Use XOBNEW/XOBNEWVEC/OBSTACK_ZALLOC when possible
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
270 temp_type = rs6000_builtin_type (index, objfile);
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327 }
328
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335 static struct type *
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 {
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* Allocate a floating-point type of size BITS. */
359
360 static struct type *
361 dbx_init_float_type (struct objfile *objfile, int bits)
362 {
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
372
373 return type;
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
382 {
383 int ii;
384 char *name;
385 const char *pp;
386 struct symbol *sym;
387
388 if (stabs)
389 {
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
398 while (pp[1] == ':')
399 {
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
402 }
403 sym = find_symbol_in_list (symbols, name, pp - name);
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
413
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
423 pp += 2;
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453 }
454 \f
455
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464 static int
465 read_type_number (const char **pp, int *typenums)
466 {
467 int nbits;
468
469 if (**pp == '(')
470 {
471 (*pp)++;
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
473 if (nbits != 0)
474 return -1;
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 }
479 else
480 {
481 typenums[0] = 0;
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 return 0;
487 }
488 \f
489
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
497
498 struct ref_map
499 {
500 const char *stabs;
501 CORE_ADDR value;
502 struct symbol *sym;
503 };
504
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
509 static struct ref_map *ref_map;
510
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
513
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
516
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
520 void
521 stabsread_clear_cache (void)
522 {
523 ref_count = 0;
524 ref_chunk = 0;
525 }
526
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
531 void
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
533 {
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552 }
553
554 /* Return defined sym for the reference REFNUM. */
555 struct symbol *
556 ref_search (int refnum)
557 {
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561 }
562
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
566 static int
567 process_reference (const char **string)
568 {
569 const char *p;
570 int refnum = 0;
571
572 if (**string != '#')
573 return 0;
574
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586 }
587
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591 int
592 symbol_reference_defined (const char **string)
593 {
594 const char *p = *string;
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
599 /* Defining symbols end in '='. */
600 if (*p == '=')
601 {
602 /* Symbol is being defined here. */
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613 }
614
615 static int
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 {
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 }
631
632 return regno;
633 }
634
635 static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637 };
638
639 /* The "aclass" indices for computed symbols. */
640
641 static int stab_register_index;
642 static int stab_regparm_index;
643
644 struct symbol *
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
647 {
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 struct symbol *sym;
650 const char *p = find_name_end (string);
651 int deftype;
652 int synonym = 0;
653 int i;
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
666 /* Ignore old-style symbols from cc -go. */
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
672 p += 2;
673 p = strchr (p, ':');
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
686 current_symbol = sym = allocate_symbol (objfile);
687
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
693 }
694 else
695 {
696 SYMBOL_LINE (sym) = 0; /* unknown */
697 }
698
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
707 case 't':
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
709 break;
710
711 case 'v': /* $vtbl_ptr_type */
712 goto normal;
713
714 case 'e':
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
716 break;
717
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
721
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
725 goto normal;
726 /* fall through */
727
728 default:
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
730 string);
731 goto normal; /* Do *something* with it. */
732 }
733 }
734 else
735 {
736 normal:
737 std::string new_name;
738
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 {
741 char *name = (char *) alloca (p - string + 1);
742
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
746 }
747 if (!new_name.empty ())
748 {
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
752 }
753 else
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763 #if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 #else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774 #endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 dbl_type = objfile_type (objfile)->builtin_double;
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 const char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103 /* Fall through. */
1104
1105 case 'P':
1106 /* acc seems to use P to declare the prototypes of functions that
1107 are referenced by this file. gdb is not prepared to deal
1108 with this extra information. FIXME, it ought to. */
1109 if (type == N_FUN)
1110 {
1111 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1112 goto process_prototype_types;
1113 }
1114 /*FALLTHROUGH */
1115
1116 case 'R':
1117 /* Parameter which is in a register. */
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1120 SYMBOL_IS_ARGUMENT (sym) = 1;
1121 SYMBOL_VALUE (sym) = valu;
1122 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1123 add_symbol_to_list (sym, &local_symbols);
1124 break;
1125
1126 case 'r':
1127 /* Register variable (either global or local). */
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1130 SYMBOL_VALUE (sym) = valu;
1131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1132 if (within_function)
1133 {
1134 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1135 the same name to represent an argument passed in a
1136 register. GCC uses 'P' for the same case. So if we find
1137 such a symbol pair we combine it into one 'P' symbol.
1138 For Sun cc we need to do this regardless of
1139 stabs_argument_has_addr, because the compiler puts out
1140 the 'p' symbol even if it never saves the argument onto
1141 the stack.
1142
1143 On most machines, we want to preserve both symbols, so
1144 that we can still get information about what is going on
1145 with the stack (VAX for computing args_printed, using
1146 stack slots instead of saved registers in backtraces,
1147 etc.).
1148
1149 Note that this code illegally combines
1150 main(argc) struct foo argc; { register struct foo argc; }
1151 but this case is considered pathological and causes a warning
1152 from a decent compiler. */
1153
1154 if (local_symbols
1155 && local_symbols->nsyms > 0
1156 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1157 {
1158 struct symbol *prev_sym;
1159
1160 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1161 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1162 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1163 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1164 SYMBOL_LINKAGE_NAME (sym)) == 0)
1165 {
1166 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1167 /* Use the type from the LOC_REGISTER; that is the type
1168 that is actually in that register. */
1169 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1170 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1171 sym = prev_sym;
1172 break;
1173 }
1174 }
1175 add_symbol_to_list (sym, &local_symbols);
1176 }
1177 else
1178 add_symbol_to_list (sym, &file_symbols);
1179 break;
1180
1181 case 'S':
1182 /* Static symbol at top level of file. */
1183 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1184 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1185 SYMBOL_VALUE_ADDRESS (sym) = valu;
1186 if (gdbarch_static_transform_name_p (gdbarch)
1187 && gdbarch_static_transform_name (gdbarch,
1188 SYMBOL_LINKAGE_NAME (sym))
1189 != SYMBOL_LINKAGE_NAME (sym))
1190 {
1191 struct bound_minimal_symbol msym;
1192
1193 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1194 NULL, objfile);
1195 if (msym.minsym != NULL)
1196 {
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1199
1200 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1201 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1202 }
1203 }
1204 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1205 add_symbol_to_list (sym, &file_symbols);
1206 break;
1207
1208 case 't':
1209 /* In Ada, there is no distinction between typedef and non-typedef;
1210 any type declaration implicitly has the equivalent of a typedef,
1211 and thus 't' is in fact equivalent to 'Tt'.
1212
1213 Therefore, for Ada units, we check the character immediately
1214 before the 't', and if we do not find a 'T', then make sure to
1215 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1216 will be stored in the VAR_DOMAIN). If the symbol was indeed
1217 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1218 elsewhere, so we don't need to take care of that.
1219
1220 This is important to do, because of forward references:
1221 The cleanup of undefined types stored in undef_types only uses
1222 STRUCT_DOMAIN symbols to perform the replacement. */
1223 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1224
1225 /* Typedef */
1226 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1227
1228 /* For a nameless type, we don't want a create a symbol, thus we
1229 did not use `sym'. Return without further processing. */
1230 if (nameless)
1231 return NULL;
1232
1233 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1234 SYMBOL_VALUE (sym) = valu;
1235 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1236 /* C++ vagaries: we may have a type which is derived from
1237 a base type which did not have its name defined when the
1238 derived class was output. We fill in the derived class's
1239 base part member's name here in that case. */
1240 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1243 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1244 {
1245 int j;
1246
1247 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1248 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1249 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1250 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1251 }
1252
1253 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1254 {
1255 /* gcc-2.6 or later (when using -fvtable-thunks)
1256 emits a unique named type for a vtable entry.
1257 Some gdb code depends on that specific name. */
1258 extern const char vtbl_ptr_name[];
1259
1260 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1261 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1262 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1263 {
1264 /* If we are giving a name to a type such as "pointer to
1265 foo" or "function returning foo", we better not set
1266 the TYPE_NAME. If the program contains "typedef char
1267 *caddr_t;", we don't want all variables of type char
1268 * to print as caddr_t. This is not just a
1269 consequence of GDB's type management; PCC and GCC (at
1270 least through version 2.4) both output variables of
1271 either type char * or caddr_t with the type number
1272 defined in the 't' symbol for caddr_t. If a future
1273 compiler cleans this up it GDB is not ready for it
1274 yet, but if it becomes ready we somehow need to
1275 disable this check (without breaking the PCC/GCC2.4
1276 case).
1277
1278 Sigh.
1279
1280 Fortunately, this check seems not to be necessary
1281 for anything except pointers or functions. */
1282 /* ezannoni: 2000-10-26. This seems to apply for
1283 versions of gcc older than 2.8. This was the original
1284 problem: with the following code gdb would tell that
1285 the type for name1 is caddr_t, and func is char().
1286
1287 typedef char *caddr_t;
1288 char *name2;
1289 struct x
1290 {
1291 char *name1;
1292 } xx;
1293 char *func()
1294 {
1295 }
1296 main () {}
1297 */
1298
1299 /* Pascal accepts names for pointer types. */
1300 if (current_subfile->language == language_pascal)
1301 {
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1303 }
1304 }
1305 else
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1307 }
1308
1309 add_symbol_to_list (sym, &file_symbols);
1310
1311 if (synonym)
1312 {
1313 /* Create the STRUCT_DOMAIN clone. */
1314 struct symbol *struct_sym = allocate_symbol (objfile);
1315
1316 *struct_sym = *sym;
1317 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1318 SYMBOL_VALUE (struct_sym) = valu;
1319 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1320 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1321 TYPE_NAME (SYMBOL_TYPE (sym))
1322 = obconcat (&objfile->objfile_obstack,
1323 SYMBOL_LINKAGE_NAME (sym),
1324 (char *) NULL);
1325 add_symbol_to_list (struct_sym, &file_symbols);
1326 }
1327
1328 break;
1329
1330 case 'T':
1331 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1332 by 't' which means we are typedef'ing it as well. */
1333 synonym = *p == 't';
1334
1335 if (synonym)
1336 p++;
1337
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339
1340 /* For a nameless type, we don't want a create a symbol, thus we
1341 did not use `sym'. Return without further processing. */
1342 if (nameless)
1343 return NULL;
1344
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1348 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1349 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1350 = obconcat (&objfile->objfile_obstack,
1351 SYMBOL_LINKAGE_NAME (sym),
1352 (char *) NULL);
1353 add_symbol_to_list (sym, &file_symbols);
1354
1355 if (synonym)
1356 {
1357 /* Clone the sym and then modify it. */
1358 struct symbol *typedef_sym = allocate_symbol (objfile);
1359
1360 *typedef_sym = *sym;
1361 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1362 SYMBOL_VALUE (typedef_sym) = valu;
1363 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1364 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1365 TYPE_NAME (SYMBOL_TYPE (sym))
1366 = obconcat (&objfile->objfile_obstack,
1367 SYMBOL_LINKAGE_NAME (sym),
1368 (char *) NULL);
1369 add_symbol_to_list (typedef_sym, &file_symbols);
1370 }
1371 break;
1372
1373 case 'V':
1374 /* Static symbol of local scope. */
1375 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1376 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1377 SYMBOL_VALUE_ADDRESS (sym) = valu;
1378 if (gdbarch_static_transform_name_p (gdbarch)
1379 && gdbarch_static_transform_name (gdbarch,
1380 SYMBOL_LINKAGE_NAME (sym))
1381 != SYMBOL_LINKAGE_NAME (sym))
1382 {
1383 struct bound_minimal_symbol msym;
1384
1385 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1386 NULL, objfile);
1387 if (msym.minsym != NULL)
1388 {
1389 const char *new_name = gdbarch_static_transform_name
1390 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1391
1392 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1393 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1394 }
1395 }
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'v':
1401 /* Reference parameter */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1404 SYMBOL_IS_ARGUMENT (sym) = 1;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &local_symbols);
1408 break;
1409
1410 case 'a':
1411 /* Reference parameter which is in a register. */
1412 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1413 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1414 SYMBOL_IS_ARGUMENT (sym) = 1;
1415 SYMBOL_VALUE (sym) = valu;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &local_symbols);
1418 break;
1419
1420 case 'X':
1421 /* This is used by Sun FORTRAN for "function result value".
1422 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1423 that Pascal uses it too, but when I tried it Pascal used
1424 "x:3" (local symbol) instead. */
1425 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1426 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1427 SYMBOL_VALUE (sym) = valu;
1428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1429 add_symbol_to_list (sym, &local_symbols);
1430 break;
1431
1432 default:
1433 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1434 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1435 SYMBOL_VALUE (sym) = 0;
1436 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1437 add_symbol_to_list (sym, &file_symbols);
1438 break;
1439 }
1440
1441 /* Some systems pass variables of certain types by reference instead
1442 of by value, i.e. they will pass the address of a structure (in a
1443 register or on the stack) instead of the structure itself. */
1444
1445 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1446 && SYMBOL_IS_ARGUMENT (sym))
1447 {
1448 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1449 variables passed in a register). */
1450 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1451 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1452 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1453 and subsequent arguments on SPARC, for example). */
1454 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1455 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1456 }
1457
1458 return sym;
1459 }
1460
1461 /* Skip rest of this symbol and return an error type.
