Update copyright year range in all GDB files
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
270 temp_type = rs6000_builtin_type (index, objfile);
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327 }
328
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335 static struct type *
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 {
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* Allocate a floating-point type of size BITS. */
359
360 static struct type *
361 dbx_init_float_type (struct objfile *objfile, int bits)
362 {
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
372
373 return type;
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
382 {
383 int ii;
384 char *name;
385 const char *pp;
386 struct symbol *sym;
387
388 if (stabs)
389 {
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
398 while (pp[1] == ':')
399 {
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
402 }
403 sym = find_symbol_in_list (symbols, name, pp - name);
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
413
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
423 pp += 2;
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453 }
454 \f
455
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464 static int
465 read_type_number (const char **pp, int *typenums)
466 {
467 int nbits;
468
469 if (**pp == '(')
470 {
471 (*pp)++;
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
473 if (nbits != 0)
474 return -1;
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 }
479 else
480 {
481 typenums[0] = 0;
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 return 0;
487 }
488 \f
489
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
497
498 struct ref_map
499 {
500 const char *stabs;
501 CORE_ADDR value;
502 struct symbol *sym;
503 };
504
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
509 static struct ref_map *ref_map;
510
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
513
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
516
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
520 void
521 stabsread_clear_cache (void)
522 {
523 ref_count = 0;
524 ref_chunk = 0;
525 }
526
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
531 void
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
533 {
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552 }
553
554 /* Return defined sym for the reference REFNUM. */
555 struct symbol *
556 ref_search (int refnum)
557 {
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561 }
562
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
566 static int
567 process_reference (const char **string)
568 {
569 const char *p;
570 int refnum = 0;
571
572 if (**string != '#')
573 return 0;
574
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586 }
587
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591 int
592 symbol_reference_defined (const char **string)
593 {
594 const char *p = *string;
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
599 /* Defining symbols end in '='. */
600 if (*p == '=')
601 {
602 /* Symbol is being defined here. */
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613 }
614
615 static int
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 {
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 }
631
632 return regno;
633 }
634
635 static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637 };
638
639 /* The "aclass" indices for computed symbols. */
640
641 static int stab_register_index;
642 static int stab_regparm_index;
643
644 struct symbol *
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
647 {
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 struct symbol *sym;
650 const char *p = find_name_end (string);
651 int deftype;
652 int synonym = 0;
653 int i;
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
666 /* Ignore old-style symbols from cc -go. */
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
672 p += 2;
673 p = strchr (p, ':');
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
686 current_symbol = sym = allocate_symbol (objfile);
687
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
693 }
694 else
695 {
696 SYMBOL_LINE (sym) = 0; /* unknown */
697 }
698
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
707 case 't':
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
709 break;
710
711 case 'v': /* $vtbl_ptr_type */
712 goto normal;
713
714 case 'e':
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
716 break;
717
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
721
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
725 goto normal;
726 /* ... fall through ... */
727
728 default:
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
730 string);
731 goto normal; /* Do *something* with it. */
732 }
733 }
734 else
735 {
736 normal:
737 std::string new_name;
738
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 {
741 char *name = (char *) alloca (p - string + 1);
742
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
746 }
747 if (!new_name.empty ())
748 {
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
752 }
753 else
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763 #if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 #else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774 #endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 dbl_type = objfile_type (objfile)->builtin_double;
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 const char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103
1104 case 'P':
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1108 if (type == N_FUN)
1109 {
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1112 }
1113 /*FALLTHROUGH */
1114
1115 case 'R':
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1119 SYMBOL_IS_ARGUMENT (sym) = 1;
1120 SYMBOL_VALUE (sym) = valu;
1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1122 add_symbol_to_list (sym, &local_symbols);
1123 break;
1124
1125 case 'r':
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1129 SYMBOL_VALUE (sym) = valu;
1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1131 if (within_function)
1132 {
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1140 the stack.
1141
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1146 etc.).
1147
1148 Note that this code illegally combines
1149 main(argc) struct foo argc; { register struct foo argc; }
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1152
1153 if (local_symbols
1154 && local_symbols->nsyms > 0
1155 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1156 {
1157 struct symbol *prev_sym;
1158
1159 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1161 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1162 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1163 SYMBOL_LINKAGE_NAME (sym)) == 0)
1164 {
1165 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1166 /* Use the type from the LOC_REGISTER; that is the type
1167 that is actually in that register. */
1168 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1169 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1170 sym = prev_sym;
1171 break;
1172 }
1173 }
1174 add_symbol_to_list (sym, &local_symbols);
1175 }
1176 else
1177 add_symbol_to_list (sym, &file_symbols);
1178 break;
1179
1180 case 'S':
1181 /* Static symbol at top level of file. */
1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1183 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1184 SYMBOL_VALUE_ADDRESS (sym) = valu;
1185 if (gdbarch_static_transform_name_p (gdbarch)
1186 && gdbarch_static_transform_name (gdbarch,
1187 SYMBOL_LINKAGE_NAME (sym))
1188 != SYMBOL_LINKAGE_NAME (sym))
1189 {
1190 struct bound_minimal_symbol msym;
1191
1192 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1193 NULL, objfile);
1194 if (msym.minsym != NULL)
1195 {
1196 const char *new_name = gdbarch_static_transform_name
1197 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1198
1199 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1200 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1201 }
1202 }
1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204 add_symbol_to_list (sym, &file_symbols);
1205 break;
1206
1207 case 't':
1208 /* In Ada, there is no distinction between typedef and non-typedef;
1209 any type declaration implicitly has the equivalent of a typedef,
1210 and thus 't' is in fact equivalent to 'Tt'.
1211
1212 Therefore, for Ada units, we check the character immediately
1213 before the 't', and if we do not find a 'T', then make sure to
1214 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1215 will be stored in the VAR_DOMAIN). If the symbol was indeed
1216 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1217 elsewhere, so we don't need to take care of that.
1218
1219 This is important to do, because of forward references:
1220 The cleanup of undefined types stored in undef_types only uses
1221 STRUCT_DOMAIN symbols to perform the replacement. */
1222 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1223
1224 /* Typedef */
1225 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1226
1227 /* For a nameless type, we don't want a create a symbol, thus we
1228 did not use `sym'. Return without further processing. */
1229 if (nameless)
1230 return NULL;
1231
1232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1233 SYMBOL_VALUE (sym) = valu;
1234 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1235 /* C++ vagaries: we may have a type which is derived from
1236 a base type which did not have its name defined when the
1237 derived class was output. We fill in the derived class's
1238 base part member's name here in that case. */
1239 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1242 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1243 {
1244 int j;
1245
1246 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1247 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1248 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1249 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1250 }
1251
1252 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1253 {
1254 /* gcc-2.6 or later (when using -fvtable-thunks)
1255 emits a unique named type for a vtable entry.
1256 Some gdb code depends on that specific name. */
1257 extern const char vtbl_ptr_name[];
1258
1259 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1260 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1261 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1262 {
1263 /* If we are giving a name to a type such as "pointer to
1264 foo" or "function returning foo", we better not set
1265 the TYPE_NAME. If the program contains "typedef char
1266 *caddr_t;", we don't want all variables of type char
1267 * to print as caddr_t. This is not just a
1268 consequence of GDB's type management; PCC and GCC (at
1269 least through version 2.4) both output variables of
1270 either type char * or caddr_t with the type number
1271 defined in the 't' symbol for caddr_t. If a future
1272 compiler cleans this up it GDB is not ready for it
1273 yet, but if it becomes ready we somehow need to
1274 disable this check (without breaking the PCC/GCC2.4
1275 case).
1276
1277 Sigh.
1278
1279 Fortunately, this check seems not to be necessary
1280 for anything except pointers or functions. */
1281 /* ezannoni: 2000-10-26. This seems to apply for
1282 versions of gcc older than 2.8. This was the original
1283 problem: with the following code gdb would tell that
1284 the type for name1 is caddr_t, and func is char().
1285
1286 typedef char *caddr_t;
1287 char *name2;
1288 struct x
1289 {
1290 char *name1;
1291 } xx;
1292 char *func()
1293 {
1294 }
1295 main () {}
1296 */
1297
1298 /* Pascal accepts names for pointer types. */
1299 if (current_subfile->language == language_pascal)
1300 {
1301 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1302 }
1303 }
1304 else
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 }
1307
1308 add_symbol_to_list (sym, &file_symbols);
1309
1310 if (synonym)
1311 {
1312 /* Create the STRUCT_DOMAIN clone. */
1313 struct symbol *struct_sym = allocate_symbol (objfile);
1314
1315 *struct_sym = *sym;
1316 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1317 SYMBOL_VALUE (struct_sym) = valu;
1318 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1319 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1320 TYPE_NAME (SYMBOL_TYPE (sym))
1321 = obconcat (&objfile->objfile_obstack,
1322 SYMBOL_LINKAGE_NAME (sym),
1323 (char *) NULL);
1324 add_symbol_to_list (struct_sym, &file_symbols);
1325 }
1326
1327 break;
1328
1329 case 'T':
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1331 by 't' which means we are typedef'ing it as well. */
1332 synonym = *p == 't';
1333
1334 if (synonym)
1335 p++;
1336
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1338
1339 /* For a nameless type, we don't want a create a symbol, thus we
1340 did not use `sym'. Return without further processing. */
1341 if (nameless)
1342 return NULL;
1343
1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1347 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1351 (char *) NULL);
1352 add_symbol_to_list (sym, &file_symbols);
1353
1354 if (synonym)
1355 {
1356 /* Clone the sym and then modify it. */
1357 struct symbol *typedef_sym = allocate_symbol (objfile);
1358
1359 *typedef_sym = *sym;
1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1361 SYMBOL_VALUE (typedef_sym) = valu;
1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack,
1366 SYMBOL_LINKAGE_NAME (sym),
1367 (char *) NULL);
1368 add_symbol_to_list (typedef_sym, &file_symbols);
1369 }
1370 break;
1371
1372 case 'V':
1373 /* Static symbol of local scope. */
1374 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1375 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1376 SYMBOL_VALUE_ADDRESS (sym) = valu;
1377 if (gdbarch_static_transform_name_p (gdbarch)
1378 && gdbarch_static_transform_name (gdbarch,
1379 SYMBOL_LINKAGE_NAME (sym))
1380 != SYMBOL_LINKAGE_NAME (sym))
1381 {
1382 struct bound_minimal_symbol msym;
1383
1384 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1385 NULL, objfile);
1386 if (msym.minsym != NULL)
1387 {
1388 const char *new_name = gdbarch_static_transform_name
1389 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1390
1391 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1392 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1393 }
1394 }
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, &local_symbols);
1397 break;
1398
1399 case 'v':
1400 /* Reference parameter */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1403 SYMBOL_IS_ARGUMENT (sym) = 1;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 case 'a':
1410 /* Reference parameter which is in a register. */
1411 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1413 SYMBOL_IS_ARGUMENT (sym) = 1;
1414 SYMBOL_VALUE (sym) = valu;
1415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1416 add_symbol_to_list (sym, &local_symbols);
1417 break;
1418
1419 case 'X':
1420 /* This is used by Sun FORTRAN for "function result value".
1421 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1422 that Pascal uses it too, but when I tried it Pascal used
1423 "x:3" (local symbol) instead. */
1424 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1425 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1426 SYMBOL_VALUE (sym) = valu;
1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1428 add_symbol_to_list (sym, &local_symbols);
1429 break;
1430
1431 default:
1432 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1434 SYMBOL_VALUE (sym) = 0;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, &file_symbols);
1437 break;
1438 }
1439
1440 /* Some systems pass variables of certain types by reference instead
1441 of by value, i.e. they will pass the address of a structure (in a
1442 register or on the stack) instead of the structure itself. */
1443
1444 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1445 && SYMBOL_IS_ARGUMENT (sym))
1446 {
1447 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1448 variables passed in a register). */
1449 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1451 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1452 and subsequent arguments on SPARC, for example). */
1453 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1455 }
1456
1457 return sym;
1458 }
1459
1460 /* Skip rest of this symbol and return an error type.
1461
1462 General notes on error recovery: error_type always skips to the
1463 end of the symbol (modulo cretinous dbx symbol name continuation).
1464 Thus code like this:
1465
1466 if (*(*pp)++ != ';')
1467 return error_type (pp, objfile);
1468
1469 is wrong because if *pp starts out pointing at '\0' (typically as the
1470 result of an earlier error), it will be incremented to point to the
1471 start of the next symbol, which might produce strange results, at least
1472 if you run off the end of the string table. Instead use
1473
1474 if (**pp != ';')
1475 return error_type (pp, objfile);
1476 ++*pp;
1477
1478 or
1479
1480 if (**pp != ';')
1481 foo = error_type (pp, objfile);
1482 else
1483 ++*pp;
1484
1485 And in case it isn't obvious, the point of all this hair is so the compiler
1486 can define new types and new syntaxes, and old versions of the
1487 debugger will be able to read the new symbol tables. */
1488
1489 static struct type *
1490 error_type (const char **pp, struct objfile *objfile)
1491 {
1492 complaint (&symfile_complaints,
1493 _("couldn't parse type; debugger out of date?"));
1494 while (1)
1495 {
1496 /* Skip to end of symbol. */
1497 while (**pp != '\0')
1498 {
1499 (*pp)++;
1500 }
1501
1502 /* Check for and handle cretinous dbx symbol name continuation! */
1503 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 {
1505 *pp = next_symbol_text (objfile);
1506 }
1507 else
1508 {
1509 break;
1510 }
1511 }
1512 return objfile_type (objfile)->builtin_error;
1513 }
1514 \f
1515
1516 /* Read type information or a type definition; return the type. Even
1517 though this routine accepts either type information or a type
1518 definition, the distinction is relevant--some parts of stabsread.c
1519 assume that type information starts with a digit, '-', or '(' in
1520 deciding whether to call read_type. */
1521
1522 static struct type *
1523 read_type (const char **pp, struct objfile *objfile)
1524 {
1525 struct type *type = 0;
1526 struct type *type1;
1527 int typenums[2];
1528 char type_descriptor;
1529
1530 /* Size in bits of type if specified by a type attribute, or -1 if
1531 there is no size attribute. */
1532 int type_size = -1;
1533
1534 /* Used to distinguish string and bitstring from char-array and set. */
1535 int is_string = 0;
1536
1537 /* Used to distinguish vector from array. */
1538 int is_vector = 0;
1539
1540 /* Read type number if present. The type number may be omitted.
