PR symtab/8424:
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = allocate_symbol (objfile);
383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
385 SYMBOL_SET_LINKAGE_NAME
386 (sym, obstack_copy0 (&objfile->objfile_obstack,
387 name, pp - name));
388 pp += 2;
389 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
390 {
391 /* I don't think the linker does this with functions,
392 so as far as I know this is never executed.
393 But it doesn't hurt to check. */
394 SYMBOL_TYPE (sym) =
395 lookup_function_type (read_type (&pp, objfile));
396 }
397 else
398 {
399 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
400 }
401 add_symbol_to_list (sym, &global_symbols);
402 }
403 else
404 {
405 pp += 2;
406 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
407 {
408 SYMBOL_TYPE (sym) =
409 lookup_function_type (read_type (&pp, objfile));
410 }
411 else
412 {
413 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
414 }
415 }
416 }
417 }
418 }
419 \f
420
421 /* Read a number by which a type is referred to in dbx data,
422 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
423 Just a single number N is equivalent to (0,N).
424 Return the two numbers by storing them in the vector TYPENUMS.
425 TYPENUMS will then be used as an argument to dbx_lookup_type.
426
427 Returns 0 for success, -1 for error. */
428
429 static int
430 read_type_number (char **pp, int *typenums)
431 {
432 int nbits;
433
434 if (**pp == '(')
435 {
436 (*pp)++;
437 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
438 if (nbits != 0)
439 return -1;
440 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
441 if (nbits != 0)
442 return -1;
443 }
444 else
445 {
446 typenums[0] = 0;
447 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
448 if (nbits != 0)
449 return -1;
450 }
451 return 0;
452 }
453 \f
454
455 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
456 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
457 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
458 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
459
460 /* Structure for storing pointers to reference definitions for fast lookup
461 during "process_later". */
462
463 struct ref_map
464 {
465 char *stabs;
466 CORE_ADDR value;
467 struct symbol *sym;
468 };
469
470 #define MAX_CHUNK_REFS 100
471 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
472 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
473
474 static struct ref_map *ref_map;
475
476 /* Ptr to free cell in chunk's linked list. */
477 static int ref_count = 0;
478
479 /* Number of chunks malloced. */
480 static int ref_chunk = 0;
481
482 /* This file maintains a cache of stabs aliases found in the symbol
483 table. If the symbol table changes, this cache must be cleared
484 or we are left holding onto data in invalid obstacks. */
485 void
486 stabsread_clear_cache (void)
487 {
488 ref_count = 0;
489 ref_chunk = 0;
490 }
491
492 /* Create array of pointers mapping refids to symbols and stab strings.
493 Add pointers to reference definition symbols and/or their values as we
494 find them, using their reference numbers as our index.
495 These will be used later when we resolve references. */
496 void
497 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
498 {
499 if (ref_count == 0)
500 ref_chunk = 0;
501 if (refnum >= ref_count)
502 ref_count = refnum + 1;
503 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
504 {
505 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
506 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
507
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
511 new_chunks * REF_CHUNK_SIZE);
512 ref_chunk += new_chunks;
513 }
514 ref_map[refnum].stabs = stabs;
515 ref_map[refnum].sym = sym;
516 ref_map[refnum].value = value;
517 }
518
519 /* Return defined sym for the reference REFNUM. */
520 struct symbol *
521 ref_search (int refnum)
522 {
523 if (refnum < 0 || refnum > ref_count)
524 return 0;
525 return ref_map[refnum].sym;
526 }
527
528 /* Parse a reference id in STRING and return the resulting
529 reference number. Move STRING beyond the reference id. */
530
531 static int
532 process_reference (char **string)
533 {
534 char *p;
535 int refnum = 0;
536
537 if (**string != '#')
538 return 0;
539
540 /* Advance beyond the initial '#'. */
541 p = *string + 1;
542
543 /* Read number as reference id. */
544 while (*p && isdigit (*p))
545 {
546 refnum = refnum * 10 + *p - '0';
547 p++;
548 }
549 *string = p;
550 return refnum;
551 }
552
553 /* If STRING defines a reference, store away a pointer to the reference
554 definition for later use. Return the reference number. */
555
556 int
557 symbol_reference_defined (char **string)
558 {
559 char *p = *string;
560 int refnum = 0;
561
562 refnum = process_reference (&p);
563
564 /* Defining symbols end in '='. */
565 if (*p == '=')
566 {
567 /* Symbol is being defined here. */
568 *string = p + 1;
569 return refnum;
570 }
571 else
572 {
573 /* Must be a reference. Either the symbol has already been defined,
574 or this is a forward reference to it. */
575 *string = p;
576 return -1;
577 }
578 }
579
580 static int
581 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
582 {
583 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
584
585 if (regno >= gdbarch_num_regs (gdbarch)
586 + gdbarch_num_pseudo_regs (gdbarch))
587 {
588 reg_value_complaint (regno,
589 gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch),
591 SYMBOL_PRINT_NAME (sym));
592
593 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
594 }
595
596 return regno;
597 }
598
599 static const struct symbol_register_ops stab_register_funcs = {
600 stab_reg_to_regnum
601 };
602
603 /* The "aclass" indices for computed symbols. */
604
605 static int stab_register_index;
606 static int stab_regparm_index;
607
608 struct symbol *
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
611 {
612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
613 struct symbol *sym;
614 char *p = (char *) find_name_end (string);
615 int deftype;
616 int synonym = 0;
617 int i;
618 char *new_name = NULL;
619
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
624
625 int nameless;
626
627 /* Ignore syms with empty names. */
628 if (string[0] == 0)
629 return 0;
630
631 /* Ignore old-style symbols from cc -go. */
632 if (p == 0)
633 return 0;
634
635 while (p[1] == ':')
636 {
637 p += 2;
638 p = strchr (p, ':');
639 if (p == NULL)
640 {
641 complaint (&symfile_complaints,
642 _("Bad stabs string '%s'"), string);
643 return NULL;
644 }
645 }
646
647 /* If a nameless stab entry, all we need is the type, not the symbol.
648 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
649 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
650
651 current_symbol = sym = allocate_symbol (objfile);
652
653 if (processing_gcc_compilation)
654 {
655 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
656 number of bytes occupied by a type or object, which we ignore. */
657 SYMBOL_LINE (sym) = desc;
658 }
659 else
660 {
661 SYMBOL_LINE (sym) = 0; /* unknown */
662 }
663
664 if (is_cplus_marker (string[0]))
665 {
666 /* Special GNU C++ names. */
667 switch (string[1])
668 {
669 case 't':
670 SYMBOL_SET_LINKAGE_NAME (sym, "this");
671 break;
672
673 case 'v': /* $vtbl_ptr_type */
674 goto normal;
675
676 case 'e':
677 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
678 break;
679
680 case '_':
681 /* This was an anonymous type that was never fixed up. */
682 goto normal;
683
684 case 'X':
685 /* SunPRO (3.0 at least) static variable encoding. */
686 if (gdbarch_static_transform_name_p (gdbarch))
687 goto normal;
688 /* ... fall through ... */
689
690 default:
691 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
692 string);
693 goto normal; /* Do *something* with it. */
694 }
695 }
696 else
697 {
698 normal:
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701 if (SYMBOL_LANGUAGE (sym) == language_cplus)
702 {
703 char *name = alloca (p - string + 1);
704
705 memcpy (name, string, p - string);
706 name[p - string] = '\0';
707 new_name = cp_canonicalize_string (name);
708 }
709 if (new_name != NULL)
710 {
711 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
712 xfree (new_name);
713 }
714 else
715 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
716
717 if (SYMBOL_LANGUAGE (sym) == language_cplus)
718 cp_scan_for_anonymous_namespaces (sym, objfile);
719
720 }
721 p++;
722
723 /* Determine the type of name being defined. */
724 #if 0
725 /* Getting GDB to correctly skip the symbol on an undefined symbol
726 descriptor and not ever dump core is a very dodgy proposition if
727 we do things this way. I say the acorn RISC machine can just
728 fix their compiler. */
729 /* The Acorn RISC machine's compiler can put out locals that don't
730 start with "234=" or "(3,4)=", so assume anything other than the
731 deftypes we know how to handle is a local. */
732 if (!strchr ("cfFGpPrStTvVXCR", *p))
733 #else
734 if (isdigit (*p) || *p == '(' || *p == '-')
735 #endif
736 deftype = 'l';
737 else
738 deftype = *p++;
739
740 switch (deftype)
741 {
742 case 'c':
743 /* c is a special case, not followed by a type-number.
744 SYMBOL:c=iVALUE for an integer constant symbol.
745 SYMBOL:c=rVALUE for a floating constant symbol.
746 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
747 e.g. "b:c=e6,0" for "const b = blob1"
748 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
749 if (*p != '=')
750 {
751 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
752 SYMBOL_TYPE (sym) = error_type (&p, objfile);
753 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
754 add_symbol_to_list (sym, &file_symbols);
755 return sym;
756 }
757 ++p;
758 switch (*p++)
759 {
760 case 'r':
761 {
762 double d = atof (p);
763 gdb_byte *dbl_valu;
764 struct type *dbl_type;
765
766 /* FIXME-if-picky-about-floating-accuracy: Should be using
767 target arithmetic to get the value. real.c in GCC
768 probably has the necessary code. */
769
770 dbl_type = objfile_type (objfile)->builtin_double;
771 dbl_valu =
772 obstack_alloc (&objfile->objfile_obstack,
773 TYPE_LENGTH (dbl_type));
774 store_typed_floating (dbl_valu, dbl_type, d);
775
776 SYMBOL_TYPE (sym) = dbl_type;
777 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
778 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
779 }
780 break;
781 case 'i':
782 {
783 /* Defining integer constants this way is kind of silly,
784 since 'e' constants allows the compiler to give not
785 only the value, but the type as well. C has at least
786 int, long, unsigned int, and long long as constant
787 types; other languages probably should have at least
788 unsigned as well as signed constants. */
789
790 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
791 SYMBOL_VALUE (sym) = atoi (p);
792 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
793 }
794 break;
795
796 case 'c':
797 {
798 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
799 SYMBOL_VALUE (sym) = atoi (p);
800 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
801 }
802 break;
803
804 case 's':
805 {
806 struct type *range_type;
807 int ind = 0;
808 char quote = *p++;
809 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
810 gdb_byte *string_value;
811
812 if (quote != '\'' && quote != '"')
813 {
814 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
815 SYMBOL_TYPE (sym) = error_type (&p, objfile);
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 add_symbol_to_list (sym, &file_symbols);
818 return sym;
819 }
820
821 /* Find matching quote, rejecting escaped quotes. */
822 while (*p && *p != quote)
823 {
824 if (*p == '\\' && p[1] == quote)
825 {
826 string_local[ind] = (gdb_byte) quote;
827 ind++;
828 p += 2;
829 }
830 else if (*p)
831 {
832 string_local[ind] = (gdb_byte) (*p);
833 ind++;
834 p++;
835 }
836 }
837 if (*p != quote)
838 {
839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
840 SYMBOL_TYPE (sym) = error_type (&p, objfile);
841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
842 add_symbol_to_list (sym, &file_symbols);
843 return sym;
844 }
845
846 /* NULL terminate the string. */
847 string_local[ind] = 0;
848 range_type
849 = create_range_type (NULL,
850 objfile_type (objfile)->builtin_int,
851 0, ind);
852 SYMBOL_TYPE (sym) = create_array_type (NULL,
853 objfile_type (objfile)->builtin_char,
854 range_type);
855 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
856 memcpy (string_value, string_local, ind + 1);
857 p++;
858
859 SYMBOL_VALUE_BYTES (sym) = string_value;
860 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
861 }
862 break;
863
864 case 'e':
865 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
866 can be represented as integral.
867 e.g. "b:c=e6,0" for "const b = blob1"
868 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
869 {
870 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = read_type (&p, objfile);
872
873 if (*p != ',')
874 {
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 break;
877 }
878 ++p;
879
880 /* If the value is too big to fit in an int (perhaps because
881 it is unsigned), or something like that, we silently get
882 a bogus value. The type and everything else about it is
883 correct. Ideally, we should be using whatever we have
884 available for parsing unsigned and long long values,
885 however. */
886 SYMBOL_VALUE (sym) = atoi (p);
887 }
888 break;
889 default:
890 {
891 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 }
894 }
895 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
896 add_symbol_to_list (sym, &file_symbols);
897 return sym;
898
899 case 'C':
900 /* The name of a caught exception. */
901 SYMBOL_TYPE (sym) = read_type (&p, objfile);
902 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 SYMBOL_VALUE_ADDRESS (sym) = valu;
905 add_symbol_to_list (sym, &local_symbols);
906 break;
907
908 case 'f':
909 /* A static function definition. */
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 /* fall into process_function_types. */
915
916 process_function_types:
917 /* Function result types are described as the result type in stabs.
918 We need to convert this to the function-returning-type-X type
919 in GDB. E.g. "int" is converted to "function returning int". */
920 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
921 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
922
923 /* All functions in C++ have prototypes. Stabs does not offer an
924 explicit way to identify prototyped or unprototyped functions,
925 but both GCC and Sun CC emit stabs for the "call-as" type rather
926 than the "declared-as" type for unprototyped functions, so
927 we treat all functions as if they were prototyped. This is used
928 primarily for promotion when calling the function from GDB. */
929 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
930
931 /* fall into process_prototype_types. */
932
933 process_prototype_types:
934 /* Sun acc puts declared types of arguments here. */
935 if (*p == ';')
936 {
937 struct type *ftype = SYMBOL_TYPE (sym);
938 int nsemi = 0;
939 int nparams = 0;
940 char *p1 = p;
941
942 /* Obtain a worst case guess for the number of arguments
943 by counting the semicolons. */
944 while (*p1)
945 {
946 if (*p1++ == ';')
947 nsemi++;
948 }
949
950 /* Allocate parameter information fields and fill them in. */
951 TYPE_FIELDS (ftype) = (struct field *)
952 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
953 while (*p++ == ';')
954 {
955 struct type *ptype;
956
957 /* A type number of zero indicates the start of varargs.
958 FIXME: GDB currently ignores vararg functions. */
959 if (p[0] == '0' && p[1] == '\0')
960 break;
961 ptype = read_type (&p, objfile);
962
963 /* The Sun compilers mark integer arguments, which should
964 be promoted to the width of the calling conventions, with
965 a type which references itself. This type is turned into
966 a TYPE_CODE_VOID type by read_type, and we have to turn
967 it back into builtin_int here.
968 FIXME: Do we need a new builtin_promoted_int_arg ? */
969 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
970 ptype = objfile_type (objfile)->builtin_int;
971 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
972 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
973 }
974 TYPE_NFIELDS (ftype) = nparams;
975 TYPE_PROTOTYPED (ftype) = 1;
976 }
977 break;
978
979 case 'F':
980 /* A global function definition. */
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
982 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
983 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
984 add_symbol_to_list (sym, &global_symbols);
985 goto process_function_types;
986
987 case 'G':
988 /* For a class G (global) symbol, it appears that the
989 value is not correct. It is necessary to search for the
990 corresponding linker definition to find the value.
991 These definitions appear at the end of the namelist. */
992 SYMBOL_TYPE (sym) = read_type (&p, objfile);
993 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
995 /* Don't add symbol references to global_sym_chain.
996 Symbol references don't have valid names and wont't match up with
997 minimal symbols when the global_sym_chain is relocated.
998 We'll fixup symbol references when we fixup the defining symbol. */
999 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1000 {
1001 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1002 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1003 global_sym_chain[i] = sym;
1004 }
1005 add_symbol_to_list (sym, &global_symbols);
1006 break;
1007
1008 /* This case is faked by a conditional above,
1009 when there is no code letter in the dbx data.
