Fix for PR gdb/17235: possible bug extracting systemtap probe operand
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "exceptions.h"
32 #include "ax.h"
33 #include "ax-gdb.h"
34 #include "complaints.h"
35 #include "cli/cli-utils.h"
36 #include "linespec.h"
37 #include "user-regs.h"
38 #include "parser-defs.h"
39 #include "language.h"
40 #include "elf-bfd.h"
41
42 #include <ctype.h>
43
44 /* The name of the SystemTap section where we will find information about
45 the probes. */
46
47 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49 /* Forward declaration. */
50
51 static const struct probe_ops stap_probe_ops;
52
53 /* Should we display debug information for the probe's argument expression
54 parsing? */
55
56 static unsigned int stap_expression_debug = 0;
57
58 /* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
64 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
65 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
66 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
67 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
68 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
69 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
70 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
71
72 enum stap_arg_bitness
73 {
74 STAP_ARG_BITNESS_UNDEFINED,
75 STAP_ARG_BITNESS_8BIT_UNSIGNED,
76 STAP_ARG_BITNESS_8BIT_SIGNED,
77 STAP_ARG_BITNESS_16BIT_UNSIGNED,
78 STAP_ARG_BITNESS_16BIT_SIGNED,
79 STAP_ARG_BITNESS_32BIT_UNSIGNED,
80 STAP_ARG_BITNESS_32BIT_SIGNED,
81 STAP_ARG_BITNESS_64BIT_UNSIGNED,
82 STAP_ARG_BITNESS_64BIT_SIGNED,
83 };
84
85 /* The following structure represents a single argument for the probe. */
86
87 struct stap_probe_arg
88 {
89 /* The bitness of this argument. */
90 enum stap_arg_bitness bitness;
91
92 /* The corresponding `struct type *' to the bitness. */
93 struct type *atype;
94
95 /* The argument converted to an internal GDB expression. */
96 struct expression *aexpr;
97 };
98
99 typedef struct stap_probe_arg stap_probe_arg_s;
100 DEF_VEC_O (stap_probe_arg_s);
101
102 struct stap_probe
103 {
104 /* Generic information about the probe. This shall be the first element
105 of this struct, in order to maintain binary compatibility with the
106 `struct probe' and be able to fully abstract it. */
107 struct probe p;
108
109 /* If the probe has a semaphore associated, then this is the value of
110 it, relative to SECT_OFF_DATA. */
111 CORE_ADDR sem_addr;
112
113 /* One if the arguments have been parsed. */
114 unsigned int args_parsed : 1;
115
116 union
117 {
118 const char *text;
119
120 /* Information about each argument. This is an array of `stap_probe_arg',
121 with each entry representing one argument. */
122 VEC (stap_probe_arg_s) *vec;
123 }
124 args_u;
125 };
126
127 /* When parsing the arguments, we have to establish different precedences
128 for the various kinds of asm operators. This enumeration represents those
129 precedences.
130
131 This logic behind this is available at
132 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
133 the command "info '(as)Infix Ops'". */
134
135 enum stap_operand_prec
136 {
137 /* Lowest precedence, used for non-recognized operands or for the beginning
138 of the parsing process. */
139 STAP_OPERAND_PREC_NONE = 0,
140
141 /* Precedence of logical OR. */
142 STAP_OPERAND_PREC_LOGICAL_OR,
143
144 /* Precedence of logical AND. */
145 STAP_OPERAND_PREC_LOGICAL_AND,
146
147 /* Precedence of additive (plus, minus) and comparative (equal, less,
148 greater-than, etc) operands. */
149 STAP_OPERAND_PREC_ADD_CMP,
150
151 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
152 logical NOT). */
153 STAP_OPERAND_PREC_BITWISE,
154
155 /* Precedence of multiplicative operands (multiplication, division,
156 remainder, left shift and right shift). */
157 STAP_OPERAND_PREC_MUL
158 };
159
160 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
161 enum stap_operand_prec prec);
162
163 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
164
165 /* Returns 1 if *S is an operator, zero otherwise. */
166
167 static int stap_is_operator (const char *op);
168
169 static void
170 show_stapexpressiondebug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
174 value);
175 }
176
177 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
178 if the operator code was not recognized. */
179
180 static enum stap_operand_prec
181 stap_get_operator_prec (enum exp_opcode op)
182 {
183 switch (op)
184 {
185 case BINOP_LOGICAL_OR:
186 return STAP_OPERAND_PREC_LOGICAL_OR;
187
188 case BINOP_LOGICAL_AND:
189 return STAP_OPERAND_PREC_LOGICAL_AND;
190
191 case BINOP_ADD:
192 case BINOP_SUB:
193 case BINOP_EQUAL:
194 case BINOP_NOTEQUAL:
195 case BINOP_LESS:
196 case BINOP_LEQ:
197 case BINOP_GTR:
198 case BINOP_GEQ:
199 return STAP_OPERAND_PREC_ADD_CMP;
200
201 case BINOP_BITWISE_IOR:
202 case BINOP_BITWISE_AND:
203 case BINOP_BITWISE_XOR:
204 case UNOP_LOGICAL_NOT:
205 return STAP_OPERAND_PREC_BITWISE;
206
207 case BINOP_MUL:
208 case BINOP_DIV:
209 case BINOP_REM:
210 case BINOP_LSH:
211 case BINOP_RSH:
212 return STAP_OPERAND_PREC_MUL;
213
214 default:
215 return STAP_OPERAND_PREC_NONE;
216 }
217 }
218
219 /* Given S, read the operator in it and fills the OP pointer with its code.
