Remove unnecessary function prototypes.
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "complaints.h"
34 #include "cli/cli-utils.h"
35 #include "linespec.h"
36 #include "user-regs.h"
37 #include "parser-defs.h"
38 #include "language.h"
39 #include "elf-bfd.h"
40
41 #include <ctype.h>
42
43 /* The name of the SystemTap section where we will find information about
44 the probes. */
45
46 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
47
48 /* Forward declaration. */
49
50 extern const struct probe_ops stap_probe_ops;
51
52 /* Should we display debug information for the probe's argument expression
53 parsing? */
54
55 static unsigned int stap_expression_debug = 0;
56
57 /* The various possibilities of bitness defined for a probe's argument.
58
59 The relationship is:
60
61 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
62 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
63 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
64 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
65 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
66 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
67 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
68 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
69 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
70
71 enum stap_arg_bitness
72 {
73 STAP_ARG_BITNESS_UNDEFINED,
74 STAP_ARG_BITNESS_8BIT_UNSIGNED,
75 STAP_ARG_BITNESS_8BIT_SIGNED,
76 STAP_ARG_BITNESS_16BIT_UNSIGNED,
77 STAP_ARG_BITNESS_16BIT_SIGNED,
78 STAP_ARG_BITNESS_32BIT_UNSIGNED,
79 STAP_ARG_BITNESS_32BIT_SIGNED,
80 STAP_ARG_BITNESS_64BIT_UNSIGNED,
81 STAP_ARG_BITNESS_64BIT_SIGNED,
82 };
83
84 /* The following structure represents a single argument for the probe. */
85
86 struct stap_probe_arg
87 {
88 /* The bitness of this argument. */
89 enum stap_arg_bitness bitness;
90
91 /* The corresponding `struct type *' to the bitness. */
92 struct type *atype;
93
94 /* The argument converted to an internal GDB expression. */
95 struct expression *aexpr;
96 };
97
98 typedef struct stap_probe_arg stap_probe_arg_s;
99 DEF_VEC_O (stap_probe_arg_s);
100
101 struct stap_probe
102 {
103 /* Generic information about the probe. This shall be the first element
104 of this struct, in order to maintain binary compatibility with the
105 `struct probe' and be able to fully abstract it. */
106 struct probe p;
107
108 /* If the probe has a semaphore associated, then this is the value of
109 it, relative to SECT_OFF_DATA. */
110 CORE_ADDR sem_addr;
111
112 /* One if the arguments have been parsed. */
113 unsigned int args_parsed : 1;
114
115 union
116 {
117 const char *text;
118
119 /* Information about each argument. This is an array of `stap_probe_arg',
120 with each entry representing one argument. */
121 VEC (stap_probe_arg_s) *vec;
122 }
123 args_u;
124 };
125
126 /* When parsing the arguments, we have to establish different precedences
127 for the various kinds of asm operators. This enumeration represents those
128 precedences.
129
130 This logic behind this is available at
131 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
132 the command "info '(as)Infix Ops'". */
133
134 enum stap_operand_prec
135 {
136 /* Lowest precedence, used for non-recognized operands or for the beginning
137 of the parsing process. */
138 STAP_OPERAND_PREC_NONE = 0,
139
140 /* Precedence of logical OR. */
141 STAP_OPERAND_PREC_LOGICAL_OR,
142
143 /* Precedence of logical AND. */
144 STAP_OPERAND_PREC_LOGICAL_AND,
145
146 /* Precedence of additive (plus, minus) and comparative (equal, less,
147 greater-than, etc) operands. */
148 STAP_OPERAND_PREC_ADD_CMP,
149
150 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
151 logical NOT). */
152 STAP_OPERAND_PREC_BITWISE,
153
154 /* Precedence of multiplicative operands (multiplication, division,
155 remainder, left shift and right shift). */
156 STAP_OPERAND_PREC_MUL
157 };
158
159 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
160 enum stap_operand_prec prec);
161
162 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
163
164 /* Returns 1 if *S is an operator, zero otherwise. */
165
166 static int stap_is_operator (const char *op);
167
168 static void
169 show_stapexpressiondebug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
173 value);
174 }
175
176 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
177 if the operator code was not recognized. */
178
179 static enum stap_operand_prec
180 stap_get_operator_prec (enum exp_opcode op)
181 {
182 switch (op)
183 {
184 case BINOP_LOGICAL_OR:
185 return STAP_OPERAND_PREC_LOGICAL_OR;
186
187 case BINOP_LOGICAL_AND:
188 return STAP_OPERAND_PREC_LOGICAL_AND;
189
190 case BINOP_ADD:
191 case BINOP_SUB:
192 case BINOP_EQUAL:
193 case BINOP_NOTEQUAL:
194 case BINOP_LESS:
195 case BINOP_LEQ:
196 case BINOP_GTR:
197 case BINOP_GEQ:
198 return STAP_OPERAND_PREC_ADD_CMP;
199
200 case BINOP_BITWISE_IOR:
201 case BINOP_BITWISE_AND:
202 case BINOP_BITWISE_XOR:
203 case UNOP_LOGICAL_NOT:
204 return STAP_OPERAND_PREC_BITWISE;
205
206 case BINOP_MUL:
207 case BINOP_DIV:
208 case BINOP_REM:
209 case BINOP_LSH:
210 case BINOP_RSH:
211 return STAP_OPERAND_PREC_MUL;
212
213 default:
214 return STAP_OPERAND_PREC_NONE;
215 }
216 }
217
218 /* Given S, read the operator in it and fills the OP pointer with its code.