1010 Dbx data never actually contains 'l'. */
1011 case 's':
1012 case 'l':
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1015 SYMBOL_VALUE (sym) = valu;
1016 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1017 add_symbol_to_list (sym, &local_symbols);
1018 break;
1019
1020 case 'p':
1021 if (*p == 'F')
1022 /* pF is a two-letter code that means a function parameter in Fortran.
1023 The type-number specifies the type of the return value.
1024 Translate it into a pointer-to-function type. */
1025 {
1026 p++;
1027 SYMBOL_TYPE (sym)
1028 = lookup_pointer_type
1029 (lookup_function_type (read_type (&p, objfile)));
1030 }
1031 else
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1035 SYMBOL_VALUE (sym) = valu;
1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1037 SYMBOL_IS_ARGUMENT (sym) = 1;
1038 add_symbol_to_list (sym, &local_symbols);
1039
1040 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1041 {
1042 /* On little-endian machines, this crud is never necessary,
1043 and, if the extra bytes contain garbage, is harmful. */
1044 break;
1045 }
1046
1047 /* If it's gcc-compiled, if it says `short', believe it. */
1048 if (processing_gcc_compilation
1049 || gdbarch_believe_pcc_promotion (gdbarch))
1050 break;
1051
1052 if (!gdbarch_believe_pcc_promotion (gdbarch))
1053 {
1054 /* If PCC says a parameter is a short or a char, it is
1055 really an int. */
1056 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1057 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1058 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1059 {
1060 SYMBOL_TYPE (sym) =
1061 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1062 ? objfile_type (objfile)->builtin_unsigned_int
1063 : objfile_type (objfile)->builtin_int;
1064 }
1065 break;
1066 }
1067
1068 case 'P':
1069 /* acc seems to use P to declare the prototypes of functions that
1070 are referenced by this file. gdb is not prepared to deal
1071 with this extra information. FIXME, it ought to. */
1072 if (type == N_FUN)
1073 {
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 goto process_prototype_types;
1076 }
1077 /*FALLTHROUGH */
1078
1079 case 'R':
1080 /* Parameter which is in a register. */
1081 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1082 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1083 SYMBOL_IS_ARGUMENT (sym) = 1;
1084 SYMBOL_VALUE (sym) = valu;
1085 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1086 add_symbol_to_list (sym, &local_symbols);
1087 break;
1088
1089 case 'r':
1090 /* Register variable (either global or local). */
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1093 SYMBOL_VALUE (sym) = valu;
1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1095 if (within_function)
1096 {
1097 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1098 the same name to represent an argument passed in a
1099 register. GCC uses 'P' for the same case. So if we find
1100 such a symbol pair we combine it into one 'P' symbol.
1101 For Sun cc we need to do this regardless of
1102 stabs_argument_has_addr, because the compiler puts out
1103 the 'p' symbol even if it never saves the argument onto
1104 the stack.
1105
1106 On most machines, we want to preserve both symbols, so
1107 that we can still get information about what is going on
1108 with the stack (VAX for computing args_printed, using
1109 stack slots instead of saved registers in backtraces,
1110 etc.).
1111
1112 Note that this code illegally combines
1113 main(argc) struct foo argc; { register struct foo argc; }
1114 but this case is considered pathological and causes a warning
1115 from a decent compiler. */
1116
1117 if (local_symbols
1118 && local_symbols->nsyms > 0
1119 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1120 {
1121 struct symbol *prev_sym;
1122
1123 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1124 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1125 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1126 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1127 SYMBOL_LINKAGE_NAME (sym)) == 0)
1128 {
1129 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1130 /* Use the type from the LOC_REGISTER; that is the type
1131 that is actually in that register. */
1132 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1133 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1134 sym = prev_sym;
1135 break;
1136 }
1137 }
1138 add_symbol_to_list (sym, &local_symbols);
1139 }
1140 else
1141 add_symbol_to_list (sym, &file_symbols);
1142 break;
1143
1144 case 'S':
1145 /* Static symbol at top level of file. */
1146 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1147 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1148 SYMBOL_VALUE_ADDRESS (sym) = valu;
1149 if (gdbarch_static_transform_name_p (gdbarch)
1150 && gdbarch_static_transform_name (gdbarch,
1151 SYMBOL_LINKAGE_NAME (sym))
1152 != SYMBOL_LINKAGE_NAME (sym))
1153 {
1154 struct minimal_symbol *msym;
1155
1156 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1157 NULL, objfile);
1158 if (msym != NULL)
1159 {
1160 const char *new_name = gdbarch_static_transform_name
1161 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1162
1163 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1164 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1165 }
1166 }
1167 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1168 add_symbol_to_list (sym, &file_symbols);
1169 break;
1170
1171 case 't':
1172 /* In Ada, there is no distinction between typedef and non-typedef;
1173 any type declaration implicitly has the equivalent of a typedef,
1174 and thus 't' is in fact equivalent to 'Tt'.
1175
1176 Therefore, for Ada units, we check the character immediately
1177 before the 't', and if we do not find a 'T', then make sure to
1178 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1179 will be stored in the VAR_DOMAIN). If the symbol was indeed
1180 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1181 elsewhere, so we don't need to take care of that.
1182
1183 This is important to do, because of forward references:
1184 The cleanup of undefined types stored in undef_types only uses
1185 STRUCT_DOMAIN symbols to perform the replacement. */
1186 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1187
1188 /* Typedef */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190
1191 /* For a nameless type, we don't want a create a symbol, thus we
1192 did not use `sym'. Return without further processing. */
1193 if (nameless)
1194 return NULL;
1195
1196 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1197 SYMBOL_VALUE (sym) = valu;
1198 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1199 /* C++ vagaries: we may have a type which is derived from
1200 a base type which did not have its name defined when the
1201 derived class was output. We fill in the derived class's
1202 base part member's name here in that case. */
1203 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1204 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1205 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1206 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1207 {
1208 int j;
1209
1210 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1211 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1212 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1213 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1214 }
1215
1216 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1217 {
1218 /* gcc-2.6 or later (when using -fvtable-thunks)
1219 emits a unique named type for a vtable entry.
1220 Some gdb code depends on that specific name. */
1221 extern const char vtbl_ptr_name[];
1222
1223 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1224 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1225 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1226 {
1227 /* If we are giving a name to a type such as "pointer to
1228 foo" or "function returning foo", we better not set
1229 the TYPE_NAME. If the program contains "typedef char
1230 *caddr_t;", we don't want all variables of type char
1231 * to print as caddr_t. This is not just a
1232 consequence of GDB's type management; PCC and GCC (at
1233 least through version 2.4) both output variables of
1234 either type char * or caddr_t with the type number
1235 defined in the 't' symbol for caddr_t. If a future
1236 compiler cleans this up it GDB is not ready for it
1237 yet, but if it becomes ready we somehow need to
1238 disable this check (without breaking the PCC/GCC2.4
1239 case).
1240
1241 Sigh.
1242
1243 Fortunately, this check seems not to be necessary
1244 for anything except pointers or functions. */
1245 /* ezannoni: 2000-10-26. This seems to apply for
1246 versions of gcc older than 2.8. This was the original
1247 problem: with the following code gdb would tell that
1248 the type for name1 is caddr_t, and func is char().
1249
1250 typedef char *caddr_t;
1251 char *name2;
1252 struct x
1253 {
1254 char *name1;
1255 } xx;
1256 char *func()
1257 {
1258 }
1259 main () {}
1260 */
1261
1262 /* Pascal accepts names for pointer types. */
1263 if (current_subfile->language == language_pascal)
1264 {
1265 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1266 }
1267 }
1268 else
1269 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1270 }
1271
1272 add_symbol_to_list (sym, &file_symbols);
1273
1274 if (synonym)
1275 {
1276 /* Create the STRUCT_DOMAIN clone. */
1277 struct symbol *struct_sym = allocate_symbol (objfile);
1278
1279 *struct_sym = *sym;
1280 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1281 SYMBOL_VALUE (struct_sym) = valu;
1282 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1283 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1284 TYPE_NAME (SYMBOL_TYPE (sym))
1285 = obconcat (&objfile->objfile_obstack,
1286 SYMBOL_LINKAGE_NAME (sym),
1287 (char *) NULL);
1288 add_symbol_to_list (struct_sym, &file_symbols);
1289 }
1290
1291 break;
1292
1293 case 'T':
1294 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1295 by 't' which means we are typedef'ing it as well. */
1296 synonym = *p == 't';
1297
1298 if (synonym)
1299 p++;
1300
1301 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1302
1303 /* For a nameless type, we don't want a create a symbol, thus we
1304 did not use `sym'. Return without further processing. */
1305 if (nameless)
1306 return NULL;
1307
1308 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1309 SYMBOL_VALUE (sym) = valu;
1310 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1311 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1312 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1313 = obconcat (&objfile->objfile_obstack,
1314 SYMBOL_LINKAGE_NAME (sym),
1315 (char *) NULL);
1316 add_symbol_to_list (sym, &file_symbols);
1317
1318 if (synonym)
1319 {
1320 /* Clone the sym and then modify it. */
1321 struct symbol *typedef_sym = allocate_symbol (objfile);
1322
1323 *typedef_sym = *sym;
1324 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1325 SYMBOL_VALUE (typedef_sym) = valu;
1326 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1327 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1328 TYPE_NAME (SYMBOL_TYPE (sym))
1329 = obconcat (&objfile->objfile_obstack,
1330 SYMBOL_LINKAGE_NAME (sym),
1331 (char *) NULL);
1332 add_symbol_to_list (typedef_sym, &file_symbols);
1333 }
1334 break;
1335
1336 case 'V':
1337 /* Static symbol of local scope. */
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1340 SYMBOL_VALUE_ADDRESS (sym) = valu;
1341 if (gdbarch_static_transform_name_p (gdbarch)
1342 && gdbarch_static_transform_name (gdbarch,
1343 SYMBOL_LINKAGE_NAME (sym))
1344 != SYMBOL_LINKAGE_NAME (sym))
1345 {
1346 struct minimal_symbol *msym;
1347
1348 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1349 NULL, objfile);
1350 if (msym != NULL)
1351 {
1352 const char *new_name = gdbarch_static_transform_name
1353 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1354
1355 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1356 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1357 }
1358 }
1359 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1360 add_symbol_to_list (sym, &local_symbols);
1361 break;
1362
1363 case 'v':
1364 /* Reference parameter */
1365 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1366 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1367 SYMBOL_IS_ARGUMENT (sym) = 1;
1368 SYMBOL_VALUE (sym) = valu;
1369 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1370 add_symbol_to_list (sym, &local_symbols);
1371 break;
1372
1373 case 'a':
1374 /* Reference parameter which is in a register. */
1375 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1376 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1377 SYMBOL_IS_ARGUMENT (sym) = 1;
1378 SYMBOL_VALUE (sym) = valu;
1379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1380 add_symbol_to_list (sym, &local_symbols);
1381 break;
1382
1383 case 'X':
1384 /* This is used by Sun FORTRAN for "function result value".
1385 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1386 that Pascal uses it too, but when I tried it Pascal used
1387 "x:3" (local symbol) instead. */
1388 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1389 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1390 SYMBOL_VALUE (sym) = valu;
1391 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1392 add_symbol_to_list (sym, &local_symbols);
1393 break;
1394
1395 default:
1396 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1397 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1398 SYMBOL_VALUE (sym) = 0;
1399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1400 add_symbol_to_list (sym, &file_symbols);
1401 break;
1402 }
1403
1404 /* Some systems pass variables of certain types by reference instead
1405 of by value, i.e. they will pass the address of a structure (in a
1406 register or on the stack) instead of the structure itself. */
1407
1408 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1409 && SYMBOL_IS_ARGUMENT (sym))
1410 {
1411 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1412 variables passed in a register). */
1413 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1414 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1415 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1416 and subsequent arguments on SPARC, for example). */
1417 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1418 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1419 }
1420
1421 return sym;
1422 }
1423
1424 /* Skip rest of this symbol and return an error type.
1425
1426 General notes on error recovery: error_type always skips to the
1427 end of the symbol (modulo cretinous dbx symbol name continuation).
1428 Thus code like this:
1429
1430 if (*(*pp)++ != ';')
1431 return error_type (pp, objfile);
1432
1433 is wrong because if *pp starts out pointing at '\0' (typically as the
1434 result of an earlier error), it will be incremented to point to the
1435 start of the next symbol, which might produce strange results, at least
1436 if you run off the end of the string table. Instead use
1437
1438 if (**pp != ';')
1439 return error_type (pp, objfile);
1440 ++*pp;
1441
1442 or
1443
1444 if (**pp != ';')
1445 foo = error_type (pp, objfile);
1446 else
1447 ++*pp;
1448
1449 And in case it isn't obvious, the point of all this hair is so the compiler
1450 can define new types and new syntaxes, and old versions of the
1451 debugger will be able to read the new symbol tables. */
1452
1453 static struct type *
1454 error_type (char **pp, struct objfile *objfile)
1455 {
1456 complaint (&symfile_complaints,
1457 _("couldn't parse type; debugger out of date?"));
1458 while (1)
1459 {
1460 /* Skip to end of symbol. */
1461 while (**pp != '\0')
1462 {
1463 (*pp)++;
1464 }
1465
1466 /* Check for and handle cretinous dbx symbol name continuation! */
1467 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1468 {
1469 *pp = next_symbol_text (objfile);
1470 }
1471 else
1472 {
1473 break;
1474 }
1475 }
1476 return objfile_type (objfile)->builtin_error;
1477 }
1478 \f
1479
1480 /* Read type information or a type definition; return the type. Even
1481 though this routine accepts either type information or a type
1482 definition, the distinction is relevant--some parts of stabsread.c
1483 assume that type information starts with a digit, '-', or '(' in
1484 deciding whether to call read_type. */
1485
1486 static struct type *
1487 read_type (char **pp, struct objfile *objfile)
1488 {
1489 struct type *type = 0;
1490 struct type *type1;
1491 int typenums[2];
1492 char type_descriptor;
1493
1494 /* Size in bits of type if specified by a type attribute, or -1 if
1495 there is no size attribute. */
1496 int type_size = -1;
1497
1498 /* Used to distinguish string and bitstring from char-array and set. */
1499 int is_string = 0;
1500
1501 /* Used to distinguish vector from array. */
1502 int is_vector = 0;
1503
1504 /* Read type number if present. The type number may be omitted.
1505 for instance in a two-dimensional array declared with type
1506 "ar1;1;10;ar1;1;10;4". */
1507 if ((**pp >= '0' && **pp <= '9')
1508 || **pp == '('
1509 || **pp == '-')
1510 {
1511 if (read_type_number (pp, typenums) != 0)
1512 return error_type (pp, objfile);
1513
1514 if (**pp != '=')
1515 {
1516 /* Type is not being defined here. Either it already
1517 exists, or this is a forward reference to it.
1518 dbx_alloc_type handles both cases. */
1519 type = dbx_alloc_type (typenums, objfile);
1520
1521 /* If this is a forward reference, arrange to complain if it
1522 doesn't get patched up by the time we're done
1523 reading. */
1524 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1525 add_undefined_type (type, typenums);
1526
1527 return type;
1528 }
1529
1530 /* Type is being defined here. */
1531 /* Skip the '='.
