Add gdbarch callback to provide formats for debug info float types
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* Allocate a floating-point type of size BITS. */
357
358 static struct type *
359 dbx_init_float_type (struct objfile *objfile, int bits)
360 {
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
369 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, NULL);
370
371 return type;
372 }
373
374 /* for all the stabs in a given stab vector, build appropriate types
375 and fix their symbols in given symbol vector. */
376
377 static void
378 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
380 {
381 int ii;
382 char *name;
383 char *pp;
384 struct symbol *sym;
385
386 if (stabs)
387 {
388 /* for all the stab entries, find their corresponding symbols and
389 patch their types! */
390
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
394 pp = (char *) strchr (name, ':');
395 gdb_assert (pp); /* Must find a ':' or game's over. */
396 while (pp[1] == ':')
397 {
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
400 }
401 sym = find_symbol_in_list (symbols, name, pp - name);
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
411
412 /* On xcoff, if a global is defined and never referenced,
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
415 sym = allocate_symbol (objfile);
416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
418 SYMBOL_SET_LINKAGE_NAME
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451 }
452 \f
453
454 /* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462 static int
463 read_type_number (char **pp, int *typenums)
464 {
465 int nbits;
466
467 if (**pp == '(')
468 {
469 (*pp)++;
470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
471 if (nbits != 0)
472 return -1;
473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
474 if (nbits != 0)
475 return -1;
476 }
477 else
478 {
479 typenums[0] = 0;
480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 }
484 return 0;
485 }
486 \f
487
488 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
493 /* Structure for storing pointers to reference definitions for fast lookup
494 during "process_later". */
495
496 struct ref_map
497 {
498 char *stabs;
499 CORE_ADDR value;
500 struct symbol *sym;
501 };
502
503 #define MAX_CHUNK_REFS 100
504 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
507 static struct ref_map *ref_map;
508
509 /* Ptr to free cell in chunk's linked list. */
510 static int ref_count = 0;
511
512 /* Number of chunks malloced. */
513 static int ref_chunk = 0;
514
515 /* This file maintains a cache of stabs aliases found in the symbol
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
518 void
519 stabsread_clear_cache (void)
520 {
521 ref_count = 0;
522 ref_chunk = 0;
523 }
524
525 /* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
529 void
530 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
531 {
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
540
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550 }
551
552 /* Return defined sym for the reference REFNUM. */
553 struct symbol *
554 ref_search (int refnum)
555 {
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559 }
560
561 /* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
564 static int
565 process_reference (char **string)
566 {
567 char *p;
568 int refnum = 0;
569
570 if (**string != '#')
571 return 0;
572
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
576 /* Read number as reference id. */
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584 }
585
586 /* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589 int
590 symbol_reference_defined (char **string)
591 {
592 char *p = *string;
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
597 /* Defining symbols end in '='. */
598 if (*p == '=')
599 {
600 /* Symbol is being defined here. */
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
606 /* Must be a reference. Either the symbol has already been defined,
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611 }
612
613 static int
614 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615 {
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
628 }
629
630 return regno;
631 }
632
633 static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635 };
636
637 /* The "aclass" indices for computed symbols. */
638
639 static int stab_register_index;
640 static int stab_regparm_index;
641
642 struct symbol *
643 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
644 struct objfile *objfile)
645 {
646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
647 struct symbol *sym;
648 char *p = (char *) find_name_end (string);
649 int deftype;
650 int synonym = 0;
651 int i;
652 char *new_name = NULL;
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
674 {
675 complaint (&symfile_complaints,
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
685 current_symbol = sym = allocate_symbol (objfile);
686
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
692 }
693 else
694 {
695 SYMBOL_LINE (sym) = 0; /* unknown */
696 }
697
698 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
699 &objfile->objfile_obstack);
700
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
706 case 't':
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
708 break;
709
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
712
713 case 'e':
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
715 break;
716
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
720
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
724 goto normal;
725 /* ... fall through ... */
726
727 default:
728 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
729 string);
730 goto normal; /* Do *something* with it. */
731 }
732 }
733 else
734 {
735 normal:
736 if (SYMBOL_LANGUAGE (sym) == language_cplus)
737 {
738 char *name = (char *) alloca (p - string + 1);
739
740 memcpy (name, string, p - string);
741 name[p - string] = '\0';
742 new_name = cp_canonicalize_string (name);
743 }
744 if (new_name != NULL)
745 {
746 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
747 xfree (new_name);
748 }
749 else
750 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
751
752 if (SYMBOL_LANGUAGE (sym) == language_cplus)
753 cp_scan_for_anonymous_namespaces (sym, objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
787 SYMBOL_TYPE (sym) = error_type (&p, objfile);
788 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
789 add_symbol_to_list (sym, &file_symbols);
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 double d = atof (p);
798 gdb_byte *dbl_valu;
799 struct type *dbl_type;
800
801 /* FIXME-if-picky-about-floating-accuracy: Should be using
802 target arithmetic to get the value. real.c in GCC
803 probably has the necessary code. */
804
805 dbl_type = objfile_type (objfile)->builtin_double;
806 dbl_valu
807 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
808 TYPE_LENGTH (dbl_type));
809 store_typed_floating (dbl_valu, dbl_type, d);
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103
1104 case 'P':
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1108 if (type == N_FUN)
1109 {
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1112 }
1113 /*FALLTHROUGH */
1114
1115 case 'R':
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1119 SYMBOL_IS_ARGUMENT (sym) = 1;
1120 SYMBOL_VALUE (sym) = valu;
1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1122 add_symbol_to_list (sym, &local_symbols);
1123 break;
1124
1125 case 'r':
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1129 SYMBOL_VALUE (sym) = valu;
1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1131 if (within_function)
1132 {
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1140 the stack.
1141
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1146 etc.).
1147
1148 Note that this code illegally combines
1149 main(argc) struct foo argc; { register struct foo argc; }
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1152
1153 if (local_symbols
1154 && local_symbols->nsyms > 0
1155 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1156 {
1157 struct symbol *prev_sym;
1158
1159 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1161 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1162 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1163 SYMBOL_LINKAGE_NAME (sym)) == 0)
1164 {
1165 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1166 /* Use the type from the LOC_REGISTER; that is the type
1167 that is actually in that register. */
1168 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1169 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1170 sym = prev_sym;
1171 break;
1172 }
1173 }
1174 add_symbol_to_list (sym, &local_symbols);
1175 }
1176 else
1177 add_symbol_to_list (sym, &file_symbols);
1178 break;
1179
1180 case 'S':
1181 /* Static symbol at top level of file. */
1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1183 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1184 SYMBOL_VALUE_ADDRESS (sym) = valu;
1185 if (gdbarch_static_transform_name_p (gdbarch)
1186 && gdbarch_static_transform_name (gdbarch,
1187 SYMBOL_LINKAGE_NAME (sym))
1188 != SYMBOL_LINKAGE_NAME (sym))
1189 {
1190 struct bound_minimal_symbol msym;
1191
1192 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1193 NULL, objfile);
1194 if (msym.minsym != NULL)
1195 {
1196 const char *new_name = gdbarch_static_transform_name
1197 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1198
1199 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1200 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1201 }
1202 }
1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204 add_symbol_to_list (sym, &file_symbols);
1205 break;
1206
1207 case 't':
1208 /* In Ada, there is no distinction between typedef and non-typedef;
1209 any type declaration implicitly has the equivalent of a typedef,
1210 and thus 't' is in fact equivalent to 'Tt'.
1211
1212 Therefore, for Ada units, we check the character immediately
1213 before the 't', and if we do not find a 'T', then make sure to
1214 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1215 will be stored in the VAR_DOMAIN). If the symbol was indeed
1216 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1217 elsewhere, so we don't need to take care of that.
1218
1219 This is important to do, because of forward references:
1220 The cleanup of undefined types stored in undef_types only uses
1221 STRUCT_DOMAIN symbols to perform the replacement. */
1222 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1223
1224 /* Typedef */
1225 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1226
1227 /* For a nameless type, we don't want a create a symbol, thus we
1228 did not use `sym'. Return without further processing. */
1229 if (nameless)
1230 return NULL;
1231
1232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1233 SYMBOL_VALUE (sym) = valu;
1234 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1235 /* C++ vagaries: we may have a type which is derived from
1236 a base type which did not have its name defined when the
1237 derived class was output. We fill in the derived class's
1238 base part member's name here in that case. */
1239 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1242 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1243 {
1244 int j;
1245
1246 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1247 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1248 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1249 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1250 }
1251
1252 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1253 {
1254 /* gcc-2.6 or later (when using -fvtable-thunks)
1255 emits a unique named type for a vtable entry.
1256 Some gdb code depends on that specific name. */
1257 extern const char vtbl_ptr_name[];
1258
1259 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1260 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1261 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1262 {
1263 /* If we are giving a name to a type such as "pointer to
1264 foo" or "function returning foo", we better not set
1265 the TYPE_NAME. If the program contains "typedef char
1266 *caddr_t;", we don't want all variables of type char
1267 * to print as caddr_t. This is not just a
1268 consequence of GDB's type management; PCC and GCC (at
1269 least through version 2.4) both output variables of
1270 either type char * or caddr_t with the type number
1271 defined in the 't' symbol for caddr_t. If a future
1272 compiler cleans this up it GDB is not ready for it
1273 yet, but if it becomes ready we somehow need to
1274 disable this check (without breaking the PCC/GCC2.4
1275 case).
1276
1277 Sigh.
1278
1279 Fortunately, this check seems not to be necessary
1280 for anything except pointers or functions. */
1281 /* ezannoni: 2000-10-26. This seems to apply for
1282 versions of gcc older than 2.8. This was the original
1283 problem: with the following code gdb would tell that
1284 the type for name1 is caddr_t, and func is char().
1285
1286 typedef char *caddr_t;
1287 char *name2;
1288 struct x
1289 {
1290 char *name1;
1291 } xx;
1292 char *func()
1293 {
1294 }
1295 main () {}
1296 */
1297
1298 /* Pascal accepts names for pointer types. */
1299 if (current_subfile->language == language_pascal)
1300 {
1301 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1302 }
1303 }
1304 else
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 }
1307
1308 add_symbol_to_list (sym, &file_symbols);
1309
1310 if (synonym)
1311 {
1312 /* Create the STRUCT_DOMAIN clone. */
1313 struct symbol *struct_sym = allocate_symbol (objfile);
1314
1315 *struct_sym = *sym;
1316 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1317 SYMBOL_VALUE (struct_sym) = valu;
1318 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1319 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1320 TYPE_NAME (SYMBOL_TYPE (sym))
1321 = obconcat (&objfile->objfile_obstack,
1322 SYMBOL_LINKAGE_NAME (sym),
1323 (char *) NULL);
1324 add_symbol_to_list (struct_sym, &file_symbols);
1325 }
1326
1327 break;
1328
1329 case 'T':
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1331 by 't' which means we are typedef'ing it as well. */
1332 synonym = *p == 't';
1333
1334 if (synonym)
1335 p++;
1336
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1338
1339 /* For a nameless type, we don't want a create a symbol, thus we
1340 did not use `sym'. Return without further processing. */
1341 if (nameless)
1342 return NULL;
1343
1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1347 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1351 (char *) NULL);
1352 add_symbol_to_list (sym, &file_symbols);
1353
1354 if (synonym)
1355 {
1356 /* Clone the sym and then modify it. */
1357 struct symbol *typedef_sym = allocate_symbol (objfile);
1358
1359 *typedef_sym = *sym;
1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1361 SYMBOL_VALUE (typedef_sym) = valu;
1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack,
1366 SYMBOL_LINKAGE_NAME (sym),
1367 (char *) NULL);
1368 add_symbol_to_list (typedef_sym, &file_symbols);
1369 }
1370 break;
1371
1372 case 'V':
1373 /* Static symbol of local scope. */
1374 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1375 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1376 SYMBOL_VALUE_ADDRESS (sym) = valu;
1377 if (gdbarch_static_transform_name_p (gdbarch)
1378 && gdbarch_static_transform_name (gdbarch,
1379 SYMBOL_LINKAGE_NAME (sym))
1380 != SYMBOL_LINKAGE_NAME (sym))
1381 {
1382 struct bound_minimal_symbol msym;
1383
1384 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1385 NULL, objfile);
1386 if (msym.minsym != NULL)
1387 {
1388 const char *new_name = gdbarch_static_transform_name
1389 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1390
1391 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1392 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1393 }
1394 }
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, &local_symbols);
1397 break;
1398
1399 case 'v':
1400 /* Reference parameter */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1403 SYMBOL_IS_ARGUMENT (sym) = 1;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 case 'a':
1410 /* Reference parameter which is in a register. */
1411 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1413 SYMBOL_IS_ARGUMENT (sym) = 1;
1414 SYMBOL_VALUE (sym) = valu;
1415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1416 add_symbol_to_list (sym, &local_symbols);
1417 break;
1418
1419 case 'X':
1420 /* This is used by Sun FORTRAN for "function result value".
1421 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1422 that Pascal uses it too, but when I tried it Pascal used
1423 "x:3" (local symbol) instead. */
1424 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1425 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1426 SYMBOL_VALUE (sym) = valu;
1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1428 add_symbol_to_list (sym, &local_symbols);
1429 break;
1430
1431 default:
1432 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1434 SYMBOL_VALUE (sym) = 0;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, &file_symbols);
1437 break;
1438 }
1439
1440 /* Some systems pass variables of certain types by reference instead
1441 of by value, i.e. they will pass the address of a structure (in a
1442 register or on the stack) instead of the structure itself. */
1443
1444 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1445 && SYMBOL_IS_ARGUMENT (sym))
1446 {
1447 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1448 variables passed in a register). */
1449 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1451 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1452 and subsequent arguments on SPARC, for example). */
1453 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1455 }
1456
1457 return sym;
1458 }
1459
1460 /* Skip rest of this symbol and return an error type.
1461
1462 General notes on error recovery: error_type always skips to the
1463 end of the symbol (modulo cretinous dbx symbol name continuation).
