits, then it should use a new negative type
2122 number (or avoid negative type numbers for that case).
2123 See stabs.texinfo. */
2124 rettype = init_integer_type (objfile, 32, 0, "int");
2125 break;
2126 case 2:
2127 rettype = init_integer_type (objfile, 8, 0, "char");
2128 TYPE_NOSIGN (rettype) = 1;
2129 break;
2130 case 3:
2131 rettype = init_integer_type (objfile, 16, 0, "short");
2132 break;
2133 case 4:
2134 rettype = init_integer_type (objfile, 32, 0, "long");
2135 break;
2136 case 5:
2137 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2138 break;
2139 case 6:
2140 rettype = init_integer_type (objfile, 8, 0, "signed char");
2141 break;
2142 case 7:
2143 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2144 break;
2145 case 8:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2147 break;
2148 case 9:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2150 break;
2151 case 10:
2152 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2153 break;
2154 case 11:
2155 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2156 break;
2157 case 12:
2158 /* IEEE single precision (32 bit). */
2159 rettype = init_float_type (objfile, 32, "float",
2160 floatformats_ieee_single);
2161 break;
2162 case 13:
2163 /* IEEE double precision (64 bit). */
2164 rettype = init_float_type (objfile, 64, "double",
2165 floatformats_ieee_double);
2166 break;
2167 case 14:
2168 /* This is an IEEE double on the RS/6000, and different machines with
2169 different sizes for "long double" should use different negative
2170 type numbers. See stabs.texinfo. */
2171 rettype = init_float_type (objfile, 64, "long double",
2172 floatformats_ieee_double);
2173 break;
2174 case 15:
2175 rettype = init_integer_type (objfile, 32, 0, "integer");
2176 break;
2177 case 16:
2178 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2179 break;
2180 case 17:
2181 rettype = init_float_type (objfile, 32, "short real",
2182 floatformats_ieee_single);
2183 break;
2184 case 18:
2185 rettype = init_float_type (objfile, 64, "real",
2186 floatformats_ieee_double);
2187 break;
2188 case 19:
2189 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2190 break;
2191 case 20:
2192 rettype = init_character_type (objfile, 8, 1, "character");
2193 break;
2194 case 21:
2195 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2196 break;
2197 case 22:
2198 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2199 break;
2200 case 23:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2202 break;
2203 case 24:
2204 rettype = init_boolean_type (objfile, 32, 1, "logical");
2205 break;
2206 case 25:
2207 /* Complex type consisting of two IEEE single precision values. */
2208 rettype = init_complex_type (objfile, "complex",
2209 rs6000_builtin_type (12, objfile));
2210 break;
2211 case 26:
2212 /* Complex type consisting of two IEEE double precision values. */
2213 rettype = init_complex_type (objfile, "double complex",
2214 rs6000_builtin_type (13, objfile));
2215 break;
2216 case 27:
2217 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2218 break;
2219 case 28:
2220 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2221 break;
2222 case 29:
2223 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2224 break;
2225 case 30:
2226 rettype = init_character_type (objfile, 16, 0, "wchar");
2227 break;
2228 case 31:
2229 rettype = init_integer_type (objfile, 64, 0, "long long");
2230 break;
2231 case 32:
2232 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2233 break;
2234 case 33:
2235 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2236 break;
2237 case 34:
2238 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2239 break;
2240 }
2241 negative_types[-typenum] = rettype;
2242 return rettype;
2243 }
2244 \f
2245 /* This page contains subroutines of read_type. */
2246
2247 /* Wrapper around method_name_from_physname to flag a complaint
2248 if there is an error. */
2249
2250 static char *
2251 stabs_method_name_from_physname (const char *physname)
2252 {
2253 char *method_name;
2254
2255 method_name = method_name_from_physname (physname);
2256
2257 if (method_name == NULL)
2258 {
2259 complaint (_("Method has bad physname %s\n"), physname);
2260 return NULL;
2261 }
2262
2263 return method_name;
2264 }
2265
2266 /* Read member function stabs info for C++ classes. The form of each member
2267 function data is:
2268
2269 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2270
2271 An example with two member functions is:
2272
2273 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2274
2275 For the case of overloaded operators, the format is op$::*.funcs, where
2276 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2277 name (such as `+=') and `.' marks the end of the operator name.
2278
2279 Returns 1 for success, 0 for failure. */
2280
2281 static int
2282 read_member_functions (struct stab_field_info *fip, const char **pp,
2283 struct type *type, struct objfile *objfile)
2284 {
2285 int nfn_fields = 0;
2286 int length = 0;
2287 int i;
2288 struct next_fnfield
2289 {
2290 struct next_fnfield *next;
2291 struct fn_field fn_field;
2292 }
2293 *sublist;
2294 struct type *look_ahead_type;
2295 struct next_fnfieldlist *new_fnlist;
2296 struct next_fnfield *new_sublist;
2297 char *main_fn_name;
2298 const char *p;
2299
2300 /* Process each list until we find something that is not a member function
2301 or find the end of the functions. */
2302
2303 while (**pp != ';')
2304 {
2305 /* We should be positioned at the start of the function name.
2306 Scan forward to find the first ':' and if it is not the
2307 first of a "::" delimiter, then this is not a member function. */
2308 p = *pp;
2309 while (*p != ':')
2310 {
2311 p++;
2312 }
2313 if (p[1] != ':')
2314 {
2315 break;
2316 }
2317
2318 sublist = NULL;
2319 look_ahead_type = NULL;
2320 length = 0;
2321
2322 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2323
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 {
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2334 work for "*". */
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2337
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340
2341 STABS_CONTINUE (pp, objfile);
2342 p = *pp;
2343 while (*p != '.')
2344 {
2345 *o++ = *p++;
2346 }
2347 main_fn_name = savestring (opname, o - opname);
2348 /* Skip past '.' */
2349 *pp = p + 1;
2350 }
2351 else
2352 {
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2355 *pp = p + 2;
2356 }
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2358
2359 do
2360 {
2361 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2396
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2399 {
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
2417 }
2418
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
2442 case '*': /* File compiled with g++ version 1 --
2443 no info. */
2444 case '?':
2445 case '.':
2446 break;
2447 default:
2448 complaint (_("const/volatile indicator missing, got '%c'"),
2449 **pp);
2450 break;
2451 }
2452
2453 switch (*(*pp)++)
2454 {
2455 case '*':
2456 {
2457 int nbits;
2458 /* virtual member function, followed by index.
2459 The sign bit is set to distinguish pointers-to-methods
2460 from virtual function indicies. Since the array is
2461 in words, the quantity must be shifted left by 1
2462 on 16 bit machine, and by 2 on 32 bit machine, forcing
2463 the sign bit out, and usable as a valid index into
2464 the array. Remove the sign bit here. */
2465 new_sublist->fn_field.voffset =
2466 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2467 if (nbits != 0)
2468 return 0;
2469
2470 STABS_CONTINUE (pp, objfile);
2471 if (**pp == ';' || **pp == '\0')
2472 {
2473 /* Must be g++ version 1. */
2474 new_sublist->fn_field.fcontext = 0;
2475 }
2476 else
2477 {
2478 /* Figure out from whence this virtual function came.
2479 It may belong to virtual function table of
2480 one of its baseclasses. */
2481 look_ahead_type = read_type (pp, objfile);
2482 if (**pp == ':')
2483 {
2484 /* g++ version 1 overloaded methods. */
2485 }
2486 else
2487 {
2488 new_sublist->fn_field.fcontext = look_ahead_type;
2489 if (**pp != ';')
2490 {
2491 return 0;
2492 }
2493 else
2494 {
2495 ++*pp;
2496 }
2497 look_ahead_type = NULL;
2498 }
2499 }
2500 break;
2501 }
2502 case '?':
2503 /* static member function. */
2504 {
2505 int slen = strlen (main_fn_name);
2506
2507 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2508
2509 /* For static member functions, we can't tell if they
2510 are stubbed, as they are put out as functions, and not as
2511 methods.
2512 GCC v2 emits the fully mangled name if
2513 dbxout.c:flag_minimal_debug is not set, so we have to
2514 detect a fully mangled physname here and set is_stub
2515 accordingly. Fully mangled physnames in v2 start with
2516 the member function name, followed by two underscores.