1532 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1533 (*pp) += 2;
1534 }
1535 else
1536 {
1537 /* 'typenums=' not present, type is anonymous. Read and return
1538 the definition, but don't put it in the type vector. */
1539 typenums[0] = typenums[1] = -1;
1540 (*pp)++;
1541 }
1542
1543 again:
1544 type_descriptor = (*pp)[-1];
1545 switch (type_descriptor)
1546 {
1547 case 'x':
1548 {
1549 enum type_code code;
1550
1551 /* Used to index through file_symbols. */
1552 struct pending *ppt;
1553 int i;
1554
1555 /* Name including "struct", etc. */
1556 char *type_name;
1557
1558 {
1559 char *from, *to, *p, *q1, *q2;
1560
1561 /* Set the type code according to the following letter. */
1562 switch ((*pp)[0])
1563 {
1564 case 's':
1565 code = TYPE_CODE_STRUCT;
1566 break;
1567 case 'u':
1568 code = TYPE_CODE_UNION;
1569 break;
1570 case 'e':
1571 code = TYPE_CODE_ENUM;
1572 break;
1573 default:
1574 {
1575 /* Complain and keep going, so compilers can invent new
1576 cross-reference types. */
1577 complaint (&symfile_complaints,
1578 _("Unrecognized cross-reference type `%c'"),
1579 (*pp)[0]);
1580 code = TYPE_CODE_STRUCT;
1581 break;
1582 }
1583 }
1584
1585 q1 = strchr (*pp, '<');
1586 p = strchr (*pp, ':');
1587 if (p == NULL)
1588 return error_type (pp, objfile);
1589 if (q1 && p > q1 && p[1] == ':')
1590 {
1591 int nesting_level = 0;
1592
1593 for (q2 = q1; *q2; q2++)
1594 {
1595 if (*q2 == '<')
1596 nesting_level++;
1597 else if (*q2 == '>')
1598 nesting_level--;
1599 else if (*q2 == ':' && nesting_level == 0)
1600 break;
1601 }
1602 p = q2;
1603 if (*p != ':')
1604 return error_type (pp, objfile);
1605 }
1606 type_name = NULL;
1607 if (current_subfile->language == language_cplus)
1608 {
1609 char *new_name, *name = alloca (p - *pp + 1);
1610
1611 memcpy (name, *pp, p - *pp);
1612 name[p - *pp] = '\0';
1613 new_name = cp_canonicalize_string (name);
1614 if (new_name != NULL)
1615 {
1616 type_name = obstack_copy0 (&objfile->objfile_obstack,
1617 new_name, strlen (new_name));
1618 xfree (new_name);
1619 }
1620 }
1621 if (type_name == NULL)
1622 {
1623 to = type_name = (char *)
1624 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1625
1626 /* Copy the name. */
1627 from = *pp + 1;
1628 while (from < p)
1629 *to++ = *from++;
1630 *to = '\0';
1631 }
1632
1633 /* Set the pointer ahead of the name which we just read, and
1634 the colon. */
1635 *pp = p + 1;
1636 }
1637
1638 /* If this type has already been declared, then reuse the same
1639 type, rather than allocating a new one. This saves some
1640 memory. */
1641
1642 for (ppt = file_symbols; ppt; ppt = ppt->next)
1643 for (i = 0; i < ppt->nsyms; i++)
1644 {
1645 struct symbol *sym = ppt->symbol[i];
1646
1647 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1648 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1649 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1650 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1651 {
1652 obstack_free (&objfile->objfile_obstack, type_name);
1653 type = SYMBOL_TYPE (sym);
1654 if (typenums[0] != -1)
1655 *dbx_lookup_type (typenums, objfile) = type;
1656 return type;
1657 }
1658 }
1659
1660 /* Didn't find the type to which this refers, so we must
1661 be dealing with a forward reference. Allocate a type
1662 structure for it, and keep track of it so we can
1663 fill in the rest of the fields when we get the full
1664 type. */
1665 type = dbx_alloc_type (typenums, objfile);
1666 TYPE_CODE (type) = code;
1667 TYPE_TAG_NAME (type) = type_name;
1668 INIT_CPLUS_SPECIFIC (type);
1669 TYPE_STUB (type) = 1;
1670
1671 add_undefined_type (type, typenums);
1672 return type;
1673 }
1674
1675 case '-': /* RS/6000 built-in type */
1676 case '0':
1677 case '1':
1678 case '2':
1679 case '3':
1680 case '4':
1681 case '5':
1682 case '6':
1683 case '7':
1684 case '8':
1685 case '9':
1686 case '(':
1687 (*pp)--;
1688
1689 /* We deal with something like t(1,2)=(3,4)=... which
1690 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1691
1692 /* Allocate and enter the typedef type first.
1693 This handles recursive types. */
1694 type = dbx_alloc_type (typenums, objfile);
1695 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1696 {
1697 struct type *xtype = read_type (pp, objfile);
1698
1699 if (type == xtype)
1700 {
1701 /* It's being defined as itself. That means it is "void". */
1702 TYPE_CODE (type) = TYPE_CODE_VOID;
1703 TYPE_LENGTH (type) = 1;
1704 }
1705 else if (type_size >= 0 || is_string)
1706 {
1707 /* This is the absolute wrong way to construct types. Every
1708 other debug format has found a way around this problem and
1709 the related problems with unnecessarily stubbed types;
1710 someone motivated should attempt to clean up the issue
1711 here as well. Once a type pointed to has been created it
1712 should not be modified.
1713
1714 Well, it's not *absolutely* wrong. Constructing recursive
1715 types (trees, linked lists) necessarily entails modifying
1716 types after creating them. Constructing any loop structure
1717 entails side effects. The Dwarf 2 reader does handle this
1718 more gracefully (it never constructs more than once
1719 instance of a type object, so it doesn't have to copy type
1720 objects wholesale), but it still mutates type objects after
1721 other folks have references to them.
1722
1723 Keep in mind that this circularity/mutation issue shows up
1724 at the source language level, too: C's "incomplete types",
1725 for example. So the proper cleanup, I think, would be to
1726 limit GDB's type smashing to match exactly those required
1727 by the source language. So GDB could have a
1728 "complete_this_type" function, but never create unnecessary
1729 copies of a type otherwise. */
1730 replace_type (type, xtype);
1731 TYPE_NAME (type) = NULL;
1732 TYPE_TAG_NAME (type) = NULL;
1733 }
1734 else
1735 {
1736 TYPE_TARGET_STUB (type) = 1;
1737 TYPE_TARGET_TYPE (type) = xtype;
1738 }
1739 }
1740 break;
1741
1742 /* In the following types, we must be sure to overwrite any existing
1743 type that the typenums refer to, rather than allocating a new one
1744 and making the typenums point to the new one. This is because there
1745 may already be pointers to the existing type (if it had been
1746 forward-referenced), and we must change it to a pointer, function,
1747 reference, or whatever, *in-place*. */
1748
1749 case '*': /* Pointer to another type */
1750 type1 = read_type (pp, objfile);
1751 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1752 break;
1753
1754 case '&': /* Reference to another type */
1755 type1 = read_type (pp, objfile);
1756 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1757 break;
1758
1759 case 'f': /* Function returning another type */
1760 type1 = read_type (pp, objfile);
1761 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1762 break;
1763
1764 case 'g': /* Prototyped function. (Sun) */
1765 {
1766 /* Unresolved questions:
1767
1768 - According to Sun's ``STABS Interface Manual'', for 'f'
1769 and 'F' symbol descriptors, a `0' in the argument type list
1770 indicates a varargs function. But it doesn't say how 'g'
1771 type descriptors represent that info. Someone with access
1772 to Sun's toolchain should try it out.
1773
1774 - According to the comment in define_symbol (search for
1775 `process_prototype_types:'), Sun emits integer arguments as
1776 types which ref themselves --- like `void' types. Do we
1777 have to deal with that here, too? Again, someone with
1778 access to Sun's toolchain should try it out and let us
1779 know. */
1780
1781 const char *type_start = (*pp) - 1;
1782 struct type *return_type = read_type (pp, objfile);
1783 struct type *func_type
1784 = make_function_type (return_type,
1785 dbx_lookup_type (typenums, objfile));
1786 struct type_list {
1787 struct type *type;
1788 struct type_list *next;
1789 } *arg_types = 0;
1790 int num_args = 0;
1791
1792 while (**pp && **pp != '#')
1793 {
1794 struct type *arg_type = read_type (pp, objfile);
1795 struct type_list *new = alloca (sizeof (*new));
1796 new->type = arg_type;
1797 new->next = arg_types;
1798 arg_types = new;
1799 num_args++;
1800 }
1801 if (**pp == '#')
1802 ++*pp;
1803 else
1804 {
1805 complaint (&symfile_complaints,
1806 _("Prototyped function type didn't "
1807 "end arguments with `#':\n%s"),
1808 type_start);
1809 }
1810
1811 /* If there is just one argument whose type is `void', then
1812 that's just an empty argument list. */
1813 if (arg_types
1814 && ! arg_types->next
1815 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1816 num_args = 0;
1817
1818 TYPE_FIELDS (func_type)
1819 = (struct field *) TYPE_ALLOC (func_type,
1820 num_args * sizeof (struct field));
1821 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1822 {
1823 int i;
1824 struct type_list *t;
1825
1826 /* We stuck each argument type onto the front of the list
1827 when we read it, so the list is reversed. Build the
1828 fields array right-to-left. */
1829 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1830 TYPE_FIELD_TYPE (func_type, i) = t->type;
1831 }
1832 TYPE_NFIELDS (func_type) = num_args;
1833 TYPE_PROTOTYPED (func_type) = 1;
1834
1835 type = func_type;
1836 break;
1837 }
1838
1839 case 'k': /* Const qualifier on some type (Sun) */
1840 type = read_type (pp, objfile);
1841 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1842 dbx_lookup_type (typenums, objfile));
1843 break;
1844
1845 case 'B': /* Volatile qual on some type (Sun) */
1846 type = read_type (pp, objfile);
1847 type = make_cv_type (TYPE_CONST (type), 1, type,
1848 dbx_lookup_type (typenums, objfile));
1849 break;
1850
1851 case '@':
1852 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1853 { /* Member (class & variable) type */
1854 /* FIXME -- we should be doing smash_to_XXX types here. */
1855
1856 struct type *domain = read_type (pp, objfile);
1857 struct type *memtype;
1858
1859 if (**pp != ',')
1860 /* Invalid member type data format. */
1861 return error_type (pp, objfile);
1862 ++*pp;
1863
1864 memtype = read_type (pp, objfile);
1865 type = dbx_alloc_type (typenums, objfile);
1866 smash_to_memberptr_type (type, domain, memtype);
1867 }
1868 else
1869 /* type attribute */
1870 {
1871 char *attr = *pp;
1872
1873 /* Skip to the semicolon. */
1874 while (**pp != ';' && **pp != '\0')
1875 ++(*pp);
1876 if (**pp == '\0')
1877 return error_type (pp, objfile);
1878 else
1879 ++ * pp; /* Skip the semicolon. */
1880
1881 switch (*attr)
1882 {
1883 case 's': /* Size attribute */
1884 type_size = atoi (attr + 1);
1885 if (type_size <= 0)
1886 type_size = -1;
1887 break;
1888
1889 case 'S': /* String attribute */
1890 /* FIXME: check to see if following type is array? */
1891 is_string = 1;
1892 break;
1893
1894 case 'V': /* Vector attribute */
1895 /* FIXME: check to see if following type is array? */
1896 is_vector = 1;
1897 break;
1898
1899 default:
1900 /* Ignore unrecognized type attributes, so future compilers
1901 can invent new ones. */
1902 break;
1903 }
1904 ++*pp;
1905 goto again;
1906 }
1907 break;
1908
1909 case '#': /* Method (class & fn) type */
1910 if ((*pp)[0] == '#')
1911 {
1912 /* We'll get the parameter types from the name. */
1913 struct type *return_type;
1914
1915 (*pp)++;
1916 return_type = read_type (pp, objfile);
1917 if (*(*pp)++ != ';')
1918 complaint (&symfile_complaints,
1919 _("invalid (minimal) member type "
1920 "data format at symtab pos %d."),
1921 symnum);
1922 type = allocate_stub_method (return_type);
1923 if (typenums[0] != -1)
1924 *dbx_lookup_type (typenums, objfile) = type;
1925 }
1926 else
1927 {
1928 struct type *domain = read_type (pp, objfile);
1929 struct type *return_type;
1930 struct field *args;
1931 int nargs, varargs;
1932
1933 if (**pp != ',')
1934 /* Invalid member type data format. */
1935 return error_type (pp, objfile);
1936 else
1937 ++(*pp);
1938
1939 return_type = read_type (pp, objfile);
1940 args = read_args (pp, ';', objfile, &nargs, &varargs);
1941 if (args == NULL)
1942 return error_type (pp, objfile);
1943 type = dbx_alloc_type (typenums, objfile);
1944 smash_to_method_type (type, domain, return_type, args,
1945 nargs, varargs);
1946 }
1947 break;
1948
1949 case 'r': /* Range type */
1950 type = read_range_type (pp, typenums, type_size, objfile);
1951 if (typenums[0] != -1)
1952 *dbx_lookup_type (typenums, objfile) = type;
1953 break;
1954
1955 case 'b':
1956 {
1957 /* Sun ACC builtin int type */
1958 type = read_sun_builtin_type (pp, typenums, objfile);
1959 if (typenums[0] != -1)
1960 *dbx_lookup_type (typenums, objfile) = type;
1961 }
1962 break;
1963
1964 case 'R': /* Sun ACC builtin float type */
1965 type = read_sun_floating_type (pp, typenums, objfile);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1968 break;
1969
1970 case 'e': /* Enumeration type */
1971 type = dbx_alloc_type (typenums, objfile);
1972 type = read_enum_type (pp, type, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 break;
1976
1977 case 's': /* Struct type */
1978 case 'u': /* Union type */
1979 {
1980 enum type_code type_code = TYPE_CODE_UNDEF;
1981 type = dbx_alloc_type (typenums, objfile);
1982 switch (type_descriptor)
1983 {
1984 case 's':
1985 type_code = TYPE_CODE_STRUCT;
1986 break;
1987 case 'u':
1988 type_code = TYPE_CODE_UNION;
1989 break;
1990 }
1991 type = read_struct_type (pp, type, type_code, objfile);
1992 break;
1993 }
1994
1995 case 'a': /* Array type */
1996 if (**pp != 'r')
1997 return error_type (pp, objfile);
1998 ++*pp;
1999
2000 type = dbx_alloc_type (typenums, objfile);
2001 type = read_array_type (pp, type, objfile);
2002 if (is_string)
2003 TYPE_CODE (type) = TYPE_CODE_STRING;
2004 if (is_vector)
2005 make_vector_type (type);
2006 break;
2007
2008 case 'S': /* Set type */
2009 type1 = read_type (pp, objfile);
2010 type = create_set_type ((struct type *) NULL, type1);
2011 if (typenums[0] != -1)
2012 *dbx_lookup_type (typenums, objfile) = type;
2013 break;
2014
2015 default:
2016 --*pp; /* Go back to the symbol in error. */
2017 /* Particularly important if it was \0! */
2018 return error_type (pp, objfile);
2019 }
2020
2021 if (type == 0)
2022 {
2023 warning (_("GDB internal error, type is NULL in stabsread.c."));
2024 return error_type (pp, objfile);
2025 }
2026
2027 /* Size specified in a type attribute overrides any other size. */
2028 if (type_size != -1)
2029 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2030
2031 return type;
2032 }
2033 \f
2034 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2035 Return the proper type node for a given builtin type number. */
2036
2037 static const struct objfile_data *rs6000_builtin_type_data;
2038
2039 static struct type *
2040 rs6000_builtin_type (int typenum, struct objfile *objfile)
2041 {
2042 struct type **negative_types = objfile_data (objfile,
2043 rs6000_builtin_type_data);
2044
2045 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2046 #define NUMBER_RECOGNIZED 34
2047 struct type *rettype = NULL;
2048
2049 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2050 {
2051 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2052 return objfile_type (objfile)->builtin_error;
2053 }
2054
2055 if (!negative_types)
2056 {
2057 /* This includes an empty slot for type number -0. */
2058 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2059 NUMBER_RECOGNIZED + 1, struct type *);
2060 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2061 }
2062
2063 if (negative_types[-typenum] != NULL)
2064 return negative_types[-typenum];
2065
2066 #if TARGET_CHAR_BIT != 8
2067 #error This code wrong for TARGET_CHAR_BIT not 8
2068 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2069 that if that ever becomes not true, the correct fix will be to
2070 make the size in the struct type to be in bits, not in units of
2071 TARGET_CHAR_BIT. */
2072 #endif
2073
2074 switch (-typenum)
2075 {
2076 case 1:
2077 /* The size of this and all the other types are fixed, defined
2078 by the debugging format. If there is a type called "int" which
2079 is other than 32 bits, then it should use a new negative type
2080 number (or avoid negative type numbers for that case).
