2013-03-20 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obstack_copy0 (&objfile->objfile_obstack,
391 name, pp - name));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '='. */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 /* The "aclass" indices for computed symbols. */
608
609 static int stab_register_index;
610 static int stab_regparm_index;
611
612 struct symbol *
613 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
614 struct objfile *objfile)
615 {
616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
617 struct symbol *sym;
618 char *p = (char *) find_name_end (string);
619 int deftype;
620 int synonym = 0;
621 int i;
622 char *new_name = NULL;
623
624 /* We would like to eliminate nameless symbols, but keep their types.
625 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
626 to type 2, but, should not create a symbol to address that type. Since
627 the symbol will be nameless, there is no way any user can refer to it. */
628
629 int nameless;
630
631 /* Ignore syms with empty names. */
632 if (string[0] == 0)
633 return 0;
634
635 /* Ignore old-style symbols from cc -go. */
636 if (p == 0)
637 return 0;
638
639 while (p[1] == ':')
640 {
641 p += 2;
642 p = strchr (p, ':');
643 if (p == NULL)
644 {
645 complaint (&symfile_complaints,
646 _("Bad stabs string '%s'"), string);
647 return NULL;
648 }
649 }
650
651 /* If a nameless stab entry, all we need is the type, not the symbol.
652 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
653 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
654
655 current_symbol = sym = (struct symbol *)
656 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
657 memset (sym, 0, sizeof (struct symbol));
658
659 switch (type & N_TYPE)
660 {
661 case N_TEXT:
662 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
663 break;
664 case N_DATA:
665 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
666 break;
667 case N_BSS:
668 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
669 break;
670 }
671
672 if (processing_gcc_compilation)
673 {
674 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
675 number of bytes occupied by a type or object, which we ignore. */
676 SYMBOL_LINE (sym) = desc;
677 }
678 else
679 {
680 SYMBOL_LINE (sym) = 0; /* unknown */
681 }
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
719 if (SYMBOL_LANGUAGE (sym) == language_cplus)
720 {
721 char *name = alloca (p - string + 1);
722
723 memcpy (name, string, p - string);
724 name[p - string] = '\0';
725 new_name = cp_canonicalize_string (name);
726 }
727 if (new_name != NULL)
728 {
729 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
730 xfree (new_name);
731 }
732 else
733 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
734
735 if (SYMBOL_LANGUAGE (sym) == language_cplus)
736 cp_scan_for_anonymous_namespaces (sym, objfile);
737
738 }
739 p++;
740
741 /* Determine the type of name being defined. */
742 #if 0
743 /* Getting GDB to correctly skip the symbol on an undefined symbol
744 descriptor and not ever dump core is a very dodgy proposition if
745 we do things this way. I say the acorn RISC machine can just
746 fix their compiler. */
747 /* The Acorn RISC machine's compiler can put out locals that don't
748 start with "234=" or "(3,4)=", so assume anything other than the
749 deftypes we know how to handle is a local. */
750 if (!strchr ("cfFGpPrStTvVXCR", *p))
751 #else
752 if (isdigit (*p) || *p == '(' || *p == '-')
753 #endif
754 deftype = 'l';
755 else
756 deftype = *p++;
757
758 switch (deftype)
759 {
760 case 'c':
761 /* c is a special case, not followed by a type-number.
762 SYMBOL:c=iVALUE for an integer constant symbol.
763 SYMBOL:c=rVALUE for a floating constant symbol.
764 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
765 e.g. "b:c=e6,0" for "const b = blob1"
766 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
767 if (*p != '=')
768 {
769 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
770 SYMBOL_TYPE (sym) = error_type (&p, objfile);
771 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
772 add_symbol_to_list (sym, &file_symbols);
773 return sym;
774 }
775 ++p;
776 switch (*p++)
777 {
778 case 'r':
779 {
780 double d = atof (p);
781 gdb_byte *dbl_valu;
782 struct type *dbl_type;
783
784 /* FIXME-if-picky-about-floating-accuracy: Should be using
785 target arithmetic to get the value. real.c in GCC
786 probably has the necessary code. */
787
788 dbl_type = objfile_type (objfile)->builtin_double;
789 dbl_valu =
790 obstack_alloc (&objfile->objfile_obstack,
791 TYPE_LENGTH (dbl_type));
792 store_typed_floating (dbl_valu, dbl_type, d);
793
794 SYMBOL_TYPE (sym) = dbl_type;
795 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
796 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
797 }
798 break;
799 case 'i':
800 {
801 /* Defining integer constants this way is kind of silly,
802 since 'e' constants allows the compiler to give not
803 only the value, but the type as well. C has at least
804 int, long, unsigned int, and long long as constant
805 types; other languages probably should have at least
806 unsigned as well as signed constants. */
807
808 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
809 SYMBOL_VALUE (sym) = atoi (p);
810 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
811 }
812 break;
813
814 case 'c':
815 {
816 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
817 SYMBOL_VALUE (sym) = atoi (p);
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
819 }
820 break;
821
822 case 's':
823 {
824 struct type *range_type;
825 int ind = 0;
826 char quote = *p++;
827 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
828 gdb_byte *string_value;
829
830 if (quote != '\'' && quote != '"')
831 {
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
833 SYMBOL_TYPE (sym) = error_type (&p, objfile);
834 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
835 add_symbol_to_list (sym, &file_symbols);
836 return sym;
837 }
838
839 /* Find matching quote, rejecting escaped quotes. */
840 while (*p && *p != quote)
841 {
842 if (*p == '\\' && p[1] == quote)
843 {
844 string_local[ind] = (gdb_byte) quote;
845 ind++;
846 p += 2;
847 }
848 else if (*p)
849 {
850 string_local[ind] = (gdb_byte) (*p);
851 ind++;
852 p++;
853 }
854 }
855 if (*p != quote)
856 {
857 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
858 SYMBOL_TYPE (sym) = error_type (&p, objfile);
859 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
860 add_symbol_to_list (sym, &file_symbols);
861 return sym;
862 }
863
864 /* NULL terminate the string. */
865 string_local[ind] = 0;
866 range_type
867 = create_range_type (NULL,
868 objfile_type (objfile)->builtin_int,
869 0, ind);
870 SYMBOL_TYPE (sym) = create_array_type (NULL,
871 objfile_type (objfile)->builtin_char,
872 range_type);
873 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
879 }
880 break;
881
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
948
949 /* fall into process_prototype_types. */
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
991 }
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1018 {
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1057
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1068 break;
1069
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1071 {
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1077 {
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1082 }
1083 break;
1084 }
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
1095 /*FALLTHROUGH */
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1114 {
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
1129
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1138 {
1139 struct symbol *prev_sym;
1140
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1146 {
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
1156 add_symbol_to_list (sym, &local_symbols);
1157 }
1158 else
1159 add_symbol_to_list (sym, &file_symbols);
1160 break;
1161
1162 case 'S':
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1171 {
1172 struct minimal_symbol *msym;
1173
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
1176 if (msym != NULL)
1177 {
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1180
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
1206 /* Typedef */
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1211 if (nameless)
1212 return NULL;
1213
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
1227
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1267
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
1272 char *name1;
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1282 {
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285 }
1286 else
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = (struct symbol *)
1296 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1297
1298 *struct_sym = *sym;
1299 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1300 SYMBOL_VALUE (struct_sym) = valu;
1301 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1302 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1303 TYPE_NAME (SYMBOL_TYPE (sym))
1304 = obconcat (&objfile->objfile_obstack,
1305 SYMBOL_LINKAGE_NAME (sym),
1306 (char *) NULL);
1307 add_symbol_to_list (struct_sym, &file_symbols);
1308 }
1309
1310 break;
1311
1312 case 'T':
1313 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1314 by 't' which means we are typedef'ing it as well. */
1315 synonym = *p == 't';
1316
1317 if (synonym)
1318 p++;
1319
1320 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1321
1322 /* For a nameless type, we don't want a create a symbol, thus we
1323 did not use `sym'. Return without further processing. */
1324 if (nameless)
1325 return NULL;
1326
1327 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1328 SYMBOL_VALUE (sym) = valu;
1329 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1330 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1331 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1332 = obconcat (&objfile->objfile_obstack,
1333 SYMBOL_LINKAGE_NAME (sym),
1334 (char *) NULL);
1335 add_symbol_to_list (sym, &file_symbols);
1336
1337 if (synonym)
1338 {
1339 /* Clone the sym and then modify it. */
1340 struct symbol *typedef_sym = (struct symbol *)
1341 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1342
1343 *typedef_sym = *sym;
1344 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (typedef_sym) = valu;
1346 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1347 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1351 (char *) NULL);
1352 add_symbol_to_list (typedef_sym, &file_symbols);
1353 }
1354 break;
1355
1356 case 'V':
1357 /* Static symbol of local scope. */
1358 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1359 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1360 SYMBOL_VALUE_ADDRESS (sym) = valu;
1361 if (gdbarch_static_transform_name_p (gdbarch)
1362 && gdbarch_static_transform_name (gdbarch,
1363 SYMBOL_LINKAGE_NAME (sym))
1364 != SYMBOL_LINKAGE_NAME (sym))
1365 {
1366 struct minimal_symbol *msym;
1367
1368 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1369 NULL, objfile);
1370 if (msym != NULL)
1371 {
1372 const char *new_name = gdbarch_static_transform_name
1373 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1374
1375 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1376 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1377 }
1378 }
1379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1380 add_symbol_to_list (sym, &local_symbols);
1381 break;
1382
1383 case 'v':
1384 /* Reference parameter */
1385 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1386 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1387 SYMBOL_IS_ARGUMENT (sym) = 1;
1388 SYMBOL_VALUE (sym) = valu;
1389 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1390 add_symbol_to_list (sym, &local_symbols);
1391 break;
1392
1393 case 'a':
1394 /* Reference parameter which is in a register. */
1395 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1396 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1397 SYMBOL_IS_ARGUMENT (sym) = 1;
1398 SYMBOL_VALUE (sym) = valu;
1399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1400 add_symbol_to_list (sym, &local_symbols);
1401 break;
1402
1403 case 'X':
1404 /* This is used by Sun FORTRAN for "function result value".
1405 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1406 that Pascal uses it too, but when I tried it Pascal used
1407 "x:3" (local symbol) instead. */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1410 SYMBOL_VALUE (sym) = valu;
1411 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1412 add_symbol_to_list (sym, &local_symbols);
1413 break;
1414
1415 default:
1416 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1417 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1418 SYMBOL_VALUE (sym) = 0;
1419 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1420 add_symbol_to_list (sym, &file_symbols);
1421 break;
1422 }
1423
1424 /* Some systems pass variables of certain types by reference instead
1425 of by value, i.e. they will pass the address of a structure (in a
1426 register or on the stack) instead of the structure itself. */
1427
1428 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1429 && SYMBOL_IS_ARGUMENT (sym))
1430 {
1431 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1432 variables passed in a register). */
1433 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1434 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1435 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1436 and subsequent arguments on SPARC, for example). */
1437 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1438 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1439 }
1440
1441 return sym;
1442 }
1443
1444 /* Skip rest of this symbol and return an error type.
1445
1446 General notes on error recovery: error_type always skips to the
1447 end of the symbol (modulo cretinous dbx symbol name continuation).
1448 Thus code like this:
1449
1450 if (*(*pp)++ != ';')
1451 return error_type (pp, objfile);
1452
1453 is wrong because if *pp starts out pointing at '\0' (typically as the
1454 result of an earlier error), it will be incremented to point to the
1455 start of the next symbol, which might produce strange results, at least
1456 if you run off the end of the string table. Instead use
1457
1458 if (**pp != ';')
1459 return error_type (pp, objfile);
1460 ++*pp;
1461
1462 or
1463
1464 if (**pp != ';')
1465 foo = error_type (pp, objfile);
1466 else
1467 ++*pp;
1468
1469 And in case it isn't obvious, the point of all this hair is so the compiler
1470 can define new types and new syntaxes, and old versions of the
1471 debugger will be able to read the new symbol tables. */
1472
1473 static struct type *
1474 error_type (char **pp, struct objfile *objfile)
1475 {
1476 complaint (&symfile_complaints,
1477 _("couldn't parse type; debugger out of date?"));
1478 while (1)
1479 {
1480 /* Skip to end of symbol. */
1481 while (**pp != '\0')
1482 {
1483 (*pp)++;
1484 }
1485
1486 /* Check for and handle cretinous dbx symbol name continuation! */
1487 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1488 {
1489 *pp = next_symbol_text (objfile);
1490 }
1491 else
1492 {
1493 break;
1494 }
1495 }
1496 return objfile_type (objfile)->builtin_error;
1497 }
1498 \f
1499
1500 /* Read type information or a type definition; return the type. Even
1501 though this routine accepts either type information or a type
1502 definition, the distinction is relevant--some parts of stabsread.c
1503 assume that type information starts with a digit, '-', or '(' in
1504 deciding whether to call read_type. */
1505
1506 static struct type *
1507 read_type (char **pp, struct objfile *objfile)
1508 {
1509 struct type *type = 0;
1510 struct type *type1;
1511 int typenums[2];
1512 char type_descriptor;
1513
1514 /* Size in bits of type if specified by a type attribute, or -1 if
1515 there is no size attribute. */
1516 int type_size = -1;
1517
1518 /* Used to distinguish string and bitstring from char-array and set. */
1519 int is_string = 0;
1520
1521 /* Used to distinguish vector from array. */
1522 int is_vector = 0;
1523
1524 /* Read type number if present. The type number may be omitted.