1464 Thus code like this:
1465
1466 if (*(*pp)++ != ';')
1467 return error_type (pp, objfile);
1468
1469 is wrong because if *pp starts out pointing at '\0' (typically as the
1470 result of an earlier error), it will be incremented to point to the
1471 start of the next symbol, which might produce strange results, at least
1472 if you run off the end of the string table. Instead use
1473
1474 if (**pp != ';')
1475 return error_type (pp, objfile);
1476 ++*pp;
1477
1478 or
1479
1480 if (**pp != ';')
1481 foo = error_type (pp, objfile);
1482 else
1483 ++*pp;
1484
1485 And in case it isn't obvious, the point of all this hair is so the compiler
1486 can define new types and new syntaxes, and old versions of the
1487 debugger will be able to read the new symbol tables. */
1488
1489 static struct type *
1490 error_type (char **pp, struct objfile *objfile)
1491 {
1492 complaint (&symfile_complaints,
1493 _("couldn't parse type; debugger out of date?"));
1494 while (1)
1495 {
1496 /* Skip to end of symbol. */
1497 while (**pp != '\0')
1498 {
1499 (*pp)++;
1500 }
1501
1502 /* Check for and handle cretinous dbx symbol name continuation! */
1503 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 {
1505 *pp = next_symbol_text (objfile);
1506 }
1507 else
1508 {
1509 break;
1510 }
1511 }
1512 return objfile_type (objfile)->builtin_error;
1513 }
1514 \f
1515
1516 /* Read type information or a type definition; return the type. Even
1517 though this routine accepts either type information or a type
1518 definition, the distinction is relevant--some parts of stabsread.c
1519 assume that type information starts with a digit, '-', or '(' in
1520 deciding whether to call read_type. */
1521
1522 static struct type *
1523 read_type (char **pp, struct objfile *objfile)
1524 {
1525 struct type *type = 0;
1526 struct type *type1;
1527 int typenums[2];
1528 char type_descriptor;
1529
1530 /* Size in bits of type if specified by a type attribute, or -1 if
1531 there is no size attribute. */
1532 int type_size = -1;
1533
1534 /* Used to distinguish string and bitstring from char-array and set. */
1535 int is_string = 0;
1536
1537 /* Used to distinguish vector from array. */
1538 int is_vector = 0;
1539
1540 /* Read type number if present. The type number may be omitted.
1541 for instance in a two-dimensional array declared with type
1542 "ar1;1;10;ar1;1;10;4". */
1543 if ((**pp >= '0' && **pp <= '9')
1544 || **pp == '('
1545 || **pp == '-')
1546 {
1547 if (read_type_number (pp, typenums) != 0)
1548 return error_type (pp, objfile);
1549
1550 if (**pp != '=')
1551 {
1552 /* Type is not being defined here. Either it already
1553 exists, or this is a forward reference to it.
1554 dbx_alloc_type handles both cases. */
1555 type = dbx_alloc_type (typenums, objfile);
1556
1557 /* If this is a forward reference, arrange to complain if it
1558 doesn't get patched up by the time we're done
1559 reading. */
1560 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1561 add_undefined_type (type, typenums);
1562
1563 return type;
1564 }
1565
1566 /* Type is being defined here. */
1567 /* Skip the '='.
1568 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1569 (*pp) += 2;
1570 }
1571 else
1572 {
1573 /* 'typenums=' not present, type is anonymous. Read and return
1574 the definition, but don't put it in the type vector. */
1575 typenums[0] = typenums[1] = -1;
1576 (*pp)++;
1577 }
1578
1579 again:
1580 type_descriptor = (*pp)[-1];
1581 switch (type_descriptor)
1582 {
1583 case 'x':
1584 {
1585 enum type_code code;
1586
1587 /* Used to index through file_symbols. */
1588 struct pending *ppt;
1589 int i;
1590
1591 /* Name including "struct", etc. */
1592 char *type_name;
1593
1594 {
1595 char *from, *to, *p, *q1, *q2;
1596
1597 /* Set the type code according to the following letter. */
1598 switch ((*pp)[0])
1599 {
1600 case 's':
1601 code = TYPE_CODE_STRUCT;
1602 break;
1603 case 'u':
1604 code = TYPE_CODE_UNION;
1605 break;
1606 case 'e':
1607 code = TYPE_CODE_ENUM;
1608 break;
1609 default:
1610 {
1611 /* Complain and keep going, so compilers can invent new
1612 cross-reference types. */
1613 complaint (&symfile_complaints,
1614 _("Unrecognized cross-reference type `%c'"),
1615 (*pp)[0]);
1616 code = TYPE_CODE_STRUCT;
1617 break;
1618 }
1619 }
1620
1621 q1 = strchr (*pp, '<');
1622 p = strchr (*pp, ':');
1623 if (p == NULL)
1624 return error_type (pp, objfile);
1625 if (q1 && p > q1 && p[1] == ':')
1626 {
1627 int nesting_level = 0;
1628
1629 for (q2 = q1; *q2; q2++)
1630 {
1631 if (*q2 == '<')
1632 nesting_level++;
1633 else if (*q2 == '>')
1634 nesting_level--;
1635 else if (*q2 == ':' && nesting_level == 0)
1636 break;
1637 }
1638 p = q2;
1639 if (*p != ':')
1640 return error_type (pp, objfile);
1641 }
1642 type_name = NULL;
1643 if (current_subfile->language == language_cplus)
1644 {
1645 char *new_name, *name = (char *) alloca (p - *pp + 1);
1646
1647 memcpy (name, *pp, p - *pp);
1648 name[p - *pp] = '\0';
1649 new_name = cp_canonicalize_string (name);
1650 if (new_name != NULL)
1651 {
1652 type_name
1653 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1654 new_name, strlen (new_name));
1655 xfree (new_name);
1656 }
1657 }
1658 if (type_name == NULL)
1659 {
1660 to = type_name = (char *)
1661 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1662
1663 /* Copy the name. */
1664 from = *pp + 1;
1665 while (from < p)
1666 *to++ = *from++;
1667 *to = '\0';
1668 }
1669
1670 /* Set the pointer ahead of the name which we just read, and
1671 the colon. */
1672 *pp = p + 1;
1673 }
1674
1675 /* If this type has already been declared, then reuse the same
1676 type, rather than allocating a new one. This saves some
1677 memory. */
1678
1679 for (ppt = file_symbols; ppt; ppt = ppt->next)
1680 for (i = 0; i < ppt->nsyms; i++)
1681 {
1682 struct symbol *sym = ppt->symbol[i];
1683
1684 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1685 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1686 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1687 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1688 {
1689 obstack_free (&objfile->objfile_obstack, type_name);
1690 type = SYMBOL_TYPE (sym);
1691 if (typenums[0] != -1)
1692 *dbx_lookup_type (typenums, objfile) = type;
1693 return type;
1694 }
1695 }
1696
1697 /* Didn't find the type to which this refers, so we must
1698 be dealing with a forward reference. Allocate a type
1699 structure for it, and keep track of it so we can
1700 fill in the rest of the fields when we get the full
1701 type. */
1702 type = dbx_alloc_type (typenums, objfile);
1703 TYPE_CODE (type) = code;
1704 TYPE_TAG_NAME (type) = type_name;
1705 INIT_CPLUS_SPECIFIC (type);
1706 TYPE_STUB (type) = 1;
1707
1708 add_undefined_type (type, typenums);
1709 return type;
1710 }
1711
1712 case '-': /* RS/6000 built-in type */
1713 case '0':
1714 case '1':
1715 case '2':
1716 case '3':
1717 case '4':
1718 case '5':
1719 case '6':
1720 case '7':
1721 case '8':
1722 case '9':
1723 case '(':
1724 (*pp)--;
1725
1726 /* We deal with something like t(1,2)=(3,4)=... which
1727 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1728
1729 /* Allocate and enter the typedef type first.
1730 This handles recursive types. */
1731 type = dbx_alloc_type (typenums, objfile);
1732 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1733 {
1734 struct type *xtype = read_type (pp, objfile);
1735
1736 if (type == xtype)
1737 {
1738 /* It's being defined as itself. That means it is "void". */
1739 TYPE_CODE (type) = TYPE_CODE_VOID;
1740 TYPE_LENGTH (type) = 1;
1741 }
1742 else if (type_size >= 0 || is_string)
1743 {
1744 /* This is the absolute wrong way to construct types. Every
1745 other debug format has found a way around this problem and
1746 the related problems with unnecessarily stubbed types;
1747 someone motivated should attempt to clean up the issue
1748 here as well. Once a type pointed to has been created it
1749 should not be modified.
1750
1751 Well, it's not *absolutely* wrong. Constructing recursive
1752 types (trees, linked lists) necessarily entails modifying
1753 types after creating them. Constructing any loop structure
1754 entails side effects. The Dwarf 2 reader does handle this
1755 more gracefully (it never constructs more than once
1756 instance of a type object, so it doesn't have to copy type
1757 objects wholesale), but it still mutates type objects after
1758 other folks have references to them.
1759
1760 Keep in mind that this circularity/mutation issue shows up
1761 at the source language level, too: C's "incomplete types",
1762 for example. So the proper cleanup, I think, would be to
1763 limit GDB's type smashing to match exactly those required
1764 by the source language. So GDB could have a
1765 "complete_this_type" function, but never create unnecessary
1766 copies of a type otherwise. */
1767 replace_type (type, xtype);
1768 TYPE_NAME (type) = NULL;
1769 TYPE_TAG_NAME (type) = NULL;
1770 }
1771 else
1772 {
1773 TYPE_TARGET_STUB (type) = 1;
1774 TYPE_TARGET_TYPE (type) = xtype;
1775 }
1776 }
1777 break;
1778
1779 /* In the following types, we must be sure to overwrite any existing
1780 type that the typenums refer to, rather than allocating a new one
1781 and making the typenums point to the new one. This is because there
1782 may already be pointers to the existing type (if it had been
1783 forward-referenced), and we must change it to a pointer, function,
1784 reference, or whatever, *in-place*. */
1785
1786 case '*': /* Pointer to another type */
1787 type1 = read_type (pp, objfile);
1788 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1789 break;
1790
1791 case '&': /* Reference to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1794 break;
1795
1796 case 'f': /* Function returning another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1799 break;
1800
1801 case 'g': /* Prototyped function. (Sun) */
1802 {
1803 /* Unresolved questions:
1804
1805 - According to Sun's ``STABS Interface Manual'', for 'f'
1806 and 'F' symbol descriptors, a `0' in the argument type list
1807 indicates a varargs function. But it doesn't say how 'g'
1808 type descriptors represent that info. Someone with access
1809 to Sun's toolchain should try it out.