220 Return 1 on success, zero if the operator was not recognized. */
221
222 static enum exp_opcode
223 stap_get_opcode (const char **s)
224 {
225 const char c = **s;
226 enum exp_opcode op;
227
228 *s += 1;
229
230 switch (c)
231 {
232 case '*':
233 op = BINOP_MUL;
234 break;
235
236 case '/':
237 op = BINOP_DIV;
238 break;
239
240 case '%':
241 op = BINOP_REM;
242 break;
243
244 case '<':
245 op = BINOP_LESS;
246 if (**s == '<')
247 {
248 *s += 1;
249 op = BINOP_LSH;
250 }
251 else if (**s == '=')
252 {
253 *s += 1;
254 op = BINOP_LEQ;
255 }
256 else if (**s == '>')
257 {
258 *s += 1;
259 op = BINOP_NOTEQUAL;
260 }
261 break;
262
263 case '>':
264 op = BINOP_GTR;
265 if (**s == '>')
266 {
267 *s += 1;
268 op = BINOP_RSH;
269 }
270 else if (**s == '=')
271 {
272 *s += 1;
273 op = BINOP_GEQ;
274 }
275 break;
276
277 case '|':
278 op = BINOP_BITWISE_IOR;
279 if (**s == '|')
280 {
281 *s += 1;
282 op = BINOP_LOGICAL_OR;
283 }
284 break;
285
286 case '&':
287 op = BINOP_BITWISE_AND;
288 if (**s == '&')
289 {
290 *s += 1;
291 op = BINOP_LOGICAL_AND;
292 }
293 break;
294
295 case '^':
296 op = BINOP_BITWISE_XOR;
297 break;
298
299 case '!':
300 op = UNOP_LOGICAL_NOT;
301 break;
302
303 case '+':
304 op = BINOP_ADD;
305 break;
306
307 case '-':
308 op = BINOP_SUB;
309 break;
310
311 case '=':
312 gdb_assert (**s == '=');
313 op = BINOP_EQUAL;
314 break;
315
316 default:
317 internal_error (__FILE__, __LINE__,
318 _("Invalid opcode in expression `%s' for SystemTap"
319 "probe"), *s);
320 }
321
322 return op;
323 }
324
325 /* Given the bitness of the argument, represented by B, return the
326 corresponding `struct type *'. */
327
328 static struct type *
329 stap_get_expected_argument_type (struct gdbarch *gdbarch,
330 enum stap_arg_bitness b)
331 {
332 switch (b)
333 {
334 case STAP_ARG_BITNESS_UNDEFINED:
335 if (gdbarch_addr_bit (gdbarch) == 32)
336 return builtin_type (gdbarch)->builtin_uint32;
337 else
338 return builtin_type (gdbarch)->builtin_uint64;
339
340 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
341 return builtin_type (gdbarch)->builtin_uint8;
342
343 case STAP_ARG_BITNESS_8BIT_SIGNED:
344 return builtin_type (gdbarch)->builtin_int8;
345
346 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
347 return builtin_type (gdbarch)->builtin_uint16;
348
349 case STAP_ARG_BITNESS_16BIT_SIGNED:
350 return builtin_type (gdbarch)->builtin_int16;
351
352 case STAP_ARG_BITNESS_32BIT_SIGNED:
353 return builtin_type (gdbarch)->builtin_int32;
354
355 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
356 return builtin_type (gdbarch)->builtin_uint32;
357
358 case STAP_ARG_BITNESS_64BIT_SIGNED:
359 return builtin_type (gdbarch)->builtin_int64;
360
361 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
362 return builtin_type (gdbarch)->builtin_uint64;
363
364 default:
365 internal_error (__FILE__, __LINE__,
366 _("Undefined bitness for probe."));
367 break;
368 }
369 }
370
371 /* Helper function to check for a generic list of prefixes. GDBARCH
372 is the current gdbarch being used. S is the expression being
373 analyzed. If R is not NULL, it will be used to return the found
374 prefix. PREFIXES is the list of expected prefixes.
375
376 This function does a case-insensitive match.
377
378 Return 1 if any prefix has been found, zero otherwise. */
379
380 static int
381 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
382 const char **r, const char *const *prefixes)
383 {
384 const char *const *p;
385
386 if (prefixes == NULL)
387 {
388 if (r != NULL)
389 *r = "";
390
391 return 1;
392 }
393
394 for (p = prefixes; *p != NULL; ++p)
395 if (strncasecmp (s, *p, strlen (*p)) == 0)
396 {
397 if (r != NULL)
398 *r = *p;
399
400 return 1;
401 }
402
403 return 0;
404 }
405
406 /* Return 1 if S points to a register prefix, zero otherwise. For a
407 description of the arguments, look at stap_is_generic_prefix. */
408
409 static int
410 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
411 const char **r)
412 {
413 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
414
415 return stap_is_generic_prefix (gdbarch, s, r, t);
416 }
417
418 /* Return 1 if S points to a register indirection prefix, zero
419 otherwise. For a description of the arguments, look at
420 stap_is_generic_prefix. */
421
422 static int
423 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
424 const char **r)
425 {
426 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
427
428 return stap_is_generic_prefix (gdbarch, s, r, t);
429 }
430
431 /* Return 1 if S points to an integer prefix, zero otherwise. For a
432 description of the arguments, look at stap_is_generic_prefix.
433
434 This function takes care of analyzing whether we are dealing with
435 an expected integer prefix, or, if there is no integer prefix to be
436 expected, whether we are dealing with a digit. It does a
437 case-insensitive match. */
438
439 static int
440 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
441 const char **r)
442 {
443 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
444 const char *const *p;
445
446 if (t == NULL)
447 {
448 /* A NULL value here means that integers do not have a prefix.