2081 See stabs.texinfo. */
2082 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2083 break;
2084 case 2:
2085 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2086 break;
2087 case 3:
2088 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2089 break;
2090 case 4:
2091 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2092 break;
2093 case 5:
2094 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2095 "unsigned char", objfile);
2096 break;
2097 case 6:
2098 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2099 break;
2100 case 7:
2101 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2102 "unsigned short", objfile);
2103 break;
2104 case 8:
2105 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2106 "unsigned int", objfile);
2107 break;
2108 case 9:
2109 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2110 "unsigned", objfile);
2111 break;
2112 case 10:
2113 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2114 "unsigned long", objfile);
2115 break;
2116 case 11:
2117 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2118 break;
2119 case 12:
2120 /* IEEE single precision (32 bit). */
2121 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2122 break;
2123 case 13:
2124 /* IEEE double precision (64 bit). */
2125 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2126 break;
2127 case 14:
2128 /* This is an IEEE double on the RS/6000, and different machines with
2129 different sizes for "long double" should use different negative
2130 type numbers. See stabs.texinfo. */
2131 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2132 break;
2133 case 15:
2134 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2135 break;
2136 case 16:
2137 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2138 "boolean", objfile);
2139 break;
2140 case 17:
2141 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2142 break;
2143 case 18:
2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2145 break;
2146 case 19:
2147 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2148 break;
2149 case 20:
2150 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2151 "character", objfile);
2152 break;
2153 case 21:
2154 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2155 "logical*1", objfile);
2156 break;
2157 case 22:
2158 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2159 "logical*2", objfile);
2160 break;
2161 case 23:
2162 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2163 "logical*4", objfile);
2164 break;
2165 case 24:
2166 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2167 "logical", objfile);
2168 break;
2169 case 25:
2170 /* Complex type consisting of two IEEE single precision values. */
2171 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2172 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2173 objfile);
2174 break;
2175 case 26:
2176 /* Complex type consisting of two IEEE double precision values. */
2177 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2178 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2179 objfile);
2180 break;
2181 case 27:
2182 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2183 break;
2184 case 28:
2185 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2186 break;
2187 case 29:
2188 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2189 break;
2190 case 30:
2191 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2192 break;
2193 case 31:
2194 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2195 break;
2196 case 32:
2197 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2198 "unsigned long long", objfile);
2199 break;
2200 case 33:
2201 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2202 "logical*8", objfile);
2203 break;
2204 case 34:
2205 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2206 break;
2207 }
2208 negative_types[-typenum] = rettype;
2209 return rettype;
2210 }
2211 \f
2212 /* This page contains subroutines of read_type. */
2213
2214 /* Wrapper around method_name_from_physname to flag a complaint
2215 if there is an error. */
2216
2217 static char *
2218 stabs_method_name_from_physname (const char *physname)
2219 {
2220 char *method_name;
2221
2222 method_name = method_name_from_physname (physname);
2223
2224 if (method_name == NULL)
2225 {
2226 complaint (&symfile_complaints,
2227 _("Method has bad physname %s\n"), physname);
2228 return NULL;
2229 }
2230
2231 return method_name;
2232 }
2233
2234 /* Read member function stabs info for C++ classes. The form of each member
2235 function data is:
2236
2237 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2238
2239 An example with two member functions is:
2240
2241 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2242
2243 For the case of overloaded operators, the format is op$::*.funcs, where
2244 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2245 name (such as `+=') and `.' marks the end of the operator name.
2246
2247 Returns 1 for success, 0 for failure. */
2248
2249 static int
2250 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2251 struct objfile *objfile)
2252 {
2253 int nfn_fields = 0;
2254 int length = 0;
2255 int i;
2256 struct next_fnfield
2257 {
2258 struct next_fnfield *next;
2259 struct fn_field fn_field;
2260 }
2261 *sublist;
2262 struct type *look_ahead_type;
2263 struct next_fnfieldlist *new_fnlist;
2264 struct next_fnfield *new_sublist;
2265 char *main_fn_name;
2266 char *p;
2267
2268 /* Process each list until we find something that is not a member function
2269 or find the end of the functions. */
2270
2271 while (**pp != ';')
2272 {
2273 /* We should be positioned at the start of the function name.
2274 Scan forward to find the first ':' and if it is not the
2275 first of a "::" delimiter, then this is not a member function. */
2276 p = *pp;
2277 while (*p != ':')
2278 {
2279 p++;
2280 }
2281 if (p[1] != ':')
2282 {
2283 break;
2284 }
2285
2286 sublist = NULL;
2287 look_ahead_type = NULL;
2288 length = 0;
2289
2290 new_fnlist = (struct next_fnfieldlist *)
2291 xmalloc (sizeof (struct next_fnfieldlist));
2292 make_cleanup (xfree, new_fnlist);
2293 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2294
2295 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2296 {
2297 /* This is a completely wierd case. In order to stuff in the
2298 names that might contain colons (the usual name delimiter),
2299 Mike Tiemann defined a different name format which is
2300 signalled if the identifier is "op$". In that case, the
2301 format is "op$::XXXX." where XXXX is the name. This is
2302 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2303 /* This lets the user type "break operator+".
2304 We could just put in "+" as the name, but that wouldn't
2305 work for "*". */
2306 static char opname[32] = "op$";
2307 char *o = opname + 3;
2308
2309 /* Skip past '::'. */
2310 *pp = p + 2;
2311
2312 STABS_CONTINUE (pp, objfile);
2313 p = *pp;
2314 while (*p != '.')
2315 {
2316 *o++ = *p++;
2317 }
2318 main_fn_name = savestring (opname, o - opname);
2319 /* Skip past '.' */
2320 *pp = p + 1;
2321 }
2322 else
2323 {
2324 main_fn_name = savestring (*pp, p - *pp);
2325 /* Skip past '::'. */
2326 *pp = p + 2;
2327 }
2328 new_fnlist->fn_fieldlist.name = main_fn_name;
2329
2330 do
2331 {
2332 new_sublist =
2333 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2334 make_cleanup (xfree, new_sublist);
2335 memset (new_sublist, 0, sizeof (struct next_fnfield));
2336
2337 /* Check for and handle cretinous dbx symbol name continuation! */
2338 if (look_ahead_type == NULL)
2339 {
2340 /* Normal case. */
2341 STABS_CONTINUE (pp, objfile);
2342
2343 new_sublist->fn_field.type = read_type (pp, objfile);
2344 if (**pp != ':')
2345 {
2346 /* Invalid symtab info for member function. */
2347 return 0;
2348 }
2349 }
2350 else
2351 {
2352 /* g++ version 1 kludge */
2353 new_sublist->fn_field.type = look_ahead_type;
2354 look_ahead_type = NULL;
2355 }
2356
2357 (*pp)++;
2358 p = *pp;
2359 while (*p != ';')
2360 {
2361 p++;
2362 }
2363
2364 /* If this is just a stub, then we don't have the real name here. */
2365
2366 if (TYPE_STUB (new_sublist->fn_field.type))
2367 {
2368 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2369 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2370 new_sublist->fn_field.is_stub = 1;
2371 }
2372 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2373 *pp = p + 1;
2374
2375 /* Set this member function's visibility fields. */
2376 switch (*(*pp)++)
2377 {
2378 case VISIBILITY_PRIVATE:
2379 new_sublist->fn_field.is_private = 1;
2380 break;
2381 case VISIBILITY_PROTECTED:
2382 new_sublist->fn_field.is_protected = 1;
2383 break;
2384 }
2385
2386 STABS_CONTINUE (pp, objfile);
2387 switch (**pp)
2388 {
2389 case 'A': /* Normal functions. */
2390 new_sublist->fn_field.is_const = 0;
2391 new_sublist->fn_field.is_volatile = 0;
2392 (*pp)++;
2393 break;
2394 case 'B': /* `const' member functions. */
2395 new_sublist->fn_field.is_const = 1;
2396 new_sublist->fn_field.is_volatile = 0;
2397 (*pp)++;
2398 break;
2399 case 'C': /* `volatile' member function. */
2400 new_sublist->fn_field.is_const = 0;
2401 new_sublist->fn_field.is_volatile = 1;
2402 (*pp)++;
2403 break;
2404 case 'D': /* `const volatile' member function. */
2405 new_sublist->fn_field.is_const = 1;
2406 new_sublist->fn_field.is_volatile = 1;
2407 (*pp)++;
2408 break;
2409 case '*': /* File compiled with g++ version 1 --
2410 no info. */
2411 case '?':
2412 case '.':
2413 break;
2414 default:
2415 complaint (&symfile_complaints,
2416 _("const/volatile indicator missing, got '%c'"),
2417 **pp);
2418 break;
2419 }
2420
2421 switch (*(*pp)++)
2422 {
2423 case '*':
2424 {
2425 int nbits;
2426 /* virtual member function, followed by index.
2427 The sign bit is set to distinguish pointers-to-methods
2428 from virtual function indicies. Since the array is
2429 in words, the quantity must be shifted left by 1
2430 on 16 bit machine, and by 2 on 32 bit machine, forcing
2431 the sign bit out, and usable as a valid index into
2432 the array. Remove the sign bit here. */
2433 new_sublist->fn_field.voffset =
2434 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2435 if (nbits != 0)
2436 return 0;
2437
2438 STABS_CONTINUE (pp, objfile);
2439 if (**pp == ';' || **pp == '\0')
2440 {
2441 /* Must be g++ version 1. */
2442 new_sublist->fn_field.fcontext = 0;
2443 }
2444 else
2445 {
2446 /* Figure out from whence this virtual function came.
2447 It may belong to virtual function table of
2448 one of its baseclasses. */
2449 look_ahead_type = read_type (pp, objfile);
2450 if (**pp == ':')
2451 {
2452 /* g++ version 1 overloaded methods. */
2453 }
2454 else
2455 {
2456 new_sublist->fn_field.fcontext = look_ahead_type;
2457 if (**pp != ';')
2458 {
2459 return 0;
2460 }
2461 else
2462 {
2463 ++*pp;
2464 }
2465 look_ahead_type = NULL;
2466 }
2467 }
2468 break;
2469 }
2470 case '?':
2471 /* static member function. */
2472 {
2473 int slen = strlen (main_fn_name);
2474
2475 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2476
2477 /* For static member functions, we can't tell if they
2478 are stubbed, as they are put out as functions, and not as
2479 methods.
2480 GCC v2 emits the fully mangled name if
2481 dbxout.c:flag_minimal_debug is not set, so we have to
2482 detect a fully mangled physname here and set is_stub
2483 accordingly. Fully mangled physnames in v2 start with
2484 the member function name, followed by two underscores.
2485 GCC v3 currently always emits stubbed member functions,
2486 but with fully mangled physnames, which start with _Z. */
2487 if (!(strncmp (new_sublist->fn_field.physname,
2488 main_fn_name, slen) == 0
2489 && new_sublist->fn_field.physname[slen] == '_'
2490 && new_sublist->fn_field.physname[slen + 1] == '_'))
2491 {
2492 new_sublist->fn_field.is_stub = 1;
2493 }
2494 break;
2495 }
2496
2497 default:
2498 /* error */
2499 complaint (&symfile_complaints,
2500 _("member function type missing, got '%c'"),
2501 (*pp)[-1]);
2502 /* Fall through into normal member function. */
2503
2504 case '.':
2505 /* normal member function. */
2506 new_sublist->fn_field.voffset = 0;
2507 new_sublist->fn_field.fcontext = 0;
2508 break;
2509 }
2510
2511 new_sublist->next = sublist;
2512 sublist = new_sublist;
2513 length++;
2514 STABS_CONTINUE (pp, objfile);
2515 }
2516 while (**pp != ';' && **pp != '\0');
2517
2518 (*pp)++;
2519 STABS_CONTINUE (pp, objfile);
2520
2521 /* Skip GCC 3.X member functions which are duplicates of the callable
2522 constructor/destructor. */
2523 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2524 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2525 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2526 {
2527 xfree (main_fn_name);
2528 }
2529 else
2530 {
2531 int has_stub = 0;
2532 int has_destructor = 0, has_other = 0;
2533 int is_v3 = 0;
2534 struct next_fnfield *tmp_sublist;
2535
2536 /* Various versions of GCC emit various mostly-useless
2537 strings in the name field for special member functions.
2538
2539 For stub methods, we need to defer correcting the name
2540 until we are ready to unstub the method, because the current
2541 name string is used by gdb_mangle_name. The only stub methods
2542 of concern here are GNU v2 operators; other methods have their
2543 names correct (see caveat below).
2544
2545 For non-stub methods, in GNU v3, we have a complete physname.
2546 Therefore we can safely correct the name now. This primarily
2547 affects constructors and destructors, whose name will be
2548 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2549 operators will also have incorrect names; for instance,
2550 "operator int" will be named "operator i" (i.e. the type is
2551 mangled).
2552
2553 For non-stub methods in GNU v2, we have no easy way to
2554 know if we have a complete physname or not. For most
2555 methods the result depends on the platform (if CPLUS_MARKER
2556 can be `$' or `.', it will use minimal debug information, or
2557 otherwise the full physname will be included).
2558
2559 Rather than dealing with this, we take a different approach.
2560 For v3 mangled names, we can use the full physname; for v2,
2561 we use cplus_demangle_opname (which is actually v2 specific),
2562 because the only interesting names are all operators - once again
2563 barring the caveat below. Skip this process if any method in the
2564 group is a stub, to prevent our fouling up the workings of
2565 gdb_mangle_name.
2566
2567 The caveat: GCC 2.95.x (and earlier?) put constructors and
2568 destructors in the same method group. We need to split this
2569 into two groups, because they should have different names.
2570 So for each method group we check whether it contains both
2571 routines whose physname appears to be a destructor (the physnames
2572 for and destructors are always provided, due to quirks in v2
2573 mangling) and routines whose physname does not appear to be a
2574 destructor. If so then we break up the list into two halves.
2575 Even if the constructors and destructors aren't in the same group
2576 the destructor will still lack the leading tilde, so that also
2577 needs to be fixed.