1525 for instance in a two-dimensional array declared with type
1526 "ar1;1;10;ar1;1;10;4". */
1527 if ((**pp >= '0' && **pp <= '9')
1528 || **pp == '('
1529 || **pp == '-')
1530 {
1531 if (read_type_number (pp, typenums) != 0)
1532 return error_type (pp, objfile);
1533
1534 if (**pp != '=')
1535 {
1536 /* Type is not being defined here. Either it already
1537 exists, or this is a forward reference to it.
1538 dbx_alloc_type handles both cases. */
1539 type = dbx_alloc_type (typenums, objfile);
1540
1541 /* If this is a forward reference, arrange to complain if it
1542 doesn't get patched up by the time we're done
1543 reading. */
1544 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1545 add_undefined_type (type, typenums);
1546
1547 return type;
1548 }
1549
1550 /* Type is being defined here. */
1551 /* Skip the '='.
1552 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1553 (*pp) += 2;
1554 }
1555 else
1556 {
1557 /* 'typenums=' not present, type is anonymous. Read and return
1558 the definition, but don't put it in the type vector. */
1559 typenums[0] = typenums[1] = -1;
1560 (*pp)++;
1561 }
1562
1563 again:
1564 type_descriptor = (*pp)[-1];
1565 switch (type_descriptor)
1566 {
1567 case 'x':
1568 {
1569 enum type_code code;
1570
1571 /* Used to index through file_symbols. */
1572 struct pending *ppt;
1573 int i;
1574
1575 /* Name including "struct", etc. */
1576 char *type_name;
1577
1578 {
1579 char *from, *to, *p, *q1, *q2;
1580
1581 /* Set the type code according to the following letter. */
1582 switch ((*pp)[0])
1583 {
1584 case 's':
1585 code = TYPE_CODE_STRUCT;
1586 break;
1587 case 'u':
1588 code = TYPE_CODE_UNION;
1589 break;
1590 case 'e':
1591 code = TYPE_CODE_ENUM;
1592 break;
1593 default:
1594 {
1595 /* Complain and keep going, so compilers can invent new
1596 cross-reference types. */
1597 complaint (&symfile_complaints,
1598 _("Unrecognized cross-reference type `%c'"),
1599 (*pp)[0]);
1600 code = TYPE_CODE_STRUCT;
1601 break;
1602 }
1603 }
1604
1605 q1 = strchr (*pp, '<');
1606 p = strchr (*pp, ':');
1607 if (p == NULL)
1608 return error_type (pp, objfile);
1609 if (q1 && p > q1 && p[1] == ':')
1610 {
1611 int nesting_level = 0;
1612
1613 for (q2 = q1; *q2; q2++)
1614 {
1615 if (*q2 == '<')
1616 nesting_level++;
1617 else if (*q2 == '>')
1618 nesting_level--;
1619 else if (*q2 == ':' && nesting_level == 0)
1620 break;
1621 }
1622 p = q2;
1623 if (*p != ':')
1624 return error_type (pp, objfile);
1625 }
1626 type_name = NULL;
1627 if (current_subfile->language == language_cplus)
1628 {
1629 char *new_name, *name = alloca (p - *pp + 1);
1630
1631 memcpy (name, *pp, p - *pp);
1632 name[p - *pp] = '\0';
1633 new_name = cp_canonicalize_string (name);
1634 if (new_name != NULL)
1635 {
1636 type_name = obstack_copy0 (&objfile->objfile_obstack,
1637 new_name, strlen (new_name));
1638 xfree (new_name);
1639 }
1640 }
1641 if (type_name == NULL)
1642 {
1643 to = type_name = (char *)
1644 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1645
1646 /* Copy the name. */
1647 from = *pp + 1;
1648 while (from < p)
1649 *to++ = *from++;
1650 *to = '\0';
1651 }
1652
1653 /* Set the pointer ahead of the name which we just read, and
1654 the colon. */
1655 *pp = p + 1;
1656 }
1657
1658 /* If this type has already been declared, then reuse the same
1659 type, rather than allocating a new one. This saves some
1660 memory. */
1661
1662 for (ppt = file_symbols; ppt; ppt = ppt->next)
1663 for (i = 0; i < ppt->nsyms; i++)
1664 {
1665 struct symbol *sym = ppt->symbol[i];
1666
1667 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1668 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1669 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1670 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1671 {
1672 obstack_free (&objfile->objfile_obstack, type_name);
1673 type = SYMBOL_TYPE (sym);
1674 if (typenums[0] != -1)
1675 *dbx_lookup_type (typenums, objfile) = type;
1676 return type;
1677 }
1678 }
1679
1680 /* Didn't find the type to which this refers, so we must
1681 be dealing with a forward reference. Allocate a type
1682 structure for it, and keep track of it so we can
1683 fill in the rest of the fields when we get the full
1684 type. */
1685 type = dbx_alloc_type (typenums, objfile);
1686 TYPE_CODE (type) = code;
1687 TYPE_TAG_NAME (type) = type_name;
1688 INIT_CPLUS_SPECIFIC (type);
1689 TYPE_STUB (type) = 1;
1690
1691 add_undefined_type (type, typenums);
1692 return type;
1693 }
1694
1695 case '-': /* RS/6000 built-in type */
1696 case '0':
1697 case '1':
1698 case '2':
1699 case '3':
1700 case '4':
1701 case '5':
1702 case '6':
1703 case '7':
1704 case '8':
1705 case '9':
1706 case '(':
1707 (*pp)--;
1708
1709 /* We deal with something like t(1,2)=(3,4)=... which
1710 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1711
1712 /* Allocate and enter the typedef type first.
1713 This handles recursive types. */
1714 type = dbx_alloc_type (typenums, objfile);
1715 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1716 {
1717 struct type *xtype = read_type (pp, objfile);
1718
1719 if (type == xtype)
1720 {
1721 /* It's being defined as itself. That means it is "void". */
1722 TYPE_CODE (type) = TYPE_CODE_VOID;
1723 TYPE_LENGTH (type) = 1;
1724 }
1725 else if (type_size >= 0 || is_string)
1726 {
1727 /* This is the absolute wrong way to construct types. Every
1728 other debug format has found a way around this problem and
1729 the related problems with unnecessarily stubbed types;
1730 someone motivated should attempt to clean up the issue
1731 here as well. Once a type pointed to has been created it
1732 should not be modified.
1733
1734 Well, it's not *absolutely* wrong. Constructing recursive
1735 types (trees, linked lists) necessarily entails modifying
1736 types after creating them. Constructing any loop structure
1737 entails side effects. The Dwarf 2 reader does handle this
1738 more gracefully (it never constructs more than once
1739 instance of a type object, so it doesn't have to copy type
1740 objects wholesale), but it still mutates type objects after
1741 other folks have references to them.
1742
1743 Keep in mind that this circularity/mutation issue shows up
1744 at the source language level, too: C's "incomplete types",
1745 for example. So the proper cleanup, I think, would be to
1746 limit GDB's type smashing to match exactly those required
1747 by the source language. So GDB could have a
1748 "complete_this_type" function, but never create unnecessary
1749 copies of a type otherwise. */
1750 replace_type (type, xtype);
1751 TYPE_NAME (type) = NULL;
1752 TYPE_TAG_NAME (type) = NULL;
1753 }
1754 else
1755 {
1756 TYPE_TARGET_STUB (type) = 1;
1757 TYPE_TARGET_TYPE (type) = xtype;
1758 }
1759 }
1760 break;
1761
1762 /* In the following types, we must be sure to overwrite any existing
1763 type that the typenums refer to, rather than allocating a new one
1764 and making the typenums point to the new one. This is because there
1765 may already be pointers to the existing type (if it had been
1766 forward-referenced), and we must change it to a pointer, function,
1767 reference, or whatever, *in-place*. */
1768
1769 case '*': /* Pointer to another type */
1770 type1 = read_type (pp, objfile);
1771 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1772 break;
1773
1774 case '&': /* Reference to another type */
1775 type1 = read_type (pp, objfile);
1776 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1777 break;
1778
1779 case 'f': /* Function returning another type */
1780 type1 = read_type (pp, objfile);
1781 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1782 break;
1783
1784 case 'g': /* Prototyped function. (Sun) */
1785 {
1786 /* Unresolved questions:
1787
1788 - According to Sun's ``STABS Interface Manual'', for 'f'
1789 and 'F' symbol descriptors, a `0' in the argument type list
1790 indicates a varargs function. But it doesn't say how 'g'
1791 type descriptors represent that info. Someone with access
1792 to Sun's toolchain should try it out.
1793
1794 - According to the comment in define_symbol (search for
1795 `process_prototype_types:'), Sun emits integer arguments as
1796 types which ref themselves --- like `void' types. Do we
1797 have to deal with that here, too? Again, someone with
1798 access to Sun's toolchain should try it out and let us
1799 know. */
1800
1801 const char *type_start = (*pp) - 1;
1802 struct type *return_type = read_type (pp, objfile);
1803 struct type *func_type
1804 = make_function_type (return_type,
1805 dbx_lookup_type (typenums, objfile));
1806 struct type_list {
1807 struct type *type;
1808 struct type_list *next;
1809 } *arg_types = 0;
1810 int num_args = 0;
1811
1812 while (**pp && **pp != '#')
1813 {
1814 struct type *arg_type = read_type (pp, objfile);
1815 struct type_list *new = alloca (sizeof (*new));
1816 new->type = arg_type;
1817 new->next = arg_types;
1818 arg_types = new;
1819 num_args++;
1820 }
1821 if (**pp == '#')
1822 ++*pp;
1823 else
1824 {
1825 complaint (&symfile_complaints,
1826 _("Prototyped function type didn't "
1827 "end arguments with `#':\n%s"),
1828 type_start);
1829 }
1830
1831 /* If there is just one argument whose type is `void', then
1832 that's just an empty argument list. */
1833 if (arg_types
1834 && ! arg_types->next
1835 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1836 num_args = 0;
1837
1838 TYPE_FIELDS (func_type)
1839 = (struct field *) TYPE_ALLOC (func_type,
1840 num_args * sizeof (struct field));
1841 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1842 {
1843 int i;
1844 struct type_list *t;
1845
1846 /* We stuck each argument type onto the front of the list
1847 when we read it, so the list is reversed. Build the
1848 fields array right-to-left. */
1849 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1850 TYPE_FIELD_TYPE (func_type, i) = t->type;
1851 }
1852 TYPE_NFIELDS (func_type) = num_args;
1853 TYPE_PROTOTYPED (func_type) = 1;
1854
1855 type = func_type;
1856 break;
1857 }
1858
1859 case 'k': /* Const qualifier on some type (Sun) */
1860 type = read_type (pp, objfile);
1861 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1862 dbx_lookup_type (typenums, objfile));
1863 break;
1864
1865 case 'B': /* Volatile qual on some type (Sun) */
1866 type = read_type (pp, objfile);
1867 type = make_cv_type (TYPE_CONST (type), 1, type,
1868 dbx_lookup_type (typenums, objfile));
1869 break;
1870
1871 case '@':
1872 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1873 { /* Member (class & variable) type */
1874 /* FIXME -- we should be doing smash_to_XXX types here. */
1875
1876 struct type *domain = read_type (pp, objfile);
1877 struct type *memtype;
1878
1879 if (**pp != ',')
1880 /* Invalid member type data format. */
1881 return error_type (pp, objfile);
1882 ++*pp;
1883
1884 memtype = read_type (pp, objfile);
1885 type = dbx_alloc_type (typenums, objfile);
1886 smash_to_memberptr_type (type, domain, memtype);
1887 }
1888 else
1889 /* type attribute */
1890 {
1891 char *attr = *pp;
1892
1893 /* Skip to the semicolon. */
1894 while (**pp != ';' && **pp != '\0')
1895 ++(*pp);
1896 if (**pp == '\0')
1897 return error_type (pp, objfile);
1898 else
1899 ++ * pp; /* Skip the semicolon. */
1900
1901 switch (*attr)
1902 {
1903 case 's': /* Size attribute */
1904 type_size = atoi (attr + 1);
1905 if (type_size <= 0)
1906 type_size = -1;
1907 break;
1908
1909 case 'S': /* String attribute */
1910 /* FIXME: check to see if following type is array? */
1911 is_string = 1;
1912 break;
1913
1914 case 'V': /* Vector attribute */
1915 /* FIXME: check to see if following type is array? */
1916 is_vector = 1;
1917 break;
1918
1919 default:
1920 /* Ignore unrecognized type attributes, so future compilers
1921 can invent new ones. */
1922 break;
1923 }
1924 ++*pp;
1925 goto again;
1926 }
1927 break;
1928
1929 case '#': /* Method (class & fn) type */
1930 if ((*pp)[0] == '#')
1931 {
1932 /* We'll get the parameter types from the name. */
1933 struct type *return_type;
1934
1935 (*pp)++;
1936 return_type = read_type (pp, objfile);
1937 if (*(*pp)++ != ';')
1938 complaint (&symfile_complaints,
1939 _("invalid (minimal) member type "
1940 "data format at symtab pos %d."),
1941 symnum);
1942 type = allocate_stub_method (return_type);
1943 if (typenums[0] != -1)
1944 *dbx_lookup_type (typenums, objfile) = type;
1945 }
1946 else
1947 {
1948 struct type *domain = read_type (pp, objfile);
1949 struct type *return_type;
1950 struct field *args;
1951 int nargs, varargs;
1952
1953 if (**pp != ',')
1954 /* Invalid member type data format. */
1955 return error_type (pp, objfile);
1956 else
1957 ++(*pp);
1958
1959 return_type = read_type (pp, objfile);
1960 args = read_args (pp, ';', objfile, &nargs, &varargs);
1961 if (args == NULL)
1962 return error_type (pp, objfile);
1963 type = dbx_alloc_type (typenums, objfile);
1964 smash_to_method_type (type, domain, return_type, args,
1965 nargs, varargs);
1966 }
1967 break;
1968
1969 case 'r': /* Range type */
1970 type = read_range_type (pp, typenums, type_size, objfile);
1971 if (typenums[0] != -1)
1972 *dbx_lookup_type (typenums, objfile) = type;
1973 break;
1974
1975 case 'b':
1976 {
1977 /* Sun ACC builtin int type */
1978 type = read_sun_builtin_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
