gdb: add type::name / type::set_name
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = objfile->arch ();
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = new (&objfile->objfile_obstack) symbol;
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 sym->print_name ());
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = objfile->arch ();
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 sym->set_linkage_name ("this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 sym->set_linkage_name ("eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 gdb::unique_xmalloc_ptr<char> new_name;
742
743 if (sym->language () == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (new_name != nullptr)
752 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
753 else
754 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
755 objfile->per_bfd);
756
757 if (sym->language () == language_cplus)
758 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
759 objfile);
760
761 }
762 p++;
763
764 /* Determine the type of name being defined. */
765 #if 0
766 /* Getting GDB to correctly skip the symbol on an undefined symbol
767 descriptor and not ever dump core is a very dodgy proposition if
768 we do things this way. I say the acorn RISC machine can just
769 fix their compiler. */
770 /* The Acorn RISC machine's compiler can put out locals that don't
771 start with "234=" or "(3,4)=", so assume anything other than the
772 deftypes we know how to handle is a local. */
773 if (!strchr ("cfFGpPrStTvVXCR", *p))
774 #else
775 if (isdigit (*p) || *p == '(' || *p == '-')
776 #endif
777 deftype = 'l';
778 else
779 deftype = *p++;
780
781 switch (deftype)
782 {
783 case 'c':
784 /* c is a special case, not followed by a type-number.
785 SYMBOL:c=iVALUE for an integer constant symbol.
786 SYMBOL:c=rVALUE for a floating constant symbol.
787 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
788 e.g. "b:c=e6,0" for "const b = blob1"
789 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
790 if (*p != '=')
791 {
792 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
793 SYMBOL_TYPE (sym) = error_type (&p, objfile);
794 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
795 add_symbol_to_list (sym, get_file_symbols ());
796 return sym;
797 }
798 ++p;
799 switch (*p++)
800 {
801 case 'r':
802 {
803 gdb_byte *dbl_valu;
804 struct type *dbl_type;
805
806 dbl_type = objfile_type (objfile)->builtin_double;
807 dbl_valu
808 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
809 TYPE_LENGTH (dbl_type));
810
811 target_float_from_string (dbl_valu, dbl_type, std::string (p));
812
813 SYMBOL_TYPE (sym) = dbl_type;
814 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
816 }
817 break;
818 case 'i':
819 {
820 /* Defining integer constants this way is kind of silly,
821 since 'e' constants allows the compiler to give not
822 only the value, but the type as well. C has at least
823 int, long, unsigned int, and long long as constant
824 types; other languages probably should have at least
825 unsigned as well as signed constants. */
826
827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
828 SYMBOL_VALUE (sym) = atoi (p);
829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
830 }
831 break;
832
833 case 'c':
834 {
835 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
836 SYMBOL_VALUE (sym) = atoi (p);
837 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 }
839 break;
840
841 case 's':
842 {
843 struct type *range_type;
844 int ind = 0;
845 char quote = *p++;
846 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
847 gdb_byte *string_value;
848
849 if (quote != '\'' && quote != '"')
850 {
851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
852 SYMBOL_TYPE (sym) = error_type (&p, objfile);
853 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
854 add_symbol_to_list (sym, get_file_symbols ());
855 return sym;
856 }
857
858 /* Find matching quote, rejecting escaped quotes. */
859 while (*p && *p != quote)
860 {
861 if (*p == '\\' && p[1] == quote)
862 {
863 string_local[ind] = (gdb_byte) quote;
864 ind++;
865 p += 2;
866 }
867 else if (*p)
868 {
869 string_local[ind] = (gdb_byte) (*p);
870 ind++;
871 p++;
872 }
873 }
874 if (*p != quote)
875 {
876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
877 SYMBOL_TYPE (sym) = error_type (&p, objfile);
878 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
879 add_symbol_to_list (sym, get_file_symbols ());
880 return sym;
881 }
882
883 /* NULL terminate the string. */
884 string_local[ind] = 0;
885 range_type
886 = create_static_range_type (NULL,
887 objfile_type (objfile)->builtin_int,
888 0, ind);
889 SYMBOL_TYPE (sym) = create_array_type (NULL,
890 objfile_type (objfile)->builtin_char,
891 range_type);
892 string_value
893 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
894 memcpy (string_value, string_local, ind + 1);
895 p++;
896
897 SYMBOL_VALUE_BYTES (sym) = string_value;
898 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
899 }
900 break;
901
902 case 'e':
903 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
904 can be represented as integral.
905 e.g. "b:c=e6,0" for "const b = blob1"
906 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910
911 if (*p != ',')
912 {
913 SYMBOL_TYPE (sym) = error_type (&p, objfile);
914 break;
915 }
916 ++p;
917
918 /* If the value is too big to fit in an int (perhaps because
919 it is unsigned), or something like that, we silently get
920 a bogus value. The type and everything else about it is
921 correct. Ideally, we should be using whatever we have
922 available for parsing unsigned and long long values,
923 however. */
924 SYMBOL_VALUE (sym) = atoi (p);
925 }
926 break;
927 default:
928 {
929 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
930 SYMBOL_TYPE (sym) = error_type (&p, objfile);
931 }
932 }
933 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
934 add_symbol_to_list (sym, get_file_symbols ());
935 return sym;
936
937 case 'C':
938 /* The name of a caught exception. */
939 SYMBOL_TYPE (sym) = read_type (&p, objfile);
940 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
942 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
943 add_symbol_to_list (sym, get_local_symbols ());
944 break;
945
946 case 'f':
947 /* A static function definition. */
948 SYMBOL_TYPE (sym) = read_type (&p, objfile);
949 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
951 add_symbol_to_list (sym, get_file_symbols ());
952 /* fall into process_function_types. */
953
954 process_function_types:
955 /* Function result types are described as the result type in stabs.
956 We need to convert this to the function-returning-type-X type
957 in GDB. E.g. "int" is converted to "function returning int". */
958 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_FUNC)
959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
960
961 /* All functions in C++ have prototypes. Stabs does not offer an
962 explicit way to identify prototyped or unprototyped functions,
963 but both GCC and Sun CC emit stabs for the "call-as" type rather
964 than the "declared-as" type for unprototyped functions, so
965 we treat all functions as if they were prototyped. This is used
966 primarily for promotion when calling the function from GDB. */
967 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
968
969 /* fall into process_prototype_types. */
970
971 process_prototype_types:
972 /* Sun acc puts declared types of arguments here. */
973 if (*p == ';')
974 {
975 struct type *ftype = SYMBOL_TYPE (sym);
976 int nsemi = 0;
977 int nparams = 0;
978 const char *p1 = p;
979
980 /* Obtain a worst case guess for the number of arguments
981 by counting the semicolons. */
982 while (*p1)
983 {
984 if (*p1++ == ';')
985 nsemi++;
986 }
987
988 /* Allocate parameter information fields and fill them in. */
989 TYPE_FIELDS (ftype) = (struct field *)
990 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
991 while (*p++ == ';')
992 {
993 struct type *ptype;
994
995 /* A type number of zero indicates the start of varargs.
996 FIXME: GDB currently ignores vararg functions. */
997 if (p[0] == '0' && p[1] == '\0')
998 break;
999 ptype = read_type (&p, objfile);
1000
1001 /* The Sun compilers mark integer arguments, which should
1002 be promoted to the width of the calling conventions, with
1003 a type which references itself. This type is turned into
1004 a TYPE_CODE_VOID type by read_type, and we have to turn
1005 it back into builtin_int here.
1006 FIXME: Do we need a new builtin_promoted_int_arg ? */
1007 if (ptype->code () == TYPE_CODE_VOID)
1008 ptype = objfile_type (objfile)->builtin_int;
1009 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1010 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1011 }
1012 TYPE_NFIELDS (ftype) = nparams;
1013 TYPE_PROTOTYPED (ftype) = 1;
1014 }
1015 break;
1016
1017 case 'F':
1018 /* A global function definition. */
1019 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1020 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1022 add_symbol_to_list (sym, get_global_symbols ());
1023 goto process_function_types;
1024
1025 case 'G':
1026 /* For a class G (global) symbol, it appears that the
1027 value is not correct. It is necessary to search for the
1028 corresponding linker definition to find the value.
1029 These definitions appear at the end of the namelist. */
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 /* Don't add symbol references to global_sym_chain.
1034 Symbol references don't have valid names and wont't match up with
1035 minimal symbols when the global_sym_chain is relocated.
1036 We'll fixup symbol references when we fixup the defining symbol. */
1037 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1038 {
1039 i = hashname (sym->linkage_name ());
1040 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1041 global_sym_chain[i] = sym;
1042 }
1043 add_symbol_to_list (sym, get_global_symbols ());
1044 break;
1045
1046 /* This case is faked by a conditional above,
1047 when there is no code letter in the dbx data.
1048 Dbx data never actually contains 'l'. */
1049 case 's':
1050 case 'l':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 add_symbol_to_list (sym, get_local_symbols ());
1056 break;
1057
1058 case 'p':
1059 if (*p == 'F')
1060 /* pF is a two-letter code that means a function parameter in Fortran.
1061 The type-number specifies the type of the return value.
1062 Translate it into a pointer-to-function type. */
1063 {
1064 p++;
1065 SYMBOL_TYPE (sym)
1066 = lookup_pointer_type
1067 (lookup_function_type (read_type (&p, objfile)));
1068 }
1069 else
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071
1072 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1073 SYMBOL_VALUE (sym) = valu;
1074 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1075 SYMBOL_IS_ARGUMENT (sym) = 1;
1076 add_symbol_to_list (sym, get_local_symbols ());
1077
1078 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1079 {
1080 /* On little-endian machines, this crud is never necessary,
1081 and, if the extra bytes contain garbage, is harmful. */
1082 break;
1083 }
1084
1085 /* If it's gcc-compiled, if it says `short', believe it. */
1086 if (processing_gcc_compilation
1087 || gdbarch_believe_pcc_promotion (gdbarch))
1088 break;
1089
1090 if (!gdbarch_believe_pcc_promotion (gdbarch))
1091 {
1092 /* If PCC says a parameter is a short or a char, it is
1093 really an int. */
1094 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1095 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1096 && SYMBOL_TYPE (sym)->code () == TYPE_CODE_INT)
1097 {
1098 SYMBOL_TYPE (sym) =
1099 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1100 ? objfile_type (objfile)->builtin_unsigned_int
1101 : objfile_type (objfile)->builtin_int;
1102 }
1103 break;
1104 }
1105 /* Fall through. */
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
1116 /*FALLTHROUGH */
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1122 SYMBOL_IS_ARGUMENT (sym) = 1;
1123 SYMBOL_VALUE (sym) = valu;
1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1125 add_symbol_to_list (sym, get_local_symbols ());
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 if (within_function)
1135 {
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
1140 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1141 the 'p' symbol even if it never saves the argument onto
1142 the stack.
1143
1144 On most machines, we want to preserve both symbols, so
1145 that we can still get information about what is going on
1146 with the stack (VAX for computing args_printed, using
1147 stack slots instead of saved registers in backtraces,
1148 etc.).
1149
1150 Note that this code illegally combines
1151 main(argc) struct foo argc; { register struct foo argc; }
1152 but this case is considered pathological and causes a warning
1153 from a decent compiler. */
1154
1155 struct pending *local_symbols = *get_local_symbols ();
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1159 {
1160 struct symbol *prev_sym;
1161
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1165 && strcmp (prev_sym->linkage_name (),
1166 sym->linkage_name ()) == 0)
1167 {
1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
1177 add_symbol_to_list (sym, get_local_symbols ());
1178 }
1179 else
1180 add_symbol_to_list (sym, get_file_symbols ());
1181 break;
1182
1183 case 'S':
1184 /* Static symbol at top level of file. */
1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1187 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1188 if (gdbarch_static_transform_name_p (gdbarch)
1189 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1190 != sym->linkage_name ())
1191 {
1192 struct bound_minimal_symbol msym;
1193
1194 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1195 if (msym.minsym != NULL)
1196 {
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, sym->linkage_name ());
1199
1200 sym->set_linkage_name (new_name);
1201 SET_SYMBOL_VALUE_ADDRESS (sym,
1202 BMSYMBOL_VALUE_ADDRESS (msym));
1203 }
1204 }
1205 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1206 add_symbol_to_list (sym, get_file_symbols ());
1207 break;
1208
1209 case 't':
1210 /* In Ada, there is no distinction between typedef and non-typedef;
1211 any type declaration implicitly has the equivalent of a typedef,
1212 and thus 't' is in fact equivalent to 'Tt'.
1213
1214 Therefore, for Ada units, we check the character immediately
1215 before the 't', and if we do not find a 'T', then make sure to
1216 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1217 will be stored in the VAR_DOMAIN). If the symbol was indeed
1218 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1219 elsewhere, so we don't need to take care of that.
1220
1221 This is important to do, because of forward references:
1222 The cleanup of undefined types stored in undef_types only uses
1223 STRUCT_DOMAIN symbols to perform the replacement. */
1224 synonym = (sym->language () == language_ada && p[-2] != 'T');
1225
1226 /* Typedef */
1227 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228
1229 /* For a nameless type, we don't want a create a symbol, thus we
1230 did not use `sym'. Return without further processing. */
1231 if (nameless)
1232 return NULL;
1233
1234 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1235 SYMBOL_VALUE (sym) = valu;
1236 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1237 /* C++ vagaries: we may have a type which is derived from
1238 a base type which did not have its name defined when the
1239 derived class was output. We fill in the derived class's
1240 base part member's name here in that case. */
1241 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1242 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_STRUCT
1243 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_UNION)
1244 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1245 {
1246 int j;
1247
1248 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1249 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1250 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1251 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1252 }
1253
1254 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1255 {
1256 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_PTR
1257 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1258 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_FUNC)
1259 {
1260 /* If we are giving a name to a type such as "pointer to
1261 foo" or "function returning foo", we better not set
1262 the TYPE_NAME. If the program contains "typedef char
1263 *caddr_t;", we don't want all variables of type char
1264 * to print as caddr_t. This is not just a
1265 consequence of GDB's type management; PCC and GCC (at
1266 least through version 2.4) both output variables of
1267 either type char * or caddr_t with the type number
1268 defined in the 't' symbol for caddr_t. If a future
1269 compiler cleans this up it GDB is not ready for it
1270 yet, but if it becomes ready we somehow need to
1271 disable this check (without breaking the PCC/GCC2.4
1272 case).
1273
1274 Sigh.
1275
1276 Fortunately, this check seems not to be necessary
1277 for anything except pointers or functions. */
1278 /* ezannoni: 2000-10-26. This seems to apply for
1279 versions of gcc older than 2.8. This was the original
1280 problem: with the following code gdb would tell that
1281 the type for name1 is caddr_t, and func is char().