219 Return 1 on success, zero if the operator was not recognized. */
220
221 static enum exp_opcode
222 stap_get_opcode (const char **s)
223 {
224 const char c = **s;
225 enum exp_opcode op;
226
227 *s += 1;
228
229 switch (c)
230 {
231 case '*':
232 op = BINOP_MUL;
233 break;
234
235 case '/':
236 op = BINOP_DIV;
237 break;
238
239 case '%':
240 op = BINOP_REM;
241 break;
242
243 case '<':
244 op = BINOP_LESS;
245 if (**s == '<')
246 {
247 *s += 1;
248 op = BINOP_LSH;
249 }
250 else if (**s == '=')
251 {
252 *s += 1;
253 op = BINOP_LEQ;
254 }
255 else if (**s == '>')
256 {
257 *s += 1;
258 op = BINOP_NOTEQUAL;
259 }
260 break;
261
262 case '>':
263 op = BINOP_GTR;
264 if (**s == '>')
265 {
266 *s += 1;
267 op = BINOP_RSH;
268 }
269 else if (**s == '=')
270 {
271 *s += 1;
272 op = BINOP_GEQ;
273 }
274 break;
275
276 case '|':
277 op = BINOP_BITWISE_IOR;
278 if (**s == '|')
279 {
280 *s += 1;
281 op = BINOP_LOGICAL_OR;
282 }
283 break;
284
285 case '&':
286 op = BINOP_BITWISE_AND;
287 if (**s == '&')
288 {
289 *s += 1;
290 op = BINOP_LOGICAL_AND;
291 }
292 break;
293
294 case '^':
295 op = BINOP_BITWISE_XOR;
296 break;
297
298 case '!':
299 op = UNOP_LOGICAL_NOT;
300 break;
301
302 case '+':
303 op = BINOP_ADD;
304 break;
305
306 case '-':
307 op = BINOP_SUB;
308 break;
309
310 case '=':
311 gdb_assert (**s == '=');
312 op = BINOP_EQUAL;
313 break;
314
315 default:
316 error (_("Invalid opcode in expression `%s' for SystemTap"
317 "probe"), *s);
318 }
319
320 return op;
321 }
322
323 /* Given the bitness of the argument, represented by B, return the
324 corresponding `struct type *'. */
325
326 static struct type *
327 stap_get_expected_argument_type (struct gdbarch *gdbarch,
328 enum stap_arg_bitness b,
329 const struct stap_probe *probe)
330 {
331 switch (b)
332 {
333 case STAP_ARG_BITNESS_UNDEFINED:
334 if (gdbarch_addr_bit (gdbarch) == 32)
335 return builtin_type (gdbarch)->builtin_uint32;
336 else
337 return builtin_type (gdbarch)->builtin_uint64;
338
339 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint8;
341
342 case STAP_ARG_BITNESS_8BIT_SIGNED:
343 return builtin_type (gdbarch)->builtin_int8;
344
345 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
346 return builtin_type (gdbarch)->builtin_uint16;
347
348 case STAP_ARG_BITNESS_16BIT_SIGNED:
349 return builtin_type (gdbarch)->builtin_int16;
350
351 case STAP_ARG_BITNESS_32BIT_SIGNED:
352 return builtin_type (gdbarch)->builtin_int32;
353
354 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
355 return builtin_type (gdbarch)->builtin_uint32;
356
357 case STAP_ARG_BITNESS_64BIT_SIGNED:
358 return builtin_type (gdbarch)->builtin_int64;
359
360 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
361 return builtin_type (gdbarch)->builtin_uint64;
362
363 default:
364 error (_("Undefined bitness for probe '%s'."),
365 probe->p.name);
366 break;
367 }
368 }
369
370 /* Helper function to check for a generic list of prefixes. GDBARCH
371 is the current gdbarch being used. S is the expression being
372 analyzed. If R is not NULL, it will be used to return the found
373 prefix. PREFIXES is the list of expected prefixes.