1462
1463 General notes on error recovery: error_type always skips to the
1464 end of the symbol (modulo cretinous dbx symbol name continuation).
1465 Thus code like this:
1466
1467 if (*(*pp)++ != ';')
1468 return error_type (pp, objfile);
1469
1470 is wrong because if *pp starts out pointing at '\0' (typically as the
1471 result of an earlier error), it will be incremented to point to the
1472 start of the next symbol, which might produce strange results, at least
1473 if you run off the end of the string table. Instead use
1474
1475 if (**pp != ';')
1476 return error_type (pp, objfile);
1477 ++*pp;
1478
1479 or
1480
1481 if (**pp != ';')
1482 foo = error_type (pp, objfile);
1483 else
1484 ++*pp;
1485
1486 And in case it isn't obvious, the point of all this hair is so the compiler
1487 can define new types and new syntaxes, and old versions of the
1488 debugger will be able to read the new symbol tables. */
1489
1490 static struct type *
1491 error_type (const char **pp, struct objfile *objfile)
1492 {
1493 complaint (&symfile_complaints,
1494 _("couldn't parse type; debugger out of date?"));
1495 while (1)
1496 {
1497 /* Skip to end of symbol. */
1498 while (**pp != '\0')
1499 {
1500 (*pp)++;
1501 }
1502
1503 /* Check for and handle cretinous dbx symbol name continuation! */
1504 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1505 {
1506 *pp = next_symbol_text (objfile);
1507 }
1508 else
1509 {
1510 break;
1511 }
1512 }
1513 return objfile_type (objfile)->builtin_error;
1514 }
1515 \f
1516
1517 /* Read type information or a type definition; return the type. Even
1518 though this routine accepts either type information or a type
1519 definition, the distinction is relevant--some parts of stabsread.c
1520 assume that type information starts with a digit, '-', or '(' in
1521 deciding whether to call read_type. */
1522
1523 static struct type *
1524 read_type (const char **pp, struct objfile *objfile)
1525 {
1526 struct type *type = 0;
1527 struct type *type1;
1528 int typenums[2];
1529 char type_descriptor;
1530
1531 /* Size in bits of type if specified by a type attribute, or -1 if
1532 there is no size attribute. */
1533 int type_size = -1;
1534
1535 /* Used to distinguish string and bitstring from char-array and set. */
1536 int is_string = 0;
1537
1538 /* Used to distinguish vector from array. */
1539 int is_vector = 0;
1540
1541 /* Read type number if present. The type number may be omitted.
1542 for instance in a two-dimensional array declared with type
1543 "ar1;1;10;ar1;1;10;4". */
1544 if ((**pp >= '0' && **pp <= '9')
1545 || **pp == '('
1546 || **pp == '-')
1547 {
1548 if (read_type_number (pp, typenums) != 0)
1549 return error_type (pp, objfile);
1550
1551 if (**pp != '=')
1552 {
1553 /* Type is not being defined here. Either it already
1554 exists, or this is a forward reference to it.
1555 dbx_alloc_type handles both cases. */
1556 type = dbx_alloc_type (typenums, objfile);
1557
1558 /* If this is a forward reference, arrange to complain if it
1559 doesn't get patched up by the time we're done
1560 reading. */
1561 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1562 add_undefined_type (type, typenums);
1563
1564 return type;
1565 }
1566
1567 /* Type is being defined here. */
1568 /* Skip the '='.
1569 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1570 (*pp) += 2;
1571 }
1572 else
1573 {
1574 /* 'typenums=' not present, type is anonymous. Read and return
1575 the definition, but don't put it in the type vector. */
1576 typenums[0] = typenums[1] = -1;
1577 (*pp)++;
1578 }
1579
1580 again:
1581 type_descriptor = (*pp)[-1];
1582 switch (type_descriptor)
1583 {
1584 case 'x':
1585 {
1586 enum type_code code;
1587
1588 /* Used to index through file_symbols. */
1589 struct pending *ppt;
1590 int i;
1591
1592 /* Name including "struct", etc. */
1593 char *type_name;
1594
1595 {
1596 const char *from, *p, *q1, *q2;
1597
1598 /* Set the type code according to the following letter. */
1599 switch ((*pp)[0])
1600 {
1601 case 's':
1602 code = TYPE_CODE_STRUCT;
1603 break;
1604 case 'u':
1605 code = TYPE_CODE_UNION;
1606 break;
1607 case 'e':
1608 code = TYPE_CODE_ENUM;
1609 break;
1610 default:
1611 {
1612 /* Complain and keep going, so compilers can invent new
1613 cross-reference types. */
1614 complaint (&symfile_complaints,
1615 _("Unrecognized cross-reference type `%c'"),
1616 (*pp)[0]);
1617 code = TYPE_CODE_STRUCT;
1618 break;
1619 }
1620 }
1621
1622 q1 = strchr (*pp, '<');
1623 p = strchr (*pp, ':');
1624 if (p == NULL)
1625 return error_type (pp, objfile);
1626 if (q1 && p > q1 && p[1] == ':')
1627 {
1628 int nesting_level = 0;
1629
1630 for (q2 = q1; *q2; q2++)
1631 {
1632 if (*q2 == '<')
1633 nesting_level++;
1634 else if (*q2 == '>')
1635 nesting_level--;
1636 else if (*q2 == ':' && nesting_level == 0)
1637 break;
1638 }
1639 p = q2;
1640 if (*p != ':')
1641 return error_type (pp, objfile);
1642 }
1643 type_name = NULL;
1644 if (current_subfile->language == language_cplus)
1645 {
1646 char *name = (char *) alloca (p - *pp + 1);
1647
1648 memcpy (name, *pp, p - *pp);
1649 name[p - *pp] = '\0';
1650
1651 std::string new_name = cp_canonicalize_string (name);
1652 if (!new_name.empty ())
1653 {
1654 type_name
1655 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1656 new_name.c_str (),
1657 new_name.length ());
1658 }
1659 }
1660 if (type_name == NULL)
1661 {
1662 char *to = type_name = (char *)
1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1664
1665 /* Copy the name. */
1666 from = *pp + 1;
1667 while (from < p)
1668 *to++ = *from++;
1669 *to = '\0';
1670 }
1671
1672 /* Set the pointer ahead of the name which we just read, and
1673 the colon. */
1674 *pp = p + 1;
1675 }
1676
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1679 memory. */
1680
1681 for (ppt = file_symbols; ppt; ppt = ppt->next)
1682 for (i = 0; i < ppt->nsyms; i++)
1683 {
1684 struct symbol *sym = ppt->symbol[i];
1685
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1690 {
1691 obstack_free (&objfile->objfile_obstack, type_name);
1692 type = SYMBOL_TYPE (sym);
1693 if (typenums[0] != -1)
1694 *dbx_lookup_type (typenums, objfile) = type;
1695 return type;
1696 }
1697 }
1698
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1703 type. */
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
1706 TYPE_TAG_NAME (type) = type_name;
1707 INIT_CPLUS_SPECIFIC (type);
1708 TYPE_STUB (type) = 1;
1709
1710 add_undefined_type (type, typenums);
1711 return type;
1712 }
1713
1714 case '-': /* RS/6000 built-in type */
1715 case '0':
1716 case '1':
1717 case '2':
1718 case '3':
1719 case '4':
1720 case '5':
1721 case '6':
1722 case '7':
1723 case '8':
1724 case '9':
1725 case '(':
1726 (*pp)--;
1727
1728 /* We deal with something like t(1,2)=(3,4)=... which
1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1730
1731 /* Allocate and enter the typedef type first.
1732 This handles recursive types. */
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1735 {
1736 struct type *xtype = read_type (pp, objfile);
1737
1738 if (type == xtype)
1739 {
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1743 }
1744 else if (type_size >= 0 || is_string)
1745 {
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
1751 should not be modified.
1752
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1761
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
1769 replace_type (type, xtype);
1770 TYPE_NAME (type) = NULL;
1771 TYPE_TAG_NAME (type) = NULL;
1772 }
1773 else
1774 {
1775 TYPE_TARGET_STUB (type) = 1;
1776 TYPE_TARGET_TYPE (type) = xtype;
1777 }
1778 }
1779 break;
1780
1781 /* In the following types, we must be sure to overwrite any existing
1782 type that the typenums refer to, rather than allocating a new one
1783 and making the typenums point to the new one. This is because there
1784 may already be pointers to the existing type (if it had been
1785 forward-referenced), and we must change it to a pointer, function,
1786 reference, or whatever, *in-place*. */
1787
1788 case '*': /* Pointer to another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1791 break;
1792
1793 case '&': /* Reference to another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1796 TYPE_CODE_REF);
1797 break;
1798
1799 case 'f': /* Function returning another type */
1800 type1 = read_type (pp, objfile);
1801 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1802 break;
1803
1804 case 'g': /* Prototyped function. (Sun) */
1805 {
1806 /* Unresolved questions:
1807
1808 - According to Sun's ``STABS Interface Manual'', for 'f'
1809 and 'F' symbol descriptors, a `0' in the argument type list
1810 indicates a varargs function. But it doesn't say how 'g'
1811 type descriptors represent that info. Someone with access
1812 to Sun's toolchain should try it out.
1813
1814 - According to the comment in define_symbol (search for
1815 `process_prototype_types:'), Sun emits integer arguments as
1816 types which ref themselves --- like `void' types. Do we
1817 have to deal with that here, too? Again, someone with
1818 access to Sun's toolchain should try it out and let us
1819 know. */
1820
1821 const char *type_start = (*pp) - 1;
1822 struct type *return_type = read_type (pp, objfile);
1823 struct type *func_type
1824 = make_function_type (return_type,
1825 dbx_lookup_type (typenums, objfile));
1826 struct type_list {
1827 struct type *type;
1828 struct type_list *next;
1829 } *arg_types = 0;
1830 int num_args = 0;
1831
1832 while (**pp && **pp != '#')
1833 {
1834 struct type *arg_type = read_type (pp, objfile);
1835 struct type_list *newobj = XALLOCA (struct type_list);
1836 newobj->type = arg_type;
1837 newobj->next = arg_types;
1838 arg_types = newobj;
1839 num_args++;
1840 }
1841 if (**pp == '#')
1842 ++*pp;
1843 else
1844 {
1845 complaint (&symfile_complaints,
1846 _("Prototyped function type didn't "
1847 "end arguments with `#':\n%s"),
1848 type_start);
1849 }
1850
1851 /* If there is just one argument whose type is `void', then
1852 that's just an empty argument list. */
1853 if (arg_types
1854 && ! arg_types->next
1855 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1856 num_args = 0;
1857
1858 TYPE_FIELDS (func_type)
1859 = (struct field *) TYPE_ALLOC (func_type,
1860 num_args * sizeof (struct field));
1861 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1862 {
1863 int i;
1864 struct type_list *t;
1865
1866 /* We stuck each argument type onto the front of the list
1867 when we read it, so the list is reversed. Build the
1868 fields array right-to-left. */
1869 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1870 TYPE_FIELD_TYPE (func_type, i) = t->type;
1871 }
1872 TYPE_NFIELDS (func_type) = num_args;
1873 TYPE_PROTOTYPED (func_type) = 1;
1874
1875 type = func_type;
1876 break;
1877 }
1878
1879 case 'k': /* Const qualifier on some type (Sun) */
1880 type = read_type (pp, objfile);
1881 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1882 dbx_lookup_type (typenums, objfile));
1883 break;
1884
1885 case 'B': /* Volatile qual on some type (Sun) */
1886 type = read_type (pp, objfile);
1887 type = make_cv_type (TYPE_CONST (type), 1, type,
1888 dbx_lookup_type (typenums, objfile));
1889 break;
1890
1891 case '@':
1892 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1893 { /* Member (class & variable) type */
1894 /* FIXME -- we should be doing smash_to_XXX types here. */
1895
1896 struct type *domain = read_type (pp, objfile);
1897 struct type *memtype;
1898
1899 if (**pp != ',')
1900 /* Invalid member type data format. */
1901 return error_type (pp, objfile);
1902 ++*pp;
1903
1904 memtype = read_type (pp, objfile);
1905 type = dbx_alloc_type (typenums, objfile);
1906 smash_to_memberptr_type (type, domain, memtype);
1907 }
1908 else
1909 /* type attribute */
1910 {
1911 const char *attr = *pp;
1912
1913 /* Skip to the semicolon. */
1914 while (**pp != ';' && **pp != '\0')
1915 ++(*pp);
1916 if (**pp == '\0')
1917 return error_type (pp, objfile);
1918 else
1919 ++ * pp; /* Skip the semicolon. */
1920
1921 switch (*attr)
1922 {
1923 case 's': /* Size attribute */
1924 type_size = atoi (attr + 1);
1925 if (type_size <= 0)
1926 type_size = -1;
1927 break;
1928
1929 case 'S': /* String attribute */
1930 /* FIXME: check to see if following type is array? */
1931 is_string = 1;
1932 break;
1933
1934 case 'V': /* Vector attribute */
1935 /* FIXME: check to see if following type is array? */
1936 is_vector = 1;
1937 break;
1938
1939 default:
1940 /* Ignore unrecognized type attributes, so future compilers
1941 can invent new ones. */
1942 break;
1943 }
1944 ++*pp;
1945 goto again;
1946 }
1947 break;
1948
1949 case '#': /* Method (class & fn) type */
1950 if ((*pp)[0] == '#')
1951 {
1952 /* We'll get the parameter types from the name. */
1953 struct type *return_type;
1954
1955 (*pp)++;
1956 return_type = read_type (pp, objfile);
1957 if (*(*pp)++ != ';')
1958 complaint (&symfile_complaints,
1959 _("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1961 symnum);
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1965 }
1966 else
1967 {
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1970 struct field *args;
1971 int nargs, varargs;
1972
1973 if (**pp != ',')
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1976 else
1977 ++(*pp);
1978
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1981 if (args == NULL)
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1985 nargs, varargs);
1986 }
1987 break;
1988
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 break;
1994
1995 case 'b':
1996 {
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 }
2002 break;
2003
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2008 break;
2009
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2015 break;
2016
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2019 {
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2023 {
2024 case 's':
2025 type_code = TYPE_CODE_STRUCT;
2026 break;
2027 case 'u':
2028 type_code = TYPE_CODE_UNION;
2029 break;
2030 }
2031 type = read_struct_type (pp, type, type_code, objfile);
2032 break;
2033 }
2034
2035 case 'a': /* Array type */
