Add obstack_strdup overload taking a std::string
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 #include "stabsread.h"
50
51 /* See stabsread.h for these globals. */
52 unsigned int symnum;
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
55 int within_function;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
62
63 struct nextfield
64 {
65 struct nextfield *next;
66
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
70 int visibility;
71
72 struct field field;
73 };
74
75 struct next_fnfieldlist
76 {
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
79 };
80
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
86
87 struct stab_field_info
88 {
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
91
92 auto_obstack obstack;
93 };
94
95 static void
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
98
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
100
101 static long read_huge_number (const char **, int, int *, int);
102
103 static struct type *error_type (const char **, struct objfile *);
104
105 static void
106 patch_block_stabs (struct pending *, struct pending_stabs *,
107 struct objfile *);
108
109 static void fix_common_block (struct symbol *, CORE_ADDR);
110
111 static int read_type_number (const char **, int *);
112
113 static struct type *read_type (const char **, struct objfile *);
114
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
117
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
120
121 static struct type *read_sun_floating_type (const char **, int[2],
122 struct objfile *);
123
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
125
126 static struct type *rs6000_builtin_type (int, struct objfile *);
127
128 static int
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
134 struct objfile *);
135
136 static int
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
138 struct objfile *);
139
140 static int
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
142 struct objfile *);
143
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
145
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
147 struct objfile *);
148
149 static struct type *read_struct_type (const char **, struct type *,
150 enum type_code,
151 struct objfile *);
152
153 static struct type *read_array_type (const char **, struct type *,
154 struct objfile *);
155
156 static struct field *read_args (const char **, int, struct objfile *,
157 int *, int *);
158
159 static void add_undefined_type (struct type *, int[2]);
160
161 static int
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
163 struct objfile *);
164
165 static const char *find_name_end (const char *name);
166
167 static int process_reference (const char **string);
168
169 void stabsread_clear_cache (void);
170
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
185 }
186
187 static void
188 stabs_general_complaint (const char *arg1)
189 {
190 complaint ("%s", arg1);
191 }
192
193 /* Make a list of forward references which haven't been defined. */
194
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
199
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
204
205 struct nat
206 {
207 int typenums[2];
208 struct type *type;
209 };
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
213
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
216 do { \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
219 } while (0)
220
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
226
227 static struct type **type_vector;
228
229 /* Number of elements allocated for type_vector currently. */
230
231 static int type_vector_length;
232
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
235
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
237 \f
238
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
242
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
245
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
248 {
249 int filenum = typenums[0];
250 int index = typenums[1];
251 unsigned old_len;
252 int real_filenum;
253 struct header_file *f;
254 int f_orig_length;
255
256 if (filenum == -1) /* -1,-1 is for temporary types. */
257 return 0;
258
259 if (filenum < 0 || filenum >= n_this_object_header_files)
260 {
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type (index, objfile);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
291 }
292 while (index >= type_vector_length)
293 {
294 type_vector_length *= 2;
295 }
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
301 }
302 return (&type_vector[index]);
303 }
304 else
305 {
306 real_filenum = this_object_header_files[filenum];
307
308 if (real_filenum >= N_HEADER_FILES (objfile))
309 {
310 static struct type *temp_type;
311
312 warning (_("GDB internal error: bad real_filenum"));
313
314 error_return:
315 temp_type = objfile_type (objfile)->builtin_error;
316 return &temp_type;
317 }
318
319 f = HEADER_FILES (objfile) + real_filenum;
320
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
323 {
324 while (index >= f->length)
325 {
326 f->length *= 2;
327 }
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
332 }
333 return (&f->vector[index]);
334 }
335 }
336
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
342
343 static struct type *
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
345 {
346 struct type **type_addr;
347
348 if (typenums[0] == -1)
349 {
350 return (alloc_type (objfile));
351 }
352
353 type_addr = dbx_lookup_type (typenums, objfile);
354
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
358 if (*type_addr == 0)
359 {
360 *type_addr = alloc_type (objfile);
361 }
362
363 return (*type_addr);
364 }
365
366 /* Allocate a floating-point type of size BITS. */
367
368 static struct type *
369 dbx_init_float_type (struct objfile *objfile, int bits)
370 {
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
373 struct type *type;
374
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
376 if (format)
377 type = init_float_type (objfile, bits, NULL, format);
378 else
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
380
381 return type;
382 }
383
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
386
387 static void
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
390 {
391 int ii;
392 char *name;
393 const char *pp;
394 struct symbol *sym;
395
396 if (stabs)
397 {
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
400
401 for (ii = 0; ii < stabs->count; ++ii)
402 {
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
406 while (pp[1] == ':')
407 {
408 pp += 2;
409 pp = (char *) strchr (pp, ':');
410 }
411 sym = find_symbol_in_list (symbols, name, pp - name);
412 if (!sym)
413 {
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
421
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
430 name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = allocate_symbol (objfile);
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 std::string new_name;
742
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (!new_name.empty ())
752 {
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
755 1, objfile);
756 }
757 else
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
759
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
762 objfile);
763
764 }
765 p++;
766
767 /* Determine the type of name being defined. */
768 #if 0
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
777 #else
778 if (isdigit (*p) || *p == '(' || *p == '-')
779 #endif
780 deftype = 'l';
781 else
782 deftype = *p++;
783
784 switch (deftype)
785 {
786 case 'c':
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
793 if (*p != '=')
794 {
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
799 return sym;
800 }
801 ++p;
802 switch (*p++)
803 {
804 case 'r':
805 {
806 gdb_byte *dbl_valu;
807 struct type *dbl_type;
808
809 dbl_type = objfile_type (objfile)->builtin_double;
810 dbl_valu
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
813
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
815
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
819 }
820 break;
821 case 'i':
822 {
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
829
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
833 }
834 break;
835
836 case 'c':
837 {
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
841 }
842 break;
843
844 case 's':
845 {
846 struct type *range_type;
847 int ind = 0;
848 char quote = *p++;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
851
852 if (quote != '\'' && quote != '"')
853 {
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
858 return sym;
859 }
860
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
863 {
864 if (*p == '\\' && p[1] == quote)
865 {
866 string_local[ind] = (gdb_byte) quote;
867 ind++;
868 p += 2;
869 }
870 else if (*p)
871 {
872 string_local[ind] = (gdb_byte) (*p);
873 ind++;
874 p++;
875 }
876 }
877 if (*p != quote)
878 {
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
883 return sym;
884 }
885
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
888 range_type
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
891 0, ind);
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
894 range_type);
895 string_value
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
898 p++;
899
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
902 }
903 break;
904
905 case 'e':
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 {
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
913
914 if (*p != ',')
915 {
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
917 break;
918 }
919 ++p;
920
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
926 however. */
927 SYMBOL_VALUE (sym) = atoi (p);
928 }
929 break;
930 default:
931 {
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
934 }
935 }
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
938 return sym;
939
940 case 'C':
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SYMBOL_VALUE_ADDRESS (sym) = valu;
946 add_symbol_to_list (sym, get_local_symbols ());
947 break;
948
949 case 'f':
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
956
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
971
972 /* fall into process_prototype_types. */
973
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
976 if (*p == ';')
977 {
978 struct type *ftype = SYMBOL_TYPE (sym);
979 int nsemi = 0;
980 int nparams = 0;
981 const char *p1 = p;
982
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
985 while (*p1)
986 {
987 if (*p1++ == ';')
988 nsemi++;
989 }
990
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
994 while (*p++ == ';')
995 {
996 struct type *ptype;
997
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1001 break;
1002 ptype = read_type (&p, objfile);
1003
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1014 }
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1017 }
1018 break;
1019
1020 case 'F':
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1027
1028 case 'G':
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1041 {
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1045 }
1046 add_symbol_to_list (sym, get_global_symbols ());
1047 break;
1048
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1052 case 's':
1053 case 'l':
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1059 break;
1060
1061 case 'p':
1062 if (*p == 'F')
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1066 {
1067 p++;
1068 SYMBOL_TYPE (sym)
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1071 }
1072 else
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1080
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1082 {
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1085 break;
1086 }
1087
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1091 break;
1092
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1094 {
1095 /* If PCC says a parameter is a short or a char, it is
1096 really an int. */
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1100 {
1101 SYMBOL_TYPE (sym) =
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1105 }
1106 break;
1107 }
1108 /* Fall through. */
1109
1110 case 'P':
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1114 if (type == N_FUN)
1115 {
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1118 }
1119 /*FALLTHROUGH */
1120
1121 case 'R':
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1129 break;
1130
1131 case 'r':
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1138 {
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1146 the stack.
1147
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1152 etc.).
1153
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1158
1159 struct pending *local_symbols = *get_local_symbols ();
1160 if (local_symbols
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1163 {
1164 struct symbol *prev_sym;
1165
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1171 {
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1177 sym = prev_sym;
1178 break;
1179 }
1180 }
1181 add_symbol_to_list (sym, get_local_symbols ());
1182 }
1183 else
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 'S':
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1196 {
1197 struct bound_minimal_symbol msym;
1198
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1200 NULL, objfile);
1201 if (msym.minsym != NULL)
1202 {
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1205
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1208 }
1209 }
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1212 break;
1213
1214 case 't':
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1218
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1225
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1230
1231 /* Typedef */
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1236 if (nameless)
1237 return NULL;
1238
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1250 {
1251 int j;
1252
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1257 }
1258
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1260 {
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
1263 Some gdb code depends on that specific name. */
1264 extern const char vtbl_ptr_name[];
1265
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1269 {
1270 /* If we are giving a name to a type such as "pointer to
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1282 case).
1283
1284 Sigh.
1285
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
1290 problem: with the following code gdb would tell that
1291 the type for name1 is caddr_t, and func is char().
1292
1293 typedef char *caddr_t;
1294 char *name2;
1295 struct x
1296 {
1297 char *name1;
1298 } xx;
1299 char *func()
1300 {
1301 }
1302 main () {}
1303 */
1304
1305 /* Pascal accepts names for pointer types. */
1306 if (get_current_subfile ()->language == language_pascal)
1307 {
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 }
1310 }
1311 else
1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1313 }
1314
1315 add_symbol_to_list (sym, get_file_symbols ());
1316
1317 if (synonym)
1318 {
1319 /* Create the STRUCT_DOMAIN clone. */
1320 struct symbol *struct_sym = allocate_symbol (objfile);
1321
1322 *struct_sym = *sym;
1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1330 (char *) NULL);
1331 add_symbol_to_list (struct_sym, get_file_symbols ());
1332 }
1333
1334 break;
1335
1336 case 'T':
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1338 by 't' which means we are typedef'ing it as well. */
1339 synonym = *p == 't';
1340
1341 if (synonym)
1342 p++;
1343
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1345
1346 /* For a nameless type, we don't want a create a symbol, thus we
1347 did not use `sym'. Return without further processing. */
1348 if (nameless)
1349 return NULL;
1350
1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1352 SYMBOL_VALUE (sym) = valu;
1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1358 (char *) NULL);
1359 add_symbol_to_list (sym, get_file_symbols ());
1360
1361 if (synonym)
1362 {
1363 /* Clone the sym and then modify it. */
1364 struct symbol *typedef_sym = allocate_symbol (objfile);
1365
1366 *typedef_sym = *sym;
1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1368 SYMBOL_VALUE (typedef_sym) = valu;
1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1374 (char *) NULL);
1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
1376 }
1377 break;
1378
1379 case 'V':
1380 /* Static symbol of local scope. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
1388 {
1389 struct bound_minimal_symbol msym;
1390
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1392 NULL, objfile);
1393 if (msym.minsym != NULL)
1394 {
1395 const char *new_name = gdbarch_static_transform_name
1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1397
1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1400 }
1401 }
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1404 break;
1405
1406 case 'v':
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1414 break;
1415
1416 case 'a':
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1420 SYMBOL_IS_ARGUMENT (sym) = 1;
1421 SYMBOL_VALUE (sym) = valu;
1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1423 add_symbol_to_list (sym, get_local_symbols ());
1424 break;
1425
1426 case 'X':
1427 /* This is used by Sun FORTRAN for "function result value".
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1433 SYMBOL_VALUE (sym) = valu;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, get_local_symbols ());
1436 break;
1437
1438 default:
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1441 SYMBOL_VALUE (sym) = 0;
1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1443 add_symbol_to_list (sym, get_file_symbols ());
1444 break;
1445 }
1446
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
1450
1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1452 && SYMBOL_IS_ARGUMENT (sym))
1453 {
1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1455 variables passed in a register). */
1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1462 }
1463
1464 return sym;
1465 }
1466
1467 /* Skip rest of this symbol and return an error type.