2578
2579 So, to summarize what we expect and handle here:
2580
2581 Given Given Real Real Action
2582 method name physname physname method name
2583
2584 __opi [none] __opi__3Foo operator int opname
2585 [now or later]
2586 Foo _._3Foo _._3Foo ~Foo separate and
2587 rename
2588 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2589 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2590 */
2591
2592 tmp_sublist = sublist;
2593 while (tmp_sublist != NULL)
2594 {
2595 if (tmp_sublist->fn_field.is_stub)
2596 has_stub = 1;
2597 if (tmp_sublist->fn_field.physname[0] == '_'
2598 && tmp_sublist->fn_field.physname[1] == 'Z')
2599 is_v3 = 1;
2600
2601 if (is_destructor_name (tmp_sublist->fn_field.physname))
2602 has_destructor++;
2603 else
2604 has_other++;
2605
2606 tmp_sublist = tmp_sublist->next;
2607 }
2608
2609 if (has_destructor && has_other)
2610 {
2611 struct next_fnfieldlist *destr_fnlist;
2612 struct next_fnfield *last_sublist;
2613
2614 /* Create a new fn_fieldlist for the destructors. */
2615
2616 destr_fnlist = (struct next_fnfieldlist *)
2617 xmalloc (sizeof (struct next_fnfieldlist));
2618 make_cleanup (xfree, destr_fnlist);
2619 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2620 destr_fnlist->fn_fieldlist.name
2621 = obconcat (&objfile->objfile_obstack, "~",
2622 new_fnlist->fn_fieldlist.name, (char *) NULL);
2623
2624 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2625 obstack_alloc (&objfile->objfile_obstack,
2626 sizeof (struct fn_field) * has_destructor);
2627 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2628 sizeof (struct fn_field) * has_destructor);
2629 tmp_sublist = sublist;
2630 last_sublist = NULL;
2631 i = 0;
2632 while (tmp_sublist != NULL)
2633 {
2634 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2635 {
2636 tmp_sublist = tmp_sublist->next;
2637 continue;
2638 }
2639
2640 destr_fnlist->fn_fieldlist.fn_fields[i++]
2641 = tmp_sublist->fn_field;
2642 if (last_sublist)
2643 last_sublist->next = tmp_sublist->next;
2644 else
2645 sublist = tmp_sublist->next;
2646 last_sublist = tmp_sublist;
2647 tmp_sublist = tmp_sublist->next;
2648 }
2649
2650 destr_fnlist->fn_fieldlist.length = has_destructor;
2651 destr_fnlist->next = fip->fnlist;
2652 fip->fnlist = destr_fnlist;
2653 nfn_fields++;
2654 length -= has_destructor;
2655 }
2656 else if (is_v3)
2657 {
2658 /* v3 mangling prevents the use of abbreviated physnames,
2659 so we can do this here. There are stubbed methods in v3
2660 only:
2661 - in -gstabs instead of -gstabs+
2662 - or for static methods, which are output as a function type
2663 instead of a method type. */
2664 char *new_method_name =
2665 stabs_method_name_from_physname (sublist->fn_field.physname);
2666
2667 if (new_method_name != NULL
2668 && strcmp (new_method_name,
2669 new_fnlist->fn_fieldlist.name) != 0)
2670 {
2671 new_fnlist->fn_fieldlist.name = new_method_name;
2672 xfree (main_fn_name);
2673 }
2674 else
2675 xfree (new_method_name);
2676 }
2677 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2678 {
2679 new_fnlist->fn_fieldlist.name =
2680 obconcat (&objfile->objfile_obstack,
2681 "~", main_fn_name, (char *)NULL);
2682 xfree (main_fn_name);
2683 }
2684 else if (!has_stub)
2685 {
2686 char dem_opname[256];
2687 int ret;
2688
2689 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2690 dem_opname, DMGL_ANSI);
2691 if (!ret)
2692 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2693 dem_opname, 0);
2694 if (ret)
2695 new_fnlist->fn_fieldlist.name
2696 = obstack_copy0 (&objfile->objfile_obstack,
2697 dem_opname, strlen (dem_opname));
2698 xfree (main_fn_name);
2699 }
2700
2701 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2702 obstack_alloc (&objfile->objfile_obstack,
2703 sizeof (struct fn_field) * length);
2704 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2705 sizeof (struct fn_field) * length);
2706 for (i = length; (i--, sublist); sublist = sublist->next)
2707 {
2708 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2709 }
2710
2711 new_fnlist->fn_fieldlist.length = length;
2712 new_fnlist->next = fip->fnlist;
2713 fip->fnlist = new_fnlist;
2714 nfn_fields++;
2715 }
2716 }
2717
2718 if (nfn_fields)
2719 {
2720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2721 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2722 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2723 memset (TYPE_FN_FIELDLISTS (type), 0,
2724 sizeof (struct fn_fieldlist) * nfn_fields);
2725 TYPE_NFN_FIELDS (type) = nfn_fields;
2726 }
2727
2728 return 1;
2729 }
2730
2731 /* Special GNU C++ name.
2732
2733 Returns 1 for success, 0 for failure. "failure" means that we can't
2734 keep parsing and it's time for error_type(). */
2735
2736 static int
2737 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2738 struct objfile *objfile)
2739 {
2740 char *p;
2741 const char *name;
2742 char cpp_abbrev;
2743 struct type *context;
2744
2745 p = *pp;
2746 if (*++p == 'v')
2747 {
2748 name = NULL;
2749 cpp_abbrev = *++p;
2750
2751 *pp = p + 1;
2752
2753 /* At this point, *pp points to something like "22:23=*22...",
2754 where the type number before the ':' is the "context" and
2755 everything after is a regular type definition. Lookup the
2756 type, find it's name, and construct the field name. */
2757
2758 context = read_type (pp, objfile);
2759
2760 switch (cpp_abbrev)
2761 {
2762 case 'f': /* $vf -- a virtual function table pointer */
2763 name = type_name_no_tag (context);
2764 if (name == NULL)
2765 {
2766 name = "";
2767 }
2768 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2769 vptr_name, name, (char *) NULL);
2770 break;
2771
2772 case 'b': /* $vb -- a virtual bsomethingorother */
2773 name = type_name_no_tag (context);
2774 if (name == NULL)
2775 {
2776 complaint (&symfile_complaints,
2777 _("C++ abbreviated type name "
2778 "unknown at symtab pos %d"),
2779 symnum);
2780 name = "FOO";
2781 }
2782 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2783 name, (char *) NULL);
2784 break;
2785
2786 default:
2787 invalid_cpp_abbrev_complaint (*pp);
2788 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2789 "INVALID_CPLUSPLUS_ABBREV",
2790 (char *) NULL);
2791 break;
2792 }
2793
2794 /* At this point, *pp points to the ':'. Skip it and read the
2795 field type. */
2796
2797 p = ++(*pp);
2798 if (p[-1] != ':')
2799 {
2800 invalid_cpp_abbrev_complaint (*pp);
2801 return 0;
2802 }
2803 fip->list->field.type = read_type (pp, objfile);
2804 if (**pp == ',')
2805 (*pp)++; /* Skip the comma. */
2806 else
2807 return 0;
2808
2809 {
2810 int nbits;
2811
2812 SET_FIELD_BITPOS (fip->list->field,
2813 read_huge_number (pp, ';', &nbits, 0));
2814 if (nbits != 0)
2815 return 0;
2816 }
2817 /* This field is unpacked. */
2818 FIELD_BITSIZE (fip->list->field) = 0;
2819 fip->list->visibility = VISIBILITY_PRIVATE;
2820 }
2821 else
2822 {
2823 invalid_cpp_abbrev_complaint (*pp);
2824 /* We have no idea what syntax an unrecognized abbrev would have, so
2825 better return 0. If we returned 1, we would need to at least advance
2826 *pp to avoid an infinite loop. */
2827 return 0;
2828 }
2829 return 1;
2830 }
2831
2832 static void
2833 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2834 struct type *type, struct objfile *objfile)
2835 {
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2837
2838 fip->list->field.name =
2839 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2840 *pp = p + 1;
2841
2842 /* This means we have a visibility for a field coming. */
2843 if (**pp == '/')
2844 {
2845 (*pp)++;
2846 fip->list->visibility = *(*pp)++;
2847 }
2848 else
2849 {
2850 /* normal dbx-style format, no explicit visibility */
2851 fip->list->visibility = VISIBILITY_PUBLIC;
2852 }
2853
2854 fip->list->field.type = read_type (pp, objfile);
2855 if (**pp == ':')
2856 {
2857 p = ++(*pp);
2858 #if 0
2859 /* Possible future hook for nested types. */
2860 if (**pp == '!')
2861 {
2862 fip->list->field.bitpos = (long) -2; /* nested type */
2863 p = ++(*pp);
2864 }
2865 else
2866 ...;
2867 #endif
2868 while (*p != ';')
2869 {
2870 p++;
2871 }
2872 /* Static class member. */
2873 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2874 *pp = p + 1;
2875 return;
2876 }
2877 else if (**pp != ',')
2878 {
2879 /* Bad structure-type format. */
2880 stabs_general_complaint ("bad structure-type format");
2881 return;
2882 }
2883
2884 (*pp)++; /* Skip the comma. */
2885
2886 {
2887 int nbits;
2888
2889 SET_FIELD_BITPOS (fip->list->field,
2890 read_huge_number (pp, ',', &nbits, 0));
2891 if (nbits != 0)
2892 {
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2895 }
2896 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2897 if (nbits != 0)
2898 {
2899 stabs_general_complaint ("bad structure-type format");
2900 return;
2901 }
2902 }
2903
2904 if (FIELD_BITPOS (fip->list->field) == 0
2905 && FIELD_BITSIZE (fip->list->field) == 0)
2906 {
2907 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2908 it is a field which has been optimized out. The correct stab for
2909 this case is to use VISIBILITY_IGNORE, but that is a recent
2910 invention. (2) It is a 0-size array. For example
2911 union { int num; char str[0]; } foo. Printing _("<no value>" for
2912 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2913 will continue to work, and a 0-size array as a whole doesn't
2914 have any contents to print.
2915
2916 I suspect this probably could also happen with gcc -gstabs (not
2917 -gstabs+) for static fields, and perhaps other C++ extensions.
2918 Hopefully few people use -gstabs with gdb, since it is intended
2919 for dbx compatibility. */
2920
2921 /* Ignore this field. */
2922 fip->list->visibility = VISIBILITY_IGNORE;
2923 }
2924 else
2925 {
2926 /* Detect an unpacked field and mark it as such.
2927 dbx gives a bit size for all fields.
2928 Note that forward refs cannot be packed,
2929 and treat enums as if they had the width of ints. */
2930
2931 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2932
2933 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2934 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2935 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2936 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2937 {
2938 FIELD_BITSIZE (fip->list->field) = 0;
2939 }
2940 if ((FIELD_BITSIZE (fip->list->field)
2941 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2942 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2943 && FIELD_BITSIZE (fip->list->field)
2944 == gdbarch_int_bit (gdbarch))
2945 )
2946 &&
2947 FIELD_BITPOS (fip->list->field) % 8 == 0)
2948 {
2949 FIELD_BITSIZE (fip->list->field) = 0;
2950 }
2951 }
2952 }
2953
2954
2955 /* Read struct or class data fields. They have the form:
2956
2957 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2958
2959 At the end, we see a semicolon instead of a field.
2960
2961 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2962 a static field.
2963
2964 The optional VISIBILITY is one of:
2965
2966 '/0' (VISIBILITY_PRIVATE)
2967 '/1' (VISIBILITY_PROTECTED)
2968 '/2' (VISIBILITY_PUBLIC)
2969 '/9' (VISIBILITY_IGNORE)
2970
2971 or nothing, for C style fields with public visibility.
2972
2973 Returns 1 for success, 0 for failure. */
2974
2975 static int
2976 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2977 struct objfile *objfile)
2978 {
2979 char *p;
2980 struct nextfield *new;
2981
2982 /* We better set p right now, in case there are no fields at all... */
2983
2984 p = *pp;
2985
2986 /* Read each data member type until we find the terminating ';' at the end of
2987 the data member list, or break for some other reason such as finding the
2988 start of the member function list. */
2989 /* Stab string for structure/union does not end with two ';' in
2990 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2991
2992 while (**pp != ';' && **pp != '\0')
2993 {
2994 STABS_CONTINUE (pp, objfile);
2995 /* Get space to record the next field's data. */
2996 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2997 make_cleanup (xfree, new);
2998 memset (new, 0, sizeof (struct nextfield));
2999 new->next = fip->list;
3000 fip->list = new;
3001
3002 /* Get the field name. */
3003 p = *pp;
3004
3005 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3006 unless the CPLUS_MARKER is followed by an underscore, in
3007 which case it is just the name of an anonymous type, which we
3008 should handle like any other type name. */
3009
3010 if (is_cplus_marker (p[0]) && p[1] != '_')
3011 {
3012 if (!read_cpp_abbrev (fip, pp, type, objfile))
3013 return 0;
3014 continue;
3015 }
3016
3017 /* Look for the ':' that separates the field name from the field
3018 values. Data members are delimited by a single ':', while member
3019 functions are delimited by a pair of ':'s. When we hit the member
3020 functions (if any), terminate scan loop and return. */
3021
3022 while (*p != ':' && *p != '\0')
3023 {
3024 p++;
3025 }
3026 if (*p == '\0')
3027 return 0;
3028
3029 /* Check to see if we have hit the member functions yet. */
3030 if (p[1] == ':')
3031 {
3032 break;
3033 }
3034 read_one_struct_field (fip, pp, p, type, objfile);
3035 }
3036 if (p[0] == ':' && p[1] == ':')
3037 {
3038 /* (the deleted) chill the list of fields: the last entry (at
3039 the head) is a partially constructed entry which we now
3040 scrub. */
3041 fip->list = fip->list->next;
3042 }
3043 return 1;
3044 }
3045 /* *INDENT-OFF* */
3046 /* The stabs for C++ derived classes contain baseclass information which
3047 is marked by a '!' character after the total size. This function is
3048 called when we encounter the baseclass marker, and slurps up all the
3049 baseclass information.
3050
3051 Immediately following the '!' marker is the number of base classes that
3052 the class is derived from, followed by information for each base class.
3053 For each base class, there are two visibility specifiers, a bit offset
3054 to the base class information within the derived class, a reference to
3055 the type for the base class, and a terminating semicolon.
3056
3057 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3058 ^^ ^ ^ ^ ^ ^ ^
3059 Baseclass information marker __________________|| | | | | | |
3060 Number of baseclasses __________________________| | | | | | |
3061 Visibility specifiers (2) ________________________| | | | | |
3062 Offset in bits from start of class _________________| | | | |
3063 Type number for base class ___________________________| | | |
3064 Visibility specifiers (2) _______________________________| | |
3065 Offset in bits from start of class ________________________| |
3066 Type number of base class ____________________________________|
3067
3068 Return 1 for success, 0 for (error-type-inducing) failure. */
3069 /* *INDENT-ON* */
3070
3071
3072
3073 static int
3074 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3075 struct objfile *objfile)
3076 {
3077 int i;
3078 struct nextfield *new;
3079
3080 if (**pp != '!')
3081 {
3082 return 1;
3083 }
3084 else
3085 {
3086 /* Skip the '!' baseclass information marker. */
3087 (*pp)++;
3088 }
3089
3090 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3091 {
3092 int nbits;
3093
3094 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3095 if (nbits != 0)
3096 return 0;
3097 }
3098
3099 #if 0
3100 /* Some stupid compilers have trouble with the following, so break
3101 it up into simpler expressions. */
3102 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3103 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3104 #else
3105 {
3106 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3107 char *pointer;
3108
3109 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3111 }
3112 #endif /* 0 */
3113
3114 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3115
3116 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3117 {
3118 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3119 make_cleanup (xfree, new);
3120 memset (new, 0, sizeof (struct nextfield));
3121 new->next = fip->list;
3122 fip->list = new;
3123 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3124 field! */
3125
3126 STABS_CONTINUE (pp, objfile);
3127 switch (**pp)
3128 {
3129 case '0':
3130 /* Nothing to do. */
3131 break;
3132 case '1':
3133 SET_TYPE_FIELD_VIRTUAL (type, i);
3134 break;
3135 default:
3136 /* Unknown character. Complain and treat it as non-virtual. */
3137 {
3138 complaint (&symfile_complaints,
3139 _("Unknown virtual character `%c' for baseclass"),
3140 **pp);
3141 }
3142 }
3143 ++(*pp);
3144
3145 new->visibility = *(*pp)++;
3146 switch (new->visibility)
3147 {
3148 case VISIBILITY_PRIVATE:
3149 case VISIBILITY_PROTECTED:
3150 case VISIBILITY_PUBLIC:
3151 break;
3152 default:
3153 /* Bad visibility format. Complain and treat it as
3154 public. */
3155 {
3156 complaint (&symfile_complaints,
3157 _("Unknown visibility `%c' for baseclass"),
3158 new->visibility);
3159 new->visibility = VISIBILITY_PUBLIC;
3160 }
3161 }
3162
3163 {
3164 int nbits;
3165
3166 /* The remaining value is the bit offset of the portion of the object
3167 corresponding to this baseclass. Always zero in the absence of
3168 multiple inheritance. */
3169
3170 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3171 if (nbits != 0)
3172 return 0;
3173 }
3174
3175 /* The last piece of baseclass information is the type of the
3176 base class. Read it, and remember it's type name as this
3177 field's name. */
3178
3179 new->field.type = read_type (pp, objfile);
3180 new->field.name = type_name_no_tag (new->field.type);
3181
3182 /* Skip trailing ';' and bump count of number of fields seen. */
3183 if (**pp == ';')
3184 (*pp)++;
3185 else
3186 return 0;
3187 }
3188 return 1;
3189 }
3190
3191 /* The tail end of stabs for C++ classes that contain a virtual function
3192 pointer contains a tilde, a %, and a type number.