2517 GCC v3 currently always emits stubbed member functions,
2518 but with fully mangled physnames, which start with _Z. */
2519 if (!(strncmp (new_sublist->fn_field.physname,
2520 main_fn_name, slen) == 0
2521 && new_sublist->fn_field.physname[slen] == '_'
2522 && new_sublist->fn_field.physname[slen + 1] == '_'))
2523 {
2524 new_sublist->fn_field.is_stub = 1;
2525 }
2526 break;
2527 }
2528
2529 default:
2530 /* error */
2531 complaint (_("member function type missing, got '%c'"),
2532 (*pp)[-1]);
2533 /* Normal member function. */
2534 /* Fall through. */
2535
2536 case '.':
2537 /* normal member function. */
2538 new_sublist->fn_field.voffset = 0;
2539 new_sublist->fn_field.fcontext = 0;
2540 break;
2541 }
2542
2543 new_sublist->next = sublist;
2544 sublist = new_sublist;
2545 length++;
2546 STABS_CONTINUE (pp, objfile);
2547 }
2548 while (**pp != ';' && **pp != '\0');
2549
2550 (*pp)++;
2551 STABS_CONTINUE (pp, objfile);
2552
2553 /* Skip GCC 3.X member functions which are duplicates of the callable
2554 constructor/destructor. */
2555 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2556 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2557 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2558 {
2559 xfree (main_fn_name);
2560 }
2561 else
2562 {
2563 int has_destructor = 0, has_other = 0;
2564 int is_v3 = 0;
2565 struct next_fnfield *tmp_sublist;
2566
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2569
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2575
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2582 mangled).
2583
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2589
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2596 gdb_mangle_name.
2597
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2608 needs to be fixed.
2609
2610 So, to summarize what we expect and handle here:
2611
2612 Given Given Real Real Action
2613 method name physname physname method name
2614
2615 __opi [none] __opi__3Foo operator int opname
2616 [now or later]
2617 Foo _._3Foo _._3Foo ~Foo separate and
2618 rename
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2621 */
2622
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (tmp_sublist->fn_field.physname[0] == '_'
2627 && tmp_sublist->fn_field.physname[1] == 'Z')
2628 is_v3 = 1;
2629
2630 if (is_destructor_name (tmp_sublist->fn_field.physname))
2631 has_destructor++;
2632 else
2633 has_other++;
2634
2635 tmp_sublist = tmp_sublist->next;
2636 }
2637
2638 if (has_destructor && has_other)
2639 {
2640 struct next_fnfieldlist *destr_fnlist;
2641 struct next_fnfield *last_sublist;
2642
2643 /* Create a new fn_fieldlist for the destructors. */
2644
2645 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2646 struct next_fnfieldlist);
2647
2648 destr_fnlist->fn_fieldlist.name
2649 = obconcat (&objfile->objfile_obstack, "~",
2650 new_fnlist->fn_fieldlist.name, (char *) NULL);
2651
2652 destr_fnlist->fn_fieldlist.fn_fields =
2653 XOBNEWVEC (&objfile->objfile_obstack,
2654 struct fn_field, has_destructor);
2655 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2656 sizeof (struct fn_field) * has_destructor);
2657 tmp_sublist = sublist;
2658 last_sublist = NULL;
2659 i = 0;
2660 while (tmp_sublist != NULL)
2661 {
2662 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2663 {
2664 tmp_sublist = tmp_sublist->next;
2665 continue;
2666 }
2667
2668 destr_fnlist->fn_fieldlist.fn_fields[i++]
2669 = tmp_sublist->fn_field;
2670 if (last_sublist)
2671 last_sublist->next = tmp_sublist->next;
2672 else
2673 sublist = tmp_sublist->next;
2674 last_sublist = tmp_sublist;
2675 tmp_sublist = tmp_sublist->next;
2676 }
2677
2678 destr_fnlist->fn_fieldlist.length = has_destructor;
2679 destr_fnlist->next = fip->fnlist;
2680 fip->fnlist = destr_fnlist;
2681 nfn_fields++;
2682 length -= has_destructor;
2683 }
2684 else if (is_v3)
2685 {
2686 /* v3 mangling prevents the use of abbreviated physnames,
2687 so we can do this here. There are stubbed methods in v3
2688 only:
2689 - in -gstabs instead of -gstabs+
2690 - or for static methods, which are output as a function type
2691 instead of a method type. */
2692 char *new_method_name =
2693 stabs_method_name_from_physname (sublist->fn_field.physname);
2694
2695 if (new_method_name != NULL
2696 && strcmp (new_method_name,
2697 new_fnlist->fn_fieldlist.name) != 0)
2698 {
2699 new_fnlist->fn_fieldlist.name = new_method_name;
2700 xfree (main_fn_name);
2701 }
2702 else
2703 xfree (new_method_name);
2704 }
2705 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2706 {
2707 new_fnlist->fn_fieldlist.name =
2708 obconcat (&objfile->objfile_obstack,
2709 "~", main_fn_name, (char *)NULL);
2710 xfree (main_fn_name);
2711 }
2712
2713 new_fnlist->fn_fieldlist.fn_fields
2714 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2715 for (i = length; (i--, sublist); sublist = sublist->next)
2716 {
2717 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2718 }
2719
2720 new_fnlist->fn_fieldlist.length = length;
2721 new_fnlist->next = fip->fnlist;
2722 fip->fnlist = new_fnlist;
2723 nfn_fields++;
2724 }
2725 }
2726
2727 if (nfn_fields)
2728 {
2729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2730 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2731 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2732 memset (TYPE_FN_FIELDLISTS (type), 0,
2733 sizeof (struct fn_fieldlist) * nfn_fields);
2734 TYPE_NFN_FIELDS (type) = nfn_fields;
2735 }
2736
2737 return 1;
2738 }
2739
2740 /* Special GNU C++ name.
2741
2742 Returns 1 for success, 0 for failure. "failure" means that we can't
2743 keep parsing and it's time for error_type(). */
2744
2745 static int
2746 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2747 struct type *type, struct objfile *objfile)
2748 {
2749 const char *p;
2750 const char *name;
2751 char cpp_abbrev;
2752 struct type *context;
2753
2754 p = *pp;
2755 if (*++p == 'v')
2756 {
2757 name = NULL;
2758 cpp_abbrev = *++p;
2759
2760 *pp = p + 1;
2761
2762 /* At this point, *pp points to something like "22:23=*22...",
2763 where the type number before the ':' is the "context" and
2764 everything after is a regular type definition. Lookup the
2765 type, find it's name, and construct the field name. */
2766
2767 context = read_type (pp, objfile);
2768
2769 switch (cpp_abbrev)
2770 {
2771 case 'f': /* $vf -- a virtual function table pointer */
2772 name = TYPE_NAME (context);
2773 if (name == NULL)
2774 {
2775 name = "";
2776 }
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 vptr_name, name, (char *) NULL);
2779 break;
2780
2781 case 'b': /* $vb -- a virtual bsomethingorother */
2782 name = TYPE_NAME (context);
2783 if (name == NULL)
2784 {
2785 complaint (_("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2787 symnum);
2788 name = "FOO";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2792 break;
2793
2794 default:
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2798 (char *) NULL);
2799 break;
2800 }
2801
2802 /* At this point, *pp points to the ':'. Skip it and read the
2803 field type. */
2804
2805 p = ++(*pp);
2806 if (p[-1] != ':')
2807 {
2808 invalid_cpp_abbrev_complaint (*pp);
2809 return 0;
2810 }
2811 fip->list->field.type = read_type (pp, objfile);
2812 if (**pp == ',')
2813 (*pp)++; /* Skip the comma. */
2814 else
2815 return 0;
2816
2817 {
2818 int nbits;
2819
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2822 if (nbits != 0)
2823 return 0;
2824 }
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2828 }
2829 else
2830 {
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2835 return 0;
2836 }
2837 return 1;
2838 }
2839
2840 static void
2841 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2842 const char *p, struct type *type,
2843 struct objfile *objfile)
2844 {
2845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2846
2847 fip->list->field.name
2848 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2849 *pp = p + 1;
2850
2851 /* This means we have a visibility for a field coming. */
2852 if (**pp == '/')
2853 {
2854 (*pp)++;
2855 fip->list->visibility = *(*pp)++;
2856 }
2857 else
2858 {
2859 /* normal dbx-style format, no explicit visibility */
2860 fip->list->visibility = VISIBILITY_PUBLIC;
2861 }
2862
2863 fip->list->field.type = read_type (pp, objfile);
2864 if (**pp == ':')
2865 {
2866 p = ++(*pp);
2867 #if 0
2868 /* Possible future hook for nested types. */
2869 if (**pp == '!')
2870 {
2871 fip->list->field.bitpos = (long) -2; /* nested type */
2872 p = ++(*pp);
2873 }
2874 else
2875 ...;
2876 #endif
2877 while (*p != ';')
2878 {
2879 p++;
2880 }
2881 /* Static class member. */
2882 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2883 *pp = p + 1;
2884 return;
2885 }
2886 else if (**pp != ',')
2887 {
2888 /* Bad structure-type format. */
2889 stabs_general_complaint ("bad structure-type format");
2890 return;
2891 }
2892
2893 (*pp)++; /* Skip the comma. */
2894
2895 {
2896 int nbits;
2897
2898 SET_FIELD_BITPOS (fip->list->field,
2899 read_huge_number (pp, ',', &nbits, 0));
2900 if (nbits != 0)
2901 {
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2906 if (nbits != 0)
2907 {
2908 stabs_general_complaint ("bad structure-type format");
2909 return;
2910 }
2911 }
2912
2913 if (FIELD_BITPOS (fip->list->field) == 0
2914 && FIELD_BITSIZE (fip->list->field) == 0)
2915 {
2916 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2917 it is a field which has been optimized out. The correct stab for
2918 this case is to use VISIBILITY_IGNORE, but that is a recent
2919 invention. (2) It is a 0-size array. For example
2920 union { int num; char str[0]; } foo. Printing _("<no value>" for
2921 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2922 will continue to work, and a 0-size array as a whole doesn't
2923 have any contents to print.