2036 if (**pp != 'r')
2037 return error_type (pp, objfile);
2038 ++*pp;
2039
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2042 if (is_string)
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2044 if (is_vector)
2045 make_vector_type (type);
2046 break;
2047
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2053 break;
2054
2055 default:
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2059 }
2060
2061 if (type == 0)
2062 {
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2065 }
2066
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2070
2071 return type;
2072 }
2073 \f
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2076
2077 static const struct objfile_data *rs6000_builtin_type_data;
2078
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 {
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2084
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2088
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2090 {
2091 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2093 }
2094
2095 if (!negative_types)
2096 {
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2101 }
2102
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2105
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2111 TARGET_CHAR_BIT. */
2112 #endif
2113
2114 switch (-typenum)
2115 {
2116 case 1:
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2123 break;
2124 case 2:
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2127 break;
2128 case 3:
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2130 break;
2131 case 4:
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2133 break;
2134 case 5:
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2136 break;
2137 case 6:
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2139 break;
2140 case 7:
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2142 break;
2143 case 8:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2145 break;
2146 case 9:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2148 break;
2149 case 10:
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2151 break;
2152 case 11:
2153 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2154 break;
2155 case 12:
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2159 break;
2160 case 13:
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2164 break;
2165 case 14:
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2171 break;
2172 case 15:
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2174 break;
2175 case 16:
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2177 break;
2178 case 17:
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2181 break;
2182 case 18:
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2185 break;
2186 case 19:
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2188 break;
2189 case 20:
2190 rettype = init_character_type (objfile, 8, 1, "character");
2191 break;
2192 case 21:
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2194 break;
2195 case 22:
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2197 break;
2198 case 23:
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2200 break;
2201 case 24:
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2203 break;
2204 case 25:
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2208 break;
2209 case 26:
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2213 break;
2214 case 27:
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2216 break;
2217 case 28:
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2219 break;
2220 case 29:
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2222 break;
2223 case 30:
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2225 break;
2226 case 31:
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2228 break;
2229 case 32:
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2231 break;
2232 case 33:
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2234 break;
2235 case 34:
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2237 break;
2238 }
2239 negative_types[-typenum] = rettype;
2240 return rettype;
2241 }
2242 \f
2243 /* This page contains subroutines of read_type. */
2244
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2247
2248 static char *
2249 stabs_method_name_from_physname (const char *physname)
2250 {
2251 char *method_name;
2252
2253 method_name = method_name_from_physname (physname);
2254
2255 if (method_name == NULL)
2256 {
2257 complaint (&symfile_complaints,
2258 _("Method has bad physname %s\n"), physname);
2259 return NULL;
2260 }
2261
2262 return method_name;
2263 }
2264
2265 /* Read member function stabs info for C++ classes. The form of each member
2266 function data is:
2267
2268 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2269
2270 An example with two member functions is:
2271
2272 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2273
2274 For the case of overloaded operators, the format is op$::*.funcs, where
2275 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2276 name (such as `+=') and `.' marks the end of the operator name.
2277
2278 Returns 1 for success, 0 for failure. */
2279
2280 static int
2281 read_member_functions (struct field_info *fip, const char **pp,
2282 struct type *type, struct objfile *objfile)
2283 {
2284 int nfn_fields = 0;
2285 int length = 0;
2286 int i;
2287 struct next_fnfield
2288 {
2289 struct next_fnfield *next;
2290 struct fn_field fn_field;
2291 }
2292 *sublist;
2293 struct type *look_ahead_type;
2294 struct next_fnfieldlist *new_fnlist;
2295 struct next_fnfield *new_sublist;
2296 char *main_fn_name;
2297 const char *p;
2298
2299 /* Process each list until we find something that is not a member function
2300 or find the end of the functions. */
2301
2302 while (**pp != ';')
2303 {
2304 /* We should be positioned at the start of the function name.
2305 Scan forward to find the first ':' and if it is not the
2306 first of a "::" delimiter, then this is not a member function. */
2307 p = *pp;
2308 while (*p != ':')
2309 {
2310 p++;
2311 }
2312 if (p[1] != ':')
2313 {
2314 break;
2315 }
2316
2317 sublist = NULL;
2318 look_ahead_type = NULL;
2319 length = 0;
2320
2321 new_fnlist = XCNEW (struct next_fnfieldlist);
2322 make_cleanup (xfree, new_fnlist);
2323
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 {
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2334 work for "*". */
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2337
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340
2341 STABS_CONTINUE (pp, objfile);
2342 p = *pp;
2343 while (*p != '.')
2344 {
2345 *o++ = *p++;
2346 }
2347 main_fn_name = savestring (opname, o - opname);
2348 /* Skip past '.' */
2349 *pp = p + 1;
2350 }
2351 else
2352 {
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2355 *pp = p + 2;
2356 }
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2358
2359 do
2360 {
2361 new_sublist = XCNEW (struct next_fnfield);
2362 make_cleanup (xfree, new_sublist);
2363
2364 /* Check for and handle cretinous dbx symbol name continuation! */
2365 if (look_ahead_type == NULL)
2366 {
2367 /* Normal case. */
2368 STABS_CONTINUE (pp, objfile);
2369
2370 new_sublist->fn_field.type = read_type (pp, objfile);
2371 if (**pp != ':')
2372 {
2373 /* Invalid symtab info for member function. */
2374 return 0;
2375 }
2376 }
2377 else
2378 {
2379 /* g++ version 1 kludge */
2380 new_sublist->fn_field.type = look_ahead_type;
2381 look_ahead_type = NULL;
2382 }
2383
2384 (*pp)++;
2385 p = *pp;
2386 while (*p != ';')
2387 {
2388 p++;
2389 }
2390
2391 /* These are methods, not functions. */
2392 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2393 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2394 else
2395 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2396 == TYPE_CODE_METHOD);
2397
2398 /* If this is just a stub, then we don't have the real name here. */
2399 if (TYPE_STUB (new_sublist->fn_field.type))
2400 {
2401 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2402 set_type_self_type (new_sublist->fn_field.type, type);
2403 new_sublist->fn_field.is_stub = 1;
2404 }
2405
2406 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2407 *pp = p + 1;
2408
2409 /* Set this member function's visibility fields. */
2410 switch (*(*pp)++)
2411 {
2412 case VISIBILITY_PRIVATE:
2413 new_sublist->fn_field.is_private = 1;
2414 break;
2415 case VISIBILITY_PROTECTED:
2416 new_sublist->fn_field.is_protected = 1;
2417 break;
2418 }
2419
2420 STABS_CONTINUE (pp, objfile);
2421 switch (**pp)
2422 {
2423 case 'A': /* Normal functions. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
2428 case 'B': /* `const' member functions. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 0;
2431 (*pp)++;
2432 break;
2433 case 'C': /* `volatile' member function. */
2434 new_sublist->fn_field.is_const = 0;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
2438 case 'D': /* `const volatile' member function. */
2439 new_sublist->fn_field.is_const = 1;
2440 new_sublist->fn_field.is_volatile = 1;
2441 (*pp)++;
2442 break;
2443 case '*': /* File compiled with g++ version 1 --
2444 no info. */
2445 case '?':
2446 case '.':
2447 break;
2448 default:
2449 complaint (&symfile_complaints,
2450 _("const/volatile indicator missing, got '%c'"),
2451 **pp);
2452 break;
2453 }
2454
2455 switch (*(*pp)++)
2456 {
2457 case '*':
2458 {
2459 int nbits;
2460 /* virtual member function, followed by index.
2461 The sign bit is set to distinguish pointers-to-methods
2462 from virtual function indicies. Since the array is
2463 in words, the quantity must be shifted left by 1
2464 on 16 bit machine, and by 2 on 32 bit machine, forcing
2465 the sign bit out, and usable as a valid index into
2466 the array. Remove the sign bit here. */
2467 new_sublist->fn_field.voffset =
2468 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2469 if (nbits != 0)
2470 return 0;
2471
2472 STABS_CONTINUE (pp, objfile);
2473 if (**pp == ';' || **pp == '\0')
2474 {
2475 /* Must be g++ version 1. */
2476 new_sublist->fn_field.fcontext = 0;
2477 }
2478 else
2479 {
2480 /* Figure out from whence this virtual function came.
2481 It may belong to virtual function table of
2482 one of its baseclasses. */
2483 look_ahead_type = read_type (pp, objfile);
2484 if (**pp == ':')
2485 {
2486 /* g++ version 1 overloaded methods. */
2487 }
2488 else
2489 {
2490 new_sublist->fn_field.fcontext = look_ahead_type;
2491 if (**pp != ';')
2492 {
2493 return 0;
2494 }
2495 else
2496 {
2497 ++*pp;
2498 }
2499 look_ahead_type = NULL;
2500 }
2501 }
2502 break;
2503 }
2504 case '?':
2505 /* static member function. */
2506 {
2507 int slen = strlen (main_fn_name);
2508
2509 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2510
2511 /* For static member functions, we can't tell if they
2512 are stubbed, as they are put out as functions, and not as
2513 methods.
2514 GCC v2 emits the fully mangled name if
2515 dbxout.c:flag_minimal_debug is not set, so we have to
2516 detect a fully mangled physname here and set is_stub
2517 accordingly. Fully mangled physnames in v2 start with
2518 the member function name, followed by two underscores.
2519 GCC v3 currently always emits stubbed member functions,
2520 but with fully mangled physnames, which start with _Z. */
2521 if (!(strncmp (new_sublist->fn_field.physname,
2522 main_fn_name, slen) == 0
2523 && new_sublist->fn_field.physname[slen] == '_'
2524 && new_sublist->fn_field.physname[slen + 1] == '_'))
2525 {
2526 new_sublist->fn_field.is_stub = 1;
2527 }
2528 break;
2529 }
2530
2531 default:
2532 /* error */
2533 complaint (&symfile_complaints,
2534 _("member function type missing, got '%c'"),
2535 (*pp)[-1]);
2536 /* Normal member function. */
2537 /* Fall through. */
2538
2539 case '.':
2540 /* normal member function. */
2541 new_sublist->fn_field.voffset = 0;
2542 new_sublist->fn_field.fcontext = 0;
2543 break;
2544 }
2545
2546 new_sublist->next = sublist;
2547 sublist = new_sublist;
2548 length++;
2549 STABS_CONTINUE (pp, objfile);
2550 }
2551 while (**pp != ';' && **pp != '\0');
2552
2553 (*pp)++;
2554 STABS_CONTINUE (pp, objfile);
2555
2556 /* Skip GCC 3.X member functions which are duplicates of the callable
2557 constructor/destructor. */
2558 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2559 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2560 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2561 {
2562 xfree (main_fn_name);
2563 }
2564 else
2565 {
2566 int has_stub = 0;
2567 int has_destructor = 0, has_other = 0;
2568 int is_v3 = 0;
2569 struct next_fnfield *tmp_sublist;
2570
2571 /* Various versions of GCC emit various mostly-useless
2572 strings in the name field for special member functions.
2573
2574 For stub methods, we need to defer correcting the name
2575 until we are ready to unstub the method, because the current
2576 name string is used by gdb_mangle_name. The only stub methods
2577 of concern here are GNU v2 operators; other methods have their
2578 names correct (see caveat below).
2579
2580 For non-stub methods, in GNU v3, we have a complete physname.
2581 Therefore we can safely correct the name now. This primarily
2582 affects constructors and destructors, whose name will be
2583 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2584 operators will also have incorrect names; for instance,
2585 "operator int" will be named "operator i" (i.e. the type is
2586 mangled).
2587
2588 For non-stub methods in GNU v2, we have no easy way to
2589 know if we have a complete physname or not. For most
2590 methods the result depends on the platform (if CPLUS_MARKER
2591 can be `$' or `.', it will use minimal debug information, or
2592 otherwise the full physname will be included).
2593
2594 Rather than dealing with this, we take a different approach.
2595 For v3 mangled names, we can use the full physname; for v2,
2596 we use cplus_demangle_opname (which is actually v2 specific),
2597 because the only interesting names are all operators - once again
2598 barring the caveat below. Skip this process if any method in the
2599 group is a stub, to prevent our fouling up the workings of
2600 gdb_mangle_name.