449 We just check for a digit then. */
450 if (r != NULL)
451 *r = "";
452
453 return isdigit (*s);
454 }
455
456 for (p = t; *p != NULL; ++p)
457 {
458 size_t len = strlen (*p);
459
460 if ((len == 0 && isdigit (*s))
461 || (len > 0 && strncasecmp (s, *p, len) == 0))
462 {
463 /* Integers may or may not have a prefix. The "len == 0"
464 check covers the case when integers do not have a prefix
465 (therefore, we just check if we have a digit). The call
466 to "strncasecmp" covers the case when they have a
467 prefix. */
468 if (r != NULL)
469 *r = *p;
470
471 return 1;
472 }
473 }
474
475 return 0;
476 }
477
478 /* Helper function to check for a generic list of suffixes. If we are
479 not expecting any suffixes, then it just returns 1. If we are
480 expecting at least one suffix, then it returns 1 if a suffix has
481 been found, zero otherwise. GDBARCH is the current gdbarch being
482 used. S is the expression being analyzed. If R is not NULL, it
483 will be used to return the found suffix. SUFFIXES is the list of
484 expected suffixes. This function does a case-insensitive
485 match. */
486
487 static int
488 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
489 const char **r, const char *const *suffixes)
490 {
491 const char *const *p;
492 int found = 0;
493
494 if (suffixes == NULL)
495 {
496 if (r != NULL)
497 *r = "";
498
499 return 1;
500 }
501
502 for (p = suffixes; *p != NULL; ++p)
503 if (strncasecmp (s, *p, strlen (*p)) == 0)
504 {
505 if (r != NULL)
506 *r = *p;
507
508 found = 1;
509 break;
510 }
511
512 return found;
513 }
514
515 /* Return 1 if S points to an integer suffix, zero otherwise. For a
516 description of the arguments, look at
517 stap_generic_check_suffix. */
518
519 static int
520 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
521 const char **r)
522 {
523 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
524
525 return stap_generic_check_suffix (gdbarch, s, r, p);
526 }
527
528 /* Return 1 if S points to a register suffix, zero otherwise. For a
529 description of the arguments, look at
530 stap_generic_check_suffix. */
531
532 static int
533 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
534 const char **r)
535 {
536 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
537
538 return stap_generic_check_suffix (gdbarch, s, r, p);
539 }
540
541 /* Return 1 if S points to a register indirection suffix, zero
542 otherwise. For a description of the arguments, look at
543 stap_generic_check_suffix. */
544
545 static int
546 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
547 const char **r)
548 {
549 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
550
551 return stap_generic_check_suffix (gdbarch, s, r, p);
552 }
553
554 /* Function responsible for parsing a register operand according to
555 SystemTap parlance. Assuming:
556
557 RP = register prefix
558 RS = register suffix
559 RIP = register indirection prefix
560 RIS = register indirection suffix
561
562 Then a register operand can be:
563
564 [RIP] [RP] REGISTER [RS] [RIS]
565
566 This function takes care of a register's indirection, displacement and
567 direct access. It also takes into consideration the fact that some
568 registers are named differently inside and outside GDB, e.g., PPC's
569 general-purpose registers are represented by integers in the assembly
570 language (e.g., `15' is the 15th general-purpose register), but inside
571 GDB they have a prefix (the letter `r') appended. */
572
573 static void
574 stap_parse_register_operand (struct stap_parse_info *p)
575 {
576 /* Simple flag to indicate whether we have seen a minus signal before
577 certain number. */
578 int got_minus = 0;
579 /* Flags to indicate whether this register access is being displaced and/or
580 indirected. */
581 int disp_p = 0, indirect_p = 0;
582 struct gdbarch *gdbarch = p->gdbarch;
583 /* Needed to generate the register name as a part of an expression. */
584 struct stoken str;
585 /* Variables used to extract the register name from the probe's
586 argument. */
587 const char *start;
588 char *regname;
589 int len;
590 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
591 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
592 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
593 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
594 const char *reg_prefix;
595 const char *reg_ind_prefix;
596 const char *reg_suffix;
597 const char *reg_ind_suffix;
598
599 /* Checking for a displacement argument. */
600 if (*p->arg == '+')
601 {
602 /* If it's a plus sign, we don't need to do anything, just advance the
603 pointer. */
604 ++p->arg;
605 }
606
607 if (*p->arg == '-')
608 {
609 got_minus = 1;
610 ++p->arg;
611 }
612
613 if (isdigit (*p->arg))
614 {
615 /* The value of the displacement. */
616 long displacement;
617 char *endp;
618
619 disp_p = 1;
620 displacement = strtol (p->arg, &endp, 10);
621 p->arg = endp;
622
623 /* Generating the expression for the displacement. */
624 write_exp_elt_opcode (&p->pstate, OP_LONG);
625 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
626 write_exp_elt_longcst (&p->pstate, displacement);
627 write_exp_elt_opcode (&p->pstate, OP_LONG);
628 if (got_minus)
629 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
630 }
631
632 /* Getting rid of register indirection prefix. */
633 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
634 {
635 indirect_p = 1;
636 p->arg += strlen (reg_ind_prefix);
637 }
638
639 if (disp_p && !indirect_p)
640 error (_("Invalid register displacement syntax on expression `%s'."),
641 p->saved_arg);
642
643 /* Getting rid of register prefix. */
644 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
645 p->arg += strlen (reg_prefix);
646
647 /* Now we should have only the register name. Let's extract it and get
648 the associated number. */
649 start = p->arg;
650
651 /* We assume the register name is composed by letters and numbers. */
652 while (isalnum (*p->arg))
653 ++p->arg;
654
655 len = p->arg - start;
656
657 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
658 regname[0] = '\0';
659
660 /* We only add the GDB's register prefix/suffix if we are dealing with
661 a numeric register. */
662 if (gdb_reg_prefix && isdigit (*start))
663 {
664 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
665 strncpy (regname + gdb_reg_prefix_len, start, len);
666
667 if (gdb_reg_suffix)
668 strncpy (regname + gdb_reg_prefix_len + len,
669 gdb_reg_suffix, gdb_reg_suffix_len);
670
671 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
672 }
673 else
674 strncpy (regname, start, len);
675
676 regname[len] = '\0';
677
678 /* Is this a valid register name? */
679 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
680 error (_("Invalid register name `%s' on expression `%s'."),
681 regname, p->saved_arg);
682
683 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
684 str.ptr = regname;
685 str.length = len;
686 write_exp_string (&p->pstate, str);
687 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
688
689 if (indirect_p)
690 {
691 if (disp_p)
692 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
693
694 /* Casting to the expected type. */
695 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
696 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
697 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
698
699 write_exp_elt_opcode (&p->pstate, UNOP_IND);
700 }
701
702 /* Getting rid of the register name suffix. */
703 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
704 p->arg += strlen (reg_suffix);
705 else
706 error (_("Missing register name suffix on expression `%s'."),
707 p->saved_arg);
708
709 /* Getting rid of the register indirection suffix. */
710 if (indirect_p)
711 {
712 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
713 &reg_ind_suffix))
714 p->arg += strlen (reg_ind_suffix);
715 else
716 error (_("Missing indirection suffix on expression `%s'."),
717 p->saved_arg);
718 }
719 }
720
721 /* This function is responsible for parsing a single operand.