1810
1811 - According to the comment in define_symbol (search for
1812 `process_prototype_types:'), Sun emits integer arguments as
1813 types which ref themselves --- like `void' types. Do we
1814 have to deal with that here, too? Again, someone with
1815 access to Sun's toolchain should try it out and let us
1816 know. */
1817
1818 const char *type_start = (*pp) - 1;
1819 struct type *return_type = read_type (pp, objfile);
1820 struct type *func_type
1821 = make_function_type (return_type,
1822 dbx_lookup_type (typenums, objfile));
1823 struct type_list {
1824 struct type *type;
1825 struct type_list *next;
1826 } *arg_types = 0;
1827 int num_args = 0;
1828
1829 while (**pp && **pp != '#')
1830 {
1831 struct type *arg_type = read_type (pp, objfile);
1832 struct type_list *newobj = XALLOCA (struct type_list);
1833 newobj->type = arg_type;
1834 newobj->next = arg_types;
1835 arg_types = newobj;
1836 num_args++;
1837 }
1838 if (**pp == '#')
1839 ++*pp;
1840 else
1841 {
1842 complaint (&symfile_complaints,
1843 _("Prototyped function type didn't "
1844 "end arguments with `#':\n%s"),
1845 type_start);
1846 }
1847
1848 /* If there is just one argument whose type is `void', then
1849 that's just an empty argument list. */
1850 if (arg_types
1851 && ! arg_types->next
1852 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1853 num_args = 0;
1854
1855 TYPE_FIELDS (func_type)
1856 = (struct field *) TYPE_ALLOC (func_type,
1857 num_args * sizeof (struct field));
1858 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1859 {
1860 int i;
1861 struct type_list *t;
1862
1863 /* We stuck each argument type onto the front of the list
1864 when we read it, so the list is reversed. Build the
1865 fields array right-to-left. */
1866 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1867 TYPE_FIELD_TYPE (func_type, i) = t->type;
1868 }
1869 TYPE_NFIELDS (func_type) = num_args;
1870 TYPE_PROTOTYPED (func_type) = 1;
1871
1872 type = func_type;
1873 break;
1874 }
1875
1876 case 'k': /* Const qualifier on some type (Sun) */
1877 type = read_type (pp, objfile);
1878 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1879 dbx_lookup_type (typenums, objfile));
1880 break;
1881
1882 case 'B': /* Volatile qual on some type (Sun) */
1883 type = read_type (pp, objfile);
1884 type = make_cv_type (TYPE_CONST (type), 1, type,
1885 dbx_lookup_type (typenums, objfile));
1886 break;
1887
1888 case '@':
1889 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1890 { /* Member (class & variable) type */
1891 /* FIXME -- we should be doing smash_to_XXX types here. */
1892
1893 struct type *domain = read_type (pp, objfile);
1894 struct type *memtype;
1895
1896 if (**pp != ',')
1897 /* Invalid member type data format. */
1898 return error_type (pp, objfile);
1899 ++*pp;
1900
1901 memtype = read_type (pp, objfile);
1902 type = dbx_alloc_type (typenums, objfile);
1903 smash_to_memberptr_type (type, domain, memtype);
1904 }
1905 else
1906 /* type attribute */
1907 {
1908 char *attr = *pp;
1909
1910 /* Skip to the semicolon. */
1911 while (**pp != ';' && **pp != '\0')
1912 ++(*pp);
1913 if (**pp == '\0')
1914 return error_type (pp, objfile);
1915 else
1916 ++ * pp; /* Skip the semicolon. */
1917
1918 switch (*attr)
1919 {
1920 case 's': /* Size attribute */
1921 type_size = atoi (attr + 1);
1922 if (type_size <= 0)
1923 type_size = -1;
1924 break;
1925
1926 case 'S': /* String attribute */
1927 /* FIXME: check to see if following type is array? */
1928 is_string = 1;
1929 break;
1930
1931 case 'V': /* Vector attribute */
1932 /* FIXME: check to see if following type is array? */
1933 is_vector = 1;
1934 break;
1935
1936 default:
1937 /* Ignore unrecognized type attributes, so future compilers
1938 can invent new ones. */
1939 break;
1940 }
1941 ++*pp;
1942 goto again;
1943 }
1944 break;
1945
1946 case '#': /* Method (class & fn) type */
1947 if ((*pp)[0] == '#')
1948 {
1949 /* We'll get the parameter types from the name. */
1950 struct type *return_type;
1951
1952 (*pp)++;
1953 return_type = read_type (pp, objfile);
1954 if (*(*pp)++ != ';')
1955 complaint (&symfile_complaints,
1956 _("invalid (minimal) member type "
1957 "data format at symtab pos %d."),
1958 symnum);
1959 type = allocate_stub_method (return_type);
1960 if (typenums[0] != -1)
1961 *dbx_lookup_type (typenums, objfile) = type;
1962 }
1963 else
1964 {
1965 struct type *domain = read_type (pp, objfile);
1966 struct type *return_type;
1967 struct field *args;
1968 int nargs, varargs;
1969
1970 if (**pp != ',')
1971 /* Invalid member type data format. */
1972 return error_type (pp, objfile);
1973 else
1974 ++(*pp);
1975
1976 return_type = read_type (pp, objfile);
1977 args = read_args (pp, ';', objfile, &nargs, &varargs);
1978 if (args == NULL)
1979 return error_type (pp, objfile);
1980 type = dbx_alloc_type (typenums, objfile);
1981 smash_to_method_type (type, domain, return_type, args,
1982 nargs, varargs);
1983 }
1984 break;
1985
1986 case 'r': /* Range type */
1987 type = read_range_type (pp, typenums, type_size, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1990 break;
1991
1992 case 'b':
1993 {
1994 /* Sun ACC builtin int type */
1995 type = read_sun_builtin_type (pp, typenums, objfile);
1996 if (typenums[0] != -1)
1997 *dbx_lookup_type (typenums, objfile) = type;
1998 }
1999 break;
2000
2001 case 'R': /* Sun ACC builtin float type */
2002 type = read_sun_floating_type (pp, typenums, objfile);
2003 if (typenums[0] != -1)
2004 *dbx_lookup_type (typenums, objfile) = type;
2005 break;
2006
2007 case 'e': /* Enumeration type */
2008 type = dbx_alloc_type (typenums, objfile);
2009 type = read_enum_type (pp, type, objfile);
2010 if (typenums[0] != -1)
2011 *dbx_lookup_type (typenums, objfile) = type;
2012 break;
2013
2014 case 's': /* Struct type */
2015 case 'u': /* Union type */
2016 {
2017 enum type_code type_code = TYPE_CODE_UNDEF;
2018 type = dbx_alloc_type (typenums, objfile);
2019 switch (type_descriptor)
2020 {
2021 case 's':
2022 type_code = TYPE_CODE_STRUCT;
2023 break;
2024 case 'u':
2025 type_code = TYPE_CODE_UNION;
2026 break;
2027 }
2028 type = read_struct_type (pp, type, type_code, objfile);
2029 break;
2030 }
2031
2032 case 'a': /* Array type */
2033 if (**pp != 'r')
2034 return error_type (pp, objfile);
2035 ++*pp;
2036
2037 type = dbx_alloc_type (typenums, objfile);
2038 type = read_array_type (pp, type, objfile);
2039 if (is_string)
2040 TYPE_CODE (type) = TYPE_CODE_STRING;
2041 if (is_vector)
2042 make_vector_type (type);
2043 break;
2044
2045 case 'S': /* Set type */
2046 type1 = read_type (pp, objfile);
2047 type = create_set_type ((struct type *) NULL, type1);
2048 if (typenums[0] != -1)
2049 *dbx_lookup_type (typenums, objfile) = type;
2050 break;
2051
2052 default:
2053 --*pp; /* Go back to the symbol in error. */
2054 /* Particularly important if it was \0! */
2055 return error_type (pp, objfile);
2056 }
2057
2058 if (type == 0)
2059 {
2060 warning (_("GDB internal error, type is NULL in stabsread.c."));
2061 return error_type (pp, objfile);
2062 }
2063
2064 /* Size specified in a type attribute overrides any other size. */
2065 if (type_size != -1)
2066 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2067
2068 return type;
2069 }
2070 \f
2071 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2072 Return the proper type node for a given builtin type number. */
2073
2074 static const struct objfile_data *rs6000_builtin_type_data;
2075
2076 static struct type *
2077 rs6000_builtin_type (int typenum, struct objfile *objfile)
2078 {
2079 struct type **negative_types
2080 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2081
2082 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2083 #define NUMBER_RECOGNIZED 34
2084 struct type *rettype = NULL;
2085
2086 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2087 {
2088 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2089 return objfile_type (objfile)->builtin_error;
2090 }
2091
2092 if (!negative_types)
2093 {
2094 /* This includes an empty slot for type number -0. */
2095 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2096 NUMBER_RECOGNIZED + 1, struct type *);
2097 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2098 }
2099
2100 if (negative_types[-typenum] != NULL)
2101 return negative_types[-typenum];
2102
2103 #if TARGET_CHAR_BIT != 8
2104 #error This code wrong for TARGET_CHAR_BIT not 8
2105 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2106 that if that ever becomes not true, the correct fix will be to
2107 make the size in the struct type to be in bits, not in units of
2108 TARGET_CHAR_BIT. */
2109 #endif
2110
2111 switch (-typenum)
2112 {
2113 case 1:
2114 /* The size of this and all the other types are fixed, defined
2115 by the debugging format. If there is a type called "int" which
2116 is other than 32 bits, then it should use a new negative type
2117 number (or avoid negative type numbers for that case).
2118 See stabs.texinfo. */
2119 rettype = init_integer_type (objfile, 32, 0, "int");
2120 break;
2121 case 2:
2122 rettype = init_integer_type (objfile, 8, 0, "char");
2123 TYPE_NOSIGN (rettype) = 1;
2124 break;
2125 case 3:
2126 rettype = init_integer_type (objfile, 16, 0, "short");
2127 break;
2128 case 4:
2129 rettype = init_integer_type (objfile, 32, 0, "long");
2130 break;
2131 case 5:
2132 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2133 break;
2134 case 6:
2135 rettype = init_integer_type (objfile, 8, 0, "signed char");
2136 break;
2137 case 7:
2138 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2139 break;
2140 case 8:
2141 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2142 break;
2143 case 9:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2145 break;
2146 case 10:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2148 break;
2149 case 11:
2150 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2151 break;
2152 case 12:
2153 /* IEEE single precision (32 bit). */
2154 rettype = init_float_type (objfile, 32, "float",
2155 floatformats_ieee_single);
2156 break;
2157 case 13:
2158 /* IEEE double precision (64 bit). */
2159 rettype = init_float_type (objfile, 64, "double",
2160 floatformats_ieee_double);
2161 break;
2162 case 14:
2163 /* This is an IEEE double on the RS/6000, and different machines with
2164 different sizes for "long double" should use different negative
2165 type numbers. See stabs.texinfo. */
2166 rettype = init_float_type (objfile, 64, "long double",
2167 floatformats_ieee_double);
2168 break;
2169 case 15:
2170 rettype = init_integer_type (objfile, 32, 0, "integer");
2171 break;
2172 case 16:
2173 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2174 break;
2175 case 17:
2176 rettype = init_float_type (objfile, 32, "short real",
2177 floatformats_ieee_single);
2178 break;
2179 case 18:
2180 rettype = init_float_type (objfile, 64, "real",
2181 floatformats_ieee_double);
2182 break;
2183 case 19:
2184 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2185 break;
2186 case 20:
2187 rettype = init_character_type (objfile, 8, 1, "character");
2188 break;
2189 case 21:
2190 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2191 break;
2192 case 22:
2193 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2194 break;
2195 case 23:
2196 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2197 break;
2198 case 24:
2199 rettype = init_boolean_type (objfile, 32, 1, "logical");
2200 break;
2201 case 25:
2202 /* Complex type consisting of two IEEE single precision values. */
2203 rettype = init_complex_type (objfile, "complex",
2204 rs6000_builtin_type (12, objfile));
2205 break;
2206 case 26:
2207 /* Complex type consisting of two IEEE double precision values. */
2208 rettype = init_complex_type (objfile, "double complex",
2209 rs6000_builtin_type (13, objfile));
2210 break;
2211 case 27:
2212 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2213 break;
2214 case 28:
2215 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2216 break;
2217 case 29:
2218 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2219 break;
2220 case 30:
2221 rettype = init_character_type (objfile, 16, 0, "wchar");
2222 break;
2223 case 31:
2224 rettype = init_integer_type (objfile, 64, 0, "long long");
2225 break;
2226 case 32:
2227 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2228 break;
2229 case 33:
2230 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2231 break;
2232 case 34:
2233 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2234 break;
2235 }
2236 negative_types[-typenum] = rettype;
2237 return rettype;
2238 }
2239 \f
2240 /* This page contains subroutines of read_type. */
2241
2242 /* Wrapper around method_name_from_physname to flag a complaint
2243 if there is an error. */
2244
2245 static char *
2246 stabs_method_name_from_physname (const char *physname)
2247 {
2248 char *method_name;
2249
2250 method_name = method_name_from_physname (physname);
2251
2252 if (method_name == NULL)
2253 {
2254 complaint (&symfile_complaints,
2255 _("Method has bad physname %s\n"), physname);
2256 return NULL;
2257 }
2258
2259 return method_name;
2260 }
2261
2262 /* Read member function stabs info for C++ classes. The form of each member
2263 function data is:
2264
2265 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2266
2267 An example with two member functions is:
2268
2269 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2270
2271 For the case of overloaded operators, the format is op$::*.funcs, where
2272 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2273 name (such as `+=') and `.' marks the end of the operator name.
2274
2275 Returns 1 for success, 0 for failure. */
2276
2277 static int
2278 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2279 struct objfile *objfile)
2280 {
2281 int nfn_fields = 0;
2282 int length = 0;
2283 int i;
2284 struct next_fnfield
2285 {
2286 struct next_fnfield *next;
2287 struct fn_field fn_field;
2288 }
2289 *sublist;
2290 struct type *look_ahead_type;
2291 struct next_fnfieldlist *new_fnlist;
2292 struct next_fnfield *new_sublist;
2293 char *main_fn_name;
2294 char *p;
2295
2296 /* Process each list until we find something that is not a member function
2297 or find the end of the functions. */
2298
2299 while (**pp != ';')
2300 {
2301 /* We should be positioned at the start of the function name.
2302 Scan forward to find the first ':' and if it is not the
2303 first of a "::" delimiter, then this is not a member function. */
2304 p = *pp;
2305 while (*p != ':')
2306 {
2307 p++;
2308 }
2309 if (p[1] != ':')
2310 {
2311 break;
2312 }
2313
2314 sublist = NULL;
2315 look_ahead_type = NULL;
2316 length = 0;
2317
2318 new_fnlist = XCNEW (struct next_fnfieldlist);
2319 make_cleanup (xfree, new_fnlist);
2320
2321 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2322 {
2323 /* This is a completely wierd case. In order to stuff in the
2324 names that might contain colons (the usual name delimiter),
2325 Mike Tiemann defined a different name format which is
2326 signalled if the identifier is "op$". In that case, the
2327 format is "op$::XXXX." where XXXX is the name. This is
2328 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2329 /* This lets the user type "break operator+".
2330 We could just put in "+" as the name, but that wouldn't
2331 work for "*". */
2332 static char opname[32] = "op$";
2333 char *o = opname + 3;
2334
2335 /* Skip past '::'. */
2336 *pp = p + 2;
2337
2338 STABS_CONTINUE (pp, objfile);
2339 p = *pp;
2340 while (*p != '.')
2341 {
2342 *o++ = *p++;
2343 }
2344 main_fn_name = savestring (opname, o - opname);
2345 /* Skip past '.' */
2346 *pp = p + 1;
2347 }
2348 else
2349 {
2350 main_fn_name = savestring (*pp, p - *pp);
2351 /* Skip past '::'. */
2352 *pp = p + 2;
2353 }
2354 new_fnlist->fn_fieldlist.name = main_fn_name;
2355
2356 do
2357 {
2358 new_sublist = XCNEW (struct next_fnfield);
2359 make_cleanup (xfree, new_sublist);
2360
2361 /* Check for and handle cretinous dbx symbol name continuation! */
2362 if (look_ahead_type == NULL)
2363 {
2364 /* Normal case. */
2365 STABS_CONTINUE (pp, objfile);
2366
2367 new_sublist->fn_field.type = read_type (pp, objfile);
2368 if (**pp != ':')
2369 {
2370 /* Invalid symtab info for member function. */
2371 return 0;
2372 }
2373 }
2374 else
2375 {
2376 /* g++ version 1 kludge */
2377 new_sublist->fn_field.type = look_ahead_type;
2378 look_ahead_type = NULL;
2379 }
2380
2381 (*pp)++;
2382 p = *pp;
2383 while (*p != ';')
2384 {
2385 p++;
2386 }
2387
2388 /* These are methods, not functions. */
2389 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2390 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2391 else
2392 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2393 == TYPE_CODE_METHOD);
2394
2395 /* If this is just a stub, then we don't have the real name here. */
2396 if (TYPE_STUB (new_sublist->fn_field.type))
2397 {
2398 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2399 set_type_self_type (new_sublist->fn_field.type, type);
2400 new_sublist->fn_field.is_stub = 1;
2401 }
2402
2403 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2404 *pp = p + 1;
2405
2406 /* Set this member function's visibility fields. */
2407 switch (*(*pp)++)
2408 {
2409 case VISIBILITY_PRIVATE:
2410 new_sublist->fn_field.is_private = 1;
2411 break;
2412 case VISIBILITY_PROTECTED:
2413 new_sublist->fn_field.is_protected = 1;
2414 break;
2415 }
2416
2417 STABS_CONTINUE (pp, objfile);
2418 switch (**pp)
2419 {
2420 case 'A': /* Normal functions. */
2421 new_sublist->fn_field.is_const = 0;
2422 new_sublist->fn_field.is_volatile = 0;
2423 (*pp)++;
2424 break;
2425 case 'B': /* `const' member functions. */
2426 new_sublist->fn_field.is_const = 1;
2427 new_sublist->fn_field.is_volatile = 0;
2428 (*pp)++;
2429 break;
2430 case 'C': /* `volatile' member function. */
2431 new_sublist->fn_field.is_const = 0;
2432 new_sublist->fn_field.is_volatile = 1;
2433 (*pp)++;
2434 break;
2435 case 'D': /* `const volatile' member function. */
2436 new_sublist->fn_field.is_const = 1;
2437 new_sublist->fn_field.is_volatile = 1;
2438 (*pp)++;
2439 break;
2440 case '*': /* File compiled with g++ version 1 --
2441 no info. */
2442 case '?':
2443 case '.':
2444 break;
2445 default:
2446 complaint (&symfile_complaints,
2447 _("const/volatile indicator missing, got '%c'"),
2448 **pp);
2449 break;
2450 }
2451
2452 switch (*(*pp)++)
2453 {
2454 case '*':
2455 {
2456 int nbits;
2457 /* virtual member function, followed by index.