2924
2925 I suspect this probably could also happen with gcc -gstabs (not
2926 -gstabs+) for static fields, and perhaps other C++ extensions.
2927 Hopefully few people use -gstabs with gdb, since it is intended
2928 for dbx compatibility. */
2929
2930 /* Ignore this field. */
2931 fip->list->visibility = VISIBILITY_IGNORE;
2932 }
2933 else
2934 {
2935 /* Detect an unpacked field and mark it as such.
2936 dbx gives a bit size for all fields.
2937 Note that forward refs cannot be packed,
2938 and treat enums as if they had the width of ints. */
2939
2940 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2941
2942 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2943 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2944 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2945 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2946 {
2947 FIELD_BITSIZE (fip->list->field) = 0;
2948 }
2949 if ((FIELD_BITSIZE (fip->list->field)
2950 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2951 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2952 && FIELD_BITSIZE (fip->list->field)
2953 == gdbarch_int_bit (gdbarch))
2954 )
2955 &&
2956 FIELD_BITPOS (fip->list->field) % 8 == 0)
2957 {
2958 FIELD_BITSIZE (fip->list->field) = 0;
2959 }
2960 }
2961 }
2962
2963
2964 /* Read struct or class data fields. They have the form:
2965
2966 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2967
2968 At the end, we see a semicolon instead of a field.
2969
2970 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2971 a static field.
2972
2973 The optional VISIBILITY is one of:
2974
2975 '/0' (VISIBILITY_PRIVATE)
2976 '/1' (VISIBILITY_PROTECTED)
2977 '/2' (VISIBILITY_PUBLIC)
2978 '/9' (VISIBILITY_IGNORE)
2979
2980 or nothing, for C style fields with public visibility.
2981
2982 Returns 1 for success, 0 for failure. */
2983
2984 static int
2985 read_struct_fields (struct stab_field_info *fip, const char **pp,
2986 struct type *type, struct objfile *objfile)
2987 {
2988 const char *p;
2989 struct nextfield *newobj;
2990
2991 /* We better set p right now, in case there are no fields at all... */
2992
2993 p = *pp;
2994
2995 /* Read each data member type until we find the terminating ';' at the end of
2996 the data member list, or break for some other reason such as finding the
2997 start of the member function list. */
2998 /* Stab string for structure/union does not end with two ';' in
2999 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3000
3001 while (**pp != ';' && **pp != '\0')
3002 {
3003 STABS_CONTINUE (pp, objfile);
3004 /* Get space to record the next field's data. */
3005 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3006
3007 newobj->next = fip->list;
3008 fip->list = newobj;
3009
3010 /* Get the field name. */
3011 p = *pp;
3012
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3017
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 {
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 return 0;
3022 continue;
3023 }
3024
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3029
3030 while (*p != ':' && *p != '\0')
3031 {
3032 p++;
3033 }
3034 if (*p == '\0')
3035 return 0;
3036
3037 /* Check to see if we have hit the member functions yet. */
3038 if (p[1] == ':')
3039 {
3040 break;
3041 }
3042 read_one_struct_field (fip, pp, p, type, objfile);
3043 }
3044 if (p[0] == ':' && p[1] == ':')
3045 {
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3048 scrub. */
3049 fip->list = fip->list->next;
3050 }
3051 return 1;
3052 }
3053 /* *INDENT-OFF* */
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3058
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3064
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 ^^ ^ ^ ^ ^ ^ ^
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3075
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3077 /* *INDENT-ON* */
3078
3079
3080
3081 static int
3082 read_baseclasses (struct stab_field_info *fip, const char **pp,
3083 struct type *type, struct objfile *objfile)
3084 {
3085 int i;
3086 struct nextfield *newobj;
3087
3088 if (**pp != '!')
3089 {
3090 return 1;
3091 }
3092 else
3093 {
3094 /* Skip the '!' baseclass information marker. */
3095 (*pp)++;
3096 }
3097
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3099 {
3100 int nbits;
3101
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3103 if (nbits != 0)
3104 return 0;
3105 }
3106
3107 #if 0
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3112 #else
3113 {
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3115 char *pointer;
3116
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3119 }
3120 #endif /* 0 */
3121
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 {
3126 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3127
3128 newobj->next = fip->list;
3129 fip->list = newobj;
3130 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3131 field! */
3132
3133 STABS_CONTINUE (pp, objfile);
3134 switch (**pp)
3135 {
3136 case '0':
3137 /* Nothing to do. */
3138 break;
3139 case '1':
3140 SET_TYPE_FIELD_VIRTUAL (type, i);
3141 break;
3142 default:
3143 /* Unknown character. Complain and treat it as non-virtual. */
3144 {
3145 complaint (_("Unknown virtual character `%c' for baseclass"),
3146 **pp);
3147 }
3148 }
3149 ++(*pp);
3150
3151 newobj->visibility = *(*pp)++;
3152 switch (newobj->visibility)
3153 {
3154 case VISIBILITY_PRIVATE:
3155 case VISIBILITY_PROTECTED:
3156 case VISIBILITY_PUBLIC:
3157 break;
3158 default:
3159 /* Bad visibility format. Complain and treat it as
3160 public. */
3161 {
3162 complaint (_("Unknown visibility `%c' for baseclass"),
3163 newobj->visibility);
3164 newobj->visibility = VISIBILITY_PUBLIC;
3165 }
3166 }
3167
3168 {
3169 int nbits;
3170
3171 /* The remaining value is the bit offset of the portion of the object
3172 corresponding to this baseclass. Always zero in the absence of
3173 multiple inheritance. */
3174
3175 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3176 if (nbits != 0)
3177 return 0;
3178 }
3179
3180 /* The last piece of baseclass information is the type of the
3181 base class. Read it, and remember it's type name as this
3182 field's name. */
3183
3184 newobj->field.type = read_type (pp, objfile);
3185 newobj->field.name = TYPE_NAME (newobj->field.type);
3186
3187 /* Skip trailing ';' and bump count of number of fields seen. */
3188 if (**pp == ';')
3189 (*pp)++;
3190 else
3191 return 0;
3192 }
3193 return 1;
3194 }
3195
3196 /* The tail end of stabs for C++ classes that contain a virtual function
3197 pointer contains a tilde, a %, and a type number.
3198 The type number refers to the base class (possibly this class itself) which
3199 contains the vtable pointer for the current class.
3200
3201 This function is called when we have parsed all the method declarations,
3202 so we can look for the vptr base class info. */
3203
3204 static int
3205 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3206 struct type *type, struct objfile *objfile)
3207 {
3208 const char *p;
3209
3210 STABS_CONTINUE (pp, objfile);
3211
3212 /* If we are positioned at a ';', then skip it. */
3213 if (**pp == ';')
3214 {
3215 (*pp)++;
3216 }
3217
3218 if (**pp == '~')
3219 {
3220 (*pp)++;
3221
3222 if (**pp == '=' || **pp == '+' || **pp == '-')
3223 {
3224 /* Obsolete flags that used to indicate the presence
3225 of constructors and/or destructors. */
3226 (*pp)++;
3227 }
3228
3229 /* Read either a '%' or the final ';'. */
3230 if (*(*pp)++ == '%')
3231 {
3232 /* The next number is the type number of the base class
3233 (possibly our own class) which supplies the vtable for
3234 this class. Parse it out, and search that class to find
3235 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3236 and TYPE_VPTR_FIELDNO. */
3237
3238 struct type *t;
3239 int i;
3240
3241 t = read_type (pp, objfile);
3242 p = (*pp)++;
3243 while (*p != '\0' && *p != ';')
3244 {
3245 p++;
3246 }
3247 if (*p == '\0')
3248 {
3249 /* Premature end of symbol. */
3250 return 0;
3251 }
3252
3253 set_type_vptr_basetype (type, t);
3254 if (type == t) /* Our own class provides vtbl ptr. */
3255 {
3256 for (i = TYPE_NFIELDS (t) - 1;
3257 i >= TYPE_N_BASECLASSES (t);
3258 --i)
3259 {
3260 const char *name = TYPE_FIELD_NAME (t, i);
3261
3262 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3263 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3264 {
3265 set_type_vptr_fieldno (type, i);
3266 goto gotit;
3267 }
3268 }
3269 /* Virtual function table field not found. */
3270 complaint (_("virtual function table pointer "
3271 "not found when defining class `%s'"),
3272 TYPE_NAME (type));
3273 return 0;
3274 }
3275 else
3276 {
3277 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3278 }
3279
3280 gotit:
3281 *pp = p + 1;
3282 }
3283 }
3284 return 1;
3285 }
3286
3287 static int
3288 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3289 {
3290 int n;
3291
3292 for (n = TYPE_NFN_FIELDS (type);
3293 fip->fnlist != NULL;
3294 fip->fnlist = fip->fnlist->next)
3295 {
3296 --n; /* Circumvent Sun3 compiler bug. */
3297 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3298 }
3299 return 1;
3300 }
3301
3302 /* Create the vector of fields, and record how big it is.