2601
2602 The caveat: GCC 2.95.x (and earlier?) put constructors and
2603 destructors in the same method group. We need to split this
2604 into two groups, because they should have different names.
2605 So for each method group we check whether it contains both
2606 routines whose physname appears to be a destructor (the physnames
2607 for and destructors are always provided, due to quirks in v2
2608 mangling) and routines whose physname does not appear to be a
2609 destructor. If so then we break up the list into two halves.
2610 Even if the constructors and destructors aren't in the same group
2611 the destructor will still lack the leading tilde, so that also
2612 needs to be fixed.
2613
2614 So, to summarize what we expect and handle here:
2615
2616 Given Given Real Real Action
2617 method name physname physname method name
2618
2619 __opi [none] __opi__3Foo operator int opname
2620 [now or later]
2621 Foo _._3Foo _._3Foo ~Foo separate and
2622 rename
2623 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2624 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2625 */
2626
2627 tmp_sublist = sublist;
2628 while (tmp_sublist != NULL)
2629 {
2630 if (tmp_sublist->fn_field.is_stub)
2631 has_stub = 1;
2632 if (tmp_sublist->fn_field.physname[0] == '_'
2633 && tmp_sublist->fn_field.physname[1] == 'Z')
2634 is_v3 = 1;
2635
2636 if (is_destructor_name (tmp_sublist->fn_field.physname))
2637 has_destructor++;
2638 else
2639 has_other++;
2640
2641 tmp_sublist = tmp_sublist->next;
2642 }
2643
2644 if (has_destructor && has_other)
2645 {
2646 struct next_fnfieldlist *destr_fnlist;
2647 struct next_fnfield *last_sublist;
2648
2649 /* Create a new fn_fieldlist for the destructors. */
2650
2651 destr_fnlist = XCNEW (struct next_fnfieldlist);
2652 make_cleanup (xfree, destr_fnlist);
2653
2654 destr_fnlist->fn_fieldlist.name
2655 = obconcat (&objfile->objfile_obstack, "~",
2656 new_fnlist->fn_fieldlist.name, (char *) NULL);
2657
2658 destr_fnlist->fn_fieldlist.fn_fields =
2659 XOBNEWVEC (&objfile->objfile_obstack,
2660 struct fn_field, has_destructor);
2661 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2662 sizeof (struct fn_field) * has_destructor);
2663 tmp_sublist = sublist;
2664 last_sublist = NULL;
2665 i = 0;
2666 while (tmp_sublist != NULL)
2667 {
2668 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2669 {
2670 tmp_sublist = tmp_sublist->next;
2671 continue;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.fn_fields[i++]
2675 = tmp_sublist->fn_field;
2676 if (last_sublist)
2677 last_sublist->next = tmp_sublist->next;
2678 else
2679 sublist = tmp_sublist->next;
2680 last_sublist = tmp_sublist;
2681 tmp_sublist = tmp_sublist->next;
2682 }
2683
2684 destr_fnlist->fn_fieldlist.length = has_destructor;
2685 destr_fnlist->next = fip->fnlist;
2686 fip->fnlist = destr_fnlist;
2687 nfn_fields++;
2688 length -= has_destructor;
2689 }
2690 else if (is_v3)
2691 {
2692 /* v3 mangling prevents the use of abbreviated physnames,
2693 so we can do this here. There are stubbed methods in v3
2694 only:
2695 - in -gstabs instead of -gstabs+
2696 - or for static methods, which are output as a function type
2697 instead of a method type. */
2698 char *new_method_name =
2699 stabs_method_name_from_physname (sublist->fn_field.physname);
2700
2701 if (new_method_name != NULL
2702 && strcmp (new_method_name,
2703 new_fnlist->fn_fieldlist.name) != 0)
2704 {
2705 new_fnlist->fn_fieldlist.name = new_method_name;
2706 xfree (main_fn_name);
2707 }
2708 else
2709 xfree (new_method_name);
2710 }
2711 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2712 {
2713 new_fnlist->fn_fieldlist.name =
2714 obconcat (&objfile->objfile_obstack,
2715 "~", main_fn_name, (char *)NULL);
2716 xfree (main_fn_name);
2717 }
2718 else if (!has_stub)
2719 {
2720 char dem_opname[256];
2721 int ret;
2722
2723 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2724 dem_opname, DMGL_ANSI);
2725 if (!ret)
2726 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2727 dem_opname, 0);
2728 if (ret)
2729 new_fnlist->fn_fieldlist.name
2730 = ((const char *)
2731 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2732 strlen (dem_opname)));
2733 xfree (main_fn_name);
2734 }
2735
2736 new_fnlist->fn_fieldlist.fn_fields
2737 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2738 for (i = length; (i--, sublist); sublist = sublist->next)
2739 {
2740 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2741 }
2742
2743 new_fnlist->fn_fieldlist.length = length;
2744 new_fnlist->next = fip->fnlist;
2745 fip->fnlist = new_fnlist;
2746 nfn_fields++;
2747 }
2748 }
2749
2750 if (nfn_fields)
2751 {
2752 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2753 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2754 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2755 memset (TYPE_FN_FIELDLISTS (type), 0,
2756 sizeof (struct fn_fieldlist) * nfn_fields);
2757 TYPE_NFN_FIELDS (type) = nfn_fields;
2758 }
2759
2760 return 1;
2761 }
2762
2763 /* Special GNU C++ name.
2764
2765 Returns 1 for success, 0 for failure. "failure" means that we can't
2766 keep parsing and it's time for error_type(). */
2767
2768 static int
2769 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2770 struct objfile *objfile)
2771 {
2772 const char *p;
2773 const char *name;
2774 char cpp_abbrev;
2775 struct type *context;
2776
2777 p = *pp;
2778 if (*++p == 'v')
2779 {
2780 name = NULL;
2781 cpp_abbrev = *++p;
2782
2783 *pp = p + 1;
2784
2785 /* At this point, *pp points to something like "22:23=*22...",
2786 where the type number before the ':' is the "context" and
2787 everything after is a regular type definition. Lookup the
2788 type, find it's name, and construct the field name. */
2789
2790 context = read_type (pp, objfile);
2791
2792 switch (cpp_abbrev)
2793 {
2794 case 'f': /* $vf -- a virtual function table pointer */
2795 name = type_name_no_tag (context);
2796 if (name == NULL)
2797 {
2798 name = "";
2799 }
2800 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2801 vptr_name, name, (char *) NULL);
2802 break;
2803
2804 case 'b': /* $vb -- a virtual bsomethingorother */
2805 name = type_name_no_tag (context);
2806 if (name == NULL)
2807 {
2808 complaint (&symfile_complaints,
2809 _("C++ abbreviated type name "
2810 "unknown at symtab pos %d"),
2811 symnum);
2812 name = "FOO";
2813 }
2814 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2815 name, (char *) NULL);
2816 break;
2817
2818 default:
2819 invalid_cpp_abbrev_complaint (*pp);
2820 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2821 "INVALID_CPLUSPLUS_ABBREV",
2822 (char *) NULL);
2823 break;
2824 }
2825
2826 /* At this point, *pp points to the ':'. Skip it and read the
2827 field type. */
2828
2829 p = ++(*pp);
2830 if (p[-1] != ':')
2831 {
2832 invalid_cpp_abbrev_complaint (*pp);
2833 return 0;
2834 }
2835 fip->list->field.type = read_type (pp, objfile);
2836 if (**pp == ',')
2837 (*pp)++; /* Skip the comma. */
2838 else
2839 return 0;
2840
2841 {
2842 int nbits;
2843
2844 SET_FIELD_BITPOS (fip->list->field,
2845 read_huge_number (pp, ';', &nbits, 0));
2846 if (nbits != 0)
2847 return 0;
2848 }
2849 /* This field is unpacked. */
2850 FIELD_BITSIZE (fip->list->field) = 0;
2851 fip->list->visibility = VISIBILITY_PRIVATE;
2852 }
2853 else
2854 {
2855 invalid_cpp_abbrev_complaint (*pp);
2856 /* We have no idea what syntax an unrecognized abbrev would have, so
2857 better return 0. If we returned 1, we would need to at least advance
2858 *pp to avoid an infinite loop. */
2859 return 0;
2860 }
2861 return 1;
2862 }
2863
2864 static void
2865 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2866 struct type *type, struct objfile *objfile)
2867 {
2868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2869
2870 fip->list->field.name
2871 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2872 *pp = p + 1;
2873
2874 /* This means we have a visibility for a field coming. */
2875 if (**pp == '/')
2876 {
2877 (*pp)++;
2878 fip->list->visibility = *(*pp)++;
2879 }
2880 else
2881 {
2882 /* normal dbx-style format, no explicit visibility */
2883 fip->list->visibility = VISIBILITY_PUBLIC;
2884 }
2885
2886 fip->list->field.type = read_type (pp, objfile);
2887 if (**pp == ':')
2888 {
2889 p = ++(*pp);
2890 #if 0
2891 /* Possible future hook for nested types. */
2892 if (**pp == '!')
2893 {
2894 fip->list->field.bitpos = (long) -2; /* nested type */
2895 p = ++(*pp);
2896 }
2897 else
2898 ...;
2899 #endif
2900 while (*p != ';')
2901 {
2902 p++;
2903 }
2904 /* Static class member. */
2905 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2906 *pp = p + 1;
2907 return;
2908 }
2909 else if (**pp != ',')
2910 {
2911 /* Bad structure-type format. */
2912 stabs_general_complaint ("bad structure-type format");
2913 return;
2914 }
2915
2916 (*pp)++; /* Skip the comma. */
2917
2918 {
2919 int nbits;
2920
2921 SET_FIELD_BITPOS (fip->list->field,
2922 read_huge_number (pp, ',', &nbits, 0));
2923 if (nbits != 0)
2924 {
2925 stabs_general_complaint ("bad structure-type format");
2926 return;
2927 }
2928 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2929 if (nbits != 0)
2930 {
2931 stabs_general_complaint ("bad structure-type format");
2932 return;
2933 }
2934 }
2935
2936 if (FIELD_BITPOS (fip->list->field) == 0
2937 && FIELD_BITSIZE (fip->list->field) == 0)
2938 {
2939 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2940 it is a field which has been optimized out. The correct stab for
2941 this case is to use VISIBILITY_IGNORE, but that is a recent
2942 invention. (2) It is a 0-size array. For example
2943 union { int num; char str[0]; } foo. Printing _("<no value>" for
2944 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2945 will continue to work, and a 0-size array as a whole doesn't
2946 have any contents to print.
2947
2948 I suspect this probably could also happen with gcc -gstabs (not
2949 -gstabs+) for static fields, and perhaps other C++ extensions.
2950 Hopefully few people use -gstabs with gdb, since it is intended
2951 for dbx compatibility. */
2952
2953 /* Ignore this field. */
2954 fip->list->visibility = VISIBILITY_IGNORE;
2955 }
2956 else
2957 {
2958 /* Detect an unpacked field and mark it as such.
2959 dbx gives a bit size for all fields.
2960 Note that forward refs cannot be packed,
2961 and treat enums as if they had the width of ints. */
2962
2963 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2964
2965 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2966 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2967 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2968 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2969 {
2970 FIELD_BITSIZE (fip->list->field) = 0;
2971 }
2972 if ((FIELD_BITSIZE (fip->list->field)
2973 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2974 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2975 && FIELD_BITSIZE (fip->list->field)
2976 == gdbarch_int_bit (gdbarch))
2977 )
2978 &&
2979 FIELD_BITPOS (fip->list->field) % 8 == 0)
2980 {
2981 FIELD_BITSIZE (fip->list->field) = 0;
2982 }
2983 }
2984 }
2985
2986
2987 /* Read struct or class data fields. They have the form:
2988
2989 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2990
2991 At the end, we see a semicolon instead of a field.
2992
2993 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2994 a static field.
2995
2996 The optional VISIBILITY is one of:
2997
2998 '/0' (VISIBILITY_PRIVATE)
2999 '/1' (VISIBILITY_PROTECTED)
3000 '/2' (VISIBILITY_PUBLIC)
3001 '/9' (VISIBILITY_IGNORE)
3002
3003 or nothing, for C style fields with public visibility.