3193 The type number refers to the base class (possibly this class itself) which
3194 contains the vtable pointer for the current class.
3195
3196 This function is called when we have parsed all the method declarations,
3197 so we can look for the vptr base class info. */
3198
3199 static int
3200 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3201 struct objfile *objfile)
3202 {
3203 char *p;
3204
3205 STABS_CONTINUE (pp, objfile);
3206
3207 /* If we are positioned at a ';', then skip it. */
3208 if (**pp == ';')
3209 {
3210 (*pp)++;
3211 }
3212
3213 if (**pp == '~')
3214 {
3215 (*pp)++;
3216
3217 if (**pp == '=' || **pp == '+' || **pp == '-')
3218 {
3219 /* Obsolete flags that used to indicate the presence
3220 of constructors and/or destructors. */
3221 (*pp)++;
3222 }
3223
3224 /* Read either a '%' or the final ';'. */
3225 if (*(*pp)++ == '%')
3226 {
3227 /* The next number is the type number of the base class
3228 (possibly our own class) which supplies the vtable for
3229 this class. Parse it out, and search that class to find
3230 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3231 and TYPE_VPTR_FIELDNO. */
3232
3233 struct type *t;
3234 int i;
3235
3236 t = read_type (pp, objfile);
3237 p = (*pp)++;
3238 while (*p != '\0' && *p != ';')
3239 {
3240 p++;
3241 }
3242 if (*p == '\0')
3243 {
3244 /* Premature end of symbol. */
3245 return 0;
3246 }
3247
3248 TYPE_VPTR_BASETYPE (type) = t;
3249 if (type == t) /* Our own class provides vtbl ptr. */
3250 {
3251 for (i = TYPE_NFIELDS (t) - 1;
3252 i >= TYPE_N_BASECLASSES (t);
3253 --i)
3254 {
3255 const char *name = TYPE_FIELD_NAME (t, i);
3256
3257 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3258 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3259 {
3260 TYPE_VPTR_FIELDNO (type) = i;
3261 goto gotit;
3262 }
3263 }
3264 /* Virtual function table field not found. */
3265 complaint (&symfile_complaints,
3266 _("virtual function table pointer "
3267 "not found when defining class `%s'"),
3268 TYPE_NAME (type));
3269 return 0;
3270 }
3271 else
3272 {
3273 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3274 }
3275
3276 gotit:
3277 *pp = p + 1;
3278 }
3279 }
3280 return 1;
3281 }
3282
3283 static int
3284 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3285 {
3286 int n;
3287
3288 for (n = TYPE_NFN_FIELDS (type);
3289 fip->fnlist != NULL;
3290 fip->fnlist = fip->fnlist->next)
3291 {
3292 --n; /* Circumvent Sun3 compiler bug. */
3293 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3294 }
3295 return 1;
3296 }
3297
3298 /* Create the vector of fields, and record how big it is.
3299 We need this info to record proper virtual function table information
3300 for this class's virtual functions. */
3301
3302 static int
3303 attach_fields_to_type (struct field_info *fip, struct type *type,
3304 struct objfile *objfile)
3305 {
3306 int nfields = 0;
3307 int non_public_fields = 0;
3308 struct nextfield *scan;
3309
3310 /* Count up the number of fields that we have, as well as taking note of
3311 whether or not there are any non-public fields, which requires us to
3312 allocate and build the private_field_bits and protected_field_bits
3313 bitfields. */
3314
3315 for (scan = fip->list; scan != NULL; scan = scan->next)
3316 {
3317 nfields++;
3318 if (scan->visibility != VISIBILITY_PUBLIC)
3319 {
3320 non_public_fields++;
3321 }
3322 }
3323
3324 /* Now we know how many fields there are, and whether or not there are any
3325 non-public fields. Record the field count, allocate space for the
3326 array of fields, and create blank visibility bitfields if necessary. */
3327
3328 TYPE_NFIELDS (type) = nfields;
3329 TYPE_FIELDS (type) = (struct field *)
3330 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3331 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3332
3333 if (non_public_fields)
3334 {
3335 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3336
3337 TYPE_FIELD_PRIVATE_BITS (type) =
3338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3339 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3340
3341 TYPE_FIELD_PROTECTED_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3344
3345 TYPE_FIELD_IGNORE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3348 }
3349
3350 /* Copy the saved-up fields into the field vector. Start from the
3351 head of the list, adding to the tail of the field array, so that
3352 they end up in the same order in the array in which they were
3353 added to the list. */
3354
3355 while (nfields-- > 0)
3356 {
3357 TYPE_FIELD (type, nfields) = fip->list->field;
3358 switch (fip->list->visibility)
3359 {
3360 case VISIBILITY_PRIVATE:
3361 SET_TYPE_FIELD_PRIVATE (type, nfields);
3362 break;
3363
3364 case VISIBILITY_PROTECTED:
3365 SET_TYPE_FIELD_PROTECTED (type, nfields);
3366 break;
3367
3368 case VISIBILITY_IGNORE:
3369 SET_TYPE_FIELD_IGNORE (type, nfields);
3370 break;
3371
3372 case VISIBILITY_PUBLIC:
3373 break;
3374
3375 default:
3376 /* Unknown visibility. Complain and treat it as public. */
3377 {
3378 complaint (&symfile_complaints,
3379 _("Unknown visibility `%c' for field"),
3380 fip->list->visibility);
3381 }
3382 break;
3383 }
3384 fip->list = fip->list->next;
3385 }
3386 return 1;
3387 }
3388
3389
3390 /* Complain that the compiler has emitted more than one definition for the
3391 structure type TYPE. */
3392 static void
3393 complain_about_struct_wipeout (struct type *type)
3394 {
3395 const char *name = "";
3396 const char *kind = "";
3397
3398 if (TYPE_TAG_NAME (type))
3399 {
3400 name = TYPE_TAG_NAME (type);
3401 switch (TYPE_CODE (type))
3402 {
3403 case TYPE_CODE_STRUCT: kind = "struct "; break;
3404 case TYPE_CODE_UNION: kind = "union "; break;
3405 case TYPE_CODE_ENUM: kind = "enum "; break;
3406 default: kind = "";
3407 }
3408 }
3409 else if (TYPE_NAME (type))
3410 {
3411 name = TYPE_NAME (type);
3412 kind = "";
3413 }
3414 else
3415 {
3416 name = "<unknown>";
3417 kind = "";
3418 }
3419
3420 complaint (&symfile_complaints,
3421 _("struct/union type gets multiply defined: %s%s"), kind, name);
3422 }
3423
3424 /* Set the length for all variants of a same main_type, which are
3425 connected in the closed chain.
3426
3427 This is something that needs to be done when a type is defined *after*
3428 some cross references to this type have already been read. Consider
3429 for instance the following scenario where we have the following two
3430 stabs entries:
3431
3432 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3433 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3434
3435 A stubbed version of type dummy is created while processing the first
3436 stabs entry. The length of that type is initially set to zero, since
3437 it is unknown at this point. Also, a "constant" variation of type
3438 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3439 the stabs line).
3440
3441 The second stabs entry allows us to replace the stubbed definition
3442 with the real definition. However, we still need to adjust the length
3443 of the "constant" variation of that type, as its length was left
3444 untouched during the main type replacement... */
3445
3446 static void
3447 set_length_in_type_chain (struct type *type)
3448 {
3449 struct type *ntype = TYPE_CHAIN (type);
3450
3451 while (ntype != type)
3452 {
3453 if (TYPE_LENGTH(ntype) == 0)
3454 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3455 else
3456 complain_about_struct_wipeout (ntype);
3457 ntype = TYPE_CHAIN (ntype);
3458 }
3459 }
3460
3461 /* Read the description of a structure (or union type) and return an object
3462 describing the type.
3463
3464 PP points to a character pointer that points to the next unconsumed token
3465 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3466 *PP will point to "4a:1,0,32;;".
3467
3468 TYPE points to an incomplete type that needs to be filled in.
3469
3470 OBJFILE points to the current objfile from which the stabs information is
3471 being read. (Note that it is redundant in that TYPE also contains a pointer
3472 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3473 */
3474
3475 static struct type *
3476 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3477 struct objfile *objfile)
3478 {
3479 struct cleanup *back_to;
3480 struct field_info fi;
3481
3482 fi.list = NULL;
3483 fi.fnlist = NULL;
3484
3485 /* When describing struct/union/class types in stabs, G++ always drops
3486 all qualifications from the name. So if you've got:
3487 struct A { ... struct B { ... }; ... };
3488 then G++ will emit stabs for `struct A::B' that call it simply
3489 `struct B'. Obviously, if you've got a real top-level definition for
3490 `struct B', or other nested definitions, this is going to cause
3491 problems.
3492
3493 Obviously, GDB can't fix this by itself, but it can at least avoid
3494 scribbling on existing structure type objects when new definitions
3495 appear. */
3496 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3497 || TYPE_STUB (type)))
3498 {
3499 complain_about_struct_wipeout (type);
3500
3501 /* It's probably best to return the type unchanged. */
3502 return type;
3503 }
3504
3505 back_to = make_cleanup (null_cleanup, 0);
3506
3507 INIT_CPLUS_SPECIFIC (type);
3508 TYPE_CODE (type) = type_code;
3509 TYPE_STUB (type) = 0;
3510
3511 /* First comes the total size in bytes. */
3512
3513 {
3514 int nbits;
3515
3516 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3517 if (nbits != 0)
3518 return error_type (pp, objfile);
3519 set_length_in_type_chain (type);
3520 }
3521
3522 /* Now read the baseclasses, if any, read the regular C struct or C++
3523 class member fields, attach the fields to the type, read the C++
3524 member functions, attach them to the type, and then read any tilde
3525 field (baseclass specifier for the class holding the main vtable). */
3526
3527 if (!read_baseclasses (&fi, pp, type, objfile)
3528 || !read_struct_fields (&fi, pp, type, objfile)
3529 || !attach_fields_to_type (&fi, type, objfile)
3530 || !read_member_functions (&fi, pp, type, objfile)
3531 || !attach_fn_fields_to_type (&fi, type)
3532 || !read_tilde_fields (&fi, pp, type, objfile))
3533 {
3534 type = error_type (pp, objfile);
3535 }
3536
3537 do_cleanups (back_to);
3538 return (type);
3539 }
3540
3541 /* Read a definition of an array type,
3542 and create and return a suitable type object.
3543 Also creates a range type which represents the bounds of that
3544 array. */
3545
3546 static struct type *
3547 read_array_type (char **pp, struct type *type,
3548 struct objfile *objfile)
3549 {
3550 struct type *index_type, *element_type, *range_type;
3551 int lower, upper;
3552 int adjustable = 0;
3553 int nbits;
3554
3555 /* Format of an array type:
3556 "ar<index type>;lower;upper;<array_contents_type>".
3557 OS9000: "arlower,upper;<array_contents_type>".
3558
3559 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3560 for these, produce a type like float[][]. */
3561
3562 {
3563 index_type = read_type (pp, objfile);
3564 if (**pp != ';')
3565 /* Improper format of array type decl. */
3566 return error_type (pp, objfile);
3567 ++*pp;
3568 }
3569
3570 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3571 {
3572 (*pp)++;
3573 adjustable = 1;
3574 }
3575 lower = read_huge_number (pp, ';', &nbits, 0);
3576
3577 if (nbits != 0)
3578 return error_type (pp, objfile);
3579
3580 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3581 {
3582 (*pp)++;
3583 adjustable = 1;
3584 }
3585 upper = read_huge_number (pp, ';', &nbits, 0);
3586 if (nbits != 0)
3587 return error_type (pp, objfile);
3588
3589 element_type = read_type (pp, objfile);
3590
3591 if (adjustable)
3592 {
3593 lower = 0;
3594 upper = -1;
3595 }
3596
3597 range_type =
3598 create_range_type ((struct type *) NULL, index_type, lower, upper);
3599 type = create_array_type (type, element_type, range_type);
3600
3601 return type;
3602 }
3603
3604
3605 /* Read a definition of an enumeration type,
3606 and create and return a suitable type object.
3607 Also defines the symbols that represent the values of the type. */
3608
3609 static struct type *
3610 read_enum_type (char **pp, struct type *type,
3611 struct objfile *objfile)
3612 {
3613 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3614 char *p;
3615 char *name;
3616 long n;
3617 struct symbol *sym;
3618 int nsyms = 0;
3619 struct pending **symlist;
3620 struct pending *osyms, *syms;
3621 int o_nsyms;
3622 int nbits;
3623 int unsigned_enum = 1;
3624
3625 #if 0
3626 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3627 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3628 to do? For now, force all enum values to file scope. */
3629 if (within_function)
3630 symlist = &local_symbols;
3631 else
3632 #endif
3633 symlist = &file_symbols;
3634 osyms = *symlist;
3635 o_nsyms = osyms ? osyms->nsyms : 0;
3636
3637 /* The aix4 compiler emits an extra field before the enum members;
3638 my guess is it's a type of some sort. Just ignore it. */
3639 if (**pp == '-')
3640 {
3641 /* Skip over the type. */
3642 while (**pp != ':')
3643 (*pp)++;
3644
3645 /* Skip over the colon. */
3646 (*pp)++;
3647 }
3648
3649 /* Read the value-names and their values.
3650 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3651 A semicolon or comma instead of a NAME means the end. */
3652 while (**pp && **pp != ';' && **pp != ',')
3653 {
3654 STABS_CONTINUE (pp, objfile);
3655 p = *pp;
3656 while (*p != ':')
3657 p++;
3658 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3659 *pp = p + 1;
3660 n = read_huge_number (pp, ',', &nbits, 0);
3661 if (nbits != 0)
3662 return error_type (pp, objfile);
3663
3664 sym = allocate_symbol (objfile);
3665 SYMBOL_SET_LINKAGE_NAME (sym, name);
3666 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3667 &objfile->objfile_obstack);
3668 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3670 SYMBOL_VALUE (sym) = n;
3671 if (n < 0)
3672 unsigned_enum = 0;
3673 add_symbol_to_list (sym, symlist);
3674 nsyms++;
3675 }
3676
3677 if (**pp == ';')
3678 (*pp)++; /* Skip the semicolon. */
3679
3680 /* Now fill in the fields of the type-structure. */
3681
3682 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3683 set_length_in_type_chain (type);
3684 TYPE_CODE (type) = TYPE_CODE_ENUM;
3685 TYPE_STUB (type) = 0;
3686 if (unsigned_enum)
3687 TYPE_UNSIGNED (type) = 1;
3688 TYPE_NFIELDS (type) = nsyms;
3689 TYPE_FIELDS (type) = (struct field *)
3690 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3692
3693 /* Find the symbols for the values and put them into the type.
3694 The symbols can be found in the symlist that we put them on
3695 to cause them to be defined. osyms contains the old value
3696 of that symlist; everything up to there was defined by us. */
3697 /* Note that we preserve the order of the enum constants, so
3698 that in something like "enum {FOO, LAST_THING=FOO}" we print
3699 FOO, not LAST_THING. */
3700
3701 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3702 {
3703 int last = syms == osyms ? o_nsyms : 0;
3704 int j = syms->nsyms;
3705
3706 for (; --j >= last; --n)
3707 {
3708 struct symbol *xsym = syms->symbol[j];
3709
3710 SYMBOL_TYPE (xsym) = type;
3711 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3712 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3713 TYPE_FIELD_BITSIZE (type, n) = 0;
3714 }
3715 if (syms == osyms)
3716 break;
3717 }
3718
3719 return type;
3720 }
3721
3722 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3723 typedefs in every file (for int, long, etc):
3724
3725 type = b <signed> <width> <format type>; <offset>; <nbits>
3726 signed = u or s.