3303 We need this info to record proper virtual function table information
3304 for this class's virtual functions. */
3305
3306 static int
3307 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3308 struct objfile *objfile)
3309 {
3310 int nfields = 0;
3311 int non_public_fields = 0;
3312 struct nextfield *scan;
3313
3314 /* Count up the number of fields that we have, as well as taking note of
3315 whether or not there are any non-public fields, which requires us to
3316 allocate and build the private_field_bits and protected_field_bits
3317 bitfields. */
3318
3319 for (scan = fip->list; scan != NULL; scan = scan->next)
3320 {
3321 nfields++;
3322 if (scan->visibility != VISIBILITY_PUBLIC)
3323 {
3324 non_public_fields++;
3325 }
3326 }
3327
3328 /* Now we know how many fields there are, and whether or not there are any
3329 non-public fields. Record the field count, allocate space for the
3330 array of fields, and create blank visibility bitfields if necessary. */
3331
3332 TYPE_NFIELDS (type) = nfields;
3333 TYPE_FIELDS (type) = (struct field *)
3334 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3335 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3336
3337 if (non_public_fields)
3338 {
3339 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3340
3341 TYPE_FIELD_PRIVATE_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3344
3345 TYPE_FIELD_PROTECTED_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3348
3349 TYPE_FIELD_IGNORE_BITS (type) =
3350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3351 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3352 }
3353
3354 /* Copy the saved-up fields into the field vector. Start from the
3355 head of the list, adding to the tail of the field array, so that
3356 they end up in the same order in the array in which they were
3357 added to the list. */
3358
3359 while (nfields-- > 0)
3360 {
3361 TYPE_FIELD (type, nfields) = fip->list->field;
3362 switch (fip->list->visibility)
3363 {
3364 case VISIBILITY_PRIVATE:
3365 SET_TYPE_FIELD_PRIVATE (type, nfields);
3366 break;
3367
3368 case VISIBILITY_PROTECTED:
3369 SET_TYPE_FIELD_PROTECTED (type, nfields);
3370 break;
3371
3372 case VISIBILITY_IGNORE:
3373 SET_TYPE_FIELD_IGNORE (type, nfields);
3374 break;
3375
3376 case VISIBILITY_PUBLIC:
3377 break;
3378
3379 default:
3380 /* Unknown visibility. Complain and treat it as public. */
3381 {
3382 complaint (_("Unknown visibility `%c' for field"),
3383 fip->list->visibility);
3384 }
3385 break;
3386 }
3387 fip->list = fip->list->next;
3388 }
3389 return 1;
3390 }
3391
3392
3393 /* Complain that the compiler has emitted more than one definition for the
3394 structure type TYPE. */
3395 static void
3396 complain_about_struct_wipeout (struct type *type)
3397 {
3398 const char *name = "";
3399 const char *kind = "";
3400
3401 if (TYPE_NAME (type))
3402 {
3403 name = TYPE_NAME (type);
3404 switch (TYPE_CODE (type))
3405 {
3406 case TYPE_CODE_STRUCT: kind = "struct "; break;
3407 case TYPE_CODE_UNION: kind = "union "; break;
3408 case TYPE_CODE_ENUM: kind = "enum "; break;
3409 default: kind = "";
3410 }
3411 }
3412 else
3413 {
3414 name = "<unknown>";
3415 kind = "";
3416 }
3417
3418 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3419 }
3420
3421 /* Set the length for all variants of a same main_type, which are
3422 connected in the closed chain.
3423
3424 This is something that needs to be done when a type is defined *after*
3425 some cross references to this type have already been read. Consider
3426 for instance the following scenario where we have the following two
3427 stabs entries:
3428
3429 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3430 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3431
3432 A stubbed version of type dummy is created while processing the first
3433 stabs entry. The length of that type is initially set to zero, since
3434 it is unknown at this point. Also, a "constant" variation of type
3435 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3436 the stabs line).
3437
3438 The second stabs entry allows us to replace the stubbed definition
3439 with the real definition. However, we still need to adjust the length
3440 of the "constant" variation of that type, as its length was left
3441 untouched during the main type replacement... */
3442
3443 static void
3444 set_length_in_type_chain (struct type *type)
3445 {
3446 struct type *ntype = TYPE_CHAIN (type);
3447
3448 while (ntype != type)
3449 {
3450 if (TYPE_LENGTH(ntype) == 0)
3451 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3452 else
3453 complain_about_struct_wipeout (ntype);
3454 ntype = TYPE_CHAIN (ntype);
3455 }
3456 }
3457
3458 /* Read the description of a structure (or union type) and return an object
3459 describing the type.
3460
3461 PP points to a character pointer that points to the next unconsumed token
3462 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3463 *PP will point to "4a:1,0,32;;".
3464
3465 TYPE points to an incomplete type that needs to be filled in.
3466
3467 OBJFILE points to the current objfile from which the stabs information is
3468 being read. (Note that it is redundant in that TYPE also contains a pointer
3469 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3470 */
3471
3472 static struct type *
3473 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3474 struct objfile *objfile)
3475 {
3476 struct stab_field_info fi;
3477
3478 /* When describing struct/union/class types in stabs, G++ always drops
3479 all qualifications from the name. So if you've got:
3480 struct A { ... struct B { ... }; ... };
3481 then G++ will emit stabs for `struct A::B' that call it simply
3482 `struct B'. Obviously, if you've got a real top-level definition for
3483 `struct B', or other nested definitions, this is going to cause
3484 problems.
3485
3486 Obviously, GDB can't fix this by itself, but it can at least avoid
3487 scribbling on existing structure type objects when new definitions
3488 appear. */
3489 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3490 || TYPE_STUB (type)))
3491 {
3492 complain_about_struct_wipeout (type);
3493
3494 /* It's probably best to return the type unchanged. */
3495 return type;
3496 }
3497
3498 INIT_CPLUS_SPECIFIC (type);
3499 TYPE_CODE (type) = type_code;
3500 TYPE_STUB (type) = 0;
3501
3502 /* First comes the total size in bytes. */
3503
3504 {
3505 int nbits;
3506
3507 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3508 if (nbits != 0)
3509 return error_type (pp, objfile);
3510 set_length_in_type_chain (type);
3511 }
3512
3513 /* Now read the baseclasses, if any, read the regular C struct or C++
3514 class member fields, attach the fields to the type, read the C++
3515 member functions, attach them to the type, and then read any tilde
3516 field (baseclass specifier for the class holding the main vtable). */
3517
3518 if (!read_baseclasses (&fi, pp, type, objfile)
3519 || !read_struct_fields (&fi, pp, type, objfile)
3520 || !attach_fields_to_type (&fi, type, objfile)
3521 || !read_member_functions (&fi, pp, type, objfile)
3522 || !attach_fn_fields_to_type (&fi, type)
3523 || !read_tilde_fields (&fi, pp, type, objfile))
3524 {
3525 type = error_type (pp, objfile);
3526 }
3527
3528 return (type);
3529 }
3530
3531 /* Read a definition of an array type,
3532 and create and return a suitable type object.
3533 Also creates a range type which represents the bounds of that
3534 array. */
3535
3536 static struct type *
3537 read_array_type (const char **pp, struct type *type,
3538 struct objfile *objfile)
3539 {
3540 struct type *index_type, *element_type, *range_type;
3541 int lower, upper;
3542 int adjustable = 0;
3543 int nbits;
3544
3545 /* Format of an array type:
3546 "ar<index type>;lower;upper;<array_contents_type>".
3547 OS9000: "arlower,upper;<array_contents_type>".
3548
3549 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3550 for these, produce a type like float[][]. */
3551
3552 {
3553 index_type = read_type (pp, objfile);
3554 if (**pp != ';')
3555 /* Improper format of array type decl. */
3556 return error_type (pp, objfile);
3557 ++*pp;
3558 }
3559
3560 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3561 {
3562 (*pp)++;
3563 adjustable = 1;
3564 }
3565 lower = read_huge_number (pp, ';', &nbits, 0);
3566
3567 if (nbits != 0)
3568 return error_type (pp, objfile);
3569
3570 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3571 {
3572 (*pp)++;
3573 adjustable = 1;
3574 }
3575 upper = read_huge_number (pp, ';', &nbits, 0);
3576 if (nbits != 0)
3577 return error_type (pp, objfile);
3578
3579 element_type = read_type (pp, objfile);
3580
3581 if (adjustable)
3582 {
3583 lower = 0;
3584 upper = -1;
3585 }
3586
3587 range_type =
3588 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3589 type = create_array_type (type, element_type, range_type);
3590
3591 return type;
3592 }
3593
3594
3595 /* Read a definition of an enumeration type,
3596 and create and return a suitable type object.