3004
3005 Returns 1 for success, 0 for failure. */
3006
3007 static int
3008 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3009 struct objfile *objfile)
3010 {
3011 const char *p;
3012 struct nextfield *newobj;
3013
3014 /* We better set p right now, in case there are no fields at all... */
3015
3016 p = *pp;
3017
3018 /* Read each data member type until we find the terminating ';' at the end of
3019 the data member list, or break for some other reason such as finding the
3020 start of the member function list. */
3021 /* Stab string for structure/union does not end with two ';' in
3022 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3023
3024 while (**pp != ';' && **pp != '\0')
3025 {
3026 STABS_CONTINUE (pp, objfile);
3027 /* Get space to record the next field's data. */
3028 newobj = XCNEW (struct nextfield);
3029 make_cleanup (xfree, newobj);
3030
3031 newobj->next = fip->list;
3032 fip->list = newobj;
3033
3034 /* Get the field name. */
3035 p = *pp;
3036
3037 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3038 unless the CPLUS_MARKER is followed by an underscore, in
3039 which case it is just the name of an anonymous type, which we
3040 should handle like any other type name. */
3041
3042 if (is_cplus_marker (p[0]) && p[1] != '_')
3043 {
3044 if (!read_cpp_abbrev (fip, pp, type, objfile))
3045 return 0;
3046 continue;
3047 }
3048
3049 /* Look for the ':' that separates the field name from the field
3050 values. Data members are delimited by a single ':', while member
3051 functions are delimited by a pair of ':'s. When we hit the member
3052 functions (if any), terminate scan loop and return. */
3053
3054 while (*p != ':' && *p != '\0')
3055 {
3056 p++;
3057 }
3058 if (*p == '\0')
3059 return 0;
3060
3061 /* Check to see if we have hit the member functions yet. */
3062 if (p[1] == ':')
3063 {
3064 break;
3065 }
3066 read_one_struct_field (fip, pp, p, type, objfile);
3067 }
3068 if (p[0] == ':' && p[1] == ':')
3069 {
3070 /* (the deleted) chill the list of fields: the last entry (at
3071 the head) is a partially constructed entry which we now
3072 scrub. */
3073 fip->list = fip->list->next;
3074 }
3075 return 1;
3076 }
3077 /* *INDENT-OFF* */
3078 /* The stabs for C++ derived classes contain baseclass information which
3079 is marked by a '!' character after the total size. This function is
3080 called when we encounter the baseclass marker, and slurps up all the
3081 baseclass information.
3082
3083 Immediately following the '!' marker is the number of base classes that
3084 the class is derived from, followed by information for each base class.
3085 For each base class, there are two visibility specifiers, a bit offset
3086 to the base class information within the derived class, a reference to
3087 the type for the base class, and a terminating semicolon.
3088
3089 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3090 ^^ ^ ^ ^ ^ ^ ^
3091 Baseclass information marker __________________|| | | | | | |
3092 Number of baseclasses __________________________| | | | | | |
3093 Visibility specifiers (2) ________________________| | | | | |
3094 Offset in bits from start of class _________________| | | | |
3095 Type number for base class ___________________________| | | |
3096 Visibility specifiers (2) _______________________________| | |
3097 Offset in bits from start of class ________________________| |
3098 Type number of base class ____________________________________|
3099
3100 Return 1 for success, 0 for (error-type-inducing) failure. */
3101 /* *INDENT-ON* */
3102
3103
3104
3105 static int
3106 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3107 struct objfile *objfile)
3108 {
3109 int i;
3110 struct nextfield *newobj;
3111
3112 if (**pp != '!')
3113 {
3114 return 1;
3115 }
3116 else
3117 {
3118 /* Skip the '!' baseclass information marker. */
3119 (*pp)++;
3120 }
3121
3122 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3123 {
3124 int nbits;
3125
3126 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3127 if (nbits != 0)
3128 return 0;
3129 }
3130
3131 #if 0
3132 /* Some stupid compilers have trouble with the following, so break
3133 it up into simpler expressions. */
3134 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3135 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3136 #else
3137 {
3138 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3139 char *pointer;
3140
3141 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3142 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3143 }
3144 #endif /* 0 */
3145
3146 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3147
3148 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3149 {
3150 newobj = XCNEW (struct nextfield);
3151 make_cleanup (xfree, newobj);
3152
3153 newobj->next = fip->list;
3154 fip->list = newobj;
3155 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3156 field! */
3157
3158 STABS_CONTINUE (pp, objfile);
3159 switch (**pp)
3160 {
3161 case '0':
3162 /* Nothing to do. */
3163 break;
3164 case '1':
3165 SET_TYPE_FIELD_VIRTUAL (type, i);
3166 break;
3167 default:
3168 /* Unknown character. Complain and treat it as non-virtual. */
3169 {
3170 complaint (&symfile_complaints,
3171 _("Unknown virtual character `%c' for baseclass"),
3172 **pp);
3173 }
3174 }
3175 ++(*pp);
3176
3177 newobj->visibility = *(*pp)++;
3178 switch (newobj->visibility)
3179 {
3180 case VISIBILITY_PRIVATE:
3181 case VISIBILITY_PROTECTED:
3182 case VISIBILITY_PUBLIC:
3183 break;
3184 default:
3185 /* Bad visibility format. Complain and treat it as
3186 public. */
3187 {
3188 complaint (&symfile_complaints,
3189 _("Unknown visibility `%c' for baseclass"),
3190 newobj->visibility);
3191 newobj->visibility = VISIBILITY_PUBLIC;
3192 }
3193 }
3194
3195 {
3196 int nbits;
3197
3198 /* The remaining value is the bit offset of the portion of the object
3199 corresponding to this baseclass. Always zero in the absence of
3200 multiple inheritance. */
3201
3202 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3203 if (nbits != 0)
3204 return 0;
3205 }
3206
3207 /* The last piece of baseclass information is the type of the
3208 base class. Read it, and remember it's type name as this
3209 field's name. */
3210
3211 newobj->field.type = read_type (pp, objfile);
3212 newobj->field.name = type_name_no_tag (newobj->field.type);
3213
3214 /* Skip trailing ';' and bump count of number of fields seen. */
3215 if (**pp == ';')
3216 (*pp)++;
3217 else
3218 return 0;
3219 }
3220 return 1;
3221 }
3222
3223 /* The tail end of stabs for C++ classes that contain a virtual function
3224 pointer contains a tilde, a %, and a type number.
3225 The type number refers to the base class (possibly this class itself) which
3226 contains the vtable pointer for the current class.
3227
3228 This function is called when we have parsed all the method declarations,
3229 so we can look for the vptr base class info. */
3230
3231 static int
3232 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3233 struct objfile *objfile)
3234 {
3235 const char *p;
3236
3237 STABS_CONTINUE (pp, objfile);
3238
3239 /* If we are positioned at a ';', then skip it. */
3240 if (**pp == ';')
3241 {
3242 (*pp)++;
3243 }
3244
3245 if (**pp == '~')
3246 {
3247 (*pp)++;
3248
3249 if (**pp == '=' || **pp == '+' || **pp == '-')
3250 {
3251 /* Obsolete flags that used to indicate the presence
3252 of constructors and/or destructors. */
3253 (*pp)++;
3254 }
3255
3256 /* Read either a '%' or the final ';'. */
3257 if (*(*pp)++ == '%')
3258 {
3259 /* The next number is the type number of the base class
3260 (possibly our own class) which supplies the vtable for
3261 this class. Parse it out, and search that class to find
3262 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3263 and TYPE_VPTR_FIELDNO. */
3264
3265 struct type *t;
3266 int i;
3267
3268 t = read_type (pp, objfile);
3269 p = (*pp)++;
3270 while (*p != '\0' && *p != ';')
3271 {
3272 p++;
3273 }
3274 if (*p == '\0')
3275 {
3276 /* Premature end of symbol. */
3277 return 0;
3278 }
3279
3280 set_type_vptr_basetype (type, t);
3281 if (type == t) /* Our own class provides vtbl ptr. */
3282 {
3283 for (i = TYPE_NFIELDS (t) - 1;
3284 i >= TYPE_N_BASECLASSES (t);
3285 --i)
3286 {
3287 const char *name = TYPE_FIELD_NAME (t, i);
3288
3289 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3290 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3291 {
3292 set_type_vptr_fieldno (type, i);
3293 goto gotit;
3294 }
3295 }
3296 /* Virtual function table field not found. */
3297 complaint (&symfile_complaints,
3298 _("virtual function table pointer "
3299 "not found when defining class `%s'"),
3300 TYPE_NAME (type));
3301 return 0;
3302 }
3303 else
3304 {
3305 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3306 }
3307
3308 gotit:
3309 *pp = p + 1;
3310 }
3311 }
3312 return 1;
3313 }
3314
3315 static int
3316 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3317 {
3318 int n;
3319
3320 for (n = TYPE_NFN_FIELDS (type);
3321 fip->fnlist != NULL;
3322 fip->fnlist = fip->fnlist->next)
3323 {
3324 --n; /* Circumvent Sun3 compiler bug. */
3325 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3326 }
3327 return 1;
3328 }
3329
3330 /* Create the vector of fields, and record how big it is.
3331 We need this info to record proper virtual function table information
3332 for this class's virtual functions. */
3333
3334 static int
3335 attach_fields_to_type (struct field_info *fip, struct type *type,
3336 struct objfile *objfile)
3337 {
3338 int nfields = 0;
3339 int non_public_fields = 0;
3340 struct nextfield *scan;
3341
3342 /* Count up the number of fields that we have, as well as taking note of
3343 whether or not there are any non-public fields, which requires us to
3344 allocate and build the private_field_bits and protected_field_bits
3345 bitfields. */
3346
3347 for (scan = fip->list; scan != NULL; scan = scan->next)
3348 {
3349 nfields++;
3350 if (scan->visibility != VISIBILITY_PUBLIC)
3351 {
3352 non_public_fields++;
3353 }
3354 }
3355
3356 /* Now we know how many fields there are, and whether or not there are any
3357 non-public fields. Record the field count, allocate space for the
3358 array of fields, and create blank visibility bitfields if necessary. */
3359
3360 TYPE_NFIELDS (type) = nfields;
3361 TYPE_FIELDS (type) = (struct field *)
3362 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3363 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3364
3365 if (non_public_fields)
3366 {
3367 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3368
3369 TYPE_FIELD_PRIVATE_BITS (type) =
3370 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3371 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3372
3373 TYPE_FIELD_PROTECTED_BITS (type) =
3374 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3375 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3376
3377 TYPE_FIELD_IGNORE_BITS (type) =
3378 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3379 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3380 }
3381
3382 /* Copy the saved-up fields into the field vector. Start from the
3383 head of the list, adding to the tail of the field array, so that
3384 they end up in the same order in the array in which they were
3385 added to the list. */
3386
3387 while (nfields-- > 0)
3388 {
3389 TYPE_FIELD (type, nfields) = fip->list->field;
3390 switch (fip->list->visibility)
3391 {
3392 case VISIBILITY_PRIVATE:
3393 SET_TYPE_FIELD_PRIVATE (type, nfields);
3394 break;
3395
3396 case VISIBILITY_PROTECTED:
3397 SET_TYPE_FIELD_PROTECTED (type, nfields);
3398 break;
3399
3400 case VISIBILITY_IGNORE:
3401 SET_TYPE_FIELD_IGNORE (type, nfields);
3402 break;
3403
3404 case VISIBILITY_PUBLIC:
3405 break;
3406
3407 default:
3408 /* Unknown visibility. Complain and treat it as public. */
3409 {
3410 complaint (&symfile_complaints,
3411 _("Unknown visibility `%c' for field"),
3412 fip->list->visibility);
3413 }
3414 break;
3415 }
3416 fip->list = fip->list->next;
3417 }
3418 return 1;
3419 }
3420
3421
3422 /* Complain that the compiler has emitted more than one definition for the
3423 structure type TYPE. */
3424 static void
3425 complain_about_struct_wipeout (struct type *type)
3426 {
3427 const char *name = "";
3428 const char *kind = "";
3429
3430 if (TYPE_TAG_NAME (type))
3431 {
3432 name = TYPE_TAG_NAME (type);
3433 switch (TYPE_CODE (type))
3434 {
3435 case TYPE_CODE_STRUCT: kind = "struct "; break;
3436 case TYPE_CODE_UNION: kind = "union "; break;
3437 case TYPE_CODE_ENUM: kind = "enum "; break;
3438 default: kind = "";
3439 }
3440 }
3441 else if (TYPE_NAME (type))
3442 {
3443 name = TYPE_NAME (type);
3444 kind = "";
3445 }
3446 else
3447 {
3448 name = "<unknown>";
3449 kind = "";
3450 }
3451
3452 complaint (&symfile_complaints,
3453 _("struct/union type gets multiply defined: %s%s"), kind, name);
3454 }
3455
3456 /* Set the length for all variants of a same main_type, which are
3457 connected in the closed chain.
3458
3459 This is something that needs to be done when a type is defined *after*
3460 some cross references to this type have already been read. Consider
3461 for instance the following scenario where we have the following two
3462 stabs entries:
3463
3464 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3465 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3466
3467 A stubbed version of type dummy is created while processing the first
3468 stabs entry. The length of that type is initially set to zero, since
3469 it is unknown at this point. Also, a "constant" variation of type
3470 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3471 the stabs line).
3472
3473 The second stabs entry allows us to replace the stubbed definition
3474 with the real definition. However, we still need to adjust the length
3475 of the "constant" variation of that type, as its length was left
3476 untouched during the main type replacement... */
3477
3478 static void
3479 set_length_in_type_chain (struct type *type)
3480 {
3481 struct type *ntype = TYPE_CHAIN (type);
3482
3483 while (ntype != type)
3484 {
3485 if (TYPE_LENGTH(ntype) == 0)
3486 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3487 else
3488 complain_about_struct_wipeout (ntype);
3489 ntype = TYPE_CHAIN (ntype);
3490 }
3491 }
3492
3493 /* Read the description of a structure (or union type) and return an object
3494 describing the type.
3495
3496 PP points to a character pointer that points to the next unconsumed token
3497 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3498 *PP will point to "4a:1,0,32;;".