1541 for instance in a two-dimensional array declared with type
1542 "ar1;1;10;ar1;1;10;4". */
1543 if ((**pp >= '0' && **pp <= '9')
1544 || **pp == '('
1545 || **pp == '-')
1546 {
1547 if (read_type_number (pp, typenums) != 0)
1548 return error_type (pp, objfile);
1549
1550 if (**pp != '=')
1551 {
1552 /* Type is not being defined here. Either it already
1553 exists, or this is a forward reference to it.
1554 dbx_alloc_type handles both cases. */
1555 type = dbx_alloc_type (typenums, objfile);
1556
1557 /* If this is a forward reference, arrange to complain if it
1558 doesn't get patched up by the time we're done
1559 reading. */
1560 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1561 add_undefined_type (type, typenums);
1562
1563 return type;
1564 }
1565
1566 /* Type is being defined here. */
1567 /* Skip the '='.
1568 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1569 (*pp) += 2;
1570 }
1571 else
1572 {
1573 /* 'typenums=' not present, type is anonymous. Read and return
1574 the definition, but don't put it in the type vector. */
1575 typenums[0] = typenums[1] = -1;
1576 (*pp)++;
1577 }
1578
1579 again:
1580 type_descriptor = (*pp)[-1];
1581 switch (type_descriptor)
1582 {
1583 case 'x':
1584 {
1585 enum type_code code;
1586
1587 /* Used to index through file_symbols. */
1588 struct pending *ppt;
1589 int i;
1590
1591 /* Name including "struct", etc. */
1592 char *type_name;
1593
1594 {
1595 const char *from, *p, *q1, *q2;
1596
1597 /* Set the type code according to the following letter. */
1598 switch ((*pp)[0])
1599 {
1600 case 's':
1601 code = TYPE_CODE_STRUCT;
1602 break;
1603 case 'u':
1604 code = TYPE_CODE_UNION;
1605 break;
1606 case 'e':
1607 code = TYPE_CODE_ENUM;
1608 break;
1609 default:
1610 {
1611 /* Complain and keep going, so compilers can invent new
1612 cross-reference types. */
1613 complaint (&symfile_complaints,
1614 _("Unrecognized cross-reference type `%c'"),
1615 (*pp)[0]);
1616 code = TYPE_CODE_STRUCT;
1617 break;
1618 }
1619 }
1620
1621 q1 = strchr (*pp, '<');
1622 p = strchr (*pp, ':');
1623 if (p == NULL)
1624 return error_type (pp, objfile);
1625 if (q1 && p > q1 && p[1] == ':')
1626 {
1627 int nesting_level = 0;
1628
1629 for (q2 = q1; *q2; q2++)
1630 {
1631 if (*q2 == '<')
1632 nesting_level++;
1633 else if (*q2 == '>')
1634 nesting_level--;
1635 else if (*q2 == ':' && nesting_level == 0)
1636 break;
1637 }
1638 p = q2;
1639 if (*p != ':')
1640 return error_type (pp, objfile);
1641 }
1642 type_name = NULL;
1643 if (current_subfile->language == language_cplus)
1644 {
1645 char *name = (char *) alloca (p - *pp + 1);
1646
1647 memcpy (name, *pp, p - *pp);
1648 name[p - *pp] = '\0';
1649
1650 std::string new_name = cp_canonicalize_string (name);
1651 if (!new_name.empty ())
1652 {
1653 type_name
1654 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1655 new_name.c_str (),
1656 new_name.length ());
1657 }
1658 }
1659 if (type_name == NULL)
1660 {
1661 char *to = type_name = (char *)
1662 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1663
1664 /* Copy the name. */
1665 from = *pp + 1;
1666 while (from < p)
1667 *to++ = *from++;
1668 *to = '\0';
1669 }
1670
1671 /* Set the pointer ahead of the name which we just read, and
1672 the colon. */
1673 *pp = p + 1;
1674 }
1675
1676 /* If this type has already been declared, then reuse the same
1677 type, rather than allocating a new one. This saves some
1678 memory. */
1679
1680 for (ppt = file_symbols; ppt; ppt = ppt->next)
1681 for (i = 0; i < ppt->nsyms; i++)
1682 {
1683 struct symbol *sym = ppt->symbol[i];
1684
1685 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1686 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1687 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1688 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1689 {
1690 obstack_free (&objfile->objfile_obstack, type_name);
1691 type = SYMBOL_TYPE (sym);
1692 if (typenums[0] != -1)
1693 *dbx_lookup_type (typenums, objfile) = type;
1694 return type;
1695 }
1696 }
1697
1698 /* Didn't find the type to which this refers, so we must
1699 be dealing with a forward reference. Allocate a type
1700 structure for it, and keep track of it so we can
1701 fill in the rest of the fields when we get the full
1702 type. */
1703 type = dbx_alloc_type (typenums, objfile);
1704 TYPE_CODE (type) = code;
1705 TYPE_TAG_NAME (type) = type_name;
1706 INIT_CPLUS_SPECIFIC (type);
1707 TYPE_STUB (type) = 1;
1708
1709 add_undefined_type (type, typenums);
1710 return type;
1711 }
1712
1713 case '-': /* RS/6000 built-in type */
1714 case '0':
1715 case '1':
1716 case '2':
1717 case '3':
1718 case '4':
1719 case '5':
1720 case '6':
1721 case '7':
1722 case '8':
1723 case '9':
1724 case '(':
1725 (*pp)--;
1726
1727 /* We deal with something like t(1,2)=(3,4)=... which
1728 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1729
1730 /* Allocate and enter the typedef type first.
1731 This handles recursive types. */
1732 type = dbx_alloc_type (typenums, objfile);
1733 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1734 {
1735 struct type *xtype = read_type (pp, objfile);
1736
1737 if (type == xtype)
1738 {
1739 /* It's being defined as itself. That means it is "void". */
1740 TYPE_CODE (type) = TYPE_CODE_VOID;
1741 TYPE_LENGTH (type) = 1;
1742 }
1743 else if (type_size >= 0 || is_string)
1744 {
1745 /* This is the absolute wrong way to construct types. Every
1746 other debug format has found a way around this problem and
1747 the related problems with unnecessarily stubbed types;
1748 someone motivated should attempt to clean up the issue
1749 here as well. Once a type pointed to has been created it
1750 should not be modified.
1751
1752 Well, it's not *absolutely* wrong. Constructing recursive
1753 types (trees, linked lists) necessarily entails modifying
1754 types after creating them. Constructing any loop structure
1755 entails side effects. The Dwarf 2 reader does handle this
1756 more gracefully (it never constructs more than once
1757 instance of a type object, so it doesn't have to copy type
1758 objects wholesale), but it still mutates type objects after
1759 other folks have references to them.
1760
1761 Keep in mind that this circularity/mutation issue shows up
1762 at the source language level, too: C's "incomplete types",
1763 for example. So the proper cleanup, I think, would be to
1764 limit GDB's type smashing to match exactly those required
1765 by the source language. So GDB could have a
1766 "complete_this_type" function, but never create unnecessary
1767 copies of a type otherwise. */
1768 replace_type (type, xtype);
1769 TYPE_NAME (type) = NULL;
1770 TYPE_TAG_NAME (type) = NULL;
1771 }
1772 else
1773 {
1774 TYPE_TARGET_STUB (type) = 1;
1775 TYPE_TARGET_TYPE (type) = xtype;
1776 }
1777 }
1778 break;
1779
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
1786
1787 case '*': /* Pointer to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1790 break;
1791
1792 case '&': /* Reference to another type */
1793 type1 = read_type (pp, objfile);
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 TYPE_CODE_REF);
1796 break;
1797
1798 case 'f': /* Function returning another type */
1799 type1 = read_type (pp, objfile);
1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1801 break;
1802
1803 case 'g': /* Prototyped function. (Sun) */
1804 {
1805 /* Unresolved questions:
1806
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1812
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1818 know. */
1819
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
1823 = make_function_type (return_type,
1824 dbx_lookup_type (typenums, objfile));
1825 struct type_list {
1826 struct type *type;
1827 struct type_list *next;
1828 } *arg_types = 0;
1829 int num_args = 0;
1830
1831 while (**pp && **pp != '#')
1832 {
1833 struct type *arg_type = read_type (pp, objfile);
1834 struct type_list *newobj = XALLOCA (struct type_list);
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1837 arg_types = newobj;
1838 num_args++;
1839 }
1840 if (**pp == '#')
1841 ++*pp;
1842 else
1843 {
1844 complaint (&symfile_complaints,
1845 _("Prototyped function type didn't "
1846 "end arguments with `#':\n%s"),
1847 type_start);
1848 }
1849
1850 /* If there is just one argument whose type is `void', then
1851 that's just an empty argument list. */
1852 if (arg_types
1853 && ! arg_types->next
1854 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1855 num_args = 0;
1856
1857 TYPE_FIELDS (func_type)
1858 = (struct field *) TYPE_ALLOC (func_type,
1859 num_args * sizeof (struct field));
1860 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1861 {
1862 int i;
1863 struct type_list *t;
1864
1865 /* We stuck each argument type onto the front of the list
1866 when we read it, so the list is reversed. Build the
1867 fields array right-to-left. */
1868 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1869 TYPE_FIELD_TYPE (func_type, i) = t->type;
1870 }
1871 TYPE_NFIELDS (func_type) = num_args;
1872 TYPE_PROTOTYPED (func_type) = 1;
1873
1874 type = func_type;
1875 break;
1876 }
1877
1878 case 'k': /* Const qualifier on some type (Sun) */
1879 type = read_type (pp, objfile);
1880 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1881 dbx_lookup_type (typenums, objfile));
1882 break;
1883
1884 case 'B': /* Volatile qual on some type (Sun) */
1885 type = read_type (pp, objfile);
1886 type = make_cv_type (TYPE_CONST (type), 1, type,
1887 dbx_lookup_type (typenums, objfile));
1888 break;
1889
1890 case '@':
1891 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1892 { /* Member (class & variable) type */
1893 /* FIXME -- we should be doing smash_to_XXX types here. */
1894
1895 struct type *domain = read_type (pp, objfile);
1896 struct type *memtype;
1897
1898 if (**pp != ',')
1899 /* Invalid member type data format. */
1900 return error_type (pp, objfile);
1901 ++*pp;
1902
1903 memtype = read_type (pp, objfile);
1904 type = dbx_alloc_type (typenums, objfile);
1905 smash_to_memberptr_type (type, domain, memtype);
1906 }
1907 else
1908 /* type attribute */
1909 {
1910 const char *attr = *pp;
1911
1912 /* Skip to the semicolon. */
1913 while (**pp != ';' && **pp != '\0')
1914 ++(*pp);
1915 if (**pp == '\0')
1916 return error_type (pp, objfile);
1917 else
1918 ++ * pp; /* Skip the semicolon. */
1919
1920 switch (*attr)
1921 {
1922 case 's': /* Size attribute */
1923 type_size = atoi (attr + 1);
1924 if (type_size <= 0)
1925 type_size = -1;
1926 break;
1927
1928 case 'S': /* String attribute */
1929 /* FIXME: check to see if following type is array? */
1930 is_string = 1;
1931 break;
1932
1933 case 'V': /* Vector attribute */
1934 /* FIXME: check to see if following type is array? */
1935 is_vector = 1;
1936 break;
1937
1938 default:
1939 /* Ignore unrecognized type attributes, so future compilers
1940 can invent new ones. */
1941 break;
1942 }
1943 ++*pp;
1944 goto again;
1945 }
1946 break;
1947
1948 case '#': /* Method (class & fn) type */
1949 if ((*pp)[0] == '#')
1950 {
1951 /* We'll get the parameter types from the name. */
1952 struct type *return_type;
1953
1954 (*pp)++;
1955 return_type = read_type (pp, objfile);
1956 if (*(*pp)++ != ';')
1957 complaint (&symfile_complaints,
1958 _("invalid (minimal) member type "
1959 "data format at symtab pos %d."),
1960 symnum);
1961 type = allocate_stub_method (return_type);
1962 if (typenums[0] != -1)
1963 *dbx_lookup_type (typenums, objfile) = type;
1964 }
1965 else
1966 {
1967 struct type *domain = read_type (pp, objfile);
1968 struct type *return_type;
1969 struct field *args;
1970 int nargs, varargs;
1971
1972 if (**pp != ',')
1973 /* Invalid member type data format. */
1974 return error_type (pp, objfile);
1975 else
1976 ++(*pp);
1977
1978 return_type = read_type (pp, objfile);
1979 args = read_args (pp, ';', objfile, &nargs, &varargs);
1980 if (args == NULL)
1981 return error_type (pp, objfile);
1982 type = dbx_alloc_type (typenums, objfile);
1983 smash_to_method_type (type, domain, return_type, args,
1984 nargs, varargs);
1985 }
1986 break;
1987
1988 case 'r': /* Range type */
1989 type = read_range_type (pp, typenums, type_size, objfile);
1990 if (typenums[0] != -1)
1991 *dbx_lookup_type (typenums, objfile) = type;
1992 break;
1993
1994 case 'b':
1995 {
1996 /* Sun ACC builtin int type */
1997 type = read_sun_builtin_type (pp, typenums, objfile);
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2000 }
2001 break;
2002
2003 case 'R': /* Sun ACC builtin float type */
2004 type = read_sun_floating_type (pp, typenums, objfile);
2005 if (typenums[0] != -1)
2006 *dbx_lookup_type (typenums, objfile) = type;
2007 break;
2008
2009 case 'e': /* Enumeration type */
2010 type = dbx_alloc_type (typenums, objfile);
2011 type = read_enum_type (pp, type, objfile);
2012 if (typenums[0] != -1)
2013 *dbx_lookup_type (typenums, objfile) = type;
2014 break;
2015
2016 case 's': /* Struct type */
2017 case 'u': /* Union type */
2018 {
2019 enum type_code type_code = TYPE_CODE_UNDEF;
2020 type = dbx_alloc_type (typenums, objfile);
2021 switch (type_descriptor)
2022 {
2023 case 's':
2024 type_code = TYPE_CODE_STRUCT;
2025 break;
2026 case 'u':
2027 type_code = TYPE_CODE_UNION;
2028 break;
2029 }