2458 The sign bit is set to distinguish pointers-to-methods
2459 from virtual function indicies. Since the array is
2460 in words, the quantity must be shifted left by 1
2461 on 16 bit machine, and by 2 on 32 bit machine, forcing
2462 the sign bit out, and usable as a valid index into
2463 the array. Remove the sign bit here. */
2464 new_sublist->fn_field.voffset =
2465 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2466 if (nbits != 0)
2467 return 0;
2468
2469 STABS_CONTINUE (pp, objfile);
2470 if (**pp == ';' || **pp == '\0')
2471 {
2472 /* Must be g++ version 1. */
2473 new_sublist->fn_field.fcontext = 0;
2474 }
2475 else
2476 {
2477 /* Figure out from whence this virtual function came.
2478 It may belong to virtual function table of
2479 one of its baseclasses. */
2480 look_ahead_type = read_type (pp, objfile);
2481 if (**pp == ':')
2482 {
2483 /* g++ version 1 overloaded methods. */
2484 }
2485 else
2486 {
2487 new_sublist->fn_field.fcontext = look_ahead_type;
2488 if (**pp != ';')
2489 {
2490 return 0;
2491 }
2492 else
2493 {
2494 ++*pp;
2495 }
2496 look_ahead_type = NULL;
2497 }
2498 }
2499 break;
2500 }
2501 case '?':
2502 /* static member function. */
2503 {
2504 int slen = strlen (main_fn_name);
2505
2506 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2507
2508 /* For static member functions, we can't tell if they
2509 are stubbed, as they are put out as functions, and not as
2510 methods.
2511 GCC v2 emits the fully mangled name if
2512 dbxout.c:flag_minimal_debug is not set, so we have to
2513 detect a fully mangled physname here and set is_stub
2514 accordingly. Fully mangled physnames in v2 start with
2515 the member function name, followed by two underscores.
2516 GCC v3 currently always emits stubbed member functions,
2517 but with fully mangled physnames, which start with _Z. */
2518 if (!(strncmp (new_sublist->fn_field.physname,
2519 main_fn_name, slen) == 0
2520 && new_sublist->fn_field.physname[slen] == '_'
2521 && new_sublist->fn_field.physname[slen + 1] == '_'))
2522 {
2523 new_sublist->fn_field.is_stub = 1;
2524 }
2525 break;
2526 }
2527
2528 default:
2529 /* error */
2530 complaint (&symfile_complaints,
2531 _("member function type missing, got '%c'"),
2532 (*pp)[-1]);
2533 /* Fall through into normal member function. */
2534
2535 case '.':
2536 /* normal member function. */
2537 new_sublist->fn_field.voffset = 0;
2538 new_sublist->fn_field.fcontext = 0;
2539 break;
2540 }
2541
2542 new_sublist->next = sublist;
2543 sublist = new_sublist;
2544 length++;
2545 STABS_CONTINUE (pp, objfile);
2546 }
2547 while (**pp != ';' && **pp != '\0');
2548
2549 (*pp)++;
2550 STABS_CONTINUE (pp, objfile);
2551
2552 /* Skip GCC 3.X member functions which are duplicates of the callable
2553 constructor/destructor. */
2554 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2555 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2556 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2557 {
2558 xfree (main_fn_name);
2559 }
2560 else
2561 {
2562 int has_stub = 0;
2563 int has_destructor = 0, has_other = 0;
2564 int is_v3 = 0;
2565 struct next_fnfield *tmp_sublist;
2566
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2569
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2575
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2582 mangled).
2583
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2589
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2596 gdb_mangle_name.
2597
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2608 needs to be fixed.
2609
2610 So, to summarize what we expect and handle here:
2611
2612 Given Given Real Real Action
2613 method name physname physname method name
2614
2615 __opi [none] __opi__3Foo operator int opname
2616 [now or later]
2617 Foo _._3Foo _._3Foo ~Foo separate and
2618 rename
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2621 */
2622
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (tmp_sublist->fn_field.is_stub)
2627 has_stub = 1;
2628 if (tmp_sublist->fn_field.physname[0] == '_'
2629 && tmp_sublist->fn_field.physname[1] == 'Z')
2630 is_v3 = 1;
2631
2632 if (is_destructor_name (tmp_sublist->fn_field.physname))
2633 has_destructor++;
2634 else
2635 has_other++;
2636
2637 tmp_sublist = tmp_sublist->next;
2638 }
2639
2640 if (has_destructor && has_other)
2641 {
2642 struct next_fnfieldlist *destr_fnlist;
2643 struct next_fnfield *last_sublist;
2644
2645 /* Create a new fn_fieldlist for the destructors. */
2646
2647 destr_fnlist = XCNEW (struct next_fnfieldlist);
2648 make_cleanup (xfree, destr_fnlist);
2649
2650 destr_fnlist->fn_fieldlist.name
2651 = obconcat (&objfile->objfile_obstack, "~",
2652 new_fnlist->fn_fieldlist.name, (char *) NULL);
2653
2654 destr_fnlist->fn_fieldlist.fn_fields =
2655 XOBNEWVEC (&objfile->objfile_obstack,
2656 struct fn_field, has_destructor);
2657 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2658 sizeof (struct fn_field) * has_destructor);
2659 tmp_sublist = sublist;
2660 last_sublist = NULL;
2661 i = 0;
2662 while (tmp_sublist != NULL)
2663 {
2664 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2665 {
2666 tmp_sublist = tmp_sublist->next;
2667 continue;
2668 }
2669
2670 destr_fnlist->fn_fieldlist.fn_fields[i++]
2671 = tmp_sublist->fn_field;
2672 if (last_sublist)
2673 last_sublist->next = tmp_sublist->next;
2674 else
2675 sublist = tmp_sublist->next;
2676 last_sublist = tmp_sublist;
2677 tmp_sublist = tmp_sublist->next;
2678 }
2679
2680 destr_fnlist->fn_fieldlist.length = has_destructor;
2681 destr_fnlist->next = fip->fnlist;
2682 fip->fnlist = destr_fnlist;
2683 nfn_fields++;
2684 length -= has_destructor;
2685 }
2686 else if (is_v3)
2687 {
2688 /* v3 mangling prevents the use of abbreviated physnames,
2689 so we can do this here. There are stubbed methods in v3
2690 only:
2691 - in -gstabs instead of -gstabs+
2692 - or for static methods, which are output as a function type
2693 instead of a method type. */
2694 char *new_method_name =
2695 stabs_method_name_from_physname (sublist->fn_field.physname);
2696
2697 if (new_method_name != NULL
2698 && strcmp (new_method_name,
2699 new_fnlist->fn_fieldlist.name) != 0)
2700 {
2701 new_fnlist->fn_fieldlist.name = new_method_name;
2702 xfree (main_fn_name);
2703 }
2704 else
2705 xfree (new_method_name);
2706 }
2707 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2708 {
2709 new_fnlist->fn_fieldlist.name =
2710 obconcat (&objfile->objfile_obstack,
2711 "~", main_fn_name, (char *)NULL);
2712 xfree (main_fn_name);
2713 }
2714 else if (!has_stub)
2715 {
2716 char dem_opname[256];
2717 int ret;
2718
2719 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2720 dem_opname, DMGL_ANSI);
2721 if (!ret)
2722 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2723 dem_opname, 0);
2724 if (ret)
2725 new_fnlist->fn_fieldlist.name
2726 = ((const char *)
2727 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2728 strlen (dem_opname)));
2729 xfree (main_fn_name);
2730 }
2731
2732 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2733 obstack_alloc (&objfile->objfile_obstack,
2734 sizeof (struct fn_field) * length);
2735 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2736 sizeof (struct fn_field) * length);
2737 for (i = length; (i--, sublist); sublist = sublist->next)
2738 {
2739 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2740 }
2741
2742 new_fnlist->fn_fieldlist.length = length;
2743 new_fnlist->next = fip->fnlist;
2744 fip->fnlist = new_fnlist;
2745 nfn_fields++;
2746 }
2747 }
2748
2749 if (nfn_fields)
2750 {
2751 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2752 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2753 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2754 memset (TYPE_FN_FIELDLISTS (type), 0,
2755 sizeof (struct fn_fieldlist) * nfn_fields);
2756 TYPE_NFN_FIELDS (type) = nfn_fields;
2757 }
2758
2759 return 1;
2760 }
2761
2762 /* Special GNU C++ name.
2763
2764 Returns 1 for success, 0 for failure. "failure" means that we can't
2765 keep parsing and it's time for error_type(). */
2766
2767 static int
2768 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2769 struct objfile *objfile)
2770 {
2771 char *p;
2772 const char *name;
2773 char cpp_abbrev;
2774 struct type *context;
2775
2776 p = *pp;
2777 if (*++p == 'v')
2778 {
2779 name = NULL;
2780 cpp_abbrev = *++p;
2781
2782 *pp = p + 1;
2783
2784 /* At this point, *pp points to something like "22:23=*22...",
2785 where the type number before the ':' is the "context" and
2786 everything after is a regular type definition. Lookup the
2787 type, find it's name, and construct the field name. */
2788
2789 context = read_type (pp, objfile);
2790
2791 switch (cpp_abbrev)
2792 {
2793 case 'f': /* $vf -- a virtual function table pointer */
2794 name = type_name_no_tag (context);
2795 if (name == NULL)
2796 {
2797 name = "";
2798 }
2799 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2800 vptr_name, name, (char *) NULL);
2801 break;
2802
2803 case 'b': /* $vb -- a virtual bsomethingorother */
2804 name = type_name_no_tag (context);
2805 if (name == NULL)
2806 {
2807 complaint (&symfile_complaints,
2808 _("C++ abbreviated type name "
2809 "unknown at symtab pos %d"),
2810 symnum);
2811 name = "FOO";
2812 }
2813 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2814 name, (char *) NULL);
2815 break;
2816
2817 default:
2818 invalid_cpp_abbrev_complaint (*pp);
2819 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2820 "INVALID_CPLUSPLUS_ABBREV",
2821 (char *) NULL);
2822 break;
2823 }
2824
2825 /* At this point, *pp points to the ':'. Skip it and read the
2826 field type. */
2827
2828 p = ++(*pp);
2829 if (p[-1] != ':')
2830 {
2831 invalid_cpp_abbrev_complaint (*pp);
2832 return 0;
2833 }
2834 fip->list->field.type = read_type (pp, objfile);
2835 if (**pp == ',')
2836 (*pp)++; /* Skip the comma. */
2837 else
2838 return 0;
2839
2840 {
2841 int nbits;
2842
2843 SET_FIELD_BITPOS (fip->list->field,
2844 read_huge_number (pp, ';', &nbits, 0));
2845 if (nbits != 0)
2846 return 0;
2847 }
2848 /* This field is unpacked. */
2849 FIELD_BITSIZE (fip->list->field) = 0;
2850 fip->list->visibility = VISIBILITY_PRIVATE;
2851 }
2852 else
2853 {
2854 invalid_cpp_abbrev_complaint (*pp);
2855 /* We have no idea what syntax an unrecognized abbrev would have, so
2856 better return 0. If we returned 1, we would need to at least advance
2857 *pp to avoid an infinite loop. */
2858 return 0;
2859 }
2860 return 1;
2861 }
2862
2863 static void
2864 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2865 struct type *type, struct objfile *objfile)
2866 {
2867 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2868
2869 fip->list->field.name
2870 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2871 *pp = p + 1;
2872
2873 /* This means we have a visibility for a field coming. */
2874 if (**pp == '/')
2875 {
2876 (*pp)++;
2877 fip->list->visibility = *(*pp)++;
2878 }
2879 else
2880 {
2881 /* normal dbx-style format, no explicit visibility */
2882 fip->list->visibility = VISIBILITY_PUBLIC;
2883 }
2884
2885 fip->list->field.type = read_type (pp, objfile);
2886 if (**pp == ':')
2887 {
2888 p = ++(*pp);
2889 #if 0
2890 /* Possible future hook for nested types. */
2891 if (**pp == '!')