722
723 A single operand can be:
724
725 - an unary operation (e.g., `-5', `~2', or even with subexpressions
726 like `-(2 + 1)')
727 - a register displacement, which will be treated as a register
728 operand (e.g., `-4(%eax)' on x86)
729 - a numeric constant, or
730 - a register operand (see function `stap_parse_register_operand')
731
732 The function also calls special-handling functions to deal with
733 unrecognized operands, allowing arch-specific parsers to be
734 created. */
735
736 static void
737 stap_parse_single_operand (struct stap_parse_info *p)
738 {
739 struct gdbarch *gdbarch = p->gdbarch;
740 const char *int_prefix = NULL;
741
742 /* We first try to parse this token as a "special token". */
743 if (gdbarch_stap_parse_special_token_p (gdbarch))
744 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
745 {
746 /* If the return value of the above function is not zero,
747 it means it successfully parsed the special token.
748
749 If it is NULL, we try to parse it using our method. */
750 return;
751 }
752
753 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
754 {
755 char c = *p->arg;
756 /* We use this variable to do a lookahead. */
757 const char *tmp = p->arg;
758 int has_digit = 0;
759
760 /* Skipping signal. */
761 ++tmp;
762
763 /* This is an unary operation. Here is a list of allowed tokens
764 here:
765
766 - numeric literal;
767 - number (from register displacement)
768 - subexpression (beginning with `(')
769
770 We handle the register displacement here, and the other cases
771 recursively. */
772 if (p->inside_paren_p)
773 tmp = skip_spaces_const (tmp);
774
775 while (isdigit (*tmp))
776 {
777 /* We skip the digit here because we are only interested in
778 knowing what kind of unary operation this is. The digit
779 will be handled by one of the functions that will be
780 called below ('stap_parse_argument_conditionally' or
781 'stap_parse_register_operand'). */
782 ++tmp;
783 has_digit = 1;
784 }
785
786 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
787 NULL))
788 {
789 /* If we are here, it means it is a displacement. The only
790 operations allowed here are `-' and `+'. */
791 if (c == '~')
792 error (_("Invalid operator `%c' for register displacement "
793 "on expression `%s'."), c, p->saved_arg);
794
795 stap_parse_register_operand (p);
796 }
797 else
798 {
799 /* This is not a displacement. We skip the operator, and
800 deal with it when the recursion returns. */
801 ++p->arg;
802 stap_parse_argument_conditionally (p);
803 if (c == '-')
804 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
805 else if (c == '~')
806 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
807 }
808 }
809 else if (isdigit (*p->arg))
810 {
811 /* A temporary variable, needed for lookahead. */
812 const char *tmp = p->arg;
813 char *endp;
814 long number;
815
816 /* We can be dealing with a numeric constant, or with a register
817 displacement. */
818 number = strtol (tmp, &endp, 10);
819 tmp = endp;
820
821 if (p->inside_paren_p)
822 tmp = skip_spaces_const (tmp);
823
824 /* If "stap_is_integer_prefix" returns true, it means we can
825 accept integers without a prefix here. But we also need to
826 check whether the next token (i.e., "tmp") is not a register
827 indirection prefix. */
828 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
829 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
830 {
831 const char *int_suffix;
832
833 /* We are dealing with a numeric constant. */
834 write_exp_elt_opcode (&p->pstate, OP_LONG);
835 write_exp_elt_type (&p->pstate,
836 builtin_type (gdbarch)->builtin_long);
837 write_exp_elt_longcst (&p->pstate, number);
838 write_exp_elt_opcode (&p->pstate, OP_LONG);
839
840 p->arg = tmp;
841
842 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
843 p->arg += strlen (int_suffix);
844 else
845 error (_("Invalid constant suffix on expression `%s'."),
846 p->saved_arg);
847 }
848 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
849 stap_parse_register_operand (p);
850 else
851 error (_("Unknown numeric token on expression `%s'."),
852 p->saved_arg);
853 }
854 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
855 {
856 /* We are dealing with a numeric constant. */
857 long number;
858 char *endp;
859 const char *int_suffix;
860
861 p->arg += strlen (int_prefix);
862 number = strtol (p->arg, &endp, 10);
863 p->arg = endp;
864
865 write_exp_elt_opcode (&p->pstate, OP_LONG);
866 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
867 write_exp_elt_longcst (&p->pstate, number);
868 write_exp_elt_opcode (&p->pstate, OP_LONG);
869
870 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
871 p->arg += strlen (int_suffix);
872 else
873 error (_("Invalid constant suffix on expression `%s'."),
874 p->saved_arg);
875 }
876 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
877 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
878 stap_parse_register_operand (p);
879 else
880 error (_("Operator `%c' not recognized on expression `%s'."),
881 *p->arg, p->saved_arg);
882 }
883
884 /* This function parses an argument conditionally, based on single or
885 non-single operands. A non-single operand would be a parenthesized
886 expression (e.g., `(2 + 1)'), and a single operand is anything that
887 starts with `-', `~', `+' (i.e., unary operators), a digit, or
888 something recognized by `gdbarch_stap_is_single_operand'. */
889
890 static void
891 stap_parse_argument_conditionally (struct stap_parse_info *p)
892 {
893 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
894
895 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
896 || isdigit (*p->arg)
897 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
898 stap_parse_single_operand (p);
899 else if (*p->arg == '(')
900 {
901 /* We are dealing with a parenthesized operand. It means we
902 have to parse it as it was a separate expression, without
903 left-side or precedence. */
904 ++p->arg;
905 p->arg = skip_spaces_const (p->arg);
906 ++p->inside_paren_p;
907
908 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
909
910 --p->inside_paren_p;
911 if (*p->arg != ')')
912 error (_("Missign close-paren on expression `%s'."),
913 p->saved_arg);
914
915 ++p->arg;
916 if (p->inside_paren_p)
917 p->arg = skip_spaces_const (p->arg);
918 }
919 else
920 error (_("Cannot parse expression `%s'."), p->saved_arg);
921 }
922
923 /* Helper function for `stap_parse_argument'. Please, see its comments to
924 better understand what this function does. */
925
926 static void
927 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
928 enum stap_operand_prec prec)
929 {
930 /* This is an operator-precedence parser.
931
932 We work with left- and right-sides of expressions, and
933 parse them depending on the precedence of the operators
934 we find. */
935
936 gdb_assert (p->arg != NULL);
937
938 if (p->inside_paren_p)
939 p->arg = skip_spaces_const (p->arg);
940
941 if (!has_lhs)
942 {
943 /* We were called without a left-side, either because this is the
944 first call, or because we were called to parse a parenthesized
945 expression. It doesn't really matter; we have to parse the
946 left-side in order to continue the process. */
947 stap_parse_argument_conditionally (p);
948 }
949
950 /* Start to parse the right-side, and to "join" left and right sides
951 depending on the operation specified.