1980 *dbx_lookup_type (typenums, objfile) = type;
1981 }
1982 break;
1983
1984 case 'R': /* Sun ACC builtin float type */
1985 type = read_sun_floating_type (pp, typenums, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 break;
1989
1990 case 'e': /* Enumeration type */
1991 type = dbx_alloc_type (typenums, objfile);
1992 type = read_enum_type (pp, type, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 case 's': /* Struct type */
1998 case 'u': /* Union type */
1999 {
2000 enum type_code type_code = TYPE_CODE_UNDEF;
2001 type = dbx_alloc_type (typenums, objfile);
2002 switch (type_descriptor)
2003 {
2004 case 's':
2005 type_code = TYPE_CODE_STRUCT;
2006 break;
2007 case 'u':
2008 type_code = TYPE_CODE_UNION;
2009 break;
2010 }
2011 type = read_struct_type (pp, type, type_code, objfile);
2012 break;
2013 }
2014
2015 case 'a': /* Array type */
2016 if (**pp != 'r')
2017 return error_type (pp, objfile);
2018 ++*pp;
2019
2020 type = dbx_alloc_type (typenums, objfile);
2021 type = read_array_type (pp, type, objfile);
2022 if (is_string)
2023 TYPE_CODE (type) = TYPE_CODE_STRING;
2024 if (is_vector)
2025 make_vector_type (type);
2026 break;
2027
2028 case 'S': /* Set type */
2029 type1 = read_type (pp, objfile);
2030 type = create_set_type ((struct type *) NULL, type1);
2031 if (typenums[0] != -1)
2032 *dbx_lookup_type (typenums, objfile) = type;
2033 break;
2034
2035 default:
2036 --*pp; /* Go back to the symbol in error. */
2037 /* Particularly important if it was \0! */
2038 return error_type (pp, objfile);
2039 }
2040
2041 if (type == 0)
2042 {
2043 warning (_("GDB internal error, type is NULL in stabsread.c."));
2044 return error_type (pp, objfile);
2045 }
2046
2047 /* Size specified in a type attribute overrides any other size. */
2048 if (type_size != -1)
2049 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2050
2051 return type;
2052 }
2053 \f
2054 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2055 Return the proper type node for a given builtin type number. */
2056
2057 static const struct objfile_data *rs6000_builtin_type_data;
2058
2059 static struct type *
2060 rs6000_builtin_type (int typenum, struct objfile *objfile)
2061 {
2062 struct type **negative_types = objfile_data (objfile,
2063 rs6000_builtin_type_data);
2064
2065 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2066 #define NUMBER_RECOGNIZED 34
2067 struct type *rettype = NULL;
2068
2069 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2070 {
2071 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2072 return objfile_type (objfile)->builtin_error;
2073 }
2074
2075 if (!negative_types)
2076 {
2077 /* This includes an empty slot for type number -0. */
2078 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2079 NUMBER_RECOGNIZED + 1, struct type *);
2080 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2081 }
2082
2083 if (negative_types[-typenum] != NULL)
2084 return negative_types[-typenum];
2085
2086 #if TARGET_CHAR_BIT != 8
2087 #error This code wrong for TARGET_CHAR_BIT not 8
2088 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2089 that if that ever becomes not true, the correct fix will be to
2090 make the size in the struct type to be in bits, not in units of
2091 TARGET_CHAR_BIT. */
2092 #endif
2093
2094 switch (-typenum)
2095 {
2096 case 1:
2097 /* The size of this and all the other types are fixed, defined
2098 by the debugging format. If there is a type called "int" which
2099 is other than 32 bits, then it should use a new negative type
2100 number (or avoid negative type numbers for that case).
2101 See stabs.texinfo. */
2102 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2103 break;
2104 case 2:
2105 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2106 break;
2107 case 3:
2108 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2109 break;
2110 case 4:
2111 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2112 break;
2113 case 5:
2114 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2115 "unsigned char", objfile);
2116 break;
2117 case 6:
2118 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2119 break;
2120 case 7:
2121 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2122 "unsigned short", objfile);
2123 break;
2124 case 8:
2125 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2126 "unsigned int", objfile);
2127 break;
2128 case 9:
2129 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2130 "unsigned", objfile);
2131 break;
2132 case 10:
2133 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2134 "unsigned long", objfile);
2135 break;
2136 case 11:
2137 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2138 break;
2139 case 12:
2140 /* IEEE single precision (32 bit). */
2141 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2142 break;
2143 case 13:
2144 /* IEEE double precision (64 bit). */
2145 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2146 break;
2147 case 14:
2148 /* This is an IEEE double on the RS/6000, and different machines with
2149 different sizes for "long double" should use different negative
2150 type numbers. See stabs.texinfo. */
2151 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2152 break;
2153 case 15:
2154 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2155 break;
2156 case 16:
2157 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2158 "boolean", objfile);
2159 break;
2160 case 17:
2161 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2162 break;
2163 case 18:
2164 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2165 break;
2166 case 19:
2167 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2168 break;
2169 case 20:
2170 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2171 "character", objfile);
2172 break;
2173 case 21:
2174 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2175 "logical*1", objfile);
2176 break;
2177 case 22:
2178 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2179 "logical*2", objfile);
2180 break;
2181 case 23:
2182 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2183 "logical*4", objfile);
2184 break;
2185 case 24:
2186 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2187 "logical", objfile);
2188 break;
2189 case 25:
2190 /* Complex type consisting of two IEEE single precision values. */
2191 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2192 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2193 objfile);
2194 break;
2195 case 26:
2196 /* Complex type consisting of two IEEE double precision values. */
2197 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2198 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2199 objfile);
2200 break;
2201 case 27:
2202 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2203 break;
2204 case 28:
2205 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2206 break;
2207 case 29:
2208 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2209 break;
2210 case 30:
2211 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2212 break;
2213 case 31:
2214 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2215 break;
2216 case 32:
2217 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2218 "unsigned long long", objfile);
2219 break;
2220 case 33:
2221 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2222 "logical*8", objfile);
2223 break;
2224 case 34:
2225 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2226 break;
2227 }
2228 negative_types[-typenum] = rettype;
2229 return rettype;
2230 }
2231 \f
2232 /* This page contains subroutines of read_type. */
2233
2234 /* Wrapper around method_name_from_physname to flag a complaint
2235 if there is an error. */
2236
2237 static char *
2238 stabs_method_name_from_physname (const char *physname)
2239 {
2240 char *method_name;
2241
2242 method_name = method_name_from_physname (physname);
2243
2244 if (method_name == NULL)
2245 {
2246 complaint (&symfile_complaints,
2247 _("Method has bad physname %s\n"), physname);
2248 return NULL;
2249 }
2250
2251 return method_name;
2252 }
2253
2254 /* Read member function stabs info for C++ classes. The form of each member
2255 function data is:
2256
2257 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2258
2259 An example with two member functions is:
2260
2261 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2262
2263 For the case of overloaded operators, the format is op$::*.funcs, where
2264 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2265 name (such as `+=') and `.' marks the end of the operator name.
2266
2267 Returns 1 for success, 0 for failure. */
2268
2269 static int
2270 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2271 struct objfile *objfile)
2272 {
2273 int nfn_fields = 0;
2274 int length = 0;
2275 int i;
2276 struct next_fnfield
2277 {
2278 struct next_fnfield *next;
2279 struct fn_field fn_field;
2280 }
2281 *sublist;
2282 struct type *look_ahead_type;
2283 struct next_fnfieldlist *new_fnlist;
2284 struct next_fnfield *new_sublist;
2285 char *main_fn_name;
2286 char *p;
2287
2288 /* Process each list until we find something that is not a member function
2289 or find the end of the functions. */
2290
2291 while (**pp != ';')
2292 {
2293 /* We should be positioned at the start of the function name.
2294 Scan forward to find the first ':' and if it is not the
2295 first of a "::" delimiter, then this is not a member function. */
2296 p = *pp;
2297 while (*p != ':')
2298 {
2299 p++;
2300 }
2301 if (p[1] != ':')
2302 {
2303 break;
2304 }
2305
2306 sublist = NULL;
2307 look_ahead_type = NULL;
2308 length = 0;
2309
2310 new_fnlist = (struct next_fnfieldlist *)
2311 xmalloc (sizeof (struct next_fnfieldlist));
2312 make_cleanup (xfree, new_fnlist);
2313 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2314
2315 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2316 {
2317 /* This is a completely wierd case. In order to stuff in the
2318 names that might contain colons (the usual name delimiter),
2319 Mike Tiemann defined a different name format which is
2320 signalled if the identifier is "op$". In that case, the
2321 format is "op$::XXXX." where XXXX is the name. This is
2322 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2323 /* This lets the user type "break operator+".
2324 We could just put in "+" as the name, but that wouldn't
2325 work for "*". */
2326 static char opname[32] = "op$";
2327 char *o = opname + 3;
2328
2329 /* Skip past '::'. */
2330 *pp = p + 2;
2331
2332 STABS_CONTINUE (pp, objfile);
2333 p = *pp;
2334 while (*p != '.')
2335 {
2336 *o++ = *p++;
2337 }
2338 main_fn_name = savestring (opname, o - opname);
2339 /* Skip past '.' */
2340 *pp = p + 1;
2341 }
2342 else
2343 {
2344 main_fn_name = savestring (*pp, p - *pp);
2345 /* Skip past '::'. */
2346 *pp = p + 2;
2347 }
2348 new_fnlist->fn_fieldlist.name = main_fn_name;
2349
2350 do
2351 {
2352 new_sublist =
2353 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2354 make_cleanup (xfree, new_sublist);
2355 memset (new_sublist, 0, sizeof (struct next_fnfield));
2356
2357 /* Check for and handle cretinous dbx symbol name continuation! */
2358 if (look_ahead_type == NULL)
2359 {
2360 /* Normal case. */
2361 STABS_CONTINUE (pp, objfile);
2362
2363 new_sublist->fn_field.type = read_type (pp, objfile);
2364 if (**pp != ':')
2365 {
2366 /* Invalid symtab info for member function. */
2367 return 0;
2368 }
2369 }
2370 else
2371 {
2372 /* g++ version 1 kludge */
2373 new_sublist->fn_field.type = look_ahead_type;
2374 look_ahead_type = NULL;
2375 }
2376
2377 (*pp)++;
2378 p = *pp;
2379 while (*p != ';')
2380 {
2381 p++;
2382 }
2383
2384 /* If this is just a stub, then we don't have the real name here. */
2385
2386 if (TYPE_STUB (new_sublist->fn_field.type))
2387 {
2388 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2389 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2390 new_sublist->fn_field.is_stub = 1;
2391 }
2392 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2393 *pp = p + 1;
2394
2395 /* Set this member function's visibility fields. */
2396 switch (*(*pp)++)
2397 {
2398 case VISIBILITY_PRIVATE:
2399 new_sublist->fn_field.is_private = 1;
2400 break;
2401 case VISIBILITY_PROTECTED:
2402 new_sublist->fn_field.is_protected = 1;
2403 break;
2404 }
2405
2406 STABS_CONTINUE (pp, objfile);
2407 switch (**pp)
2408 {
2409 case 'A': /* Normal functions. */
2410 new_sublist->fn_field.is_const = 0;
2411 new_sublist->fn_field.is_volatile = 0;
2412 (*pp)++;
2413 break;
2414 case 'B': /* `const' member functions. */
2415 new_sublist->fn_field.is_const = 1;
2416 new_sublist->fn_field.is_volatile = 0;
2417 (*pp)++;
2418 break;
2419 case 'C': /* `volatile' member function. */
2420 new_sublist->fn_field.is_const = 0;
2421 new_sublist->fn_field.is_volatile = 1;
2422 (*pp)++;
2423 break;
2424 case 'D': /* `const volatile' member function. */
2425 new_sublist->fn_field.is_const = 1;
2426 new_sublist->fn_field.is_volatile = 1;
2427 (*pp)++;
2428 break;
2429 case '*': /* File compiled with g++ version 1 --
2430 no info. */
2431 case '?':
2432 case '.':
2433 break;
2434 default:
2435 complaint (&symfile_complaints,
2436 _("const/volatile indicator missing, got '%c'"),
2437 **pp);
2438 break;
2439 }
2440
2441 switch (*(*pp)++)
2442 {
2443 case '*':
2444 {
2445 int nbits;
2446 /* virtual member function, followed by index.