1468
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1472
1473 if (*(*pp)++ != ';')
1474 return error_type (pp, objfile);
1475
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1480
1481 if (**pp != ';')
1482 return error_type (pp, objfile);
1483 ++*pp;
1484
1485 or
1486
1487 if (**pp != ';')
1488 foo = error_type (pp, objfile);
1489 else
1490 ++*pp;
1491
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1495
1496 static struct type *
1497 error_type (const char **pp, struct objfile *objfile)
1498 {
1499 complaint (_("couldn't parse type; debugger out of date?"));
1500 while (1)
1501 {
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1504 {
1505 (*pp)++;
1506 }
1507
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1510 {
1511 *pp = next_symbol_text (objfile);
1512 }
1513 else
1514 {
1515 break;
1516 }
1517 }
1518 return objfile_type (objfile)->builtin_error;
1519 }
1520 \f
1521
1522 /* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1527
1528 static struct type *
1529 read_type (const char **pp, struct objfile *objfile)
1530 {
1531 struct type *type = 0;
1532 struct type *type1;
1533 int typenums[2];
1534 char type_descriptor;
1535
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1538 int type_size = -1;
1539
1540 /* Used to distinguish string and bitstring from char-array and set. */
1541 int is_string = 0;
1542
1543 /* Used to distinguish vector from array. */
1544 int is_vector = 0;
1545
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1550 || **pp == '('
1551 || **pp == '-')
1552 {
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
1555
1556 if (**pp != '=')
1557 {
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1562
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1565 reading. */
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1567 add_undefined_type (type, typenums);
1568
1569 return type;
1570 }
1571
1572 /* Type is being defined here. */
1573 /* Skip the '='.
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1575 (*pp) += 2;
1576 }
1577 else
1578 {
1579 /* 'typenums=' not present, type is anonymous. Read and return
1580 the definition, but don't put it in the type vector. */
1581 typenums[0] = typenums[1] = -1;
1582 (*pp)++;
1583 }
1584
1585 again:
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1588 {
1589 case 'x':
1590 {
1591 enum type_code code;
1592
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1595 int i;
1596
1597 /* Name including "struct", etc. */
1598 char *type_name;
1599
1600 {
1601 const char *from, *p, *q1, *q2;
1602
1603 /* Set the type code according to the following letter. */
1604 switch ((*pp)[0])
1605 {
1606 case 's':
1607 code = TYPE_CODE_STRUCT;
1608 break;
1609 case 'u':
1610 code = TYPE_CODE_UNION;
1611 break;
1612 case 'e':
1613 code = TYPE_CODE_ENUM;
1614 break;
1615 default:
1616 {
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
1619 complaint (_("Unrecognized cross-reference type `%c'"),
1620 (*pp)[0]);
1621 code = TYPE_CODE_STRUCT;
1622 break;
1623 }
1624 }
1625
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1628 if (p == NULL)
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1631 {
1632 int nesting_level = 0;
1633
1634 for (q2 = q1; *q2; q2++)
1635 {
1636 if (*q2 == '<')
1637 nesting_level++;
1638 else if (*q2 == '>')
1639 nesting_level--;
1640 else if (*q2 == ':' && nesting_level == 0)
1641 break;
1642 }
1643 p = q2;
1644 if (*p != ':')
1645 return error_type (pp, objfile);
1646 }
1647 type_name = NULL;
1648 if (get_current_subfile ()->language == language_cplus)
1649 {
1650 char *name = (char *) alloca (p - *pp + 1);
1651
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
1654
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
1657 type_name = obstack_strdup (&objfile->objfile_obstack,
1658 new_name);
1659 }
1660 if (type_name == NULL)
1661 {
1662 char *to = type_name = (char *)
1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1664
1665 /* Copy the name. */
1666 from = *pp + 1;
1667 while (from < p)
1668 *to++ = *from++;
1669 *to = '\0';
1670 }
1671
1672 /* Set the pointer ahead of the name which we just read, and
1673 the colon. */
1674 *pp = p + 1;
1675 }
1676
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1679 memory. */
1680
1681 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1682 for (i = 0; i < ppt->nsyms; i++)
1683 {
1684 struct symbol *sym = ppt->symbol[i];
1685
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1690 {
1691 obstack_free (&objfile->objfile_obstack, type_name);
1692 type = SYMBOL_TYPE (sym);
1693 if (typenums[0] != -1)
1694 *dbx_lookup_type (typenums, objfile) = type;
1695 return type;
1696 }
1697 }
1698
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1703 type. */
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
1706 TYPE_NAME (type) = type_name;
1707 INIT_CPLUS_SPECIFIC (type);
1708 TYPE_STUB (type) = 1;
1709
1710 add_undefined_type (type, typenums);
1711 return type;
1712 }
1713
1714 case '-': /* RS/6000 built-in type */
1715 case '0':
1716 case '1':
1717 case '2':
1718 case '3':
1719 case '4':
1720 case '5':
1721 case '6':
1722 case '7':
1723 case '8':
1724 case '9':
1725 case '(':
1726 (*pp)--;
1727
1728 /* We deal with something like t(1,2)=(3,4)=... which
1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1730
1731 /* Allocate and enter the typedef type first.
1732 This handles recursive types. */
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1735 {
1736 struct type *xtype = read_type (pp, objfile);
1737
1738 if (type == xtype)
1739 {
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1743 }
1744 else if (type_size >= 0 || is_string)
1745 {
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
1751 should not be modified.
1752
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1761
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
1769 replace_type (type, xtype);
1770 TYPE_NAME (type) = NULL;
1771 }
1772 else
1773 {
1774 TYPE_TARGET_STUB (type) = 1;
1775 TYPE_TARGET_TYPE (type) = xtype;
1776 }
1777 }
1778 break;
1779
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
1786
1787 case '*': /* Pointer to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1790 break;
1791
1792 case '&': /* Reference to another type */
1793 type1 = read_type (pp, objfile);
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 TYPE_CODE_REF);
1796 break;
1797
1798 case 'f': /* Function returning another type */
1799 type1 = read_type (pp, objfile);
1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1801 break;
1802
1803 case 'g': /* Prototyped function. (Sun) */
1804 {
1805 /* Unresolved questions:
1806
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1812
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1818 know. */
1819
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
1823 = make_function_type (return_type,
1824 dbx_lookup_type (typenums, objfile));
1825 struct type_list {
1826 struct type *type;
1827 struct type_list *next;
1828 } *arg_types = 0;
1829 int num_args = 0;
1830
1831 while (**pp && **pp != '#')
1832 {
1833 struct type *arg_type = read_type (pp, objfile);
1834 struct type_list *newobj = XALLOCA (struct type_list);
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1837 arg_types = newobj;
1838 num_args++;
1839 }
1840 if (**pp == '#')
1841 ++*pp;
1842 else
1843 {
1844 complaint (_("Prototyped function type didn't "
1845 "end arguments with `#':\n%s"),
1846 type_start);
1847 }
1848
1849 /* If there is just one argument whose type is `void', then
1850 that's just an empty argument list. */
1851 if (arg_types
1852 && ! arg_types->next
1853 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1854 num_args = 0;
1855
1856 TYPE_FIELDS (func_type)
1857 = (struct field *) TYPE_ALLOC (func_type,
1858 num_args * sizeof (struct field));
1859 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1860 {
1861 int i;
1862 struct type_list *t;
1863
1864 /* We stuck each argument type onto the front of the list
1865 when we read it, so the list is reversed. Build the
1866 fields array right-to-left. */
1867 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1868 TYPE_FIELD_TYPE (func_type, i) = t->type;
1869 }
1870 TYPE_NFIELDS (func_type) = num_args;
1871 TYPE_PROTOTYPED (func_type) = 1;
1872
1873 type = func_type;
1874 break;
1875 }
1876
1877 case 'k': /* Const qualifier on some type (Sun) */
1878 type = read_type (pp, objfile);
1879 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1880 dbx_lookup_type (typenums, objfile));
1881 break;
1882
1883 case 'B': /* Volatile qual on some type (Sun) */
1884 type = read_type (pp, objfile);
1885 type = make_cv_type (TYPE_CONST (type), 1, type,
1886 dbx_lookup_type (typenums, objfile));
1887 break;
1888
1889 case '@':
1890 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1891 { /* Member (class & variable) type */
1892 /* FIXME -- we should be doing smash_to_XXX types here. */
1893
1894 struct type *domain = read_type (pp, objfile);
1895 struct type *memtype;
1896
1897 if (**pp != ',')
1898 /* Invalid member type data format. */
1899 return error_type (pp, objfile);
1900 ++*pp;
1901
1902 memtype = read_type (pp, objfile);
1903 type = dbx_alloc_type (typenums, objfile);
1904 smash_to_memberptr_type (type, domain, memtype);
1905 }
1906 else
1907 /* type attribute */
1908 {
1909 const char *attr = *pp;
1910
1911 /* Skip to the semicolon. */
1912 while (**pp != ';' && **pp != '\0')
1913 ++(*pp);
1914 if (**pp == '\0')
1915 return error_type (pp, objfile);
1916 else
1917 ++ * pp; /* Skip the semicolon. */
1918
1919 switch (*attr)
1920 {
1921 case 's': /* Size attribute */
1922 type_size = atoi (attr + 1);
1923 if (type_size <= 0)
1924 type_size = -1;
1925 break;
1926
1927 case 'S': /* String attribute */
1928 /* FIXME: check to see if following type is array? */
1929 is_string = 1;
1930 break;
1931
1932 case 'V': /* Vector attribute */
1933 /* FIXME: check to see if following type is array? */
1934 is_vector = 1;
1935 break;
1936
1937 default:
1938 /* Ignore unrecognized type attributes, so future compilers
1939 can invent new ones. */
1940 break;
1941 }
1942 ++*pp;
1943 goto again;
1944 }
1945 break;
1946
1947 case '#': /* Method (class & fn) type */
1948 if ((*pp)[0] == '#')
1949 {
1950 /* We'll get the parameter types from the name. */
1951 struct type *return_type;
1952
1953 (*pp)++;
1954 return_type = read_type (pp, objfile);
1955 if (*(*pp)++ != ';')
1956 complaint (_("invalid (minimal) member type "
1957 "data format at symtab pos %d."),
1958 symnum);
1959 type = allocate_stub_method (return_type);
1960 if (typenums[0] != -1)
1961 *dbx_lookup_type (typenums, objfile) = type;
1962 }
1963 else
1964 {
1965 struct type *domain = read_type (pp, objfile);
1966 struct type *return_type;
1967 struct field *args;
1968 int nargs, varargs;
1969
1970 if (**pp != ',')
1971 /* Invalid member type data format. */
1972 return error_type (pp, objfile);
1973 else
1974 ++(*pp);
1975
1976 return_type = read_type (pp, objfile);
1977 args = read_args (pp, ';', objfile, &nargs, &varargs);
1978 if (args == NULL)
1979 return error_type (pp, objfile);
1980 type = dbx_alloc_type (typenums, objfile);
1981 smash_to_method_type (type, domain, return_type, args,
1982 nargs, varargs);
1983 }
1984 break;
1985
1986 case 'r': /* Range type */
1987 type = read_range_type (pp, typenums, type_size, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1990 break;
1991
1992 case 'b':
1993 {
1994 /* Sun ACC builtin int type */
1995 type = read_sun_builtin_type (pp, typenums, objfile);
1996 if (typenums[0] != -1)
1997 *dbx_lookup_type (typenums, objfile) = type;
1998 }
1999 break;
2000
2001 case 'R': /* Sun ACC builtin float type */
2002 type = read_sun_floating_type (pp, typenums, objfile);
2003 if (typenums[0] != -1)
2004 *dbx_lookup_type (typenums, objfile) = type;
2005 break;
2006
2007 case 'e': /* Enumeration type */
2008 type = dbx_alloc_type (typenums, objfile);
2009 type = read_enum_type (pp, type, objfile);
2010 if (typenums[0] != -1)
2011 *dbx_lookup_type (typenums, objfile) = type;
2012 break;
2013
2014 case 's': /* Struct type */
2015 case 'u': /* Union type */
2016 {
2017 enum type_code type_code = TYPE_CODE_UNDEF;
2018 type = dbx_alloc_type (typenums, objfile);
2019 switch (type_descriptor)
2020 {
2021 case 's':
2022 type_code = TYPE_CODE_STRUCT;
2023 break;
2024 case 'u':
2025 type_code = TYPE_CODE_UNION;
2026 break;
2027 }
2028 type = read_struct_type (pp, type, type_code, objfile);
2029 break;
2030 }
2031
2032 case 'a': /* Array type */
2033 if (**pp != 'r')
2034 return error_type (pp, objfile);
2035 ++*pp;
2036
2037 type = dbx_alloc_type (typenums, objfile);
2038 type = read_array_type (pp, type, objfile);
2039 if (is_string)
2040 TYPE_CODE (type) = TYPE_CODE_STRING;
2041 if (is_vector)
2042 make_vector_type (type);
2043 break;
2044
2045 case 'S': /* Set type */
2046 type1 = read_type (pp, objfile);
2047 type = create_set_type (NULL, type1);
2048 if (typenums[0] != -1)
2049 *dbx_lookup_type (typenums, objfile) = type;
2050 break;
2051
2052 default:
2053 --*pp; /* Go back to the symbol in error. */
2054 /* Particularly important if it was \0! */
2055 return error_type (pp, objfile);
2056 }
2057
2058 if (type == 0)
2059 {
2060 warning (_("GDB internal error, type is NULL in stabsread.c."));
2061 return error_type (pp, objfile);
2062 }
2063
2064 /* Size specified in a type attribute overrides any other size. */
2065 if (type_size != -1)
2066 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2067
2068 return type;
2069 }
2070 \f
2071 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2072 Return the proper type node for a given builtin type number. */
2073
2074 static const struct objfile_key<struct type *,
2075 gdb::noop_deleter<struct type *>>
2076 rs6000_builtin_type_data;
2077
2078 static struct type *
2079 rs6000_builtin_type (int typenum, struct objfile *objfile)
2080 {
2081 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2082
2083 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2084 #define NUMBER_RECOGNIZED 34
2085 struct type *rettype = NULL;
2086
2087 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2088 {
2089 complaint (_("Unknown builtin type %d"), typenum);
2090 return objfile_type (objfile)->builtin_error;
2091 }
2092
2093 if (!negative_types)
2094 {
2095 /* This includes an empty slot for type number -0. */
2096 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2097 NUMBER_RECOGNIZED + 1, struct type *);
2098 rs6000_builtin_type_data.set (objfile, negative_types);
2099 }
2100
2101 if (negative_types[-typenum] != NULL)
2102 return negative_types[-typenum];
2103
2104 #if TARGET_CHAR_BIT != 8
2105 #error This code wrong for TARGET_CHAR_BIT not 8
2106 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2107 that if that ever becomes not true, the correct fix will be to
2108 make the size in the struct type to be in bits, not in units of
2109 TARGET_CHAR_BIT. */
2110 #endif
2111
2112 switch (-typenum)
2113 {
2114 case 1:
2115 /* The size of this and all the other types are fixed, defined
2116 by the debugging format. If there is a type called "int" which
2117 is other than 32 bits, then it should use a new negative type
2118 number (or avoid negative type numbers for that case).