3727 optional format type = c or b for char or boolean.
3728 offset = offset from high order bit to start bit of type.
3729 width is # bytes in object of this type, nbits is # bits in type.
3730
3731 The width/offset stuff appears to be for small objects stored in
3732 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3733 FIXME. */
3734
3735 static struct type *
3736 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3737 {
3738 int type_bits;
3739 int nbits;
3740 int signed_type;
3741 enum type_code code = TYPE_CODE_INT;
3742
3743 switch (**pp)
3744 {
3745 case 's':
3746 signed_type = 1;
3747 break;
3748 case 'u':
3749 signed_type = 0;
3750 break;
3751 default:
3752 return error_type (pp, objfile);
3753 }
3754 (*pp)++;
3755
3756 /* For some odd reason, all forms of char put a c here. This is strange
3757 because no other type has this honor. We can safely ignore this because
3758 we actually determine 'char'acterness by the number of bits specified in
3759 the descriptor.
3760 Boolean forms, e.g Fortran logical*X, put a b here. */
3761
3762 if (**pp == 'c')
3763 (*pp)++;
3764 else if (**pp == 'b')
3765 {
3766 code = TYPE_CODE_BOOL;
3767 (*pp)++;
3768 }
3769
3770 /* The first number appears to be the number of bytes occupied
3771 by this type, except that unsigned short is 4 instead of 2.
3772 Since this information is redundant with the third number,
3773 we will ignore it. */
3774 read_huge_number (pp, ';', &nbits, 0);
3775 if (nbits != 0)
3776 return error_type (pp, objfile);
3777
3778 /* The second number is always 0, so ignore it too. */
3779 read_huge_number (pp, ';', &nbits, 0);
3780 if (nbits != 0)
3781 return error_type (pp, objfile);
3782
3783 /* The third number is the number of bits for this type. */
3784 type_bits = read_huge_number (pp, 0, &nbits, 0);
3785 if (nbits != 0)
3786 return error_type (pp, objfile);
3787 /* The type *should* end with a semicolon. If it are embedded
3788 in a larger type the semicolon may be the only way to know where
3789 the type ends. If this type is at the end of the stabstring we
3790 can deal with the omitted semicolon (but we don't have to like
3791 it). Don't bother to complain(), Sun's compiler omits the semicolon
3792 for "void". */
3793 if (**pp == ';')
3794 ++(*pp);
3795
3796 if (type_bits == 0)
3797 return init_type (TYPE_CODE_VOID, 1,
3798 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3799 objfile);
3800 else
3801 return init_type (code,
3802 type_bits / TARGET_CHAR_BIT,
3803 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3804 objfile);
3805 }
3806
3807 static struct type *
3808 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3809 {
3810 int nbits;
3811 int details;
3812 int nbytes;
3813 struct type *rettype;
3814
3815 /* The first number has more details about the type, for example
3816 FN_COMPLEX. */
3817 details = read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 /* The second number is the number of bytes occupied by this type. */
3822 nbytes = read_huge_number (pp, ';', &nbits, 0);
3823 if (nbits != 0)
3824 return error_type (pp, objfile);
3825
3826 if (details == NF_COMPLEX || details == NF_COMPLEX16
3827 || details == NF_COMPLEX32)
3828 {
3829 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3830 TYPE_TARGET_TYPE (rettype)
3831 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3832 return rettype;
3833 }
3834
3835 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3836 }
3837
3838 /* Read a number from the string pointed to by *PP.
3839 The value of *PP is advanced over the number.
3840 If END is nonzero, the character that ends the
3841 number must match END, or an error happens;
3842 and that character is skipped if it does match.
3843 If END is zero, *PP is left pointing to that character.
3844
3845 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3846 the number is represented in an octal representation, assume that
3847 it is represented in a 2's complement representation with a size of
3848 TWOS_COMPLEMENT_BITS.
3849
3850 If the number fits in a long, set *BITS to 0 and return the value.
3851 If not, set *BITS to be the number of bits in the number and return 0.
3852
3853 If encounter garbage, set *BITS to -1 and return 0. */
3854
3855 static long
3856 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3857 {
3858 char *p = *pp;
3859 int sign = 1;
3860 int sign_bit = 0;
3861 long n = 0;
3862 int radix = 10;
3863 char overflow = 0;
3864 int nbits = 0;
3865 int c;
3866 long upper_limit;
3867 int twos_complement_representation = 0;
3868
3869 if (*p == '-')
3870 {
3871 sign = -1;
3872 p++;
3873 }
3874
3875 /* Leading zero means octal. GCC uses this to output values larger
3876 than an int (because that would be hard in decimal). */
3877 if (*p == '0')
3878 {
3879 radix = 8;
3880 p++;
3881 }
3882
3883 /* Skip extra zeros. */
3884 while (*p == '0')
3885 p++;
3886
3887 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3888 {
3889 /* Octal, possibly signed. Check if we have enough chars for a
3890 negative number. */
3891
3892 size_t len;
3893 char *p1 = p;
3894
3895 while ((c = *p1) >= '0' && c < '8')
3896 p1++;
3897
3898 len = p1 - p;
3899 if (len > twos_complement_bits / 3
3900 || (twos_complement_bits % 3 == 0
3901 && len == twos_complement_bits / 3))
3902 {
3903 /* Ok, we have enough characters for a signed value, check
3904 for signness by testing if the sign bit is set. */
3905 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3906 c = *p - '0';
3907 if (c & (1 << sign_bit))
3908 {
3909 /* Definitely signed. */
3910 twos_complement_representation = 1;
3911 sign = -1;
3912 }
3913 }
3914 }
3915
3916 upper_limit = LONG_MAX / radix;
3917
3918 while ((c = *p++) >= '0' && c < ('0' + radix))
3919 {
3920 if (n <= upper_limit)
3921 {
3922 if (twos_complement_representation)
3923 {
3924 /* Octal, signed, twos complement representation. In
3925 this case, n is the corresponding absolute value. */
3926 if (n == 0)
3927 {
3928 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3929
3930 n = -sn;
3931 }
3932 else
3933 {
3934 n *= radix;
3935 n -= c - '0';
3936 }
3937 }
3938 else
3939 {
3940 /* unsigned representation */
3941 n *= radix;
3942 n += c - '0'; /* FIXME this overflows anyway. */
3943 }
3944 }
3945 else
3946 overflow = 1;
3947
3948 /* This depends on large values being output in octal, which is
3949 what GCC does. */
3950 if (radix == 8)
3951 {
3952 if (nbits == 0)
3953 {
3954 if (c == '0')
3955 /* Ignore leading zeroes. */
3956 ;
3957 else if (c == '1')
3958 nbits = 1;
3959 else if (c == '2' || c == '3')
3960 nbits = 2;
3961 else
3962 nbits = 3;
3963 }
3964 else
3965 nbits += 3;
3966 }
3967 }
3968 if (end)
3969 {
3970 if (c && c != end)
3971 {
3972 if (bits != NULL)
3973 *bits = -1;
3974 return 0;
3975 }
3976 }
3977 else
3978 --p;
3979
3980 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3981 {
3982 /* We were supposed to parse a number with maximum
3983 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3984 if (bits != NULL)
3985 *bits = -1;
3986 return 0;
3987 }
3988
3989 *pp = p;
3990 if (overflow)
3991 {
3992 if (nbits == 0)
3993 {
3994 /* Large decimal constants are an error (because it is hard to
3995 count how many bits are in them). */
3996 if (bits != NULL)
3997 *bits = -1;
3998 return 0;
3999 }
4000
4001 /* -0x7f is the same as 0x80. So deal with it by adding one to
4002 the number of bits. Two's complement represention octals
4003 can't have a '-' in front. */
4004 if (sign == -1 && !twos_complement_representation)
4005 ++nbits;
4006 if (bits)
4007 *bits = nbits;
4008 }
4009 else
4010 {
4011 if (bits)
4012 *bits = 0;
4013 return n * sign;
4014 }
4015 /* It's *BITS which has the interesting information. */
4016 return 0;
4017 }
4018
4019 static struct type *
4020 read_range_type (char **pp, int typenums[2], int type_size,
4021 struct objfile *objfile)
4022 {
4023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4024 char *orig_pp = *pp;
4025 int rangenums[2];
4026 long n2, n3;
4027 int n2bits, n3bits;
4028 int self_subrange;
4029 struct type *result_type;
4030 struct type *index_type = NULL;
4031
4032 /* First comes a type we are a subrange of.
4033 In C it is usually 0, 1 or the type being defined. */
4034 if (read_type_number (pp, rangenums) != 0)
4035 return error_type (pp, objfile);
4036 self_subrange = (rangenums[0] == typenums[0] &&
4037 rangenums[1] == typenums[1]);
4038
4039 if (**pp == '=')
4040 {
4041 *pp = orig_pp;
4042 index_type = read_type (pp, objfile);
4043 }
4044
4045 /* A semicolon should now follow; skip it. */
4046 if (**pp == ';')
4047 (*pp)++;
4048
4049 /* The remaining two operands are usually lower and upper bounds
4050 of the range. But in some special cases they mean something else. */
4051 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4052 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4053
4054 if (n2bits == -1 || n3bits == -1)
4055 return error_type (pp, objfile);
4056
4057 if (index_type)
4058 goto handle_true_range;
4059
4060 /* If limits are huge, must be large integral type. */
4061 if (n2bits != 0 || n3bits != 0)
4062 {
4063 char got_signed = 0;
4064 char got_unsigned = 0;
4065 /* Number of bits in the type. */
4066 int nbits = 0;
4067
4068 /* If a type size attribute has been specified, the bounds of
4069 the range should fit in this size. If the lower bounds needs
4070 more bits than the upper bound, then the type is signed. */
4071 if (n2bits <= type_size && n3bits <= type_size)
4072 {
4073 if (n2bits == type_size && n2bits > n3bits)
4074 got_signed = 1;
4075 else
4076 got_unsigned = 1;
4077 nbits = type_size;
4078 }
4079 /* Range from 0 to <large number> is an unsigned large integral type. */
4080 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4081 {
4082 got_unsigned = 1;
4083 nbits = n3bits;
4084 }
4085 /* Range from <large number> to <large number>-1 is a large signed
4086 integral type. Take care of the case where <large number> doesn't
4087 fit in a long but <large number>-1 does. */
4088 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4089 || (n2bits != 0 && n3bits == 0
4090 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4091 && n3 == LONG_MAX))
4092 {
4093 got_signed = 1;
4094 nbits = n2bits;
4095 }
4096
4097 if (got_signed || got_unsigned)
4098 {
4099 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4100 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4101 objfile);
4102 }
4103 else
4104 return error_type (pp, objfile);
4105 }
4106
4107 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4108 if (self_subrange && n2 == 0 && n3 == 0)
4109 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4110
4111 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4112 is the width in bytes.
4113
4114 Fortran programs appear to use this for complex types also. To
4115 distinguish between floats and complex, g77 (and others?) seem
4116 to use self-subranges for the complexes, and subranges of int for
4117 the floats.
4118
4119 Also note that for complexes, g77 sets n2 to the size of one of
4120 the member floats, not the whole complex beast. My guess is that
4121 this was to work well with pre-COMPLEX versions of gdb. */
4122
4123 if (n3 == 0 && n2 > 0)
4124 {
4125 struct type *float_type
4126 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4127
4128 if (self_subrange)
4129 {
4130 struct type *complex_type =
4131 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4132
4133 TYPE_TARGET_TYPE (complex_type) = float_type;
4134 return complex_type;
4135 }
4136 else
4137 return float_type;
4138 }
4139
4140 /* If the upper bound is -1, it must really be an unsigned integral. */
4141
4142 else if (n2 == 0 && n3 == -1)
4143 {
4144 int bits = type_size;
4145
4146 if (bits <= 0)
4147 {
4148 /* We don't know its size. It is unsigned int or unsigned
4149 long. GCC 2.3.3 uses this for long long too, but that is
4150 just a GDB 3.5 compatibility hack. */
4151 bits = gdbarch_int_bit (gdbarch);
4152 }
4153
4154 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4155 TYPE_FLAG_UNSIGNED, NULL, objfile);
4156 }
4157
4158 /* Special case: char is defined (Who knows why) as a subrange of
4159 itself with range 0-127. */
4160 else if (self_subrange && n2 == 0 && n3 == 127)
4161 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4162
4163 /* We used to do this only for subrange of self or subrange of int. */
4164 else if (n2 == 0)
4165 {
4166 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4167 "unsigned long", and we already checked for that,
4168 so don't need to test for it here. */
4169
4170 if (n3 < 0)
4171 /* n3 actually gives the size. */
4172 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4173 NULL, objfile);
4174
4175 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4176 unsigned n-byte integer. But do require n to be a power of
4177 two; we don't want 3- and 5-byte integers flying around. */
4178 {
4179 int bytes;
4180 unsigned long bits;
4181
4182 bits = n3;
4183 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4184 bits >>= 8;
4185 if (bits == 0
4186 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4187 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4188 objfile);
4189 }
4190 }
4191 /* I think this is for Convex "long long". Since I don't know whether
4192 Convex sets self_subrange, I also accept that particular size regardless
4193 of self_subrange. */
4194 else if (n3 == 0 && n2 < 0
4195 && (self_subrange
4196 || n2 == -gdbarch_long_long_bit
4197 (gdbarch) / TARGET_CHAR_BIT))
4198 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4199 else if (n2 == -n3 - 1)
4200 {
4201 if (n3 == 0x7f)
4202 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4203 if (n3 == 0x7fff)
4204 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4205 if (n3 == 0x7fffffff)
4206 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4207 }
4208
4209 /* We have a real range type on our hands. Allocate space and
4210 return a real pointer. */
4211 handle_true_range:
4212
4213 if (self_subrange)
4214 index_type = objfile_type (objfile)->builtin_int;
4215 else
4216 index_type = *dbx_lookup_type (rangenums, objfile);
4217 if (index_type == NULL)
4218 {
4219 /* Does this actually ever happen? Is that why we are worrying
4220 about dealing with it rather than just calling error_type? */
4221
4222 complaint (&symfile_complaints,
4223 _("base type %d of range type is not defined"), rangenums[1]);
4224
4225 index_type = objfile_type (objfile)->builtin_int;
4226 }
4227
4228 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4229 return (result_type);
4230 }
4231
4232 /* Read in an argument list. This is a list of types, separated by commas
4233 and terminated with END. Return the list of types read in, or NULL
4234 if there is an error. */
4235
4236 static struct field *
4237 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4238 int *varargsp)
4239 {
4240 /* FIXME! Remove this arbitrary limit! */
4241 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4242 int n = 0, i;
4243 struct field *rval;
4244
4245 while (**pp != end)
4246 {
4247 if (**pp != ',')
4248 /* Invalid argument list: no ','. */
4249 return NULL;
4250 (*pp)++;
4251 STABS_CONTINUE (pp, objfile);
4252 types[n++] = read_type (pp, objfile);
4253 }
4254 (*pp)++; /* get past `end' (the ':' character). */
4255
4256 if (n == 0)
4257 {
4258 /* We should read at least the THIS parameter here. Some broken stabs
4259 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4260 have been present ";-16,(0,43)" reference instead. This way the
4261 excessive ";" marker prematurely stops the parameters parsing. */
4262
4263 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4264 *varargsp = 0;
4265 }
4266 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4267 *varargsp = 1;
4268 else
4269 {
4270 n--;
4271 *varargsp = 0;
4272 }
4273
4274 rval = (struct field *) xmalloc (n * sizeof (struct field));
4275 memset (rval, 0, n * sizeof (struct field));
4276 for (i = 0; i < n; i++)
4277 rval[i].type = types[i];
4278 *nargsp = n;
4279 return rval;
4280 }
4281 \f
4282 /* Common block handling. */
4283
4284 /* List of symbols declared since the last BCOMM. This list is a tail
4285 of local_symbols. When ECOMM is seen, the symbols on the list
4286 are noted so their proper addresses can be filled in later,
4287 using the common block base address gotten from the assembler
4288 stabs. */
4289
4290 static struct pending *common_block;
4291 static int common_block_i;
4292
4293 /* Name of the current common block. We get it from the BCOMM instead of the
4294 ECOMM to match IBM documentation (even though IBM puts the name both places
4295 like everyone else). */
4296 static char *common_block_name;
4297
4298 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4299 to remain after this function returns. */
4300
4301 void
4302 common_block_start (char *name, struct objfile *objfile)
4303 {
4304 if (common_block_name != NULL)
4305 {
4306 complaint (&symfile_complaints,
4307 _("Invalid symbol data: common block within common block"));
4308 }
4309 common_block = local_symbols;
4310 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4311 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4312 name, strlen (name));
4313 }
4314
4315 /* Process a N_ECOMM symbol. */
4316
4317 void
4318 common_block_end (struct objfile *objfile)
4319 {
4320 /* Symbols declared since the BCOMM are to have the common block
4321 start address added in when we know it. common_block and
4322 common_block_i point to the first symbol after the BCOMM in
4323 the local_symbols list; copy the list and hang it off the
4324 symbol for the common block name for later fixup. */
4325 int i;
4326 struct symbol *sym;
4327 struct pending *new = 0;
4328 struct pending *next;
4329 int j;
4330
4331 if (common_block_name == NULL)
4332 {
4333 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4334 return;
4335 }
4336
4337 sym = allocate_symbol (objfile);
4338 /* Note: common_block_name already saved on objfile_obstack. */
4339 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4340 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4341
4342 /* Now we copy all the symbols which have been defined since the BCOMM. */
4343
4344 /* Copy all the struct pendings before common_block. */
4345 for (next = local_symbols;
4346 next != NULL && next != common_block;
4347 next = next->next)
4348 {
4349 for (j = 0; j < next->nsyms; j++)
4350 add_symbol_to_list (next->symbol[j], &new);
4351 }
4352
4353 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4354 NULL, it means copy all the local symbols (which we already did
4355 above). */
4356
4357 if (common_block != NULL)
4358 for (j = common_block_i; j < common_block->nsyms; j++)
4359 add_symbol_to_list (common_block->symbol[j], &new);
4360
4361 SYMBOL_TYPE (sym) = (struct type *) new;
4362
4363 /* Should we be putting local_symbols back to what it was?