3499
3500 TYPE points to an incomplete type that needs to be filled in.
3501
3502 OBJFILE points to the current objfile from which the stabs information is
3503 being read. (Note that it is redundant in that TYPE also contains a pointer
3504 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3505 */
3506
3507 static struct type *
3508 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3509 struct objfile *objfile)
3510 {
3511 struct cleanup *back_to;
3512 struct field_info fi;
3513
3514 fi.list = NULL;
3515 fi.fnlist = NULL;
3516
3517 /* When describing struct/union/class types in stabs, G++ always drops
3518 all qualifications from the name. So if you've got:
3519 struct A { ... struct B { ... }; ... };
3520 then G++ will emit stabs for `struct A::B' that call it simply
3521 `struct B'. Obviously, if you've got a real top-level definition for
3522 `struct B', or other nested definitions, this is going to cause
3523 problems.
3524
3525 Obviously, GDB can't fix this by itself, but it can at least avoid
3526 scribbling on existing structure type objects when new definitions
3527 appear. */
3528 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3529 || TYPE_STUB (type)))
3530 {
3531 complain_about_struct_wipeout (type);
3532
3533 /* It's probably best to return the type unchanged. */
3534 return type;
3535 }
3536
3537 back_to = make_cleanup (null_cleanup, 0);
3538
3539 INIT_CPLUS_SPECIFIC (type);
3540 TYPE_CODE (type) = type_code;
3541 TYPE_STUB (type) = 0;
3542
3543 /* First comes the total size in bytes. */
3544
3545 {
3546 int nbits;
3547
3548 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3549 if (nbits != 0)
3550 {
3551 do_cleanups (back_to);
3552 return error_type (pp, objfile);
3553 }
3554 set_length_in_type_chain (type);
3555 }
3556
3557 /* Now read the baseclasses, if any, read the regular C struct or C++
3558 class member fields, attach the fields to the type, read the C++
3559 member functions, attach them to the type, and then read any tilde
3560 field (baseclass specifier for the class holding the main vtable). */
3561
3562 if (!read_baseclasses (&fi, pp, type, objfile)
3563 || !read_struct_fields (&fi, pp, type, objfile)
3564 || !attach_fields_to_type (&fi, type, objfile)
3565 || !read_member_functions (&fi, pp, type, objfile)
3566 || !attach_fn_fields_to_type (&fi, type)
3567 || !read_tilde_fields (&fi, pp, type, objfile))
3568 {
3569 type = error_type (pp, objfile);
3570 }
3571
3572 do_cleanups (back_to);
3573 return (type);
3574 }
3575
3576 /* Read a definition of an array type,
3577 and create and return a suitable type object.
3578 Also creates a range type which represents the bounds of that
3579 array. */
3580
3581 static struct type *
3582 read_array_type (const char **pp, struct type *type,
3583 struct objfile *objfile)
3584 {
3585 struct type *index_type, *element_type, *range_type;
3586 int lower, upper;
3587 int adjustable = 0;
3588 int nbits;
3589
3590 /* Format of an array type:
3591 "ar<index type>;lower;upper;<array_contents_type>".
3592 OS9000: "arlower,upper;<array_contents_type>".
3593
3594 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3595 for these, produce a type like float[][]. */
3596
3597 {
3598 index_type = read_type (pp, objfile);
3599 if (**pp != ';')
3600 /* Improper format of array type decl. */
3601 return error_type (pp, objfile);
3602 ++*pp;
3603 }
3604
3605 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3606 {
3607 (*pp)++;
3608 adjustable = 1;
3609 }
3610 lower = read_huge_number (pp, ';', &nbits, 0);
3611
3612 if (nbits != 0)
3613 return error_type (pp, objfile);
3614
3615 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3616 {
3617 (*pp)++;
3618 adjustable = 1;
3619 }
3620 upper = read_huge_number (pp, ';', &nbits, 0);
3621 if (nbits != 0)
3622 return error_type (pp, objfile);
3623
3624 element_type = read_type (pp, objfile);
3625
3626 if (adjustable)
3627 {
3628 lower = 0;
3629 upper = -1;
3630 }
3631
3632 range_type =
3633 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3634 type = create_array_type (type, element_type, range_type);
3635
3636 return type;
3637 }
3638
3639
3640 /* Read a definition of an enumeration type,
3641 and create and return a suitable type object.
3642 Also defines the symbols that represent the values of the type. */
3643
3644 static struct type *
3645 read_enum_type (const char **pp, struct type *type,
3646 struct objfile *objfile)
3647 {
3648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3649 const char *p;
3650 char *name;
3651 long n;
3652 struct symbol *sym;
3653 int nsyms = 0;
3654 struct pending **symlist;
3655 struct pending *osyms, *syms;
3656 int o_nsyms;
3657 int nbits;
3658 int unsigned_enum = 1;
3659
3660 #if 0
3661 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3662 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3663 to do? For now, force all enum values to file scope. */
3664 if (within_function)
3665 symlist = &local_symbols;
3666 else
3667 #endif
3668 symlist = &file_symbols;
3669 osyms = *symlist;
3670 o_nsyms = osyms ? osyms->nsyms : 0;
3671
3672 /* The aix4 compiler emits an extra field before the enum members;
3673 my guess is it's a type of some sort. Just ignore it. */
3674 if (**pp == '-')
3675 {
3676 /* Skip over the type. */
3677 while (**pp != ':')
3678 (*pp)++;
3679
3680 /* Skip over the colon. */
3681 (*pp)++;
3682 }
3683
3684 /* Read the value-names and their values.
3685 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3686 A semicolon or comma instead of a NAME means the end. */
3687 while (**pp && **pp != ';' && **pp != ',')
3688 {
3689 STABS_CONTINUE (pp, objfile);
3690 p = *pp;
3691 while (*p != ':')
3692 p++;
3693 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3694 *pp = p + 1;
3695 n = read_huge_number (pp, ',', &nbits, 0);
3696 if (nbits != 0)
3697 return error_type (pp, objfile);
3698
3699 sym = allocate_symbol (objfile);
3700 SYMBOL_SET_LINKAGE_NAME (sym, name);
3701 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3702 &objfile->objfile_obstack);
3703 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3704 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3705 SYMBOL_VALUE (sym) = n;
3706 if (n < 0)
3707 unsigned_enum = 0;
3708 add_symbol_to_list (sym, symlist);
3709 nsyms++;
3710 }
3711
3712 if (**pp == ';')
3713 (*pp)++; /* Skip the semicolon. */
3714
3715 /* Now fill in the fields of the type-structure. */
3716
3717 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3718 set_length_in_type_chain (type);
3719 TYPE_CODE (type) = TYPE_CODE_ENUM;
3720 TYPE_STUB (type) = 0;
3721 if (unsigned_enum)
3722 TYPE_UNSIGNED (type) = 1;
3723 TYPE_NFIELDS (type) = nsyms;
3724 TYPE_FIELDS (type) = (struct field *)
3725 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3726 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3727
3728 /* Find the symbols for the values and put them into the type.
3729 The symbols can be found in the symlist that we put them on
3730 to cause them to be defined. osyms contains the old value
3731 of that symlist; everything up to there was defined by us. */
3732 /* Note that we preserve the order of the enum constants, so
3733 that in something like "enum {FOO, LAST_THING=FOO}" we print
3734 FOO, not LAST_THING. */
3735
3736 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3737 {
3738 int last = syms == osyms ? o_nsyms : 0;
3739 int j = syms->nsyms;
3740
3741 for (; --j >= last; --n)
3742 {
3743 struct symbol *xsym = syms->symbol[j];
3744
3745 SYMBOL_TYPE (xsym) = type;
3746 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3747 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3748 TYPE_FIELD_BITSIZE (type, n) = 0;
3749 }
3750 if (syms == osyms)
3751 break;
3752 }
3753
3754 return type;
3755 }
3756
3757 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3758 typedefs in every file (for int, long, etc):
3759
3760 type = b <signed> <width> <format type>; <offset>; <nbits>
3761 signed = u or s.
3762 optional format type = c or b for char or boolean.
3763 offset = offset from high order bit to start bit of type.
3764 width is # bytes in object of this type, nbits is # bits in type.
3765
3766 The width/offset stuff appears to be for small objects stored in
3767 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3768 FIXME. */
3769
3770 static struct type *
3771 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3772 {
3773 int type_bits;
3774 int nbits;
3775 int unsigned_type;
3776 int boolean_type = 0;
3777
3778 switch (**pp)
3779 {
3780 case 's':
3781 unsigned_type = 0;
3782 break;
3783 case 'u':
3784 unsigned_type = 1;
3785 break;
3786 default:
3787 return error_type (pp, objfile);
3788 }
3789 (*pp)++;
3790
3791 /* For some odd reason, all forms of char put a c here. This is strange
3792 because no other type has this honor. We can safely ignore this because
3793 we actually determine 'char'acterness by the number of bits specified in
3794 the descriptor.
3795 Boolean forms, e.g Fortran logical*X, put a b here. */
3796
3797 if (**pp == 'c')
3798 (*pp)++;
3799 else if (**pp == 'b')
3800 {
3801 boolean_type = 1;
3802 (*pp)++;
3803 }
3804
3805 /* The first number appears to be the number of bytes occupied
3806 by this type, except that unsigned short is 4 instead of 2.
3807 Since this information is redundant with the third number,
3808 we will ignore it. */
3809 read_huge_number (pp, ';', &nbits, 0);
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812
3813 /* The second number is always 0, so ignore it too. */
3814 read_huge_number (pp, ';', &nbits, 0);
3815 if (nbits != 0)
3816 return error_type (pp, objfile);
3817
3818 /* The third number is the number of bits for this type. */
3819 type_bits = read_huge_number (pp, 0, &nbits, 0);
3820 if (nbits != 0)
3821 return error_type (pp, objfile);
3822 /* The type *should* end with a semicolon. If it are embedded
3823 in a larger type the semicolon may be the only way to know where
3824 the type ends. If this type is at the end of the stabstring we
3825 can deal with the omitted semicolon (but we don't have to like
3826 it). Don't bother to complain(), Sun's compiler omits the semicolon
3827 for "void". */
3828 if (**pp == ';')
3829 ++(*pp);
3830
3831 if (type_bits == 0)
3832 {
3833 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3834 TARGET_CHAR_BIT, NULL);
3835 if (unsigned_type)
3836 TYPE_UNSIGNED (type) = 1;
3837 return type;
3838 }
3839
3840 if (boolean_type)
3841 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3842 else
3843 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3844 }
3845
3846 static struct type *
3847 read_sun_floating_type (const char **pp, int typenums[2],
3848 struct objfile *objfile)
3849 {
3850 int nbits;
3851 int details;
3852 int nbytes;
3853 struct type *rettype;
3854
3855 /* The first number has more details about the type, for example
3856 FN_COMPLEX. */
3857 details = read_huge_number (pp, ';', &nbits, 0);
3858 if (nbits != 0)
3859 return error_type (pp, objfile);
3860
3861 /* The second number is the number of bytes occupied by this type. */
3862 nbytes = read_huge_number (pp, ';', &nbits, 0);
3863 if (nbits != 0)
3864 return error_type (pp, objfile);
3865
3866 nbits = nbytes * TARGET_CHAR_BIT;
3867
3868 if (details == NF_COMPLEX || details == NF_COMPLEX16
3869 || details == NF_COMPLEX32)
3870 {
3871 rettype = dbx_init_float_type (objfile, nbits / 2);
3872 return init_complex_type (objfile, NULL, rettype);
3873 }
3874
3875 return dbx_init_float_type (objfile, nbits);
3876 }
3877
3878 /* Read a number from the string pointed to by *PP.
3879 The value of *PP is advanced over the number.
3880 If END is nonzero, the character that ends the
3881 number must match END, or an error happens;
3882 and that character is skipped if it does match.