374
375 This function does a case-insensitive match.
376
377 Return 1 if any prefix has been found, zero otherwise. */
378
379 static int
380 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
381 const char **r, const char *const *prefixes)
382 {
383 const char *const *p;
384
385 if (prefixes == NULL)
386 {
387 if (r != NULL)
388 *r = "";
389
390 return 1;
391 }
392
393 for (p = prefixes; *p != NULL; ++p)
394 if (strncasecmp (s, *p, strlen (*p)) == 0)
395 {
396 if (r != NULL)
397 *r = *p;
398
399 return 1;
400 }
401
402 return 0;
403 }
404
405 /* Return 1 if S points to a register prefix, zero otherwise. For a
406 description of the arguments, look at stap_is_generic_prefix. */
407
408 static int
409 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
410 const char **r)
411 {
412 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
413
414 return stap_is_generic_prefix (gdbarch, s, r, t);
415 }
416
417 /* Return 1 if S points to a register indirection prefix, zero
418 otherwise. For a description of the arguments, look at
419 stap_is_generic_prefix. */
420
421 static int
422 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
423 const char **r)
424 {
425 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
426
427 return stap_is_generic_prefix (gdbarch, s, r, t);
428 }
429
430 /* Return 1 if S points to an integer prefix, zero otherwise. For a
431 description of the arguments, look at stap_is_generic_prefix.
432
433 This function takes care of analyzing whether we are dealing with
434 an expected integer prefix, or, if there is no integer prefix to be
435 expected, whether we are dealing with a digit. It does a
436 case-insensitive match. */
437
438 static int
439 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
440 const char **r)
441 {
442 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
443 const char *const *p;
444
445 if (t == NULL)
446 {
447 /* A NULL value here means that integers do not have a prefix.
448 We just check for a digit then. */
449 if (r != NULL)
450 *r = "";
451
452 return isdigit (*s);
453 }
454
455 for (p = t; *p != NULL; ++p)
456 {
457 size_t len = strlen (*p);
458
459 if ((len == 0 && isdigit (*s))
460 || (len > 0 && strncasecmp (s, *p, len) == 0))
461 {
462 /* Integers may or may not have a prefix. The "len == 0"
463 check covers the case when integers do not have a prefix
464 (therefore, we just check if we have a digit). The call
465 to "strncasecmp" covers the case when they have a
466 prefix. */
467 if (r != NULL)
468 *r = *p;
469
470 return 1;
471 }
472 }
473
474 return 0;
475 }
476
477 /* Helper function to check for a generic list of suffixes. If we are
478 not expecting any suffixes, then it just returns 1. If we are
479 expecting at least one suffix, then it returns 1 if a suffix has
480 been found, zero otherwise. GDBARCH is the current gdbarch being
481 used. S is the expression being analyzed. If R is not NULL, it
482 will be used to return the found suffix. SUFFIXES is the list of
483 expected suffixes. This function does a case-insensitive
484 match. */
485
486 static int
487 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
488 const char **r, const char *const *suffixes)
489 {
490 const char *const *p;
491 int found = 0;
492
493 if (suffixes == NULL)
494 {
495 if (r != NULL)
496 *r = "";
497
498 return 1;
499 }
500
501 for (p = suffixes; *p != NULL; ++p)
502 if (strncasecmp (s, *p, strlen (*p)) == 0)
503 {
504 if (r != NULL)
505 *r = *p;
506
507 found = 1;
508 break;
509 }
510
511 return found;
512 }
513
514 /* Return 1 if S points to an integer suffix, zero otherwise. For a
515 description of the arguments, look at
516 stap_generic_check_suffix. */
517
518 static int
519 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
520 const char **r)
521 {
522 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
523
524 return stap_generic_check_suffix (gdbarch, s, r, p);
525 }
526
527 /* Return 1 if S points to a register suffix, zero otherwise. For a
528 description of the arguments, look at
529 stap_generic_check_suffix. */
530
531 static int
532 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
533 const char **r)
534 {
535 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
536
537 return stap_generic_check_suffix (gdbarch, s, r, p);
538 }
539
540 /* Return 1 if S points to a register indirection suffix, zero
541 otherwise. For a description of the arguments, look at
542 stap_generic_check_suffix. */
543
544 static int
545 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
546 const char **r)
547 {
548 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
549
550 return stap_generic_check_suffix (gdbarch, s, r, p);
551 }
552
553 /* Function responsible for parsing a register operand according to
554 SystemTap parlance. Assuming:
555
556 RP = register prefix
557 RS = register suffix
558 RIP = register indirection prefix
559 RIS = register indirection suffix
560
561 Then a register operand can be:
562
563 [RIP] [RP] REGISTER [RS] [RIS]