2030 type = read_struct_type (pp, type, type_code, objfile);
2031 break;
2032 }
2033
2034 case 'a': /* Array type */
2035 if (**pp != 'r')
2036 return error_type (pp, objfile);
2037 ++*pp;
2038
2039 type = dbx_alloc_type (typenums, objfile);
2040 type = read_array_type (pp, type, objfile);
2041 if (is_string)
2042 TYPE_CODE (type) = TYPE_CODE_STRING;
2043 if (is_vector)
2044 make_vector_type (type);
2045 break;
2046
2047 case 'S': /* Set type */
2048 type1 = read_type (pp, objfile);
2049 type = create_set_type ((struct type *) NULL, type1);
2050 if (typenums[0] != -1)
2051 *dbx_lookup_type (typenums, objfile) = type;
2052 break;
2053
2054 default:
2055 --*pp; /* Go back to the symbol in error. */
2056 /* Particularly important if it was \0! */
2057 return error_type (pp, objfile);
2058 }
2059
2060 if (type == 0)
2061 {
2062 warning (_("GDB internal error, type is NULL in stabsread.c."));
2063 return error_type (pp, objfile);
2064 }
2065
2066 /* Size specified in a type attribute overrides any other size. */
2067 if (type_size != -1)
2068 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2069
2070 return type;
2071 }
2072 \f
2073 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2074 Return the proper type node for a given builtin type number. */
2075
2076 static const struct objfile_data *rs6000_builtin_type_data;
2077
2078 static struct type *
2079 rs6000_builtin_type (int typenum, struct objfile *objfile)
2080 {
2081 struct type **negative_types
2082 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2083
2084 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2085 #define NUMBER_RECOGNIZED 34
2086 struct type *rettype = NULL;
2087
2088 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2089 {
2090 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2091 return objfile_type (objfile)->builtin_error;
2092 }
2093
2094 if (!negative_types)
2095 {
2096 /* This includes an empty slot for type number -0. */
2097 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2098 NUMBER_RECOGNIZED + 1, struct type *);
2099 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2100 }
2101
2102 if (negative_types[-typenum] != NULL)
2103 return negative_types[-typenum];
2104
2105 #if TARGET_CHAR_BIT != 8
2106 #error This code wrong for TARGET_CHAR_BIT not 8
2107 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2108 that if that ever becomes not true, the correct fix will be to
2109 make the size in the struct type to be in bits, not in units of
2110 TARGET_CHAR_BIT. */
2111 #endif
2112
2113 switch (-typenum)
2114 {
2115 case 1:
2116 /* The size of this and all the other types are fixed, defined
2117 by the debugging format. If there is a type called "int" which
2118 is other than 32 bits, then it should use a new negative type
2119 number (or avoid negative type numbers for that case).
2120 See stabs.texinfo. */
2121 rettype = init_integer_type (objfile, 32, 0, "int");
2122 break;
2123 case 2:
2124 rettype = init_integer_type (objfile, 8, 0, "char");
2125 TYPE_NOSIGN (rettype) = 1;
2126 break;
2127 case 3:
2128 rettype = init_integer_type (objfile, 16, 0, "short");
2129 break;
2130 case 4:
2131 rettype = init_integer_type (objfile, 32, 0, "long");
2132 break;
2133 case 5:
2134 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2135 break;
2136 case 6:
2137 rettype = init_integer_type (objfile, 8, 0, "signed char");
2138 break;
2139 case 7:
2140 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2141 break;
2142 case 8:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2144 break;
2145 case 9:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2147 break;
2148 case 10:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2150 break;
2151 case 11:
2152 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2153 break;
2154 case 12:
2155 /* IEEE single precision (32 bit). */
2156 rettype = init_float_type (objfile, 32, "float",
2157 floatformats_ieee_single);
2158 break;
2159 case 13:
2160 /* IEEE double precision (64 bit). */
2161 rettype = init_float_type (objfile, 64, "double",
2162 floatformats_ieee_double);
2163 break;
2164 case 14:
2165 /* This is an IEEE double on the RS/6000, and different machines with
2166 different sizes for "long double" should use different negative
2167 type numbers. See stabs.texinfo. */
2168 rettype = init_float_type (objfile, 64, "long double",
2169 floatformats_ieee_double);
2170 break;
2171 case 15:
2172 rettype = init_integer_type (objfile, 32, 0, "integer");
2173 break;
2174 case 16:
2175 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2176 break;
2177 case 17:
2178 rettype = init_float_type (objfile, 32, "short real",
2179 floatformats_ieee_single);
2180 break;
2181 case 18:
2182 rettype = init_float_type (objfile, 64, "real",
2183 floatformats_ieee_double);
2184 break;
2185 case 19:
2186 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2187 break;
2188 case 20:
2189 rettype = init_character_type (objfile, 8, 1, "character");
2190 break;
2191 case 21:
2192 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2193 break;
2194 case 22:
2195 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2196 break;
2197 case 23:
2198 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2199 break;
2200 case 24:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical");
2202 break;
2203 case 25:
2204 /* Complex type consisting of two IEEE single precision values. */
2205 rettype = init_complex_type (objfile, "complex",
2206 rs6000_builtin_type (12, objfile));
2207 break;
2208 case 26:
2209 /* Complex type consisting of two IEEE double precision values. */
2210 rettype = init_complex_type (objfile, "double complex",
2211 rs6000_builtin_type (13, objfile));
2212 break;
2213 case 27:
2214 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2215 break;
2216 case 28:
2217 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2218 break;
2219 case 29:
2220 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2221 break;
2222 case 30:
2223 rettype = init_character_type (objfile, 16, 0, "wchar");
2224 break;
2225 case 31:
2226 rettype = init_integer_type (objfile, 64, 0, "long long");
2227 break;
2228 case 32:
2229 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2230 break;
2231 case 33:
2232 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2233 break;
2234 case 34:
2235 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2236 break;
2237 }
2238 negative_types[-typenum] = rettype;
2239 return rettype;
2240 }
2241 \f
2242 /* This page contains subroutines of read_type. */
2243
2244 /* Wrapper around method_name_from_physname to flag a complaint
2245 if there is an error. */
2246
2247 static char *
2248 stabs_method_name_from_physname (const char *physname)
2249 {
2250 char *method_name;
2251
2252 method_name = method_name_from_physname (physname);
2253
2254 if (method_name == NULL)
2255 {
2256 complaint (&symfile_complaints,
2257 _("Method has bad physname %s\n"), physname);
2258 return NULL;
2259 }
2260
2261 return method_name;
2262 }
2263
2264 /* Read member function stabs info for C++ classes. The form of each member
2265 function data is:
2266
2267 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2268
2269 An example with two member functions is:
2270
2271 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2272
2273 For the case of overloaded operators, the format is op$::*.funcs, where
2274 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2275 name (such as `+=') and `.' marks the end of the operator name.
2276
2277 Returns 1 for success, 0 for failure. */
2278
2279 static int
2280 read_member_functions (struct field_info *fip, const char **pp,
2281 struct type *type, struct objfile *objfile)
2282 {
2283 int nfn_fields = 0;
2284 int length = 0;
2285 int i;
2286 struct next_fnfield
2287 {
2288 struct next_fnfield *next;
2289 struct fn_field fn_field;
2290 }
2291 *sublist;
2292 struct type *look_ahead_type;
2293 struct next_fnfieldlist *new_fnlist;
2294 struct next_fnfield *new_sublist;
2295 char *main_fn_name;
2296 const char *p;
2297
2298 /* Process each list until we find something that is not a member function
2299 or find the end of the functions. */
2300
2301 while (**pp != ';')
2302 {
2303 /* We should be positioned at the start of the function name.
2304 Scan forward to find the first ':' and if it is not the
2305 first of a "::" delimiter, then this is not a member function. */
2306 p = *pp;
2307 while (*p != ':')
2308 {
2309 p++;
2310 }
2311 if (p[1] != ':')
2312 {
2313 break;
2314 }
2315
2316 sublist = NULL;
2317 look_ahead_type = NULL;
2318 length = 0;
2319
2320 new_fnlist = XCNEW (struct next_fnfieldlist);
2321 make_cleanup (xfree, new_fnlist);
2322
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2324 {
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2333 work for "*". */
2334 static char opname[32] = "op$";
2335 char *o = opname + 3;
2336
2337 /* Skip past '::'. */
2338 *pp = p + 2;
2339
2340 STABS_CONTINUE (pp, objfile);
2341 p = *pp;
2342 while (*p != '.')
2343 {
2344 *o++ = *p++;
2345 }
2346 main_fn_name = savestring (opname, o - opname);
2347 /* Skip past '.' */
2348 *pp = p + 1;
2349 }
2350 else
2351 {
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2354 *pp = p + 2;
2355 }
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2357
2358 do
2359 {
2360 new_sublist = XCNEW (struct next_fnfield);
2361 make_cleanup (xfree, new_sublist);
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2396
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2399 {
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
2417 }
2418
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
2442 case '*': /* File compiled with g++ version 1 --
2443 no info. */
2444 case '?':
2445 case '.':
2446 break;
2447 default:
2448 complaint (&symfile_complaints,
2449 _("const/volatile indicator missing, got '%c'"),
2450 **pp);
2451 break;
2452 }
2453
2454 switch (*(*pp)++)
2455 {
2456 case '*':
2457 {
2458 int nbits;
2459 /* virtual member function, followed by index.
2460 The sign bit is set to distinguish pointers-to-methods
2461 from virtual function indicies. Since the array is
2462 in words, the quantity must be shifted left by 1
2463 on 16 bit machine, and by 2 on 32 bit machine, forcing
2464 the sign bit out, and usable as a valid index into
2465 the array. Remove the sign bit here. */
2466 new_sublist->fn_field.voffset =
2467 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2468 if (nbits != 0)
2469 return 0;
2470
2471 STABS_CONTINUE (pp, objfile);
2472 if (**pp == ';' || **pp == '\0')
2473 {
2474 /* Must be g++ version 1. */
2475 new_sublist->fn_field.fcontext = 0;
2476 }
2477 else
2478 {
2479 /* Figure out from whence this virtual function came.
2480 It may belong to virtual function table of
2481 one of its baseclasses. */
2482 look_ahead_type = read_type (pp, objfile);
2483 if (**pp == ':')
2484 {
2485 /* g++ version 1 overloaded methods. */
2486 }
2487 else
2488 {
2489 new_sublist->fn_field.fcontext = look_ahead_type;
2490 if (**pp != ';')
2491 {
2492 return 0;
2493 }
2494 else
2495 {
2496 ++*pp;
2497 }
2498 look_ahead_type = NULL;
2499 }
2500 }
2501 break;
2502 }
2503 case '?':
2504 /* static member function. */
2505 {
2506 int slen = strlen (main_fn_name);
2507
2508 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2509
2510 /* For static member functions, we can't tell if they
2511 are stubbed, as they are put out as functions, and not as
2512 methods.
2513 GCC v2 emits the fully mangled name if
2514 dbxout.c:flag_minimal_debug is not set, so we have to
2515 detect a fully mangled physname here and set is_stub
2516 accordingly. Fully mangled physnames in v2 start with
2517 the member function name, followed by two underscores.
2518 GCC v3 currently always emits stubbed member functions,
2519 but with fully mangled physnames, which start with _Z. */
2520 if (!(strncmp (new_sublist->fn_field.physname,
2521 main_fn_name, slen) == 0
2522 && new_sublist->fn_field.physname[slen] == '_'
2523 && new_sublist->fn_field.physname[slen + 1] == '_'))
2524 {
2525 new_sublist->fn_field.is_stub = 1;
2526 }
2527 break;
2528 }
2529
2530 default:
2531 /* error */
2532 complaint (&symfile_complaints,
2533 _("member function type missing, got '%c'"),
2534 (*pp)[-1]);
2535 /* Fall through into normal member function. */
2536
2537 case '.':
2538 /* normal member function. */
2539 new_sublist->fn_field.voffset = 0;
2540 new_sublist->fn_field.fcontext = 0;
2541 break;
2542 }
2543
2544 new_sublist->next = sublist;
2545 sublist = new_sublist;
2546 length++;
2547 STABS_CONTINUE (pp, objfile);
2548 }
2549 while (**pp != ';' && **pp != '\0');
2550
2551 (*pp)++;
2552 STABS_CONTINUE (pp, objfile);
2553
2554 /* Skip GCC 3.X member functions which are duplicates of the callable
2555 constructor/destructor. */
2556 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2557 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2558 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2559 {
2560 xfree (main_fn_name);
2561 }
2562 else
2563 {
2564 int has_stub = 0;
2565 int has_destructor = 0, has_other = 0;
2566 int is_v3 = 0;
2567 struct next_fnfield *tmp_sublist;
2568
2569 /* Various versions of GCC emit various mostly-useless
2570 strings in the name field for special member functions.