1282
1283 typedef char *caddr_t;
1284 char *name2;
1285 struct x
1286 {
1287 char *name1;
1288 } xx;
1289 char *func()
1290 {
1291 }
1292 main () {}
1293 */
1294
1295 /* Pascal accepts names for pointer types. */
1296 if (get_current_subfile ()->language == language_pascal)
1297 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
1298 }
1299 else
1300 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
1301 }
1302
1303 add_symbol_to_list (sym, get_file_symbols ());
1304
1305 if (synonym)
1306 {
1307 /* Create the STRUCT_DOMAIN clone. */
1308 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1309
1310 *struct_sym = *sym;
1311 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1312 SYMBOL_VALUE (struct_sym) = valu;
1313 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1314 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1315 SYMBOL_TYPE (sym)->set_name
1316 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1317 (char *) NULL));
1318 add_symbol_to_list (struct_sym, get_file_symbols ());
1319 }
1320
1321 break;
1322
1323 case 'T':
1324 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1325 by 't' which means we are typedef'ing it as well. */
1326 synonym = *p == 't';
1327
1328 if (synonym)
1329 p++;
1330
1331 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1332
1333 /* For a nameless type, we don't want a create a symbol, thus we
1334 did not use `sym'. Return without further processing. */
1335 if (nameless)
1336 return NULL;
1337
1338 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1339 SYMBOL_VALUE (sym) = valu;
1340 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1341 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1342 SYMBOL_TYPE (sym)->set_name
1343 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1344 (char *) NULL));
1345 add_symbol_to_list (sym, get_file_symbols ());
1346
1347 if (synonym)
1348 {
1349 /* Clone the sym and then modify it. */
1350 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1351
1352 *typedef_sym = *sym;
1353 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1354 SYMBOL_VALUE (typedef_sym) = valu;
1355 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1356 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1357 SYMBOL_TYPE (sym)->set_name
1358 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1359 (char *) NULL));
1360 add_symbol_to_list (typedef_sym, get_file_symbols ());
1361 }
1362 break;
1363
1364 case 'V':
1365 /* Static symbol of local scope. */
1366 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1367 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1368 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1369 if (gdbarch_static_transform_name_p (gdbarch)
1370 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1371 != sym->linkage_name ())
1372 {
1373 struct bound_minimal_symbol msym;
1374
1375 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1376 if (msym.minsym != NULL)
1377 {
1378 const char *new_name = gdbarch_static_transform_name
1379 (gdbarch, sym->linkage_name ());
1380
1381 sym->set_linkage_name (new_name);
1382 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1383 }
1384 }
1385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1386 add_symbol_to_list (sym, get_local_symbols ());
1387 break;
1388
1389 case 'v':
1390 /* Reference parameter */
1391 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1392 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1393 SYMBOL_IS_ARGUMENT (sym) = 1;
1394 SYMBOL_VALUE (sym) = valu;
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, get_local_symbols ());
1397 break;
1398
1399 case 'a':
1400 /* Reference parameter which is in a register. */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1403 SYMBOL_IS_ARGUMENT (sym) = 1;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, get_local_symbols ());
1407 break;
1408
1409 case 'X':
1410 /* This is used by Sun FORTRAN for "function result value".
1411 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1412 that Pascal uses it too, but when I tried it Pascal used
1413 "x:3" (local symbol) instead. */
1414 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1416 SYMBOL_VALUE (sym) = valu;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, get_local_symbols ());
1419 break;
1420
1421 default:
1422 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1423 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1424 SYMBOL_VALUE (sym) = 0;
1425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1426 add_symbol_to_list (sym, get_file_symbols ());
1427 break;
1428 }
1429
1430 /* Some systems pass variables of certain types by reference instead
1431 of by value, i.e. they will pass the address of a structure (in a
1432 register or on the stack) instead of the structure itself. */
1433
1434 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1435 && SYMBOL_IS_ARGUMENT (sym))
1436 {
1437 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1438 variables passed in a register). */
1439 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1441 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1442 and subsequent arguments on SPARC, for example). */
1443 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1444 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1445 }
1446
1447 return sym;
1448 }
1449
1450 /* Skip rest of this symbol and return an error type.
1451
1452 General notes on error recovery: error_type always skips to the
1453 end of the symbol (modulo cretinous dbx symbol name continuation).
1454 Thus code like this:
1455
1456 if (*(*pp)++ != ';')
1457 return error_type (pp, objfile);
1458
1459 is wrong because if *pp starts out pointing at '\0' (typically as the
1460 result of an earlier error), it will be incremented to point to the
1461 start of the next symbol, which might produce strange results, at least
1462 if you run off the end of the string table. Instead use
1463
1464 if (**pp != ';')
1465 return error_type (pp, objfile);
1466 ++*pp;
1467
1468 or
1469
1470 if (**pp != ';')
1471 foo = error_type (pp, objfile);
1472 else
1473 ++*pp;
1474
1475 And in case it isn't obvious, the point of all this hair is so the compiler
1476 can define new types and new syntaxes, and old versions of the
1477 debugger will be able to read the new symbol tables. */
1478
1479 static struct type *
1480 error_type (const char **pp, struct objfile *objfile)
1481 {
1482 complaint (_("couldn't parse type; debugger out of date?"));
1483 while (1)
1484 {
1485 /* Skip to end of symbol. */
1486 while (**pp != '\0')
1487 {
1488 (*pp)++;
1489 }
1490
1491 /* Check for and handle cretinous dbx symbol name continuation! */
1492 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1493 {
1494 *pp = next_symbol_text (objfile);
1495 }
1496 else
1497 {
1498 break;
1499 }
1500 }
1501 return objfile_type (objfile)->builtin_error;
1502 }
1503 \f
1504
1505 /* Read type information or a type definition; return the type. Even
1506 though this routine accepts either type information or a type
1507 definition, the distinction is relevant--some parts of stabsread.c
1508 assume that type information starts with a digit, '-', or '(' in
1509 deciding whether to call read_type. */
1510
1511 static struct type *
1512 read_type (const char **pp, struct objfile *objfile)
1513 {
1514 struct type *type = 0;
1515 struct type *type1;
1516 int typenums[2];
1517 char type_descriptor;
1518
1519 /* Size in bits of type if specified by a type attribute, or -1 if
1520 there is no size attribute. */
1521 int type_size = -1;
1522
1523 /* Used to distinguish string and bitstring from char-array and set. */
1524 int is_string = 0;
1525
1526 /* Used to distinguish vector from array. */
1527 int is_vector = 0;
1528
1529 /* Read type number if present. The type number may be omitted.
1530 for instance in a two-dimensional array declared with type
1531 "ar1;1;10;ar1;1;10;4". */
1532 if ((**pp >= '0' && **pp <= '9')
1533 || **pp == '('
1534 || **pp == '-')
1535 {
1536 if (read_type_number (pp, typenums) != 0)
1537 return error_type (pp, objfile);
1538
1539 if (**pp != '=')
1540 {
1541 /* Type is not being defined here. Either it already
1542 exists, or this is a forward reference to it.
1543 dbx_alloc_type handles both cases. */
1544 type = dbx_alloc_type (typenums, objfile);
1545
1546 /* If this is a forward reference, arrange to complain if it
1547 doesn't get patched up by the time we're done
1548 reading. */
1549 if (type->code () == TYPE_CODE_UNDEF)
1550 add_undefined_type (type, typenums);
1551
1552 return type;
1553 }
1554
1555 /* Type is being defined here. */
1556 /* Skip the '='.
1557 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1558 (*pp) += 2;
1559 }
1560 else
1561 {
1562 /* 'typenums=' not present, type is anonymous. Read and return
1563 the definition, but don't put it in the type vector. */
1564 typenums[0] = typenums[1] = -1;
1565 (*pp)++;
1566 }
1567
1568 again:
1569 type_descriptor = (*pp)[-1];
1570 switch (type_descriptor)
1571 {
1572 case 'x':
1573 {
1574 enum type_code code;
1575
1576 /* Used to index through file_symbols. */
1577 struct pending *ppt;
1578 int i;
1579
1580 /* Name including "struct", etc. */
1581 char *type_name;
1582
1583 {
1584 const char *from, *p, *q1, *q2;
1585
1586 /* Set the type code according to the following letter. */
1587 switch ((*pp)[0])
1588 {
1589 case 's':
1590 code = TYPE_CODE_STRUCT;
1591 break;
1592 case 'u':
1593 code = TYPE_CODE_UNION;
1594 break;
1595 case 'e':
1596 code = TYPE_CODE_ENUM;
1597 break;
1598 default:
1599 {
1600 /* Complain and keep going, so compilers can invent new
1601 cross-reference types. */
1602 complaint (_("Unrecognized cross-reference type `%c'"),
1603 (*pp)[0]);
1604 code = TYPE_CODE_STRUCT;
1605 break;
1606 }
1607 }
1608
1609 q1 = strchr (*pp, '<');
1610 p = strchr (*pp, ':');
1611 if (p == NULL)
1612 return error_type (pp, objfile);
1613 if (q1 && p > q1 && p[1] == ':')
1614 {
1615 int nesting_level = 0;
1616
1617 for (q2 = q1; *q2; q2++)
1618 {
1619 if (*q2 == '<')
1620 nesting_level++;
1621 else if (*q2 == '>')
1622 nesting_level--;
1623 else if (*q2 == ':' && nesting_level == 0)
1624 break;
1625 }
1626 p = q2;
1627 if (*p != ':')
1628 return error_type (pp, objfile);
1629 }
1630 type_name = NULL;
1631 if (get_current_subfile ()->language == language_cplus)
1632 {
1633 char *name = (char *) alloca (p - *pp + 1);
1634
1635 memcpy (name, *pp, p - *pp);
1636 name[p - *pp] = '\0';
1637
1638 gdb::unique_xmalloc_ptr<char> new_name = cp_canonicalize_string (name);
1639 if (new_name != nullptr)
1640 type_name = obstack_strdup (&objfile->objfile_obstack,
1641 new_name.get ());
1642 }
1643 if (type_name == NULL)
1644 {
1645 char *to = type_name = (char *)
1646 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1647
1648 /* Copy the name. */
1649 from = *pp + 1;
1650 while (from < p)
1651 *to++ = *from++;
1652 *to = '\0';
1653 }
1654
1655 /* Set the pointer ahead of the name which we just read, and
1656 the colon. */
1657 *pp = p + 1;
1658 }
1659
1660 /* If this type has already been declared, then reuse the same
1661 type, rather than allocating a new one. This saves some
1662 memory. */
1663
1664 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1665 for (i = 0; i < ppt->nsyms; i++)
1666 {
1667 struct symbol *sym = ppt->symbol[i];
1668
1669 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1670 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1671 && (SYMBOL_TYPE (sym)->code () == code)
1672 && strcmp (sym->linkage_name (), type_name) == 0)
1673 {
1674 obstack_free (&objfile->objfile_obstack, type_name);
1675 type = SYMBOL_TYPE (sym);
1676 if (typenums[0] != -1)
1677 *dbx_lookup_type (typenums, objfile) = type;
1678 return type;
1679 }
1680 }
1681
1682 /* Didn't find the type to which this refers, so we must
1683 be dealing with a forward reference. Allocate a type
1684 structure for it, and keep track of it so we can
1685 fill in the rest of the fields when we get the full
1686 type. */
1687 type = dbx_alloc_type (typenums, objfile);
1688 type->set_code (code);
1689 type->set_name (type_name);
1690 INIT_CPLUS_SPECIFIC (type);
1691 TYPE_STUB (type) = 1;
1692
1693 add_undefined_type (type, typenums);
1694 return type;
1695 }
1696
1697 case '-': /* RS/6000 built-in type */
1698 case '0':
1699 case '1':
1700 case '2':
1701 case '3':
1702 case '4':
1703 case '5':
1704 case '6':
1705 case '7':
1706 case '8':
1707 case '9':
1708 case '(':
1709 (*pp)--;
1710
1711 /* We deal with something like t(1,2)=(3,4)=... which
1712 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1713
1714 /* Allocate and enter the typedef type first.
1715 This handles recursive types. */
1716 type = dbx_alloc_type (typenums, objfile);
1717 type->set_code (TYPE_CODE_TYPEDEF);
1718 {
1719 struct type *xtype = read_type (pp, objfile);
1720
1721 if (type == xtype)
1722 {
1723 /* It's being defined as itself. That means it is "void". */
1724 type->set_code (TYPE_CODE_VOID);
1725 TYPE_LENGTH (type) = 1;
1726 }
1727 else if (type_size >= 0 || is_string)
1728 {
1729 /* This is the absolute wrong way to construct types. Every
1730 other debug format has found a way around this problem and
1731 the related problems with unnecessarily stubbed types;
1732 someone motivated should attempt to clean up the issue
1733 here as well. Once a type pointed to has been created it
1734 should not be modified.
1735
1736 Well, it's not *absolutely* wrong. Constructing recursive
1737 types (trees, linked lists) necessarily entails modifying
1738 types after creating them. Constructing any loop structure
1739 entails side effects. The Dwarf 2 reader does handle this
1740 more gracefully (it never constructs more than once
1741 instance of a type object, so it doesn't have to copy type
1742 objects wholesale), but it still mutates type objects after
1743 other folks have references to them.
1744
1745 Keep in mind that this circularity/mutation issue shows up
1746 at the source language level, too: C's "incomplete types",
1747 for example. So the proper cleanup, I think, would be to
1748 limit GDB's type smashing to match exactly those required
1749 by the source language. So GDB could have a
1750 "complete_this_type" function, but never create unnecessary
1751 copies of a type otherwise. */
1752 replace_type (type, xtype);
1753 type->set_name (NULL);
1754 }
1755 else
1756 {
1757 TYPE_TARGET_STUB (type) = 1;
1758 TYPE_TARGET_TYPE (type) = xtype;
1759 }
1760 }
1761 break;
1762
1763 /* In the following types, we must be sure to overwrite any existing
1764 type that the typenums refer to, rather than allocating a new one
1765 and making the typenums point to the new one. This is because there
1766 may already be pointers to the existing type (if it had been
1767 forward-referenced), and we must change it to a pointer, function,
1768 reference, or whatever, *in-place*. */
1769
1770 case '*': /* Pointer to another type */
1771 type1 = read_type (pp, objfile);
1772 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1773 break;
1774
1775 case '&': /* Reference to another type */
1776 type1 = read_type (pp, objfile);
1777 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1778 TYPE_CODE_REF);
1779 break;
1780
1781 case 'f': /* Function returning another type */
1782 type1 = read_type (pp, objfile);
1783 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1784 break;
1785
1786 case 'g': /* Prototyped function. (Sun) */
1787 {
1788 /* Unresolved questions:
1789
1790 - According to Sun's ``STABS Interface Manual'', for 'f'
1791 and 'F' symbol descriptors, a `0' in the argument type list
1792 indicates a varargs function. But it doesn't say how 'g'
1793 type descriptors represent that info. Someone with access
1794 to Sun's toolchain should try it out.