564
565 This function takes care of a register's indirection, displacement and
566 direct access. It also takes into consideration the fact that some
567 registers are named differently inside and outside GDB, e.g., PPC's
568 general-purpose registers are represented by integers in the assembly
569 language (e.g., `15' is the 15th general-purpose register), but inside
570 GDB they have a prefix (the letter `r') appended. */
571
572 static void
573 stap_parse_register_operand (struct stap_parse_info *p)
574 {
575 /* Simple flag to indicate whether we have seen a minus signal before
576 certain number. */
577 int got_minus = 0;
578 /* Flags to indicate whether this register access is being displaced and/or
579 indirected. */
580 int disp_p = 0, indirect_p = 0;
581 struct gdbarch *gdbarch = p->gdbarch;
582 /* Needed to generate the register name as a part of an expression. */
583 struct stoken str;
584 /* Variables used to extract the register name from the probe's
585 argument. */
586 const char *start;
587 char *regname;
588 int len;
589 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
590 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
591 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
592 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
593 const char *reg_prefix;
594 const char *reg_ind_prefix;
595 const char *reg_suffix;
596 const char *reg_ind_suffix;
597
598 /* Checking for a displacement argument. */
599 if (*p->arg == '+')
600 {
601 /* If it's a plus sign, we don't need to do anything, just advance the
602 pointer. */
603 ++p->arg;
604 }
605
606 if (*p->arg == '-')
607 {
608 got_minus = 1;
609 ++p->arg;
610 }
611
612 if (isdigit (*p->arg))
613 {
614 /* The value of the displacement. */
615 long displacement;
616 char *endp;
617
618 disp_p = 1;
619 displacement = strtol (p->arg, &endp, 10);
620 p->arg = endp;
621
622 /* Generating the expression for the displacement. */
623 write_exp_elt_opcode (&p->pstate, OP_LONG);
624 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
625 write_exp_elt_longcst (&p->pstate, displacement);
626 write_exp_elt_opcode (&p->pstate, OP_LONG);
627 if (got_minus)
628 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
629 }
630
631 /* Getting rid of register indirection prefix. */
632 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
633 {
634 indirect_p = 1;
635 p->arg += strlen (reg_ind_prefix);
636 }
637
638 if (disp_p && !indirect_p)
639 error (_("Invalid register displacement syntax on expression `%s'."),
640 p->saved_arg);
641
642 /* Getting rid of register prefix. */
643 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
644 p->arg += strlen (reg_prefix);
645
646 /* Now we should have only the register name. Let's extract it and get
647 the associated number. */
648 start = p->arg;
649
650 /* We assume the register name is composed by letters and numbers. */
651 while (isalnum (*p->arg))
652 ++p->arg;
653
654 len = p->arg - start;
655
656 regname = (char *) alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
657 regname[0] = '\0';
658
659 /* We only add the GDB's register prefix/suffix if we are dealing with
660 a numeric register. */
661 if (gdb_reg_prefix && isdigit (*start))
662 {
663 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
664 strncpy (regname + gdb_reg_prefix_len, start, len);
665
666 if (gdb_reg_suffix)
667 strncpy (regname + gdb_reg_prefix_len + len,
668 gdb_reg_suffix, gdb_reg_suffix_len);
669
670 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
671 }
672 else
673 strncpy (regname, start, len);
674
675 regname[len] = '\0';
676
677 /* Is this a valid register name? */
678 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
679 error (_("Invalid register name `%s' on expression `%s'."),
680 regname, p->saved_arg);
681
682 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
683 str.ptr = regname;
684 str.length = len;
685 write_exp_string (&p->pstate, str);
686 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
687
688 if (indirect_p)
689 {
690 if (disp_p)
691 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
692
693 /* Casting to the expected type. */
694 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
695 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
696 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
697
698 write_exp_elt_opcode (&p->pstate, UNOP_IND);
699 }
700
701 /* Getting rid of the register name suffix. */
702 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
703 p->arg += strlen (reg_suffix);
704 else
705 error (_("Missing register name suffix on expression `%s'."),
706 p->saved_arg);
707
708 /* Getting rid of the register indirection suffix. */
709 if (indirect_p)
710 {
711 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
712 &reg_ind_suffix))
713 p->arg += strlen (reg_ind_suffix);
714 else
715 error (_("Missing indirection suffix on expression `%s'."),
716 p->saved_arg);
717 }
718 }
719
720 /* This function is responsible for parsing a single operand.