2571
2572 For stub methods, we need to defer correcting the name
2573 until we are ready to unstub the method, because the current
2574 name string is used by gdb_mangle_name. The only stub methods
2575 of concern here are GNU v2 operators; other methods have their
2576 names correct (see caveat below).
2577
2578 For non-stub methods, in GNU v3, we have a complete physname.
2579 Therefore we can safely correct the name now. This primarily
2580 affects constructors and destructors, whose name will be
2581 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2582 operators will also have incorrect names; for instance,
2583 "operator int" will be named "operator i" (i.e. the type is
2584 mangled).
2585
2586 For non-stub methods in GNU v2, we have no easy way to
2587 know if we have a complete physname or not. For most
2588 methods the result depends on the platform (if CPLUS_MARKER
2589 can be `$' or `.', it will use minimal debug information, or
2590 otherwise the full physname will be included).
2591
2592 Rather than dealing with this, we take a different approach.
2593 For v3 mangled names, we can use the full physname; for v2,
2594 we use cplus_demangle_opname (which is actually v2 specific),
2595 because the only interesting names are all operators - once again
2596 barring the caveat below. Skip this process if any method in the
2597 group is a stub, to prevent our fouling up the workings of
2598 gdb_mangle_name.
2599
2600 The caveat: GCC 2.95.x (and earlier?) put constructors and
2601 destructors in the same method group. We need to split this
2602 into two groups, because they should have different names.
2603 So for each method group we check whether it contains both
2604 routines whose physname appears to be a destructor (the physnames
2605 for and destructors are always provided, due to quirks in v2
2606 mangling) and routines whose physname does not appear to be a
2607 destructor. If so then we break up the list into two halves.
2608 Even if the constructors and destructors aren't in the same group
2609 the destructor will still lack the leading tilde, so that also
2610 needs to be fixed.
2611
2612 So, to summarize what we expect and handle here:
2613
2614 Given Given Real Real Action
2615 method name physname physname method name
2616
2617 __opi [none] __opi__3Foo operator int opname
2618 [now or later]
2619 Foo _._3Foo _._3Foo ~Foo separate and
2620 rename
2621 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2622 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2623 */
2624
2625 tmp_sublist = sublist;
2626 while (tmp_sublist != NULL)
2627 {
2628 if (tmp_sublist->fn_field.is_stub)
2629 has_stub = 1;
2630 if (tmp_sublist->fn_field.physname[0] == '_'
2631 && tmp_sublist->fn_field.physname[1] == 'Z')
2632 is_v3 = 1;
2633
2634 if (is_destructor_name (tmp_sublist->fn_field.physname))
2635 has_destructor++;
2636 else
2637 has_other++;
2638
2639 tmp_sublist = tmp_sublist->next;
2640 }
2641
2642 if (has_destructor && has_other)
2643 {
2644 struct next_fnfieldlist *destr_fnlist;
2645 struct next_fnfield *last_sublist;
2646
2647 /* Create a new fn_fieldlist for the destructors. */
2648
2649 destr_fnlist = XCNEW (struct next_fnfieldlist);
2650 make_cleanup (xfree, destr_fnlist);
2651
2652 destr_fnlist->fn_fieldlist.name
2653 = obconcat (&objfile->objfile_obstack, "~",
2654 new_fnlist->fn_fieldlist.name, (char *) NULL);
2655
2656 destr_fnlist->fn_fieldlist.fn_fields =
2657 XOBNEWVEC (&objfile->objfile_obstack,
2658 struct fn_field, has_destructor);
2659 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2660 sizeof (struct fn_field) * has_destructor);
2661 tmp_sublist = sublist;
2662 last_sublist = NULL;
2663 i = 0;
2664 while (tmp_sublist != NULL)
2665 {
2666 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2667 {
2668 tmp_sublist = tmp_sublist->next;
2669 continue;
2670 }
2671
2672 destr_fnlist->fn_fieldlist.fn_fields[i++]
2673 = tmp_sublist->fn_field;
2674 if (last_sublist)
2675 last_sublist->next = tmp_sublist->next;
2676 else
2677 sublist = tmp_sublist->next;
2678 last_sublist = tmp_sublist;
2679 tmp_sublist = tmp_sublist->next;
2680 }
2681
2682 destr_fnlist->fn_fieldlist.length = has_destructor;
2683 destr_fnlist->next = fip->fnlist;
2684 fip->fnlist = destr_fnlist;
2685 nfn_fields++;
2686 length -= has_destructor;
2687 }
2688 else if (is_v3)
2689 {
2690 /* v3 mangling prevents the use of abbreviated physnames,
2691 so we can do this here. There are stubbed methods in v3
2692 only:
2693 - in -gstabs instead of -gstabs+
2694 - or for static methods, which are output as a function type
2695 instead of a method type. */
2696 char *new_method_name =
2697 stabs_method_name_from_physname (sublist->fn_field.physname);
2698
2699 if (new_method_name != NULL
2700 && strcmp (new_method_name,
2701 new_fnlist->fn_fieldlist.name) != 0)
2702 {
2703 new_fnlist->fn_fieldlist.name = new_method_name;
2704 xfree (main_fn_name);
2705 }
2706 else
2707 xfree (new_method_name);
2708 }
2709 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2710 {
2711 new_fnlist->fn_fieldlist.name =
2712 obconcat (&objfile->objfile_obstack,
2713 "~", main_fn_name, (char *)NULL);
2714 xfree (main_fn_name);
2715 }
2716 else if (!has_stub)
2717 {
2718 char dem_opname[256];
2719 int ret;
2720
2721 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2722 dem_opname, DMGL_ANSI);
2723 if (!ret)
2724 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2725 dem_opname, 0);
2726 if (ret)
2727 new_fnlist->fn_fieldlist.name
2728 = ((const char *)
2729 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2730 strlen (dem_opname)));
2731 xfree (main_fn_name);
2732 }
2733
2734 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2735 obstack_alloc (&objfile->objfile_obstack,
2736 sizeof (struct fn_field) * length);
2737 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2738 sizeof (struct fn_field) * length);
2739 for (i = length; (i--, sublist); sublist = sublist->next)
2740 {
2741 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2742 }
2743
2744 new_fnlist->fn_fieldlist.length = length;
2745 new_fnlist->next = fip->fnlist;
2746 fip->fnlist = new_fnlist;
2747 nfn_fields++;
2748 }
2749 }
2750
2751 if (nfn_fields)
2752 {
2753 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2754 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2755 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2756 memset (TYPE_FN_FIELDLISTS (type), 0,
2757 sizeof (struct fn_fieldlist) * nfn_fields);
2758 TYPE_NFN_FIELDS (type) = nfn_fields;
2759 }
2760
2761 return 1;
2762 }
2763
2764 /* Special GNU C++ name.
2765
2766 Returns 1 for success, 0 for failure. "failure" means that we can't
2767 keep parsing and it's time for error_type(). */
2768
2769 static int
2770 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2771 struct objfile *objfile)
2772 {
2773 const char *p;
2774 const char *name;
2775 char cpp_abbrev;
2776 struct type *context;
2777
2778 p = *pp;
2779 if (*++p == 'v')
2780 {
2781 name = NULL;
2782 cpp_abbrev = *++p;
2783
2784 *pp = p + 1;
2785
2786 /* At this point, *pp points to something like "22:23=*22...",
2787 where the type number before the ':' is the "context" and
2788 everything after is a regular type definition. Lookup the
2789 type, find it's name, and construct the field name. */
2790
2791 context = read_type (pp, objfile);
2792
2793 switch (cpp_abbrev)
2794 {
2795 case 'f': /* $vf -- a virtual function table pointer */
2796 name = type_name_no_tag (context);
2797 if (name == NULL)
2798 {
2799 name = "";
2800 }
2801 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2802 vptr_name, name, (char *) NULL);
2803 break;
2804
2805 case 'b': /* $vb -- a virtual bsomethingorother */
2806 name = type_name_no_tag (context);
2807 if (name == NULL)
2808 {
2809 complaint (&symfile_complaints,
2810 _("C++ abbreviated type name "
2811 "unknown at symtab pos %d"),
2812 symnum);
2813 name = "FOO";
2814 }
2815 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2816 name, (char *) NULL);
2817 break;
2818
2819 default:
2820 invalid_cpp_abbrev_complaint (*pp);
2821 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2822 "INVALID_CPLUSPLUS_ABBREV",
2823 (char *) NULL);
2824 break;
2825 }
2826
2827 /* At this point, *pp points to the ':'. Skip it and read the
2828 field type. */
2829
2830 p = ++(*pp);
2831 if (p[-1] != ':')
2832 {
2833 invalid_cpp_abbrev_complaint (*pp);
2834 return 0;
2835 }
2836 fip->list->field.type = read_type (pp, objfile);
2837 if (**pp == ',')
2838 (*pp)++; /* Skip the comma. */
2839 else
2840 return 0;
2841
2842 {
2843 int nbits;
2844
2845 SET_FIELD_BITPOS (fip->list->field,
2846 read_huge_number (pp, ';', &nbits, 0));
2847 if (nbits != 0)
2848 return 0;
2849 }
2850 /* This field is unpacked. */
2851 FIELD_BITSIZE (fip->list->field) = 0;
2852 fip->list->visibility = VISIBILITY_PRIVATE;
2853 }
2854 else
2855 {
2856 invalid_cpp_abbrev_complaint (*pp);
2857 /* We have no idea what syntax an unrecognized abbrev would have, so
2858 better return 0. If we returned 1, we would need to at least advance
2859 *pp to avoid an infinite loop. */
2860 return 0;
2861 }
2862 return 1;
2863 }
2864
2865 static void
2866 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2867 struct type *type, struct objfile *objfile)
2868 {
2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2870
2871 fip->list->field.name
2872 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2873 *pp = p + 1;
2874
2875 /* This means we have a visibility for a field coming. */
2876 if (**pp == '/')
2877 {
2878 (*pp)++;
2879 fip->list->visibility = *(*pp)++;
2880 }
2881 else
2882 {
2883 /* normal dbx-style format, no explicit visibility */
2884 fip->list->visibility = VISIBILITY_PUBLIC;
2885 }
2886
2887 fip->list->field.type = read_type (pp, objfile);
2888 if (**pp == ':')
2889 {
2890 p = ++(*pp);
2891 #if 0
2892 /* Possible future hook for nested types. */
2893 if (**pp == '!')
2894 {
2895 fip->list->field.bitpos = (long) -2; /* nested type */
2896 p = ++(*pp);
2897 }
2898 else
2899 ...;
2900 #endif
2901 while (*p != ';')
2902 {
2903 p++;
2904 }
2905 /* Static class member. */
2906 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2907 *pp = p + 1;
2908 return;
2909 }
2910 else if (**pp != ',')
2911 {
2912 /* Bad structure-type format. */
2913 stabs_general_complaint ("bad structure-type format");
2914 return;
2915 }
2916
2917 (*pp)++; /* Skip the comma. */
2918
2919 {
2920 int nbits;
2921
2922 SET_FIELD_BITPOS (fip->list->field,
2923 read_huge_number (pp, ',', &nbits, 0));
2924 if (nbits != 0)
2925 {
2926 stabs_general_complaint ("bad structure-type format");
2927 return;
2928 }
2929 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2930 if (nbits != 0)
2931 {
2932 stabs_general_complaint ("bad structure-type format");
2933 return;
2934 }
2935 }
2936
2937 if (FIELD_BITPOS (fip->list->field) == 0
2938 && FIELD_BITSIZE (fip->list->field) == 0)
2939 {
2940 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2941 it is a field which has been optimized out. The correct stab for
2942 this case is to use VISIBILITY_IGNORE, but that is a recent
2943 invention. (2) It is a 0-size array. For example
2944 union { int num; char str[0]; } foo. Printing _("<no value>" for
2945 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2946 will continue to work, and a 0-size array as a whole doesn't
2947 have any contents to print.
2948
2949 I suspect this probably could also happen with gcc -gstabs (not
2950 -gstabs+) for static fields, and perhaps other C++ extensions.
2951 Hopefully few people use -gstabs with gdb, since it is intended
2952 for dbx compatibility. */
2953
2954 /* Ignore this field. */
2955 fip->list->visibility = VISIBILITY_IGNORE;
2956 }
2957 else
2958 {
2959 /* Detect an unpacked field and mark it as such.
2960 dbx gives a bit size for all fields.
2961 Note that forward refs cannot be packed,
2962 and treat enums as if they had the width of ints. */
2963
2964 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2965
2966 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2967 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2968 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2969 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 if ((FIELD_BITSIZE (fip->list->field)
2974 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2975 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2976 && FIELD_BITSIZE (fip->list->field)
2977 == gdbarch_int_bit (gdbarch))
2978 )
2979 &&
2980 FIELD_BITPOS (fip->list->field) % 8 == 0)
2981 {
2982 FIELD_BITSIZE (fip->list->field) = 0;
2983 }
2984 }
2985 }
2986
2987
2988 /* Read struct or class data fields. They have the form:
2989
2990 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2991
2992 At the end, we see a semicolon instead of a field.
2993
2994 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2995 a static field.