2892 {
2893 fip->list->field.bitpos = (long) -2; /* nested type */
2894 p = ++(*pp);
2895 }
2896 else
2897 ...;
2898 #endif
2899 while (*p != ';')
2900 {
2901 p++;
2902 }
2903 /* Static class member. */
2904 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2905 *pp = p + 1;
2906 return;
2907 }
2908 else if (**pp != ',')
2909 {
2910 /* Bad structure-type format. */
2911 stabs_general_complaint ("bad structure-type format");
2912 return;
2913 }
2914
2915 (*pp)++; /* Skip the comma. */
2916
2917 {
2918 int nbits;
2919
2920 SET_FIELD_BITPOS (fip->list->field,
2921 read_huge_number (pp, ',', &nbits, 0));
2922 if (nbits != 0)
2923 {
2924 stabs_general_complaint ("bad structure-type format");
2925 return;
2926 }
2927 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2928 if (nbits != 0)
2929 {
2930 stabs_general_complaint ("bad structure-type format");
2931 return;
2932 }
2933 }
2934
2935 if (FIELD_BITPOS (fip->list->field) == 0
2936 && FIELD_BITSIZE (fip->list->field) == 0)
2937 {
2938 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2939 it is a field which has been optimized out. The correct stab for
2940 this case is to use VISIBILITY_IGNORE, but that is a recent
2941 invention. (2) It is a 0-size array. For example
2942 union { int num; char str[0]; } foo. Printing _("<no value>" for
2943 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2944 will continue to work, and a 0-size array as a whole doesn't
2945 have any contents to print.
2946
2947 I suspect this probably could also happen with gcc -gstabs (not
2948 -gstabs+) for static fields, and perhaps other C++ extensions.
2949 Hopefully few people use -gstabs with gdb, since it is intended
2950 for dbx compatibility. */
2951
2952 /* Ignore this field. */
2953 fip->list->visibility = VISIBILITY_IGNORE;
2954 }
2955 else
2956 {
2957 /* Detect an unpacked field and mark it as such.
2958 dbx gives a bit size for all fields.
2959 Note that forward refs cannot be packed,
2960 and treat enums as if they had the width of ints. */
2961
2962 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2963
2964 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2965 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2966 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2967 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2968 {
2969 FIELD_BITSIZE (fip->list->field) = 0;
2970 }
2971 if ((FIELD_BITSIZE (fip->list->field)
2972 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2973 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2974 && FIELD_BITSIZE (fip->list->field)
2975 == gdbarch_int_bit (gdbarch))
2976 )
2977 &&
2978 FIELD_BITPOS (fip->list->field) % 8 == 0)
2979 {
2980 FIELD_BITSIZE (fip->list->field) = 0;
2981 }
2982 }
2983 }
2984
2985
2986 /* Read struct or class data fields. They have the form:
2987
2988 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2989
2990 At the end, we see a semicolon instead of a field.
2991
2992 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2993 a static field.
2994
2995 The optional VISIBILITY is one of:
2996
2997 '/0' (VISIBILITY_PRIVATE)
2998 '/1' (VISIBILITY_PROTECTED)
2999 '/2' (VISIBILITY_PUBLIC)
3000 '/9' (VISIBILITY_IGNORE)
3001
3002 or nothing, for C style fields with public visibility.
3003
3004 Returns 1 for success, 0 for failure. */
3005
3006 static int
3007 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3008 struct objfile *objfile)
3009 {
3010 char *p;
3011 struct nextfield *newobj;
3012
3013 /* We better set p right now, in case there are no fields at all... */
3014
3015 p = *pp;
3016
3017 /* Read each data member type until we find the terminating ';' at the end of
3018 the data member list, or break for some other reason such as finding the
3019 start of the member function list. */
3020 /* Stab string for structure/union does not end with two ';' in
3021 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3022
3023 while (**pp != ';' && **pp != '\0')
3024 {
3025 STABS_CONTINUE (pp, objfile);
3026 /* Get space to record the next field's data. */
3027 newobj = XCNEW (struct nextfield);
3028 make_cleanup (xfree, newobj);
3029
3030 newobj->next = fip->list;
3031 fip->list = newobj;
3032
3033 /* Get the field name. */
3034 p = *pp;
3035
3036 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3037 unless the CPLUS_MARKER is followed by an underscore, in
3038 which case it is just the name of an anonymous type, which we
3039 should handle like any other type name. */
3040
3041 if (is_cplus_marker (p[0]) && p[1] != '_')
3042 {
3043 if (!read_cpp_abbrev (fip, pp, type, objfile))
3044 return 0;
3045 continue;
3046 }
3047
3048 /* Look for the ':' that separates the field name from the field
3049 values. Data members are delimited by a single ':', while member
3050 functions are delimited by a pair of ':'s. When we hit the member
3051 functions (if any), terminate scan loop and return. */
3052
3053 while (*p != ':' && *p != '\0')
3054 {
3055 p++;
3056 }
3057 if (*p == '\0')
3058 return 0;
3059
3060 /* Check to see if we have hit the member functions yet. */
3061 if (p[1] == ':')
3062 {
3063 break;
3064 }
3065 read_one_struct_field (fip, pp, p, type, objfile);
3066 }
3067 if (p[0] == ':' && p[1] == ':')
3068 {
3069 /* (the deleted) chill the list of fields: the last entry (at
3070 the head) is a partially constructed entry which we now
3071 scrub. */
3072 fip->list = fip->list->next;
3073 }
3074 return 1;
3075 }
3076 /* *INDENT-OFF* */
3077 /* The stabs for C++ derived classes contain baseclass information which
3078 is marked by a '!' character after the total size. This function is
3079 called when we encounter the baseclass marker, and slurps up all the
3080 baseclass information.
3081
3082 Immediately following the '!' marker is the number of base classes that
3083 the class is derived from, followed by information for each base class.
3084 For each base class, there are two visibility specifiers, a bit offset
3085 to the base class information within the derived class, a reference to
3086 the type for the base class, and a terminating semicolon.
3087
3088 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3089 ^^ ^ ^ ^ ^ ^ ^
3090 Baseclass information marker __________________|| | | | | | |
3091 Number of baseclasses __________________________| | | | | | |
3092 Visibility specifiers (2) ________________________| | | | | |
3093 Offset in bits from start of class _________________| | | | |
3094 Type number for base class ___________________________| | | |
3095 Visibility specifiers (2) _______________________________| | |
3096 Offset in bits from start of class ________________________| |
3097 Type number of base class ____________________________________|
3098
3099 Return 1 for success, 0 for (error-type-inducing) failure. */
3100 /* *INDENT-ON* */
3101
3102
3103
3104 static int
3105 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3106 struct objfile *objfile)
3107 {
3108 int i;
3109 struct nextfield *newobj;
3110
3111 if (**pp != '!')
3112 {
3113 return 1;
3114 }
3115 else
3116 {
3117 /* Skip the '!' baseclass information marker. */
3118 (*pp)++;
3119 }
3120
3121 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3122 {
3123 int nbits;
3124
3125 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3126 if (nbits != 0)
3127 return 0;
3128 }
3129
3130 #if 0
3131 /* Some stupid compilers have trouble with the following, so break
3132 it up into simpler expressions. */
3133 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3134 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3135 #else
3136 {
3137 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3138 char *pointer;
3139
3140 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3141 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3142 }
3143 #endif /* 0 */
3144
3145 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3146
3147 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3148 {
3149 newobj = XCNEW (struct nextfield);
3150 make_cleanup (xfree, newobj);
3151
3152 newobj->next = fip->list;
3153 fip->list = newobj;
3154 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3155 field! */
3156
3157 STABS_CONTINUE (pp, objfile);
3158 switch (**pp)
3159 {
3160 case '0':
3161 /* Nothing to do. */
3162 break;
3163 case '1':
3164 SET_TYPE_FIELD_VIRTUAL (type, i);
3165 break;
3166 default:
3167 /* Unknown character. Complain and treat it as non-virtual. */
3168 {
3169 complaint (&symfile_complaints,
3170 _("Unknown virtual character `%c' for baseclass"),
3171 **pp);
3172 }
3173 }
3174 ++(*pp);
3175
3176 newobj->visibility = *(*pp)++;
3177 switch (newobj->visibility)
3178 {
3179 case VISIBILITY_PRIVATE:
3180 case VISIBILITY_PROTECTED:
3181 case VISIBILITY_PUBLIC:
3182 break;
3183 default:
3184 /* Bad visibility format. Complain and treat it as
3185 public. */
3186 {
3187 complaint (&symfile_complaints,
3188 _("Unknown visibility `%c' for baseclass"),
3189 newobj->visibility);
3190 newobj->visibility = VISIBILITY_PUBLIC;
3191 }
3192 }
3193
3194 {
3195 int nbits;
3196
3197 /* The remaining value is the bit offset of the portion of the object
3198 corresponding to this baseclass. Always zero in the absence of
3199 multiple inheritance. */
3200
3201 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3202 if (nbits != 0)
3203 return 0;
3204 }
3205
3206 /* The last piece of baseclass information is the type of the
3207 base class. Read it, and remember it's type name as this
3208 field's name. */
3209
3210 newobj->field.type = read_type (pp, objfile);
3211 newobj->field.name = type_name_no_tag (newobj->field.type);
3212
3213 /* Skip trailing ';' and bump count of number of fields seen. */
3214 if (**pp == ';')
3215 (*pp)++;
3216 else
3217 return 0;
3218 }
3219 return 1;
3220 }
3221
3222 /* The tail end of stabs for C++ classes that contain a virtual function
3223 pointer contains a tilde, a %, and a type number.
3224 The type number refers to the base class (possibly this class itself) which
3225 contains the vtable pointer for the current class.
3226
3227 This function is called when we have parsed all the method declarations,
3228 so we can look for the vptr base class info. */
3229
3230 static int
3231 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3232 struct objfile *objfile)
3233 {
3234 char *p;
3235
3236 STABS_CONTINUE (pp, objfile);
3237
3238 /* If we are positioned at a ';', then skip it. */
3239 if (**pp == ';')
3240 {
3241 (*pp)++;
3242 }
3243
3244 if (**pp == '~')
3245 {
3246 (*pp)++;
3247
3248 if (**pp == '=' || **pp == '+' || **pp == '-')
3249 {
3250 /* Obsolete flags that used to indicate the presence
3251 of constructors and/or destructors. */
3252 (*pp)++;
3253 }
3254
3255 /* Read either a '%' or the final ';'. */
3256 if (*(*pp)++ == '%')
3257 {
3258 /* The next number is the type number of the base class
3259 (possibly our own class) which supplies the vtable for
3260 this class. Parse it out, and search that class to find
3261 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3262 and TYPE_VPTR_FIELDNO. */
3263
3264 struct type *t;
3265 int i;
3266
3267 t = read_type (pp, objfile);
3268 p = (*pp)++;
3269 while (*p != '\0' && *p != ';')
3270 {
3271 p++;
3272 }
3273 if (*p == '\0')
3274 {
3275 /* Premature end of symbol. */
3276 return 0;
3277 }
3278
3279 set_type_vptr_basetype (type, t);
3280 if (type == t) /* Our own class provides vtbl ptr. */
3281 {
3282 for (i = TYPE_NFIELDS (t) - 1;
3283 i >= TYPE_N_BASECLASSES (t);
3284 --i)
3285 {
3286 const char *name = TYPE_FIELD_NAME (t, i);
3287
3288 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3289 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3290 {
3291 set_type_vptr_fieldno (type, i);
3292 goto gotit;
3293 }
3294 }
3295 /* Virtual function table field not found. */
3296 complaint (&symfile_complaints,
3297 _("virtual function table pointer "
3298 "not found when defining class `%s'"),
3299 TYPE_NAME (type));
3300 return 0;
3301 }
3302 else
3303 {
3304 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3305 }
3306
3307 gotit:
3308 *pp = p + 1;
3309 }
3310 }
3311 return 1;
3312 }
3313
3314 static int
3315 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3316 {
3317 int n;
3318
3319 for (n = TYPE_NFN_FIELDS (type);
3320 fip->fnlist != NULL;
3321 fip->fnlist = fip->fnlist->next)
3322 {
3323 --n; /* Circumvent Sun3 compiler bug. */
3324 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3325 }
3326 return 1;
3327 }
3328
3329 /* Create the vector of fields, and record how big it is.
3330 We need this info to record proper virtual function table information
3331 for this class's virtual functions. */
3332
3333 static int
3334 attach_fields_to_type (struct field_info *fip, struct type *type,
3335 struct objfile *objfile)
3336 {
3337 int nfields = 0;
3338 int non_public_fields = 0;
3339 struct nextfield *scan;
3340
3341 /* Count up the number of fields that we have, as well as taking note of
3342 whether or not there are any non-public fields, which requires us to
3343 allocate and build the private_field_bits and protected_field_bits
3344 bitfields. */
3345
3346 for (scan = fip->list; scan != NULL; scan = scan->next)
3347 {
3348 nfields++;
3349 if (scan->visibility != VISIBILITY_PUBLIC)
3350 {
3351 non_public_fields++;
3352 }
3353 }
3354
3355 /* Now we know how many fields there are, and whether or not there are any
3356 non-public fields. Record the field count, allocate space for the
3357 array of fields, and create blank visibility bitfields if necessary. */
3358
3359 TYPE_NFIELDS (type) = nfields;
3360 TYPE_FIELDS (type) = (struct field *)
3361 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3362 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3363
3364 if (non_public_fields)
3365 {
3366 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3367
3368 TYPE_FIELD_PRIVATE_BITS (type) =
3369 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3370 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3371
3372 TYPE_FIELD_PROTECTED_BITS (type) =
3373 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3374 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3375
3376 TYPE_FIELD_IGNORE_BITS (type) =
3377 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3378 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3379 }
3380
3381 /* Copy the saved-up fields into the field vector. Start from the
3382 head of the list, adding to the tail of the field array, so that
3383 they end up in the same order in the array in which they were
3384 added to the list. */
3385
3386 while (nfields-- > 0)
3387 {
3388 TYPE_FIELD (type, nfields) = fip->list->field;
3389 switch (fip->list->visibility)
3390 {
3391 case VISIBILITY_PRIVATE:
3392 SET_TYPE_FIELD_PRIVATE (type, nfields);
3393 break;
3394
3395 case VISIBILITY_PROTECTED:
3396 SET_TYPE_FIELD_PROTECTED (type, nfields);
3397 break;
3398
3399 case VISIBILITY_IGNORE:
3400 SET_TYPE_FIELD_IGNORE (type, nfields);
3401 break;
3402
3403 case VISIBILITY_PUBLIC:
3404 break;
3405
3406 default:
3407 /* Unknown visibility. Complain and treat it as public. */
3408 {
3409 complaint (&symfile_complaints,
3410 _("Unknown visibility `%c' for field"),
3411 fip->list->visibility);
3412 }
3413 break;
3414 }
3415 fip->list = fip->list->next;
3416 }
3417 return 1;
3418 }
3419
3420
3421 /* Complain that the compiler has emitted more than one definition for the
3422 structure type TYPE. */
3423 static void
3424 complain_about_struct_wipeout (struct type *type)
3425 {
3426 const char *name = "";
3427 const char *kind = "";
3428
3429 if (TYPE_TAG_NAME (type))
3430 {
3431 name = TYPE_TAG_NAME (type);
3432 switch (TYPE_CODE (type))
3433 {
3434 case TYPE_CODE_STRUCT: kind = "struct "; break;
3435 case TYPE_CODE_UNION: kind = "union "; break;
3436 case TYPE_CODE_ENUM: kind = "enum "; break;
3437 default: kind = "";
3438 }
3439 }
3440 else if (TYPE_NAME (type))
3441 {
3442 name = TYPE_NAME (type);
3443 kind = "";
3444 }
3445 else
3446 {
3447 name = "<unknown>";
3448 kind = "";
3449 }
3450
3451 complaint (&symfile_complaints,
3452 _("struct/union type gets multiply defined: %s%s"), kind, name);
3453 }
3454
3455 /* Set the length for all variants of a same main_type, which are
3456 connected in the closed chain.