2119 See stabs.texinfo. */
2120 rettype = init_integer_type (objfile, 32, 0, "int");
2121 break;
2122 case 2:
2123 rettype = init_integer_type (objfile, 8, 0, "char");
2124 TYPE_NOSIGN (rettype) = 1;
2125 break;
2126 case 3:
2127 rettype = init_integer_type (objfile, 16, 0, "short");
2128 break;
2129 case 4:
2130 rettype = init_integer_type (objfile, 32, 0, "long");
2131 break;
2132 case 5:
2133 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2134 break;
2135 case 6:
2136 rettype = init_integer_type (objfile, 8, 0, "signed char");
2137 break;
2138 case 7:
2139 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2140 break;
2141 case 8:
2142 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2143 break;
2144 case 9:
2145 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2146 break;
2147 case 10:
2148 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2149 break;
2150 case 11:
2151 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2152 break;
2153 case 12:
2154 /* IEEE single precision (32 bit). */
2155 rettype = init_float_type (objfile, 32, "float",
2156 floatformats_ieee_single);
2157 break;
2158 case 13:
2159 /* IEEE double precision (64 bit). */
2160 rettype = init_float_type (objfile, 64, "double",
2161 floatformats_ieee_double);
2162 break;
2163 case 14:
2164 /* This is an IEEE double on the RS/6000, and different machines with
2165 different sizes for "long double" should use different negative
2166 type numbers. See stabs.texinfo. */
2167 rettype = init_float_type (objfile, 64, "long double",
2168 floatformats_ieee_double);
2169 break;
2170 case 15:
2171 rettype = init_integer_type (objfile, 32, 0, "integer");
2172 break;
2173 case 16:
2174 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2175 break;
2176 case 17:
2177 rettype = init_float_type (objfile, 32, "short real",
2178 floatformats_ieee_single);
2179 break;
2180 case 18:
2181 rettype = init_float_type (objfile, 64, "real",
2182 floatformats_ieee_double);
2183 break;
2184 case 19:
2185 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2186 break;
2187 case 20:
2188 rettype = init_character_type (objfile, 8, 1, "character");
2189 break;
2190 case 21:
2191 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2192 break;
2193 case 22:
2194 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2195 break;
2196 case 23:
2197 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2198 break;
2199 case 24:
2200 rettype = init_boolean_type (objfile, 32, 1, "logical");
2201 break;
2202 case 25:
2203 /* Complex type consisting of two IEEE single precision values. */
2204 rettype = init_complex_type (objfile, "complex",
2205 rs6000_builtin_type (12, objfile));
2206 break;
2207 case 26:
2208 /* Complex type consisting of two IEEE double precision values. */
2209 rettype = init_complex_type (objfile, "double complex",
2210 rs6000_builtin_type (13, objfile));
2211 break;
2212 case 27:
2213 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2214 break;
2215 case 28:
2216 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2217 break;
2218 case 29:
2219 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2220 break;
2221 case 30:
2222 rettype = init_character_type (objfile, 16, 0, "wchar");
2223 break;
2224 case 31:
2225 rettype = init_integer_type (objfile, 64, 0, "long long");
2226 break;
2227 case 32:
2228 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2229 break;
2230 case 33:
2231 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2232 break;
2233 case 34:
2234 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2235 break;
2236 }
2237 negative_types[-typenum] = rettype;
2238 return rettype;
2239 }
2240 \f
2241 /* This page contains subroutines of read_type. */
2242
2243 /* Wrapper around method_name_from_physname to flag a complaint
2244 if there is an error. */
2245
2246 static char *
2247 stabs_method_name_from_physname (const char *physname)
2248 {
2249 char *method_name;
2250
2251 method_name = method_name_from_physname (physname);
2252
2253 if (method_name == NULL)
2254 {
2255 complaint (_("Method has bad physname %s\n"), physname);
2256 return NULL;
2257 }
2258
2259 return method_name;
2260 }
2261
2262 /* Read member function stabs info for C++ classes. The form of each member
2263 function data is:
2264
2265 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2266
2267 An example with two member functions is:
2268
2269 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2270
2271 For the case of overloaded operators, the format is op$::*.funcs, where
2272 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2273 name (such as `+=') and `.' marks the end of the operator name.
2274
2275 Returns 1 for success, 0 for failure. */
2276
2277 static int
2278 read_member_functions (struct stab_field_info *fip, const char **pp,
2279 struct type *type, struct objfile *objfile)
2280 {
2281 int nfn_fields = 0;
2282 int length = 0;
2283 int i;
2284 struct next_fnfield
2285 {
2286 struct next_fnfield *next;
2287 struct fn_field fn_field;
2288 }
2289 *sublist;
2290 struct type *look_ahead_type;
2291 struct next_fnfieldlist *new_fnlist;
2292 struct next_fnfield *new_sublist;
2293 char *main_fn_name;
2294 const char *p;
2295
2296 /* Process each list until we find something that is not a member function
2297 or find the end of the functions. */
2298
2299 while (**pp != ';')
2300 {
2301 /* We should be positioned at the start of the function name.
2302 Scan forward to find the first ':' and if it is not the
2303 first of a "::" delimiter, then this is not a member function. */
2304 p = *pp;
2305 while (*p != ':')
2306 {
2307 p++;
2308 }
2309 if (p[1] != ':')
2310 {
2311 break;
2312 }
2313
2314 sublist = NULL;
2315 look_ahead_type = NULL;
2316 length = 0;
2317
2318 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2319
2320 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2321 {
2322 /* This is a completely wierd case. In order to stuff in the
2323 names that might contain colons (the usual name delimiter),
2324 Mike Tiemann defined a different name format which is
2325 signalled if the identifier is "op$". In that case, the
2326 format is "op$::XXXX." where XXXX is the name. This is
2327 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2328 /* This lets the user type "break operator+".
2329 We could just put in "+" as the name, but that wouldn't
2330 work for "*". */
2331 static char opname[32] = "op$";
2332 char *o = opname + 3;
2333
2334 /* Skip past '::'. */
2335 *pp = p + 2;
2336
2337 STABS_CONTINUE (pp, objfile);
2338 p = *pp;
2339 while (*p != '.')
2340 {
2341 *o++ = *p++;
2342 }
2343 main_fn_name = savestring (opname, o - opname);
2344 /* Skip past '.' */
2345 *pp = p + 1;
2346 }
2347 else
2348 {
2349 main_fn_name = savestring (*pp, p - *pp);
2350 /* Skip past '::'. */
2351 *pp = p + 2;
2352 }
2353 new_fnlist->fn_fieldlist.name = main_fn_name;
2354
2355 do
2356 {
2357 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2358
2359 /* Check for and handle cretinous dbx symbol name continuation! */
2360 if (look_ahead_type == NULL)
2361 {
2362 /* Normal case. */
2363 STABS_CONTINUE (pp, objfile);
2364
2365 new_sublist->fn_field.type = read_type (pp, objfile);
2366 if (**pp != ':')
2367 {
2368 /* Invalid symtab info for member function. */
2369 return 0;
2370 }
2371 }
2372 else
2373 {
2374 /* g++ version 1 kludge */
2375 new_sublist->fn_field.type = look_ahead_type;
2376 look_ahead_type = NULL;
2377 }
2378
2379 (*pp)++;
2380 p = *pp;
2381 while (*p != ';')
2382 {
2383 p++;
2384 }
2385
2386 /* These are methods, not functions. */
2387 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2388 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2389 else
2390 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2391 == TYPE_CODE_METHOD);
2392
2393 /* If this is just a stub, then we don't have the real name here. */
2394 if (TYPE_STUB (new_sublist->fn_field.type))
2395 {
2396 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2397 set_type_self_type (new_sublist->fn_field.type, type);
2398 new_sublist->fn_field.is_stub = 1;
2399 }
2400
2401 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2402 *pp = p + 1;
2403
2404 /* Set this member function's visibility fields. */
2405 switch (*(*pp)++)
2406 {
2407 case VISIBILITY_PRIVATE:
2408 new_sublist->fn_field.is_private = 1;
2409 break;
2410 case VISIBILITY_PROTECTED:
2411 new_sublist->fn_field.is_protected = 1;
2412 break;
2413 }
2414
2415 STABS_CONTINUE (pp, objfile);
2416 switch (**pp)
2417 {
2418 case 'A': /* Normal functions. */
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
2423 case 'B': /* `const' member functions. */
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
2428 case 'C': /* `volatile' member function. */
2429 new_sublist->fn_field.is_const = 0;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
2433 case 'D': /* `const volatile' member function. */
2434 new_sublist->fn_field.is_const = 1;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
2438 case '*': /* File compiled with g++ version 1 --
2439 no info. */
2440 case '?':
2441 case '.':
2442 break;
2443 default:
2444 complaint (_("const/volatile indicator missing, got '%c'"),
2445 **pp);
2446 break;
2447 }
2448
2449 switch (*(*pp)++)
2450 {
2451 case '*':
2452 {
2453 int nbits;
2454 /* virtual member function, followed by index.
2455 The sign bit is set to distinguish pointers-to-methods
2456 from virtual function indicies. Since the array is
2457 in words, the quantity must be shifted left by 1
2458 on 16 bit machine, and by 2 on 32 bit machine, forcing
2459 the sign bit out, and usable as a valid index into
2460 the array. Remove the sign bit here. */
2461 new_sublist->fn_field.voffset =
2462 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2463 if (nbits != 0)
2464 return 0;
2465
2466 STABS_CONTINUE (pp, objfile);
2467 if (**pp == ';' || **pp == '\0')
2468 {
2469 /* Must be g++ version 1. */
2470 new_sublist->fn_field.fcontext = 0;
2471 }
2472 else
2473 {
2474 /* Figure out from whence this virtual function came.
2475 It may belong to virtual function table of
2476 one of its baseclasses. */
2477 look_ahead_type = read_type (pp, objfile);
2478 if (**pp == ':')
2479 {
2480 /* g++ version 1 overloaded methods. */
2481 }
2482 else
2483 {
2484 new_sublist->fn_field.fcontext = look_ahead_type;
2485 if (**pp != ';')
2486 {
2487 return 0;
2488 }
2489 else
2490 {
2491 ++*pp;
2492 }
2493 look_ahead_type = NULL;
2494 }
2495 }
2496 break;
2497 }
2498 case '?':
2499 /* static member function. */
2500 {
2501 int slen = strlen (main_fn_name);
2502
2503 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2504
2505 /* For static member functions, we can't tell if they
2506 are stubbed, as they are put out as functions, and not as
2507 methods.
2508 GCC v2 emits the fully mangled name if
2509 dbxout.c:flag_minimal_debug is not set, so we have to
2510 detect a fully mangled physname here and set is_stub
2511 accordingly. Fully mangled physnames in v2 start with
2512 the member function name, followed by two underscores.