4364 Does it matter? */
4365
4366 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4367 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4368 global_sym_chain[i] = sym;
4369 common_block_name = NULL;
4370 }
4371
4372 /* Add a common block's start address to the offset of each symbol
4373 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4374 the common block name). */
4375
4376 static void
4377 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4378 {
4379 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4380
4381 for (; next; next = next->next)
4382 {
4383 int j;
4384
4385 for (j = next->nsyms - 1; j >= 0; j--)
4386 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4387 }
4388 }
4389 \f
4390
4391
4392 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4393 See add_undefined_type for more details. */
4394
4395 static void
4396 add_undefined_type_noname (struct type *type, int typenums[2])
4397 {
4398 struct nat nat;
4399
4400 nat.typenums[0] = typenums [0];
4401 nat.typenums[1] = typenums [1];
4402 nat.type = type;
4403
4404 if (noname_undefs_length == noname_undefs_allocated)
4405 {
4406 noname_undefs_allocated *= 2;
4407 noname_undefs = (struct nat *)
4408 xrealloc ((char *) noname_undefs,
4409 noname_undefs_allocated * sizeof (struct nat));
4410 }
4411 noname_undefs[noname_undefs_length++] = nat;
4412 }
4413
4414 /* Add TYPE to the UNDEF_TYPES vector.
4415 See add_undefined_type for more details. */
4416
4417 static void
4418 add_undefined_type_1 (struct type *type)
4419 {
4420 if (undef_types_length == undef_types_allocated)
4421 {
4422 undef_types_allocated *= 2;
4423 undef_types = (struct type **)
4424 xrealloc ((char *) undef_types,
4425 undef_types_allocated * sizeof (struct type *));
4426 }
4427 undef_types[undef_types_length++] = type;
4428 }
4429
4430 /* What about types defined as forward references inside of a small lexical
4431 scope? */
4432 /* Add a type to the list of undefined types to be checked through
4433 once this file has been read in.
4434
4435 In practice, we actually maintain two such lists: The first list
4436 (UNDEF_TYPES) is used for types whose name has been provided, and
4437 concerns forward references (eg 'xs' or 'xu' forward references);
4438 the second list (NONAME_UNDEFS) is used for types whose name is
4439 unknown at creation time, because they were referenced through
4440 their type number before the actual type was declared.
4441 This function actually adds the given type to the proper list. */
4442
4443 static void
4444 add_undefined_type (struct type *type, int typenums[2])
4445 {
4446 if (TYPE_TAG_NAME (type) == NULL)
4447 add_undefined_type_noname (type, typenums);
4448 else
4449 add_undefined_type_1 (type);
4450 }
4451
4452 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4453
4454 static void
4455 cleanup_undefined_types_noname (struct objfile *objfile)
4456 {
4457 int i;
4458
4459 for (i = 0; i < noname_undefs_length; i++)
4460 {
4461 struct nat nat = noname_undefs[i];
4462 struct type **type;
4463
4464 type = dbx_lookup_type (nat.typenums, objfile);
4465 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4466 {
4467 /* The instance flags of the undefined type are still unset,
4468 and needs to be copied over from the reference type.
4469 Since replace_type expects them to be identical, we need
4470 to set these flags manually before hand. */
4471 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4472 replace_type (nat.type, *type);
4473 }
4474 }
4475
4476 noname_undefs_length = 0;
4477 }
4478
4479 /* Go through each undefined type, see if it's still undefined, and fix it
4480 up if possible. We have two kinds of undefined types:
4481
4482 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4483 Fix: update array length using the element bounds
4484 and the target type's length.
4485 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4486 yet defined at the time a pointer to it was made.
4487 Fix: Do a full lookup on the struct/union tag. */
4488
4489 static void
4490 cleanup_undefined_types_1 (void)
4491 {
4492 struct type **type;
4493
4494 /* Iterate over every undefined type, and look for a symbol whose type
4495 matches our undefined type. The symbol matches if:
4496 1. It is a typedef in the STRUCT domain;
4497 2. It has the same name, and same type code;
4498 3. The instance flags are identical.
4499
4500 It is important to check the instance flags, because we have seen
4501 examples where the debug info contained definitions such as:
4502
4503 "foo_t:t30=B31=xefoo_t:"
4504
4505 In this case, we have created an undefined type named "foo_t" whose
4506 instance flags is null (when processing "xefoo_t"), and then created
4507 another type with the same name, but with different instance flags
4508 ('B' means volatile). I think that the definition above is wrong,
4509 since the same type cannot be volatile and non-volatile at the same
4510 time, but we need to be able to cope with it when it happens. The
4511 approach taken here is to treat these two types as different. */
4512
4513 for (type = undef_types; type < undef_types + undef_types_length; type++)
4514 {
4515 switch (TYPE_CODE (*type))
4516 {
4517
4518 case TYPE_CODE_STRUCT:
4519 case TYPE_CODE_UNION:
4520 case TYPE_CODE_ENUM:
4521 {
4522 /* Check if it has been defined since. Need to do this here
4523 as well as in check_typedef to deal with the (legitimate in
4524 C though not C++) case of several types with the same name
4525 in different source files. */
4526 if (TYPE_STUB (*type))
4527 {
4528 struct pending *ppt;
4529 int i;
4530 /* Name of the type, without "struct" or "union". */
4531 const char *typename = TYPE_TAG_NAME (*type);
4532
4533 if (typename == NULL)
4534 {
4535 complaint (&symfile_complaints, _("need a type name"));
4536 break;
4537 }
4538 for (ppt = file_symbols; ppt; ppt = ppt->next)
4539 {
4540 for (i = 0; i < ppt->nsyms; i++)
4541 {
4542 struct symbol *sym = ppt->symbol[i];
4543
4544 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4545 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4546 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4547 TYPE_CODE (*type))
4548 && (TYPE_INSTANCE_FLAGS (*type) ==
4549 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4550 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4551 typename) == 0)
4552 replace_type (*type, SYMBOL_TYPE (sym));
4553 }
4554 }
4555 }
4556 }
4557 break;
4558
4559 default:
4560 {
4561 complaint (&symfile_complaints,
4562 _("forward-referenced types left unresolved, "
4563 "type code %d."),
4564 TYPE_CODE (*type));
4565 }
4566 break;
4567 }
4568 }
4569
4570 undef_types_length = 0;
4571 }
4572
4573 /* Try to fix all the undefined types we ecountered while processing
4574 this unit. */
4575
4576 void
4577 cleanup_undefined_stabs_types (struct objfile *objfile)
4578 {
4579 cleanup_undefined_types_1 ();
4580 cleanup_undefined_types_noname (objfile);
4581 }
4582
4583 /* Scan through all of the global symbols defined in the object file,
4584 assigning values to the debugging symbols that need to be assigned
4585 to. Get these symbols from the minimal symbol table. */
4586
4587 void
4588 scan_file_globals (struct objfile *objfile)
4589 {
4590 int hash;
4591 struct minimal_symbol *msymbol;
4592 struct symbol *sym, *prev;
4593 struct objfile *resolve_objfile;
4594
4595 /* SVR4 based linkers copy referenced global symbols from shared
4596 libraries to the main executable.
4597 If we are scanning the symbols for a shared library, try to resolve
4598 them from the minimal symbols of the main executable first. */
4599
4600 if (symfile_objfile && objfile != symfile_objfile)
4601 resolve_objfile = symfile_objfile;
4602 else
4603 resolve_objfile = objfile;
4604
4605 while (1)
4606 {
4607 /* Avoid expensive loop through all minimal symbols if there are
4608 no unresolved symbols. */
4609 for (hash = 0; hash < HASHSIZE; hash++)
4610 {
4611 if (global_sym_chain[hash])
4612 break;
4613 }
4614 if (hash >= HASHSIZE)
4615 return;
4616
4617 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4618 {
4619 QUIT;
4620
4621 /* Skip static symbols. */
4622 switch (MSYMBOL_TYPE (msymbol))
4623 {
4624 case mst_file_text:
4625 case mst_file_data:
4626 case mst_file_bss:
4627 continue;
4628 default:
4629 break;
4630 }
4631
4632 prev = NULL;
4633
4634 /* Get the hash index and check all the symbols
4635 under that hash index. */
4636
4637 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4638
4639 for (sym = global_sym_chain[hash]; sym;)
4640 {
4641 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4642 SYMBOL_LINKAGE_NAME (sym)) == 0)
4643 {
4644 /* Splice this symbol out of the hash chain and
4645 assign the value we have to it. */
4646 if (prev)
4647 {
4648 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4649 }
4650 else
4651 {
4652 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4653 }
4654
4655 /* Check to see whether we need to fix up a common block. */
4656 /* Note: this code might be executed several times for
4657 the same symbol if there are multiple references. */
4658 if (sym)
4659 {
4660 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4661 {
4662 fix_common_block (sym,
4663 SYMBOL_VALUE_ADDRESS (msymbol));
4664 }
4665 else
4666 {
4667 SYMBOL_VALUE_ADDRESS (sym)
4668 = SYMBOL_VALUE_ADDRESS (msymbol);
4669 }
4670 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4671 }
4672
4673 if (prev)
4674 {
4675 sym = SYMBOL_VALUE_CHAIN (prev);
4676 }
4677 else
4678 {
4679 sym = global_sym_chain[hash];
4680 }
4681 }
4682 else
4683 {
4684 prev = sym;
4685 sym = SYMBOL_VALUE_CHAIN (sym);
4686 }
4687 }
4688 }
4689 if (resolve_objfile == objfile)
4690 break;
4691 resolve_objfile = objfile;
4692 }
4693
4694 /* Change the storage class of any remaining unresolved globals to
4695 LOC_UNRESOLVED and remove them from the chain. */
4696 for (hash = 0; hash < HASHSIZE; hash++)
4697 {
4698 sym = global_sym_chain[hash];
4699 while (sym)
4700 {
4701 prev = sym;
4702 sym = SYMBOL_VALUE_CHAIN (sym);
4703
4704 /* Change the symbol address from the misleading chain value
4705 to address zero. */
4706 SYMBOL_VALUE_ADDRESS (prev) = 0;
4707
4708 /* Complain about unresolved common block symbols. */
4709 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4710 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4711 else
4712 complaint (&symfile_complaints,
4713 _("%s: common block `%s' from "
4714 "global_sym_chain unresolved"),
4715 objfile->name, SYMBOL_PRINT_NAME (prev));
4716 }
4717 }
4718 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4719 }
4720
4721 /* Initialize anything that needs initializing when starting to read
4722 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4723 to a psymtab. */
4724
4725 void
4726 stabsread_init (void)
4727 {
4728 }
4729
4730 /* Initialize anything that needs initializing when a completely new
4731 symbol file is specified (not just adding some symbols from another
4732 file, e.g. a shared library). */
4733
4734 void
4735 stabsread_new_init (void)
4736 {
4737 /* Empty the hash table of global syms looking for values. */
4738 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4739 }
4740
4741 /* Initialize anything that needs initializing at the same time as
4742 start_symtab() is called. */
4743
4744 void
4745 start_stabs (void)
4746 {
4747 global_stabs = NULL; /* AIX COFF */
4748 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4749 n_this_object_header_files = 1;
4750 type_vector_length = 0;
4751 type_vector = (struct type **) 0;
4752
4753 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4754 common_block_name = NULL;
4755 }
4756
4757 /* Call after end_symtab(). */
4758
4759 void
4760 end_stabs (void)
4761 {
4762 if (type_vector)
4763 {
4764 xfree (type_vector);
4765 }
4766 type_vector = 0;
4767 type_vector_length = 0;
4768 previous_stab_code = 0;
4769 }
4770
4771 void
4772 finish_global_stabs (struct objfile *objfile)
4773 {
4774 if (global_stabs)
4775 {
4776 patch_block_stabs (global_symbols, global_stabs, objfile);
4777 xfree (global_stabs);
4778 global_stabs = NULL;
4779 }
4780 }
4781
4782 /* Find the end of the name, delimited by a ':', but don't match
4783 ObjC symbols which look like -[Foo bar::]:bla. */
4784 static char *
4785 find_name_end (char *name)
4786 {
4787 char *s = name;
4788
4789 if (s[0] == '-' || *s == '+')
4790 {
4791 /* Must be an ObjC method symbol. */
4792 if (s[1] != '[')
4793 {
4794 error (_("invalid symbol name \"%s\""), name);
4795 }
4796 s = strchr (s, ']');
4797 if (s == NULL)
4798 {
4799 error (_("invalid symbol name \"%s\""), name);
4800 }
4801 return strchr (s, ':');
4802 }
4803 else
4804 {
4805 return strchr (s, ':');
4806 }
4807 }
4808
4809 /* Initializer for this module. */
4810
4811 void
4812 _initialize_stabsread (void)
4813 {
4814 rs6000_builtin_type_data = register_objfile_data ();
4815
4816 undef_types_allocated = 20;
4817 undef_types_length = 0;
4818 undef_types = (struct type **)
4819 xmalloc (undef_types_allocated * sizeof (struct type *));
4820
4821 noname_undefs_allocated = 20;
4822 noname_undefs_length = 0;
4823 noname_undefs = (struct nat *)
4824 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4825
4826 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4827 &stab_register_funcs);
4828 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4829 &stab_register_funcs);
4830 }
This page took 0.173733 seconds and 5 git commands to generate.