3883 If END is zero, *PP is left pointing to that character.
3884
3885 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3886 the number is represented in an octal representation, assume that
3887 it is represented in a 2's complement representation with a size of
3888 TWOS_COMPLEMENT_BITS.
3889
3890 If the number fits in a long, set *BITS to 0 and return the value.
3891 If not, set *BITS to be the number of bits in the number and return 0.
3892
3893 If encounter garbage, set *BITS to -1 and return 0. */
3894
3895 static long
3896 read_huge_number (const char **pp, int end, int *bits,
3897 int twos_complement_bits)
3898 {
3899 const char *p = *pp;
3900 int sign = 1;
3901 int sign_bit = 0;
3902 long n = 0;
3903 int radix = 10;
3904 char overflow = 0;
3905 int nbits = 0;
3906 int c;
3907 long upper_limit;
3908 int twos_complement_representation = 0;
3909
3910 if (*p == '-')
3911 {
3912 sign = -1;
3913 p++;
3914 }
3915
3916 /* Leading zero means octal. GCC uses this to output values larger
3917 than an int (because that would be hard in decimal). */
3918 if (*p == '0')
3919 {
3920 radix = 8;
3921 p++;
3922 }
3923
3924 /* Skip extra zeros. */
3925 while (*p == '0')
3926 p++;
3927
3928 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3929 {
3930 /* Octal, possibly signed. Check if we have enough chars for a
3931 negative number. */
3932
3933 size_t len;
3934 const char *p1 = p;
3935
3936 while ((c = *p1) >= '0' && c < '8')
3937 p1++;
3938
3939 len = p1 - p;
3940 if (len > twos_complement_bits / 3
3941 || (twos_complement_bits % 3 == 0
3942 && len == twos_complement_bits / 3))
3943 {
3944 /* Ok, we have enough characters for a signed value, check
3945 for signness by testing if the sign bit is set. */
3946 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3947 c = *p - '0';
3948 if (c & (1 << sign_bit))
3949 {
3950 /* Definitely signed. */
3951 twos_complement_representation = 1;
3952 sign = -1;
3953 }
3954 }
3955 }
3956
3957 upper_limit = LONG_MAX / radix;
3958
3959 while ((c = *p++) >= '0' && c < ('0' + radix))
3960 {
3961 if (n <= upper_limit)
3962 {
3963 if (twos_complement_representation)
3964 {
3965 /* Octal, signed, twos complement representation. In
3966 this case, n is the corresponding absolute value. */
3967 if (n == 0)
3968 {
3969 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3970
3971 n = -sn;
3972 }
3973 else
3974 {
3975 n *= radix;
3976 n -= c - '0';
3977 }
3978 }
3979 else
3980 {
3981 /* unsigned representation */
3982 n *= radix;
3983 n += c - '0'; /* FIXME this overflows anyway. */
3984 }
3985 }
3986 else
3987 overflow = 1;
3988
3989 /* This depends on large values being output in octal, which is
3990 what GCC does. */
3991 if (radix == 8)
3992 {
3993 if (nbits == 0)
3994 {
3995 if (c == '0')
3996 /* Ignore leading zeroes. */
3997 ;
3998 else if (c == '1')
3999 nbits = 1;
4000 else if (c == '2' || c == '3')
4001 nbits = 2;
4002 else
4003 nbits = 3;
4004 }
4005 else
4006 nbits += 3;
4007 }
4008 }
4009 if (end)
4010 {
4011 if (c && c != end)
4012 {
4013 if (bits != NULL)
4014 *bits = -1;
4015 return 0;
4016 }
4017 }
4018 else
4019 --p;
4020
4021 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4022 {
4023 /* We were supposed to parse a number with maximum
4024 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4025 if (bits != NULL)
4026 *bits = -1;
4027 return 0;
4028 }
4029
4030 *pp = p;
4031 if (overflow)
4032 {
4033 if (nbits == 0)
4034 {
4035 /* Large decimal constants are an error (because it is hard to
4036 count how many bits are in them). */
4037 if (bits != NULL)
4038 *bits = -1;
4039 return 0;
4040 }
4041
4042 /* -0x7f is the same as 0x80. So deal with it by adding one to
4043 the number of bits. Two's complement represention octals
4044 can't have a '-' in front. */
4045 if (sign == -1 && !twos_complement_representation)
4046 ++nbits;
4047 if (bits)
4048 *bits = nbits;
4049 }
4050 else
4051 {
4052 if (bits)
4053 *bits = 0;
4054 return n * sign;
4055 }
4056 /* It's *BITS which has the interesting information. */
4057 return 0;
4058 }
4059
4060 static struct type *
4061 read_range_type (const char **pp, int typenums[2], int type_size,
4062 struct objfile *objfile)
4063 {
4064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4065 const char *orig_pp = *pp;
4066 int rangenums[2];
4067 long n2, n3;
4068 int n2bits, n3bits;
4069 int self_subrange;
4070 struct type *result_type;
4071 struct type *index_type = NULL;
4072
4073 /* First comes a type we are a subrange of.
4074 In C it is usually 0, 1 or the type being defined. */
4075 if (read_type_number (pp, rangenums) != 0)
4076 return error_type (pp, objfile);
4077 self_subrange = (rangenums[0] == typenums[0] &&
4078 rangenums[1] == typenums[1]);
4079
4080 if (**pp == '=')
4081 {
4082 *pp = orig_pp;
4083 index_type = read_type (pp, objfile);
4084 }
4085
4086 /* A semicolon should now follow; skip it. */
4087 if (**pp == ';')
4088 (*pp)++;
4089
4090 /* The remaining two operands are usually lower and upper bounds
4091 of the range. But in some special cases they mean something else. */
4092 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4093 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4094
4095 if (n2bits == -1 || n3bits == -1)
4096 return error_type (pp, objfile);
4097
4098 if (index_type)
4099 goto handle_true_range;
4100
4101 /* If limits are huge, must be large integral type. */
4102 if (n2bits != 0 || n3bits != 0)
4103 {
4104 char got_signed = 0;
4105 char got_unsigned = 0;
4106 /* Number of bits in the type. */
4107 int nbits = 0;
4108
4109 /* If a type size attribute has been specified, the bounds of
4110 the range should fit in this size. If the lower bounds needs
4111 more bits than the upper bound, then the type is signed. */
4112 if (n2bits <= type_size && n3bits <= type_size)
4113 {
4114 if (n2bits == type_size && n2bits > n3bits)
4115 got_signed = 1;
4116 else
4117 got_unsigned = 1;
4118 nbits = type_size;
4119 }
4120 /* Range from 0 to <large number> is an unsigned large integral type. */
4121 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4122 {
4123 got_unsigned = 1;
4124 nbits = n3bits;
4125 }
4126 /* Range from <large number> to <large number>-1 is a large signed
4127 integral type. Take care of the case where <large number> doesn't
4128 fit in a long but <large number>-1 does. */
4129 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4130 || (n2bits != 0 && n3bits == 0
4131 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4132 && n3 == LONG_MAX))
4133 {
4134 got_signed = 1;
4135 nbits = n2bits;
4136 }
4137
4138 if (got_signed || got_unsigned)
4139 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4140 else
4141 return error_type (pp, objfile);
4142 }
4143
4144 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4145 if (self_subrange && n2 == 0 && n3 == 0)
4146 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4147
4148 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4149 is the width in bytes.
4150
4151 Fortran programs appear to use this for complex types also. To
4152 distinguish between floats and complex, g77 (and others?) seem
4153 to use self-subranges for the complexes, and subranges of int for
4154 the floats.
4155
4156 Also note that for complexes, g77 sets n2 to the size of one of
4157 the member floats, not the whole complex beast. My guess is that
4158 this was to work well with pre-COMPLEX versions of gdb. */
4159
4160 if (n3 == 0 && n2 > 0)
4161 {
4162 struct type *float_type
4163 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4164
4165 if (self_subrange)
4166 return init_complex_type (objfile, NULL, float_type);
4167 else
4168 return float_type;
4169 }
4170
4171 /* If the upper bound is -1, it must really be an unsigned integral. */
4172
4173 else if (n2 == 0 && n3 == -1)
4174 {
4175 int bits = type_size;
4176
4177 if (bits <= 0)
4178 {
4179 /* We don't know its size. It is unsigned int or unsigned
4180 long. GCC 2.3.3 uses this for long long too, but that is
4181 just a GDB 3.5 compatibility hack. */
4182 bits = gdbarch_int_bit (gdbarch);
4183 }
4184
4185 return init_integer_type (objfile, bits, 1, NULL);
4186 }
4187
4188 /* Special case: char is defined (Who knows why) as a subrange of
4189 itself with range 0-127. */
4190 else if (self_subrange && n2 == 0 && n3 == 127)
4191 {
4192 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4193 0, NULL);
4194 TYPE_NOSIGN (type) = 1;
4195 return type;
4196 }
4197 /* We used to do this only for subrange of self or subrange of int. */
4198 else if (n2 == 0)
4199 {
4200 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4201 "unsigned long", and we already checked for that,
4202 so don't need to test for it here. */
4203
4204 if (n3 < 0)
4205 /* n3 actually gives the size. */
4206 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4207
4208 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4209 unsigned n-byte integer. But do require n to be a power of
4210 two; we don't want 3- and 5-byte integers flying around. */
4211 {
4212 int bytes;
4213 unsigned long bits;
4214
4215 bits = n3;
4216 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4217 bits >>= 8;
4218 if (bits == 0
4219 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4220 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4221 }
4222 }
4223 /* I think this is for Convex "long long". Since I don't know whether
4224 Convex sets self_subrange, I also accept that particular size regardless
4225 of self_subrange. */
4226 else if (n3 == 0 && n2 < 0
4227 && (self_subrange
4228 || n2 == -gdbarch_long_long_bit
4229 (gdbarch) / TARGET_CHAR_BIT))
4230 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4231 else if (n2 == -n3 - 1)
4232 {
4233 if (n3 == 0x7f)
4234 return init_integer_type (objfile, 8, 0, NULL);
4235 if (n3 == 0x7fff)
4236 return init_integer_type (objfile, 16, 0, NULL);
4237 if (n3 == 0x7fffffff)
4238 return init_integer_type (objfile, 32, 0, NULL);
4239 }
4240
4241 /* We have a real range type on our hands. Allocate space and
4242 return a real pointer. */
4243 handle_true_range:
4244
4245 if (self_subrange)
4246 index_type = objfile_type (objfile)->builtin_int;
4247 else
4248 index_type = *dbx_lookup_type (rangenums, objfile);
4249 if (index_type == NULL)
4250 {
4251 /* Does this actually ever happen? Is that why we are worrying
4252 about dealing with it rather than just calling error_type? */
4253
4254 complaint (&symfile_complaints,
4255 _("base type %d of range type is not defined"), rangenums[1]);
4256
4257 index_type = objfile_type (objfile)->builtin_int;
4258 }
4259
4260 result_type
4261 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4262 return (result_type);
4263 }
4264
4265 /* Read in an argument list. This is a list of types, separated by commas
4266 and terminated with END. Return the list of types read in, or NULL
4267 if there is an error. */
4268
4269 static struct field *
4270 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4271 int *varargsp)
4272 {
4273 /* FIXME! Remove this arbitrary limit! */
4274 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4275 int n = 0, i;
4276 struct field *rval;
4277
4278 while (**pp != end)
4279 {
4280 if (**pp != ',')
4281 /* Invalid argument list: no ','. */
4282 return NULL;
4283 (*pp)++;
4284 STABS_CONTINUE (pp, objfile);
4285 types[n++] = read_type (pp, objfile);
4286 }
4287 (*pp)++; /* get past `end' (the ':' character). */
4288
4289 if (n == 0)
4290 {
4291 /* We should read at least the THIS parameter here. Some broken stabs
4292 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4293 have been present ";-16,(0,43)" reference instead. This way the
4294 excessive ";" marker prematurely stops the parameters parsing. */
4295
4296 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4297 *varargsp = 0;
4298 }
4299 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4300 *varargsp = 1;
4301 else
4302 {
4303 n--;
4304 *varargsp = 0;
4305 }
4306
4307 rval = XCNEWVEC (struct field, n);
4308 for (i = 0; i < n; i++)
4309 rval[i].type = types[i];
4310 *nargsp = n;
4311 return rval;
4312 }
4313 \f
4314 /* Common block handling. */
4315
4316 /* List of symbols declared since the last BCOMM. This list is a tail
4317 of local_symbols. When ECOMM is seen, the symbols on the list
4318 are noted so their proper addresses can be filled in later,
4319 using the common block base address gotten from the assembler
4320 stabs. */
4321
4322 static struct pending *common_block;
4323 static int common_block_i;
4324
4325 /* Name of the current common block. We get it from the BCOMM instead of the
4326 ECOMM to match IBM documentation (even though IBM puts the name both places
4327 like everyone else). */
4328 static char *common_block_name;
4329
4330 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4331 to remain after this function returns. */
4332
4333 void
4334 common_block_start (const char *name, struct objfile *objfile)
4335 {
4336 if (common_block_name != NULL)
4337 {
4338 complaint (&symfile_complaints,
4339 _("Invalid symbol data: common block within common block"));
4340 }
4341 common_block = local_symbols;
4342 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4343 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4344 strlen (name));
4345 }
4346
4347 /* Process a N_ECOMM symbol. */
4348
4349 void
4350 common_block_end (struct objfile *objfile)
4351 {
4352 /* Symbols declared since the BCOMM are to have the common block
4353 start address added in when we know it. common_block and
4354 common_block_i point to the first symbol after the BCOMM in
4355 the local_symbols list; copy the list and hang it off the
4356 symbol for the common block name for later fixup. */
4357 int i;
4358 struct symbol *sym;
4359 struct pending *newobj = 0;
4360 struct pending *next;
4361 int j;
4362
4363 if (common_block_name == NULL)
4364 {
4365 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4366 return;
4367 }
4368
4369 sym = allocate_symbol (objfile);
4370 /* Note: common_block_name already saved on objfile_obstack. */
4371 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4372 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4373
4374 /* Now we copy all the symbols which have been defined since the BCOMM. */
4375
4376 /* Copy all the struct pendings before common_block. */
4377 for (next = local_symbols;
4378 next != NULL && next != common_block;
4379 next = next->next)
4380 {
4381 for (j = 0; j < next->nsyms; j++)
4382 add_symbol_to_list (next->symbol[j], &newobj);
4383 }
4384
4385 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4386 NULL, it means copy all the local symbols (which we already did
4387 above). */
4388
4389 if (common_block != NULL)
4390 for (j = common_block_i; j < common_block->nsyms; j++)
4391 add_symbol_to_list (common_block->symbol[j], &newobj);
4392
4393 SYMBOL_TYPE (sym) = (struct type *) newobj;
4394
4395 /* Should we be putting local_symbols back to what it was?