952
953 This loop shall continue until we run out of characters in the input,
954 or until we find a close-parenthesis, which means that we've reached
955 the end of a sub-expression. */
956 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
957 {
958 const char *tmp_exp_buf;
959 enum exp_opcode opcode;
960 enum stap_operand_prec cur_prec;
961
962 if (!stap_is_operator (p->arg))
963 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
964 p->saved_arg);
965
966 /* We have to save the current value of the expression buffer because
967 the `stap_get_opcode' modifies it in order to get the current
968 operator. If this operator's precedence is lower than PREC, we
969 should return and not advance the expression buffer pointer. */
970 tmp_exp_buf = p->arg;
971 opcode = stap_get_opcode (&tmp_exp_buf);
972
973 cur_prec = stap_get_operator_prec (opcode);
974 if (cur_prec < prec)
975 {
976 /* If the precedence of the operator that we are seeing now is
977 lower than the precedence of the first operator seen before
978 this parsing process began, it means we should stop parsing
979 and return. */
980 break;
981 }
982
983 p->arg = tmp_exp_buf;
984 if (p->inside_paren_p)
985 p->arg = skip_spaces_const (p->arg);
986
987 /* Parse the right-side of the expression. */
988 stap_parse_argument_conditionally (p);
989
990 /* While we still have operators, try to parse another
991 right-side, but using the current right-side as a left-side. */
992 while (*p->arg != '\0' && stap_is_operator (p->arg))
993 {
994 enum exp_opcode lookahead_opcode;
995 enum stap_operand_prec lookahead_prec;
996
997 /* Saving the current expression buffer position. The explanation
998 is the same as above. */
999 tmp_exp_buf = p->arg;
1000 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1001 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1002
1003 if (lookahead_prec <= prec)
1004 {
1005 /* If we are dealing with an operator whose precedence is lower
1006 than the first one, just abandon the attempt. */
1007 break;
1008 }
1009
1010 /* Parse the right-side of the expression, but since we already
1011 have a left-side at this point, set `has_lhs' to 1. */
1012 stap_parse_argument_1 (p, 1, lookahead_prec);
1013 }
1014
1015 write_exp_elt_opcode (&p->pstate, opcode);
1016 }
1017 }
1018
1019 /* Parse a probe's argument.
1020
1021 Assuming that:
1022
1023 LP = literal integer prefix
1024 LS = literal integer suffix
1025
1026 RP = register prefix
1027 RS = register suffix
1028
1029 RIP = register indirection prefix
1030 RIS = register indirection suffix
1031
1032 This routine assumes that arguments' tokens are of the form:
1033
1034 - [LP] NUMBER [LS]
1035 - [RP] REGISTER [RS]
1036 - [RIP] [RP] REGISTER [RS] [RIS]
1037 - If we find a number without LP, we try to parse it as a literal integer
1038 constant (if LP == NULL), or as a register displacement.
1039 - We count parenthesis, and only skip whitespaces if we are inside them.
1040 - If we find an operator, we skip it.
1041
1042 This function can also call a special function that will try to match
1043 unknown tokens. It will return 1 if the argument has been parsed
1044 successfully, or zero otherwise. */
1045
1046 static struct expression *
1047 stap_parse_argument (const char **arg, struct type *atype,
1048 struct gdbarch *gdbarch)
1049 {
1050 struct stap_parse_info p;
1051 struct cleanup *back_to;
1052
1053 /* We need to initialize the expression buffer, in order to begin
1054 our parsing efforts. The language here does not matter, since we
1055 are using our own parser. */
1056 initialize_expout (&p.pstate, 10, current_language, gdbarch);
1057 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
1058
1059 p.saved_arg = *arg;
1060 p.arg = *arg;
1061 p.arg_type = atype;
1062 p.gdbarch = gdbarch;
1063 p.inside_paren_p = 0;
1064
1065 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1066
1067 discard_cleanups (back_to);
1068
1069 gdb_assert (p.inside_paren_p == 0);
1070
1071 /* Casting the final expression to the appropriate type. */
1072 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1073 write_exp_elt_type (&p.pstate, atype);
1074 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1075
1076 reallocate_expout (&p.pstate);
1077
1078 p.arg = skip_spaces_const (p.arg);
1079 *arg = p.arg;
1080
1081 /* We can safely return EXPOUT here. */
1082 return p.pstate.expout;
1083 }
1084
1085 /* Function which parses an argument string from PROBE, correctly splitting
1086 the arguments and storing their information in properly ways.