2996
2997 The optional VISIBILITY is one of:
2998
2999 '/0' (VISIBILITY_PRIVATE)
3000 '/1' (VISIBILITY_PROTECTED)
3001 '/2' (VISIBILITY_PUBLIC)
3002 '/9' (VISIBILITY_IGNORE)
3003
3004 or nothing, for C style fields with public visibility.
3005
3006 Returns 1 for success, 0 for failure. */
3007
3008 static int
3009 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3010 struct objfile *objfile)
3011 {
3012 const char *p;
3013 struct nextfield *newobj;
3014
3015 /* We better set p right now, in case there are no fields at all... */
3016
3017 p = *pp;
3018
3019 /* Read each data member type until we find the terminating ';' at the end of
3020 the data member list, or break for some other reason such as finding the
3021 start of the member function list. */
3022 /* Stab string for structure/union does not end with two ';' in
3023 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3024
3025 while (**pp != ';' && **pp != '\0')
3026 {
3027 STABS_CONTINUE (pp, objfile);
3028 /* Get space to record the next field's data. */
3029 newobj = XCNEW (struct nextfield);
3030 make_cleanup (xfree, newobj);
3031
3032 newobj->next = fip->list;
3033 fip->list = newobj;
3034
3035 /* Get the field name. */
3036 p = *pp;
3037
3038 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3039 unless the CPLUS_MARKER is followed by an underscore, in
3040 which case it is just the name of an anonymous type, which we
3041 should handle like any other type name. */
3042
3043 if (is_cplus_marker (p[0]) && p[1] != '_')
3044 {
3045 if (!read_cpp_abbrev (fip, pp, type, objfile))
3046 return 0;
3047 continue;
3048 }
3049
3050 /* Look for the ':' that separates the field name from the field
3051 values. Data members are delimited by a single ':', while member
3052 functions are delimited by a pair of ':'s. When we hit the member
3053 functions (if any), terminate scan loop and return. */
3054
3055 while (*p != ':' && *p != '\0')
3056 {
3057 p++;
3058 }
3059 if (*p == '\0')
3060 return 0;
3061
3062 /* Check to see if we have hit the member functions yet. */
3063 if (p[1] == ':')
3064 {
3065 break;
3066 }
3067 read_one_struct_field (fip, pp, p, type, objfile);
3068 }
3069 if (p[0] == ':' && p[1] == ':')
3070 {
3071 /* (the deleted) chill the list of fields: the last entry (at
3072 the head) is a partially constructed entry which we now
3073 scrub. */
3074 fip->list = fip->list->next;
3075 }
3076 return 1;
3077 }
3078 /* *INDENT-OFF* */
3079 /* The stabs for C++ derived classes contain baseclass information which
3080 is marked by a '!' character after the total size. This function is
3081 called when we encounter the baseclass marker, and slurps up all the
3082 baseclass information.
3083
3084 Immediately following the '!' marker is the number of base classes that
3085 the class is derived from, followed by information for each base class.
3086 For each base class, there are two visibility specifiers, a bit offset
3087 to the base class information within the derived class, a reference to
3088 the type for the base class, and a terminating semicolon.
3089
3090 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3091 ^^ ^ ^ ^ ^ ^ ^
3092 Baseclass information marker __________________|| | | | | | |
3093 Number of baseclasses __________________________| | | | | | |
3094 Visibility specifiers (2) ________________________| | | | | |
3095 Offset in bits from start of class _________________| | | | |
3096 Type number for base class ___________________________| | | |
3097 Visibility specifiers (2) _______________________________| | |
3098 Offset in bits from start of class ________________________| |
3099 Type number of base class ____________________________________|
3100
3101 Return 1 for success, 0 for (error-type-inducing) failure. */
3102 /* *INDENT-ON* */
3103
3104
3105
3106 static int
3107 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3108 struct objfile *objfile)
3109 {
3110 int i;
3111 struct nextfield *newobj;
3112
3113 if (**pp != '!')
3114 {
3115 return 1;
3116 }
3117 else
3118 {
3119 /* Skip the '!' baseclass information marker. */
3120 (*pp)++;
3121 }
3122
3123 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3124 {
3125 int nbits;
3126
3127 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3128 if (nbits != 0)
3129 return 0;
3130 }
3131
3132 #if 0
3133 /* Some stupid compilers have trouble with the following, so break
3134 it up into simpler expressions. */
3135 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3136 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3137 #else
3138 {
3139 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3140 char *pointer;
3141
3142 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3143 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3144 }
3145 #endif /* 0 */
3146
3147 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3148
3149 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3150 {
3151 newobj = XCNEW (struct nextfield);
3152 make_cleanup (xfree, newobj);
3153
3154 newobj->next = fip->list;
3155 fip->list = newobj;
3156 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3157 field! */
3158
3159 STABS_CONTINUE (pp, objfile);
3160 switch (**pp)
3161 {
3162 case '0':
3163 /* Nothing to do. */
3164 break;
3165 case '1':
3166 SET_TYPE_FIELD_VIRTUAL (type, i);
3167 break;
3168 default:
3169 /* Unknown character. Complain and treat it as non-virtual. */
3170 {
3171 complaint (&symfile_complaints,
3172 _("Unknown virtual character `%c' for baseclass"),
3173 **pp);
3174 }
3175 }
3176 ++(*pp);
3177
3178 newobj->visibility = *(*pp)++;
3179 switch (newobj->visibility)
3180 {
3181 case VISIBILITY_PRIVATE:
3182 case VISIBILITY_PROTECTED:
3183 case VISIBILITY_PUBLIC:
3184 break;
3185 default:
3186 /* Bad visibility format. Complain and treat it as
3187 public. */
3188 {
3189 complaint (&symfile_complaints,
3190 _("Unknown visibility `%c' for baseclass"),
3191 newobj->visibility);
3192 newobj->visibility = VISIBILITY_PUBLIC;
3193 }
3194 }
3195
3196 {
3197 int nbits;
3198
3199 /* The remaining value is the bit offset of the portion of the object
3200 corresponding to this baseclass. Always zero in the absence of
3201 multiple inheritance. */
3202
3203 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3204 if (nbits != 0)
3205 return 0;
3206 }
3207
3208 /* The last piece of baseclass information is the type of the
3209 base class. Read it, and remember it's type name as this
3210 field's name. */
3211
3212 newobj->field.type = read_type (pp, objfile);
3213 newobj->field.name = type_name_no_tag (newobj->field.type);
3214
3215 /* Skip trailing ';' and bump count of number of fields seen. */
3216 if (**pp == ';')
3217 (*pp)++;
3218 else
3219 return 0;
3220 }
3221 return 1;
3222 }
3223
3224 /* The tail end of stabs for C++ classes that contain a virtual function
3225 pointer contains a tilde, a %, and a type number.
3226 The type number refers to the base class (possibly this class itself) which
3227 contains the vtable pointer for the current class.
3228
3229 This function is called when we have parsed all the method declarations,
3230 so we can look for the vptr base class info. */
3231
3232 static int
3233 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3234 struct objfile *objfile)
3235 {
3236 const char *p;
3237
3238 STABS_CONTINUE (pp, objfile);
3239
3240 /* If we are positioned at a ';', then skip it. */
3241 if (**pp == ';')
3242 {
3243 (*pp)++;
3244 }
3245
3246 if (**pp == '~')
3247 {
3248 (*pp)++;
3249
3250 if (**pp == '=' || **pp == '+' || **pp == '-')
3251 {
3252 /* Obsolete flags that used to indicate the presence
3253 of constructors and/or destructors. */
3254 (*pp)++;
3255 }
3256
3257 /* Read either a '%' or the final ';'. */
3258 if (*(*pp)++ == '%')
3259 {
3260 /* The next number is the type number of the base class
3261 (possibly our own class) which supplies the vtable for
3262 this class. Parse it out, and search that class to find
3263 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3264 and TYPE_VPTR_FIELDNO. */
3265
3266 struct type *t;
3267 int i;
3268
3269 t = read_type (pp, objfile);
3270 p = (*pp)++;
3271 while (*p != '\0' && *p != ';')
3272 {
3273 p++;
3274 }
3275 if (*p == '\0')
3276 {
3277 /* Premature end of symbol. */
3278 return 0;
3279 }
3280
3281 set_type_vptr_basetype (type, t);
3282 if (type == t) /* Our own class provides vtbl ptr. */
3283 {
3284 for (i = TYPE_NFIELDS (t) - 1;
3285 i >= TYPE_N_BASECLASSES (t);
3286 --i)
3287 {
3288 const char *name = TYPE_FIELD_NAME (t, i);
3289
3290 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3291 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3292 {
3293 set_type_vptr_fieldno (type, i);
3294 goto gotit;
3295 }
3296 }
3297 /* Virtual function table field not found. */
3298 complaint (&symfile_complaints,
3299 _("virtual function table pointer "
3300 "not found when defining class `%s'"),
3301 TYPE_NAME (type));
3302 return 0;
3303 }
3304 else
3305 {
3306 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3307 }
3308
3309 gotit:
3310 *pp = p + 1;
3311 }
3312 }
3313 return 1;
3314 }
3315
3316 static int
3317 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3318 {
3319 int n;
3320
3321 for (n = TYPE_NFN_FIELDS (type);
3322 fip->fnlist != NULL;
3323 fip->fnlist = fip->fnlist->next)
3324 {
3325 --n; /* Circumvent Sun3 compiler bug. */
3326 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3327 }
3328 return 1;
3329 }
3330
3331 /* Create the vector of fields, and record how big it is.
3332 We need this info to record proper virtual function table information
3333 for this class's virtual functions. */
3334
3335 static int
3336 attach_fields_to_type (struct field_info *fip, struct type *type,
3337 struct objfile *objfile)
3338 {
3339 int nfields = 0;
3340 int non_public_fields = 0;
3341 struct nextfield *scan;
3342
3343 /* Count up the number of fields that we have, as well as taking note of
3344 whether or not there are any non-public fields, which requires us to
3345 allocate and build the private_field_bits and protected_field_bits
3346 bitfields. */
3347
3348 for (scan = fip->list; scan != NULL; scan = scan->next)
3349 {
3350 nfields++;
3351 if (scan->visibility != VISIBILITY_PUBLIC)
3352 {
3353 non_public_fields++;
3354 }
3355 }
3356
3357 /* Now we know how many fields there are, and whether or not there are any
3358 non-public fields. Record the field count, allocate space for the
3359 array of fields, and create blank visibility bitfields if necessary. */
3360
3361 TYPE_NFIELDS (type) = nfields;
3362 TYPE_FIELDS (type) = (struct field *)
3363 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3364 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3365
3366 if (non_public_fields)
3367 {
3368 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3369
3370 TYPE_FIELD_PRIVATE_BITS (type) =
3371 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3372 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3373
3374 TYPE_FIELD_PROTECTED_BITS (type) =
3375 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3376 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3377
3378 TYPE_FIELD_IGNORE_BITS (type) =
3379 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3380 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3381 }
3382
3383 /* Copy the saved-up fields into the field vector. Start from the
3384 head of the list, adding to the tail of the field array, so that
3385 they end up in the same order in the array in which they were
3386 added to the list. */
3387
3388 while (nfields-- > 0)
3389 {
3390 TYPE_FIELD (type, nfields) = fip->list->field;
3391 switch (fip->list->visibility)
3392 {
3393 case VISIBILITY_PRIVATE:
3394 SET_TYPE_FIELD_PRIVATE (type, nfields);
3395 break;
3396
3397 case VISIBILITY_PROTECTED:
3398 SET_TYPE_FIELD_PROTECTED (type, nfields);
3399 break;
3400
3401 case VISIBILITY_IGNORE:
3402 SET_TYPE_FIELD_IGNORE (type, nfields);
3403 break;
3404
3405 case VISIBILITY_PUBLIC:
3406 break;
3407
3408 default:
3409 /* Unknown visibility. Complain and treat it as public. */
3410 {
3411 complaint (&symfile_complaints,
3412 _("Unknown visibility `%c' for field"),
3413 fip->list->visibility);
3414 }
3415 break;
3416 }
3417 fip->list = fip->list->next;
3418 }
3419 return 1;
3420 }
3421
3422
3423 /* Complain that the compiler has emitted more than one definition for the
3424 structure type TYPE. */
3425 static void
3426 complain_about_struct_wipeout (struct type *type)
3427 {
3428 const char *name = "";
3429 const char *kind = "";
3430
3431 if (TYPE_TAG_NAME (type))
3432 {
3433 name = TYPE_TAG_NAME (type);
3434 switch (TYPE_CODE (type))
3435 {
3436 case TYPE_CODE_STRUCT: kind = "struct "; break;
3437 case TYPE_CODE_UNION: kind = "union "; break;
3438 case TYPE_CODE_ENUM: kind = "enum "; break;
3439 default: kind = "";
3440 }
3441 }
3442 else if (TYPE_NAME (type))
3443 {
3444 name = TYPE_NAME (type);
3445 kind = "";
3446 }
3447 else
3448 {
3449 name = "<unknown>";
3450 kind = "";
3451 }
3452
3453 complaint (&symfile_complaints,
3454 _("struct/union type gets multiply defined: %s%s"), kind, name);
3455 }
3456
3457 /* Set the length for all variants of a same main_type, which are
3458 connected in the closed chain.