3597 Also defines the symbols that represent the values of the type. */
3598
3599 static struct type *
3600 read_enum_type (const char **pp, struct type *type,
3601 struct objfile *objfile)
3602 {
3603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3604 const char *p;
3605 char *name;
3606 long n;
3607 struct symbol *sym;
3608 int nsyms = 0;
3609 struct pending **symlist;
3610 struct pending *osyms, *syms;
3611 int o_nsyms;
3612 int nbits;
3613 int unsigned_enum = 1;
3614
3615 #if 0
3616 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3617 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3618 to do? For now, force all enum values to file scope. */
3619 if (within_function)
3620 symlist = get_local_symbols ();
3621 else
3622 #endif
3623 symlist = get_file_symbols ();
3624 osyms = *symlist;
3625 o_nsyms = osyms ? osyms->nsyms : 0;
3626
3627 /* The aix4 compiler emits an extra field before the enum members;
3628 my guess is it's a type of some sort. Just ignore it. */
3629 if (**pp == '-')
3630 {
3631 /* Skip over the type. */
3632 while (**pp != ':')
3633 (*pp)++;
3634
3635 /* Skip over the colon. */
3636 (*pp)++;
3637 }
3638
3639 /* Read the value-names and their values.
3640 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3641 A semicolon or comma instead of a NAME means the end. */
3642 while (**pp && **pp != ';' && **pp != ',')
3643 {
3644 STABS_CONTINUE (pp, objfile);
3645 p = *pp;
3646 while (*p != ':')
3647 p++;
3648 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3649 *pp = p + 1;
3650 n = read_huge_number (pp, ',', &nbits, 0);
3651 if (nbits != 0)
3652 return error_type (pp, objfile);
3653
3654 sym = allocate_symbol (objfile);
3655 SYMBOL_SET_LINKAGE_NAME (sym, name);
3656 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3657 &objfile->objfile_obstack);
3658 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3659 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3660 SYMBOL_VALUE (sym) = n;
3661 if (n < 0)
3662 unsigned_enum = 0;
3663 add_symbol_to_list (sym, symlist);
3664 nsyms++;
3665 }
3666
3667 if (**pp == ';')
3668 (*pp)++; /* Skip the semicolon. */
3669
3670 /* Now fill in the fields of the type-structure. */
3671
3672 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3673 set_length_in_type_chain (type);
3674 TYPE_CODE (type) = TYPE_CODE_ENUM;
3675 TYPE_STUB (type) = 0;
3676 if (unsigned_enum)
3677 TYPE_UNSIGNED (type) = 1;
3678 TYPE_NFIELDS (type) = nsyms;
3679 TYPE_FIELDS (type) = (struct field *)
3680 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3682
3683 /* Find the symbols for the values and put them into the type.
3684 The symbols can be found in the symlist that we put them on
3685 to cause them to be defined. osyms contains the old value
3686 of that symlist; everything up to there was defined by us. */
3687 /* Note that we preserve the order of the enum constants, so
3688 that in something like "enum {FOO, LAST_THING=FOO}" we print
3689 FOO, not LAST_THING. */
3690
3691 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3692 {
3693 int last = syms == osyms ? o_nsyms : 0;
3694 int j = syms->nsyms;
3695
3696 for (; --j >= last; --n)
3697 {
3698 struct symbol *xsym = syms->symbol[j];
3699
3700 SYMBOL_TYPE (xsym) = type;
3701 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3702 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3703 TYPE_FIELD_BITSIZE (type, n) = 0;
3704 }
3705 if (syms == osyms)
3706 break;
3707 }
3708
3709 return type;
3710 }
3711
3712 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3713 typedefs in every file (for int, long, etc):
3714
3715 type = b <signed> <width> <format type>; <offset>; <nbits>
3716 signed = u or s.
3717 optional format type = c or b for char or boolean.
3718 offset = offset from high order bit to start bit of type.
3719 width is # bytes in object of this type, nbits is # bits in type.
3720
3721 The width/offset stuff appears to be for small objects stored in
3722 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3723 FIXME. */
3724
3725 static struct type *
3726 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3727 {
3728 int type_bits;
3729 int nbits;
3730 int unsigned_type;
3731 int boolean_type = 0;
3732
3733 switch (**pp)
3734 {
3735 case 's':
3736 unsigned_type = 0;
3737 break;
3738 case 'u':
3739 unsigned_type = 1;
3740 break;
3741 default:
3742 return error_type (pp, objfile);
3743 }
3744 (*pp)++;
3745
3746 /* For some odd reason, all forms of char put a c here. This is strange
3747 because no other type has this honor. We can safely ignore this because
3748 we actually determine 'char'acterness by the number of bits specified in
3749 the descriptor.
3750 Boolean forms, e.g Fortran logical*X, put a b here. */
3751
3752 if (**pp == 'c')
3753 (*pp)++;
3754 else if (**pp == 'b')
3755 {
3756 boolean_type = 1;
3757 (*pp)++;
3758 }
3759
3760 /* The first number appears to be the number of bytes occupied
3761 by this type, except that unsigned short is 4 instead of 2.
3762 Since this information is redundant with the third number,
3763 we will ignore it. */
3764 read_huge_number (pp, ';', &nbits, 0);
3765 if (nbits != 0)
3766 return error_type (pp, objfile);
3767
3768 /* The second number is always 0, so ignore it too. */
3769 read_huge_number (pp, ';', &nbits, 0);
3770 if (nbits != 0)
3771 return error_type (pp, objfile);
3772
3773 /* The third number is the number of bits for this type. */
3774 type_bits = read_huge_number (pp, 0, &nbits, 0);
3775 if (nbits != 0)
3776 return error_type (pp, objfile);
3777 /* The type *should* end with a semicolon. If it are embedded
3778 in a larger type the semicolon may be the only way to know where
3779 the type ends. If this type is at the end of the stabstring we
3780 can deal with the omitted semicolon (but we don't have to like
3781 it). Don't bother to complain(), Sun's compiler omits the semicolon
3782 for "void". */
3783 if (**pp == ';')
3784 ++(*pp);
3785
3786 if (type_bits == 0)
3787 {
3788 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3789 TARGET_CHAR_BIT, NULL);
3790 if (unsigned_type)
3791 TYPE_UNSIGNED (type) = 1;
3792 return type;
3793 }
3794
3795 if (boolean_type)
3796 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3797 else
3798 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3799 }
3800
3801 static struct type *
3802 read_sun_floating_type (const char **pp, int typenums[2],
3803 struct objfile *objfile)
3804 {
3805 int nbits;
3806 int details;
3807 int nbytes;
3808 struct type *rettype;
3809
3810 /* The first number has more details about the type, for example
3811 FN_COMPLEX. */
3812 details = read_huge_number (pp, ';', &nbits, 0);
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
3816 /* The second number is the number of bytes occupied by this type. */
3817 nbytes = read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 nbits = nbytes * TARGET_CHAR_BIT;
3822
3823 if (details == NF_COMPLEX || details == NF_COMPLEX16
3824 || details == NF_COMPLEX32)
3825 {
3826 rettype = dbx_init_float_type (objfile, nbits / 2);
3827 return init_complex_type (objfile, NULL, rettype);
3828 }
3829
3830 return dbx_init_float_type (objfile, nbits);
3831 }
3832
3833 /* Read a number from the string pointed to by *PP.
3834 The value of *PP is advanced over the number.
3835 If END is nonzero, the character that ends the
3836 number must match END, or an error happens;
3837 and that character is skipped if it does match.