3457
3458 This is something that needs to be done when a type is defined *after*
3459 some cross references to this type have already been read. Consider
3460 for instance the following scenario where we have the following two
3461 stabs entries:
3462
3463 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3464 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3465
3466 A stubbed version of type dummy is created while processing the first
3467 stabs entry. The length of that type is initially set to zero, since
3468 it is unknown at this point. Also, a "constant" variation of type
3469 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3470 the stabs line).
3471
3472 The second stabs entry allows us to replace the stubbed definition
3473 with the real definition. However, we still need to adjust the length
3474 of the "constant" variation of that type, as its length was left
3475 untouched during the main type replacement... */
3476
3477 static void
3478 set_length_in_type_chain (struct type *type)
3479 {
3480 struct type *ntype = TYPE_CHAIN (type);
3481
3482 while (ntype != type)
3483 {
3484 if (TYPE_LENGTH(ntype) == 0)
3485 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3486 else
3487 complain_about_struct_wipeout (ntype);
3488 ntype = TYPE_CHAIN (ntype);
3489 }
3490 }
3491
3492 /* Read the description of a structure (or union type) and return an object
3493 describing the type.
3494
3495 PP points to a character pointer that points to the next unconsumed token
3496 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3497 *PP will point to "4a:1,0,32;;".
3498
3499 TYPE points to an incomplete type that needs to be filled in.
3500
3501 OBJFILE points to the current objfile from which the stabs information is
3502 being read. (Note that it is redundant in that TYPE also contains a pointer
3503 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3504 */
3505
3506 static struct type *
3507 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3508 struct objfile *objfile)
3509 {
3510 struct cleanup *back_to;
3511 struct field_info fi;
3512
3513 fi.list = NULL;
3514 fi.fnlist = NULL;
3515
3516 /* When describing struct/union/class types in stabs, G++ always drops
3517 all qualifications from the name. So if you've got:
3518 struct A { ... struct B { ... }; ... };
3519 then G++ will emit stabs for `struct A::B' that call it simply
3520 `struct B'. Obviously, if you've got a real top-level definition for
3521 `struct B', or other nested definitions, this is going to cause
3522 problems.
3523
3524 Obviously, GDB can't fix this by itself, but it can at least avoid
3525 scribbling on existing structure type objects when new definitions
3526 appear. */
3527 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3528 || TYPE_STUB (type)))
3529 {
3530 complain_about_struct_wipeout (type);
3531
3532 /* It's probably best to return the type unchanged. */
3533 return type;
3534 }
3535
3536 back_to = make_cleanup (null_cleanup, 0);
3537
3538 INIT_CPLUS_SPECIFIC (type);
3539 TYPE_CODE (type) = type_code;
3540 TYPE_STUB (type) = 0;
3541
3542 /* First comes the total size in bytes. */
3543
3544 {
3545 int nbits;
3546
3547 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3548 if (nbits != 0)
3549 {
3550 do_cleanups (back_to);
3551 return error_type (pp, objfile);
3552 }
3553 set_length_in_type_chain (type);
3554 }
3555
3556 /* Now read the baseclasses, if any, read the regular C struct or C++
3557 class member fields, attach the fields to the type, read the C++
3558 member functions, attach them to the type, and then read any tilde
3559 field (baseclass specifier for the class holding the main vtable). */
3560
3561 if (!read_baseclasses (&fi, pp, type, objfile)
3562 || !read_struct_fields (&fi, pp, type, objfile)
3563 || !attach_fields_to_type (&fi, type, objfile)
3564 || !read_member_functions (&fi, pp, type, objfile)
3565 || !attach_fn_fields_to_type (&fi, type)
3566 || !read_tilde_fields (&fi, pp, type, objfile))
3567 {
3568 type = error_type (pp, objfile);
3569 }
3570
3571 do_cleanups (back_to);
3572 return (type);
3573 }
3574
3575 /* Read a definition of an array type,
3576 and create and return a suitable type object.
3577 Also creates a range type which represents the bounds of that
3578 array. */
3579
3580 static struct type *
3581 read_array_type (char **pp, struct type *type,
3582 struct objfile *objfile)
3583 {
3584 struct type *index_type, *element_type, *range_type;
3585 int lower, upper;
3586 int adjustable = 0;
3587 int nbits;
3588
3589 /* Format of an array type:
3590 "ar<index type>;lower;upper;<array_contents_type>".
3591 OS9000: "arlower,upper;<array_contents_type>".
3592
3593 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3594 for these, produce a type like float[][]. */
3595
3596 {
3597 index_type = read_type (pp, objfile);
3598 if (**pp != ';')
3599 /* Improper format of array type decl. */
3600 return error_type (pp, objfile);
3601 ++*pp;
3602 }
3603
3604 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3605 {
3606 (*pp)++;
3607 adjustable = 1;
3608 }
3609 lower = read_huge_number (pp, ';', &nbits, 0);
3610
3611 if (nbits != 0)
3612 return error_type (pp, objfile);
3613
3614 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3615 {
3616 (*pp)++;
3617 adjustable = 1;
3618 }
3619 upper = read_huge_number (pp, ';', &nbits, 0);
3620 if (nbits != 0)
3621 return error_type (pp, objfile);
3622
3623 element_type = read_type (pp, objfile);
3624
3625 if (adjustable)
3626 {
3627 lower = 0;
3628 upper = -1;
3629 }
3630
3631 range_type =
3632 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3633 type = create_array_type (type, element_type, range_type);
3634
3635 return type;
3636 }
3637
3638
3639 /* Read a definition of an enumeration type,
3640 and create and return a suitable type object.
3641 Also defines the symbols that represent the values of the type. */
3642
3643 static struct type *
3644 read_enum_type (char **pp, struct type *type,
3645 struct objfile *objfile)
3646 {
3647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3648 char *p;
3649 char *name;
3650 long n;
3651 struct symbol *sym;
3652 int nsyms = 0;
3653 struct pending **symlist;
3654 struct pending *osyms, *syms;
3655 int o_nsyms;
3656 int nbits;
3657 int unsigned_enum = 1;
3658
3659 #if 0
3660 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3661 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3662 to do? For now, force all enum values to file scope. */
3663 if (within_function)
3664 symlist = &local_symbols;
3665 else
3666 #endif
3667 symlist = &file_symbols;
3668 osyms = *symlist;
3669 o_nsyms = osyms ? osyms->nsyms : 0;
3670
3671 /* The aix4 compiler emits an extra field before the enum members;
3672 my guess is it's a type of some sort. Just ignore it. */
3673 if (**pp == '-')
3674 {
3675 /* Skip over the type. */
3676 while (**pp != ':')
3677 (*pp)++;
3678
3679 /* Skip over the colon. */
3680 (*pp)++;
3681 }
3682
3683 /* Read the value-names and their values.
3684 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3685 A semicolon or comma instead of a NAME means the end. */
3686 while (**pp && **pp != ';' && **pp != ',')
3687 {
3688 STABS_CONTINUE (pp, objfile);
3689 p = *pp;
3690 while (*p != ':')
3691 p++;
3692 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3693 *pp = p + 1;
3694 n = read_huge_number (pp, ',', &nbits, 0);
3695 if (nbits != 0)
3696 return error_type (pp, objfile);
3697
3698 sym = allocate_symbol (objfile);
3699 SYMBOL_SET_LINKAGE_NAME (sym, name);
3700 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3701 &objfile->objfile_obstack);
3702 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3703 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3704 SYMBOL_VALUE (sym) = n;
3705 if (n < 0)
3706 unsigned_enum = 0;
3707 add_symbol_to_list (sym, symlist);
3708 nsyms++;
3709 }
3710
3711 if (**pp == ';')
3712 (*pp)++; /* Skip the semicolon. */
3713
3714 /* Now fill in the fields of the type-structure. */
3715
3716 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3717 set_length_in_type_chain (type);
3718 TYPE_CODE (type) = TYPE_CODE_ENUM;
3719 TYPE_STUB (type) = 0;
3720 if (unsigned_enum)
3721 TYPE_UNSIGNED (type) = 1;
3722 TYPE_NFIELDS (type) = nsyms;
3723 TYPE_FIELDS (type) = (struct field *)
3724 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3725 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3726
3727 /* Find the symbols for the values and put them into the type.
3728 The symbols can be found in the symlist that we put them on
3729 to cause them to be defined. osyms contains the old value
3730 of that symlist; everything up to there was defined by us. */
3731 /* Note that we preserve the order of the enum constants, so
3732 that in something like "enum {FOO, LAST_THING=FOO}" we print
3733 FOO, not LAST_THING. */
3734
3735 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3736 {
3737 int last = syms == osyms ? o_nsyms : 0;
3738 int j = syms->nsyms;
3739
3740 for (; --j >= last; --n)
3741 {
3742 struct symbol *xsym = syms->symbol[j];
3743
3744 SYMBOL_TYPE (xsym) = type;
3745 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3746 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3747 TYPE_FIELD_BITSIZE (type, n) = 0;
3748 }
3749 if (syms == osyms)
3750 break;
3751 }
3752
3753 return type;
3754 }
3755
3756 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3757 typedefs in every file (for int, long, etc):
3758
3759 type = b <signed> <width> <format type>; <offset>; <nbits>
3760 signed = u or s.
3761 optional format type = c or b for char or boolean.
3762 offset = offset from high order bit to start bit of type.
3763 width is # bytes in object of this type, nbits is # bits in type.
3764
3765 The width/offset stuff appears to be for small objects stored in
3766 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3767 FIXME. */
3768
3769 static struct type *
3770 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3771 {
3772 int type_bits;
3773 int nbits;
3774 int unsigned_type;
3775 int boolean_type = 0;
3776
3777 switch (**pp)
3778 {
3779 case 's':
3780 unsigned_type = 0;
3781 break;
3782 case 'u':
3783 unsigned_type = 1;
3784 break;
3785 default:
3786 return error_type (pp, objfile);
3787 }
3788 (*pp)++;
3789
3790 /* For some odd reason, all forms of char put a c here. This is strange
3791 because no other type has this honor. We can safely ignore this because
3792 we actually determine 'char'acterness by the number of bits specified in
3793 the descriptor.
3794 Boolean forms, e.g Fortran logical*X, put a b here. */
3795
3796 if (**pp == 'c')
3797 (*pp)++;
3798 else if (**pp == 'b')
3799 {
3800 boolean_type = 1;
3801 (*pp)++;
3802 }
3803
3804 /* The first number appears to be the number of bytes occupied
3805 by this type, except that unsigned short is 4 instead of 2.
3806 Since this information is redundant with the third number,
3807 we will ignore it. */
3808 read_huge_number (pp, ';', &nbits, 0);
3809 if (nbits != 0)
3810 return error_type (pp, objfile);
3811
3812 /* The second number is always 0, so ignore it too. */
3813 read_huge_number (pp, ';', &nbits, 0);
3814 if (nbits != 0)
3815 return error_type (pp, objfile);
3816
3817 /* The third number is the number of bits for this type. */
3818 type_bits = read_huge_number (pp, 0, &nbits, 0);
3819 if (nbits != 0)
3820 return error_type (pp, objfile);
3821 /* The type *should* end with a semicolon. If it are embedded
3822 in a larger type the semicolon may be the only way to know where
3823 the type ends. If this type is at the end of the stabstring we
3824 can deal with the omitted semicolon (but we don't have to like
3825 it). Don't bother to complain(), Sun's compiler omits the semicolon
3826 for "void". */
3827 if (**pp == ';')
3828 ++(*pp);
3829
3830 if (type_bits == 0)
3831 {
3832 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3833 if (unsigned_type)
3834 TYPE_UNSIGNED (type) = 1;
3835 return type;
3836 }
3837
3838 if (boolean_type)
3839 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3840 else
3841 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3842 }
3843
3844 static struct type *
3845 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3846 {
3847 int nbits;
3848 int details;
3849 int nbytes;
3850 struct type *rettype;
3851
3852 /* The first number has more details about the type, for example
3853 FN_COMPLEX. */
3854 details = read_huge_number (pp, ';', &nbits, 0);
3855 if (nbits != 0)
3856 return error_type (pp, objfile);
3857
3858 /* The second number is the number of bytes occupied by this type. */
3859 nbytes = read_huge_number (pp, ';', &nbits, 0);
3860 if (nbits != 0)
3861 return error_type (pp, objfile);
3862
3863 nbits = nbytes * TARGET_CHAR_BIT;
3864
3865 if (details == NF_COMPLEX || details == NF_COMPLEX16
3866 || details == NF_COMPLEX32)
3867 {
3868 rettype = dbx_init_float_type (objfile, nbits / 2);
3869 return init_complex_type (objfile, NULL, rettype);
3870 }
3871
3872 return dbx_init_float_type (objfile, nbits);
3873 }
3874
3875 /* Read a number from the string pointed to by *PP.