4396 Does it matter? */
4397
4398 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4399 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4400 global_sym_chain[i] = sym;
4401 common_block_name = NULL;
4402 }
4403
4404 /* Add a common block's start address to the offset of each symbol
4405 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4406 the common block name). */
4407
4408 static void
4409 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4410 {
4411 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4412
4413 for (; next; next = next->next)
4414 {
4415 int j;
4416
4417 for (j = next->nsyms - 1; j >= 0; j--)
4418 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4419 }
4420 }
4421 \f
4422
4423
4424 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4425 See add_undefined_type for more details. */
4426
4427 static void
4428 add_undefined_type_noname (struct type *type, int typenums[2])
4429 {
4430 struct nat nat;
4431
4432 nat.typenums[0] = typenums [0];
4433 nat.typenums[1] = typenums [1];
4434 nat.type = type;
4435
4436 if (noname_undefs_length == noname_undefs_allocated)
4437 {
4438 noname_undefs_allocated *= 2;
4439 noname_undefs = (struct nat *)
4440 xrealloc ((char *) noname_undefs,
4441 noname_undefs_allocated * sizeof (struct nat));
4442 }
4443 noname_undefs[noname_undefs_length++] = nat;
4444 }
4445
4446 /* Add TYPE to the UNDEF_TYPES vector.
4447 See add_undefined_type for more details. */
4448
4449 static void
4450 add_undefined_type_1 (struct type *type)
4451 {
4452 if (undef_types_length == undef_types_allocated)
4453 {
4454 undef_types_allocated *= 2;
4455 undef_types = (struct type **)
4456 xrealloc ((char *) undef_types,
4457 undef_types_allocated * sizeof (struct type *));
4458 }
4459 undef_types[undef_types_length++] = type;
4460 }
4461
4462 /* What about types defined as forward references inside of a small lexical
4463 scope? */
4464 /* Add a type to the list of undefined types to be checked through
4465 once this file has been read in.
4466
4467 In practice, we actually maintain two such lists: The first list
4468 (UNDEF_TYPES) is used for types whose name has been provided, and
4469 concerns forward references (eg 'xs' or 'xu' forward references);
4470 the second list (NONAME_UNDEFS) is used for types whose name is
4471 unknown at creation time, because they were referenced through
4472 their type number before the actual type was declared.
4473 This function actually adds the given type to the proper list. */
4474
4475 static void
4476 add_undefined_type (struct type *type, int typenums[2])
4477 {
4478 if (TYPE_TAG_NAME (type) == NULL)
4479 add_undefined_type_noname (type, typenums);
4480 else
4481 add_undefined_type_1 (type);
4482 }
4483
4484 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4485
4486 static void
4487 cleanup_undefined_types_noname (struct objfile *objfile)
4488 {
4489 int i;
4490
4491 for (i = 0; i < noname_undefs_length; i++)
4492 {
4493 struct nat nat = noname_undefs[i];
4494 struct type **type;
4495
4496 type = dbx_lookup_type (nat.typenums, objfile);
4497 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4498 {
4499 /* The instance flags of the undefined type are still unset,
4500 and needs to be copied over from the reference type.
4501 Since replace_type expects them to be identical, we need
4502 to set these flags manually before hand. */
4503 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4504 replace_type (nat.type, *type);
4505 }
4506 }
4507
4508 noname_undefs_length = 0;
4509 }
4510
4511 /* Go through each undefined type, see if it's still undefined, and fix it
4512 up if possible. We have two kinds of undefined types:
4513
4514 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4515 Fix: update array length using the element bounds
4516 and the target type's length.
4517 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4518 yet defined at the time a pointer to it was made.
4519 Fix: Do a full lookup on the struct/union tag. */
4520
4521 static void
4522 cleanup_undefined_types_1 (void)
4523 {
4524 struct type **type;
4525
4526 /* Iterate over every undefined type, and look for a symbol whose type
4527 matches our undefined type. The symbol matches if:
4528 1. It is a typedef in the STRUCT domain;
4529 2. It has the same name, and same type code;
4530 3. The instance flags are identical.
4531
4532 It is important to check the instance flags, because we have seen
4533 examples where the debug info contained definitions such as:
4534
4535 "foo_t:t30=B31=xefoo_t:"
4536
4537 In this case, we have created an undefined type named "foo_t" whose
4538 instance flags is null (when processing "xefoo_t"), and then created
4539 another type with the same name, but with different instance flags
4540 ('B' means volatile). I think that the definition above is wrong,
4541 since the same type cannot be volatile and non-volatile at the same
4542 time, but we need to be able to cope with it when it happens. The
4543 approach taken here is to treat these two types as different. */
4544
4545 for (type = undef_types; type < undef_types + undef_types_length; type++)
4546 {
4547 switch (TYPE_CODE (*type))
4548 {
4549
4550 case TYPE_CODE_STRUCT:
4551 case TYPE_CODE_UNION:
4552 case TYPE_CODE_ENUM:
4553 {
4554 /* Check if it has been defined since. Need to do this here
4555 as well as in check_typedef to deal with the (legitimate in
4556 C though not C++) case of several types with the same name
4557 in different source files. */
4558 if (TYPE_STUB (*type))
4559 {
4560 struct pending *ppt;
4561 int i;
4562 /* Name of the type, without "struct" or "union". */
4563 const char *type_name = TYPE_TAG_NAME (*type);
4564
4565 if (type_name == NULL)
4566 {
4567 complaint (&symfile_complaints, _("need a type name"));
4568 break;
4569 }
4570 for (ppt = file_symbols; ppt; ppt = ppt->next)
4571 {
4572 for (i = 0; i < ppt->nsyms; i++)
4573 {
4574 struct symbol *sym = ppt->symbol[i];
4575
4576 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4577 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4578 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4579 TYPE_CODE (*type))
4580 && (TYPE_INSTANCE_FLAGS (*type) ==
4581 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4582 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4583 type_name) == 0)
4584 replace_type (*type, SYMBOL_TYPE (sym));
4585 }
4586 }
4587 }
4588 }
4589 break;
4590
4591 default:
4592 {
4593 complaint (&symfile_complaints,
4594 _("forward-referenced types left unresolved, "
4595 "type code %d."),
4596 TYPE_CODE (*type));
4597 }
4598 break;
4599 }
4600 }
4601
4602 undef_types_length = 0;
4603 }
4604
4605 /* Try to fix all the undefined types we ecountered while processing
4606 this unit. */
4607
4608 void
4609 cleanup_undefined_stabs_types (struct objfile *objfile)
4610 {
4611 cleanup_undefined_types_1 ();
4612 cleanup_undefined_types_noname (objfile);
4613 }
4614
4615 /* Scan through all of the global symbols defined in the object file,
4616 assigning values to the debugging symbols that need to be assigned
4617 to. Get these symbols from the minimal symbol table. */
4618
4619 void
4620 scan_file_globals (struct objfile *objfile)
4621 {
4622 int hash;
4623 struct minimal_symbol *msymbol;
4624 struct symbol *sym, *prev;
4625 struct objfile *resolve_objfile;
4626
4627 /* SVR4 based linkers copy referenced global symbols from shared
4628 libraries to the main executable.
4629 If we are scanning the symbols for a shared library, try to resolve
4630 them from the minimal symbols of the main executable first. */
4631
4632 if (symfile_objfile && objfile != symfile_objfile)
4633 resolve_objfile = symfile_objfile;
4634 else
4635 resolve_objfile = objfile;
4636
4637 while (1)
4638 {
4639 /* Avoid expensive loop through all minimal symbols if there are
4640 no unresolved symbols. */
4641 for (hash = 0; hash < HASHSIZE; hash++)
4642 {
4643 if (global_sym_chain[hash])
4644 break;
4645 }
4646 if (hash >= HASHSIZE)
4647 return;
4648
4649 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4650 {
4651 QUIT;
4652
4653 /* Skip static symbols. */
4654 switch (MSYMBOL_TYPE (msymbol))
4655 {
4656 case mst_file_text:
4657 case mst_file_data:
4658 case mst_file_bss:
4659 continue;
4660 default:
4661 break;
4662 }
4663
4664 prev = NULL;
4665
4666 /* Get the hash index and check all the symbols
4667 under that hash index. */
4668
4669 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4670
4671 for (sym = global_sym_chain[hash]; sym;)
4672 {
4673 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4674 SYMBOL_LINKAGE_NAME (sym)) == 0)
4675 {
4676 /* Splice this symbol out of the hash chain and
4677 assign the value we have to it. */
4678 if (prev)
4679 {
4680 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4681 }
4682 else
4683 {
4684 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4685 }
4686
4687 /* Check to see whether we need to fix up a common block. */
4688 /* Note: this code might be executed several times for
4689 the same symbol if there are multiple references. */
4690 if (sym)
4691 {
4692 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4693 {
4694 fix_common_block (sym,
4695 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4696 msymbol));
4697 }
4698 else
4699 {
4700 SYMBOL_VALUE_ADDRESS (sym)
4701 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4702 }
4703 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4704 }
4705
4706 if (prev)
4707 {
4708 sym = SYMBOL_VALUE_CHAIN (prev);
4709 }
4710 else
4711 {
4712 sym = global_sym_chain[hash];
4713 }
4714 }
4715 else
4716 {
4717 prev = sym;
4718 sym = SYMBOL_VALUE_CHAIN (sym);
4719 }
4720 }
4721 }
4722 if (resolve_objfile == objfile)
4723 break;
4724 resolve_objfile = objfile;
4725 }
4726
4727 /* Change the storage class of any remaining unresolved globals to
4728 LOC_UNRESOLVED and remove them from the chain. */
4729 for (hash = 0; hash < HASHSIZE; hash++)
4730 {
4731 sym = global_sym_chain[hash];
4732 while (sym)
4733 {
4734 prev = sym;
4735 sym = SYMBOL_VALUE_CHAIN (sym);
4736
4737 /* Change the symbol address from the misleading chain value
4738 to address zero. */
4739 SYMBOL_VALUE_ADDRESS (prev) = 0;
4740
4741 /* Complain about unresolved common block symbols. */
4742 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4743 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4744 else
4745 complaint (&symfile_complaints,
4746 _("%s: common block `%s' from "
4747 "global_sym_chain unresolved"),
4748 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4749 }
4750 }
4751 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4752 }
4753
4754 /* Initialize anything that needs initializing when starting to read
4755 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4756 to a psymtab. */
4757
4758 void
4759 stabsread_init (void)
4760 {
4761 }
4762
4763 /* Initialize anything that needs initializing when a completely new
4764 symbol file is specified (not just adding some symbols from another
4765 file, e.g. a shared library). */
4766
4767 void
4768 stabsread_new_init (void)
4769 {
4770 /* Empty the hash table of global syms looking for values. */
4771 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4772 }
4773
4774 /* Initialize anything that needs initializing at the same time as
4775 start_symtab() is called. */
4776
4777 void
4778 start_stabs (void)
4779 {
4780 global_stabs = NULL; /* AIX COFF */
4781 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4782 n_this_object_header_files = 1;
4783 type_vector_length = 0;
4784 type_vector = (struct type **) 0;
4785
4786 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4787 common_block_name = NULL;
4788 }
4789
4790 /* Call after end_symtab(). */
4791
4792 void
4793 end_stabs (void)
4794 {
4795 if (type_vector)
4796 {
4797 xfree (type_vector);
4798 }
4799 type_vector = 0;
4800 type_vector_length = 0;
4801 previous_stab_code = 0;
4802 }
4803
4804 void
4805 finish_global_stabs (struct objfile *objfile)
4806 {
4807 if (global_stabs)
4808 {
4809 patch_block_stabs (global_symbols, global_stabs, objfile);
4810 xfree (global_stabs);
4811 global_stabs = NULL;
4812 }
4813 }
4814
4815 /* Find the end of the name, delimited by a ':', but don't match
4816 ObjC symbols which look like -[Foo bar::]:bla. */
4817 static const char *
4818 find_name_end (const char *name)
4819 {
4820 const char *s = name;
4821
4822 if (s[0] == '-' || *s == '+')
4823 {
4824 /* Must be an ObjC method symbol. */
4825 if (s[1] != '[')
4826 {
4827 error (_("invalid symbol name \"%s\""), name);
4828 }
4829 s = strchr (s, ']');
4830 if (s == NULL)
4831 {
4832 error (_("invalid symbol name \"%s\""), name);
4833 }
4834 return strchr (s, ':');
4835 }
4836 else
4837 {
4838 return strchr (s, ':');
4839 }
4840 }
4841
4842 /* Initializer for this module. */
4843
4844 void
4845 _initialize_stabsread (void)
4846 {
4847 rs6000_builtin_type_data = register_objfile_data ();
4848
4849 undef_types_allocated = 20;
4850 undef_types_length = 0;
4851 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4852
4853 noname_undefs_allocated = 20;
4854 noname_undefs_length = 0;
4855 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4856
4857 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4858 &stab_register_funcs);
4859 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4860 &stab_register_funcs);
4861 }
This page took 0.195667 seconds and 5 git commands to generate.