3838 If END is zero, *PP is left pointing to that character.
3839
3840 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3841 the number is represented in an octal representation, assume that
3842 it is represented in a 2's complement representation with a size of
3843 TWOS_COMPLEMENT_BITS.
3844
3845 If the number fits in a long, set *BITS to 0 and return the value.
3846 If not, set *BITS to be the number of bits in the number and return 0.
3847
3848 If encounter garbage, set *BITS to -1 and return 0. */
3849
3850 static long
3851 read_huge_number (const char **pp, int end, int *bits,
3852 int twos_complement_bits)
3853 {
3854 const char *p = *pp;
3855 int sign = 1;
3856 int sign_bit = 0;
3857 long n = 0;
3858 int radix = 10;
3859 char overflow = 0;
3860 int nbits = 0;
3861 int c;
3862 long upper_limit;
3863 int twos_complement_representation = 0;
3864
3865 if (*p == '-')
3866 {
3867 sign = -1;
3868 p++;
3869 }
3870
3871 /* Leading zero means octal. GCC uses this to output values larger
3872 than an int (because that would be hard in decimal). */
3873 if (*p == '0')
3874 {
3875 radix = 8;
3876 p++;
3877 }
3878
3879 /* Skip extra zeros. */
3880 while (*p == '0')
3881 p++;
3882
3883 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3884 {
3885 /* Octal, possibly signed. Check if we have enough chars for a
3886 negative number. */
3887
3888 size_t len;
3889 const char *p1 = p;
3890
3891 while ((c = *p1) >= '0' && c < '8')
3892 p1++;
3893
3894 len = p1 - p;
3895 if (len > twos_complement_bits / 3
3896 || (twos_complement_bits % 3 == 0
3897 && len == twos_complement_bits / 3))
3898 {
3899 /* Ok, we have enough characters for a signed value, check
3900 for signness by testing if the sign bit is set. */
3901 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3902 c = *p - '0';
3903 if (c & (1 << sign_bit))
3904 {
3905 /* Definitely signed. */
3906 twos_complement_representation = 1;
3907 sign = -1;
3908 }
3909 }
3910 }
3911
3912 upper_limit = LONG_MAX / radix;
3913
3914 while ((c = *p++) >= '0' && c < ('0' + radix))
3915 {
3916 if (n <= upper_limit)
3917 {
3918 if (twos_complement_representation)
3919 {
3920 /* Octal, signed, twos complement representation. In
3921 this case, n is the corresponding absolute value. */
3922 if (n == 0)
3923 {
3924 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3925
3926 n = -sn;
3927 }
3928 else
3929 {
3930 n *= radix;
3931 n -= c - '0';
3932 }
3933 }
3934 else
3935 {
3936 /* unsigned representation */
3937 n *= radix;
3938 n += c - '0'; /* FIXME this overflows anyway. */
3939 }
3940 }
3941 else
3942 overflow = 1;
3943
3944 /* This depends on large values being output in octal, which is
3945 what GCC does. */
3946 if (radix == 8)
3947 {
3948 if (nbits == 0)
3949 {
3950 if (c == '0')
3951 /* Ignore leading zeroes. */
3952 ;
3953 else if (c == '1')
3954 nbits = 1;
3955 else if (c == '2' || c == '3')
3956 nbits = 2;
3957 else
3958 nbits = 3;
3959 }
3960 else
3961 nbits += 3;
3962 }
3963 }
3964 if (end)
3965 {
3966 if (c && c != end)
3967 {
3968 if (bits != NULL)
3969 *bits = -1;
3970 return 0;
3971 }
3972 }
3973 else
3974 --p;
3975
3976 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3977 {
3978 /* We were supposed to parse a number with maximum
3979 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3980 if (bits != NULL)
3981 *bits = -1;
3982 return 0;
3983 }
3984
3985 *pp = p;
3986 if (overflow)
3987 {
3988 if (nbits == 0)
3989 {
3990 /* Large decimal constants are an error (because it is hard to
3991 count how many bits are in them). */
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996
3997 /* -0x7f is the same as 0x80. So deal with it by adding one to
3998 the number of bits. Two's complement represention octals
3999 can't have a '-' in front. */
4000 if (sign == -1 && !twos_complement_representation)
4001 ++nbits;
4002 if (bits)
4003 *bits = nbits;
4004 }
4005 else
4006 {
4007 if (bits)
4008 *bits = 0;
4009 return n * sign;
4010 }
4011 /* It's *BITS which has the interesting information. */
4012 return 0;
4013 }
4014
4015 static struct type *
4016 read_range_type (const char **pp, int typenums[2], int type_size,
4017 struct objfile *objfile)
4018 {
4019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4020 const char *orig_pp = *pp;
4021 int rangenums[2];
4022 long n2, n3;
4023 int n2bits, n3bits;
4024 int self_subrange;
4025 struct type *result_type;
4026 struct type *index_type = NULL;
4027
4028 /* First comes a type we are a subrange of.
4029 In C it is usually 0, 1 or the type being defined. */
4030 if (read_type_number (pp, rangenums) != 0)
4031 return error_type (pp, objfile);
4032 self_subrange = (rangenums[0] == typenums[0] &&
4033 rangenums[1] == typenums[1]);
4034
4035 if (**pp == '=')
4036 {
4037 *pp = orig_pp;
4038 index_type = read_type (pp, objfile);
4039 }
4040
4041 /* A semicolon should now follow; skip it. */
4042 if (**pp == ';')
4043 (*pp)++;
4044
4045 /* The remaining two operands are usually lower and upper bounds
4046 of the range. But in some special cases they mean something else. */
4047 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4048 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4049
4050 if (n2bits == -1 || n3bits == -1)
4051 return error_type (pp, objfile);
4052
4053 if (index_type)
4054 goto handle_true_range;
4055
4056 /* If limits are huge, must be large integral type. */
4057 if (n2bits != 0 || n3bits != 0)
4058 {
4059 char got_signed = 0;
4060 char got_unsigned = 0;
4061 /* Number of bits in the type. */
4062 int nbits = 0;
4063
4064 /* If a type size attribute has been specified, the bounds of
4065 the range should fit in this size. If the lower bounds needs
4066 more bits than the upper bound, then the type is signed. */
4067 if (n2bits <= type_size && n3bits <= type_size)
4068 {
4069 if (n2bits == type_size && n2bits > n3bits)
4070 got_signed = 1;
4071 else
4072 got_unsigned = 1;
4073 nbits = type_size;
4074 }
4075 /* Range from 0 to <large number> is an unsigned large integral type. */
4076 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4077 {
4078 got_unsigned = 1;
4079 nbits = n3bits;
4080 }
4081 /* Range from <large number> to <large number>-1 is a large signed
4082 integral type. Take care of the case where <large number> doesn't
4083 fit in a long but <large number>-1 does. */
4084 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4085 || (n2bits != 0 && n3bits == 0
4086 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4087 && n3 == LONG_MAX))
4088 {
4089 got_signed = 1;
4090 nbits = n2bits;
4091 }
4092
4093 if (got_signed || got_unsigned)
4094 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4095 else
4096 return error_type (pp, objfile);
4097 }
4098
4099 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4100 if (self_subrange && n2 == 0 && n3 == 0)
4101 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4102
4103 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4104 is the width in bytes.
4105
4106 Fortran programs appear to use this for complex types also. To
4107 distinguish between floats and complex, g77 (and others?) seem
4108 to use self-subranges for the complexes, and subranges of int for
4109 the floats.