2513 GCC v3 currently always emits stubbed member functions,
2514 but with fully mangled physnames, which start with _Z. */
2515 if (!(strncmp (new_sublist->fn_field.physname,
2516 main_fn_name, slen) == 0
2517 && new_sublist->fn_field.physname[slen] == '_'
2518 && new_sublist->fn_field.physname[slen + 1] == '_'))
2519 {
2520 new_sublist->fn_field.is_stub = 1;
2521 }
2522 break;
2523 }
2524
2525 default:
2526 /* error */
2527 complaint (_("member function type missing, got '%c'"),
2528 (*pp)[-1]);
2529 /* Normal member function. */
2530 /* Fall through. */
2531
2532 case '.':
2533 /* normal member function. */
2534 new_sublist->fn_field.voffset = 0;
2535 new_sublist->fn_field.fcontext = 0;
2536 break;
2537 }
2538
2539 new_sublist->next = sublist;
2540 sublist = new_sublist;
2541 length++;
2542 STABS_CONTINUE (pp, objfile);
2543 }
2544 while (**pp != ';' && **pp != '\0');
2545
2546 (*pp)++;
2547 STABS_CONTINUE (pp, objfile);
2548
2549 /* Skip GCC 3.X member functions which are duplicates of the callable
2550 constructor/destructor. */
2551 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2552 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2553 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2554 {
2555 xfree (main_fn_name);
2556 }
2557 else
2558 {
2559 int has_destructor = 0, has_other = 0;
2560 int is_v3 = 0;
2561 struct next_fnfield *tmp_sublist;
2562
2563 /* Various versions of GCC emit various mostly-useless
2564 strings in the name field for special member functions.
2565
2566 For stub methods, we need to defer correcting the name
2567 until we are ready to unstub the method, because the current
2568 name string is used by gdb_mangle_name. The only stub methods
2569 of concern here are GNU v2 operators; other methods have their
2570 names correct (see caveat below).
2571
2572 For non-stub methods, in GNU v3, we have a complete physname.
2573 Therefore we can safely correct the name now. This primarily
2574 affects constructors and destructors, whose name will be
2575 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2576 operators will also have incorrect names; for instance,
2577 "operator int" will be named "operator i" (i.e. the type is
2578 mangled).
2579
2580 For non-stub methods in GNU v2, we have no easy way to
2581 know if we have a complete physname or not. For most
2582 methods the result depends on the platform (if CPLUS_MARKER
2583 can be `$' or `.', it will use minimal debug information, or
2584 otherwise the full physname will be included).
2585
2586 Rather than dealing with this, we take a different approach.
2587 For v3 mangled names, we can use the full physname; for v2,
2588 we use cplus_demangle_opname (which is actually v2 specific),
2589 because the only interesting names are all operators - once again
2590 barring the caveat below. Skip this process if any method in the
2591 group is a stub, to prevent our fouling up the workings of
2592 gdb_mangle_name.
2593
2594 The caveat: GCC 2.95.x (and earlier?) put constructors and
2595 destructors in the same method group. We need to split this
2596 into two groups, because they should have different names.
2597 So for each method group we check whether it contains both
2598 routines whose physname appears to be a destructor (the physnames
2599 for and destructors are always provided, due to quirks in v2
2600 mangling) and routines whose physname does not appear to be a
2601 destructor. If so then we break up the list into two halves.
2602 Even if the constructors and destructors aren't in the same group
2603 the destructor will still lack the leading tilde, so that also
2604 needs to be fixed.
2605
2606 So, to summarize what we expect and handle here:
2607
2608 Given Given Real Real Action
2609 method name physname physname method name
2610
2611 __opi [none] __opi__3Foo operator int opname
2612 [now or later]
2613 Foo _._3Foo _._3Foo ~Foo separate and
2614 rename
2615 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2616 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2617 */
2618
2619 tmp_sublist = sublist;
2620 while (tmp_sublist != NULL)
2621 {
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 is_v3 = 1;
2625
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2627 has_destructor++;
2628 else
2629 has_other++;
2630
2631 tmp_sublist = tmp_sublist->next;
2632 }
2633
2634 if (has_destructor && has_other)
2635 {
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2638
2639 /* Create a new fn_fieldlist for the destructors. */
2640
2641 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2642 struct next_fnfieldlist);
2643
2644 destr_fnlist->fn_fieldlist.name
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647
2648 destr_fnlist->fn_fieldlist.fn_fields =
2649 XOBNEWVEC (&objfile->objfile_obstack,
2650 struct fn_field, has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
2690
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
2703 new_fnlist->fn_fieldlist.name =
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
2706 xfree (main_fn_name);
2707 }
2708
2709 new_fnlist->fn_fieldlist.fn_fields
2710 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2711 for (i = length; (i--, sublist); sublist = sublist->next)
2712 {
2713 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2714 }
2715
2716 new_fnlist->fn_fieldlist.length = length;
2717 new_fnlist->next = fip->fnlist;
2718 fip->fnlist = new_fnlist;
2719 nfn_fields++;
2720 }
2721 }
2722
2723 if (nfn_fields)
2724 {
2725 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2726 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2727 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2728 memset (TYPE_FN_FIELDLISTS (type), 0,
2729 sizeof (struct fn_fieldlist) * nfn_fields);
2730 TYPE_NFN_FIELDS (type) = nfn_fields;
2731 }
2732
2733 return 1;
2734 }
2735
2736 /* Special GNU C++ name.
2737
2738 Returns 1 for success, 0 for failure. "failure" means that we can't
2739 keep parsing and it's time for error_type(). */
2740
2741 static int
2742 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2743 struct type *type, struct objfile *objfile)
2744 {
2745 const char *p;
2746 const char *name;
2747 char cpp_abbrev;
2748 struct type *context;
2749
2750 p = *pp;
2751 if (*++p == 'v')
2752 {
2753 name = NULL;
2754 cpp_abbrev = *++p;
2755
2756 *pp = p + 1;
2757
2758 /* At this point, *pp points to something like "22:23=*22...",
2759 where the type number before the ':' is the "context" and
2760 everything after is a regular type definition. Lookup the
2761 type, find it's name, and construct the field name. */
2762
2763 context = read_type (pp, objfile);
2764
2765 switch (cpp_abbrev)
2766 {
2767 case 'f': /* $vf -- a virtual function table pointer */
2768 name = TYPE_NAME (context);
2769 if (name == NULL)
2770 {
2771 name = "";
2772 }
2773 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2774 vptr_name, name, (char *) NULL);
2775 break;
2776
2777 case 'b': /* $vb -- a virtual bsomethingorother */
2778 name = TYPE_NAME (context);
2779 if (name == NULL)
2780 {
2781 complaint (_("C++ abbreviated type name "
2782 "unknown at symtab pos %d"),
2783 symnum);
2784 name = "FOO";
2785 }
2786 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2787 name, (char *) NULL);
2788 break;
2789
2790 default:
2791 invalid_cpp_abbrev_complaint (*pp);
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 "INVALID_CPLUSPLUS_ABBREV",
2794 (char *) NULL);
2795 break;
2796 }
2797
2798 /* At this point, *pp points to the ':'. Skip it and read the
2799 field type. */
2800
2801 p = ++(*pp);
2802 if (p[-1] != ':')
2803 {
2804 invalid_cpp_abbrev_complaint (*pp);
2805 return 0;
2806 }
2807 fip->list->field.type = read_type (pp, objfile);
2808 if (**pp == ',')
2809 (*pp)++; /* Skip the comma. */
2810 else
2811 return 0;
2812
2813 {
2814 int nbits;
2815
2816 SET_FIELD_BITPOS (fip->list->field,
2817 read_huge_number (pp, ';', &nbits, 0));
2818 if (nbits != 0)
2819 return 0;
2820 }
2821 /* This field is unpacked. */
2822 FIELD_BITSIZE (fip->list->field) = 0;
2823 fip->list->visibility = VISIBILITY_PRIVATE;
2824 }
2825 else
2826 {
2827 invalid_cpp_abbrev_complaint (*pp);
2828 /* We have no idea what syntax an unrecognized abbrev would have, so
2829 better return 0. If we returned 1, we would need to at least advance
2830 *pp to avoid an infinite loop. */
2831 return 0;
2832 }
2833 return 1;
2834 }
2835
2836 static void
2837 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2838 const char *p, struct type *type,
2839 struct objfile *objfile)
2840 {
2841 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2842
2843 fip->list->field.name
2844 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2845 *pp = p + 1;
2846
2847 /* This means we have a visibility for a field coming. */
2848 if (**pp == '/')
2849 {
2850 (*pp)++;
2851 fip->list->visibility = *(*pp)++;
2852 }
2853 else
2854 {
2855 /* normal dbx-style format, no explicit visibility */
2856 fip->list->visibility = VISIBILITY_PUBLIC;
2857 }
2858
2859 fip->list->field.type = read_type (pp, objfile);
2860 if (**pp == ':')
2861 {
2862 p = ++(*pp);
2863 #if 0
2864 /* Possible future hook for nested types. */
2865 if (**pp == '!')
2866 {
2867 fip->list->field.bitpos = (long) -2; /* nested type */
2868 p = ++(*pp);
2869 }
2870 else
2871 ...;
2872 #endif
2873 while (*p != ';')
2874 {
2875 p++;
2876 }
2877 /* Static class member. */
2878 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2879 *pp = p + 1;
2880 return;
2881 }
2882 else if (**pp != ',')
2883 {
2884 /* Bad structure-type format. */
2885 stabs_general_complaint ("bad structure-type format");
2886 return;
2887 }
2888
2889 (*pp)++; /* Skip the comma. */
2890
2891 {
2892 int nbits;
2893
2894 SET_FIELD_BITPOS (fip->list->field,
2895 read_huge_number (pp, ',', &nbits, 0));
2896 if (nbits != 0)
2897 {
2898 stabs_general_complaint ("bad structure-type format");
2899 return;
2900 }
2901 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2902 if (nbits != 0)
2903 {
2904 stabs_general_complaint ("bad structure-type format");
2905 return;
2906 }
2907 }
2908
2909 if (FIELD_BITPOS (fip->list->field) == 0
2910 && FIELD_BITSIZE (fip->list->field) == 0)
2911 {
2912 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2913 it is a field which has been optimized out. The correct stab for
2914 this case is to use VISIBILITY_IGNORE, but that is a recent
2915 invention. (2) It is a 0-size array. For example
2916 union { int num; char str[0]; } foo. Printing _("<no value>" for
2917 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2918 will continue to work, and a 0-size array as a whole doesn't
2919 have any contents to print.
2920
2921 I suspect this probably could also happen with gcc -gstabs (not
2922 -gstabs+) for static fields, and perhaps other C++ extensions.
2923 Hopefully few people use -gstabs with gdb, since it is intended
2924 for dbx compatibility. */
2925
2926 /* Ignore this field. */
2927 fip->list->visibility = VISIBILITY_IGNORE;
2928 }
2929 else
2930 {
2931 /* Detect an unpacked field and mark it as such.
2932 dbx gives a bit size for all fields.
2933 Note that forward refs cannot be packed,
2934 and treat enums as if they had the width of ints. */
2935
2936 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2937
2938 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2939 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2940 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2941 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2942 {
2943 FIELD_BITSIZE (fip->list->field) = 0;
2944 }
2945 if ((FIELD_BITSIZE (fip->list->field)
2946 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2947 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2948 && FIELD_BITSIZE (fip->list->field)
2949 == gdbarch_int_bit (gdbarch))
2950 )
2951 &&
2952 FIELD_BITPOS (fip->list->field) % 8 == 0)
2953 {
2954 FIELD_BITSIZE (fip->list->field) = 0;
2955 }
2956 }
2957 }
2958
2959
2960 /* Read struct or class data fields. They have the form:
2961
2962 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2963
2964 At the end, we see a semicolon instead of a field.
2965
2966 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2967 a static field.
2968
2969 The optional VISIBILITY is one of:
2970
2971 '/0' (VISIBILITY_PRIVATE)
2972 '/1' (VISIBILITY_PROTECTED)
2973 '/2' (VISIBILITY_PUBLIC)
2974 '/9' (VISIBILITY_IGNORE)
2975
2976 or nothing, for C style fields with public visibility.