1087
1088 Consider the following argument string (x86 syntax):
1089
1090 `4@%eax 4@$10'
1091
1092 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1093 This function basically handles them, properly filling some structures with
1094 this information. */
1095
1096 static void
1097 stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
1098 {
1099 const char *cur;
1100
1101 gdb_assert (!probe->args_parsed);
1102 cur = probe->args_u.text;
1103 probe->args_parsed = 1;
1104 probe->args_u.vec = NULL;
1105
1106 if (cur == NULL || *cur == '\0' || *cur == ':')
1107 return;
1108
1109 while (*cur != '\0')
1110 {
1111 struct stap_probe_arg arg;
1112 enum stap_arg_bitness b;
1113 int got_minus = 0;
1114 struct expression *expr;
1115
1116 memset (&arg, 0, sizeof (arg));
1117
1118 /* We expect to find something like:
1119
1120 N@OP
1121
1122 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1123 we check it here. If we don't find it, go to the next
1124 state. */
1125 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1126 || (isdigit (cur[0]) && cur[1] == '@'))
1127 {
1128 if (*cur == '-')
1129 {
1130 /* Discard the `-'. */
1131 ++cur;
1132 got_minus = 1;
1133 }
1134
1135 /* Defining the bitness. */
1136 switch (*cur)
1137 {
1138 case '1':
1139 b = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1140 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1141 break;
1142
1143 case '2':
1144 b = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1145 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1146 break;
1147
1148 case '4':
1149 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1150 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1151 break;
1152
1153 case '8':
1154 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1155 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1156 break;
1157
1158 default:
1159 {
1160 /* We have an error, because we don't expect anything
1161 except 1, 2, 4 and 8. */
1162 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1163 got_minus ? "`-" : "`", *cur, probe->p.name);
1164 return;
1165 }
1166 }
1167
1168 arg.bitness = b;
1169
1170 /* Discard the number and the `@' sign. */
1171 cur += 2;
1172 }
1173 else
1174 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1175
1176 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness);
1177
1178 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1179
1180 if (stap_expression_debug)
1181 dump_raw_expression (expr, gdb_stdlog,
1182 "before conversion to prefix form");
1183
1184 prefixify_expression (expr);
1185
1186 if (stap_expression_debug)
1187 dump_prefix_expression (expr, gdb_stdlog);
1188
1189 arg.aexpr = expr;
1190
1191 /* Start it over again. */
1192 cur = skip_spaces_const (cur);
1193
1194 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1195 }
1196 }
1197
1198 /* Implementation of the get_probe_address method. */
1199
1200 static CORE_ADDR
1201 stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1202 {
1203 return probe->address + ANOFFSET (objfile->section_offsets,
1204 SECT_OFF_DATA (objfile));
1205 }
1206
1207 /* Given PROBE, returns the number of arguments present in that probe's
1208 argument string. */
1209
1210 static unsigned
1211 stap_get_probe_argument_count (struct probe *probe_generic,
1212 struct frame_info *frame)
1213 {
1214 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1215 struct gdbarch *gdbarch = get_frame_arch (frame);
1216
1217 gdb_assert (probe_generic->pops == &stap_probe_ops);
1218
1219 if (!probe->args_parsed)
1220 {
1221 if (can_evaluate_probe_arguments (probe_generic))
1222 stap_parse_probe_arguments (probe, gdbarch);
1223 else
1224 {
1225 static int have_warned_stap_incomplete = 0;
1226
1227 if (!have_warned_stap_incomplete)
1228 {
1229 warning (_(
1230 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1231 "you will not be able to inspect the arguments of the probes.\n"
1232 "Please report a bug against GDB requesting a port to this target."));
1233 have_warned_stap_incomplete = 1;
1234 }
1235
1236 /* Marking the arguments as "already parsed". */
1237 probe->args_u.vec = NULL;
1238 probe->args_parsed = 1;
1239 }
1240 }
1241
1242 gdb_assert (probe->args_parsed);
1243 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1244 }
1245
1246 /* Return 1 if OP is a valid operator inside a probe argument, or zero
1247 otherwise. */
1248
1249 static int
1250 stap_is_operator (const char *op)
1251 {
1252 int ret = 1;
1253
1254 switch (*op)
1255 {
1256 case '*':
1257 case '/':
1258 case '%':
1259 case '^':
1260 case '!':
1261 case '+':
1262 case '-':
1263 case '<':
1264 case '>':
1265 case '|':
1266 case '&':
1267 break;
1268
1269 case '=':
1270 if (op[1] != '=')
1271 ret = 0;
1272 break;
1273
1274 default:
1275 /* We didn't find any operator. */
1276 ret = 0;
1277 }
1278
1279 return ret;
1280 }
1281
1282 static struct stap_probe_arg *
1283 stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
1284 {
1285 if (!probe->args_parsed)
1286 stap_parse_probe_arguments (probe, gdbarch);
1287
1288 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1289 }
1290
1291 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1292
1293 static int
1294 stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1295 {
1296 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1297 struct gdbarch *gdbarch = stap_probe->p.arch;
1298
1299 /* For SystemTap probes, we have to guarantee that the method
1300 stap_is_single_operand is defined on gdbarch. If it is not, then it
1301 means that argument evaluation is not implemented on this target. */
1302 return gdbarch_stap_is_single_operand_p (gdbarch);
1303 }
1304
1305 /* Evaluate the probe's argument N (indexed from 0), returning a value
1306 corresponding to it. Assertion is thrown if N does not exist. */
1307
1308 static struct value *
1309 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1310 struct frame_info *frame)
1311 {
1312 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1313 struct gdbarch *gdbarch = get_frame_arch (frame);
1314 struct stap_probe_arg *arg;
1315 int pos = 0;
1316
1317 gdb_assert (probe_generic->pops == &stap_probe_ops);
1318
1319 arg = stap_get_arg (stap_probe, n, gdbarch);
1320 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1321 }
1322
1323 /* Compile the probe's argument N (indexed from 0) to agent expression.
1324 Assertion is thrown if N does not exist. */
1325
1326 static void
1327 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1328 struct axs_value *value, unsigned n)
1329 {
1330 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1331 struct stap_probe_arg *arg;
1332 union exp_element *pc;
1333
1334 gdb_assert (probe_generic->pops == &stap_probe_ops);
1335
1336 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
1337
1338 pc = arg->aexpr->elts;
1339 gen_expr (arg->aexpr, &pc, expr, value);
1340
1341 require_rvalue (expr, value);
1342 value->type = arg->atype;
1343 }
1344
1345 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1346 as it is allocated on an obstack. */
1347
1348 static void
1349 stap_probe_destroy (struct probe *probe_generic)
1350 {
1351 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1352
1353 gdb_assert (probe_generic->pops == &stap_probe_ops);
1354
1355 if (probe->args_parsed)
1356 {
1357 struct stap_probe_arg *arg;
1358 int ix;
1359
1360 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1361 ++ix)
1362 xfree (arg->aexpr);
1363 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1364 }
1365 }
1366
1367 \f
1368
1369 /* This is called to compute the value of one of the $_probe_arg*
1370 convenience variables. */
1371
1372 static struct value *
1373 compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1374 void *data)
1375 {
1376 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1377 CORE_ADDR pc = get_frame_pc (frame);
1378 int sel = (int) (uintptr_t) data;