4110
4111 Also note that for complexes, g77 sets n2 to the size of one of
4112 the member floats, not the whole complex beast. My guess is that
4113 this was to work well with pre-COMPLEX versions of gdb. */
4114
4115 if (n3 == 0 && n2 > 0)
4116 {
4117 struct type *float_type
4118 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4119
4120 if (self_subrange)
4121 return init_complex_type (objfile, NULL, float_type);
4122 else
4123 return float_type;
4124 }
4125
4126 /* If the upper bound is -1, it must really be an unsigned integral. */
4127
4128 else if (n2 == 0 && n3 == -1)
4129 {
4130 int bits = type_size;
4131
4132 if (bits <= 0)
4133 {
4134 /* We don't know its size. It is unsigned int or unsigned
4135 long. GCC 2.3.3 uses this for long long too, but that is
4136 just a GDB 3.5 compatibility hack. */
4137 bits = gdbarch_int_bit (gdbarch);
4138 }
4139
4140 return init_integer_type (objfile, bits, 1, NULL);
4141 }
4142
4143 /* Special case: char is defined (Who knows why) as a subrange of
4144 itself with range 0-127. */
4145 else if (self_subrange && n2 == 0 && n3 == 127)
4146 {
4147 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4148 0, NULL);
4149 TYPE_NOSIGN (type) = 1;
4150 return type;
4151 }
4152 /* We used to do this only for subrange of self or subrange of int. */
4153 else if (n2 == 0)
4154 {
4155 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4156 "unsigned long", and we already checked for that,
4157 so don't need to test for it here. */
4158
4159 if (n3 < 0)
4160 /* n3 actually gives the size. */
4161 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4162
4163 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4164 unsigned n-byte integer. But do require n to be a power of
4165 two; we don't want 3- and 5-byte integers flying around. */
4166 {
4167 int bytes;
4168 unsigned long bits;
4169
4170 bits = n3;
4171 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4172 bits >>= 8;
4173 if (bits == 0
4174 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4175 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4176 }
4177 }
4178 /* I think this is for Convex "long long". Since I don't know whether
4179 Convex sets self_subrange, I also accept that particular size regardless
4180 of self_subrange. */
4181 else if (n3 == 0 && n2 < 0
4182 && (self_subrange
4183 || n2 == -gdbarch_long_long_bit
4184 (gdbarch) / TARGET_CHAR_BIT))
4185 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4186 else if (n2 == -n3 - 1)
4187 {
4188 if (n3 == 0x7f)
4189 return init_integer_type (objfile, 8, 0, NULL);
4190 if (n3 == 0x7fff)
4191 return init_integer_type (objfile, 16, 0, NULL);
4192 if (n3 == 0x7fffffff)
4193 return init_integer_type (objfile, 32, 0, NULL);
4194 }
4195
4196 /* We have a real range type on our hands. Allocate space and
4197 return a real pointer. */
4198 handle_true_range:
4199
4200 if (self_subrange)
4201 index_type = objfile_type (objfile)->builtin_int;
4202 else
4203 index_type = *dbx_lookup_type (rangenums, objfile);
4204 if (index_type == NULL)
4205 {
4206 /* Does this actually ever happen? Is that why we are worrying
4207 about dealing with it rather than just calling error_type? */
4208
4209 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4210
4211 index_type = objfile_type (objfile)->builtin_int;
4212 }
4213
4214 result_type
4215 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4216 return (result_type);
4217 }
4218
4219 /* Read in an argument list. This is a list of types, separated by commas
4220 and terminated with END. Return the list of types read in, or NULL
4221 if there is an error. */
4222
4223 static struct field *
4224 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4225 int *varargsp)
4226 {
4227 /* FIXME! Remove this arbitrary limit! */
4228 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4229 int n = 0, i;
4230 struct field *rval;
4231
4232 while (**pp != end)
4233 {
4234 if (**pp != ',')
4235 /* Invalid argument list: no ','. */
4236 return NULL;
4237 (*pp)++;
4238 STABS_CONTINUE (pp, objfile);
4239 types[n++] = read_type (pp, objfile);
4240 }
4241 (*pp)++; /* get past `end' (the ':' character). */
4242
4243 if (n == 0)
4244 {
4245 /* We should read at least the THIS parameter here. Some broken stabs
4246 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4247 have been present ";-16,(0,43)" reference instead. This way the
4248 excessive ";" marker prematurely stops the parameters parsing. */
4249
4250 complaint (_("Invalid (empty) method arguments"));
4251 *varargsp = 0;
4252 }
4253 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4254 *varargsp = 1;
4255 else
4256 {
4257 n--;
4258 *varargsp = 0;
4259 }
4260
4261 rval = XCNEWVEC (struct field, n);
4262 for (i = 0; i < n; i++)
4263 rval[i].type = types[i];
4264 *nargsp = n;
4265 return rval;
4266 }
4267 \f
4268 /* Common block handling. */
4269
4270 /* List of symbols declared since the last BCOMM. This list is a tail
4271 of local_symbols. When ECOMM is seen, the symbols on the list
4272 are noted so their proper addresses can be filled in later,
4273 using the common block base address gotten from the assembler
4274 stabs. */
4275
4276 static struct pending *common_block;
4277 static int common_block_i;
4278
4279 /* Name of the current common block. We get it from the BCOMM instead of the
4280 ECOMM to match IBM documentation (even though IBM puts the name both places
4281 like everyone else). */
4282 static char *common_block_name;
4283
4284 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4285 to remain after this function returns. */
4286
4287 void
4288 common_block_start (const char *name, struct objfile *objfile)
4289 {
4290 if (common_block_name != NULL)
4291 {
4292 complaint (_("Invalid symbol data: common block within common block"));
4293 }
4294 common_block = *get_local_symbols ();
4295 common_block_i = common_block ? common_block->nsyms : 0;
4296 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4297 strlen (name));
4298 }
4299
4300 /* Process a N_ECOMM symbol. */
4301
4302 void
4303 common_block_end (struct objfile *objfile)
4304 {
4305 /* Symbols declared since the BCOMM are to have the common block
4306 start address added in when we know it. common_block and
4307 common_block_i point to the first symbol after the BCOMM in
4308 the local_symbols list; copy the list and hang it off the
4309 symbol for the common block name for later fixup. */
4310 int i;
4311 struct symbol *sym;
4312 struct pending *newobj = 0;
4313 struct pending *next;
4314 int j;
4315
4316 if (common_block_name == NULL)
4317 {
4318 complaint (_("ECOMM symbol unmatched by BCOMM"));
4319 return;
4320 }
4321
4322 sym = allocate_symbol (objfile);
4323 /* Note: common_block_name already saved on objfile_obstack. */
4324 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4325 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4326
4327 /* Now we copy all the symbols which have been defined since the BCOMM. */
4328
4329 /* Copy all the struct pendings before common_block. */
4330 for (next = *get_local_symbols ();
4331 next != NULL && next != common_block;
4332 next = next->next)
4333 {
4334 for (j = 0; j < next->nsyms; j++)
4335 add_symbol_to_list (next->symbol[j], &newobj);
4336 }
4337
4338 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4339 NULL, it means copy all the local symbols (which we already did
4340 above). */
4341
4342 if (common_block != NULL)
4343 for (j = common_block_i; j < common_block->nsyms; j++)
4344 add_symbol_to_list (common_block->symbol[j], &newobj);
4345
4346 SYMBOL_TYPE (sym) = (struct type *) newobj;
4347
4348 /* Should we be putting local_symbols back to what it was?
4349 Does it matter? */
4350
4351 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4352 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4353 global_sym_chain[i] = sym;
4354 common_block_name = NULL;
4355 }
4356
4357 /* Add a common block's start address to the offset of each symbol
4358 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4359 the common block name). */
4360
4361 static void
4362 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4363 {
4364 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4365
4366 for (; next; next = next->next)
4367 {
4368 int j;
4369
4370 for (j = next->nsyms - 1; j >= 0; j--)
4371 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4372 }
4373 }
4374 \f
4375
4376
4377 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4378 See add_undefined_type for more details. */
4379
4380 static void
4381 add_undefined_type_noname (struct type *type, int typenums[2])
4382 {
4383 struct nat nat;
4384
4385 nat.typenums[0] = typenums [0];
4386 nat.typenums[1] = typenums [1];
4387 nat.type = type;
4388
4389 if (noname_undefs_length == noname_undefs_allocated)
4390 {
4391 noname_undefs_allocated *= 2;
4392 noname_undefs = (struct nat *)
4393 xrealloc ((char *) noname_undefs,
4394 noname_undefs_allocated * sizeof (struct nat));
4395 }
4396 noname_undefs[noname_undefs_length++] = nat;
4397 }
4398
4399 /* Add TYPE to the UNDEF_TYPES vector.
4400 See add_undefined_type for more details. */
4401
4402 static void
4403 add_undefined_type_1 (struct type *type)
4404 {
4405 if (undef_types_length == undef_types_allocated)
4406 {
4407 undef_types_allocated *= 2;
4408 undef_types = (struct type **)
4409 xrealloc ((char *) undef_types,
4410 undef_types_allocated * sizeof (struct type *));
4411 }
4412 undef_types[undef_types_length++] = type;
4413 }
4414
4415 /* What about types defined as forward references inside of a small lexical
4416 scope? */
4417 /* Add a type to the list of undefined types to be checked through
4418 once this file has been read in.
4419
4420 In practice, we actually maintain two such lists: The first list
4421 (UNDEF_TYPES) is used for types whose name has been provided, and
4422 concerns forward references (eg 'xs' or 'xu' forward references);
4423 the second list (NONAME_UNDEFS) is used for types whose name is
4424 unknown at creation time, because they were referenced through
4425 their type number before the actual type was declared.
4426 This function actually adds the given type to the proper list. */
4427
4428 static void
4429 add_undefined_type (struct type *type, int typenums[2])
4430 {
4431 if (TYPE_NAME (type) == NULL)
4432 add_undefined_type_noname (type, typenums);
4433 else
4434 add_undefined_type_1 (type);
4435 }
4436
4437 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4438
4439 static void
4440 cleanup_undefined_types_noname (struct objfile *objfile)
4441 {
4442 int i;
4443
4444 for (i = 0; i < noname_undefs_length; i++)
4445 {
4446 struct nat nat = noname_undefs[i];
4447 struct type **type;
4448
4449 type = dbx_lookup_type (nat.typenums, objfile);
4450 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4451 {
4452 /* The instance flags of the undefined type are still unset,
4453 and needs to be copied over from the reference type.
4454 Since replace_type expects them to be identical, we need
4455 to set these flags manually before hand. */
4456 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4457 replace_type (nat.type, *type);
4458 }
4459 }
4460
4461 noname_undefs_length = 0;
4462 }
4463
4464 /* Go through each undefined type, see if it's still undefined, and fix it
4465 up if possible. We have two kinds of undefined types:
4466
4467 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4468 Fix: update array length using the element bounds
4469 and the target type's length.
4470 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4471 yet defined at the time a pointer to it was made.
4472 Fix: Do a full lookup on the struct/union tag. */
4473
4474 static void
4475 cleanup_undefined_types_1 (void)
4476 {
4477 struct type **type;
4478
4479 /* Iterate over every undefined type, and look for a symbol whose type
4480 matches our undefined type. The symbol matches if:
4481 1. It is a typedef in the STRUCT domain;
4482 2. It has the same name, and same type code;
4483 3. The instance flags are identical.