1795
1796 - According to the comment in define_symbol (search for
1797 `process_prototype_types:'), Sun emits integer arguments as
1798 types which ref themselves --- like `void' types. Do we
1799 have to deal with that here, too? Again, someone with
1800 access to Sun's toolchain should try it out and let us
1801 know. */
1802
1803 const char *type_start = (*pp) - 1;
1804 struct type *return_type = read_type (pp, objfile);
1805 struct type *func_type
1806 = make_function_type (return_type,
1807 dbx_lookup_type (typenums, objfile));
1808 struct type_list {
1809 struct type *type;
1810 struct type_list *next;
1811 } *arg_types = 0;
1812 int num_args = 0;
1813
1814 while (**pp && **pp != '#')
1815 {
1816 struct type *arg_type = read_type (pp, objfile);
1817 struct type_list *newobj = XALLOCA (struct type_list);
1818 newobj->type = arg_type;
1819 newobj->next = arg_types;
1820 arg_types = newobj;
1821 num_args++;
1822 }
1823 if (**pp == '#')
1824 ++*pp;
1825 else
1826 {
1827 complaint (_("Prototyped function type didn't "
1828 "end arguments with `#':\n%s"),
1829 type_start);
1830 }
1831
1832 /* If there is just one argument whose type is `void', then
1833 that's just an empty argument list. */
1834 if (arg_types
1835 && ! arg_types->next
1836 && arg_types->type->code () == TYPE_CODE_VOID)
1837 num_args = 0;
1838
1839 TYPE_FIELDS (func_type)
1840 = (struct field *) TYPE_ALLOC (func_type,
1841 num_args * sizeof (struct field));
1842 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1843 {
1844 int i;
1845 struct type_list *t;
1846
1847 /* We stuck each argument type onto the front of the list
1848 when we read it, so the list is reversed. Build the
1849 fields array right-to-left. */
1850 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1851 TYPE_FIELD_TYPE (func_type, i) = t->type;
1852 }
1853 TYPE_NFIELDS (func_type) = num_args;
1854 TYPE_PROTOTYPED (func_type) = 1;
1855
1856 type = func_type;
1857 break;
1858 }
1859
1860 case 'k': /* Const qualifier on some type (Sun) */
1861 type = read_type (pp, objfile);
1862 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1863 dbx_lookup_type (typenums, objfile));
1864 break;
1865
1866 case 'B': /* Volatile qual on some type (Sun) */
1867 type = read_type (pp, objfile);
1868 type = make_cv_type (TYPE_CONST (type), 1, type,
1869 dbx_lookup_type (typenums, objfile));
1870 break;
1871
1872 case '@':
1873 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1874 { /* Member (class & variable) type */
1875 /* FIXME -- we should be doing smash_to_XXX types here. */
1876
1877 struct type *domain = read_type (pp, objfile);
1878 struct type *memtype;
1879
1880 if (**pp != ',')
1881 /* Invalid member type data format. */
1882 return error_type (pp, objfile);
1883 ++*pp;
1884
1885 memtype = read_type (pp, objfile);
1886 type = dbx_alloc_type (typenums, objfile);
1887 smash_to_memberptr_type (type, domain, memtype);
1888 }
1889 else
1890 /* type attribute */
1891 {
1892 const char *attr = *pp;
1893
1894 /* Skip to the semicolon. */
1895 while (**pp != ';' && **pp != '\0')
1896 ++(*pp);
1897 if (**pp == '\0')
1898 return error_type (pp, objfile);
1899 else
1900 ++ * pp; /* Skip the semicolon. */
1901
1902 switch (*attr)
1903 {
1904 case 's': /* Size attribute */
1905 type_size = atoi (attr + 1);
1906 if (type_size <= 0)
1907 type_size = -1;
1908 break;
1909
1910 case 'S': /* String attribute */
1911 /* FIXME: check to see if following type is array? */
1912 is_string = 1;
1913 break;
1914
1915 case 'V': /* Vector attribute */
1916 /* FIXME: check to see if following type is array? */
1917 is_vector = 1;
1918 break;
1919
1920 default:
1921 /* Ignore unrecognized type attributes, so future compilers
1922 can invent new ones. */
1923 break;
1924 }
1925 ++*pp;
1926 goto again;
1927 }
1928 break;
1929
1930 case '#': /* Method (class & fn) type */
1931 if ((*pp)[0] == '#')
1932 {
1933 /* We'll get the parameter types from the name. */
1934 struct type *return_type;
1935
1936 (*pp)++;
1937 return_type = read_type (pp, objfile);
1938 if (*(*pp)++ != ';')
1939 complaint (_("invalid (minimal) member type "
1940 "data format at symtab pos %d."),
1941 symnum);
1942 type = allocate_stub_method (return_type);
1943 if (typenums[0] != -1)
1944 *dbx_lookup_type (typenums, objfile) = type;
1945 }
1946 else
1947 {
1948 struct type *domain = read_type (pp, objfile);
1949 struct type *return_type;
1950 struct field *args;
1951 int nargs, varargs;
1952
1953 if (**pp != ',')
1954 /* Invalid member type data format. */
1955 return error_type (pp, objfile);
1956 else
1957 ++(*pp);
1958
1959 return_type = read_type (pp, objfile);
1960 args = read_args (pp, ';', objfile, &nargs, &varargs);
1961 if (args == NULL)
1962 return error_type (pp, objfile);
1963 type = dbx_alloc_type (typenums, objfile);
1964 smash_to_method_type (type, domain, return_type, args,
1965 nargs, varargs);
1966 }
1967 break;
1968
1969 case 'r': /* Range type */
1970 type = read_range_type (pp, typenums, type_size, objfile);
1971 if (typenums[0] != -1)
1972 *dbx_lookup_type (typenums, objfile) = type;
1973 break;
1974
1975 case 'b':
1976 {
1977 /* Sun ACC builtin int type */
1978 type = read_sun_builtin_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
1980 *dbx_lookup_type (typenums, objfile) = type;
1981 }
1982 break;
1983
1984 case 'R': /* Sun ACC builtin float type */
1985 type = read_sun_floating_type (pp, typenums, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 break;
1989
1990 case 'e': /* Enumeration type */
1991 type = dbx_alloc_type (typenums, objfile);
1992 type = read_enum_type (pp, type, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 case 's': /* Struct type */
1998 case 'u': /* Union type */
1999 {
2000 enum type_code type_code = TYPE_CODE_UNDEF;
2001 type = dbx_alloc_type (typenums, objfile);
2002 switch (type_descriptor)
2003 {
2004 case 's':
2005 type_code = TYPE_CODE_STRUCT;
2006 break;
2007 case 'u':
2008 type_code = TYPE_CODE_UNION;
2009 break;
2010 }
2011 type = read_struct_type (pp, type, type_code, objfile);
2012 break;
2013 }
2014
2015 case 'a': /* Array type */
2016 if (**pp != 'r')
2017 return error_type (pp, objfile);
2018 ++*pp;
2019
2020 type = dbx_alloc_type (typenums, objfile);
2021 type = read_array_type (pp, type, objfile);
2022 if (is_string)
2023 type->set_code (TYPE_CODE_STRING);
2024 if (is_vector)
2025 make_vector_type (type);
2026 break;
2027
2028 case 'S': /* Set type */
2029 type1 = read_type (pp, objfile);
2030 type = create_set_type (NULL, type1);
2031 if (typenums[0] != -1)
2032 *dbx_lookup_type (typenums, objfile) = type;
2033 break;
2034
2035 default:
2036 --*pp; /* Go back to the symbol in error. */
2037 /* Particularly important if it was \0! */
2038 return error_type (pp, objfile);
2039 }
2040
2041 if (type == 0)
2042 {
2043 warning (_("GDB internal error, type is NULL in stabsread.c."));
2044 return error_type (pp, objfile);
2045 }
2046
2047 /* Size specified in a type attribute overrides any other size. */
2048 if (type_size != -1)
2049 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2050
2051 return type;
2052 }
2053 \f
2054 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2055 Return the proper type node for a given builtin type number. */
2056
2057 static const struct objfile_key<struct type *,
2058 gdb::noop_deleter<struct type *>>
2059 rs6000_builtin_type_data;
2060
2061 static struct type *
2062 rs6000_builtin_type (int typenum, struct objfile *objfile)
2063 {
2064 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2065
2066 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2067 #define NUMBER_RECOGNIZED 34
2068 struct type *rettype = NULL;
2069
2070 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2071 {
2072 complaint (_("Unknown builtin type %d"), typenum);
2073 return objfile_type (objfile)->builtin_error;
2074 }
2075
2076 if (!negative_types)
2077 {
2078 /* This includes an empty slot for type number -0. */
2079 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2080 NUMBER_RECOGNIZED + 1, struct type *);
2081 rs6000_builtin_type_data.set (objfile, negative_types);
2082 }
2083
2084 if (negative_types[-typenum] != NULL)
2085 return negative_types[-typenum];
2086
2087 #if TARGET_CHAR_BIT != 8
2088 #error This code wrong for TARGET_CHAR_BIT not 8
2089 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2090 that if that ever becomes not true, the correct fix will be to
2091 make the size in the struct type to be in bits, not in units of
2092 TARGET_CHAR_BIT. */
2093 #endif
2094
2095 switch (-typenum)
2096 {
2097 case 1:
2098 /* The size of this and all the other types are fixed, defined
2099 by the debugging format. If there is a type called "int" which
2100 is other than 32 bits, then it should use a new negative type
2101 number (or avoid negative type numbers for that case).
2102 See stabs.texinfo. */
2103 rettype = init_integer_type (objfile, 32, 0, "int");
2104 break;
2105 case 2:
2106 rettype = init_integer_type (objfile, 8, 0, "char");
2107 TYPE_NOSIGN (rettype) = 1;
2108 break;
2109 case 3:
2110 rettype = init_integer_type (objfile, 16, 0, "short");
2111 break;
2112 case 4:
2113 rettype = init_integer_type (objfile, 32, 0, "long");
2114 break;
2115 case 5:
2116 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2117 break;
2118 case 6:
2119 rettype = init_integer_type (objfile, 8, 0, "signed char");
2120 break;
2121 case 7:
2122 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2123 break;
2124 case 8:
2125 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2126 break;
2127 case 9:
2128 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2129 break;
2130 case 10:
2131 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2132 break;
2133 case 11:
2134 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
2138 rettype = init_float_type (objfile, 32, "float",
2139 floatformats_ieee_single);
2140 break;
2141 case 13:
2142 /* IEEE double precision (64 bit). */
2143 rettype = init_float_type (objfile, 64, "double",
2144 floatformats_ieee_double);
2145 break;
2146 case 14:
2147 /* This is an IEEE double on the RS/6000, and different machines with
2148 different sizes for "long double" should use different negative
2149 type numbers. See stabs.texinfo. */
2150 rettype = init_float_type (objfile, 64, "long double",
2151 floatformats_ieee_double);
2152 break;
2153 case 15:
2154 rettype = init_integer_type (objfile, 32, 0, "integer");
2155 break;
2156 case 16:
2157 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2158 break;
2159 case 17:
2160 rettype = init_float_type (objfile, 32, "short real",
2161 floatformats_ieee_single);
2162 break;
2163 case 18:
2164 rettype = init_float_type (objfile, 64, "real",
2165 floatformats_ieee_double);
2166 break;
2167 case 19:
2168 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2169 break;
2170 case 20:
2171 rettype = init_character_type (objfile, 8, 1, "character");
2172 break;
2173 case 21:
2174 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2175 break;
2176 case 22:
2177 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2178 break;
2179 case 23:
2180 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2181 break;
2182 case 24:
2183 rettype = init_boolean_type (objfile, 32, 1, "logical");
2184 break;
2185 case 25:
2186 /* Complex type consisting of two IEEE single precision values. */
2187 rettype = init_complex_type ("complex",
2188 rs6000_builtin_type (12, objfile));
2189 break;
2190 case 26:
2191 /* Complex type consisting of two IEEE double precision values. */
2192 rettype = init_complex_type ("double complex",
2193 rs6000_builtin_type (13, objfile));
2194 break;
2195 case 27:
2196 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2197 break;
2198 case 28:
2199 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2200 break;
2201 case 29:
2202 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2203 break;
2204 case 30:
2205 rettype = init_character_type (objfile, 16, 0, "wchar");
2206 break;
2207 case 31:
2208 rettype = init_integer_type (objfile, 64, 0, "long long");
2209 break;
2210 case 32:
2211 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2212 break;
2213 case 33:
2214 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2215 break;
2216 case 34:
2217 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2218 break;
2219 }
2220 negative_types[-typenum] = rettype;
2221 return rettype;
2222 }
2223 \f
2224 /* This page contains subroutines of read_type. */
2225
2226 /* Wrapper around method_name_from_physname to flag a complaint
2227 if there is an error. */
2228
2229 static char *
2230 stabs_method_name_from_physname (const char *physname)
2231 {
2232 char *method_name;
2233
2234 method_name = method_name_from_physname (physname);
2235
2236 if (method_name == NULL)
2237 {
2238 complaint (_("Method has bad physname %s\n"), physname);
2239 return NULL;
2240 }
2241
2242 return method_name;
2243 }
2244
2245 /* Read member function stabs info for C++ classes. The form of each member
2246 function data is:
2247
2248 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2249
2250 An example with two member functions is:
2251
2252 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2253
2254 For the case of overloaded operators, the format is op$::*.funcs, where
2255 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2256 name (such as `+=') and `.' marks the end of the operator name.
2257
2258 Returns 1 for success, 0 for failure. */
2259
2260 static int
2261 read_member_functions (struct stab_field_info *fip, const char **pp,
2262 struct type *type, struct objfile *objfile)
2263 {
2264 int nfn_fields = 0;
2265 int length = 0;
2266 int i;
2267 struct next_fnfield
2268 {
2269 struct next_fnfield *next;
2270 struct fn_field fn_field;
2271 }
2272 *sublist;
2273 struct type *look_ahead_type;
2274 struct next_fnfieldlist *new_fnlist;
2275 struct next_fnfield *new_sublist;
2276 char *main_fn_name;
2277 const char *p;
2278
2279 /* Process each list until we find something that is not a member function
2280 or find the end of the functions. */
2281
2282 while (**pp != ';')
2283 {
2284 /* We should be positioned at the start of the function name.