721
722 A single operand can be:
723
724 - an unary operation (e.g., `-5', `~2', or even with subexpressions
725 like `-(2 + 1)')
726 - a register displacement, which will be treated as a register
727 operand (e.g., `-4(%eax)' on x86)
728 - a numeric constant, or
729 - a register operand (see function `stap_parse_register_operand')
730
731 The function also calls special-handling functions to deal with
732 unrecognized operands, allowing arch-specific parsers to be
733 created. */
734
735 static void
736 stap_parse_single_operand (struct stap_parse_info *p)
737 {
738 struct gdbarch *gdbarch = p->gdbarch;
739 const char *int_prefix = NULL;
740
741 /* We first try to parse this token as a "special token". */
742 if (gdbarch_stap_parse_special_token_p (gdbarch))
743 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
744 {
745 /* If the return value of the above function is not zero,
746 it means it successfully parsed the special token.
747
748 If it is NULL, we try to parse it using our method. */
749 return;
750 }
751
752 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
753 {
754 char c = *p->arg;
755 /* We use this variable to do a lookahead. */
756 const char *tmp = p->arg;
757 int has_digit = 0;
758
759 /* Skipping signal. */
760 ++tmp;
761
762 /* This is an unary operation. Here is a list of allowed tokens
763 here:
764
765 - numeric literal;
766 - number (from register displacement)
767 - subexpression (beginning with `(')
768
769 We handle the register displacement here, and the other cases
770 recursively. */
771 if (p->inside_paren_p)
772 tmp = skip_spaces_const (tmp);
773
774 while (isdigit (*tmp))
775 {
776 /* We skip the digit here because we are only interested in
777 knowing what kind of unary operation this is. The digit
778 will be handled by one of the functions that will be
779 called below ('stap_parse_argument_conditionally' or
780 'stap_parse_register_operand'). */
781 ++tmp;
782 has_digit = 1;
783 }
784
785 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
786 NULL))
787 {
788 /* If we are here, it means it is a displacement. The only
789 operations allowed here are `-' and `+'. */
790 if (c == '~')
791 error (_("Invalid operator `%c' for register displacement "
792 "on expression `%s'."), c, p->saved_arg);
793
794 stap_parse_register_operand (p);
795 }
796 else
797 {
798 /* This is not a displacement. We skip the operator, and
799 deal with it when the recursion returns. */
800 ++p->arg;
801 stap_parse_argument_conditionally (p);
802 if (c == '-')
803 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
804 else if (c == '~')
805 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
806 }
807 }
808 else if (isdigit (*p->arg))
809 {
810 /* A temporary variable, needed for lookahead. */
811 const char *tmp = p->arg;
812 char *endp;
813 long number;
814
815 /* We can be dealing with a numeric constant, or with a register
816 displacement. */
817 number = strtol (tmp, &endp, 10);
818 tmp = endp;
819
820 if (p->inside_paren_p)
821 tmp = skip_spaces_const (tmp);
822
823 /* If "stap_is_integer_prefix" returns true, it means we can
824 accept integers without a prefix here. But we also need to
825 check whether the next token (i.e., "tmp") is not a register
826 indirection prefix. */
827 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
828 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
829 {
830 const char *int_suffix;
831
832 /* We are dealing with a numeric constant. */
833 write_exp_elt_opcode (&p->pstate, OP_LONG);
834 write_exp_elt_type (&p->pstate,
835 builtin_type (gdbarch)->builtin_long);
836 write_exp_elt_longcst (&p->pstate, number);
837 write_exp_elt_opcode (&p->pstate, OP_LONG);
838
839 p->arg = tmp;
840
841 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
842 p->arg += strlen (int_suffix);
843 else
844 error (_("Invalid constant suffix on expression `%s'."),
845 p->saved_arg);
846 }
847 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
848 stap_parse_register_operand (p);
849 else
850 error (_("Unknown numeric token on expression `%s'."),
851 p->saved_arg);
852 }