2447 The sign bit is set to distinguish pointers-to-methods
2448 from virtual function indicies. Since the array is
2449 in words, the quantity must be shifted left by 1
2450 on 16 bit machine, and by 2 on 32 bit machine, forcing
2451 the sign bit out, and usable as a valid index into
2452 the array. Remove the sign bit here. */
2453 new_sublist->fn_field.voffset =
2454 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2455 if (nbits != 0)
2456 return 0;
2457
2458 STABS_CONTINUE (pp, objfile);
2459 if (**pp == ';' || **pp == '\0')
2460 {
2461 /* Must be g++ version 1. */
2462 new_sublist->fn_field.fcontext = 0;
2463 }
2464 else
2465 {
2466 /* Figure out from whence this virtual function came.
2467 It may belong to virtual function table of
2468 one of its baseclasses. */
2469 look_ahead_type = read_type (pp, objfile);
2470 if (**pp == ':')
2471 {
2472 /* g++ version 1 overloaded methods. */
2473 }
2474 else
2475 {
2476 new_sublist->fn_field.fcontext = look_ahead_type;
2477 if (**pp != ';')
2478 {
2479 return 0;
2480 }
2481 else
2482 {
2483 ++*pp;
2484 }
2485 look_ahead_type = NULL;
2486 }
2487 }
2488 break;
2489 }
2490 case '?':
2491 /* static member function. */
2492 {
2493 int slen = strlen (main_fn_name);
2494
2495 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2496
2497 /* For static member functions, we can't tell if they
2498 are stubbed, as they are put out as functions, and not as
2499 methods.
2500 GCC v2 emits the fully mangled name if
2501 dbxout.c:flag_minimal_debug is not set, so we have to
2502 detect a fully mangled physname here and set is_stub
2503 accordingly. Fully mangled physnames in v2 start with
2504 the member function name, followed by two underscores.
2505 GCC v3 currently always emits stubbed member functions,
2506 but with fully mangled physnames, which start with _Z. */
2507 if (!(strncmp (new_sublist->fn_field.physname,
2508 main_fn_name, slen) == 0
2509 && new_sublist->fn_field.physname[slen] == '_'
2510 && new_sublist->fn_field.physname[slen + 1] == '_'))
2511 {
2512 new_sublist->fn_field.is_stub = 1;
2513 }
2514 break;
2515 }
2516
2517 default:
2518 /* error */
2519 complaint (&symfile_complaints,
2520 _("member function type missing, got '%c'"),
2521 (*pp)[-1]);
2522 /* Fall through into normal member function. */
2523
2524 case '.':
2525 /* normal member function. */
2526 new_sublist->fn_field.voffset = 0;
2527 new_sublist->fn_field.fcontext = 0;
2528 break;
2529 }
2530
2531 new_sublist->next = sublist;
2532 sublist = new_sublist;
2533 length++;
2534 STABS_CONTINUE (pp, objfile);
2535 }
2536 while (**pp != ';' && **pp != '\0');
2537
2538 (*pp)++;
2539 STABS_CONTINUE (pp, objfile);
2540
2541 /* Skip GCC 3.X member functions which are duplicates of the callable
2542 constructor/destructor. */
2543 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2544 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2545 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2546 {
2547 xfree (main_fn_name);
2548 }
2549 else
2550 {
2551 int has_stub = 0;
2552 int has_destructor = 0, has_other = 0;
2553 int is_v3 = 0;
2554 struct next_fnfield *tmp_sublist;
2555
2556 /* Various versions of GCC emit various mostly-useless
2557 strings in the name field for special member functions.
2558
2559 For stub methods, we need to defer correcting the name
2560 until we are ready to unstub the method, because the current
2561 name string is used by gdb_mangle_name. The only stub methods
2562 of concern here are GNU v2 operators; other methods have their
2563 names correct (see caveat below).
2564
2565 For non-stub methods, in GNU v3, we have a complete physname.
2566 Therefore we can safely correct the name now. This primarily
2567 affects constructors and destructors, whose name will be
2568 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2569 operators will also have incorrect names; for instance,
2570 "operator int" will be named "operator i" (i.e. the type is
2571 mangled).
2572
2573 For non-stub methods in GNU v2, we have no easy way to
2574 know if we have a complete physname or not. For most
2575 methods the result depends on the platform (if CPLUS_MARKER
2576 can be `$' or `.', it will use minimal debug information, or
2577 otherwise the full physname will be included).
2578
2579 Rather than dealing with this, we take a different approach.
2580 For v3 mangled names, we can use the full physname; for v2,
2581 we use cplus_demangle_opname (which is actually v2 specific),
2582 because the only interesting names are all operators - once again
2583 barring the caveat below. Skip this process if any method in the
2584 group is a stub, to prevent our fouling up the workings of
2585 gdb_mangle_name.
2586
2587 The caveat: GCC 2.95.x (and earlier?) put constructors and
2588 destructors in the same method group. We need to split this
2589 into two groups, because they should have different names.
2590 So for each method group we check whether it contains both
2591 routines whose physname appears to be a destructor (the physnames
2592 for and destructors are always provided, due to quirks in v2
2593 mangling) and routines whose physname does not appear to be a
2594 destructor. If so then we break up the list into two halves.
2595 Even if the constructors and destructors aren't in the same group
2596 the destructor will still lack the leading tilde, so that also
2597 needs to be fixed.
2598
2599 So, to summarize what we expect and handle here:
2600
2601 Given Given Real Real Action
2602 method name physname physname method name
2603
2604 __opi [none] __opi__3Foo operator int opname
2605 [now or later]
2606 Foo _._3Foo _._3Foo ~Foo separate and
2607 rename
2608 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2609 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2610 */
2611
2612 tmp_sublist = sublist;
2613 while (tmp_sublist != NULL)
2614 {
2615 if (tmp_sublist->fn_field.is_stub)
2616 has_stub = 1;
2617 if (tmp_sublist->fn_field.physname[0] == '_'
2618 && tmp_sublist->fn_field.physname[1] == 'Z')
2619 is_v3 = 1;
2620
2621 if (is_destructor_name (tmp_sublist->fn_field.physname))
2622 has_destructor++;
2623 else
2624 has_other++;
2625
2626 tmp_sublist = tmp_sublist->next;
2627 }
2628
2629 if (has_destructor && has_other)
2630 {
2631 struct next_fnfieldlist *destr_fnlist;
2632 struct next_fnfield *last_sublist;
2633
2634 /* Create a new fn_fieldlist for the destructors. */
2635
2636 destr_fnlist = (struct next_fnfieldlist *)
2637 xmalloc (sizeof (struct next_fnfieldlist));
2638 make_cleanup (xfree, destr_fnlist);
2639 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2640 destr_fnlist->fn_fieldlist.name
2641 = obconcat (&objfile->objfile_obstack, "~",
2642 new_fnlist->fn_fieldlist.name, (char *) NULL);
2643
2644 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2645 obstack_alloc (&objfile->objfile_obstack,
2646 sizeof (struct fn_field) * has_destructor);
2647 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2648 sizeof (struct fn_field) * has_destructor);
2649 tmp_sublist = sublist;
2650 last_sublist = NULL;
2651 i = 0;
2652 while (tmp_sublist != NULL)
2653 {
2654 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2655 {
2656 tmp_sublist = tmp_sublist->next;
2657 continue;
2658 }
2659
2660 destr_fnlist->fn_fieldlist.fn_fields[i++]
2661 = tmp_sublist->fn_field;
2662 if (last_sublist)
2663 last_sublist->next = tmp_sublist->next;
2664 else
2665 sublist = tmp_sublist->next;
2666 last_sublist = tmp_sublist;
2667 tmp_sublist = tmp_sublist->next;
2668 }
2669
2670 destr_fnlist->fn_fieldlist.length = has_destructor;
2671 destr_fnlist->next = fip->fnlist;
2672 fip->fnlist = destr_fnlist;
2673 nfn_fields++;
2674 length -= has_destructor;
2675 }
2676 else if (is_v3)
2677 {
2678 /* v3 mangling prevents the use of abbreviated physnames,
2679 so we can do this here. There are stubbed methods in v3
2680 only:
2681 - in -gstabs instead of -gstabs+
2682 - or for static methods, which are output as a function type
2683 instead of a method type. */
2684 char *new_method_name =
2685 stabs_method_name_from_physname (sublist->fn_field.physname);
2686
2687 if (new_method_name != NULL
2688 && strcmp (new_method_name,
2689 new_fnlist->fn_fieldlist.name) != 0)
2690 {
2691 new_fnlist->fn_fieldlist.name = new_method_name;
2692 xfree (main_fn_name);
2693 }
2694 else
2695 xfree (new_method_name);
2696 }
2697 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2698 {
2699 new_fnlist->fn_fieldlist.name =
2700 obconcat (&objfile->objfile_obstack,
2701 "~", main_fn_name, (char *)NULL);
2702 xfree (main_fn_name);
2703 }
2704 else if (!has_stub)
2705 {
2706 char dem_opname[256];
2707 int ret;
2708
2709 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2710 dem_opname, DMGL_ANSI);
2711 if (!ret)
2712 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2713 dem_opname, 0);
2714 if (ret)
2715 new_fnlist->fn_fieldlist.name
2716 = obstack_copy0 (&objfile->objfile_obstack,
2717 dem_opname, strlen (dem_opname));
2718 xfree (main_fn_name);
2719 }
2720
2721 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2722 obstack_alloc (&objfile->objfile_obstack,
2723 sizeof (struct fn_field) * length);
2724 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2725 sizeof (struct fn_field) * length);
2726 for (i = length; (i--, sublist); sublist = sublist->next)
2727 {
2728 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2729 }
2730
2731 new_fnlist->fn_fieldlist.length = length;
2732 new_fnlist->next = fip->fnlist;
2733 fip->fnlist = new_fnlist;
2734 nfn_fields++;
2735 }
2736 }
2737
2738 if (nfn_fields)
2739 {
2740 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2741 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2742 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2743 memset (TYPE_FN_FIELDLISTS (type), 0,
2744 sizeof (struct fn_fieldlist) * nfn_fields);
2745 TYPE_NFN_FIELDS (type) = nfn_fields;
2746 }
2747
2748 return 1;
2749 }
2750
2751 /* Special GNU C++ name.
2752
2753 Returns 1 for success, 0 for failure. "failure" means that we can't
2754 keep parsing and it's time for error_type(). */
2755
2756 static int
2757 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2758 struct objfile *objfile)
2759 {
2760 char *p;
2761 const char *name;
2762 char cpp_abbrev;
2763 struct type *context;
2764
2765 p = *pp;
2766 if (*++p == 'v')
2767 {
2768 name = NULL;
2769 cpp_abbrev = *++p;
2770
2771 *pp = p + 1;
2772
2773 /* At this point, *pp points to something like "22:23=*22...",
2774 where the type number before the ':' is the "context" and
2775 everything after is a regular type definition. Lookup the
2776 type, find it's name, and construct the field name. */
2777
2778 context = read_type (pp, objfile);
2779
2780 switch (cpp_abbrev)
2781 {
2782 case 'f': /* $vf -- a virtual function table pointer */
2783 name = type_name_no_tag (context);
2784 if (name == NULL)
2785 {
2786 name = "";
2787 }
2788 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2789 vptr_name, name, (char *) NULL);
2790 break;
2791
2792 case 'b': /* $vb -- a virtual bsomethingorother */
2793 name = type_name_no_tag (context);
2794 if (name == NULL)
2795 {
2796 complaint (&symfile_complaints,
2797 _("C++ abbreviated type name "
2798 "unknown at symtab pos %d"),
2799 symnum);
2800 name = "FOO";
2801 }
2802 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2803 name, (char *) NULL);
2804 break;
2805
2806 default:
2807 invalid_cpp_abbrev_complaint (*pp);
2808 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2809 "INVALID_CPLUSPLUS_ABBREV",
2810 (char *) NULL);
2811 break;
2812 }
2813
2814 /* At this point, *pp points to the ':'. Skip it and read the
2815 field type. */
2816
2817 p = ++(*pp);
2818 if (p[-1] != ':')
2819 {
2820 invalid_cpp_abbrev_complaint (*pp);
2821 return 0;
2822 }
2823 fip->list->field.type = read_type (pp, objfile);
2824 if (**pp == ',')
2825 (*pp)++; /* Skip the comma. */
2826 else
2827 return 0;
2828
2829 {
2830 int nbits;
2831
2832 SET_FIELD_BITPOS (fip->list->field,
2833 read_huge_number (pp, ';', &nbits, 0));
2834 if (nbits != 0)
2835 return 0;
2836 }
2837 /* This field is unpacked. */
2838 FIELD_BITSIZE (fip->list->field) = 0;
2839 fip->list->visibility = VISIBILITY_PRIVATE;
2840 }
2841 else
2842 {
2843 invalid_cpp_abbrev_complaint (*pp);
2844 /* We have no idea what syntax an unrecognized abbrev would have, so
2845 better return 0. If we returned 1, we would need to at least advance
2846 *pp to avoid an infinite loop. */
2847 return 0;
2848 }
2849 return 1;
2850 }
2851
2852 static void
2853 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2854 struct type *type, struct objfile *objfile)
2855 {
2856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2857
2858 fip->list->field.name =
2859 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2860 *pp = p + 1;
2861
2862 /* This means we have a visibility for a field coming. */
2863 if (**pp == '/')
2864 {
2865 (*pp)++;
2866 fip->list->visibility = *(*pp)++;
2867 }
2868 else
2869 {
2870 /* normal dbx-style format, no explicit visibility */
2871 fip->list->visibility = VISIBILITY_PUBLIC;
2872 }
2873
2874 fip->list->field.type = read_type (pp, objfile);
2875 if (**pp == ':')
2876 {
2877 p = ++(*pp);
2878 #if 0
2879 /* Possible future hook for nested types. */
2880 if (**pp == '!')