3459
3460 This is something that needs to be done when a type is defined *after*
3461 some cross references to this type have already been read. Consider
3462 for instance the following scenario where we have the following two
3463 stabs entries:
3464
3465 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3466 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3467
3468 A stubbed version of type dummy is created while processing the first
3469 stabs entry. The length of that type is initially set to zero, since
3470 it is unknown at this point. Also, a "constant" variation of type
3471 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3472 the stabs line).
3473
3474 The second stabs entry allows us to replace the stubbed definition
3475 with the real definition. However, we still need to adjust the length
3476 of the "constant" variation of that type, as its length was left
3477 untouched during the main type replacement... */
3478
3479 static void
3480 set_length_in_type_chain (struct type *type)
3481 {
3482 struct type *ntype = TYPE_CHAIN (type);
3483
3484 while (ntype != type)
3485 {
3486 if (TYPE_LENGTH(ntype) == 0)
3487 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3488 else
3489 complain_about_struct_wipeout (ntype);
3490 ntype = TYPE_CHAIN (ntype);
3491 }
3492 }
3493
3494 /* Read the description of a structure (or union type) and return an object
3495 describing the type.
3496
3497 PP points to a character pointer that points to the next unconsumed token
3498 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3499 *PP will point to "4a:1,0,32;;".
3500
3501 TYPE points to an incomplete type that needs to be filled in.
3502
3503 OBJFILE points to the current objfile from which the stabs information is
3504 being read. (Note that it is redundant in that TYPE also contains a pointer
3505 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3506 */
3507
3508 static struct type *
3509 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3510 struct objfile *objfile)
3511 {
3512 struct cleanup *back_to;
3513 struct field_info fi;
3514
3515 fi.list = NULL;
3516 fi.fnlist = NULL;
3517
3518 /* When describing struct/union/class types in stabs, G++ always drops
3519 all qualifications from the name. So if you've got:
3520 struct A { ... struct B { ... }; ... };
3521 then G++ will emit stabs for `struct A::B' that call it simply
3522 `struct B'. Obviously, if you've got a real top-level definition for
3523 `struct B', or other nested definitions, this is going to cause
3524 problems.
3525
3526 Obviously, GDB can't fix this by itself, but it can at least avoid
3527 scribbling on existing structure type objects when new definitions
3528 appear. */
3529 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3530 || TYPE_STUB (type)))
3531 {
3532 complain_about_struct_wipeout (type);
3533
3534 /* It's probably best to return the type unchanged. */
3535 return type;
3536 }
3537
3538 back_to = make_cleanup (null_cleanup, 0);
3539
3540 INIT_CPLUS_SPECIFIC (type);
3541 TYPE_CODE (type) = type_code;
3542 TYPE_STUB (type) = 0;
3543
3544 /* First comes the total size in bytes. */
3545
3546 {
3547 int nbits;
3548
3549 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3550 if (nbits != 0)
3551 {
3552 do_cleanups (back_to);
3553 return error_type (pp, objfile);
3554 }
3555 set_length_in_type_chain (type);
3556 }
3557
3558 /* Now read the baseclasses, if any, read the regular C struct or C++
3559 class member fields, attach the fields to the type, read the C++
3560 member functions, attach them to the type, and then read any tilde
3561 field (baseclass specifier for the class holding the main vtable). */
3562
3563 if (!read_baseclasses (&fi, pp, type, objfile)
3564 || !read_struct_fields (&fi, pp, type, objfile)
3565 || !attach_fields_to_type (&fi, type, objfile)
3566 || !read_member_functions (&fi, pp, type, objfile)
3567 || !attach_fn_fields_to_type (&fi, type)
3568 || !read_tilde_fields (&fi, pp, type, objfile))
3569 {
3570 type = error_type (pp, objfile);
3571 }
3572
3573 do_cleanups (back_to);
3574 return (type);
3575 }
3576
3577 /* Read a definition of an array type,
3578 and create and return a suitable type object.
3579 Also creates a range type which represents the bounds of that
3580 array. */
3581
3582 static struct type *
3583 read_array_type (const char **pp, struct type *type,
3584 struct objfile *objfile)
3585 {
3586 struct type *index_type, *element_type, *range_type;
3587 int lower, upper;
3588 int adjustable = 0;
3589 int nbits;
3590
3591 /* Format of an array type:
3592 "ar<index type>;lower;upper;<array_contents_type>".
3593 OS9000: "arlower,upper;<array_contents_type>".
3594
3595 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3596 for these, produce a type like float[][]. */
3597
3598 {
3599 index_type = read_type (pp, objfile);
3600 if (**pp != ';')
3601 /* Improper format of array type decl. */
3602 return error_type (pp, objfile);
3603 ++*pp;
3604 }
3605
3606 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3607 {
3608 (*pp)++;
3609 adjustable = 1;
3610 }
3611 lower = read_huge_number (pp, ';', &nbits, 0);
3612
3613 if (nbits != 0)
3614 return error_type (pp, objfile);
3615
3616 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3617 {
3618 (*pp)++;
3619 adjustable = 1;
3620 }
3621 upper = read_huge_number (pp, ';', &nbits, 0);
3622 if (nbits != 0)
3623 return error_type (pp, objfile);
3624
3625 element_type = read_type (pp, objfile);
3626
3627 if (adjustable)
3628 {
3629 lower = 0;
3630 upper = -1;
3631 }
3632
3633 range_type =
3634 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3635 type = create_array_type (type, element_type, range_type);
3636
3637 return type;
3638 }
3639
3640
3641 /* Read a definition of an enumeration type,
3642 and create and return a suitable type object.
3643 Also defines the symbols that represent the values of the type. */
3644
3645 static struct type *
3646 read_enum_type (const char **pp, struct type *type,
3647 struct objfile *objfile)
3648 {
3649 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3650 const char *p;
3651 char *name;
3652 long n;
3653 struct symbol *sym;
3654 int nsyms = 0;
3655 struct pending **symlist;
3656 struct pending *osyms, *syms;
3657 int o_nsyms;
3658 int nbits;
3659 int unsigned_enum = 1;
3660
3661 #if 0
3662 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3663 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3664 to do? For now, force all enum values to file scope. */
3665 if (within_function)
3666 symlist = &local_symbols;
3667 else
3668 #endif
3669 symlist = &file_symbols;
3670 osyms = *symlist;
3671 o_nsyms = osyms ? osyms->nsyms : 0;
3672
3673 /* The aix4 compiler emits an extra field before the enum members;
3674 my guess is it's a type of some sort. Just ignore it. */
3675 if (**pp == '-')
3676 {
3677 /* Skip over the type. */
3678 while (**pp != ':')
3679 (*pp)++;
3680
3681 /* Skip over the colon. */
3682 (*pp)++;
3683 }
3684
3685 /* Read the value-names and their values.
3686 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3687 A semicolon or comma instead of a NAME means the end. */
3688 while (**pp && **pp != ';' && **pp != ',')
3689 {
3690 STABS_CONTINUE (pp, objfile);
3691 p = *pp;
3692 while (*p != ':')
3693 p++;
3694 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3695 *pp = p + 1;
3696 n = read_huge_number (pp, ',', &nbits, 0);
3697 if (nbits != 0)
3698 return error_type (pp, objfile);
3699
3700 sym = allocate_symbol (objfile);
3701 SYMBOL_SET_LINKAGE_NAME (sym, name);
3702 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3703 &objfile->objfile_obstack);
3704 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3705 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3706 SYMBOL_VALUE (sym) = n;
3707 if (n < 0)
3708 unsigned_enum = 0;
3709 add_symbol_to_list (sym, symlist);
3710 nsyms++;
3711 }
3712
3713 if (**pp == ';')
3714 (*pp)++; /* Skip the semicolon. */
3715
3716 /* Now fill in the fields of the type-structure. */
3717
3718 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3719 set_length_in_type_chain (type);
3720 TYPE_CODE (type) = TYPE_CODE_ENUM;
3721 TYPE_STUB (type) = 0;
3722 if (unsigned_enum)
3723 TYPE_UNSIGNED (type) = 1;
3724 TYPE_NFIELDS (type) = nsyms;
3725 TYPE_FIELDS (type) = (struct field *)
3726 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3727 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3728
3729 /* Find the symbols for the values and put them into the type.
3730 The symbols can be found in the symlist that we put them on
3731 to cause them to be defined. osyms contains the old value
3732 of that symlist; everything up to there was defined by us. */
3733 /* Note that we preserve the order of the enum constants, so
3734 that in something like "enum {FOO, LAST_THING=FOO}" we print
3735 FOO, not LAST_THING. */
3736
3737 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3738 {
3739 int last = syms == osyms ? o_nsyms : 0;
3740 int j = syms->nsyms;
3741
3742 for (; --j >= last; --n)
3743 {
3744 struct symbol *xsym = syms->symbol[j];
3745
3746 SYMBOL_TYPE (xsym) = type;
3747 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3748 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3749 TYPE_FIELD_BITSIZE (type, n) = 0;
3750 }
3751 if (syms == osyms)
3752 break;
3753 }
3754
3755 return type;
3756 }
3757
3758 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3759 typedefs in every file (for int, long, etc):
3760
3761 type = b <signed> <width> <format type>; <offset>; <nbits>
3762 signed = u or s.
3763 optional format type = c or b for char or boolean.
3764 offset = offset from high order bit to start bit of type.
3765 width is # bytes in object of this type, nbits is # bits in type.
3766
3767 The width/offset stuff appears to be for small objects stored in
3768 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3769 FIXME. */
3770
3771 static struct type *
3772 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3773 {
3774 int type_bits;
3775 int nbits;
3776 int unsigned_type;
3777 int boolean_type = 0;
3778
3779 switch (**pp)
3780 {
3781 case 's':
3782 unsigned_type = 0;
3783 break;
3784 case 'u':
3785 unsigned_type = 1;
3786 break;
3787 default:
3788 return error_type (pp, objfile);
3789 }
3790 (*pp)++;
3791
3792 /* For some odd reason, all forms of char put a c here. This is strange
3793 because no other type has this honor. We can safely ignore this because
3794 we actually determine 'char'acterness by the number of bits specified in
3795 the descriptor.
3796 Boolean forms, e.g Fortran logical*X, put a b here. */
3797
3798 if (**pp == 'c')
3799 (*pp)++;
3800 else if (**pp == 'b')
3801 {
3802 boolean_type = 1;
3803 (*pp)++;
3804 }
3805
3806 /* The first number appears to be the number of bytes occupied
3807 by this type, except that unsigned short is 4 instead of 2.
3808 Since this information is redundant with the third number,
3809 we will ignore it. */
3810 read_huge_number (pp, ';', &nbits, 0);
3811 if (nbits != 0)
3812 return error_type (pp, objfile);
3813
3814 /* The second number is always 0, so ignore it too. */
3815 read_huge_number (pp, ';', &nbits, 0);
3816 if (nbits != 0)
3817 return error_type (pp, objfile);
3818
3819 /* The third number is the number of bits for this type. */
3820 type_bits = read_huge_number (pp, 0, &nbits, 0);
3821 if (nbits != 0)
3822 return error_type (pp, objfile);
3823 /* The type *should* end with a semicolon. If it are embedded
3824 in a larger type the semicolon may be the only way to know where
3825 the type ends. If this type is at the end of the stabstring we
3826 can deal with the omitted semicolon (but we don't have to like
3827 it). Don't bother to complain(), Sun's compiler omits the semicolon
3828 for "void". */
3829 if (**pp == ';')
3830 ++(*pp);
3831
3832 if (type_bits == 0)
3833 {
3834 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3835 TARGET_CHAR_BIT, NULL);
3836 if (unsigned_type)
3837 TYPE_UNSIGNED (type) = 1;
3838 return type;
3839 }
3840
3841 if (boolean_type)
3842 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3843 else
3844 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3845 }
3846
3847 static struct type *
3848 read_sun_floating_type (const char **pp, int typenums[2],
3849 struct objfile *objfile)
3850 {
3851 int nbits;
3852 int details;
3853 int nbytes;
3854 struct type *rettype;
3855
3856 /* The first number has more details about the type, for example
3857 FN_COMPLEX. */
3858 details = read_huge_number (pp, ';', &nbits, 0);
3859 if (nbits != 0)
3860 return error_type (pp, objfile);
3861
3862 /* The second number is the number of bytes occupied by this type. */
3863 nbytes = read_huge_number (pp, ';', &nbits, 0);
3864 if (nbits != 0)
3865 return error_type (pp, objfile);
3866
3867 nbits = nbytes * TARGET_CHAR_BIT;
3868
3869 if (details == NF_COMPLEX || details == NF_COMPLEX16
3870 || details == NF_COMPLEX32)
3871 {
3872 rettype = dbx_init_float_type (objfile, nbits / 2);
3873 return init_complex_type (objfile, NULL, rettype);
3874 }
3875
3876 return dbx_init_float_type (objfile, nbits);
3877 }
3878
3879 /* Read a number from the string pointed to by *PP.
3880 The value of *PP is advanced over the number.
3881 If END is nonzero, the character that ends the
3882 number must match END, or an error happens;
3883 and that character is skipped if it does match.