2977
2978 Returns 1 for success, 0 for failure. */
2979
2980 static int
2981 read_struct_fields (struct stab_field_info *fip, const char **pp,
2982 struct type *type, struct objfile *objfile)
2983 {
2984 const char *p;
2985 struct nextfield *newobj;
2986
2987 /* We better set p right now, in case there are no fields at all... */
2988
2989 p = *pp;
2990
2991 /* Read each data member type until we find the terminating ';' at the end of
2992 the data member list, or break for some other reason such as finding the
2993 start of the member function list. */
2994 /* Stab string for structure/union does not end with two ';' in
2995 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2996
2997 while (**pp != ';' && **pp != '\0')
2998 {
2999 STABS_CONTINUE (pp, objfile);
3000 /* Get space to record the next field's data. */
3001 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3002
3003 newobj->next = fip->list;
3004 fip->list = newobj;
3005
3006 /* Get the field name. */
3007 p = *pp;
3008
3009 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3010 unless the CPLUS_MARKER is followed by an underscore, in
3011 which case it is just the name of an anonymous type, which we
3012 should handle like any other type name. */
3013
3014 if (is_cplus_marker (p[0]) && p[1] != '_')
3015 {
3016 if (!read_cpp_abbrev (fip, pp, type, objfile))
3017 return 0;
3018 continue;
3019 }
3020
3021 /* Look for the ':' that separates the field name from the field
3022 values. Data members are delimited by a single ':', while member
3023 functions are delimited by a pair of ':'s. When we hit the member
3024 functions (if any), terminate scan loop and return. */
3025
3026 while (*p != ':' && *p != '\0')
3027 {
3028 p++;
3029 }
3030 if (*p == '\0')
3031 return 0;
3032
3033 /* Check to see if we have hit the member functions yet. */
3034 if (p[1] == ':')
3035 {
3036 break;
3037 }
3038 read_one_struct_field (fip, pp, p, type, objfile);
3039 }
3040 if (p[0] == ':' && p[1] == ':')
3041 {
3042 /* (the deleted) chill the list of fields: the last entry (at
3043 the head) is a partially constructed entry which we now
3044 scrub. */
3045 fip->list = fip->list->next;
3046 }
3047 return 1;
3048 }
3049 /* *INDENT-OFF* */
3050 /* The stabs for C++ derived classes contain baseclass information which
3051 is marked by a '!' character after the total size. This function is
3052 called when we encounter the baseclass marker, and slurps up all the
3053 baseclass information.
3054
3055 Immediately following the '!' marker is the number of base classes that
3056 the class is derived from, followed by information for each base class.
3057 For each base class, there are two visibility specifiers, a bit offset
3058 to the base class information within the derived class, a reference to
3059 the type for the base class, and a terminating semicolon.
3060
3061 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3062 ^^ ^ ^ ^ ^ ^ ^
3063 Baseclass information marker __________________|| | | | | | |
3064 Number of baseclasses __________________________| | | | | | |
3065 Visibility specifiers (2) ________________________| | | | | |
3066 Offset in bits from start of class _________________| | | | |
3067 Type number for base class ___________________________| | | |
3068 Visibility specifiers (2) _______________________________| | |
3069 Offset in bits from start of class ________________________| |
3070 Type number of base class ____________________________________|
3071
3072 Return 1 for success, 0 for (error-type-inducing) failure. */
3073 /* *INDENT-ON* */
3074
3075
3076
3077 static int
3078 read_baseclasses (struct stab_field_info *fip, const char **pp,
3079 struct type *type, struct objfile *objfile)
3080 {
3081 int i;
3082 struct nextfield *newobj;
3083
3084 if (**pp != '!')
3085 {
3086 return 1;
3087 }
3088 else
3089 {
3090 /* Skip the '!' baseclass information marker. */
3091 (*pp)++;
3092 }
3093
3094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3095 {
3096 int nbits;
3097
3098 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3099 if (nbits != 0)
3100 return 0;
3101 }
3102
3103 #if 0
3104 /* Some stupid compilers have trouble with the following, so break
3105 it up into simpler expressions. */
3106 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3107 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3108 #else
3109 {
3110 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3111 char *pointer;
3112
3113 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3114 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3115 }
3116 #endif /* 0 */
3117
3118 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3119
3120 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3121 {
3122 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3123
3124 newobj->next = fip->list;
3125 fip->list = newobj;
3126 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3127 field! */
3128
3129 STABS_CONTINUE (pp, objfile);
3130 switch (**pp)
3131 {
3132 case '0':
3133 /* Nothing to do. */
3134 break;
3135 case '1':
3136 SET_TYPE_FIELD_VIRTUAL (type, i);
3137 break;
3138 default:
3139 /* Unknown character. Complain and treat it as non-virtual. */
3140 {
3141 complaint (_("Unknown virtual character `%c' for baseclass"),
3142 **pp);
3143 }
3144 }
3145 ++(*pp);
3146
3147 newobj->visibility = *(*pp)++;
3148 switch (newobj->visibility)
3149 {
3150 case VISIBILITY_PRIVATE:
3151 case VISIBILITY_PROTECTED:
3152 case VISIBILITY_PUBLIC:
3153 break;
3154 default:
3155 /* Bad visibility format. Complain and treat it as
3156 public. */
3157 {
3158 complaint (_("Unknown visibility `%c' for baseclass"),
3159 newobj->visibility);
3160 newobj->visibility = VISIBILITY_PUBLIC;
3161 }
3162 }
3163
3164 {
3165 int nbits;
3166
3167 /* The remaining value is the bit offset of the portion of the object
3168 corresponding to this baseclass. Always zero in the absence of
3169 multiple inheritance. */
3170
3171 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3172 if (nbits != 0)
3173 return 0;
3174 }
3175
3176 /* The last piece of baseclass information is the type of the
3177 base class. Read it, and remember it's type name as this
3178 field's name. */
3179
3180 newobj->field.type = read_type (pp, objfile);
3181 newobj->field.name = TYPE_NAME (newobj->field.type);
3182
3183 /* Skip trailing ';' and bump count of number of fields seen. */
3184 if (**pp == ';')
3185 (*pp)++;
3186 else
3187 return 0;
3188 }
3189 return 1;
3190 }
3191
3192 /* The tail end of stabs for C++ classes that contain a virtual function
3193 pointer contains a tilde, a %, and a type number.
3194 The type number refers to the base class (possibly this class itself) which
3195 contains the vtable pointer for the current class.
3196
3197 This function is called when we have parsed all the method declarations,
3198 so we can look for the vptr base class info. */
3199
3200 static int
3201 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3202 struct type *type, struct objfile *objfile)
3203 {
3204 const char *p;
3205
3206 STABS_CONTINUE (pp, objfile);
3207
3208 /* If we are positioned at a ';', then skip it. */
3209 if (**pp == ';')
3210 {
3211 (*pp)++;
3212 }
3213
3214 if (**pp == '~')
3215 {
3216 (*pp)++;
3217
3218 if (**pp == '=' || **pp == '+' || **pp == '-')
3219 {
3220 /* Obsolete flags that used to indicate the presence
3221 of constructors and/or destructors. */
3222 (*pp)++;
3223 }
3224
3225 /* Read either a '%' or the final ';'. */
3226 if (*(*pp)++ == '%')
3227 {
3228 /* The next number is the type number of the base class
3229 (possibly our own class) which supplies the vtable for
3230 this class. Parse it out, and search that class to find
3231 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3232 and TYPE_VPTR_FIELDNO. */
3233
3234 struct type *t;
3235 int i;
3236
3237 t = read_type (pp, objfile);
3238 p = (*pp)++;
3239 while (*p != '\0' && *p != ';')
3240 {
3241 p++;
3242 }
3243 if (*p == '\0')
3244 {
3245 /* Premature end of symbol. */
3246 return 0;
3247 }
3248
3249 set_type_vptr_basetype (type, t);
3250 if (type == t) /* Our own class provides vtbl ptr. */
3251 {
3252 for (i = TYPE_NFIELDS (t) - 1;
3253 i >= TYPE_N_BASECLASSES (t);
3254 --i)
3255 {
3256 const char *name = TYPE_FIELD_NAME (t, i);
3257
3258 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3259 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3260 {
3261 set_type_vptr_fieldno (type, i);
3262 goto gotit;
3263 }
3264 }
3265 /* Virtual function table field not found. */
3266 complaint (_("virtual function table pointer "
3267 "not found when defining class `%s'"),
3268 TYPE_NAME (type));
3269 return 0;
3270 }
3271 else
3272 {
3273 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3274 }
3275
3276 gotit:
3277 *pp = p + 1;
3278 }
3279 }
3280 return 1;
3281 }
3282
3283 static int
3284 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3285 {
3286 int n;
3287
3288 for (n = TYPE_NFN_FIELDS (type);
3289 fip->fnlist != NULL;
3290 fip->fnlist = fip->fnlist->next)
3291 {
3292 --n; /* Circumvent Sun3 compiler bug. */
3293 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3294 }
3295 return 1;
3296 }
3297
3298 /* Create the vector of fields, and record how big it is.
3299 We need this info to record proper virtual function table information
3300 for this class's virtual functions. */
3301
3302 static int
3303 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3304 struct objfile *objfile)
3305 {
3306 int nfields = 0;
3307 int non_public_fields = 0;
3308 struct nextfield *scan;
3309
3310 /* Count up the number of fields that we have, as well as taking note of
3311 whether or not there are any non-public fields, which requires us to
3312 allocate and build the private_field_bits and protected_field_bits
3313 bitfields. */
3314
3315 for (scan = fip->list; scan != NULL; scan = scan->next)
3316 {
3317 nfields++;
3318 if (scan->visibility != VISIBILITY_PUBLIC)
3319 {
3320 non_public_fields++;
3321 }
3322 }
3323
3324 /* Now we know how many fields there are, and whether or not there are any
3325 non-public fields. Record the field count, allocate space for the
3326 array of fields, and create blank visibility bitfields if necessary. */
3327
3328 TYPE_NFIELDS (type) = nfields;
3329 TYPE_FIELDS (type) = (struct field *)
3330 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3331 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3332
3333 if (non_public_fields)
3334 {
3335 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3336
3337 TYPE_FIELD_PRIVATE_BITS (type) =
3338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3339 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3340
3341 TYPE_FIELD_PROTECTED_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3344
3345 TYPE_FIELD_IGNORE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3348 }
3349
3350 /* Copy the saved-up fields into the field vector. Start from the
3351 head of the list, adding to the tail of the field array, so that
3352 they end up in the same order in the array in which they were
3353 added to the list. */
3354
3355 while (nfields-- > 0)
3356 {
3357 TYPE_FIELD (type, nfields) = fip->list->field;
3358 switch (fip->list->visibility)
3359 {
3360 case VISIBILITY_PRIVATE:
3361 SET_TYPE_FIELD_PRIVATE (type, nfields);
3362 break;
3363
3364 case VISIBILITY_PROTECTED:
3365 SET_TYPE_FIELD_PROTECTED (type, nfields);
3366 break;
3367
3368 case VISIBILITY_IGNORE:
3369 SET_TYPE_FIELD_IGNORE (type, nfields);
3370 break;
3371
3372 case VISIBILITY_PUBLIC:
3373 break;
3374
3375 default:
3376 /* Unknown visibility. Complain and treat it as public. */
3377 {
3378 complaint (_("Unknown visibility `%c' for field"),
3379 fip->list->visibility);
3380 }
3381 break;
3382 }
3383 fip->list = fip->list->next;
3384 }
3385 return 1;
3386 }
3387
3388
3389 /* Complain that the compiler has emitted more than one definition for the
3390 structure type TYPE. */
3391 static void
3392 complain_about_struct_wipeout (struct type *type)
3393 {
3394 const char *name = "";
3395 const char *kind = "";
3396
3397 if (TYPE_NAME (type))
3398 {
3399 name = TYPE_NAME (type);
3400 switch (TYPE_CODE (type))
3401 {
3402 case TYPE_CODE_STRUCT: kind = "struct "; break;
3403 case TYPE_CODE_UNION: kind = "union "; break;
3404 case TYPE_CODE_ENUM: kind = "enum "; break;
3405 default: kind = "";
3406 }
3407 }
3408 else
3409 {
3410 name = "<unknown>";
3411 kind = "";
3412 }
3413
3414 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3415 }
3416
3417 /* Set the length for all variants of a same main_type, which are
3418 connected in the closed chain.
3419
3420 This is something that needs to be done when a type is defined *after*
3421 some cross references to this type have already been read. Consider
3422 for instance the following scenario where we have the following two
3423 stabs entries:
3424
3425 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3426 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3427
3428 A stubbed version of type dummy is created while processing the first
3429 stabs entry. The length of that type is initially set to zero, since
3430 it is unknown at this point. Also, a "constant" variation of type
3431 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3432 the stabs line).
3433
3434 The second stabs entry allows us to replace the stubbed definition
3435 with the real definition. However, we still need to adjust the length
3436 of the "constant" variation of that type, as its length was left
3437 untouched during the main type replacement... */
3438
3439 static void
3440 set_length_in_type_chain (struct type *type)
3441 {
3442 struct type *ntype = TYPE_CHAIN (type);
3443
3444 while (ntype != type)
3445 {
3446 if (TYPE_LENGTH(ntype) == 0)
3447 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3448 else
3449 complain_about_struct_wipeout (ntype);
3450 ntype = TYPE_CHAIN (ntype);
3451 }
3452 }
3453
3454 /* Read the description of a structure (or union type) and return an object
3455 describing the type.
3456
3457 PP points to a character pointer that points to the next unconsumed token
3458 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3459 *PP will point to "4a:1,0,32;;".
3460
3461 TYPE points to an incomplete type that needs to be filled in.
3462
3463 OBJFILE points to the current objfile from which the stabs information is
3464 being read. (Note that it is redundant in that TYPE also contains a pointer
3465 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3466 */
3467
3468 static struct type *
3469 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3470 struct objfile *objfile)
3471 {
3472 struct stab_field_info fi;
3473
3474 /* When describing struct/union/class types in stabs, G++ always drops
3475 all qualifications from the name. So if you've got:
3476 struct A { ... struct B { ... }; ... };
3477 then G++ will emit stabs for `struct A::B' that call it simply
3478 `struct B'. Obviously, if you've got a real top-level definition for
3479 `struct B', or other nested definitions, this is going to cause
3480 problems.