4484
4485 It is important to check the instance flags, because we have seen
4486 examples where the debug info contained definitions such as:
4487
4488 "foo_t:t30=B31=xefoo_t:"
4489
4490 In this case, we have created an undefined type named "foo_t" whose
4491 instance flags is null (when processing "xefoo_t"), and then created
4492 another type with the same name, but with different instance flags
4493 ('B' means volatile). I think that the definition above is wrong,
4494 since the same type cannot be volatile and non-volatile at the same
4495 time, but we need to be able to cope with it when it happens. The
4496 approach taken here is to treat these two types as different. */
4497
4498 for (type = undef_types; type < undef_types + undef_types_length; type++)
4499 {
4500 switch (TYPE_CODE (*type))
4501 {
4502
4503 case TYPE_CODE_STRUCT:
4504 case TYPE_CODE_UNION:
4505 case TYPE_CODE_ENUM:
4506 {
4507 /* Check if it has been defined since. Need to do this here
4508 as well as in check_typedef to deal with the (legitimate in
4509 C though not C++) case of several types with the same name
4510 in different source files. */
4511 if (TYPE_STUB (*type))
4512 {
4513 struct pending *ppt;
4514 int i;
4515 /* Name of the type, without "struct" or "union". */
4516 const char *type_name = TYPE_NAME (*type);
4517
4518 if (type_name == NULL)
4519 {
4520 complaint (_("need a type name"));
4521 break;
4522 }
4523 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4524 {
4525 for (i = 0; i < ppt->nsyms; i++)
4526 {
4527 struct symbol *sym = ppt->symbol[i];
4528
4529 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4530 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4531 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4532 TYPE_CODE (*type))
4533 && (TYPE_INSTANCE_FLAGS (*type) ==
4534 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4535 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4536 type_name) == 0)
4537 replace_type (*type, SYMBOL_TYPE (sym));
4538 }
4539 }
4540 }
4541 }
4542 break;
4543
4544 default:
4545 {
4546 complaint (_("forward-referenced types left unresolved, "
4547 "type code %d."),
4548 TYPE_CODE (*type));
4549 }
4550 break;
4551 }
4552 }
4553
4554 undef_types_length = 0;
4555 }
4556
4557 /* Try to fix all the undefined types we ecountered while processing
4558 this unit. */
4559
4560 void
4561 cleanup_undefined_stabs_types (struct objfile *objfile)
4562 {
4563 cleanup_undefined_types_1 ();
4564 cleanup_undefined_types_noname (objfile);
4565 }
4566
4567 /* See stabsread.h. */
4568
4569 void
4570 scan_file_globals (struct objfile *objfile)
4571 {
4572 int hash;
4573 struct symbol *sym, *prev;
4574 struct objfile *resolve_objfile;
4575
4576 /* SVR4 based linkers copy referenced global symbols from shared
4577 libraries to the main executable.
4578 If we are scanning the symbols for a shared library, try to resolve
4579 them from the minimal symbols of the main executable first. */
4580
4581 if (symfile_objfile && objfile != symfile_objfile)
4582 resolve_objfile = symfile_objfile;
4583 else
4584 resolve_objfile = objfile;
4585
4586 while (1)
4587 {
4588 /* Avoid expensive loop through all minimal symbols if there are
4589 no unresolved symbols. */
4590 for (hash = 0; hash < HASHSIZE; hash++)
4591 {
4592 if (global_sym_chain[hash])
4593 break;
4594 }
4595 if (hash >= HASHSIZE)
4596 return;
4597
4598 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4599 {
4600 QUIT;
4601
4602 /* Skip static symbols. */
4603 switch (MSYMBOL_TYPE (msymbol))
4604 {
4605 case mst_file_text:
4606 case mst_file_data:
4607 case mst_file_bss:
4608 continue;
4609 default:
4610 break;
4611 }
4612
4613 prev = NULL;
4614
4615 /* Get the hash index and check all the symbols
4616 under that hash index. */
4617
4618 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4619
4620 for (sym = global_sym_chain[hash]; sym;)
4621 {
4622 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4623 SYMBOL_LINKAGE_NAME (sym)) == 0)
4624 {
4625 /* Splice this symbol out of the hash chain and
4626 assign the value we have to it. */
4627 if (prev)
4628 {
4629 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4630 }
4631 else
4632 {
4633 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4634 }
4635
4636 /* Check to see whether we need to fix up a common block. */
4637 /* Note: this code might be executed several times for
4638 the same symbol if there are multiple references. */
4639 if (sym)
4640 {
4641 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4642 {
4643 fix_common_block (sym,
4644 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4645 msymbol));
4646 }
4647 else
4648 {
4649 SYMBOL_VALUE_ADDRESS (sym)
4650 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4651 }
4652 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4653 }
4654
4655 if (prev)
4656 {
4657 sym = SYMBOL_VALUE_CHAIN (prev);
4658 }
4659 else
4660 {
4661 sym = global_sym_chain[hash];
4662 }
4663 }
4664 else
4665 {
4666 prev = sym;
4667 sym = SYMBOL_VALUE_CHAIN (sym);
4668 }
4669 }
4670 }
4671 if (resolve_objfile == objfile)
4672 break;
4673 resolve_objfile = objfile;
4674 }
4675
4676 /* Change the storage class of any remaining unresolved globals to
4677 LOC_UNRESOLVED and remove them from the chain. */
4678 for (hash = 0; hash < HASHSIZE; hash++)
4679 {
4680 sym = global_sym_chain[hash];
4681 while (sym)
4682 {
4683 prev = sym;
4684 sym = SYMBOL_VALUE_CHAIN (sym);
4685
4686 /* Change the symbol address from the misleading chain value
4687 to address zero. */
4688 SYMBOL_VALUE_ADDRESS (prev) = 0;
4689
4690 /* Complain about unresolved common block symbols. */
4691 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4692 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4693 else
4694 complaint (_("%s: common block `%s' from "
4695 "global_sym_chain unresolved"),
4696 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4697 }
4698 }
4699 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4700 }
4701
4702 /* Initialize anything that needs initializing when starting to read
4703 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4704 to a psymtab. */
4705
4706 void
4707 stabsread_init (void)
4708 {
4709 }
4710
4711 /* Initialize anything that needs initializing when a completely new
4712 symbol file is specified (not just adding some symbols from another
4713 file, e.g. a shared library). */
4714
4715 void
4716 stabsread_new_init (void)
4717 {
4718 /* Empty the hash table of global syms looking for values. */
4719 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4720 }
4721
4722 /* Initialize anything that needs initializing at the same time as
4723 start_symtab() is called. */
4724
4725 void
4726 start_stabs (void)
4727 {
4728 global_stabs = NULL; /* AIX COFF */
4729 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4730 n_this_object_header_files = 1;
4731 type_vector_length = 0;
4732 type_vector = (struct type **) 0;
4733 within_function = 0;
4734
4735 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4736 common_block_name = NULL;
4737 }
4738
4739 /* Call after end_symtab(). */
4740
4741 void
4742 end_stabs (void)
4743 {
4744 if (type_vector)
4745 {
4746 xfree (type_vector);
4747 }
4748 type_vector = 0;
4749 type_vector_length = 0;
4750 previous_stab_code = 0;
4751 }
4752
4753 void
4754 finish_global_stabs (struct objfile *objfile)
4755 {
4756 if (global_stabs)
4757 {
4758 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4759 xfree (global_stabs);
4760 global_stabs = NULL;
4761 }
4762 }
4763
4764 /* Find the end of the name, delimited by a ':', but don't match
4765 ObjC symbols which look like -[Foo bar::]:bla. */
4766 static const char *
4767 find_name_end (const char *name)
4768 {
4769 const char *s = name;
4770
4771 if (s[0] == '-' || *s == '+')
4772 {
4773 /* Must be an ObjC method symbol. */
4774 if (s[1] != '[')
4775 {
4776 error (_("invalid symbol name \"%s\""), name);
4777 }
4778 s = strchr (s, ']');
4779 if (s == NULL)
4780 {
4781 error (_("invalid symbol name \"%s\""), name);
4782 }
4783 return strchr (s, ':');
4784 }
4785 else
4786 {
4787 return strchr (s, ':');
4788 }
4789 }
4790
4791 /* See stabsread.h. */
4792
4793 int
4794 hashname (const char *name)
4795 {
4796 return hash (name, strlen (name)) % HASHSIZE;
4797 }
4798
4799 /* Initializer for this module. */
4800
4801 void
4802 _initialize_stabsread (void)
4803 {
4804 rs6000_builtin_type_data = register_objfile_data ();
4805
4806 undef_types_allocated = 20;
4807 undef_types_length = 0;
4808 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4809
4810 noname_undefs_allocated = 20;
4811 noname_undefs_length = 0;
4812 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4813
4814 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4815 &stab_register_funcs);
4816 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4817 &stab_register_funcs);
4818 }
This page took 0.138292 seconds and 5 git commands to generate.