3884 If END is zero, *PP is left pointing to that character.
3885
3886 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3887 the number is represented in an octal representation, assume that
3888 it is represented in a 2's complement representation with a size of
3889 TWOS_COMPLEMENT_BITS.
3890
3891 If the number fits in a long, set *BITS to 0 and return the value.
3892 If not, set *BITS to be the number of bits in the number and return 0.
3893
3894 If encounter garbage, set *BITS to -1 and return 0. */
3895
3896 static long
3897 read_huge_number (const char **pp, int end, int *bits,
3898 int twos_complement_bits)
3899 {
3900 const char *p = *pp;
3901 int sign = 1;
3902 int sign_bit = 0;
3903 long n = 0;
3904 int radix = 10;
3905 char overflow = 0;
3906 int nbits = 0;
3907 int c;
3908 long upper_limit;
3909 int twos_complement_representation = 0;
3910
3911 if (*p == '-')
3912 {
3913 sign = -1;
3914 p++;
3915 }
3916
3917 /* Leading zero means octal. GCC uses this to output values larger
3918 than an int (because that would be hard in decimal). */
3919 if (*p == '0')
3920 {
3921 radix = 8;
3922 p++;
3923 }
3924
3925 /* Skip extra zeros. */
3926 while (*p == '0')
3927 p++;
3928
3929 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3930 {
3931 /* Octal, possibly signed. Check if we have enough chars for a
3932 negative number. */
3933
3934 size_t len;
3935 const char *p1 = p;
3936
3937 while ((c = *p1) >= '0' && c < '8')
3938 p1++;
3939
3940 len = p1 - p;
3941 if (len > twos_complement_bits / 3
3942 || (twos_complement_bits % 3 == 0
3943 && len == twos_complement_bits / 3))
3944 {
3945 /* Ok, we have enough characters for a signed value, check
3946 for signness by testing if the sign bit is set. */
3947 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3948 c = *p - '0';
3949 if (c & (1 << sign_bit))
3950 {
3951 /* Definitely signed. */
3952 twos_complement_representation = 1;
3953 sign = -1;
3954 }
3955 }
3956 }
3957
3958 upper_limit = LONG_MAX / radix;
3959
3960 while ((c = *p++) >= '0' && c < ('0' + radix))
3961 {
3962 if (n <= upper_limit)
3963 {
3964 if (twos_complement_representation)
3965 {
3966 /* Octal, signed, twos complement representation. In
3967 this case, n is the corresponding absolute value. */
3968 if (n == 0)
3969 {
3970 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3971
3972 n = -sn;
3973 }
3974 else
3975 {
3976 n *= radix;
3977 n -= c - '0';
3978 }
3979 }
3980 else
3981 {
3982 /* unsigned representation */
3983 n *= radix;
3984 n += c - '0'; /* FIXME this overflows anyway. */
3985 }
3986 }
3987 else
3988 overflow = 1;
3989
3990 /* This depends on large values being output in octal, which is
3991 what GCC does. */
3992 if (radix == 8)
3993 {
3994 if (nbits == 0)
3995 {
3996 if (c == '0')
3997 /* Ignore leading zeroes. */
3998 ;
3999 else if (c == '1')
4000 nbits = 1;
4001 else if (c == '2' || c == '3')
4002 nbits = 2;
4003 else
4004 nbits = 3;
4005 }
4006 else
4007 nbits += 3;
4008 }
4009 }
4010 if (end)
4011 {
4012 if (c && c != end)
4013 {
4014 if (bits != NULL)
4015 *bits = -1;
4016 return 0;
4017 }
4018 }
4019 else
4020 --p;
4021
4022 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4023 {
4024 /* We were supposed to parse a number with maximum
4025 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4026 if (bits != NULL)
4027 *bits = -1;
4028 return 0;
4029 }
4030
4031 *pp = p;
4032 if (overflow)
4033 {
4034 if (nbits == 0)
4035 {
4036 /* Large decimal constants are an error (because it is hard to
4037 count how many bits are in them). */
4038 if (bits != NULL)
4039 *bits = -1;
4040 return 0;
4041 }
4042
4043 /* -0x7f is the same as 0x80. So deal with it by adding one to
4044 the number of bits. Two's complement represention octals
4045 can't have a '-' in front. */
4046 if (sign == -1 && !twos_complement_representation)
4047 ++nbits;
4048 if (bits)
4049 *bits = nbits;
4050 }
4051 else
4052 {
4053 if (bits)
4054 *bits = 0;
4055 return n * sign;
4056 }
4057 /* It's *BITS which has the interesting information. */
4058 return 0;
4059 }
4060
4061 static struct type *
4062 read_range_type (const char **pp, int typenums[2], int type_size,
4063 struct objfile *objfile)
4064 {
4065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4066 const char *orig_pp = *pp;
4067 int rangenums[2];
4068 long n2, n3;
4069 int n2bits, n3bits;
4070 int self_subrange;
4071 struct type *result_type;
4072 struct type *index_type = NULL;
4073
4074 /* First comes a type we are a subrange of.
4075 In C it is usually 0, 1 or the type being defined. */
4076 if (read_type_number (pp, rangenums) != 0)
4077 return error_type (pp, objfile);
4078 self_subrange = (rangenums[0] == typenums[0] &&
4079 rangenums[1] == typenums[1]);
4080
4081 if (**pp == '=')
4082 {
4083 *pp = orig_pp;
4084 index_type = read_type (pp, objfile);
4085 }
4086
4087 /* A semicolon should now follow; skip it. */
4088 if (**pp == ';')
4089 (*pp)++;
4090
4091 /* The remaining two operands are usually lower and upper bounds
4092 of the range. But in some special cases they mean something else. */
4093 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4094 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4095
4096 if (n2bits == -1 || n3bits == -1)
4097 return error_type (pp, objfile);
4098
4099 if (index_type)
4100 goto handle_true_range;
4101
4102 /* If limits are huge, must be large integral type. */
4103 if (n2bits != 0 || n3bits != 0)
4104 {
4105 char got_signed = 0;
4106 char got_unsigned = 0;
4107 /* Number of bits in the type. */
4108 int nbits = 0;
4109
4110 /* If a type size attribute has been specified, the bounds of
4111 the range should fit in this size. If the lower bounds needs
4112 more bits than the upper bound, then the type is signed. */
4113 if (n2bits <= type_size && n3bits <= type_size)
4114 {
4115 if (n2bits == type_size && n2bits > n3bits)
4116 got_signed = 1;
4117 else
4118 got_unsigned = 1;
4119 nbits = type_size;
4120 }
4121 /* Range from 0 to <large number> is an unsigned large integral type. */
4122 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4123 {
4124 got_unsigned = 1;
4125 nbits = n3bits;
4126 }
4127 /* Range from <large number> to <large number>-1 is a large signed
4128 integral type. Take care of the case where <large number> doesn't
4129 fit in a long but <large number>-1 does. */
4130 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4131 || (n2bits != 0 && n3bits == 0
4132 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4133 && n3 == LONG_MAX))
4134 {
4135 got_signed = 1;
4136 nbits = n2bits;
4137 }
4138
4139 if (got_signed || got_unsigned)
4140 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4141 else
4142 return error_type (pp, objfile);
4143 }
4144
4145 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4146 if (self_subrange && n2 == 0 && n3 == 0)
4147 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4148
4149 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4150 is the width in bytes.
4151
4152 Fortran programs appear to use this for complex types also. To
4153 distinguish between floats and complex, g77 (and others?) seem
4154 to use self-subranges for the complexes, and subranges of int for
4155 the floats.
4156
4157 Also note that for complexes, g77 sets n2 to the size of one of
4158 the member floats, not the whole complex beast. My guess is that
4159 this was to work well with pre-COMPLEX versions of gdb. */
4160
4161 if (n3 == 0 && n2 > 0)
4162 {
4163 struct type *float_type
4164 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4165
4166 if (self_subrange)
4167 return init_complex_type (objfile, NULL, float_type);
4168 else
4169 return float_type;
4170 }
4171
4172 /* If the upper bound is -1, it must really be an unsigned integral. */
4173
4174 else if (n2 == 0 && n3 == -1)
4175 {
4176 int bits = type_size;
4177
4178 if (bits <= 0)
4179 {
4180 /* We don't know its size. It is unsigned int or unsigned
4181 long. GCC 2.3.3 uses this for long long too, but that is
4182 just a GDB 3.5 compatibility hack. */
4183 bits = gdbarch_int_bit (gdbarch);
4184 }
4185
4186 return init_integer_type (objfile, bits, 1, NULL);
4187 }
4188
4189 /* Special case: char is defined (Who knows why) as a subrange of
4190 itself with range 0-127. */
4191 else if (self_subrange && n2 == 0 && n3 == 127)
4192 {
4193 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4194 0, NULL);
4195 TYPE_NOSIGN (type) = 1;
4196 return type;
4197 }
4198 /* We used to do this only for subrange of self or subrange of int. */
4199 else if (n2 == 0)
4200 {
4201 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4202 "unsigned long", and we already checked for that,
4203 so don't need to test for it here. */
4204
4205 if (n3 < 0)
4206 /* n3 actually gives the size. */
4207 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4208
4209 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4210 unsigned n-byte integer. But do require n to be a power of
4211 two; we don't want 3- and 5-byte integers flying around. */
4212 {
4213 int bytes;
4214 unsigned long bits;
4215
4216 bits = n3;
4217 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4218 bits >>= 8;
4219 if (bits == 0
4220 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4221 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4222 }
4223 }
4224 /* I think this is for Convex "long long". Since I don't know whether
4225 Convex sets self_subrange, I also accept that particular size regardless
4226 of self_subrange. */
4227 else if (n3 == 0 && n2 < 0
4228 && (self_subrange
4229 || n2 == -gdbarch_long_long_bit
4230 (gdbarch) / TARGET_CHAR_BIT))
4231 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4232 else if (n2 == -n3 - 1)
4233 {
4234 if (n3 == 0x7f)
4235 return init_integer_type (objfile, 8, 0, NULL);
4236 if (n3 == 0x7fff)
4237 return init_integer_type (objfile, 16, 0, NULL);
4238 if (n3 == 0x7fffffff)
4239 return init_integer_type (objfile, 32, 0, NULL);
4240 }
4241
4242 /* We have a real range type on our hands. Allocate space and
4243 return a real pointer. */
4244 handle_true_range:
4245
4246 if (self_subrange)
4247 index_type = objfile_type (objfile)->builtin_int;
4248 else
4249 index_type = *dbx_lookup_type (rangenums, objfile);
4250 if (index_type == NULL)
4251 {
4252 /* Does this actually ever happen? Is that why we are worrying
4253 about dealing with it rather than just calling error_type? */
4254
4255 complaint (&symfile_complaints,
4256 _("base type %d of range type is not defined"), rangenums[1]);
4257
4258 index_type = objfile_type (objfile)->builtin_int;
4259 }
4260
4261 result_type
4262 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4263 return (result_type);
4264 }
4265
4266 /* Read in an argument list. This is a list of types, separated by commas
4267 and terminated with END. Return the list of types read in, or NULL
4268 if there is an error. */
4269
4270 static struct field *
4271 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4272 int *varargsp)
4273 {
4274 /* FIXME! Remove this arbitrary limit! */
4275 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4276 int n = 0, i;
4277 struct field *rval;
4278
4279 while (**pp != end)
4280 {
4281 if (**pp != ',')
4282 /* Invalid argument list: no ','. */
4283 return NULL;
4284 (*pp)++;
4285 STABS_CONTINUE (pp, objfile);
4286 types[n++] = read_type (pp, objfile);
4287 }
4288 (*pp)++; /* get past `end' (the ':' character). */
4289
4290 if (n == 0)
4291 {
4292 /* We should read at least the THIS parameter here. Some broken stabs
4293 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4294 have been present ";-16,(0,43)" reference instead. This way the
4295 excessive ";" marker prematurely stops the parameters parsing. */
4296
4297 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4298 *varargsp = 0;
4299 }
4300 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4301 *varargsp = 1;
4302 else
4303 {
4304 n--;
4305 *varargsp = 0;
4306 }
4307
4308 rval = XCNEWVEC (struct field, n);
4309 for (i = 0; i < n; i++)
4310 rval[i].type = types[i];
4311 *nargsp = n;
4312 return rval;
4313 }
4314 \f
4315 /* Common block handling. */
4316
4317 /* List of symbols declared since the last BCOMM. This list is a tail
4318 of local_symbols. When ECOMM is seen, the symbols on the list
4319 are noted so their proper addresses can be filled in later,
4320 using the common block base address gotten from the assembler
4321 stabs. */
4322
4323 static struct pending *common_block;
4324 static int common_block_i;
4325
4326 /* Name of the current common block. We get it from the BCOMM instead of the
4327 ECOMM to match IBM documentation (even though IBM puts the name both places
4328 like everyone else). */
4329 static char *common_block_name;
4330
4331 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4332 to remain after this function returns. */
4333
4334 void
4335 common_block_start (const char *name, struct objfile *objfile)
4336 {
4337 if (common_block_name != NULL)
4338 {
4339 complaint (&symfile_complaints,
4340 _("Invalid symbol data: common block within common block"));
4341 }
4342 common_block = local_symbols;
4343 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4344 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4345 strlen (name));
4346 }
4347
4348 /* Process a N_ECOMM symbol. */
4349
4350 void
4351 common_block_end (struct objfile *objfile)
4352 {
4353 /* Symbols declared since the BCOMM are to have the common block
4354 start address added in when we know it. common_block and
4355 common_block_i point to the first symbol after the BCOMM in
4356 the local_symbols list; copy the list and hang it off the
4357 symbol for the common block name for later fixup. */
4358 int i;
4359 struct symbol *sym;
4360 struct pending *newobj = 0;
4361 struct pending *next;
4362 int j;
4363
4364 if (common_block_name == NULL)
4365 {
4366 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4367 return;
4368 }
4369
4370 sym = allocate_symbol (objfile);
4371 /* Note: common_block_name already saved on objfile_obstack. */
4372 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4373 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4374
4375 /* Now we copy all the symbols which have been defined since the BCOMM. */
4376
4377 /* Copy all the struct pendings before common_block. */
4378 for (next = local_symbols;
4379 next != NULL && next != common_block;
4380 next = next->next)
4381 {
4382 for (j = 0; j < next->nsyms; j++)
4383 add_symbol_to_list (next->symbol[j], &newobj);
4384 }
4385
4386 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4387 NULL, it means copy all the local symbols (which we already did
4388 above). */
4389
4390 if (common_block != NULL)
4391 for (j = common_block_i; j < common_block->nsyms; j++)
4392 add_symbol_to_list (common_block->symbol[j], &newobj);
4393
4394 SYMBOL_TYPE (sym) = (struct type *) newobj;
4395
4396 /* Should we be putting local_symbols back to what it was?