1379 struct bound_probe pc_probe;
1380 const struct sym_probe_fns *pc_probe_fns;
1381 unsigned n_args;
1382
1383 /* SEL == -1 means "_probe_argc". */
1384 gdb_assert (sel >= -1);
1385
1386 pc_probe = find_probe_by_pc (pc);
1387 if (pc_probe.probe == NULL)
1388 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1389
1390 n_args = get_probe_argument_count (pc_probe.probe, frame);
1391 if (sel == -1)
1392 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1393
1394 if (sel >= n_args)
1395 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1396 sel, n_args);
1397
1398 return evaluate_probe_argument (pc_probe.probe, sel, frame);
1399 }
1400
1401 /* This is called to compile one of the $_probe_arg* convenience
1402 variables into an agent expression. */
1403
1404 static void
1405 compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1406 struct axs_value *value, void *data)
1407 {
1408 CORE_ADDR pc = expr->scope;
1409 int sel = (int) (uintptr_t) data;
1410 struct bound_probe pc_probe;
1411 const struct sym_probe_fns *pc_probe_fns;
1412 int n_args;
1413 struct frame_info *frame = get_selected_frame (NULL);
1414
1415 /* SEL == -1 means "_probe_argc". */
1416 gdb_assert (sel >= -1);
1417
1418 pc_probe = find_probe_by_pc (pc);
1419 if (pc_probe.probe == NULL)
1420 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1421
1422 n_args = get_probe_argument_count (pc_probe.probe, frame);
1423
1424 if (sel == -1)
1425 {
1426 value->kind = axs_rvalue;
1427 value->type = builtin_type (expr->gdbarch)->builtin_int;
1428 ax_const_l (expr, n_args);
1429 return;
1430 }
1431
1432 gdb_assert (sel >= 0);
1433 if (sel >= n_args)
1434 error (_("Invalid probe argument %d -- probe has %d arguments available"),
1435 sel, n_args);
1436
1437 pc_probe.probe->pops->compile_to_ax (pc_probe.probe, expr, value, sel);
1438 }
1439
1440 \f
1441
1442 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1443 address. SET is zero if the semaphore should be cleared, or one
1444 if it should be set. This is a helper function for `stap_semaphore_down'
1445 and `stap_semaphore_up'. */
1446
1447 static void
1448 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1449 {
1450 gdb_byte bytes[sizeof (LONGEST)];
1451 /* The ABI specifies "unsigned short". */
1452 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1453 ULONGEST value;
1454
1455 if (address == 0)
1456 return;
1457
1458 /* Swallow errors. */
1459 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1460 {
1461 warning (_("Could not read the value of a SystemTap semaphore."));
1462 return;
1463 }
1464
1465 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1466 gdbarch_byte_order (gdbarch));
1467 /* Note that we explicitly don't worry about overflow or
1468 underflow. */
1469 if (set)
1470 ++value;
1471 else
1472 --value;
1473
1474 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1475 gdbarch_byte_order (gdbarch), value);
1476
1477 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1478 warning (_("Could not write the value of a SystemTap semaphore."));
1479 }
1480
1481 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1482 act as reference counters, so calls to this function must be paired with
1483 calls to `stap_semaphore_down'.
1484
1485 This function and `stap_semaphore_down' race with another tool changing
1486 the probes, but that is too rare to care. */
1487
1488 static void
1489 stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1490 struct gdbarch *gdbarch)
1491 {
1492 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1493 CORE_ADDR addr;
1494
1495 gdb_assert (probe_generic->pops == &stap_probe_ops);
1496
1497 addr = (probe->sem_addr
1498 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1499 stap_modify_semaphore (addr, 1, gdbarch);
1500 }
1501
1502 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1503
1504 static void
1505 stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1506 struct gdbarch *gdbarch)
1507 {
1508 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1509 CORE_ADDR addr;
1510
1511 gdb_assert (probe_generic->pops == &stap_probe_ops);
1512
1513 addr = (probe->sem_addr
1514 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1515 stap_modify_semaphore (addr, 0, gdbarch);
1516 }
1517
1518 /* Implementation of `$_probe_arg*' set of variables. */
1519
1520 static const struct internalvar_funcs probe_funcs =
1521 {
1522 compute_probe_arg,
1523 compile_probe_arg,
1524 NULL
1525 };
1526
1527 /* Helper function that parses the information contained in a
1528 SystemTap's probe. Basically, the information consists in:
1529
1530 - Probe's PC address;
1531 - Link-time section address of `.stapsdt.base' section;
1532 - Link-time address of the semaphore variable, or ZERO if the
1533 probe doesn't have an associated semaphore;
1534 - Probe's provider name;
1535 - Probe's name;
1536 - Probe's argument format
1537
1538 This function returns 1 if the handling was successful, and zero
1539 otherwise. */
1540
1541 static void
1542 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1543 VEC (probe_p) **probesp, CORE_ADDR base)
1544 {
1545 bfd *abfd = objfile->obfd;
1546 int size = bfd_get_arch_size (abfd) / 8;
1547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1548 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1549 CORE_ADDR base_ref;
1550 const char *probe_args = NULL;
1551 struct stap_probe *ret;
1552
1553 ret = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret));
1554 ret->p.pops = &stap_probe_ops;
1555 ret->p.arch = gdbarch;
1556
1557 /* Provider and the name of the probe. */
1558 ret->p.provider = (char *) &el->data[3 * size];
1559 ret->p.name = memchr (ret->p.provider, '\0',
1560 (char *) el->data + el->size - ret->p.provider);
1561 /* Making sure there is a name. */
1562 if (ret->p.name == NULL)
1563 {
1564 complaint (&symfile_complaints, _("corrupt probe name when "
1565 "reading `%s'"),
1566 objfile_name (objfile));
1567
1568 /* There is no way to use a probe without a name or a provider, so
1569 returning zero here makes sense. */
1570 return;
1571 }
1572 else
1573 ++ret->p.name;
1574
1575 /* Retrieving the probe's address. */
1576 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1577
1578 /* Link-time sh_addr of `.stapsdt.base' section. */
1579 base_ref = extract_typed_address (&el->data[size], ptr_type);
1580
1581 /* Semaphore address. */
1582 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1583
1584 ret->p.address += base - base_ref;
1585 if (ret->sem_addr != 0)
1586 ret->sem_addr += base - base_ref;
1587
1588 /* Arguments. We can only extract the argument format if there is a valid
1589 name for this probe. */
1590 probe_args = memchr (ret->p.name, '\0',
1591 (char *) el->data + el->size - ret->p.name);
1592
1593 if (probe_args != NULL)
1594 ++probe_args;
1595
1596 if (probe_args == NULL
1597 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1598 != el->data + el->size - 1))
1599 {
1600 complaint (&symfile_complaints, _("corrupt probe argument when "
1601 "reading `%s'"),
1602 objfile_name (objfile));
1603 /* If the argument string is NULL, it means some problem happened with
1604 it. So we return 0. */
1605 return;
1606 }
1607
1608 ret->args_parsed = 0;
1609 ret->args_u.text = (void *) probe_args;
1610
1611 /* Successfully created probe. */
1612 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1613 }
1614
1615 /* Helper function which tries to find the base address of the SystemTap
1616 base section named STAP_BASE_SECTION_NAME. */
1617
1618 static void
1619 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1620 {
1621 asection **ret = obj;
1622
1623 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1624 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1625 *ret = sect;
1626 }
1627
1628 /* Helper function which iterates over every section in the BFD file,
1629 trying to find the base address of the SystemTap base section.