3481
3482 Obviously, GDB can't fix this by itself, but it can at least avoid
3483 scribbling on existing structure type objects when new definitions
3484 appear. */
3485 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3486 || TYPE_STUB (type)))
3487 {
3488 complain_about_struct_wipeout (type);
3489
3490 /* It's probably best to return the type unchanged. */
3491 return type;
3492 }
3493
3494 INIT_CPLUS_SPECIFIC (type);
3495 TYPE_CODE (type) = type_code;
3496 TYPE_STUB (type) = 0;
3497
3498 /* First comes the total size in bytes. */
3499
3500 {
3501 int nbits;
3502
3503 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3504 if (nbits != 0)
3505 return error_type (pp, objfile);
3506 set_length_in_type_chain (type);
3507 }
3508
3509 /* Now read the baseclasses, if any, read the regular C struct or C++
3510 class member fields, attach the fields to the type, read the C++
3511 member functions, attach them to the type, and then read any tilde
3512 field (baseclass specifier for the class holding the main vtable). */
3513
3514 if (!read_baseclasses (&fi, pp, type, objfile)
3515 || !read_struct_fields (&fi, pp, type, objfile)
3516 || !attach_fields_to_type (&fi, type, objfile)
3517 || !read_member_functions (&fi, pp, type, objfile)
3518 || !attach_fn_fields_to_type (&fi, type)
3519 || !read_tilde_fields (&fi, pp, type, objfile))
3520 {
3521 type = error_type (pp, objfile);
3522 }
3523
3524 return (type);
3525 }
3526
3527 /* Read a definition of an array type,
3528 and create and return a suitable type object.
3529 Also creates a range type which represents the bounds of that
3530 array. */
3531
3532 static struct type *
3533 read_array_type (const char **pp, struct type *type,
3534 struct objfile *objfile)
3535 {
3536 struct type *index_type, *element_type, *range_type;
3537 int lower, upper;
3538 int adjustable = 0;
3539 int nbits;
3540
3541 /* Format of an array type:
3542 "ar<index type>;lower;upper;<array_contents_type>".
3543 OS9000: "arlower,upper;<array_contents_type>".
3544
3545 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3546 for these, produce a type like float[][]. */
3547
3548 {
3549 index_type = read_type (pp, objfile);
3550 if (**pp != ';')
3551 /* Improper format of array type decl. */
3552 return error_type (pp, objfile);
3553 ++*pp;
3554 }
3555
3556 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3557 {
3558 (*pp)++;
3559 adjustable = 1;
3560 }
3561 lower = read_huge_number (pp, ';', &nbits, 0);
3562
3563 if (nbits != 0)
3564 return error_type (pp, objfile);
3565
3566 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3567 {
3568 (*pp)++;
3569 adjustable = 1;
3570 }
3571 upper = read_huge_number (pp, ';', &nbits, 0);
3572 if (nbits != 0)
3573 return error_type (pp, objfile);
3574
3575 element_type = read_type (pp, objfile);
3576
3577 if (adjustable)
3578 {
3579 lower = 0;
3580 upper = -1;
3581 }
3582
3583 range_type =
3584 create_static_range_type (NULL, index_type, lower, upper);
3585 type = create_array_type (type, element_type, range_type);
3586
3587 return type;
3588 }
3589
3590
3591 /* Read a definition of an enumeration type,
3592 and create and return a suitable type object.
3593 Also defines the symbols that represent the values of the type. */
3594
3595 static struct type *
3596 read_enum_type (const char **pp, struct type *type,
3597 struct objfile *objfile)
3598 {
3599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3600 const char *p;
3601 char *name;
3602 long n;
3603 struct symbol *sym;
3604 int nsyms = 0;
3605 struct pending **symlist;
3606 struct pending *osyms, *syms;
3607 int o_nsyms;
3608 int nbits;
3609 int unsigned_enum = 1;
3610
3611 #if 0
3612 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3613 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3614 to do? For now, force all enum values to file scope. */
3615 if (within_function)
3616 symlist = get_local_symbols ();
3617 else
3618 #endif
3619 symlist = get_file_symbols ();
3620 osyms = *symlist;
3621 o_nsyms = osyms ? osyms->nsyms : 0;
3622
3623 /* The aix4 compiler emits an extra field before the enum members;
3624 my guess is it's a type of some sort. Just ignore it. */
3625 if (**pp == '-')
3626 {
3627 /* Skip over the type. */
3628 while (**pp != ':')
3629 (*pp)++;
3630
3631 /* Skip over the colon. */
3632 (*pp)++;
3633 }
3634
3635 /* Read the value-names and their values.
3636 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3637 A semicolon or comma instead of a NAME means the end. */
3638 while (**pp && **pp != ';' && **pp != ',')
3639 {
3640 STABS_CONTINUE (pp, objfile);
3641 p = *pp;
3642 while (*p != ':')
3643 p++;
3644 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3645 *pp = p + 1;
3646 n = read_huge_number (pp, ',', &nbits, 0);
3647 if (nbits != 0)
3648 return error_type (pp, objfile);
3649
3650 sym = allocate_symbol (objfile);
3651 SYMBOL_SET_LINKAGE_NAME (sym, name);
3652 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3653 &objfile->objfile_obstack);
3654 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3655 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3656 SYMBOL_VALUE (sym) = n;
3657 if (n < 0)
3658 unsigned_enum = 0;
3659 add_symbol_to_list (sym, symlist);
3660 nsyms++;
3661 }
3662
3663 if (**pp == ';')
3664 (*pp)++; /* Skip the semicolon. */
3665
3666 /* Now fill in the fields of the type-structure. */
3667
3668 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3669 set_length_in_type_chain (type);
3670 TYPE_CODE (type) = TYPE_CODE_ENUM;
3671 TYPE_STUB (type) = 0;
3672 if (unsigned_enum)
3673 TYPE_UNSIGNED (type) = 1;
3674 TYPE_NFIELDS (type) = nsyms;
3675 TYPE_FIELDS (type) = (struct field *)
3676 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3677 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3678
3679 /* Find the symbols for the values and put them into the type.
3680 The symbols can be found in the symlist that we put them on
3681 to cause them to be defined. osyms contains the old value
3682 of that symlist; everything up to there was defined by us. */
3683 /* Note that we preserve the order of the enum constants, so
3684 that in something like "enum {FOO, LAST_THING=FOO}" we print
3685 FOO, not LAST_THING. */
3686
3687 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3688 {
3689 int last = syms == osyms ? o_nsyms : 0;
3690 int j = syms->nsyms;
3691
3692 for (; --j >= last; --n)
3693 {
3694 struct symbol *xsym = syms->symbol[j];
3695
3696 SYMBOL_TYPE (xsym) = type;
3697 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3698 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3699 TYPE_FIELD_BITSIZE (type, n) = 0;
3700 }
3701 if (syms == osyms)
3702 break;
3703 }
3704
3705 return type;
3706 }
3707
3708 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3709 typedefs in every file (for int, long, etc):
3710
3711 type = b <signed> <width> <format type>; <offset>; <nbits>
3712 signed = u or s.
3713 optional format type = c or b for char or boolean.
3714 offset = offset from high order bit to start bit of type.
3715 width is # bytes in object of this type, nbits is # bits in type.
3716
3717 The width/offset stuff appears to be for small objects stored in
3718 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3719 FIXME. */
3720
3721 static struct type *
3722 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3723 {
3724 int type_bits;
3725 int nbits;
3726 int unsigned_type;
3727 int boolean_type = 0;
3728
3729 switch (**pp)
3730 {
3731 case 's':
3732 unsigned_type = 0;
3733 break;
3734 case 'u':
3735 unsigned_type = 1;
3736 break;
3737 default:
3738 return error_type (pp, objfile);
3739 }
3740 (*pp)++;
3741
3742 /* For some odd reason, all forms of char put a c here. This is strange
3743 because no other type has this honor. We can safely ignore this because
3744 we actually determine 'char'acterness by the number of bits specified in
3745 the descriptor.
3746 Boolean forms, e.g Fortran logical*X, put a b here. */
3747
3748 if (**pp == 'c')
3749 (*pp)++;
3750 else if (**pp == 'b')
3751 {
3752 boolean_type = 1;
3753 (*pp)++;
3754 }
3755
3756 /* The first number appears to be the number of bytes occupied
3757 by this type, except that unsigned short is 4 instead of 2.
3758 Since this information is redundant with the third number,
3759 we will ignore it. */
3760 read_huge_number (pp, ';', &nbits, 0);
3761 if (nbits != 0)
3762 return error_type (pp, objfile);
3763
3764 /* The second number is always 0, so ignore it too. */
3765 read_huge_number (pp, ';', &nbits, 0);
3766 if (nbits != 0)
3767 return error_type (pp, objfile);
3768
3769 /* The third number is the number of bits for this type. */
3770 type_bits = read_huge_number (pp, 0, &nbits, 0);
3771 if (nbits != 0)
3772 return error_type (pp, objfile);
3773 /* The type *should* end with a semicolon. If it are embedded
3774 in a larger type the semicolon may be the only way to know where
3775 the type ends. If this type is at the end of the stabstring we
3776 can deal with the omitted semicolon (but we don't have to like
3777 it). Don't bother to complain(), Sun's compiler omits the semicolon
3778 for "void". */
3779 if (**pp == ';')
3780 ++(*pp);
3781
3782 if (type_bits == 0)
3783 {
3784 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3785 TARGET_CHAR_BIT, NULL);
3786 if (unsigned_type)
3787 TYPE_UNSIGNED (type) = 1;
3788 return type;
3789 }
3790
3791 if (boolean_type)
3792 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3793 else
3794 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3795 }
3796
3797 static struct type *
3798 read_sun_floating_type (const char **pp, int typenums[2],
3799 struct objfile *objfile)
3800 {
3801 int nbits;
3802 int details;
3803 int nbytes;
3804 struct type *rettype;
3805
3806 /* The first number has more details about the type, for example
3807 FN_COMPLEX. */
3808 details = read_huge_number (pp, ';', &nbits, 0);
3809 if (nbits != 0)
3810 return error_type (pp, objfile);
3811
3812 /* The second number is the number of bytes occupied by this type. */
3813 nbytes = read_huge_number (pp, ';', &nbits, 0);
3814 if (nbits != 0)
3815 return error_type (pp, objfile);
3816
3817 nbits = nbytes * TARGET_CHAR_BIT;
3818
3819 if (details == NF_COMPLEX || details == NF_COMPLEX16
3820 || details == NF_COMPLEX32)
3821 {
3822 rettype = dbx_init_float_type (objfile, nbits / 2);
3823 return init_complex_type (objfile, NULL, rettype);
3824 }
3825
3826 return dbx_init_float_type (objfile, nbits);
3827 }
3828
3829 /* Read a number from the string pointed to by *PP.
3830 The value of *PP is advanced over the number.
3831 If END is nonzero, the character that ends the
3832 number must match END, or an error happens;
3833 and that character is skipped if it does match.