3876 The value of *PP is advanced over the number.
3877 If END is nonzero, the character that ends the
3878 number must match END, or an error happens;
3879 and that character is skipped if it does match.
3880 If END is zero, *PP is left pointing to that character.
3881
3882 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3883 the number is represented in an octal representation, assume that
3884 it is represented in a 2's complement representation with a size of
3885 TWOS_COMPLEMENT_BITS.
3886
3887 If the number fits in a long, set *BITS to 0 and return the value.
3888 If not, set *BITS to be the number of bits in the number and return 0.
3889
3890 If encounter garbage, set *BITS to -1 and return 0. */
3891
3892 static long
3893 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3894 {
3895 char *p = *pp;
3896 int sign = 1;
3897 int sign_bit = 0;
3898 long n = 0;
3899 int radix = 10;
3900 char overflow = 0;
3901 int nbits = 0;
3902 int c;
3903 long upper_limit;
3904 int twos_complement_representation = 0;
3905
3906 if (*p == '-')
3907 {
3908 sign = -1;
3909 p++;
3910 }
3911
3912 /* Leading zero means octal. GCC uses this to output values larger
3913 than an int (because that would be hard in decimal). */
3914 if (*p == '0')
3915 {
3916 radix = 8;
3917 p++;
3918 }
3919
3920 /* Skip extra zeros. */
3921 while (*p == '0')
3922 p++;
3923
3924 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3925 {
3926 /* Octal, possibly signed. Check if we have enough chars for a
3927 negative number. */
3928
3929 size_t len;
3930 char *p1 = p;
3931
3932 while ((c = *p1) >= '0' && c < '8')
3933 p1++;
3934
3935 len = p1 - p;
3936 if (len > twos_complement_bits / 3
3937 || (twos_complement_bits % 3 == 0
3938 && len == twos_complement_bits / 3))
3939 {
3940 /* Ok, we have enough characters for a signed value, check
3941 for signness by testing if the sign bit is set. */
3942 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3943 c = *p - '0';
3944 if (c & (1 << sign_bit))
3945 {
3946 /* Definitely signed. */
3947 twos_complement_representation = 1;
3948 sign = -1;
3949 }
3950 }
3951 }
3952
3953 upper_limit = LONG_MAX / radix;
3954
3955 while ((c = *p++) >= '0' && c < ('0' + radix))
3956 {
3957 if (n <= upper_limit)
3958 {
3959 if (twos_complement_representation)
3960 {
3961 /* Octal, signed, twos complement representation. In
3962 this case, n is the corresponding absolute value. */
3963 if (n == 0)
3964 {
3965 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3966
3967 n = -sn;
3968 }
3969 else
3970 {
3971 n *= radix;
3972 n -= c - '0';
3973 }
3974 }
3975 else
3976 {
3977 /* unsigned representation */
3978 n *= radix;
3979 n += c - '0'; /* FIXME this overflows anyway. */
3980 }
3981 }
3982 else
3983 overflow = 1;
3984
3985 /* This depends on large values being output in octal, which is
3986 what GCC does. */
3987 if (radix == 8)
3988 {
3989 if (nbits == 0)
3990 {
3991 if (c == '0')
3992 /* Ignore leading zeroes. */
3993 ;
3994 else if (c == '1')
3995 nbits = 1;
3996 else if (c == '2' || c == '3')
3997 nbits = 2;
3998 else
3999 nbits = 3;
4000 }
4001 else
4002 nbits += 3;
4003 }
4004 }
4005 if (end)
4006 {
4007 if (c && c != end)
4008 {
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013 }
4014 else
4015 --p;
4016
4017 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4018 {
4019 /* We were supposed to parse a number with maximum
4020 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4021 if (bits != NULL)
4022 *bits = -1;
4023 return 0;
4024 }
4025
4026 *pp = p;
4027 if (overflow)
4028 {
4029 if (nbits == 0)
4030 {
4031 /* Large decimal constants are an error (because it is hard to
4032 count how many bits are in them). */
4033 if (bits != NULL)
4034 *bits = -1;
4035 return 0;
4036 }
4037
4038 /* -0x7f is the same as 0x80. So deal with it by adding one to
4039 the number of bits. Two's complement represention octals
4040 can't have a '-' in front. */
4041 if (sign == -1 && !twos_complement_representation)
4042 ++nbits;
4043 if (bits)
4044 *bits = nbits;
4045 }
4046 else
4047 {
4048 if (bits)
4049 *bits = 0;
4050 return n * sign;
4051 }
4052 /* It's *BITS which has the interesting information. */
4053 return 0;
4054 }
4055
4056 static struct type *
4057 read_range_type (char **pp, int typenums[2], int type_size,
4058 struct objfile *objfile)
4059 {
4060 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4061 char *orig_pp = *pp;
4062 int rangenums[2];
4063 long n2, n3;
4064 int n2bits, n3bits;
4065 int self_subrange;
4066 struct type *result_type;
4067 struct type *index_type = NULL;
4068
4069 /* First comes a type we are a subrange of.
4070 In C it is usually 0, 1 or the type being defined. */
4071 if (read_type_number (pp, rangenums) != 0)
4072 return error_type (pp, objfile);
4073 self_subrange = (rangenums[0] == typenums[0] &&
4074 rangenums[1] == typenums[1]);
4075
4076 if (**pp == '=')
4077 {
4078 *pp = orig_pp;
4079 index_type = read_type (pp, objfile);
4080 }
4081
4082 /* A semicolon should now follow; skip it. */
4083 if (**pp == ';')
4084 (*pp)++;
4085
4086 /* The remaining two operands are usually lower and upper bounds
4087 of the range. But in some special cases they mean something else. */
4088 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4089 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4090
4091 if (n2bits == -1 || n3bits == -1)
4092 return error_type (pp, objfile);
4093
4094 if (index_type)
4095 goto handle_true_range;
4096
4097 /* If limits are huge, must be large integral type. */
4098 if (n2bits != 0 || n3bits != 0)
4099 {
4100 char got_signed = 0;
4101 char got_unsigned = 0;
4102 /* Number of bits in the type. */
4103 int nbits = 0;
4104
4105 /* If a type size attribute has been specified, the bounds of
4106 the range should fit in this size. If the lower bounds needs
4107 more bits than the upper bound, then the type is signed. */
4108 if (n2bits <= type_size && n3bits <= type_size)
4109 {
4110 if (n2bits == type_size && n2bits > n3bits)
4111 got_signed = 1;
4112 else
4113 got_unsigned = 1;
4114 nbits = type_size;
4115 }
4116 /* Range from 0 to <large number> is an unsigned large integral type. */
4117 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4118 {
4119 got_unsigned = 1;
4120 nbits = n3bits;
4121 }
4122 /* Range from <large number> to <large number>-1 is a large signed
4123 integral type. Take care of the case where <large number> doesn't
4124 fit in a long but <large number>-1 does. */
4125 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4126 || (n2bits != 0 && n3bits == 0
4127 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4128 && n3 == LONG_MAX))
4129 {
4130 got_signed = 1;
4131 nbits = n2bits;
4132 }
4133
4134 if (got_signed || got_unsigned)
4135 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4136 else
4137 return error_type (pp, objfile);
4138 }
4139
4140 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4141 if (self_subrange && n2 == 0 && n3 == 0)
4142 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4143
4144 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4145 is the width in bytes.
4146
4147 Fortran programs appear to use this for complex types also. To
4148 distinguish between floats and complex, g77 (and others?) seem
4149 to use self-subranges for the complexes, and subranges of int for
4150 the floats.
4151
4152 Also note that for complexes, g77 sets n2 to the size of one of
4153 the member floats, not the whole complex beast. My guess is that
4154 this was to work well with pre-COMPLEX versions of gdb. */
4155
4156 if (n3 == 0 && n2 > 0)
4157 {
4158 struct type *float_type
4159 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4160
4161 if (self_subrange)
4162 return init_complex_type (objfile, NULL, float_type);
4163 else
4164 return float_type;
4165 }
4166
4167 /* If the upper bound is -1, it must really be an unsigned integral. */
4168
4169 else if (n2 == 0 && n3 == -1)
4170 {
4171 int bits = type_size;
4172
4173 if (bits <= 0)
4174 {
4175 /* We don't know its size. It is unsigned int or unsigned
4176 long. GCC 2.3.3 uses this for long long too, but that is
4177 just a GDB 3.5 compatibility hack. */
4178 bits = gdbarch_int_bit (gdbarch);
4179 }
4180
4181 return init_integer_type (objfile, bits, 1, NULL);
4182 }
4183
4184 /* Special case: char is defined (Who knows why) as a subrange of
4185 itself with range 0-127. */
4186 else if (self_subrange && n2 == 0 && n3 == 127)
4187 {
4188 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4189 TYPE_NOSIGN (type) = 1;
4190 return type;
4191 }
4192 /* We used to do this only for subrange of self or subrange of int. */
4193 else if (n2 == 0)
4194 {
4195 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4196 "unsigned long", and we already checked for that,
4197 so don't need to test for it here. */
4198
4199 if (n3 < 0)
4200 /* n3 actually gives the size. */
4201 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4202
4203 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4204 unsigned n-byte integer. But do require n to be a power of
4205 two; we don't want 3- and 5-byte integers flying around. */
4206 {
4207 int bytes;
4208 unsigned long bits;
4209
4210 bits = n3;
4211 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4212 bits >>= 8;
4213 if (bits == 0
4214 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4215 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4216 }
4217 }
4218 /* I think this is for Convex "long long". Since I don't know whether
4219 Convex sets self_subrange, I also accept that particular size regardless
4220 of self_subrange. */
4221 else if (n3 == 0 && n2 < 0
4222 && (self_subrange
4223 || n2 == -gdbarch_long_long_bit
4224 (gdbarch) / TARGET_CHAR_BIT))
4225 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4226 else if (n2 == -n3 - 1)
4227 {
4228 if (n3 == 0x7f)
4229 return init_integer_type (objfile, 8, 0, NULL);
4230 if (n3 == 0x7fff)
4231 return init_integer_type (objfile, 16, 0, NULL);
4232 if (n3 == 0x7fffffff)
4233 return init_integer_type (objfile, 32, 0, NULL);
4234 }
4235
4236 /* We have a real range type on our hands. Allocate space and
4237 return a real pointer. */
4238 handle_true_range:
4239
4240 if (self_subrange)
4241 index_type = objfile_type (objfile)->builtin_int;
4242 else
4243 index_type = *dbx_lookup_type (rangenums, objfile);
4244 if (index_type == NULL)
4245 {
4246 /* Does this actually ever happen? Is that why we are worrying
4247 about dealing with it rather than just calling error_type? */
4248
4249 complaint (&symfile_complaints,
4250 _("base type %d of range type is not defined"), rangenums[1]);
4251
4252 index_type = objfile_type (objfile)->builtin_int;
4253 }
4254
4255 result_type
4256 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4257 return (result_type);
4258 }
4259
4260 /* Read in an argument list. This is a list of types, separated by commas
4261 and terminated with END. Return the list of types read in, or NULL
4262 if there is an error. */
4263
4264 static struct field *
4265 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4266 int *varargsp)
4267 {
4268 /* FIXME! Remove this arbitrary limit! */
4269 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4270 int n = 0, i;
4271 struct field *rval;
4272
4273 while (**pp != end)
4274 {
4275 if (**pp != ',')
4276 /* Invalid argument list: no ','. */
4277 return NULL;
4278 (*pp)++;
4279 STABS_CONTINUE (pp, objfile);
4280 types[n++] = read_type (pp, objfile);
4281 }
4282 (*pp)++; /* get past `end' (the ':' character). */
4283
4284 if (n == 0)
4285 {
4286 /* We should read at least the THIS parameter here. Some broken stabs
4287 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4288 have been present ";-16,(0,43)" reference instead. This way the
4289 excessive ";" marker prematurely stops the parameters parsing. */
4290
4291 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4292 *varargsp = 0;
4293 }
4294 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4295 *varargsp = 1;
4296 else
4297 {
4298 n--;
4299 *varargsp = 0;
4300 }
4301
4302 rval = XCNEWVEC (struct field, n);
4303 for (i = 0; i < n; i++)
4304 rval[i].type = types[i];
4305 *nargsp = n;
4306 return rval;
4307 }
4308 \f
4309 /* Common block handling. */
4310
4311 /* List of symbols declared since the last BCOMM. This list is a tail
4312 of local_symbols. When ECOMM is seen, the symbols on the list
4313 are noted so their proper addresses can be filled in later,
4314 using the common block base address gotten from the assembler
4315 stabs. */
4316
4317 static struct pending *common_block;
4318 static int common_block_i;
4319
4320 /* Name of the current common block. We get it from the BCOMM instead of the
4321 ECOMM to match IBM documentation (even though IBM puts the name both places
4322 like everyone else). */
4323 static char *common_block_name;
4324
4325 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4326 to remain after this function returns. */
4327
4328 void
4329 common_block_start (char *name, struct objfile *objfile)
4330 {
4331 if (common_block_name != NULL)
4332 {
4333 complaint (&symfile_complaints,
4334 _("Invalid symbol data: common block within common block"));
4335 }
4336 common_block = local_symbols;
4337 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4338 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4339 strlen (name));
4340 }
4341
4342 /* Process a N_ECOMM symbol. */
4343
4344 void
4345 common_block_end (struct objfile *objfile)
4346 {
4347 /* Symbols declared since the BCOMM are to have the common block
4348 start address added in when we know it. common_block and
4349 common_block_i point to the first symbol after the BCOMM in
4350 the local_symbols list; copy the list and hang it off the
4351 symbol for the common block name for later fixup. */
4352 int i;
4353 struct symbol *sym;
4354 struct pending *newobj = 0;
4355 struct pending *next;
4356 int j;
4357
4358 if (common_block_name == NULL)
4359 {
4360 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4361 return;
4362 }
4363
4364 sym = allocate_symbol (objfile);
4365 /* Note: common_block_name already saved on objfile_obstack. */
4366 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4367 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4368
4369 /* Now we copy all the symbols which have been defined since the BCOMM. */
4370
4371 /* Copy all the struct pendings before common_block. */
4372 for (next = local_symbols;
4373 next != NULL && next != common_block;
4374 next = next->next)
4375 {
4376 for (j = 0; j < next->nsyms; j++)
4377 add_symbol_to_list (next->symbol[j], &newobj);
4378 }
4379
4380 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4381 NULL, it means copy all the local symbols (which we already did
4382 above). */
4383
4384 if (common_block != NULL)
4385 for (j = common_block_i; j < common_block->nsyms; j++)
4386 add_symbol_to_list (common_block->symbol[j], &newobj);
4387
4388 SYMBOL_TYPE (sym) = (struct type *) newobj;
4389
4390 /* Should we be putting local_symbols back to what it was?