2285 Scan forward to find the first ':' and if it is not the
2286 first of a "::" delimiter, then this is not a member function. */
2287 p = *pp;
2288 while (*p != ':')
2289 {
2290 p++;
2291 }
2292 if (p[1] != ':')
2293 {
2294 break;
2295 }
2296
2297 sublist = NULL;
2298 look_ahead_type = NULL;
2299 length = 0;
2300
2301 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2302
2303 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2304 {
2305 /* This is a completely wierd case. In order to stuff in the
2306 names that might contain colons (the usual name delimiter),
2307 Mike Tiemann defined a different name format which is
2308 signalled if the identifier is "op$". In that case, the
2309 format is "op$::XXXX." where XXXX is the name. This is
2310 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2311 /* This lets the user type "break operator+".
2312 We could just put in "+" as the name, but that wouldn't
2313 work for "*". */
2314 static char opname[32] = "op$";
2315 char *o = opname + 3;
2316
2317 /* Skip past '::'. */
2318 *pp = p + 2;
2319
2320 STABS_CONTINUE (pp, objfile);
2321 p = *pp;
2322 while (*p != '.')
2323 {
2324 *o++ = *p++;
2325 }
2326 main_fn_name = savestring (opname, o - opname);
2327 /* Skip past '.' */
2328 *pp = p + 1;
2329 }
2330 else
2331 {
2332 main_fn_name = savestring (*pp, p - *pp);
2333 /* Skip past '::'. */
2334 *pp = p + 2;
2335 }
2336 new_fnlist->fn_fieldlist.name = main_fn_name;
2337
2338 do
2339 {
2340 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2341
2342 /* Check for and handle cretinous dbx symbol name continuation! */
2343 if (look_ahead_type == NULL)
2344 {
2345 /* Normal case. */
2346 STABS_CONTINUE (pp, objfile);
2347
2348 new_sublist->fn_field.type = read_type (pp, objfile);
2349 if (**pp != ':')
2350 {
2351 /* Invalid symtab info for member function. */
2352 return 0;
2353 }
2354 }
2355 else
2356 {
2357 /* g++ version 1 kludge */
2358 new_sublist->fn_field.type = look_ahead_type;
2359 look_ahead_type = NULL;
2360 }
2361
2362 (*pp)++;
2363 p = *pp;
2364 while (*p != ';')
2365 {
2366 p++;
2367 }
2368
2369 /* These are methods, not functions. */
2370 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2371 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2372 else
2373 gdb_assert (new_sublist->fn_field.type->code ()
2374 == TYPE_CODE_METHOD);
2375
2376 /* If this is just a stub, then we don't have the real name here. */
2377 if (TYPE_STUB (new_sublist->fn_field.type))
2378 {
2379 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2380 set_type_self_type (new_sublist->fn_field.type, type);
2381 new_sublist->fn_field.is_stub = 1;
2382 }
2383
2384 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2385 *pp = p + 1;
2386
2387 /* Set this member function's visibility fields. */
2388 switch (*(*pp)++)
2389 {
2390 case VISIBILITY_PRIVATE:
2391 new_sublist->fn_field.is_private = 1;
2392 break;
2393 case VISIBILITY_PROTECTED:
2394 new_sublist->fn_field.is_protected = 1;
2395 break;
2396 }
2397
2398 STABS_CONTINUE (pp, objfile);
2399 switch (**pp)
2400 {
2401 case 'A': /* Normal functions. */
2402 new_sublist->fn_field.is_const = 0;
2403 new_sublist->fn_field.is_volatile = 0;
2404 (*pp)++;
2405 break;
2406 case 'B': /* `const' member functions. */
2407 new_sublist->fn_field.is_const = 1;
2408 new_sublist->fn_field.is_volatile = 0;
2409 (*pp)++;
2410 break;
2411 case 'C': /* `volatile' member function. */
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 1;
2414 (*pp)++;
2415 break;
2416 case 'D': /* `const volatile' member function. */
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 1;
2419 (*pp)++;
2420 break;
2421 case '*': /* File compiled with g++ version 1 --
2422 no info. */
2423 case '?':
2424 case '.':
2425 break;
2426 default:
2427 complaint (_("const/volatile indicator missing, got '%c'"),
2428 **pp);
2429 break;
2430 }
2431
2432 switch (*(*pp)++)
2433 {
2434 case '*':
2435 {
2436 int nbits;
2437 /* virtual member function, followed by index.
2438 The sign bit is set to distinguish pointers-to-methods
2439 from virtual function indicies. Since the array is
2440 in words, the quantity must be shifted left by 1
2441 on 16 bit machine, and by 2 on 32 bit machine, forcing
2442 the sign bit out, and usable as a valid index into
2443 the array. Remove the sign bit here. */
2444 new_sublist->fn_field.voffset =
2445 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2446 if (nbits != 0)
2447 return 0;
2448
2449 STABS_CONTINUE (pp, objfile);
2450 if (**pp == ';' || **pp == '\0')
2451 {
2452 /* Must be g++ version 1. */
2453 new_sublist->fn_field.fcontext = 0;
2454 }
2455 else
2456 {
2457 /* Figure out from whence this virtual function came.
2458 It may belong to virtual function table of
2459 one of its baseclasses. */
2460 look_ahead_type = read_type (pp, objfile);
2461 if (**pp == ':')
2462 {
2463 /* g++ version 1 overloaded methods. */
2464 }
2465 else
2466 {
2467 new_sublist->fn_field.fcontext = look_ahead_type;
2468 if (**pp != ';')
2469 {
2470 return 0;
2471 }
2472 else
2473 {
2474 ++*pp;
2475 }
2476 look_ahead_type = NULL;
2477 }
2478 }
2479 break;
2480 }
2481 case '?':
2482 /* static member function. */
2483 {
2484 int slen = strlen (main_fn_name);
2485
2486 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2487
2488 /* For static member functions, we can't tell if they
2489 are stubbed, as they are put out as functions, and not as
2490 methods.
2491 GCC v2 emits the fully mangled name if
2492 dbxout.c:flag_minimal_debug is not set, so we have to
2493 detect a fully mangled physname here and set is_stub
2494 accordingly. Fully mangled physnames in v2 start with
2495 the member function name, followed by two underscores.
2496 GCC v3 currently always emits stubbed member functions,
2497 but with fully mangled physnames, which start with _Z. */
2498 if (!(strncmp (new_sublist->fn_field.physname,
2499 main_fn_name, slen) == 0
2500 && new_sublist->fn_field.physname[slen] == '_'
2501 && new_sublist->fn_field.physname[slen + 1] == '_'))
2502 {
2503 new_sublist->fn_field.is_stub = 1;
2504 }
2505 break;
2506 }
2507
2508 default:
2509 /* error */
2510 complaint (_("member function type missing, got '%c'"),
2511 (*pp)[-1]);
2512 /* Normal member function. */
2513 /* Fall through. */
2514
2515 case '.':
2516 /* normal member function. */
2517 new_sublist->fn_field.voffset = 0;
2518 new_sublist->fn_field.fcontext = 0;
2519 break;
2520 }
2521
2522 new_sublist->next = sublist;
2523 sublist = new_sublist;
2524 length++;
2525 STABS_CONTINUE (pp, objfile);
2526 }
2527 while (**pp != ';' && **pp != '\0');
2528
2529 (*pp)++;
2530 STABS_CONTINUE (pp, objfile);
2531
2532 /* Skip GCC 3.X member functions which are duplicates of the callable
2533 constructor/destructor. */
2534 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2535 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2536 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2537 {
2538 xfree (main_fn_name);
2539 }
2540 else
2541 {
2542 int has_destructor = 0, has_other = 0;
2543 int is_v3 = 0;
2544 struct next_fnfield *tmp_sublist;
2545
2546 /* Various versions of GCC emit various mostly-useless
2547 strings in the name field for special member functions.
2548
2549 For stub methods, we need to defer correcting the name
2550 until we are ready to unstub the method, because the current
2551 name string is used by gdb_mangle_name. The only stub methods
2552 of concern here are GNU v2 operators; other methods have their
2553 names correct (see caveat below).
2554
2555 For non-stub methods, in GNU v3, we have a complete physname.
2556 Therefore we can safely correct the name now. This primarily
2557 affects constructors and destructors, whose name will be
2558 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2559 operators will also have incorrect names; for instance,
2560 "operator int" will be named "operator i" (i.e. the type is
2561 mangled).
2562
2563 For non-stub methods in GNU v2, we have no easy way to
2564 know if we have a complete physname or not. For most
2565 methods the result depends on the platform (if CPLUS_MARKER
2566 can be `$' or `.', it will use minimal debug information, or
2567 otherwise the full physname will be included).
2568
2569 Rather than dealing with this, we take a different approach.
2570 For v3 mangled names, we can use the full physname; for v2,
2571 we use cplus_demangle_opname (which is actually v2 specific),
2572 because the only interesting names are all operators - once again
2573 barring the caveat below. Skip this process if any method in the
2574 group is a stub, to prevent our fouling up the workings of
2575 gdb_mangle_name.
2576
2577 The caveat: GCC 2.95.x (and earlier?) put constructors and
2578 destructors in the same method group. We need to split this
2579 into two groups, because they should have different names.
2580 So for each method group we check whether it contains both
2581 routines whose physname appears to be a destructor (the physnames
2582 for and destructors are always provided, due to quirks in v2
2583 mangling) and routines whose physname does not appear to be a
2584 destructor. If so then we break up the list into two halves.
2585 Even if the constructors and destructors aren't in the same group
2586 the destructor will still lack the leading tilde, so that also
2587 needs to be fixed.
2588
2589 So, to summarize what we expect and handle here:
2590
2591 Given Given Real Real Action
2592 method name physname physname method name
2593
2594 __opi [none] __opi__3Foo operator int opname
2595 [now or later]
2596 Foo _._3Foo _._3Foo ~Foo separate and
2597 rename
2598 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2599 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2600 */
2601
2602 tmp_sublist = sublist;
2603 while (tmp_sublist != NULL)
2604 {
2605 if (tmp_sublist->fn_field.physname[0] == '_'
2606 && tmp_sublist->fn_field.physname[1] == 'Z')
2607 is_v3 = 1;
2608
2609 if (is_destructor_name (tmp_sublist->fn_field.physname))
2610 has_destructor++;
2611 else
2612 has_other++;
2613
2614 tmp_sublist = tmp_sublist->next;
2615 }
2616
2617 if (has_destructor && has_other)
2618 {
2619 struct next_fnfieldlist *destr_fnlist;
2620 struct next_fnfield *last_sublist;
2621
2622 /* Create a new fn_fieldlist for the destructors. */
2623
2624 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2625 struct next_fnfieldlist);
2626
2627 destr_fnlist->fn_fieldlist.name
2628 = obconcat (&objfile->objfile_obstack, "~",
2629 new_fnlist->fn_fieldlist.name, (char *) NULL);
2630
2631 destr_fnlist->fn_fieldlist.fn_fields =
2632 XOBNEWVEC (&objfile->objfile_obstack,
2633 struct fn_field, has_destructor);
2634 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2635 sizeof (struct fn_field) * has_destructor);
2636 tmp_sublist = sublist;
2637 last_sublist = NULL;
2638 i = 0;
2639 while (tmp_sublist != NULL)
2640 {
2641 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2642 {
2643 tmp_sublist = tmp_sublist->next;
2644 continue;
2645 }
2646
2647 destr_fnlist->fn_fieldlist.fn_fields[i++]
2648 = tmp_sublist->fn_field;
2649 if (last_sublist)
2650 last_sublist->next = tmp_sublist->next;
2651 else
2652 sublist = tmp_sublist->next;
2653 last_sublist = tmp_sublist;
2654 tmp_sublist = tmp_sublist->next;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.length = has_destructor;
2658 destr_fnlist->next = fip->fnlist;
2659 fip->fnlist = destr_fnlist;
2660 nfn_fields++;
2661 length -= has_destructor;
2662 }
2663 else if (is_v3)
2664 {
2665 /* v3 mangling prevents the use of abbreviated physnames,
2666 so we can do this here. There are stubbed methods in v3
2667 only:
2668 - in -gstabs instead of -gstabs+
2669 - or for static methods, which are output as a function type
2670 instead of a method type. */
2671 char *new_method_name =
2672 stabs_method_name_from_physname (sublist->fn_field.physname);
2673
2674 if (new_method_name != NULL
2675 && strcmp (new_method_name,
2676 new_fnlist->fn_fieldlist.name) != 0)
2677 {
2678 new_fnlist->fn_fieldlist.name = new_method_name;
2679 xfree (main_fn_name);
2680 }
2681 else
2682 xfree (new_method_name);
2683 }
2684 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2685 {
2686 new_fnlist->fn_fieldlist.name =
2687 obconcat (&objfile->objfile_obstack,
2688 "~", main_fn_name, (char *)NULL);
2689 xfree (main_fn_name);
2690 }
2691
2692 new_fnlist->fn_fieldlist.fn_fields
2693 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2694 for (i = length; (i--, sublist); sublist = sublist->next)
2695 {
2696 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2697 }
2698
2699 new_fnlist->fn_fieldlist.length = length;
2700 new_fnlist->next = fip->fnlist;
2701 fip->fnlist = new_fnlist;
2702 nfn_fields++;
2703 }
2704 }
2705
2706 if (nfn_fields)
2707 {
2708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2709 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2710 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2711 memset (TYPE_FN_FIELDLISTS (type), 0,
2712 sizeof (struct fn_fieldlist) * nfn_fields);
2713 TYPE_NFN_FIELDS (type) = nfn_fields;
2714 }
2715
2716 return 1;
2717 }
2718
2719 /* Special GNU C++ name.