2881 {
2882 fip->list->field.bitpos = (long) -2; /* nested type */
2883 p = ++(*pp);
2884 }
2885 else
2886 ...;
2887 #endif
2888 while (*p != ';')
2889 {
2890 p++;
2891 }
2892 /* Static class member. */
2893 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2894 *pp = p + 1;
2895 return;
2896 }
2897 else if (**pp != ',')
2898 {
2899 /* Bad structure-type format. */
2900 stabs_general_complaint ("bad structure-type format");
2901 return;
2902 }
2903
2904 (*pp)++; /* Skip the comma. */
2905
2906 {
2907 int nbits;
2908
2909 SET_FIELD_BITPOS (fip->list->field,
2910 read_huge_number (pp, ',', &nbits, 0));
2911 if (nbits != 0)
2912 {
2913 stabs_general_complaint ("bad structure-type format");
2914 return;
2915 }
2916 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2917 if (nbits != 0)
2918 {
2919 stabs_general_complaint ("bad structure-type format");
2920 return;
2921 }
2922 }
2923
2924 if (FIELD_BITPOS (fip->list->field) == 0
2925 && FIELD_BITSIZE (fip->list->field) == 0)
2926 {
2927 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2928 it is a field which has been optimized out. The correct stab for
2929 this case is to use VISIBILITY_IGNORE, but that is a recent
2930 invention. (2) It is a 0-size array. For example
2931 union { int num; char str[0]; } foo. Printing _("<no value>" for
2932 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2933 will continue to work, and a 0-size array as a whole doesn't
2934 have any contents to print.
2935
2936 I suspect this probably could also happen with gcc -gstabs (not
2937 -gstabs+) for static fields, and perhaps other C++ extensions.
2938 Hopefully few people use -gstabs with gdb, since it is intended
2939 for dbx compatibility. */
2940
2941 /* Ignore this field. */
2942 fip->list->visibility = VISIBILITY_IGNORE;
2943 }
2944 else
2945 {
2946 /* Detect an unpacked field and mark it as such.
2947 dbx gives a bit size for all fields.
2948 Note that forward refs cannot be packed,
2949 and treat enums as if they had the width of ints. */
2950
2951 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2952
2953 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2954 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2955 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2956 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2957 {
2958 FIELD_BITSIZE (fip->list->field) = 0;
2959 }
2960 if ((FIELD_BITSIZE (fip->list->field)
2961 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2962 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2963 && FIELD_BITSIZE (fip->list->field)
2964 == gdbarch_int_bit (gdbarch))
2965 )
2966 &&
2967 FIELD_BITPOS (fip->list->field) % 8 == 0)
2968 {
2969 FIELD_BITSIZE (fip->list->field) = 0;
2970 }
2971 }
2972 }
2973
2974
2975 /* Read struct or class data fields. They have the form:
2976
2977 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2978
2979 At the end, we see a semicolon instead of a field.
2980
2981 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2982 a static field.
2983
2984 The optional VISIBILITY is one of:
2985
2986 '/0' (VISIBILITY_PRIVATE)
2987 '/1' (VISIBILITY_PROTECTED)
2988 '/2' (VISIBILITY_PUBLIC)
2989 '/9' (VISIBILITY_IGNORE)
2990
2991 or nothing, for C style fields with public visibility.
2992
2993 Returns 1 for success, 0 for failure. */
2994
2995 static int
2996 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2997 struct objfile *objfile)
2998 {
2999 char *p;
3000 struct nextfield *new;
3001
3002 /* We better set p right now, in case there are no fields at all... */
3003
3004 p = *pp;
3005
3006 /* Read each data member type until we find the terminating ';' at the end of
3007 the data member list, or break for some other reason such as finding the
3008 start of the member function list. */
3009 /* Stab string for structure/union does not end with two ';' in
3010 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3011
3012 while (**pp != ';' && **pp != '\0')
3013 {
3014 STABS_CONTINUE (pp, objfile);
3015 /* Get space to record the next field's data. */
3016 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3017 make_cleanup (xfree, new);
3018 memset (new, 0, sizeof (struct nextfield));
3019 new->next = fip->list;
3020 fip->list = new;
3021
3022 /* Get the field name. */
3023 p = *pp;
3024
3025 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3026 unless the CPLUS_MARKER is followed by an underscore, in
3027 which case it is just the name of an anonymous type, which we
3028 should handle like any other type name. */
3029
3030 if (is_cplus_marker (p[0]) && p[1] != '_')
3031 {
3032 if (!read_cpp_abbrev (fip, pp, type, objfile))
3033 return 0;
3034 continue;
3035 }
3036
3037 /* Look for the ':' that separates the field name from the field
3038 values. Data members are delimited by a single ':', while member
3039 functions are delimited by a pair of ':'s. When we hit the member
3040 functions (if any), terminate scan loop and return. */
3041
3042 while (*p != ':' && *p != '\0')
3043 {
3044 p++;
3045 }
3046 if (*p == '\0')
3047 return 0;
3048
3049 /* Check to see if we have hit the member functions yet. */
3050 if (p[1] == ':')
3051 {
3052 break;
3053 }
3054 read_one_struct_field (fip, pp, p, type, objfile);
3055 }
3056 if (p[0] == ':' && p[1] == ':')
3057 {
3058 /* (the deleted) chill the list of fields: the last entry (at
3059 the head) is a partially constructed entry which we now
3060 scrub. */
3061 fip->list = fip->list->next;
3062 }
3063 return 1;
3064 }
3065 /* *INDENT-OFF* */
3066 /* The stabs for C++ derived classes contain baseclass information which
3067 is marked by a '!' character after the total size. This function is
3068 called when we encounter the baseclass marker, and slurps up all the
3069 baseclass information.
3070
3071 Immediately following the '!' marker is the number of base classes that
3072 the class is derived from, followed by information for each base class.
3073 For each base class, there are two visibility specifiers, a bit offset
3074 to the base class information within the derived class, a reference to
3075 the type for the base class, and a terminating semicolon.
3076
3077 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3078 ^^ ^ ^ ^ ^ ^ ^
3079 Baseclass information marker __________________|| | | | | | |
3080 Number of baseclasses __________________________| | | | | | |
3081 Visibility specifiers (2) ________________________| | | | | |
3082 Offset in bits from start of class _________________| | | | |
3083 Type number for base class ___________________________| | | |
3084 Visibility specifiers (2) _______________________________| | |
3085 Offset in bits from start of class ________________________| |
3086 Type number of base class ____________________________________|
3087
3088 Return 1 for success, 0 for (error-type-inducing) failure. */
3089 /* *INDENT-ON* */
3090
3091
3092
3093 static int
3094 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3095 struct objfile *objfile)
3096 {
3097 int i;
3098 struct nextfield *new;
3099
3100 if (**pp != '!')
3101 {
3102 return 1;
3103 }
3104 else
3105 {
3106 /* Skip the '!' baseclass information marker. */
3107 (*pp)++;
3108 }
3109
3110 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3111 {
3112 int nbits;
3113
3114 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3115 if (nbits != 0)
3116 return 0;
3117 }
3118
3119 #if 0
3120 /* Some stupid compilers have trouble with the following, so break
3121 it up into simpler expressions. */
3122 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3123 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3124 #else
3125 {
3126 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3127 char *pointer;
3128
3129 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3130 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3131 }
3132 #endif /* 0 */
3133
3134 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3135
3136 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3137 {
3138 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3139 make_cleanup (xfree, new);
3140 memset (new, 0, sizeof (struct nextfield));
3141 new->next = fip->list;
3142 fip->list = new;
3143 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3144 field! */
3145
3146 STABS_CONTINUE (pp, objfile);
3147 switch (**pp)
3148 {
3149 case '0':
3150 /* Nothing to do. */
3151 break;
3152 case '1':
3153 SET_TYPE_FIELD_VIRTUAL (type, i);
3154 break;
3155 default:
3156 /* Unknown character. Complain and treat it as non-virtual. */
3157 {
3158 complaint (&symfile_complaints,
3159 _("Unknown virtual character `%c' for baseclass"),
3160 **pp);
3161 }
3162 }
3163 ++(*pp);
3164
3165 new->visibility = *(*pp)++;
3166 switch (new->visibility)
3167 {
3168 case VISIBILITY_PRIVATE:
3169 case VISIBILITY_PROTECTED:
3170 case VISIBILITY_PUBLIC:
3171 break;
3172 default:
3173 /* Bad visibility format. Complain and treat it as
3174 public. */
3175 {
3176 complaint (&symfile_complaints,
3177 _("Unknown visibility `%c' for baseclass"),
3178 new->visibility);
3179 new->visibility = VISIBILITY_PUBLIC;
3180 }
3181 }
3182
3183 {
3184 int nbits;
3185
3186 /* The remaining value is the bit offset of the portion of the object
3187 corresponding to this baseclass. Always zero in the absence of
3188 multiple inheritance. */
3189
3190 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3191 if (nbits != 0)
3192 return 0;
3193 }
3194
3195 /* The last piece of baseclass information is the type of the
3196 base class. Read it, and remember it's type name as this
3197 field's name. */
3198
3199 new->field.type = read_type (pp, objfile);
3200 new->field.name = type_name_no_tag (new->field.type);
3201
3202 /* Skip trailing ';' and bump count of number of fields seen. */
3203 if (**pp == ';')
3204 (*pp)++;
3205 else
3206 return 0;
3207 }
3208 return 1;
3209 }
3210
3211 /* The tail end of stabs for C++ classes that contain a virtual function
3212 pointer contains a tilde, a %, and a type number.
3213 The type number refers to the base class (possibly this class itself) which
3214 contains the vtable pointer for the current class.
3215
3216 This function is called when we have parsed all the method declarations,
3217 so we can look for the vptr base class info. */
3218
3219 static int
3220 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3221 struct objfile *objfile)
3222 {
3223 char *p;
3224
3225 STABS_CONTINUE (pp, objfile);
3226
3227 /* If we are positioned at a ';', then skip it. */
3228 if (**pp == ';')
3229 {
3230 (*pp)++;
3231 }
3232
3233 if (**pp == '~')
3234 {
3235 (*pp)++;
3236
3237 if (**pp == '=' || **pp == '+' || **pp == '-')
3238 {
3239 /* Obsolete flags that used to indicate the presence
3240 of constructors and/or destructors. */
3241 (*pp)++;
3242 }
3243
3244 /* Read either a '%' or the final ';'. */
3245 if (*(*pp)++ == '%')
3246 {
3247 /* The next number is the type number of the base class
3248 (possibly our own class) which supplies the vtable for
3249 this class. Parse it out, and search that class to find
3250 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3251 and TYPE_VPTR_FIELDNO. */
3252
3253 struct type *t;
3254 int i;
3255
3256 t = read_type (pp, objfile);
3257 p = (*pp)++;
3258 while (*p != '\0' && *p != ';')
3259 {
3260 p++;
3261 }
3262 if (*p == '\0')
3263 {
3264 /* Premature end of symbol. */
3265 return 0;
3266 }
3267
3268 TYPE_VPTR_BASETYPE (type) = t;
3269 if (type == t) /* Our own class provides vtbl ptr. */
3270 {
3271 for (i = TYPE_NFIELDS (t) - 1;
3272 i >= TYPE_N_BASECLASSES (t);
3273 --i)
3274 {
3275 const char *name = TYPE_FIELD_NAME (t, i);
3276
3277 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3278 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3279 {
3280 TYPE_VPTR_FIELDNO (type) = i;
3281 goto gotit;
3282 }
3283 }
3284 /* Virtual function table field not found. */
3285 complaint (&symfile_complaints,
3286 _("virtual function table pointer "
3287 "not found when defining class `%s'"),
3288 TYPE_NAME (type));
3289 return 0;
3290 }
3291 else
3292 {
3293 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3294 }
3295
3296 gotit:
3297 *pp = p + 1;
3298 }
3299 }
3300 return 1;
3301 }
3302
3303 static int
3304 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3305 {
3306 int n;
3307
3308 for (n = TYPE_NFN_FIELDS (type);
3309 fip->fnlist != NULL;
3310 fip->fnlist = fip->fnlist->next)
3311 {
3312 --n; /* Circumvent Sun3 compiler bug. */
3313 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3314 }
3315 return 1;
3316 }
3317
3318 /* Create the vector of fields, and record how big it is.