1630 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1631
1632 static int
1633 get_stap_base_address (bfd *obfd, bfd_vma *base)
1634 {
1635 asection *ret = NULL;
1636
1637 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1638
1639 if (ret == NULL)
1640 {
1641 complaint (&symfile_complaints, _("could not obtain base address for "
1642 "SystemTap section on objfile `%s'."),
1643 obfd->filename);
1644 return 0;
1645 }
1646
1647 if (base != NULL)
1648 *base = ret->vma;
1649
1650 return 1;
1651 }
1652
1653 /* Helper function for `elf_get_probes', which gathers information about all
1654 SystemTap probes from OBJFILE. */
1655
1656 static void
1657 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1658 {
1659 /* If we are here, then this is the first time we are parsing the
1660 SystemTap probe's information. We basically have to count how many
1661 probes the objfile has, and then fill in the necessary information
1662 for each one. */
1663 bfd *obfd = objfile->obfd;
1664 bfd_vma base;
1665 struct sdt_note *iter;
1666 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1667
1668 if (objfile->separate_debug_objfile_backlink != NULL)
1669 {
1670 /* This is a .debug file, not the objfile itself. */
1671 return;
1672 }
1673
1674 if (elf_tdata (obfd)->sdt_note_head == NULL)
1675 {
1676 /* There isn't any probe here. */
1677 return;
1678 }
1679
1680 if (!get_stap_base_address (obfd, &base))
1681 {
1682 /* There was an error finding the base address for the section.
1683 Just return NULL. */
1684 return;
1685 }
1686
1687 /* Parsing each probe's information. */
1688 for (iter = elf_tdata (obfd)->sdt_note_head;
1689 iter != NULL;
1690 iter = iter->next)
1691 {
1692 /* We first have to handle all the information about the
1693 probe which is present in the section. */
1694 handle_stap_probe (objfile, iter, probesp, base);
1695 }
1696
1697 if (save_probesp_len == VEC_length (probe_p, *probesp))
1698 {
1699 /* If we are here, it means we have failed to parse every known
1700 probe. */
1701 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1702 "from inferior"));
1703 return;
1704 }
1705 }
1706
1707 static int
1708 stap_probe_is_linespec (const char **linespecp)
1709 {
1710 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1711
1712 return probe_is_linespec_by_keyword (linespecp, keywords);
1713 }
1714
1715 static void
1716 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1717 {
1718 info_probe_column_s stap_probe_column;
1719
1720 stap_probe_column.field_name = "semaphore";
1721 stap_probe_column.print_name = _("Semaphore");
1722
1723 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1724 }
1725
1726 static void
1727 stap_gen_info_probes_table_values (struct probe *probe_generic,
1728 VEC (const_char_ptr) **ret)
1729 {
1730 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1731 struct gdbarch *gdbarch;
1732 const char *val = NULL;
1733
1734 gdb_assert (probe_generic->pops == &stap_probe_ops);
1735
1736 gdbarch = probe->p.arch;
1737
1738 if (probe->sem_addr != 0)
1739 val = print_core_address (gdbarch, probe->sem_addr);
1740
1741 VEC_safe_push (const_char_ptr, *ret, val);
1742 }
1743
1744 /* SystemTap probe_ops. */
1745
1746 static const struct probe_ops stap_probe_ops =
1747 {
1748 stap_probe_is_linespec,
1749 stap_get_probes,
1750 stap_get_probe_address,
1751 stap_get_probe_argument_count,
1752 stap_can_evaluate_probe_arguments,
1753 stap_evaluate_probe_argument,
1754 stap_compile_to_ax,
1755 stap_set_semaphore,
1756 stap_clear_semaphore,
1757 stap_probe_destroy,
1758 stap_gen_info_probes_table_header,
1759 stap_gen_info_probes_table_values,
1760 };
1761
1762 /* Implementation of the `info probes stap' command. */
1763
1764 static void
1765 info_probes_stap_command (char *arg, int from_tty)
1766 {
1767 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1768 }
1769
1770 void _initialize_stap_probe (void);
1771
1772 void
1773 _initialize_stap_probe (void)
1774 {
1775 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1776
1777 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1778 &stap_expression_debug,
1779 _("Set SystemTap expression debugging."),
1780 _("Show SystemTap expression debugging."),
1781 _("When non-zero, the internal representation "
1782 "of SystemTap expressions will be printed."),
1783 NULL,
1784 show_stapexpressiondebug,
1785 &setdebuglist, &showdebuglist);
1786
1787 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1788 (void *) (uintptr_t) -1);
1789 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1790 (void *) (uintptr_t) 0);
1791 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1792 (void *) (uintptr_t) 1);
1793 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1794 (void *) (uintptr_t) 2);
1795 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1796 (void *) (uintptr_t) 3);
1797 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1798 (void *) (uintptr_t) 4);
1799 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1800 (void *) (uintptr_t) 5);
1801 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1802 (void *) (uintptr_t) 6);
1803 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1804 (void *) (uintptr_t) 7);
1805 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1806 (void *) (uintptr_t) 8);
1807 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1808 (void *) (uintptr_t) 9);
1809 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1810 (void *) (uintptr_t) 10);
1811 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1812 (void *) (uintptr_t) 11);
1813
1814 add_cmd ("stap", class_info, info_probes_stap_command,
1815 _("\
1816 Show information about SystemTap static probes.\n\
1817 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1818 Each argument is a regular expression, used to select probes.\n\
1819 PROVIDER matches probe provider names.\n\
1820 NAME matches the probe names.\n\
1821 OBJECT matches the executable or shared library name."),
1822 info_probes_cmdlist_get ());
1823
1824 }
This page took 0.088121 seconds and 4 git commands to generate.