4391 Does it matter? */
4392
4393 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4394 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4395 global_sym_chain[i] = sym;
4396 common_block_name = NULL;
4397 }
4398
4399 /* Add a common block's start address to the offset of each symbol
4400 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4401 the common block name). */
4402
4403 static void
4404 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4405 {
4406 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4407
4408 for (; next; next = next->next)
4409 {
4410 int j;
4411
4412 for (j = next->nsyms - 1; j >= 0; j--)
4413 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4414 }
4415 }
4416 \f
4417
4418
4419 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4420 See add_undefined_type for more details. */
4421
4422 static void
4423 add_undefined_type_noname (struct type *type, int typenums[2])
4424 {
4425 struct nat nat;
4426
4427 nat.typenums[0] = typenums [0];
4428 nat.typenums[1] = typenums [1];
4429 nat.type = type;
4430
4431 if (noname_undefs_length == noname_undefs_allocated)
4432 {
4433 noname_undefs_allocated *= 2;
4434 noname_undefs = (struct nat *)
4435 xrealloc ((char *) noname_undefs,
4436 noname_undefs_allocated * sizeof (struct nat));
4437 }
4438 noname_undefs[noname_undefs_length++] = nat;
4439 }
4440
4441 /* Add TYPE to the UNDEF_TYPES vector.
4442 See add_undefined_type for more details. */
4443
4444 static void
4445 add_undefined_type_1 (struct type *type)
4446 {
4447 if (undef_types_length == undef_types_allocated)
4448 {
4449 undef_types_allocated *= 2;
4450 undef_types = (struct type **)
4451 xrealloc ((char *) undef_types,
4452 undef_types_allocated * sizeof (struct type *));
4453 }
4454 undef_types[undef_types_length++] = type;
4455 }
4456
4457 /* What about types defined as forward references inside of a small lexical
4458 scope? */
4459 /* Add a type to the list of undefined types to be checked through
4460 once this file has been read in.
4461
4462 In practice, we actually maintain two such lists: The first list
4463 (UNDEF_TYPES) is used for types whose name has been provided, and
4464 concerns forward references (eg 'xs' or 'xu' forward references);
4465 the second list (NONAME_UNDEFS) is used for types whose name is
4466 unknown at creation time, because they were referenced through
4467 their type number before the actual type was declared.
4468 This function actually adds the given type to the proper list. */
4469
4470 static void
4471 add_undefined_type (struct type *type, int typenums[2])
4472 {
4473 if (TYPE_TAG_NAME (type) == NULL)
4474 add_undefined_type_noname (type, typenums);
4475 else
4476 add_undefined_type_1 (type);
4477 }
4478
4479 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4480
4481 static void
4482 cleanup_undefined_types_noname (struct objfile *objfile)
4483 {
4484 int i;
4485
4486 for (i = 0; i < noname_undefs_length; i++)
4487 {
4488 struct nat nat = noname_undefs[i];
4489 struct type **type;
4490
4491 type = dbx_lookup_type (nat.typenums, objfile);
4492 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4493 {
4494 /* The instance flags of the undefined type are still unset,
4495 and needs to be copied over from the reference type.
4496 Since replace_type expects them to be identical, we need
4497 to set these flags manually before hand. */
4498 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4499 replace_type (nat.type, *type);
4500 }
4501 }
4502
4503 noname_undefs_length = 0;
4504 }
4505
4506 /* Go through each undefined type, see if it's still undefined, and fix it
4507 up if possible. We have two kinds of undefined types:
4508
4509 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4510 Fix: update array length using the element bounds
4511 and the target type's length.
4512 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4513 yet defined at the time a pointer to it was made.
4514 Fix: Do a full lookup on the struct/union tag. */
4515
4516 static void
4517 cleanup_undefined_types_1 (void)
4518 {
4519 struct type **type;
4520
4521 /* Iterate over every undefined type, and look for a symbol whose type
4522 matches our undefined type. The symbol matches if:
4523 1. It is a typedef in the STRUCT domain;
4524 2. It has the same name, and same type code;
4525 3. The instance flags are identical.
4526
4527 It is important to check the instance flags, because we have seen
4528 examples where the debug info contained definitions such as:
4529
4530 "foo_t:t30=B31=xefoo_t:"
4531
4532 In this case, we have created an undefined type named "foo_t" whose
4533 instance flags is null (when processing "xefoo_t"), and then created
4534 another type with the same name, but with different instance flags
4535 ('B' means volatile). I think that the definition above is wrong,
4536 since the same type cannot be volatile and non-volatile at the same
4537 time, but we need to be able to cope with it when it happens. The
4538 approach taken here is to treat these two types as different. */
4539
4540 for (type = undef_types; type < undef_types + undef_types_length; type++)
4541 {
4542 switch (TYPE_CODE (*type))
4543 {
4544
4545 case TYPE_CODE_STRUCT:
4546 case TYPE_CODE_UNION:
4547 case TYPE_CODE_ENUM:
4548 {
4549 /* Check if it has been defined since. Need to do this here
4550 as well as in check_typedef to deal with the (legitimate in
4551 C though not C++) case of several types with the same name
4552 in different source files. */
4553 if (TYPE_STUB (*type))
4554 {
4555 struct pending *ppt;
4556 int i;
4557 /* Name of the type, without "struct" or "union". */
4558 const char *type_name = TYPE_TAG_NAME (*type);
4559
4560 if (type_name == NULL)
4561 {
4562 complaint (&symfile_complaints, _("need a type name"));
4563 break;
4564 }
4565 for (ppt = file_symbols; ppt; ppt = ppt->next)
4566 {
4567 for (i = 0; i < ppt->nsyms; i++)
4568 {
4569 struct symbol *sym = ppt->symbol[i];
4570
4571 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4572 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4573 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4574 TYPE_CODE (*type))
4575 && (TYPE_INSTANCE_FLAGS (*type) ==
4576 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4577 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4578 type_name) == 0)
4579 replace_type (*type, SYMBOL_TYPE (sym));
4580 }
4581 }
4582 }
4583 }
4584 break;
4585
4586 default:
4587 {
4588 complaint (&symfile_complaints,
4589 _("forward-referenced types left unresolved, "
4590 "type code %d."),
4591 TYPE_CODE (*type));
4592 }
4593 break;
4594 }
4595 }
4596
4597 undef_types_length = 0;
4598 }
4599
4600 /* Try to fix all the undefined types we ecountered while processing
4601 this unit. */
4602
4603 void
4604 cleanup_undefined_stabs_types (struct objfile *objfile)
4605 {
4606 cleanup_undefined_types_1 ();
4607 cleanup_undefined_types_noname (objfile);
4608 }
4609
4610 /* Scan through all of the global symbols defined in the object file,
4611 assigning values to the debugging symbols that need to be assigned
4612 to. Get these symbols from the minimal symbol table. */
4613
4614 void
4615 scan_file_globals (struct objfile *objfile)
4616 {
4617 int hash;
4618 struct minimal_symbol *msymbol;
4619 struct symbol *sym, *prev;
4620 struct objfile *resolve_objfile;
4621
4622 /* SVR4 based linkers copy referenced global symbols from shared
4623 libraries to the main executable.
4624 If we are scanning the symbols for a shared library, try to resolve
4625 them from the minimal symbols of the main executable first. */
4626
4627 if (symfile_objfile && objfile != symfile_objfile)
4628 resolve_objfile = symfile_objfile;
4629 else
4630 resolve_objfile = objfile;
4631
4632 while (1)
4633 {
4634 /* Avoid expensive loop through all minimal symbols if there are
4635 no unresolved symbols. */
4636 for (hash = 0; hash < HASHSIZE; hash++)
4637 {
4638 if (global_sym_chain[hash])
4639 break;
4640 }
4641 if (hash >= HASHSIZE)
4642 return;
4643
4644 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4645 {
4646 QUIT;
4647
4648 /* Skip static symbols. */
4649 switch (MSYMBOL_TYPE (msymbol))
4650 {
4651 case mst_file_text:
4652 case mst_file_data:
4653 case mst_file_bss:
4654 continue;
4655 default:
4656 break;
4657 }
4658
4659 prev = NULL;
4660
4661 /* Get the hash index and check all the symbols
4662 under that hash index. */
4663
4664 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4665
4666 for (sym = global_sym_chain[hash]; sym;)
4667 {
4668 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4669 SYMBOL_LINKAGE_NAME (sym)) == 0)
4670 {
4671 /* Splice this symbol out of the hash chain and
4672 assign the value we have to it. */
4673 if (prev)
4674 {
4675 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4676 }
4677 else
4678 {
4679 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4680 }
4681
4682 /* Check to see whether we need to fix up a common block. */
4683 /* Note: this code might be executed several times for
4684 the same symbol if there are multiple references. */
4685 if (sym)
4686 {
4687 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4688 {
4689 fix_common_block (sym,
4690 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4691 msymbol));
4692 }
4693 else
4694 {
4695 SYMBOL_VALUE_ADDRESS (sym)
4696 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4697 }
4698 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4699 }
4700
4701 if (prev)
4702 {
4703 sym = SYMBOL_VALUE_CHAIN (prev);
4704 }
4705 else
4706 {
4707 sym = global_sym_chain[hash];
4708 }
4709 }
4710 else
4711 {
4712 prev = sym;
4713 sym = SYMBOL_VALUE_CHAIN (sym);
4714 }
4715 }
4716 }
4717 if (resolve_objfile == objfile)
4718 break;
4719 resolve_objfile = objfile;
4720 }
4721
4722 /* Change the storage class of any remaining unresolved globals to
4723 LOC_UNRESOLVED and remove them from the chain. */
4724 for (hash = 0; hash < HASHSIZE; hash++)
4725 {
4726 sym = global_sym_chain[hash];
4727 while (sym)
4728 {
4729 prev = sym;
4730 sym = SYMBOL_VALUE_CHAIN (sym);
4731
4732 /* Change the symbol address from the misleading chain value
4733 to address zero. */
4734 SYMBOL_VALUE_ADDRESS (prev) = 0;
4735
4736 /* Complain about unresolved common block symbols. */
4737 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4738 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4739 else
4740 complaint (&symfile_complaints,
4741 _("%s: common block `%s' from "
4742 "global_sym_chain unresolved"),
4743 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4744 }
4745 }
4746 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4747 }
4748
4749 /* Initialize anything that needs initializing when starting to read
4750 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4751 to a psymtab. */
4752
4753 void
4754 stabsread_init (void)
4755 {
4756 }
4757
4758 /* Initialize anything that needs initializing when a completely new
4759 symbol file is specified (not just adding some symbols from another
4760 file, e.g. a shared library). */
4761
4762 void
4763 stabsread_new_init (void)
4764 {
4765 /* Empty the hash table of global syms looking for values. */
4766 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4767 }
4768
4769 /* Initialize anything that needs initializing at the same time as
4770 start_symtab() is called. */
4771
4772 void
4773 start_stabs (void)
4774 {
4775 global_stabs = NULL; /* AIX COFF */
4776 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4777 n_this_object_header_files = 1;
4778 type_vector_length = 0;
4779 type_vector = (struct type **) 0;
4780
4781 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4782 common_block_name = NULL;
4783 }
4784
4785 /* Call after end_symtab(). */
4786
4787 void
4788 end_stabs (void)
4789 {
4790 if (type_vector)
4791 {
4792 xfree (type_vector);
4793 }
4794 type_vector = 0;
4795 type_vector_length = 0;
4796 previous_stab_code = 0;
4797 }
4798
4799 void
4800 finish_global_stabs (struct objfile *objfile)
4801 {
4802 if (global_stabs)
4803 {
4804 patch_block_stabs (global_symbols, global_stabs, objfile);
4805 xfree (global_stabs);
4806 global_stabs = NULL;
4807 }
4808 }
4809
4810 /* Find the end of the name, delimited by a ':', but don't match
4811 ObjC symbols which look like -[Foo bar::]:bla. */
4812 static char *
4813 find_name_end (char *name)
4814 {
4815 char *s = name;
4816
4817 if (s[0] == '-' || *s == '+')
4818 {
4819 /* Must be an ObjC method symbol. */
4820 if (s[1] != '[')
4821 {
4822 error (_("invalid symbol name \"%s\""), name);
4823 }
4824 s = strchr (s, ']');
4825 if (s == NULL)
4826 {
4827 error (_("invalid symbol name \"%s\""), name);
4828 }
4829 return strchr (s, ':');
4830 }
4831 else
4832 {
4833 return strchr (s, ':');
4834 }
4835 }
4836
4837 /* Initializer for this module. */
4838
4839 void
4840 _initialize_stabsread (void)
4841 {
4842 rs6000_builtin_type_data = register_objfile_data ();
4843
4844 undef_types_allocated = 20;
4845 undef_types_length = 0;
4846 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4847
4848 noname_undefs_allocated = 20;
4849 noname_undefs_length = 0;
4850 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4851
4852 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4853 &stab_register_funcs);
4854 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4855 &stab_register_funcs);
4856 }
This page took 0.236324 seconds and 5 git commands to generate.