3319 We need this info to record proper virtual function table information
3320 for this class's virtual functions. */
3321
3322 static int
3323 attach_fields_to_type (struct field_info *fip, struct type *type,
3324 struct objfile *objfile)
3325 {
3326 int nfields = 0;
3327 int non_public_fields = 0;
3328 struct nextfield *scan;
3329
3330 /* Count up the number of fields that we have, as well as taking note of
3331 whether or not there are any non-public fields, which requires us to
3332 allocate and build the private_field_bits and protected_field_bits
3333 bitfields. */
3334
3335 for (scan = fip->list; scan != NULL; scan = scan->next)
3336 {
3337 nfields++;
3338 if (scan->visibility != VISIBILITY_PUBLIC)
3339 {
3340 non_public_fields++;
3341 }
3342 }
3343
3344 /* Now we know how many fields there are, and whether or not there are any
3345 non-public fields. Record the field count, allocate space for the
3346 array of fields, and create blank visibility bitfields if necessary. */
3347
3348 TYPE_NFIELDS (type) = nfields;
3349 TYPE_FIELDS (type) = (struct field *)
3350 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3351 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3352
3353 if (non_public_fields)
3354 {
3355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3356
3357 TYPE_FIELD_PRIVATE_BITS (type) =
3358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3359 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3360
3361 TYPE_FIELD_PROTECTED_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3364
3365 TYPE_FIELD_IGNORE_BITS (type) =
3366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3367 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3368 }
3369
3370 /* Copy the saved-up fields into the field vector. Start from the
3371 head of the list, adding to the tail of the field array, so that
3372 they end up in the same order in the array in which they were
3373 added to the list. */
3374
3375 while (nfields-- > 0)
3376 {
3377 TYPE_FIELD (type, nfields) = fip->list->field;
3378 switch (fip->list->visibility)
3379 {
3380 case VISIBILITY_PRIVATE:
3381 SET_TYPE_FIELD_PRIVATE (type, nfields);
3382 break;
3383
3384 case VISIBILITY_PROTECTED:
3385 SET_TYPE_FIELD_PROTECTED (type, nfields);
3386 break;
3387
3388 case VISIBILITY_IGNORE:
3389 SET_TYPE_FIELD_IGNORE (type, nfields);
3390 break;
3391
3392 case VISIBILITY_PUBLIC:
3393 break;
3394
3395 default:
3396 /* Unknown visibility. Complain and treat it as public. */
3397 {
3398 complaint (&symfile_complaints,
3399 _("Unknown visibility `%c' for field"),
3400 fip->list->visibility);
3401 }
3402 break;
3403 }
3404 fip->list = fip->list->next;
3405 }
3406 return 1;
3407 }
3408
3409
3410 /* Complain that the compiler has emitted more than one definition for the
3411 structure type TYPE. */
3412 static void
3413 complain_about_struct_wipeout (struct type *type)
3414 {
3415 const char *name = "";
3416 const char *kind = "";
3417
3418 if (TYPE_TAG_NAME (type))
3419 {
3420 name = TYPE_TAG_NAME (type);
3421 switch (TYPE_CODE (type))
3422 {
3423 case TYPE_CODE_STRUCT: kind = "struct "; break;
3424 case TYPE_CODE_UNION: kind = "union "; break;
3425 case TYPE_CODE_ENUM: kind = "enum "; break;
3426 default: kind = "";
3427 }
3428 }
3429 else if (TYPE_NAME (type))
3430 {
3431 name = TYPE_NAME (type);
3432 kind = "";
3433 }
3434 else
3435 {
3436 name = "<unknown>";
3437 kind = "";
3438 }
3439
3440 complaint (&symfile_complaints,
3441 _("struct/union type gets multiply defined: %s%s"), kind, name);
3442 }
3443
3444 /* Set the length for all variants of a same main_type, which are
3445 connected in the closed chain.
3446
3447 This is something that needs to be done when a type is defined *after*
3448 some cross references to this type have already been read. Consider
3449 for instance the following scenario where we have the following two
3450 stabs entries:
3451
3452 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3453 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3454
3455 A stubbed version of type dummy is created while processing the first
3456 stabs entry. The length of that type is initially set to zero, since
3457 it is unknown at this point. Also, a "constant" variation of type
3458 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3459 the stabs line).
3460
3461 The second stabs entry allows us to replace the stubbed definition
3462 with the real definition. However, we still need to adjust the length
3463 of the "constant" variation of that type, as its length was left
3464 untouched during the main type replacement... */
3465
3466 static void
3467 set_length_in_type_chain (struct type *type)
3468 {
3469 struct type *ntype = TYPE_CHAIN (type);
3470
3471 while (ntype != type)
3472 {
3473 if (TYPE_LENGTH(ntype) == 0)
3474 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3475 else
3476 complain_about_struct_wipeout (ntype);
3477 ntype = TYPE_CHAIN (ntype);
3478 }
3479 }
3480
3481 /* Read the description of a structure (or union type) and return an object
3482 describing the type.
3483
3484 PP points to a character pointer that points to the next unconsumed token
3485 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3486 *PP will point to "4a:1,0,32;;".
3487
3488 TYPE points to an incomplete type that needs to be filled in.
3489
3490 OBJFILE points to the current objfile from which the stabs information is
3491 being read. (Note that it is redundant in that TYPE also contains a pointer
3492 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3493 */
3494
3495 static struct type *
3496 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3497 struct objfile *objfile)
3498 {
3499 struct cleanup *back_to;
3500 struct field_info fi;
3501
3502 fi.list = NULL;
3503 fi.fnlist = NULL;
3504
3505 /* When describing struct/union/class types in stabs, G++ always drops
3506 all qualifications from the name. So if you've got:
3507 struct A { ... struct B { ... }; ... };
3508 then G++ will emit stabs for `struct A::B' that call it simply
3509 `struct B'. Obviously, if you've got a real top-level definition for
3510 `struct B', or other nested definitions, this is going to cause
3511 problems.
3512
3513 Obviously, GDB can't fix this by itself, but it can at least avoid
3514 scribbling on existing structure type objects when new definitions
3515 appear. */
3516 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3517 || TYPE_STUB (type)))
3518 {
3519 complain_about_struct_wipeout (type);
3520
3521 /* It's probably best to return the type unchanged. */
3522 return type;
3523 }
3524
3525 back_to = make_cleanup (null_cleanup, 0);
3526
3527 INIT_CPLUS_SPECIFIC (type);
3528 TYPE_CODE (type) = type_code;
3529 TYPE_STUB (type) = 0;
3530
3531 /* First comes the total size in bytes. */
3532
3533 {
3534 int nbits;
3535
3536 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3537 if (nbits != 0)
3538 return error_type (pp, objfile);
3539 set_length_in_type_chain (type);
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3545 field (baseclass specifier for the class holding the main vtable). */
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559 }
3560
3561 /* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566 static struct type *
3567 read_array_type (char **pp, struct type *type,
3568 struct objfile *objfile)
3569 {
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
3595 lower = read_huge_number (pp, ';', &nbits, 0);
3596
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
3605 upper = read_huge_number (pp, ';', &nbits, 0);
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
3608
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
3618 create_range_type ((struct type *) NULL, index_type, lower, upper);
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622 }
3623
3624
3625 /* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629 static struct type *
3630 read_enum_type (char **pp, struct type *type,
3631 struct objfile *objfile)
3632 {
3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3634 char *p;
3635 char *name;
3636 long n;
3637 struct symbol *sym;
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645 #if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652 #endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
3663 (*pp)++;
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
3676 while (*p != ':')
3677 p++;
3678 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3679 *pp = p + 1;
3680 n = read_huge_number (pp, ',', &nbits, 0);
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
3684 sym = (struct symbol *)
3685 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3686 memset (sym, 0, sizeof (struct symbol));
3687 SYMBOL_SET_LINKAGE_NAME (sym, name);
3688 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3689 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3690 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3691 SYMBOL_VALUE (sym) = n;
3692 if (n < 0)
3693 unsigned_enum = 0;
3694 add_symbol_to_list (sym, symlist);
3695 nsyms++;
3696 }
3697
3698 if (**pp == ';')
3699 (*pp)++; /* Skip the semicolon. */
3700
3701 /* Now fill in the fields of the type-structure. */
3702
3703 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3704 set_length_in_type_chain (type);
3705 TYPE_CODE (type) = TYPE_CODE_ENUM;
3706 TYPE_STUB (type) = 0;
3707 if (unsigned_enum)
3708 TYPE_UNSIGNED (type) = 1;
3709 TYPE_NFIELDS (type) = nsyms;
3710 TYPE_FIELDS (type) = (struct field *)
3711 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3712 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3713
3714 /* Find the symbols for the values and put them into the type.
3715 The symbols can be found in the symlist that we put them on
3716 to cause them to be defined. osyms contains the old value
3717 of that symlist; everything up to there was defined by us. */
3718 /* Note that we preserve the order of the enum constants, so
3719 that in something like "enum {FOO, LAST_THING=FOO}" we print
3720 FOO, not LAST_THING. */
3721
3722 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3723 {
3724 int last = syms == osyms ? o_nsyms : 0;
3725 int j = syms->nsyms;
3726
3727 for (; --j >= last; --n)
3728 {
3729 struct symbol *xsym = syms->symbol[j];
3730
3731 SYMBOL_TYPE (xsym) = type;
3732 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3733 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3734 TYPE_FIELD_BITSIZE (type, n) = 0;
3735 }
3736 if (syms == osyms)
3737 break;
3738 }
3739
3740 return type;
3741 }
3742
3743 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3744 typedefs in every file (for int, long, etc):
3745
3746 type = b <signed> <width> <format type>; <offset>; <nbits>
3747 signed = u or s.
3748 optional format type = c or b for char or boolean.
3749 offset = offset from high order bit to start bit of type.
3750 width is # bytes in object of this type, nbits is # bits in type.
3751
3752 The width/offset stuff appears to be for small objects stored in
3753 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3754 FIXME. */
3755
3756 static struct type *
3757 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3758 {
3759 int type_bits;
3760 int nbits;
3761 int signed_type;
3762 enum type_code code = TYPE_CODE_INT;
3763
3764 switch (**pp)
3765 {
3766 case 's':
3767 signed_type = 1;
3768 break;
3769 case 'u':
3770 signed_type = 0;
3771 break;
3772 default:
3773 return error_type (pp, objfile);
3774 }
3775 (*pp)++;
3776
3777 /* For some odd reason, all forms of char put a c here. This is strange
3778 because no other type has this honor. We can safely ignore this because
3779 we actually determine 'char'acterness by the number of bits specified in
3780 the descriptor.
3781 Boolean forms, e.g Fortran logical*X, put a b here. */
3782
3783 if (**pp == 'c')
3784 (*pp)++;
3785 else if (**pp == 'b')
3786 {
3787 code = TYPE_CODE_BOOL;
3788 (*pp)++;
3789 }
3790
3791 /* The first number appears to be the number of bytes occupied
3792 by this type, except that unsigned short is 4 instead of 2.
3793 Since this information is redundant with the third number,
3794 we will ignore it. */
3795 read_huge_number (pp, ';', &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798
3799 /* The second number is always 0, so ignore it too. */
3800 read_huge_number (pp, ';', &nbits, 0);
3801 if (nbits != 0)
3802 return error_type (pp, objfile);
3803
3804 /* The third number is the number of bits for this type. */
3805 type_bits = read_huge_number (pp, 0, &nbits, 0);
3806 if (nbits != 0)
3807 return error_type (pp, objfile);
3808 /* The type *should* end with a semicolon. If it are embedded
3809 in a larger type the semicolon may be the only way to know where
3810 the type ends. If this type is at the end of the stabstring we
3811 can deal with the omitted semicolon (but we don't have to like
3812 it). Don't bother to complain(), Sun's compiler omits the semicolon
3813 for "void". */
3814 if (**pp == ';')
3815 ++(*pp);
3816
3817 if (type_bits == 0)
3818 return init_type (TYPE_CODE_VOID, 1,
3819 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3820 objfile);
3821 else
3822 return init_type (code,
3823 type_bits / TARGET_CHAR_BIT,
3824 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3825 objfile);
3826 }
3827
3828 static struct type *
3829 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3830 {
3831 int nbits;
3832 int details;
3833 int nbytes;
3834 struct type *rettype;
3835
3836 /* The first number has more details about the type, for example
3837 FN_COMPLEX. */
3838 details = read_huge_number (pp, ';', &nbits, 0);
3839 if (nbits != 0)
3840 return error_type (pp, objfile);
3841
3842 /* The second number is the number of bytes occupied by this type. */
3843 nbytes = read_huge_number (pp, ';', &nbits, 0);
3844 if (nbits != 0)
3845 return error_type (pp, objfile);
3846
3847 if (details == NF_COMPLEX || details == NF_COMPLEX16
3848 || details == NF_COMPLEX32)
3849 {
3850 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3851 TYPE_TARGET_TYPE (rettype)
3852 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3853 return rettype;
3854 }
3855
3856 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3857 }
3858
3859 /* Read a number from the string pointed to by *PP.
3860 The value of *PP is advanced over the number.
3861 If END is nonzero, the character that ends the
3862 number must match END, or an error happens;
3863 and that character is skipped if it does match.