2720
2721 Returns 1 for success, 0 for failure. "failure" means that we can't
2722 keep parsing and it's time for error_type(). */
2723
2724 static int
2725 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2726 struct type *type, struct objfile *objfile)
2727 {
2728 const char *p;
2729 const char *name;
2730 char cpp_abbrev;
2731 struct type *context;
2732
2733 p = *pp;
2734 if (*++p == 'v')
2735 {
2736 name = NULL;
2737 cpp_abbrev = *++p;
2738
2739 *pp = p + 1;
2740
2741 /* At this point, *pp points to something like "22:23=*22...",
2742 where the type number before the ':' is the "context" and
2743 everything after is a regular type definition. Lookup the
2744 type, find it's name, and construct the field name. */
2745
2746 context = read_type (pp, objfile);
2747
2748 switch (cpp_abbrev)
2749 {
2750 case 'f': /* $vf -- a virtual function table pointer */
2751 name = TYPE_NAME (context);
2752 if (name == NULL)
2753 {
2754 name = "";
2755 }
2756 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2757 vptr_name, name, (char *) NULL);
2758 break;
2759
2760 case 'b': /* $vb -- a virtual bsomethingorother */
2761 name = TYPE_NAME (context);
2762 if (name == NULL)
2763 {
2764 complaint (_("C++ abbreviated type name "
2765 "unknown at symtab pos %d"),
2766 symnum);
2767 name = "FOO";
2768 }
2769 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2770 name, (char *) NULL);
2771 break;
2772
2773 default:
2774 invalid_cpp_abbrev_complaint (*pp);
2775 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2776 "INVALID_CPLUSPLUS_ABBREV",
2777 (char *) NULL);
2778 break;
2779 }
2780
2781 /* At this point, *pp points to the ':'. Skip it and read the
2782 field type. */
2783
2784 p = ++(*pp);
2785 if (p[-1] != ':')
2786 {
2787 invalid_cpp_abbrev_complaint (*pp);
2788 return 0;
2789 }
2790 fip->list->field.type = read_type (pp, objfile);
2791 if (**pp == ',')
2792 (*pp)++; /* Skip the comma. */
2793 else
2794 return 0;
2795
2796 {
2797 int nbits;
2798
2799 SET_FIELD_BITPOS (fip->list->field,
2800 read_huge_number (pp, ';', &nbits, 0));
2801 if (nbits != 0)
2802 return 0;
2803 }
2804 /* This field is unpacked. */
2805 FIELD_BITSIZE (fip->list->field) = 0;
2806 fip->list->visibility = VISIBILITY_PRIVATE;
2807 }
2808 else
2809 {
2810 invalid_cpp_abbrev_complaint (*pp);
2811 /* We have no idea what syntax an unrecognized abbrev would have, so
2812 better return 0. If we returned 1, we would need to at least advance
2813 *pp to avoid an infinite loop. */
2814 return 0;
2815 }
2816 return 1;
2817 }
2818
2819 static void
2820 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2821 const char *p, struct type *type,
2822 struct objfile *objfile)
2823 {
2824 struct gdbarch *gdbarch = objfile->arch ();
2825
2826 fip->list->field.name
2827 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2828 *pp = p + 1;
2829
2830 /* This means we have a visibility for a field coming. */
2831 if (**pp == '/')
2832 {
2833 (*pp)++;
2834 fip->list->visibility = *(*pp)++;
2835 }
2836 else
2837 {
2838 /* normal dbx-style format, no explicit visibility */
2839 fip->list->visibility = VISIBILITY_PUBLIC;
2840 }
2841
2842 fip->list->field.type = read_type (pp, objfile);
2843 if (**pp == ':')
2844 {
2845 p = ++(*pp);
2846 #if 0
2847 /* Possible future hook for nested types. */
2848 if (**pp == '!')
2849 {
2850 fip->list->field.bitpos = (long) -2; /* nested type */
2851 p = ++(*pp);
2852 }
2853 else
2854 ...;
2855 #endif
2856 while (*p != ';')
2857 {
2858 p++;
2859 }
2860 /* Static class member. */
2861 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2862 *pp = p + 1;
2863 return;
2864 }
2865 else if (**pp != ',')
2866 {
2867 /* Bad structure-type format. */
2868 stabs_general_complaint ("bad structure-type format");
2869 return;
2870 }
2871
2872 (*pp)++; /* Skip the comma. */
2873
2874 {
2875 int nbits;
2876
2877 SET_FIELD_BITPOS (fip->list->field,
2878 read_huge_number (pp, ',', &nbits, 0));
2879 if (nbits != 0)
2880 {
2881 stabs_general_complaint ("bad structure-type format");
2882 return;
2883 }
2884 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2885 if (nbits != 0)
2886 {
2887 stabs_general_complaint ("bad structure-type format");
2888 return;
2889 }
2890 }
2891
2892 if (FIELD_BITPOS (fip->list->field) == 0
2893 && FIELD_BITSIZE (fip->list->field) == 0)
2894 {
2895 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2896 it is a field which has been optimized out. The correct stab for
2897 this case is to use VISIBILITY_IGNORE, but that is a recent
2898 invention. (2) It is a 0-size array. For example
2899 union { int num; char str[0]; } foo. Printing _("<no value>" for
2900 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2901 will continue to work, and a 0-size array as a whole doesn't
2902 have any contents to print.
2903
2904 I suspect this probably could also happen with gcc -gstabs (not
2905 -gstabs+) for static fields, and perhaps other C++ extensions.
2906 Hopefully few people use -gstabs with gdb, since it is intended
2907 for dbx compatibility. */
2908
2909 /* Ignore this field. */
2910 fip->list->visibility = VISIBILITY_IGNORE;
2911 }
2912 else
2913 {
2914 /* Detect an unpacked field and mark it as such.
2915 dbx gives a bit size for all fields.
2916 Note that forward refs cannot be packed,
2917 and treat enums as if they had the width of ints. */
2918
2919 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2920
2921 if (field_type->code () != TYPE_CODE_INT
2922 && field_type->code () != TYPE_CODE_RANGE
2923 && field_type->code () != TYPE_CODE_BOOL
2924 && field_type->code () != TYPE_CODE_ENUM)
2925 {
2926 FIELD_BITSIZE (fip->list->field) = 0;
2927 }
2928 if ((FIELD_BITSIZE (fip->list->field)
2929 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2930 || (field_type->code () == TYPE_CODE_ENUM
2931 && FIELD_BITSIZE (fip->list->field)
2932 == gdbarch_int_bit (gdbarch))
2933 )
2934 &&
2935 FIELD_BITPOS (fip->list->field) % 8 == 0)
2936 {
2937 FIELD_BITSIZE (fip->list->field) = 0;
2938 }
2939 }
2940 }
2941
2942
2943 /* Read struct or class data fields. They have the form:
2944
2945 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2946
2947 At the end, we see a semicolon instead of a field.
2948
2949 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2950 a static field.
2951
2952 The optional VISIBILITY is one of:
2953
2954 '/0' (VISIBILITY_PRIVATE)
2955 '/1' (VISIBILITY_PROTECTED)
2956 '/2' (VISIBILITY_PUBLIC)
2957 '/9' (VISIBILITY_IGNORE)
2958
2959 or nothing, for C style fields with public visibility.
2960
2961 Returns 1 for success, 0 for failure. */
2962
2963 static int
2964 read_struct_fields (struct stab_field_info *fip, const char **pp,
2965 struct type *type, struct objfile *objfile)
2966 {
2967 const char *p;
2968 struct nextfield *newobj;
2969
2970 /* We better set p right now, in case there are no fields at all... */
2971
2972 p = *pp;
2973
2974 /* Read each data member type until we find the terminating ';' at the end of
2975 the data member list, or break for some other reason such as finding the
2976 start of the member function list. */
2977 /* Stab string for structure/union does not end with two ';' in
2978 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2979
2980 while (**pp != ';' && **pp != '\0')
2981 {
2982 STABS_CONTINUE (pp, objfile);
2983 /* Get space to record the next field's data. */
2984 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2985
2986 newobj->next = fip->list;
2987 fip->list = newobj;
2988
2989 /* Get the field name. */
2990 p = *pp;
2991
2992 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2993 unless the CPLUS_MARKER is followed by an underscore, in
2994 which case it is just the name of an anonymous type, which we
2995 should handle like any other type name. */
2996
2997 if (is_cplus_marker (p[0]) && p[1] != '_')
2998 {
2999 if (!read_cpp_abbrev (fip, pp, type, objfile))
3000 return 0;
3001 continue;
3002 }
3003
3004 /* Look for the ':' that separates the field name from the field
3005 values. Data members are delimited by a single ':', while member
3006 functions are delimited by a pair of ':'s. When we hit the member
3007 functions (if any), terminate scan loop and return. */
3008
3009 while (*p != ':' && *p != '\0')
3010 {
3011 p++;
3012 }
3013 if (*p == '\0')
3014 return 0;
3015
3016 /* Check to see if we have hit the member functions yet. */
3017 if (p[1] == ':')
3018 {
3019 break;
3020 }
3021 read_one_struct_field (fip, pp, p, type, objfile);
3022 }
3023 if (p[0] == ':' && p[1] == ':')
3024 {
3025 /* (the deleted) chill the list of fields: the last entry (at
3026 the head) is a partially constructed entry which we now
3027 scrub. */
3028 fip->list = fip->list->next;
3029 }
3030 return 1;
3031 }
3032 /* *INDENT-OFF* */
3033 /* The stabs for C++ derived classes contain baseclass information which
3034 is marked by a '!' character after the total size. This function is
3035 called when we encounter the baseclass marker, and slurps up all the
3036 baseclass information.
3037
3038 Immediately following the '!' marker is the number of base classes that
3039 the class is derived from, followed by information for each base class.
3040 For each base class, there are two visibility specifiers, a bit offset
3041 to the base class information within the derived class, a reference to
3042 the type for the base class, and a terminating semicolon.
3043
3044 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3045 ^^ ^ ^ ^ ^ ^ ^
3046 Baseclass information marker __________________|| | | | | | |
3047 Number of baseclasses __________________________| | | | | | |
3048 Visibility specifiers (2) ________________________| | | | | |
3049 Offset in bits from start of class _________________| | | | |
3050 Type number for base class ___________________________| | | |
3051 Visibility specifiers (2) _______________________________| | |
3052 Offset in bits from start of class ________________________| |
3053 Type number of base class ____________________________________|
3054
3055 Return 1 for success, 0 for (error-type-inducing) failure. */
3056 /* *INDENT-ON* */
3057
3058
3059
3060 static int
3061 read_baseclasses (struct stab_field_info *fip, const char **pp,
3062 struct type *type, struct objfile *objfile)
3063 {
3064 int i;
3065 struct nextfield *newobj;
3066
3067 if (**pp != '!')
3068 {
3069 return 1;
3070 }
3071 else
3072 {
3073 /* Skip the '!' baseclass information marker. */
3074 (*pp)++;
3075 }
3076
3077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3078 {
3079 int nbits;
3080
3081 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3082 if (nbits != 0)
3083 return 0;
3084 }
3085
3086 #if 0
3087 /* Some stupid compilers have trouble with the following, so break
3088 it up into simpler expressions. */
3089 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3090 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3091 #else
3092 {
3093 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3094 char *pointer;
3095
3096 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3097 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3098 }
3099 #endif /* 0 */
3100
3101 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3102
3103 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3104 {
3105 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3106
3107 newobj->next = fip->list;
3108 fip->list = newobj;
3109 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3110 field! */
3111
3112 STABS_CONTINUE (pp, objfile);
3113 switch (**pp)
3114 {
3115 case '0':
3116 /* Nothing to do. */
3117 break;
3118 case '1':
3119 SET_TYPE_FIELD_VIRTUAL (type, i);
3120 break;
3121 default:
3122 /* Unknown character. Complain and treat it as non-virtual. */
3123 {
3124 complaint (_("Unknown virtual character `%c' for baseclass"),
3125 **pp);
3126 }
3127 }
3128 ++(*pp);
3129
3130 newobj->visibility = *(*pp)++;
3131 switch (newobj->visibility)
3132 {
3133 case VISIBILITY_PRIVATE:
3134 case VISIBILITY_PROTECTED:
3135 case VISIBILITY_PUBLIC:
3136 break;
3137 default:
3138 /* Bad visibility format. Complain and treat it as
3139 public. */
3140 {
3141 complaint (_("Unknown visibility `%c' for baseclass"),
3142 newobj->visibility);
3143 newobj->visibility = VISIBILITY_PUBLIC;
3144 }
3145 }
3146
3147 {
3148 int nbits;
3149
3150 /* The remaining value is the bit offset of the portion of the object
3151 corresponding to this baseclass. Always zero in the absence of
3152 multiple inheritance. */
3153
3154 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3155 if (nbits != 0)
3156 return 0;
3157 }
3158
3159 /* The last piece of baseclass information is the type of the
3160 base class. Read it, and remember it's type name as this
3161 field's name. */
3162
3163 newobj->field.type = read_type (pp, objfile);
3164 newobj->field.name = TYPE_NAME (newobj->field.type);
3165
3166 /* Skip trailing ';' and bump count of number of fields seen. */
3167 if (**pp == ';')
3168 (*pp)++;
3169 else
3170 return 0;
3171 }
3172 return 1;
3173 }
3174
3175 /* The tail end of stabs for C++ classes that contain a virtual function
3176 pointer contains a tilde, a %, and a type number.
3177 The type number refers to the base class (possibly this class itself) which
3178 contains the vtable pointer for the current class.
3179
3180 This function is called when we have parsed all the method declarations,
3181 so we can look for the vptr base class info. */
3182
3183 static int
3184 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3185 struct type *type, struct objfile *objfile)
3186 {
3187 const char *p;
3188
3189 STABS_CONTINUE (pp, objfile);
3190
3191 /* If we are positioned at a ';', then skip it. */
3192 if (**pp == ';')
3193 {
3194 (*pp)++;
3195 }
3196
3197 if (**pp == '~')
3198 {
3199 (*pp)++;
3200
3201 if (**pp == '=' || **pp == '+' || **pp == '-')
3202 {
3203 /* Obsolete flags that used to indicate the presence
3204 of constructors and/or destructors. */
3205 (*pp)++;
3206 }
3207
3208 /* Read either a '%' or the final ';'. */
3209 if (*(*pp)++ == '%')
3210 {
3211 /* The next number is the type number of the base class
3212 (possibly our own class) which supplies the vtable for
3213 this class. Parse it out, and search that class to find
3214 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3215 and TYPE_VPTR_FIELDNO. */
3216
3217 struct type *t;
3218 int i;
3219
3220 t = read_type (pp, objfile);
3221 p = (*pp)++;
3222 while (*p != '\0' && *p != ';')
3223 {
3224 p++;
3225 }
3226 if (*p == '\0')
3227 {
3228 /* Premature end of symbol. */
3229 return 0;
3230 }
3231
3232 set_type_vptr_basetype (type, t);
3233 if (type == t) /* Our own class provides vtbl ptr. */
3234 {
3235 for (i = TYPE_NFIELDS (t) - 1;
3236 i >= TYPE_N_BASECLASSES (t);
3237 --i)
3238 {
3239 const char *name = TYPE_FIELD_NAME (t, i);
3240
3241 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3242 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3243 {
3244 set_type_vptr_fieldno (type, i);
3245 goto gotit;
3246 }
3247 }
3248 /* Virtual function table field not found. */
3249 complaint (_("virtual function table pointer "
3250 "not found when defining class `%s'"),
3251 TYPE_NAME (type));
3252 return 0;
3253 }
3254 else
3255 {
3256 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3257 }
3258
3259 gotit:
3260 *pp = p + 1;
3261 }
3262 }
3263 return 1;
3264 }
3265
3266 static int
3267 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3268 {
3269 int n;
3270
3271 for (n = TYPE_NFN_FIELDS (type);
3272 fip->fnlist != NULL;
3273 fip->fnlist = fip->fnlist->next)
3274 {
3275 --n; /* Circumvent Sun3 compiler bug. */
3276 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3277 }
3278 return 1;
3279 }
3280
3281 /* Create the vector of fields, and record how big it is.