4397 Does it matter? */
4398
4399 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4400 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4401 global_sym_chain[i] = sym;
4402 common_block_name = NULL;
4403 }
4404
4405 /* Add a common block's start address to the offset of each symbol
4406 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4407 the common block name). */
4408
4409 static void
4410 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4411 {
4412 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4413
4414 for (; next; next = next->next)
4415 {
4416 int j;
4417
4418 for (j = next->nsyms - 1; j >= 0; j--)
4419 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4420 }
4421 }
4422 \f
4423
4424
4425 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4426 See add_undefined_type for more details. */
4427
4428 static void
4429 add_undefined_type_noname (struct type *type, int typenums[2])
4430 {
4431 struct nat nat;
4432
4433 nat.typenums[0] = typenums [0];
4434 nat.typenums[1] = typenums [1];
4435 nat.type = type;
4436
4437 if (noname_undefs_length == noname_undefs_allocated)
4438 {
4439 noname_undefs_allocated *= 2;
4440 noname_undefs = (struct nat *)
4441 xrealloc ((char *) noname_undefs,
4442 noname_undefs_allocated * sizeof (struct nat));
4443 }
4444 noname_undefs[noname_undefs_length++] = nat;
4445 }
4446
4447 /* Add TYPE to the UNDEF_TYPES vector.
4448 See add_undefined_type for more details. */
4449
4450 static void
4451 add_undefined_type_1 (struct type *type)
4452 {
4453 if (undef_types_length == undef_types_allocated)
4454 {
4455 undef_types_allocated *= 2;
4456 undef_types = (struct type **)
4457 xrealloc ((char *) undef_types,
4458 undef_types_allocated * sizeof (struct type *));
4459 }
4460 undef_types[undef_types_length++] = type;
4461 }
4462
4463 /* What about types defined as forward references inside of a small lexical
4464 scope? */
4465 /* Add a type to the list of undefined types to be checked through
4466 once this file has been read in.
4467
4468 In practice, we actually maintain two such lists: The first list
4469 (UNDEF_TYPES) is used for types whose name has been provided, and
4470 concerns forward references (eg 'xs' or 'xu' forward references);
4471 the second list (NONAME_UNDEFS) is used for types whose name is
4472 unknown at creation time, because they were referenced through
4473 their type number before the actual type was declared.
4474 This function actually adds the given type to the proper list. */
4475
4476 static void
4477 add_undefined_type (struct type *type, int typenums[2])
4478 {
4479 if (TYPE_TAG_NAME (type) == NULL)
4480 add_undefined_type_noname (type, typenums);
4481 else
4482 add_undefined_type_1 (type);
4483 }
4484
4485 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4486
4487 static void
4488 cleanup_undefined_types_noname (struct objfile *objfile)
4489 {
4490 int i;
4491
4492 for (i = 0; i < noname_undefs_length; i++)
4493 {
4494 struct nat nat = noname_undefs[i];
4495 struct type **type;
4496
4497 type = dbx_lookup_type (nat.typenums, objfile);
4498 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4499 {
4500 /* The instance flags of the undefined type are still unset,
4501 and needs to be copied over from the reference type.
4502 Since replace_type expects them to be identical, we need
4503 to set these flags manually before hand. */
4504 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4505 replace_type (nat.type, *type);
4506 }
4507 }
4508
4509 noname_undefs_length = 0;
4510 }
4511
4512 /* Go through each undefined type, see if it's still undefined, and fix it
4513 up if possible. We have two kinds of undefined types:
4514
4515 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4516 Fix: update array length using the element bounds
4517 and the target type's length.
4518 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4519 yet defined at the time a pointer to it was made.
4520 Fix: Do a full lookup on the struct/union tag. */
4521
4522 static void
4523 cleanup_undefined_types_1 (void)
4524 {
4525 struct type **type;
4526
4527 /* Iterate over every undefined type, and look for a symbol whose type
4528 matches our undefined type. The symbol matches if:
4529 1. It is a typedef in the STRUCT domain;
4530 2. It has the same name, and same type code;
4531 3. The instance flags are identical.
4532
4533 It is important to check the instance flags, because we have seen
4534 examples where the debug info contained definitions such as:
4535
4536 "foo_t:t30=B31=xefoo_t:"
4537
4538 In this case, we have created an undefined type named "foo_t" whose
4539 instance flags is null (when processing "xefoo_t"), and then created
4540 another type with the same name, but with different instance flags
4541 ('B' means volatile). I think that the definition above is wrong,
4542 since the same type cannot be volatile and non-volatile at the same
4543 time, but we need to be able to cope with it when it happens. The
4544 approach taken here is to treat these two types as different. */
4545
4546 for (type = undef_types; type < undef_types + undef_types_length; type++)
4547 {
4548 switch (TYPE_CODE (*type))
4549 {
4550
4551 case TYPE_CODE_STRUCT:
4552 case TYPE_CODE_UNION:
4553 case TYPE_CODE_ENUM:
4554 {
4555 /* Check if it has been defined since. Need to do this here
4556 as well as in check_typedef to deal with the (legitimate in
4557 C though not C++) case of several types with the same name
4558 in different source files. */
4559 if (TYPE_STUB (*type))
4560 {
4561 struct pending *ppt;
4562 int i;
4563 /* Name of the type, without "struct" or "union". */
4564 const char *type_name = TYPE_TAG_NAME (*type);
4565
4566 if (type_name == NULL)
4567 {
4568 complaint (&symfile_complaints, _("need a type name"));
4569 break;
4570 }
4571 for (ppt = file_symbols; ppt; ppt = ppt->next)
4572 {
4573 for (i = 0; i < ppt->nsyms; i++)
4574 {
4575 struct symbol *sym = ppt->symbol[i];
4576
4577 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4578 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4579 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4580 TYPE_CODE (*type))
4581 && (TYPE_INSTANCE_FLAGS (*type) ==
4582 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4583 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4584 type_name) == 0)
4585 replace_type (*type, SYMBOL_TYPE (sym));
4586 }
4587 }
4588 }
4589 }
4590 break;
4591
4592 default:
4593 {
4594 complaint (&symfile_complaints,
4595 _("forward-referenced types left unresolved, "
4596 "type code %d."),
4597 TYPE_CODE (*type));
4598 }
4599 break;
4600 }
4601 }
4602
4603 undef_types_length = 0;
4604 }
4605
4606 /* Try to fix all the undefined types we ecountered while processing
4607 this unit. */
4608
4609 void
4610 cleanup_undefined_stabs_types (struct objfile *objfile)
4611 {
4612 cleanup_undefined_types_1 ();
4613 cleanup_undefined_types_noname (objfile);
4614 }
4615
4616 /* Scan through all of the global symbols defined in the object file,
4617 assigning values to the debugging symbols that need to be assigned
4618 to. Get these symbols from the minimal symbol table. */
4619
4620 void
4621 scan_file_globals (struct objfile *objfile)
4622 {
4623 int hash;
4624 struct minimal_symbol *msymbol;
4625 struct symbol *sym, *prev;
4626 struct objfile *resolve_objfile;
4627
4628 /* SVR4 based linkers copy referenced global symbols from shared
4629 libraries to the main executable.
4630 If we are scanning the symbols for a shared library, try to resolve
4631 them from the minimal symbols of the main executable first. */
4632
4633 if (symfile_objfile && objfile != symfile_objfile)
4634 resolve_objfile = symfile_objfile;
4635 else
4636 resolve_objfile = objfile;
4637
4638 while (1)
4639 {
4640 /* Avoid expensive loop through all minimal symbols if there are
4641 no unresolved symbols. */
4642 for (hash = 0; hash < HASHSIZE; hash++)
4643 {
4644 if (global_sym_chain[hash])
4645 break;
4646 }
4647 if (hash >= HASHSIZE)
4648 return;
4649
4650 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4651 {
4652 QUIT;
4653
4654 /* Skip static symbols. */
4655 switch (MSYMBOL_TYPE (msymbol))
4656 {
4657 case mst_file_text:
4658 case mst_file_data:
4659 case mst_file_bss:
4660 continue;
4661 default:
4662 break;
4663 }
4664
4665 prev = NULL;
4666
4667 /* Get the hash index and check all the symbols
4668 under that hash index. */
4669
4670 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4671
4672 for (sym = global_sym_chain[hash]; sym;)
4673 {
4674 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4675 SYMBOL_LINKAGE_NAME (sym)) == 0)
4676 {
4677 /* Splice this symbol out of the hash chain and
4678 assign the value we have to it. */
4679 if (prev)
4680 {
4681 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4682 }
4683 else
4684 {
4685 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4686 }
4687
4688 /* Check to see whether we need to fix up a common block. */
4689 /* Note: this code might be executed several times for
4690 the same symbol if there are multiple references. */
4691 if (sym)
4692 {
4693 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4694 {
4695 fix_common_block (sym,
4696 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4697 msymbol));
4698 }
4699 else
4700 {
4701 SYMBOL_VALUE_ADDRESS (sym)
4702 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4703 }
4704 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4705 }
4706
4707 if (prev)
4708 {
4709 sym = SYMBOL_VALUE_CHAIN (prev);
4710 }
4711 else
4712 {
4713 sym = global_sym_chain[hash];
4714 }
4715 }
4716 else
4717 {
4718 prev = sym;
4719 sym = SYMBOL_VALUE_CHAIN (sym);
4720 }
4721 }
4722 }
4723 if (resolve_objfile == objfile)
4724 break;
4725 resolve_objfile = objfile;
4726 }
4727
4728 /* Change the storage class of any remaining unresolved globals to
4729 LOC_UNRESOLVED and remove them from the chain. */
4730 for (hash = 0; hash < HASHSIZE; hash++)
4731 {
4732 sym = global_sym_chain[hash];
4733 while (sym)
4734 {
4735 prev = sym;
4736 sym = SYMBOL_VALUE_CHAIN (sym);
4737
4738 /* Change the symbol address from the misleading chain value
4739 to address zero. */
4740 SYMBOL_VALUE_ADDRESS (prev) = 0;
4741
4742 /* Complain about unresolved common block symbols. */
4743 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4744 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4745 else
4746 complaint (&symfile_complaints,
4747 _("%s: common block `%s' from "
4748 "global_sym_chain unresolved"),
4749 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4750 }
4751 }
4752 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4753 }
4754
4755 /* Initialize anything that needs initializing when starting to read
4756 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4757 to a psymtab. */
4758
4759 void
4760 stabsread_init (void)
4761 {
4762 }
4763
4764 /* Initialize anything that needs initializing when a completely new
4765 symbol file is specified (not just adding some symbols from another
4766 file, e.g. a shared library). */
4767
4768 void
4769 stabsread_new_init (void)
4770 {
4771 /* Empty the hash table of global syms looking for values. */
4772 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4773 }
4774
4775 /* Initialize anything that needs initializing at the same time as
4776 start_symtab() is called. */
4777
4778 void
4779 start_stabs (void)
4780 {
4781 global_stabs = NULL; /* AIX COFF */
4782 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4783 n_this_object_header_files = 1;
4784 type_vector_length = 0;
4785 type_vector = (struct type **) 0;
4786
4787 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4788 common_block_name = NULL;
4789 }
4790
4791 /* Call after end_symtab(). */
4792
4793 void
4794 end_stabs (void)
4795 {
4796 if (type_vector)
4797 {
4798 xfree (type_vector);
4799 }
4800 type_vector = 0;
4801 type_vector_length = 0;
4802 previous_stab_code = 0;
4803 }
4804
4805 void
4806 finish_global_stabs (struct objfile *objfile)
4807 {
4808 if (global_stabs)
4809 {
4810 patch_block_stabs (global_symbols, global_stabs, objfile);
4811 xfree (global_stabs);
4812 global_stabs = NULL;
4813 }
4814 }
4815
4816 /* Find the end of the name, delimited by a ':', but don't match
4817 ObjC symbols which look like -[Foo bar::]:bla. */
4818 static const char *
4819 find_name_end (const char *name)
4820 {
4821 const char *s = name;
4822
4823 if (s[0] == '-' || *s == '+')
4824 {
4825 /* Must be an ObjC method symbol. */
4826 if (s[1] != '[')
4827 {
4828 error (_("invalid symbol name \"%s\""), name);
4829 }
4830 s = strchr (s, ']');
4831 if (s == NULL)
4832 {
4833 error (_("invalid symbol name \"%s\""), name);
4834 }
4835 return strchr (s, ':');
4836 }
4837 else
4838 {
4839 return strchr (s, ':');
4840 }
4841 }
4842
4843 /* Initializer for this module. */
4844
4845 void
4846 _initialize_stabsread (void)
4847 {
4848 rs6000_builtin_type_data = register_objfile_data ();
4849
4850 undef_types_allocated = 20;
4851 undef_types_length = 0;
4852 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4853
4854 noname_undefs_allocated = 20;
4855 noname_undefs_length = 0;
4856 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4857
4858 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4859 &stab_register_funcs);
4860 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4861 &stab_register_funcs);
4862 }
This page took 0.136108 seconds and 5 git commands to generate.