3864 If END is zero, *PP is left pointing to that character.
3865
3866 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3867 the number is represented in an octal representation, assume that
3868 it is represented in a 2's complement representation with a size of
3869 TWOS_COMPLEMENT_BITS.
3870
3871 If the number fits in a long, set *BITS to 0 and return the value.
3872 If not, set *BITS to be the number of bits in the number and return 0.
3873
3874 If encounter garbage, set *BITS to -1 and return 0. */
3875
3876 static long
3877 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3878 {
3879 char *p = *pp;
3880 int sign = 1;
3881 int sign_bit = 0;
3882 long n = 0;
3883 int radix = 10;
3884 char overflow = 0;
3885 int nbits = 0;
3886 int c;
3887 long upper_limit;
3888 int twos_complement_representation = 0;
3889
3890 if (*p == '-')
3891 {
3892 sign = -1;
3893 p++;
3894 }
3895
3896 /* Leading zero means octal. GCC uses this to output values larger
3897 than an int (because that would be hard in decimal). */
3898 if (*p == '0')
3899 {
3900 radix = 8;
3901 p++;
3902 }
3903
3904 /* Skip extra zeros. */
3905 while (*p == '0')
3906 p++;
3907
3908 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3909 {
3910 /* Octal, possibly signed. Check if we have enough chars for a
3911 negative number. */
3912
3913 size_t len;
3914 char *p1 = p;
3915
3916 while ((c = *p1) >= '0' && c < '8')
3917 p1++;
3918
3919 len = p1 - p;
3920 if (len > twos_complement_bits / 3
3921 || (twos_complement_bits % 3 == 0
3922 && len == twos_complement_bits / 3))
3923 {
3924 /* Ok, we have enough characters for a signed value, check
3925 for signness by testing if the sign bit is set. */
3926 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3927 c = *p - '0';
3928 if (c & (1 << sign_bit))
3929 {
3930 /* Definitely signed. */
3931 twos_complement_representation = 1;
3932 sign = -1;
3933 }
3934 }
3935 }
3936
3937 upper_limit = LONG_MAX / radix;
3938
3939 while ((c = *p++) >= '0' && c < ('0' + radix))
3940 {
3941 if (n <= upper_limit)
3942 {
3943 if (twos_complement_representation)
3944 {
3945 /* Octal, signed, twos complement representation. In
3946 this case, n is the corresponding absolute value. */
3947 if (n == 0)
3948 {
3949 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3950
3951 n = -sn;
3952 }
3953 else
3954 {
3955 n *= radix;
3956 n -= c - '0';
3957 }
3958 }
3959 else
3960 {
3961 /* unsigned representation */
3962 n *= radix;
3963 n += c - '0'; /* FIXME this overflows anyway. */
3964 }
3965 }
3966 else
3967 overflow = 1;
3968
3969 /* This depends on large values being output in octal, which is
3970 what GCC does. */
3971 if (radix == 8)
3972 {
3973 if (nbits == 0)
3974 {
3975 if (c == '0')
3976 /* Ignore leading zeroes. */
3977 ;
3978 else if (c == '1')
3979 nbits = 1;
3980 else if (c == '2' || c == '3')
3981 nbits = 2;
3982 else
3983 nbits = 3;
3984 }
3985 else
3986 nbits += 3;
3987 }
3988 }
3989 if (end)
3990 {
3991 if (c && c != end)
3992 {
3993 if (bits != NULL)
3994 *bits = -1;
3995 return 0;
3996 }
3997 }
3998 else
3999 --p;
4000
4001 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4002 {
4003 /* We were supposed to parse a number with maximum
4004 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4005 if (bits != NULL)
4006 *bits = -1;
4007 return 0;
4008 }
4009
4010 *pp = p;
4011 if (overflow)
4012 {
4013 if (nbits == 0)
4014 {
4015 /* Large decimal constants are an error (because it is hard to
4016 count how many bits are in them). */
4017 if (bits != NULL)
4018 *bits = -1;
4019 return 0;
4020 }
4021
4022 /* -0x7f is the same as 0x80. So deal with it by adding one to
4023 the number of bits. Two's complement represention octals
4024 can't have a '-' in front. */
4025 if (sign == -1 && !twos_complement_representation)
4026 ++nbits;
4027 if (bits)
4028 *bits = nbits;
4029 }
4030 else
4031 {
4032 if (bits)
4033 *bits = 0;
4034 return n * sign;
4035 }
4036 /* It's *BITS which has the interesting information. */
4037 return 0;
4038 }
4039
4040 static struct type *
4041 read_range_type (char **pp, int typenums[2], int type_size,
4042 struct objfile *objfile)
4043 {
4044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4045 char *orig_pp = *pp;
4046 int rangenums[2];
4047 long n2, n3;
4048 int n2bits, n3bits;
4049 int self_subrange;
4050 struct type *result_type;
4051 struct type *index_type = NULL;
4052
4053 /* First comes a type we are a subrange of.
4054 In C it is usually 0, 1 or the type being defined. */
4055 if (read_type_number (pp, rangenums) != 0)
4056 return error_type (pp, objfile);
4057 self_subrange = (rangenums[0] == typenums[0] &&
4058 rangenums[1] == typenums[1]);
4059
4060 if (**pp == '=')
4061 {
4062 *pp = orig_pp;
4063 index_type = read_type (pp, objfile);
4064 }
4065
4066 /* A semicolon should now follow; skip it. */
4067 if (**pp == ';')
4068 (*pp)++;
4069
4070 /* The remaining two operands are usually lower and upper bounds
4071 of the range. But in some special cases they mean something else. */
4072 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4073 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4074
4075 if (n2bits == -1 || n3bits == -1)
4076 return error_type (pp, objfile);
4077
4078 if (index_type)
4079 goto handle_true_range;
4080
4081 /* If limits are huge, must be large integral type. */
4082 if (n2bits != 0 || n3bits != 0)
4083 {
4084 char got_signed = 0;
4085 char got_unsigned = 0;
4086 /* Number of bits in the type. */
4087 int nbits = 0;
4088
4089 /* If a type size attribute has been specified, the bounds of
4090 the range should fit in this size. If the lower bounds needs
4091 more bits than the upper bound, then the type is signed. */
4092 if (n2bits <= type_size && n3bits <= type_size)
4093 {
4094 if (n2bits == type_size && n2bits > n3bits)
4095 got_signed = 1;
4096 else
4097 got_unsigned = 1;
4098 nbits = type_size;
4099 }
4100 /* Range from 0 to <large number> is an unsigned large integral type. */
4101 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4102 {
4103 got_unsigned = 1;
4104 nbits = n3bits;
4105 }
4106 /* Range from <large number> to <large number>-1 is a large signed
4107 integral type. Take care of the case where <large number> doesn't
4108 fit in a long but <large number>-1 does. */
4109 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4110 || (n2bits != 0 && n3bits == 0
4111 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4112 && n3 == LONG_MAX))
4113 {
4114 got_signed = 1;
4115 nbits = n2bits;
4116 }
4117
4118 if (got_signed || got_unsigned)
4119 {
4120 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4121 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4122 objfile);
4123 }
4124 else
4125 return error_type (pp, objfile);
4126 }
4127
4128 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4129 if (self_subrange && n2 == 0 && n3 == 0)
4130 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4131
4132 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4133 is the width in bytes.
4134
4135 Fortran programs appear to use this for complex types also. To
4136 distinguish between floats and complex, g77 (and others?) seem
4137 to use self-subranges for the complexes, and subranges of int for
4138 the floats.
4139
4140 Also note that for complexes, g77 sets n2 to the size of one of
4141 the member floats, not the whole complex beast. My guess is that
4142 this was to work well with pre-COMPLEX versions of gdb. */
4143
4144 if (n3 == 0 && n2 > 0)
4145 {
4146 struct type *float_type
4147 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4148
4149 if (self_subrange)
4150 {
4151 struct type *complex_type =
4152 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4153
4154 TYPE_TARGET_TYPE (complex_type) = float_type;
4155 return complex_type;
4156 }
4157 else
4158 return float_type;
4159 }
4160
4161 /* If the upper bound is -1, it must really be an unsigned integral. */
4162
4163 else if (n2 == 0 && n3 == -1)
4164 {
4165 int bits = type_size;
4166
4167 if (bits <= 0)
4168 {
4169 /* We don't know its size. It is unsigned int or unsigned
4170 long. GCC 2.3.3 uses this for long long too, but that is
4171 just a GDB 3.5 compatibility hack. */
4172 bits = gdbarch_int_bit (gdbarch);
4173 }
4174
4175 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4176 TYPE_FLAG_UNSIGNED, NULL, objfile);
4177 }
4178
4179 /* Special case: char is defined (Who knows why) as a subrange of
4180 itself with range 0-127. */
4181 else if (self_subrange && n2 == 0 && n3 == 127)
4182 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4183
4184 /* We used to do this only for subrange of self or subrange of int. */
4185 else if (n2 == 0)
4186 {
4187 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4188 "unsigned long", and we already checked for that,
4189 so don't need to test for it here. */
4190
4191 if (n3 < 0)
4192 /* n3 actually gives the size. */
4193 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4194 NULL, objfile);
4195
4196 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4197 unsigned n-byte integer. But do require n to be a power of
4198 two; we don't want 3- and 5-byte integers flying around. */
4199 {
4200 int bytes;
4201 unsigned long bits;
4202
4203 bits = n3;
4204 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4205 bits >>= 8;
4206 if (bits == 0
4207 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4208 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4209 objfile);
4210 }
4211 }
4212 /* I think this is for Convex "long long". Since I don't know whether
4213 Convex sets self_subrange, I also accept that particular size regardless
4214 of self_subrange. */
4215 else if (n3 == 0 && n2 < 0
4216 && (self_subrange
4217 || n2 == -gdbarch_long_long_bit
4218 (gdbarch) / TARGET_CHAR_BIT))
4219 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4220 else if (n2 == -n3 - 1)
4221 {
4222 if (n3 == 0x7f)
4223 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4224 if (n3 == 0x7fff)
4225 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4226 if (n3 == 0x7fffffff)
4227 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4228 }
4229
4230 /* We have a real range type on our hands. Allocate space and
4231 return a real pointer. */
4232 handle_true_range:
4233
4234 if (self_subrange)
4235 index_type = objfile_type (objfile)->builtin_int;
4236 else
4237 index_type = *dbx_lookup_type (rangenums, objfile);
4238 if (index_type == NULL)
4239 {
4240 /* Does this actually ever happen? Is that why we are worrying
4241 about dealing with it rather than just calling error_type? */
4242
4243 complaint (&symfile_complaints,
4244 _("base type %d of range type is not defined"), rangenums[1]);
4245
4246 index_type = objfile_type (objfile)->builtin_int;
4247 }
4248
4249 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4250 return (result_type);
4251 }
4252
4253 /* Read in an argument list. This is a list of types, separated by commas
4254 and terminated with END. Return the list of types read in, or NULL
4255 if there is an error. */
4256
4257 static struct field *
4258 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4259 int *varargsp)
4260 {
4261 /* FIXME! Remove this arbitrary limit! */
4262 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4263 int n = 0, i;
4264 struct field *rval;
4265
4266 while (**pp != end)
4267 {
4268 if (**pp != ',')
4269 /* Invalid argument list: no ','. */
4270 return NULL;
4271 (*pp)++;
4272 STABS_CONTINUE (pp, objfile);
4273 types[n++] = read_type (pp, objfile);
4274 }
4275 (*pp)++; /* get past `end' (the ':' character). */
4276
4277 if (n == 0)
4278 {
4279 /* We should read at least the THIS parameter here. Some broken stabs
4280 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4281 have been present ";-16,(0,43)" reference instead. This way the
4282 excessive ";" marker prematurely stops the parameters parsing. */
4283
4284 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4285 *varargsp = 0;
4286 }
4287 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4288 *varargsp = 1;
4289 else
4290 {
4291 n--;
4292 *varargsp = 0;
4293 }
4294
4295 rval = (struct field *) xmalloc (n * sizeof (struct field));
4296 memset (rval, 0, n * sizeof (struct field));
4297 for (i = 0; i < n; i++)
4298 rval[i].type = types[i];
4299 *nargsp = n;
4300 return rval;
4301 }
4302 \f
4303 /* Common block handling. */
4304
4305 /* List of symbols declared since the last BCOMM. This list is a tail
4306 of local_symbols. When ECOMM is seen, the symbols on the list
4307 are noted so their proper addresses can be filled in later,
4308 using the common block base address gotten from the assembler
4309 stabs. */
4310
4311 static struct pending *common_block;
4312 static int common_block_i;
4313
4314 /* Name of the current common block. We get it from the BCOMM instead of the
4315 ECOMM to match IBM documentation (even though IBM puts the name both places
4316 like everyone else). */
4317 static char *common_block_name;
4318
4319 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4320 to remain after this function returns. */
4321
4322 void
4323 common_block_start (char *name, struct objfile *objfile)
4324 {
4325 if (common_block_name != NULL)
4326 {
4327 complaint (&symfile_complaints,
4328 _("Invalid symbol data: common block within common block"));
4329 }
4330 common_block = local_symbols;
4331 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4332 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4333 name, strlen (name));
4334 }
4335
4336 /* Process a N_ECOMM symbol. */
4337
4338 void
4339 common_block_end (struct objfile *objfile)
4340 {
4341 /* Symbols declared since the BCOMM are to have the common block
4342 start address added in when we know it. common_block and
4343 common_block_i point to the first symbol after the BCOMM in
4344 the local_symbols list; copy the list and hang it off the
4345 symbol for the common block name for later fixup. */
4346 int i;
4347 struct symbol *sym;
4348 struct pending *new = 0;
4349 struct pending *next;
4350 int j;
4351
4352 if (common_block_name == NULL)
4353 {
4354 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4355 return;
4356 }
4357
4358 sym = (struct symbol *)
4359 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4360 memset (sym, 0, sizeof (struct symbol));
4361 /* Note: common_block_name already saved on objfile_obstack. */
4362 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4363 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4364
4365 /* Now we copy all the symbols which have been defined since the BCOMM. */
4366
4367 /* Copy all the struct pendings before common_block. */
4368 for (next = local_symbols;
4369 next != NULL && next != common_block;
4370 next = next->next)
4371 {
4372 for (j = 0; j < next->nsyms; j++)
4373 add_symbol_to_list (next->symbol[j], &new);
4374 }
4375
4376 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4377 NULL, it means copy all the local symbols (which we already did
4378 above). */
4379
4380 if (common_block != NULL)
4381 for (j = common_block_i; j < common_block->nsyms; j++)
4382 add_symbol_to_list (common_block->symbol[j], &new);
4383
4384 SYMBOL_TYPE (sym) = (struct type *) new;
4385
4386 /* Should we be putting local_symbols back to what it was?