3282 We need this info to record proper virtual function table information
3283 for this class's virtual functions. */
3284
3285 static int
3286 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3287 struct objfile *objfile)
3288 {
3289 int nfields = 0;
3290 int non_public_fields = 0;
3291 struct nextfield *scan;
3292
3293 /* Count up the number of fields that we have, as well as taking note of
3294 whether or not there are any non-public fields, which requires us to
3295 allocate and build the private_field_bits and protected_field_bits
3296 bitfields. */
3297
3298 for (scan = fip->list; scan != NULL; scan = scan->next)
3299 {
3300 nfields++;
3301 if (scan->visibility != VISIBILITY_PUBLIC)
3302 {
3303 non_public_fields++;
3304 }
3305 }
3306
3307 /* Now we know how many fields there are, and whether or not there are any
3308 non-public fields. Record the field count, allocate space for the
3309 array of fields, and create blank visibility bitfields if necessary. */
3310
3311 TYPE_NFIELDS (type) = nfields;
3312 TYPE_FIELDS (type) = (struct field *)
3313 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3314 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3315
3316 if (non_public_fields)
3317 {
3318 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3319
3320 TYPE_FIELD_PRIVATE_BITS (type) =
3321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3322 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3323
3324 TYPE_FIELD_PROTECTED_BITS (type) =
3325 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3326 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3327
3328 TYPE_FIELD_IGNORE_BITS (type) =
3329 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3330 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3331 }
3332
3333 /* Copy the saved-up fields into the field vector. Start from the
3334 head of the list, adding to the tail of the field array, so that
3335 they end up in the same order in the array in which they were
3336 added to the list. */
3337
3338 while (nfields-- > 0)
3339 {
3340 TYPE_FIELD (type, nfields) = fip->list->field;
3341 switch (fip->list->visibility)
3342 {
3343 case VISIBILITY_PRIVATE:
3344 SET_TYPE_FIELD_PRIVATE (type, nfields);
3345 break;
3346
3347 case VISIBILITY_PROTECTED:
3348 SET_TYPE_FIELD_PROTECTED (type, nfields);
3349 break;
3350
3351 case VISIBILITY_IGNORE:
3352 SET_TYPE_FIELD_IGNORE (type, nfields);
3353 break;
3354
3355 case VISIBILITY_PUBLIC:
3356 break;
3357
3358 default:
3359 /* Unknown visibility. Complain and treat it as public. */
3360 {
3361 complaint (_("Unknown visibility `%c' for field"),
3362 fip->list->visibility);
3363 }
3364 break;
3365 }
3366 fip->list = fip->list->next;
3367 }
3368 return 1;
3369 }
3370
3371
3372 /* Complain that the compiler has emitted more than one definition for the
3373 structure type TYPE. */
3374 static void
3375 complain_about_struct_wipeout (struct type *type)
3376 {
3377 const char *name = "";
3378 const char *kind = "";
3379
3380 if (TYPE_NAME (type))
3381 {
3382 name = TYPE_NAME (type);
3383 switch (type->code ())
3384 {
3385 case TYPE_CODE_STRUCT: kind = "struct "; break;
3386 case TYPE_CODE_UNION: kind = "union "; break;
3387 case TYPE_CODE_ENUM: kind = "enum "; break;
3388 default: kind = "";
3389 }
3390 }
3391 else
3392 {
3393 name = "<unknown>";
3394 kind = "";
3395 }
3396
3397 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3398 }
3399
3400 /* Set the length for all variants of a same main_type, which are
3401 connected in the closed chain.
3402
3403 This is something that needs to be done when a type is defined *after*
3404 some cross references to this type have already been read. Consider
3405 for instance the following scenario where we have the following two
3406 stabs entries:
3407
3408 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3409 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3410
3411 A stubbed version of type dummy is created while processing the first
3412 stabs entry. The length of that type is initially set to zero, since
3413 it is unknown at this point. Also, a "constant" variation of type
3414 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3415 the stabs line).
3416
3417 The second stabs entry allows us to replace the stubbed definition
3418 with the real definition. However, we still need to adjust the length
3419 of the "constant" variation of that type, as its length was left
3420 untouched during the main type replacement... */
3421
3422 static void
3423 set_length_in_type_chain (struct type *type)
3424 {
3425 struct type *ntype = TYPE_CHAIN (type);
3426
3427 while (ntype != type)
3428 {
3429 if (TYPE_LENGTH(ntype) == 0)
3430 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3431 else
3432 complain_about_struct_wipeout (ntype);
3433 ntype = TYPE_CHAIN (ntype);
3434 }
3435 }
3436
3437 /* Read the description of a structure (or union type) and return an object
3438 describing the type.
3439
3440 PP points to a character pointer that points to the next unconsumed token
3441 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3442 *PP will point to "4a:1,0,32;;".
3443
3444 TYPE points to an incomplete type that needs to be filled in.
3445
3446 OBJFILE points to the current objfile from which the stabs information is
3447 being read. (Note that it is redundant in that TYPE also contains a pointer
3448 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3449 */
3450
3451 static struct type *
3452 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3453 struct objfile *objfile)
3454 {
3455 struct stab_field_info fi;
3456
3457 /* When describing struct/union/class types in stabs, G++ always drops
3458 all qualifications from the name. So if you've got:
3459 struct A { ... struct B { ... }; ... };
3460 then G++ will emit stabs for `struct A::B' that call it simply
3461 `struct B'. Obviously, if you've got a real top-level definition for
3462 `struct B', or other nested definitions, this is going to cause
3463 problems.
3464
3465 Obviously, GDB can't fix this by itself, but it can at least avoid
3466 scribbling on existing structure type objects when new definitions
3467 appear. */
3468 if (! (type->code () == TYPE_CODE_UNDEF
3469 || TYPE_STUB (type)))
3470 {
3471 complain_about_struct_wipeout (type);
3472
3473 /* It's probably best to return the type unchanged. */
3474 return type;
3475 }
3476
3477 INIT_CPLUS_SPECIFIC (type);
3478 type->set_code (type_code);
3479 TYPE_STUB (type) = 0;
3480
3481 /* First comes the total size in bytes. */
3482
3483 {
3484 int nbits;
3485
3486 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3487 if (nbits != 0)
3488 return error_type (pp, objfile);
3489 set_length_in_type_chain (type);
3490 }
3491
3492 /* Now read the baseclasses, if any, read the regular C struct or C++
3493 class member fields, attach the fields to the type, read the C++
3494 member functions, attach them to the type, and then read any tilde
3495 field (baseclass specifier for the class holding the main vtable). */
3496
3497 if (!read_baseclasses (&fi, pp, type, objfile)
3498 || !read_struct_fields (&fi, pp, type, objfile)
3499 || !attach_fields_to_type (&fi, type, objfile)
3500 || !read_member_functions (&fi, pp, type, objfile)
3501 || !attach_fn_fields_to_type (&fi, type)
3502 || !read_tilde_fields (&fi, pp, type, objfile))
3503 {
3504 type = error_type (pp, objfile);
3505 }
3506
3507 return (type);
3508 }
3509
3510 /* Read a definition of an array type,
3511 and create and return a suitable type object.
3512 Also creates a range type which represents the bounds of that
3513 array. */
3514
3515 static struct type *
3516 read_array_type (const char **pp, struct type *type,
3517 struct objfile *objfile)
3518 {
3519 struct type *index_type, *element_type, *range_type;
3520 int lower, upper;
3521 int adjustable = 0;
3522 int nbits;
3523
3524 /* Format of an array type:
3525 "ar<index type>;lower;upper;<array_contents_type>".
3526 OS9000: "arlower,upper;<array_contents_type>".
3527
3528 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3529 for these, produce a type like float[][]. */
3530
3531 {
3532 index_type = read_type (pp, objfile);
3533 if (**pp != ';')
3534 /* Improper format of array type decl. */
3535 return error_type (pp, objfile);
3536 ++*pp;
3537 }
3538
3539 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3540 {
3541 (*pp)++;
3542 adjustable = 1;
3543 }
3544 lower = read_huge_number (pp, ';', &nbits, 0);
3545
3546 if (nbits != 0)
3547 return error_type (pp, objfile);
3548
3549 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3550 {
3551 (*pp)++;
3552 adjustable = 1;
3553 }
3554 upper = read_huge_number (pp, ';', &nbits, 0);
3555 if (nbits != 0)
3556 return error_type (pp, objfile);
3557
3558 element_type = read_type (pp, objfile);
3559
3560 if (adjustable)
3561 {
3562 lower = 0;
3563 upper = -1;
3564 }
3565
3566 range_type =
3567 create_static_range_type (NULL, index_type, lower, upper);
3568 type = create_array_type (type, element_type, range_type);
3569
3570 return type;
3571 }
3572
3573
3574 /* Read a definition of an enumeration type,
3575 and create and return a suitable type object.
3576 Also defines the symbols that represent the values of the type. */
3577
3578 static struct type *
3579 read_enum_type (const char **pp, struct type *type,
3580 struct objfile *objfile)
3581 {
3582 struct gdbarch *gdbarch = objfile->arch ();
3583 const char *p;
3584 char *name;
3585 long n;
3586 struct symbol *sym;
3587 int nsyms = 0;
3588 struct pending **symlist;
3589 struct pending *osyms, *syms;
3590 int o_nsyms;
3591 int nbits;
3592 int unsigned_enum = 1;
3593
3594 #if 0
3595 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3596 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3597 to do? For now, force all enum values to file scope. */
3598 if (within_function)
3599 symlist = get_local_symbols ();
3600 else
3601 #endif
3602 symlist = get_file_symbols ();
3603 osyms = *symlist;
3604 o_nsyms = osyms ? osyms->nsyms : 0;
3605
3606 /* The aix4 compiler emits an extra field before the enum members;
3607 my guess is it's a type of some sort. Just ignore it. */
3608 if (**pp == '-')
3609 {
3610 /* Skip over the type. */
3611 while (**pp != ':')
3612 (*pp)++;
3613
3614 /* Skip over the colon. */
3615 (*pp)++;
3616 }
3617
3618 /* Read the value-names and their values.
3619 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3620 A semicolon or comma instead of a NAME means the end. */
3621 while (**pp && **pp != ';' && **pp != ',')
3622 {
3623 STABS_CONTINUE (pp, objfile);
3624 p = *pp;
3625 while (*p != ':')
3626 p++;
3627 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3628 *pp = p + 1;
3629 n = read_huge_number (pp, ',', &nbits, 0);
3630 if (nbits != 0)
3631 return error_type (pp, objfile);
3632
3633 sym = new (&objfile->objfile_obstack) symbol;
3634 sym->set_linkage_name (name);
3635 sym->set_language (get_current_subfile ()->language,
3636 &objfile->objfile_obstack);
3637 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3639 SYMBOL_VALUE (sym) = n;
3640 if (n < 0)
3641 unsigned_enum = 0;
3642 add_symbol_to_list (sym, symlist);
3643 nsyms++;
3644 }
3645
3646 if (**pp == ';')
3647 (*pp)++; /* Skip the semicolon. */
3648
3649 /* Now fill in the fields of the type-structure. */
3650
3651 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3652 set_length_in_type_chain (type);
3653 type->set_code (TYPE_CODE_ENUM);
3654 TYPE_STUB (type) = 0;
3655 if (unsigned_enum)
3656 TYPE_UNSIGNED (type) = 1;
3657 TYPE_NFIELDS (type) = nsyms;
3658 TYPE_FIELDS (type) = (struct field *)
3659 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3660 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3661
3662 /* Find the symbols for the values and put them into the type.
3663 The symbols can be found in the symlist that we put them on
3664 to cause them to be defined. osyms contains the old value
3665 of that symlist; everything up to there was defined by us. */
3666 /* Note that we preserve the order of the enum constants, so
3667 that in something like "enum {FOO, LAST_THING=FOO}" we print
3668 FOO, not LAST_THING. */
3669
3670 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3671 {
3672 int last = syms == osyms ? o_nsyms : 0;
3673 int j = syms->nsyms;
3674
3675 for (; --j >= last; --n)
3676 {
3677 struct symbol *xsym = syms->symbol[j];
3678
3679 SYMBOL_TYPE (xsym) = type;
3680 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
3681 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3682 TYPE_FIELD_BITSIZE (type, n) = 0;
3683 }
3684 if (syms == osyms)
3685 break;
3686 }
3687
3688 return type;
3689 }
3690
3691 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3692 typedefs in every file (for int, long, etc):
3693
3694 type = b <signed> <width> <format type>; <offset>; <nbits>
3695 signed = u or s.
3696 optional format type = c or b for char or boolean.
3697 offset = offset from high order bit to start bit of type.
3698 width is # bytes in object of this type, nbits is # bits in type.
3699
3700 The width/offset stuff appears to be for small objects stored in
3701 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3702 FIXME. */
3703
3704 static struct type *
3705 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3706 {
3707 int type_bits;
3708 int nbits;
3709 int unsigned_type;
3710 int boolean_type = 0;
3711
3712 switch (**pp)
3713 {
3714 case 's':
3715 unsigned_type = 0;
3716 break;
3717 case 'u':
3718 unsigned_type = 1;
3719 break;
3720 default:
3721 return error_type (pp, objfile);
3722 }
3723 (*pp)++;
3724
3725 /* For some odd reason, all forms of char put a c here. This is strange
3726 because no other type has this honor. We can safely ignore this because
3727 we actually determine 'char'acterness by the number of bits specified in
3728 the descriptor.
3729 Boolean forms, e.g Fortran logical*X, put a b here. */
3730
3731 if (**pp == 'c')
3732 (*pp)++;
3733 else if (**pp == 'b')
3734 {
3735 boolean_type = 1;
3736 (*pp)++;
3737 }
3738
3739 /* The first number appears to be the number of bytes occupied
3740 by this type, except that unsigned short is 4 instead of 2.