3834 If END is zero, *PP is left pointing to that character.
3835
3836 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3837 the number is represented in an octal representation, assume that
3838 it is represented in a 2's complement representation with a size of
3839 TWOS_COMPLEMENT_BITS.
3840
3841 If the number fits in a long, set *BITS to 0 and return the value.
3842 If not, set *BITS to be the number of bits in the number and return 0.
3843
3844 If encounter garbage, set *BITS to -1 and return 0. */
3845
3846 static long
3847 read_huge_number (const char **pp, int end, int *bits,
3848 int twos_complement_bits)
3849 {
3850 const char *p = *pp;
3851 int sign = 1;
3852 int sign_bit = 0;
3853 long n = 0;
3854 int radix = 10;
3855 char overflow = 0;
3856 int nbits = 0;
3857 int c;
3858 long upper_limit;
3859 int twos_complement_representation = 0;
3860
3861 if (*p == '-')
3862 {
3863 sign = -1;
3864 p++;
3865 }
3866
3867 /* Leading zero means octal. GCC uses this to output values larger
3868 than an int (because that would be hard in decimal). */
3869 if (*p == '0')
3870 {
3871 radix = 8;
3872 p++;
3873 }
3874
3875 /* Skip extra zeros. */
3876 while (*p == '0')
3877 p++;
3878
3879 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3880 {
3881 /* Octal, possibly signed. Check if we have enough chars for a
3882 negative number. */
3883
3884 size_t len;
3885 const char *p1 = p;
3886
3887 while ((c = *p1) >= '0' && c < '8')
3888 p1++;
3889
3890 len = p1 - p;
3891 if (len > twos_complement_bits / 3
3892 || (twos_complement_bits % 3 == 0
3893 && len == twos_complement_bits / 3))
3894 {
3895 /* Ok, we have enough characters for a signed value, check
3896 for signness by testing if the sign bit is set. */
3897 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3898 c = *p - '0';
3899 if (c & (1 << sign_bit))
3900 {
3901 /* Definitely signed. */
3902 twos_complement_representation = 1;
3903 sign = -1;
3904 }
3905 }
3906 }
3907
3908 upper_limit = LONG_MAX / radix;
3909
3910 while ((c = *p++) >= '0' && c < ('0' + radix))
3911 {
3912 if (n <= upper_limit)
3913 {
3914 if (twos_complement_representation)
3915 {
3916 /* Octal, signed, twos complement representation. In
3917 this case, n is the corresponding absolute value. */
3918 if (n == 0)
3919 {
3920 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3921
3922 n = -sn;
3923 }
3924 else
3925 {
3926 n *= radix;
3927 n -= c - '0';
3928 }
3929 }
3930 else
3931 {
3932 /* unsigned representation */
3933 n *= radix;
3934 n += c - '0'; /* FIXME this overflows anyway. */
3935 }
3936 }
3937 else
3938 overflow = 1;
3939
3940 /* This depends on large values being output in octal, which is
3941 what GCC does. */
3942 if (radix == 8)
3943 {
3944 if (nbits == 0)
3945 {
3946 if (c == '0')
3947 /* Ignore leading zeroes. */
3948 ;
3949 else if (c == '1')
3950 nbits = 1;
3951 else if (c == '2' || c == '3')
3952 nbits = 2;
3953 else
3954 nbits = 3;
3955 }
3956 else
3957 nbits += 3;
3958 }
3959 }
3960 if (end)
3961 {
3962 if (c && c != end)
3963 {
3964 if (bits != NULL)
3965 *bits = -1;
3966 return 0;
3967 }
3968 }
3969 else
3970 --p;
3971
3972 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3973 {
3974 /* We were supposed to parse a number with maximum
3975 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3976 if (bits != NULL)
3977 *bits = -1;
3978 return 0;
3979 }
3980
3981 *pp = p;
3982 if (overflow)
3983 {
3984 if (nbits == 0)
3985 {
3986 /* Large decimal constants are an error (because it is hard to
3987 count how many bits are in them). */
3988 if (bits != NULL)
3989 *bits = -1;
3990 return 0;
3991 }
3992
3993 /* -0x7f is the same as 0x80. So deal with it by adding one to
3994 the number of bits. Two's complement represention octals
3995 can't have a '-' in front. */
3996 if (sign == -1 && !twos_complement_representation)
3997 ++nbits;
3998 if (bits)
3999 *bits = nbits;
4000 }
4001 else
4002 {
4003 if (bits)
4004 *bits = 0;
4005 return n * sign;
4006 }
4007 /* It's *BITS which has the interesting information. */
4008 return 0;
4009 }
4010
4011 static struct type *
4012 read_range_type (const char **pp, int typenums[2], int type_size,
4013 struct objfile *objfile)
4014 {
4015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4016 const char *orig_pp = *pp;
4017 int rangenums[2];
4018 long n2, n3;
4019 int n2bits, n3bits;
4020 int self_subrange;
4021 struct type *result_type;
4022 struct type *index_type = NULL;
4023
4024 /* First comes a type we are a subrange of.
4025 In C it is usually 0, 1 or the type being defined. */
4026 if (read_type_number (pp, rangenums) != 0)
4027 return error_type (pp, objfile);
4028 self_subrange = (rangenums[0] == typenums[0] &&
4029 rangenums[1] == typenums[1]);
4030
4031 if (**pp == '=')
4032 {
4033 *pp = orig_pp;
4034 index_type = read_type (pp, objfile);
4035 }
4036
4037 /* A semicolon should now follow; skip it. */
4038 if (**pp == ';')
4039 (*pp)++;
4040
4041 /* The remaining two operands are usually lower and upper bounds
4042 of the range. But in some special cases they mean something else. */
4043 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4044 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4045
4046 if (n2bits == -1 || n3bits == -1)
4047 return error_type (pp, objfile);
4048
4049 if (index_type)
4050 goto handle_true_range;
4051
4052 /* If limits are huge, must be large integral type. */
4053 if (n2bits != 0 || n3bits != 0)
4054 {
4055 char got_signed = 0;
4056 char got_unsigned = 0;
4057 /* Number of bits in the type. */
4058 int nbits = 0;
4059
4060 /* If a type size attribute has been specified, the bounds of
4061 the range should fit in this size. If the lower bounds needs
4062 more bits than the upper bound, then the type is signed. */
4063 if (n2bits <= type_size && n3bits <= type_size)
4064 {
4065 if (n2bits == type_size && n2bits > n3bits)
4066 got_signed = 1;
4067 else
4068 got_unsigned = 1;
4069 nbits = type_size;
4070 }
4071 /* Range from 0 to <large number> is an unsigned large integral type. */
4072 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4073 {
4074 got_unsigned = 1;
4075 nbits = n3bits;
4076 }
4077 /* Range from <large number> to <large number>-1 is a large signed
4078 integral type. Take care of the case where <large number> doesn't
4079 fit in a long but <large number>-1 does. */
4080 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4081 || (n2bits != 0 && n3bits == 0
4082 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4083 && n3 == LONG_MAX))
4084 {
4085 got_signed = 1;
4086 nbits = n2bits;
4087 }
4088
4089 if (got_signed || got_unsigned)
4090 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4091 else
4092 return error_type (pp, objfile);
4093 }
4094
4095 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4096 if (self_subrange && n2 == 0 && n3 == 0)
4097 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4098
4099 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4100 is the width in bytes.
4101
4102 Fortran programs appear to use this for complex types also. To
4103 distinguish between floats and complex, g77 (and others?) seem
4104 to use self-subranges for the complexes, and subranges of int for
4105 the floats.
4106
4107 Also note that for complexes, g77 sets n2 to the size of one of
4108 the member floats, not the whole complex beast. My guess is that
4109 this was to work well with pre-COMPLEX versions of gdb. */
4110
4111 if (n3 == 0 && n2 > 0)
4112 {
4113 struct type *float_type
4114 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4115
4116 if (self_subrange)
4117 return init_complex_type (objfile, NULL, float_type);
4118 else
4119 return float_type;
4120 }
4121
4122 /* If the upper bound is -1, it must really be an unsigned integral. */
4123
4124 else if (n2 == 0 && n3 == -1)
4125 {
4126 int bits = type_size;
4127
4128 if (bits <= 0)
4129 {
4130 /* We don't know its size. It is unsigned int or unsigned
4131 long. GCC 2.3.3 uses this for long long too, but that is
4132 just a GDB 3.5 compatibility hack. */
4133 bits = gdbarch_int_bit (gdbarch);
4134 }
4135
4136 return init_integer_type (objfile, bits, 1, NULL);
4137 }
4138
4139 /* Special case: char is defined (Who knows why) as a subrange of
4140 itself with range 0-127. */
4141 else if (self_subrange && n2 == 0 && n3 == 127)
4142 {
4143 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4144 0, NULL);
4145 TYPE_NOSIGN (type) = 1;
4146 return type;
4147 }
4148 /* We used to do this only for subrange of self or subrange of int. */
4149 else if (n2 == 0)
4150 {
4151 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4152 "unsigned long", and we already checked for that,
4153 so don't need to test for it here. */
4154
4155 if (n3 < 0)
4156 /* n3 actually gives the size. */
4157 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4158
4159 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4160 unsigned n-byte integer. But do require n to be a power of
4161 two; we don't want 3- and 5-byte integers flying around. */
4162 {
4163 int bytes;
4164 unsigned long bits;
4165
4166 bits = n3;
4167 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4168 bits >>= 8;
4169 if (bits == 0
4170 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4171 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4172 }
4173 }
4174 /* I think this is for Convex "long long". Since I don't know whether
4175 Convex sets self_subrange, I also accept that particular size regardless
4176 of self_subrange. */
4177 else if (n3 == 0 && n2 < 0
4178 && (self_subrange
4179 || n2 == -gdbarch_long_long_bit
4180 (gdbarch) / TARGET_CHAR_BIT))
4181 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4182 else if (n2 == -n3 - 1)
4183 {
4184 if (n3 == 0x7f)
4185 return init_integer_type (objfile, 8, 0, NULL);
4186 if (n3 == 0x7fff)
4187 return init_integer_type (objfile, 16, 0, NULL);
4188 if (n3 == 0x7fffffff)
4189 return init_integer_type (objfile, 32, 0, NULL);
4190 }
4191
4192 /* We have a real range type on our hands. Allocate space and
4193 return a real pointer. */
4194 handle_true_range:
4195
4196 if (self_subrange)
4197 index_type = objfile_type (objfile)->builtin_int;
4198 else
4199 index_type = *dbx_lookup_type (rangenums, objfile);
4200 if (index_type == NULL)
4201 {
4202 /* Does this actually ever happen? Is that why we are worrying
4203 about dealing with it rather than just calling error_type? */
4204
4205 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4206
4207 index_type = objfile_type (objfile)->builtin_int;
4208 }
4209
4210 result_type
4211 = create_static_range_type (NULL, index_type, n2, n3);
4212 return (result_type);
4213 }
4214
4215 /* Read in an argument list. This is a list of types, separated by commas
4216 and terminated with END. Return the list of types read in, or NULL
4217 if there is an error. */
4218
4219 static struct field *
4220 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4221 int *varargsp)
4222 {
4223 /* FIXME! Remove this arbitrary limit! */
4224 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4225 int n = 0, i;
4226 struct field *rval;
4227
4228 while (**pp != end)
4229 {
4230 if (**pp != ',')
4231 /* Invalid argument list: no ','. */
4232 return NULL;
4233 (*pp)++;
4234 STABS_CONTINUE (pp, objfile);
4235 types[n++] = read_type (pp, objfile);
4236 }
4237 (*pp)++; /* get past `end' (the ':' character). */
4238
4239 if (n == 0)
4240 {
4241 /* We should read at least the THIS parameter here. Some broken stabs
4242 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4243 have been present ";-16,(0,43)" reference instead. This way the
4244 excessive ";" marker prematurely stops the parameters parsing. */
4245
4246 complaint (_("Invalid (empty) method arguments"));
4247 *varargsp = 0;
4248 }
4249 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4250 *varargsp = 1;
4251 else
4252 {
4253 n--;
4254 *varargsp = 0;
4255 }
4256
4257 rval = XCNEWVEC (struct field, n);
4258 for (i = 0; i < n; i++)
4259 rval[i].type = types[i];
4260 *nargsp = n;
4261 return rval;
4262 }
4263 \f
4264 /* Common block handling. */
4265
4266 /* List of symbols declared since the last BCOMM. This list is a tail
4267 of local_symbols. When ECOMM is seen, the symbols on the list
4268 are noted so their proper addresses can be filled in later,
4269 using the common block base address gotten from the assembler
4270 stabs. */
4271
4272 static struct pending *common_block;
4273 static int common_block_i;
4274
4275 /* Name of the current common block. We get it from the BCOMM instead of the
4276 ECOMM to match IBM documentation (even though IBM puts the name both places
4277 like everyone else). */
4278 static char *common_block_name;
4279
4280 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4281 to remain after this function returns. */
4282
4283 void
4284 common_block_start (const char *name, struct objfile *objfile)
4285 {
4286 if (common_block_name != NULL)
4287 {
4288 complaint (_("Invalid symbol data: common block within common block"));
4289 }
4290 common_block = *get_local_symbols ();
4291 common_block_i = common_block ? common_block->nsyms : 0;
4292 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4293 }
4294
4295 /* Process a N_ECOMM symbol. */
4296
4297 void
4298 common_block_end (struct objfile *objfile)
4299 {
4300 /* Symbols declared since the BCOMM are to have the common block
4301 start address added in when we know it. common_block and
4302 common_block_i point to the first symbol after the BCOMM in
4303 the local_symbols list; copy the list and hang it off the
4304 symbol for the common block name for later fixup. */
4305 int i;
4306 struct symbol *sym;
4307 struct pending *newobj = 0;
4308 struct pending *next;
4309 int j;
4310
4311 if (common_block_name == NULL)
4312 {
4313 complaint (_("ECOMM symbol unmatched by BCOMM"));
4314 return;
4315 }
4316
4317 sym = allocate_symbol (objfile);
4318 /* Note: common_block_name already saved on objfile_obstack. */
4319 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4320 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4321
4322 /* Now we copy all the symbols which have been defined since the BCOMM. */
4323
4324 /* Copy all the struct pendings before common_block. */
4325 for (next = *get_local_symbols ();
4326 next != NULL && next != common_block;
4327 next = next->next)
4328 {
4329 for (j = 0; j < next->nsyms; j++)
4330 add_symbol_to_list (next->symbol[j], &newobj);
4331 }
4332
4333 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4334 NULL, it means copy all the local symbols (which we already did
4335 above). */
4336
4337 if (common_block != NULL)
4338 for (j = common_block_i; j < common_block->nsyms; j++)
4339 add_symbol_to_list (common_block->symbol[j], &newobj);
4340
4341 SYMBOL_TYPE (sym) = (struct type *) newobj;
4342
4343 /* Should we be putting local_symbols back to what it was?