4387 Does it matter? */
4388
4389 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4390 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4391 global_sym_chain[i] = sym;
4392 common_block_name = NULL;
4393 }
4394
4395 /* Add a common block's start address to the offset of each symbol
4396 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4397 the common block name). */
4398
4399 static void
4400 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4401 {
4402 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4403
4404 for (; next; next = next->next)
4405 {
4406 int j;
4407
4408 for (j = next->nsyms - 1; j >= 0; j--)
4409 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4410 }
4411 }
4412 \f
4413
4414
4415 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4416 See add_undefined_type for more details. */
4417
4418 static void
4419 add_undefined_type_noname (struct type *type, int typenums[2])
4420 {
4421 struct nat nat;
4422
4423 nat.typenums[0] = typenums [0];
4424 nat.typenums[1] = typenums [1];
4425 nat.type = type;
4426
4427 if (noname_undefs_length == noname_undefs_allocated)
4428 {
4429 noname_undefs_allocated *= 2;
4430 noname_undefs = (struct nat *)
4431 xrealloc ((char *) noname_undefs,
4432 noname_undefs_allocated * sizeof (struct nat));
4433 }
4434 noname_undefs[noname_undefs_length++] = nat;
4435 }
4436
4437 /* Add TYPE to the UNDEF_TYPES vector.
4438 See add_undefined_type for more details. */
4439
4440 static void
4441 add_undefined_type_1 (struct type *type)
4442 {
4443 if (undef_types_length == undef_types_allocated)
4444 {
4445 undef_types_allocated *= 2;
4446 undef_types = (struct type **)
4447 xrealloc ((char *) undef_types,
4448 undef_types_allocated * sizeof (struct type *));
4449 }
4450 undef_types[undef_types_length++] = type;
4451 }
4452
4453 /* What about types defined as forward references inside of a small lexical
4454 scope? */
4455 /* Add a type to the list of undefined types to be checked through
4456 once this file has been read in.
4457
4458 In practice, we actually maintain two such lists: The first list
4459 (UNDEF_TYPES) is used for types whose name has been provided, and
4460 concerns forward references (eg 'xs' or 'xu' forward references);
4461 the second list (NONAME_UNDEFS) is used for types whose name is
4462 unknown at creation time, because they were referenced through
4463 their type number before the actual type was declared.
4464 This function actually adds the given type to the proper list. */
4465
4466 static void
4467 add_undefined_type (struct type *type, int typenums[2])
4468 {
4469 if (TYPE_TAG_NAME (type) == NULL)
4470 add_undefined_type_noname (type, typenums);
4471 else
4472 add_undefined_type_1 (type);
4473 }
4474
4475 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4476
4477 static void
4478 cleanup_undefined_types_noname (struct objfile *objfile)
4479 {
4480 int i;
4481
4482 for (i = 0; i < noname_undefs_length; i++)
4483 {
4484 struct nat nat = noname_undefs[i];
4485 struct type **type;
4486
4487 type = dbx_lookup_type (nat.typenums, objfile);
4488 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4489 {
4490 /* The instance flags of the undefined type are still unset,
4491 and needs to be copied over from the reference type.
4492 Since replace_type expects them to be identical, we need
4493 to set these flags manually before hand. */
4494 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4495 replace_type (nat.type, *type);
4496 }
4497 }
4498
4499 noname_undefs_length = 0;
4500 }
4501
4502 /* Go through each undefined type, see if it's still undefined, and fix it
4503 up if possible. We have two kinds of undefined types:
4504
4505 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4506 Fix: update array length using the element bounds
4507 and the target type's length.
4508 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4509 yet defined at the time a pointer to it was made.
4510 Fix: Do a full lookup on the struct/union tag. */
4511
4512 static void
4513 cleanup_undefined_types_1 (void)
4514 {
4515 struct type **type;
4516
4517 /* Iterate over every undefined type, and look for a symbol whose type
4518 matches our undefined type. The symbol matches if:
4519 1. It is a typedef in the STRUCT domain;
4520 2. It has the same name, and same type code;
4521 3. The instance flags are identical.
4522
4523 It is important to check the instance flags, because we have seen
4524 examples where the debug info contained definitions such as:
4525
4526 "foo_t:t30=B31=xefoo_t:"
4527
4528 In this case, we have created an undefined type named "foo_t" whose
4529 instance flags is null (when processing "xefoo_t"), and then created
4530 another type with the same name, but with different instance flags
4531 ('B' means volatile). I think that the definition above is wrong,
4532 since the same type cannot be volatile and non-volatile at the same
4533 time, but we need to be able to cope with it when it happens. The
4534 approach taken here is to treat these two types as different. */
4535
4536 for (type = undef_types; type < undef_types + undef_types_length; type++)
4537 {
4538 switch (TYPE_CODE (*type))
4539 {
4540
4541 case TYPE_CODE_STRUCT:
4542 case TYPE_CODE_UNION:
4543 case TYPE_CODE_ENUM:
4544 {
4545 /* Check if it has been defined since. Need to do this here
4546 as well as in check_typedef to deal with the (legitimate in
4547 C though not C++) case of several types with the same name
4548 in different source files. */
4549 if (TYPE_STUB (*type))
4550 {
4551 struct pending *ppt;
4552 int i;
4553 /* Name of the type, without "struct" or "union". */
4554 const char *typename = TYPE_TAG_NAME (*type);
4555
4556 if (typename == NULL)
4557 {
4558 complaint (&symfile_complaints, _("need a type name"));
4559 break;
4560 }
4561 for (ppt = file_symbols; ppt; ppt = ppt->next)
4562 {
4563 for (i = 0; i < ppt->nsyms; i++)
4564 {
4565 struct symbol *sym = ppt->symbol[i];
4566
4567 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4568 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4569 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4570 TYPE_CODE (*type))
4571 && (TYPE_INSTANCE_FLAGS (*type) ==
4572 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4573 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4574 typename) == 0)
4575 replace_type (*type, SYMBOL_TYPE (sym));
4576 }
4577 }
4578 }
4579 }
4580 break;
4581
4582 default:
4583 {
4584 complaint (&symfile_complaints,
4585 _("forward-referenced types left unresolved, "
4586 "type code %d."),
4587 TYPE_CODE (*type));
4588 }
4589 break;
4590 }
4591 }
4592
4593 undef_types_length = 0;
4594 }
4595
4596 /* Try to fix all the undefined types we ecountered while processing
4597 this unit. */
4598
4599 void
4600 cleanup_undefined_stabs_types (struct objfile *objfile)
4601 {
4602 cleanup_undefined_types_1 ();
4603 cleanup_undefined_types_noname (objfile);
4604 }
4605
4606 /* Scan through all of the global symbols defined in the object file,
4607 assigning values to the debugging symbols that need to be assigned
4608 to. Get these symbols from the minimal symbol table. */
4609
4610 void
4611 scan_file_globals (struct objfile *objfile)
4612 {
4613 int hash;
4614 struct minimal_symbol *msymbol;
4615 struct symbol *sym, *prev;
4616 struct objfile *resolve_objfile;
4617
4618 /* SVR4 based linkers copy referenced global symbols from shared
4619 libraries to the main executable.
4620 If we are scanning the symbols for a shared library, try to resolve
4621 them from the minimal symbols of the main executable first. */
4622
4623 if (symfile_objfile && objfile != symfile_objfile)
4624 resolve_objfile = symfile_objfile;
4625 else
4626 resolve_objfile = objfile;
4627
4628 while (1)
4629 {
4630 /* Avoid expensive loop through all minimal symbols if there are
4631 no unresolved symbols. */
4632 for (hash = 0; hash < HASHSIZE; hash++)
4633 {
4634 if (global_sym_chain[hash])
4635 break;
4636 }
4637 if (hash >= HASHSIZE)
4638 return;
4639
4640 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4641 {
4642 QUIT;
4643
4644 /* Skip static symbols. */
4645 switch (MSYMBOL_TYPE (msymbol))
4646 {
4647 case mst_file_text:
4648 case mst_file_data:
4649 case mst_file_bss:
4650 continue;
4651 default:
4652 break;
4653 }
4654
4655 prev = NULL;
4656
4657 /* Get the hash index and check all the symbols
4658 under that hash index. */
4659
4660 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4661
4662 for (sym = global_sym_chain[hash]; sym;)
4663 {
4664 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4665 SYMBOL_LINKAGE_NAME (sym)) == 0)
4666 {
4667 /* Splice this symbol out of the hash chain and
4668 assign the value we have to it. */
4669 if (prev)
4670 {
4671 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4672 }
4673 else
4674 {
4675 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4676 }
4677
4678 /* Check to see whether we need to fix up a common block. */
4679 /* Note: this code might be executed several times for
4680 the same symbol if there are multiple references. */
4681 if (sym)
4682 {
4683 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4684 {
4685 fix_common_block (sym,
4686 SYMBOL_VALUE_ADDRESS (msymbol));
4687 }
4688 else
4689 {
4690 SYMBOL_VALUE_ADDRESS (sym)
4691 = SYMBOL_VALUE_ADDRESS (msymbol);
4692 }
4693 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4694 }
4695
4696 if (prev)
4697 {
4698 sym = SYMBOL_VALUE_CHAIN (prev);
4699 }
4700 else
4701 {
4702 sym = global_sym_chain[hash];
4703 }
4704 }
4705 else
4706 {
4707 prev = sym;
4708 sym = SYMBOL_VALUE_CHAIN (sym);
4709 }
4710 }
4711 }
4712 if (resolve_objfile == objfile)
4713 break;
4714 resolve_objfile = objfile;
4715 }
4716
4717 /* Change the storage class of any remaining unresolved globals to
4718 LOC_UNRESOLVED and remove them from the chain. */
4719 for (hash = 0; hash < HASHSIZE; hash++)
4720 {
4721 sym = global_sym_chain[hash];
4722 while (sym)
4723 {
4724 prev = sym;
4725 sym = SYMBOL_VALUE_CHAIN (sym);
4726
4727 /* Change the symbol address from the misleading chain value
4728 to address zero. */
4729 SYMBOL_VALUE_ADDRESS (prev) = 0;
4730
4731 /* Complain about unresolved common block symbols. */
4732 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4733 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4734 else
4735 complaint (&symfile_complaints,
4736 _("%s: common block `%s' from "
4737 "global_sym_chain unresolved"),
4738 objfile->name, SYMBOL_PRINT_NAME (prev));
4739 }
4740 }
4741 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4742 }
4743
4744 /* Initialize anything that needs initializing when starting to read
4745 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4746 to a psymtab. */
4747
4748 void
4749 stabsread_init (void)
4750 {
4751 }
4752
4753 /* Initialize anything that needs initializing when a completely new
4754 symbol file is specified (not just adding some symbols from another
4755 file, e.g. a shared library). */
4756
4757 void
4758 stabsread_new_init (void)
4759 {
4760 /* Empty the hash table of global syms looking for values. */
4761 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4762 }
4763
4764 /* Initialize anything that needs initializing at the same time as
4765 start_symtab() is called. */
4766
4767 void
4768 start_stabs (void)
4769 {
4770 global_stabs = NULL; /* AIX COFF */
4771 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4772 n_this_object_header_files = 1;
4773 type_vector_length = 0;
4774 type_vector = (struct type **) 0;
4775
4776 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4777 common_block_name = NULL;
4778 }
4779
4780 /* Call after end_symtab(). */
4781
4782 void
4783 end_stabs (void)
4784 {
4785 if (type_vector)
4786 {
4787 xfree (type_vector);
4788 }
4789 type_vector = 0;
4790 type_vector_length = 0;
4791 previous_stab_code = 0;
4792 }
4793
4794 void
4795 finish_global_stabs (struct objfile *objfile)
4796 {
4797 if (global_stabs)
4798 {
4799 patch_block_stabs (global_symbols, global_stabs, objfile);
4800 xfree (global_stabs);
4801 global_stabs = NULL;
4802 }
4803 }
4804
4805 /* Find the end of the name, delimited by a ':', but don't match
4806 ObjC symbols which look like -[Foo bar::]:bla. */
4807 static char *
4808 find_name_end (char *name)
4809 {
4810 char *s = name;
4811
4812 if (s[0] == '-' || *s == '+')
4813 {
4814 /* Must be an ObjC method symbol. */
4815 if (s[1] != '[')
4816 {
4817 error (_("invalid symbol name \"%s\""), name);
4818 }
4819 s = strchr (s, ']');
4820 if (s == NULL)
4821 {
4822 error (_("invalid symbol name \"%s\""), name);
4823 }
4824 return strchr (s, ':');
4825 }
4826 else
4827 {
4828 return strchr (s, ':');
4829 }
4830 }
4831
4832 /* Initializer for this module. */
4833
4834 void
4835 _initialize_stabsread (void)
4836 {
4837 rs6000_builtin_type_data = register_objfile_data ();
4838
4839 undef_types_allocated = 20;
4840 undef_types_length = 0;
4841 undef_types = (struct type **)
4842 xmalloc (undef_types_allocated * sizeof (struct type *));
4843
4844 noname_undefs_allocated = 20;
4845 noname_undefs_length = 0;
4846 noname_undefs = (struct nat *)
4847 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4848
4849 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4850 &stab_register_funcs);
4851 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4852 &stab_register_funcs);
4853 }
This page took 0.15546 seconds and 5 git commands to generate.