3741 Since this information is redundant with the third number,
3742 we will ignore it. */
3743 read_huge_number (pp, ';', &nbits, 0);
3744 if (nbits != 0)
3745 return error_type (pp, objfile);
3746
3747 /* The second number is always 0, so ignore it too. */
3748 read_huge_number (pp, ';', &nbits, 0);
3749 if (nbits != 0)
3750 return error_type (pp, objfile);
3751
3752 /* The third number is the number of bits for this type. */
3753 type_bits = read_huge_number (pp, 0, &nbits, 0);
3754 if (nbits != 0)
3755 return error_type (pp, objfile);
3756 /* The type *should* end with a semicolon. If it are embedded
3757 in a larger type the semicolon may be the only way to know where
3758 the type ends. If this type is at the end of the stabstring we
3759 can deal with the omitted semicolon (but we don't have to like
3760 it). Don't bother to complain(), Sun's compiler omits the semicolon
3761 for "void". */
3762 if (**pp == ';')
3763 ++(*pp);
3764
3765 if (type_bits == 0)
3766 {
3767 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3768 TARGET_CHAR_BIT, NULL);
3769 if (unsigned_type)
3770 TYPE_UNSIGNED (type) = 1;
3771 return type;
3772 }
3773
3774 if (boolean_type)
3775 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3776 else
3777 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3778 }
3779
3780 static struct type *
3781 read_sun_floating_type (const char **pp, int typenums[2],
3782 struct objfile *objfile)
3783 {
3784 int nbits;
3785 int details;
3786 int nbytes;
3787 struct type *rettype;
3788
3789 /* The first number has more details about the type, for example
3790 FN_COMPLEX. */
3791 details = read_huge_number (pp, ';', &nbits, 0);
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 /* The second number is the number of bytes occupied by this type. */
3796 nbytes = read_huge_number (pp, ';', &nbits, 0);
3797 if (nbits != 0)
3798 return error_type (pp, objfile);
3799
3800 nbits = nbytes * TARGET_CHAR_BIT;
3801
3802 if (details == NF_COMPLEX || details == NF_COMPLEX16
3803 || details == NF_COMPLEX32)
3804 {
3805 rettype = dbx_init_float_type (objfile, nbits / 2);
3806 return init_complex_type (NULL, rettype);
3807 }
3808
3809 return dbx_init_float_type (objfile, nbits);
3810 }
3811
3812 /* Read a number from the string pointed to by *PP.
3813 The value of *PP is advanced over the number.
3814 If END is nonzero, the character that ends the
3815 number must match END, or an error happens;
3816 and that character is skipped if it does match.
3817 If END is zero, *PP is left pointing to that character.
3818
3819 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3820 the number is represented in an octal representation, assume that
3821 it is represented in a 2's complement representation with a size of
3822 TWOS_COMPLEMENT_BITS.
3823
3824 If the number fits in a long, set *BITS to 0 and return the value.
3825 If not, set *BITS to be the number of bits in the number and return 0.
3826
3827 If encounter garbage, set *BITS to -1 and return 0. */
3828
3829 static long
3830 read_huge_number (const char **pp, int end, int *bits,
3831 int twos_complement_bits)
3832 {
3833 const char *p = *pp;
3834 int sign = 1;
3835 int sign_bit = 0;
3836 long n = 0;
3837 int radix = 10;
3838 char overflow = 0;
3839 int nbits = 0;
3840 int c;
3841 long upper_limit;
3842 int twos_complement_representation = 0;
3843
3844 if (*p == '-')
3845 {
3846 sign = -1;
3847 p++;
3848 }
3849
3850 /* Leading zero means octal. GCC uses this to output values larger
3851 than an int (because that would be hard in decimal). */
3852 if (*p == '0')
3853 {
3854 radix = 8;
3855 p++;
3856 }
3857
3858 /* Skip extra zeros. */
3859 while (*p == '0')
3860 p++;
3861
3862 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3863 {
3864 /* Octal, possibly signed. Check if we have enough chars for a
3865 negative number. */
3866
3867 size_t len;
3868 const char *p1 = p;
3869
3870 while ((c = *p1) >= '0' && c < '8')
3871 p1++;
3872
3873 len = p1 - p;
3874 if (len > twos_complement_bits / 3
3875 || (twos_complement_bits % 3 == 0
3876 && len == twos_complement_bits / 3))
3877 {
3878 /* Ok, we have enough characters for a signed value, check
3879 for signedness by testing if the sign bit is set. */
3880 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3881 c = *p - '0';
3882 if (c & (1 << sign_bit))
3883 {
3884 /* Definitely signed. */
3885 twos_complement_representation = 1;
3886 sign = -1;
3887 }
3888 }
3889 }
3890
3891 upper_limit = LONG_MAX / radix;
3892
3893 while ((c = *p++) >= '0' && c < ('0' + radix))
3894 {
3895 if (n <= upper_limit)
3896 {
3897 if (twos_complement_representation)
3898 {
3899 /* Octal, signed, twos complement representation. In
3900 this case, n is the corresponding absolute value. */
3901 if (n == 0)
3902 {
3903 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3904
3905 n = -sn;
3906 }
3907 else
3908 {
3909 n *= radix;
3910 n -= c - '0';
3911 }
3912 }
3913 else
3914 {
3915 /* unsigned representation */
3916 n *= radix;
3917 n += c - '0'; /* FIXME this overflows anyway. */
3918 }
3919 }
3920 else
3921 overflow = 1;
3922
3923 /* This depends on large values being output in octal, which is
3924 what GCC does. */
3925 if (radix == 8)
3926 {
3927 if (nbits == 0)
3928 {
3929 if (c == '0')
3930 /* Ignore leading zeroes. */
3931 ;
3932 else if (c == '1')
3933 nbits = 1;
3934 else if (c == '2' || c == '3')
3935 nbits = 2;
3936 else
3937 nbits = 3;
3938 }
3939 else
3940 nbits += 3;
3941 }
3942 }
3943 if (end)
3944 {
3945 if (c && c != end)
3946 {
3947 if (bits != NULL)
3948 *bits = -1;
3949 return 0;
3950 }
3951 }
3952 else
3953 --p;
3954
3955 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3956 {
3957 /* We were supposed to parse a number with maximum
3958 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3959 if (bits != NULL)
3960 *bits = -1;
3961 return 0;
3962 }
3963
3964 *pp = p;
3965 if (overflow)
3966 {
3967 if (nbits == 0)
3968 {
3969 /* Large decimal constants are an error (because it is hard to
3970 count how many bits are in them). */
3971 if (bits != NULL)
3972 *bits = -1;
3973 return 0;
3974 }
3975
3976 /* -0x7f is the same as 0x80. So deal with it by adding one to
3977 the number of bits. Two's complement represention octals
3978 can't have a '-' in front. */
3979 if (sign == -1 && !twos_complement_representation)
3980 ++nbits;
3981 if (bits)
3982 *bits = nbits;
3983 }
3984 else
3985 {
3986 if (bits)
3987 *bits = 0;
3988 return n * sign;
3989 }
3990 /* It's *BITS which has the interesting information. */
3991 return 0;
3992 }
3993
3994 static struct type *
3995 read_range_type (const char **pp, int typenums[2], int type_size,
3996 struct objfile *objfile)
3997 {
3998 struct gdbarch *gdbarch = objfile->arch ();
3999 const char *orig_pp = *pp;
4000 int rangenums[2];
4001 long n2, n3;
4002 int n2bits, n3bits;
4003 int self_subrange;
4004 struct type *result_type;
4005 struct type *index_type = NULL;
4006
4007 /* First comes a type we are a subrange of.
4008 In C it is usually 0, 1 or the type being defined. */
4009 if (read_type_number (pp, rangenums) != 0)
4010 return error_type (pp, objfile);
4011 self_subrange = (rangenums[0] == typenums[0] &&
4012 rangenums[1] == typenums[1]);
4013
4014 if (**pp == '=')
4015 {
4016 *pp = orig_pp;
4017 index_type = read_type (pp, objfile);
4018 }
4019
4020 /* A semicolon should now follow; skip it. */
4021 if (**pp == ';')
4022 (*pp)++;
4023
4024 /* The remaining two operands are usually lower and upper bounds
4025 of the range. But in some special cases they mean something else. */
4026 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4027 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4028
4029 if (n2bits == -1 || n3bits == -1)
4030 return error_type (pp, objfile);
4031
4032 if (index_type)
4033 goto handle_true_range;
4034
4035 /* If limits are huge, must be large integral type. */
4036 if (n2bits != 0 || n3bits != 0)
4037 {
4038 char got_signed = 0;
4039 char got_unsigned = 0;
4040 /* Number of bits in the type. */
4041 int nbits = 0;
4042
4043 /* If a type size attribute has been specified, the bounds of
4044 the range should fit in this size. If the lower bounds needs
4045 more bits than the upper bound, then the type is signed. */
4046 if (n2bits <= type_size && n3bits <= type_size)
4047 {
4048 if (n2bits == type_size && n2bits > n3bits)
4049 got_signed = 1;
4050 else
4051 got_unsigned = 1;
4052 nbits = type_size;
4053 }
4054 /* Range from 0 to <large number> is an unsigned large integral type. */
4055 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4056 {
4057 got_unsigned = 1;
4058 nbits = n3bits;
4059 }
4060 /* Range from <large number> to <large number>-1 is a large signed
4061 integral type. Take care of the case where <large number> doesn't
4062 fit in a long but <large number>-1 does. */
4063 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4064 || (n2bits != 0 && n3bits == 0
4065 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4066 && n3 == LONG_MAX))
4067 {
4068 got_signed = 1;
4069 nbits = n2bits;
4070 }
4071
4072 if (got_signed || got_unsigned)
4073 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4074 else
4075 return error_type (pp, objfile);
4076 }
4077
4078 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4079 if (self_subrange && n2 == 0 && n3 == 0)
4080 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4081
4082 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4083 is the width in bytes.
4084
4085 Fortran programs appear to use this for complex types also. To
4086 distinguish between floats and complex, g77 (and others?) seem
4087 to use self-subranges for the complexes, and subranges of int for
4088 the floats.
4089
4090 Also note that for complexes, g77 sets n2 to the size of one of
4091 the member floats, not the whole complex beast. My guess is that
4092 this was to work well with pre-COMPLEX versions of gdb. */
4093
4094 if (n3 == 0 && n2 > 0)
4095 {
4096 struct type *float_type
4097 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4098
4099 if (self_subrange)
4100 return init_complex_type (NULL, float_type);
4101 else
4102 return float_type;
4103 }
4104
4105 /* If the upper bound is -1, it must really be an unsigned integral. */
4106
4107 else if (n2 == 0 && n3 == -1)
4108 {
4109 int bits = type_size;
4110
4111 if (bits <= 0)
4112 {
4113 /* We don't know its size. It is unsigned int or unsigned
4114 long. GCC 2.3.3 uses this for long long too, but that is
4115 just a GDB 3.5 compatibility hack. */
4116 bits = gdbarch_int_bit (gdbarch);
4117 }
4118
4119 return init_integer_type (objfile, bits, 1, NULL);
4120 }
4121
4122 /* Special case: char is defined (Who knows why) as a subrange of
4123 itself with range 0-127. */
4124 else if (self_subrange && n2 == 0 && n3 == 127)
4125 {
4126 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4127 0, NULL);
4128 TYPE_NOSIGN (type) = 1;
4129 return type;
4130 }
4131 /* We used to do this only for subrange of self or subrange of int. */
4132 else if (n2 == 0)
4133 {
4134 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4135 "unsigned long", and we already checked for that,
4136 so don't need to test for it here. */
4137
4138 if (n3 < 0)
4139 /* n3 actually gives the size. */
4140 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4141
4142 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4143 unsigned n-byte integer. But do require n to be a power of
4144 two; we don't want 3- and 5-byte integers flying around. */
4145 {
4146 int bytes;
4147 unsigned long bits;
4148
4149 bits = n3;
4150 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4151 bits >>= 8;
4152 if (bits == 0
4153 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4154 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4155 }
4156 }
4157 /* I think this is for Convex "long long". Since I don't know whether
4158 Convex sets self_subrange, I also accept that particular size regardless
4159 of self_subrange. */
4160 else if (n3 == 0 && n2 < 0
4161 && (self_subrange
4162 || n2 == -gdbarch_long_long_bit
4163 (gdbarch) / TARGET_CHAR_BIT))
4164 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4165 else if (n2 == -n3 - 1)
4166 {
4167 if (n3 == 0x7f)
4168 return init_integer_type (objfile, 8, 0, NULL);
4169 if (n3 == 0x7fff)
4170 return init_integer_type (objfile, 16, 0, NULL);
4171 if (n3 == 0x7fffffff)
4172 return init_integer_type (objfile, 32, 0, NULL);
4173 }
4174
4175 /* We have a real range type on our hands. Allocate space and
4176 return a real pointer. */
4177 handle_true_range:
4178
4179 if (self_subrange)
4180 index_type = objfile_type (objfile)->builtin_int;
4181 else
4182 index_type = *dbx_lookup_type (rangenums, objfile);
4183 if (index_type == NULL)
4184 {
4185 /* Does this actually ever happen? Is that why we are worrying
4186 about dealing with it rather than just calling error_type? */
4187
4188 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4189
4190 index_type = objfile_type (objfile)->builtin_int;
4191 }
4192
4193 result_type
4194 = create_static_range_type (NULL, index_type, n2, n3);
4195 return (result_type);
4196 }
4197
4198 /* Read in an argument list. This is a list of types, separated by commas
4199 and terminated with END. Return the list of types read in, or NULL
4200 if there is an error. */
4201
4202 static struct field *
4203 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4204 int *varargsp)
4205 {
4206 /* FIXME! Remove this arbitrary limit! */
4207 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4208 int n = 0, i;
4209 struct field *rval;
4210
4211 while (**pp != end)
4212 {
4213 if (**pp != ',')
4214 /* Invalid argument list: no ','. */
4215 return NULL;
4216 (*pp)++;
4217 STABS_CONTINUE (pp, objfile);
4218 types[n++] = read_type (pp, objfile);
4219 }
4220 (*pp)++; /* get past `end' (the ':' character). */
4221
4222 if (n == 0)
4223 {
4224 /* We should read at least the THIS parameter here. Some broken stabs
4225 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4226 have been present ";-16,(0,43)" reference instead. This way the
4227 excessive ";" marker prematurely stops the parameters parsing. */
4228
4229 complaint (_("Invalid (empty) method arguments"));
4230 *varargsp = 0;
4231 }
4232 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4233 *varargsp = 1;
4234 else
4235 {
4236 n--;
4237 *varargsp = 0;
4238 }
4239
4240 rval = XCNEWVEC (struct field, n);
4241 for (i = 0; i < n; i++)
4242 rval[i].type = types[i];
4243 *nargsp = n;
4244 return rval;
4245 }
4246 \f
4247 /* Common block handling. */
4248
4249 /* List of symbols declared since the last BCOMM. This list is a tail
4250 of local_symbols. When ECOMM is seen, the symbols on the list
4251 are noted so their proper addresses can be filled in later,
4252 using the common block base address gotten from the assembler
4253 stabs. */
4254
4255 static struct pending *common_block;
4256 static int common_block_i;
4257
4258 /* Name of the current common block. We get it from the BCOMM instead of the
4259 ECOMM to match IBM documentation (even though IBM puts the name both places
4260 like everyone else). */
4261 static char *common_block_name;
4262
4263 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4264 to remain after this function returns. */
4265
4266 void
4267 common_block_start (const char *name, struct objfile *objfile)
4268 {
4269 if (common_block_name != NULL)
4270 {
4271 complaint (_("Invalid symbol data: common block within common block"));
4272 }
4273 common_block = *get_local_symbols ();
4274 common_block_i = common_block ? common_block->nsyms : 0;
4275 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4276 }
4277
4278 /* Process a N_ECOMM symbol. */
4279
4280 void
4281 common_block_end (struct objfile *objfile)
4282 {
4283 /* Symbols declared since the BCOMM are to have the common block
4284 start address added in when we know it. common_block and
4285 common_block_i point to the first symbol after the BCOMM in
4286 the local_symbols list; copy the list and hang it off the
4287 symbol for the common block name for later fixup. */
4288 int i;
4289 struct symbol *sym;
4290 struct pending *newobj = 0;
4291 struct pending *next;
4292 int j;
4293
4294 if (common_block_name == NULL)
4295 {
4296 complaint (_("ECOMM symbol unmatched by BCOMM"));
4297 return;
4298 }
4299
4300 sym = new (&objfile->objfile_obstack) symbol;
4301 /* Note: common_block_name already saved on objfile_obstack. */
4302 sym->set_linkage_name (common_block_name);
4303 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4304
4305 /* Now we copy all the symbols which have been defined since the BCOMM. */
4306
4307 /* Copy all the struct pendings before common_block. */
4308 for (next = *get_local_symbols ();
4309 next != NULL && next != common_block;
4310 next = next->next)
4311 {
4312 for (j = 0; j < next->nsyms; j++)
4313 add_symbol_to_list (next->symbol[j], &newobj);
4314 }
4315
4316 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4317 NULL, it means copy all the local symbols (which we already did
4318 above). */
4319
4320 if (common_block != NULL)
4321 for (j = common_block_i; j < common_block->nsyms; j++)
4322 add_symbol_to_list (common_block->symbol[j], &newobj);
4323
4324 SYMBOL_TYPE (sym) = (struct type *) newobj;
4325
4326 /* Should we be putting local_symbols back to what it was?