4344 Does it matter? */
4345
4346 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4347 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4348 global_sym_chain[i] = sym;
4349 common_block_name = NULL;
4350 }
4351
4352 /* Add a common block's start address to the offset of each symbol
4353 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4354 the common block name). */
4355
4356 static void
4357 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4358 {
4359 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4360
4361 for (; next; next = next->next)
4362 {
4363 int j;
4364
4365 for (j = next->nsyms - 1; j >= 0; j--)
4366 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4367 }
4368 }
4369 \f
4370
4371
4372 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4373 See add_undefined_type for more details. */
4374
4375 static void
4376 add_undefined_type_noname (struct type *type, int typenums[2])
4377 {
4378 struct nat nat;
4379
4380 nat.typenums[0] = typenums [0];
4381 nat.typenums[1] = typenums [1];
4382 nat.type = type;
4383
4384 if (noname_undefs_length == noname_undefs_allocated)
4385 {
4386 noname_undefs_allocated *= 2;
4387 noname_undefs = (struct nat *)
4388 xrealloc ((char *) noname_undefs,
4389 noname_undefs_allocated * sizeof (struct nat));
4390 }
4391 noname_undefs[noname_undefs_length++] = nat;
4392 }
4393
4394 /* Add TYPE to the UNDEF_TYPES vector.
4395 See add_undefined_type for more details. */
4396
4397 static void
4398 add_undefined_type_1 (struct type *type)
4399 {
4400 if (undef_types_length == undef_types_allocated)
4401 {
4402 undef_types_allocated *= 2;
4403 undef_types = (struct type **)
4404 xrealloc ((char *) undef_types,
4405 undef_types_allocated * sizeof (struct type *));
4406 }
4407 undef_types[undef_types_length++] = type;
4408 }
4409
4410 /* What about types defined as forward references inside of a small lexical
4411 scope? */
4412 /* Add a type to the list of undefined types to be checked through
4413 once this file has been read in.
4414
4415 In practice, we actually maintain two such lists: The first list
4416 (UNDEF_TYPES) is used for types whose name has been provided, and
4417 concerns forward references (eg 'xs' or 'xu' forward references);
4418 the second list (NONAME_UNDEFS) is used for types whose name is
4419 unknown at creation time, because they were referenced through
4420 their type number before the actual type was declared.
4421 This function actually adds the given type to the proper list. */
4422
4423 static void
4424 add_undefined_type (struct type *type, int typenums[2])
4425 {
4426 if (TYPE_NAME (type) == NULL)
4427 add_undefined_type_noname (type, typenums);
4428 else
4429 add_undefined_type_1 (type);
4430 }
4431
4432 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4433
4434 static void
4435 cleanup_undefined_types_noname (struct objfile *objfile)
4436 {
4437 int i;
4438
4439 for (i = 0; i < noname_undefs_length; i++)
4440 {
4441 struct nat nat = noname_undefs[i];
4442 struct type **type;
4443
4444 type = dbx_lookup_type (nat.typenums, objfile);
4445 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4446 {
4447 /* The instance flags of the undefined type are still unset,
4448 and needs to be copied over from the reference type.
4449 Since replace_type expects them to be identical, we need
4450 to set these flags manually before hand. */
4451 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4452 replace_type (nat.type, *type);
4453 }
4454 }
4455
4456 noname_undefs_length = 0;
4457 }
4458
4459 /* Go through each undefined type, see if it's still undefined, and fix it
4460 up if possible. We have two kinds of undefined types:
4461
4462 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4463 Fix: update array length using the element bounds
4464 and the target type's length.
4465 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4466 yet defined at the time a pointer to it was made.
4467 Fix: Do a full lookup on the struct/union tag. */
4468
4469 static void
4470 cleanup_undefined_types_1 (void)
4471 {
4472 struct type **type;
4473
4474 /* Iterate over every undefined type, and look for a symbol whose type
4475 matches our undefined type. The symbol matches if:
4476 1. It is a typedef in the STRUCT domain;
4477 2. It has the same name, and same type code;
4478 3. The instance flags are identical.
4479
4480 It is important to check the instance flags, because we have seen
4481 examples where the debug info contained definitions such as:
4482
4483 "foo_t:t30=B31=xefoo_t:"
4484
4485 In this case, we have created an undefined type named "foo_t" whose
4486 instance flags is null (when processing "xefoo_t"), and then created
4487 another type with the same name, but with different instance flags
4488 ('B' means volatile). I think that the definition above is wrong,
4489 since the same type cannot be volatile and non-volatile at the same
4490 time, but we need to be able to cope with it when it happens. The
4491 approach taken here is to treat these two types as different. */
4492
4493 for (type = undef_types; type < undef_types + undef_types_length; type++)
4494 {
4495 switch (TYPE_CODE (*type))
4496 {
4497
4498 case TYPE_CODE_STRUCT:
4499 case TYPE_CODE_UNION:
4500 case TYPE_CODE_ENUM:
4501 {
4502 /* Check if it has been defined since. Need to do this here
4503 as well as in check_typedef to deal with the (legitimate in
4504 C though not C++) case of several types with the same name
4505 in different source files. */
4506 if (TYPE_STUB (*type))
4507 {
4508 struct pending *ppt;
4509 int i;
4510 /* Name of the type, without "struct" or "union". */
4511 const char *type_name = TYPE_NAME (*type);
4512
4513 if (type_name == NULL)
4514 {
4515 complaint (_("need a type name"));
4516 break;
4517 }
4518 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4519 {
4520 for (i = 0; i < ppt->nsyms; i++)
4521 {
4522 struct symbol *sym = ppt->symbol[i];
4523
4524 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4525 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4526 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4527 TYPE_CODE (*type))
4528 && (TYPE_INSTANCE_FLAGS (*type) ==
4529 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4530 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4531 type_name) == 0)
4532 replace_type (*type, SYMBOL_TYPE (sym));
4533 }
4534 }
4535 }
4536 }
4537 break;
4538
4539 default:
4540 {
4541 complaint (_("forward-referenced types left unresolved, "
4542 "type code %d."),
4543 TYPE_CODE (*type));
4544 }
4545 break;
4546 }
4547 }
4548
4549 undef_types_length = 0;
4550 }
4551
4552 /* Try to fix all the undefined types we ecountered while processing
4553 this unit. */
4554
4555 void
4556 cleanup_undefined_stabs_types (struct objfile *objfile)
4557 {
4558 cleanup_undefined_types_1 ();
4559 cleanup_undefined_types_noname (objfile);
4560 }
4561
4562 /* See stabsread.h. */
4563
4564 void
4565 scan_file_globals (struct objfile *objfile)
4566 {
4567 int hash;
4568 struct symbol *sym, *prev;
4569 struct objfile *resolve_objfile;
4570
4571 /* SVR4 based linkers copy referenced global symbols from shared
4572 libraries to the main executable.
4573 If we are scanning the symbols for a shared library, try to resolve
4574 them from the minimal symbols of the main executable first. */
4575
4576 if (symfile_objfile && objfile != symfile_objfile)
4577 resolve_objfile = symfile_objfile;
4578 else
4579 resolve_objfile = objfile;
4580
4581 while (1)
4582 {
4583 /* Avoid expensive loop through all minimal symbols if there are
4584 no unresolved symbols. */
4585 for (hash = 0; hash < HASHSIZE; hash++)
4586 {
4587 if (global_sym_chain[hash])
4588 break;
4589 }
4590 if (hash >= HASHSIZE)
4591 return;
4592
4593 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4594 {
4595 QUIT;
4596
4597 /* Skip static symbols. */
4598 switch (MSYMBOL_TYPE (msymbol))
4599 {
4600 case mst_file_text:
4601 case mst_file_data:
4602 case mst_file_bss:
4603 continue;
4604 default:
4605 break;
4606 }
4607
4608 prev = NULL;
4609
4610 /* Get the hash index and check all the symbols
4611 under that hash index. */
4612
4613 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4614
4615 for (sym = global_sym_chain[hash]; sym;)
4616 {
4617 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4618 SYMBOL_LINKAGE_NAME (sym)) == 0)
4619 {
4620 /* Splice this symbol out of the hash chain and
4621 assign the value we have to it. */
4622 if (prev)
4623 {
4624 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4625 }
4626 else
4627 {
4628 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4629 }
4630
4631 /* Check to see whether we need to fix up a common block. */
4632 /* Note: this code might be executed several times for
4633 the same symbol if there are multiple references. */
4634 if (sym)
4635 {
4636 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4637 {
4638 fix_common_block (sym,
4639 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4640 msymbol));
4641 }
4642 else
4643 {
4644 SYMBOL_VALUE_ADDRESS (sym)
4645 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4646 }
4647 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4648 }
4649
4650 if (prev)
4651 {
4652 sym = SYMBOL_VALUE_CHAIN (prev);
4653 }
4654 else
4655 {
4656 sym = global_sym_chain[hash];
4657 }
4658 }
4659 else
4660 {
4661 prev = sym;
4662 sym = SYMBOL_VALUE_CHAIN (sym);
4663 }
4664 }
4665 }
4666 if (resolve_objfile == objfile)
4667 break;
4668 resolve_objfile = objfile;
4669 }
4670
4671 /* Change the storage class of any remaining unresolved globals to
4672 LOC_UNRESOLVED and remove them from the chain. */
4673 for (hash = 0; hash < HASHSIZE; hash++)
4674 {
4675 sym = global_sym_chain[hash];
4676 while (sym)
4677 {
4678 prev = sym;
4679 sym = SYMBOL_VALUE_CHAIN (sym);
4680
4681 /* Change the symbol address from the misleading chain value
4682 to address zero. */
4683 SYMBOL_VALUE_ADDRESS (prev) = 0;
4684
4685 /* Complain about unresolved common block symbols. */
4686 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4687 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4688 else
4689 complaint (_("%s: common block `%s' from "
4690 "global_sym_chain unresolved"),
4691 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4692 }
4693 }
4694 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4695 }
4696
4697 /* Initialize anything that needs initializing when starting to read
4698 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4699 to a psymtab. */
4700
4701 void
4702 stabsread_init (void)
4703 {
4704 }
4705
4706 /* Initialize anything that needs initializing when a completely new
4707 symbol file is specified (not just adding some symbols from another
4708 file, e.g. a shared library). */
4709
4710 void
4711 stabsread_new_init (void)
4712 {
4713 /* Empty the hash table of global syms looking for values. */
4714 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4715 }
4716
4717 /* Initialize anything that needs initializing at the same time as
4718 start_symtab() is called. */
4719
4720 void
4721 start_stabs (void)
4722 {
4723 global_stabs = NULL; /* AIX COFF */
4724 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4725 n_this_object_header_files = 1;
4726 type_vector_length = 0;
4727 type_vector = (struct type **) 0;
4728 within_function = 0;
4729
4730 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4731 common_block_name = NULL;
4732 }
4733
4734 /* Call after end_symtab(). */
4735
4736 void
4737 end_stabs (void)
4738 {
4739 if (type_vector)
4740 {
4741 xfree (type_vector);
4742 }
4743 type_vector = 0;
4744 type_vector_length = 0;
4745 previous_stab_code = 0;
4746 }
4747
4748 void
4749 finish_global_stabs (struct objfile *objfile)
4750 {
4751 if (global_stabs)
4752 {
4753 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4754 xfree (global_stabs);
4755 global_stabs = NULL;
4756 }
4757 }
4758
4759 /* Find the end of the name, delimited by a ':', but don't match
4760 ObjC symbols which look like -[Foo bar::]:bla. */
4761 static const char *
4762 find_name_end (const char *name)
4763 {
4764 const char *s = name;
4765
4766 if (s[0] == '-' || *s == '+')
4767 {
4768 /* Must be an ObjC method symbol. */
4769 if (s[1] != '[')
4770 {
4771 error (_("invalid symbol name \"%s\""), name);
4772 }
4773 s = strchr (s, ']');
4774 if (s == NULL)
4775 {
4776 error (_("invalid symbol name \"%s\""), name);
4777 }
4778 return strchr (s, ':');
4779 }
4780 else
4781 {
4782 return strchr (s, ':');
4783 }
4784 }
4785
4786 /* See stabsread.h. */
4787
4788 int
4789 hashname (const char *name)
4790 {
4791 return hash (name, strlen (name)) % HASHSIZE;
4792 }
4793
4794 /* Initializer for this module. */
4795
4796 void
4797 _initialize_stabsread (void)
4798 {
4799 undef_types_allocated = 20;
4800 undef_types_length = 0;
4801 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4802
4803 noname_undefs_allocated = 20;
4804 noname_undefs_length = 0;
4805 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4806
4807 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4808 &stab_register_funcs);
4809 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4810 &stab_register_funcs);
4811 }
This page took 0.174214 seconds and 5 git commands to generate.