4327 Does it matter? */
4328
4329 i = hashname (sym->linkage_name ());
4330 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4331 global_sym_chain[i] = sym;
4332 common_block_name = NULL;
4333 }
4334
4335 /* Add a common block's start address to the offset of each symbol
4336 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4337 the common block name). */
4338
4339 static void
4340 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4341 {
4342 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4343
4344 for (; next; next = next->next)
4345 {
4346 int j;
4347
4348 for (j = next->nsyms - 1; j >= 0; j--)
4349 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4350 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4351 + valu);
4352 }
4353 }
4354 \f
4355
4356
4357 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4358 See add_undefined_type for more details. */
4359
4360 static void
4361 add_undefined_type_noname (struct type *type, int typenums[2])
4362 {
4363 struct nat nat;
4364
4365 nat.typenums[0] = typenums [0];
4366 nat.typenums[1] = typenums [1];
4367 nat.type = type;
4368
4369 if (noname_undefs_length == noname_undefs_allocated)
4370 {
4371 noname_undefs_allocated *= 2;
4372 noname_undefs = (struct nat *)
4373 xrealloc ((char *) noname_undefs,
4374 noname_undefs_allocated * sizeof (struct nat));
4375 }
4376 noname_undefs[noname_undefs_length++] = nat;
4377 }
4378
4379 /* Add TYPE to the UNDEF_TYPES vector.
4380 See add_undefined_type for more details. */
4381
4382 static void
4383 add_undefined_type_1 (struct type *type)
4384 {
4385 if (undef_types_length == undef_types_allocated)
4386 {
4387 undef_types_allocated *= 2;
4388 undef_types = (struct type **)
4389 xrealloc ((char *) undef_types,
4390 undef_types_allocated * sizeof (struct type *));
4391 }
4392 undef_types[undef_types_length++] = type;
4393 }
4394
4395 /* What about types defined as forward references inside of a small lexical
4396 scope? */
4397 /* Add a type to the list of undefined types to be checked through
4398 once this file has been read in.
4399
4400 In practice, we actually maintain two such lists: The first list
4401 (UNDEF_TYPES) is used for types whose name has been provided, and
4402 concerns forward references (eg 'xs' or 'xu' forward references);
4403 the second list (NONAME_UNDEFS) is used for types whose name is
4404 unknown at creation time, because they were referenced through
4405 their type number before the actual type was declared.
4406 This function actually adds the given type to the proper list. */
4407
4408 static void
4409 add_undefined_type (struct type *type, int typenums[2])
4410 {
4411 if (TYPE_NAME (type) == NULL)
4412 add_undefined_type_noname (type, typenums);
4413 else
4414 add_undefined_type_1 (type);
4415 }
4416
4417 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4418
4419 static void
4420 cleanup_undefined_types_noname (struct objfile *objfile)
4421 {
4422 int i;
4423
4424 for (i = 0; i < noname_undefs_length; i++)
4425 {
4426 struct nat nat = noname_undefs[i];
4427 struct type **type;
4428
4429 type = dbx_lookup_type (nat.typenums, objfile);
4430 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4431 {
4432 /* The instance flags of the undefined type are still unset,
4433 and needs to be copied over from the reference type.
4434 Since replace_type expects them to be identical, we need
4435 to set these flags manually before hand. */
4436 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4437 replace_type (nat.type, *type);
4438 }
4439 }
4440
4441 noname_undefs_length = 0;
4442 }
4443
4444 /* Go through each undefined type, see if it's still undefined, and fix it
4445 up if possible. We have two kinds of undefined types:
4446
4447 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4448 Fix: update array length using the element bounds
4449 and the target type's length.
4450 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4451 yet defined at the time a pointer to it was made.
4452 Fix: Do a full lookup on the struct/union tag. */
4453
4454 static void
4455 cleanup_undefined_types_1 (void)
4456 {
4457 struct type **type;
4458
4459 /* Iterate over every undefined type, and look for a symbol whose type
4460 matches our undefined type. The symbol matches if:
4461 1. It is a typedef in the STRUCT domain;
4462 2. It has the same name, and same type code;
4463 3. The instance flags are identical.
4464
4465 It is important to check the instance flags, because we have seen
4466 examples where the debug info contained definitions such as:
4467
4468 "foo_t:t30=B31=xefoo_t:"
4469
4470 In this case, we have created an undefined type named "foo_t" whose
4471 instance flags is null (when processing "xefoo_t"), and then created
4472 another type with the same name, but with different instance flags
4473 ('B' means volatile). I think that the definition above is wrong,
4474 since the same type cannot be volatile and non-volatile at the same
4475 time, but we need to be able to cope with it when it happens. The
4476 approach taken here is to treat these two types as different. */
4477
4478 for (type = undef_types; type < undef_types + undef_types_length; type++)
4479 {
4480 switch ((*type)->code ())
4481 {
4482
4483 case TYPE_CODE_STRUCT:
4484 case TYPE_CODE_UNION:
4485 case TYPE_CODE_ENUM:
4486 {
4487 /* Check if it has been defined since. Need to do this here
4488 as well as in check_typedef to deal with the (legitimate in
4489 C though not C++) case of several types with the same name
4490 in different source files. */
4491 if (TYPE_STUB (*type))
4492 {
4493 struct pending *ppt;
4494 int i;
4495 /* Name of the type, without "struct" or "union". */
4496 const char *type_name = TYPE_NAME (*type);
4497
4498 if (type_name == NULL)
4499 {
4500 complaint (_("need a type name"));
4501 break;
4502 }
4503 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4504 {
4505 for (i = 0; i < ppt->nsyms; i++)
4506 {
4507 struct symbol *sym = ppt->symbol[i];
4508
4509 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4510 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4511 && (SYMBOL_TYPE (sym)->code () ==
4512 (*type)->code ())
4513 && (TYPE_INSTANCE_FLAGS (*type) ==
4514 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4515 && strcmp (sym->linkage_name (), type_name) == 0)
4516 replace_type (*type, SYMBOL_TYPE (sym));
4517 }
4518 }
4519 }
4520 }
4521 break;
4522
4523 default:
4524 {
4525 complaint (_("forward-referenced types left unresolved, "
4526 "type code %d."),
4527 (*type)->code ());
4528 }
4529 break;
4530 }
4531 }
4532
4533 undef_types_length = 0;
4534 }
4535
4536 /* Try to fix all the undefined types we encountered while processing
4537 this unit. */
4538
4539 void
4540 cleanup_undefined_stabs_types (struct objfile *objfile)
4541 {
4542 cleanup_undefined_types_1 ();
4543 cleanup_undefined_types_noname (objfile);
4544 }
4545
4546 /* See stabsread.h. */
4547
4548 void
4549 scan_file_globals (struct objfile *objfile)
4550 {
4551 int hash;
4552 struct symbol *sym, *prev;
4553 struct objfile *resolve_objfile;
4554
4555 /* SVR4 based linkers copy referenced global symbols from shared
4556 libraries to the main executable.
4557 If we are scanning the symbols for a shared library, try to resolve
4558 them from the minimal symbols of the main executable first. */
4559
4560 if (symfile_objfile && objfile != symfile_objfile)
4561 resolve_objfile = symfile_objfile;
4562 else
4563 resolve_objfile = objfile;
4564
4565 while (1)
4566 {
4567 /* Avoid expensive loop through all minimal symbols if there are
4568 no unresolved symbols. */
4569 for (hash = 0; hash < HASHSIZE; hash++)
4570 {
4571 if (global_sym_chain[hash])
4572 break;
4573 }
4574 if (hash >= HASHSIZE)
4575 return;
4576
4577 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4578 {
4579 QUIT;
4580
4581 /* Skip static symbols. */
4582 switch (MSYMBOL_TYPE (msymbol))
4583 {
4584 case mst_file_text:
4585 case mst_file_data:
4586 case mst_file_bss:
4587 continue;
4588 default:
4589 break;
4590 }
4591
4592 prev = NULL;
4593
4594 /* Get the hash index and check all the symbols
4595 under that hash index. */
4596
4597 hash = hashname (msymbol->linkage_name ());
4598
4599 for (sym = global_sym_chain[hash]; sym;)
4600 {
4601 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4602 {
4603 /* Splice this symbol out of the hash chain and
4604 assign the value we have to it. */
4605 if (prev)
4606 {
4607 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4608 }
4609 else
4610 {
4611 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4612 }
4613
4614 /* Check to see whether we need to fix up a common block. */
4615 /* Note: this code might be executed several times for
4616 the same symbol if there are multiple references. */
4617 if (sym)
4618 {
4619 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4620 {
4621 fix_common_block (sym,
4622 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4623 msymbol));
4624 }
4625 else
4626 {
4627 SET_SYMBOL_VALUE_ADDRESS
4628 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4629 msymbol));
4630 }
4631 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4632 }
4633
4634 if (prev)
4635 {
4636 sym = SYMBOL_VALUE_CHAIN (prev);
4637 }
4638 else
4639 {
4640 sym = global_sym_chain[hash];
4641 }
4642 }
4643 else
4644 {
4645 prev = sym;
4646 sym = SYMBOL_VALUE_CHAIN (sym);
4647 }
4648 }
4649 }
4650 if (resolve_objfile == objfile)
4651 break;
4652 resolve_objfile = objfile;
4653 }
4654
4655 /* Change the storage class of any remaining unresolved globals to
4656 LOC_UNRESOLVED and remove them from the chain. */
4657 for (hash = 0; hash < HASHSIZE; hash++)
4658 {
4659 sym = global_sym_chain[hash];
4660 while (sym)
4661 {
4662 prev = sym;
4663 sym = SYMBOL_VALUE_CHAIN (sym);
4664
4665 /* Change the symbol address from the misleading chain value
4666 to address zero. */
4667 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4668
4669 /* Complain about unresolved common block symbols. */
4670 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4671 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4672 else
4673 complaint (_("%s: common block `%s' from "
4674 "global_sym_chain unresolved"),
4675 objfile_name (objfile), prev->print_name ());
4676 }
4677 }
4678 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4679 }
4680
4681 /* Initialize anything that needs initializing when starting to read
4682 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4683 to a psymtab. */
4684
4685 void
4686 stabsread_init (void)
4687 {
4688 }
4689
4690 /* Initialize anything that needs initializing when a completely new
4691 symbol file is specified (not just adding some symbols from another
4692 file, e.g. a shared library). */
4693
4694 void
4695 stabsread_new_init (void)
4696 {
4697 /* Empty the hash table of global syms looking for values. */
4698 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4699 }
4700
4701 /* Initialize anything that needs initializing at the same time as
4702 start_symtab() is called. */
4703
4704 void
4705 start_stabs (void)
4706 {
4707 global_stabs = NULL; /* AIX COFF */
4708 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4709 n_this_object_header_files = 1;
4710 type_vector_length = 0;
4711 type_vector = (struct type **) 0;
4712 within_function = 0;
4713
4714 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4715 common_block_name = NULL;
4716 }
4717
4718 /* Call after end_symtab(). */
4719
4720 void
4721 end_stabs (void)
4722 {
4723 if (type_vector)
4724 {
4725 xfree (type_vector);
4726 }
4727 type_vector = 0;
4728 type_vector_length = 0;
4729 previous_stab_code = 0;
4730 }
4731
4732 void
4733 finish_global_stabs (struct objfile *objfile)
4734 {
4735 if (global_stabs)
4736 {
4737 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4738 xfree (global_stabs);
4739 global_stabs = NULL;
4740 }
4741 }
4742
4743 /* Find the end of the name, delimited by a ':', but don't match
4744 ObjC symbols which look like -[Foo bar::]:bla. */
4745 static const char *
4746 find_name_end (const char *name)
4747 {
4748 const char *s = name;
4749
4750 if (s[0] == '-' || *s == '+')
4751 {
4752 /* Must be an ObjC method symbol. */
4753 if (s[1] != '[')
4754 {
4755 error (_("invalid symbol name \"%s\""), name);
4756 }
4757 s = strchr (s, ']');
4758 if (s == NULL)
4759 {
4760 error (_("invalid symbol name \"%s\""), name);
4761 }
4762 return strchr (s, ':');
4763 }
4764 else
4765 {
4766 return strchr (s, ':');
4767 }
4768 }
4769
4770 /* See stabsread.h. */
4771
4772 int
4773 hashname (const char *name)
4774 {
4775 return fast_hash (name, strlen (name)) % HASHSIZE;
4776 }
4777
4778 /* Initializer for this module. */
4779
4780 void _initialize_stabsread ();
4781 void
4782 _initialize_stabsread ()
4783 {
4784 undef_types_allocated = 20;
4785 undef_types_length = 0;
4786 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4787
4788 noname_undefs_allocated = 20;
4789 noname_undefs_length = 0;
4790 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4791
4792 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4793 &stab_register_funcs);
4794 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4795 &stab_register_funcs);
4796 }
This page took 0.203531 seconds and 5 git commands to generate.