853 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
854 {
855 /* We are dealing with a numeric constant. */
856 long number;
857 char *endp;
858 const char *int_suffix;
859
860 p->arg += strlen (int_prefix);
861 number = strtol (p->arg, &endp, 10);
862 p->arg = endp;
863
864 write_exp_elt_opcode (&p->pstate, OP_LONG);
865 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
866 write_exp_elt_longcst (&p->pstate, number);
867 write_exp_elt_opcode (&p->pstate, OP_LONG);
868
869 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
870 p->arg += strlen (int_suffix);
871 else
872 error (_("Invalid constant suffix on expression `%s'."),
873 p->saved_arg);
874 }
875 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
876 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
877 stap_parse_register_operand (p);
878 else
879 error (_("Operator `%c' not recognized on expression `%s'."),
880 *p->arg, p->saved_arg);
881 }
882
883 /* This function parses an argument conditionally, based on single or
884 non-single operands. A non-single operand would be a parenthesized
885 expression (e.g., `(2 + 1)'), and a single operand is anything that
886 starts with `-', `~', `+' (i.e., unary operators), a digit, or
887 something recognized by `gdbarch_stap_is_single_operand'. */
888
889 static void
890 stap_parse_argument_conditionally (struct stap_parse_info *p)
891 {
892 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
893
894 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
895 || isdigit (*p->arg)
896 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
897 stap_parse_single_operand (p);
898 else if (*p->arg == '(')
899 {
900 /* We are dealing with a parenthesized operand. It means we
901 have to parse it as it was a separate expression, without
902 left-side or precedence. */
903 ++p->arg;
904 p->arg = skip_spaces_const (p->arg);
905 ++p->inside_paren_p;
906
907 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
908
909 --p->inside_paren_p;
910 if (*p->arg != ')')
911 error (_("Missign close-paren on expression `%s'."),
912 p->saved_arg);
913
914 ++p->arg;
915 if (p->inside_paren_p)
916 p->arg = skip_spaces_const (p->arg);
917 }
918 else
919 error (_("Cannot parse expression `%s'."), p->saved_arg);
920 }
921
922 /* Helper function for `stap_parse_argument'. Please, see its comments to
923 better understand what this function does. */
924
925 static void
926 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
927 enum stap_operand_prec prec)
928 {
929 /* This is an operator-precedence parser.
930
931 We work with left- and right-sides of expressions, and
932 parse them depending on the precedence of the operators
933 we find. */
934
935 gdb_assert (p->arg != NULL);
936
937 if (p->inside_paren_p)
938 p->arg = skip_spaces_const (p->arg);
939
940 if (!has_lhs)
941 {
942 /* We were called without a left-side, either because this is the
943 first call, or because we were called to parse a parenthesized
944 expression. It doesn't really matter; we have to parse the
945 left-side in order to continue the process. */
946 stap_parse_argument_conditionally (p);
947 }
948
949 /* Start to parse the right-side, and to "join" left and right sides
950 depending on the operation specified.
951
952 This loop shall continue until we run out of characters in the input,
953 or until we find a close-parenthesis, which means that we've reached
954 the end of a sub-expression. */
955 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
956 {
957 const char *tmp_exp_buf;
958 enum exp_opcode opcode;
959 enum stap_operand_prec cur_prec;
960
961 if (!stap_is_operator (p->arg))
962 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
963 p->saved_arg);
964
965 /* We have to save the current value of the expression buffer because
966 the `stap_get_opcode' modifies it in order to get the current
967 operator. If this operator's precedence is lower than PREC, we
968 should return and not advance the expression buffer pointer. */
969 tmp_exp_buf = p->arg;
970 opcode = stap_get_opcode (&tmp_exp_buf);
971
972 cur_prec = stap_get_operator_prec (opcode);
973 if (cur_prec < prec)
974 {
975 /* If the precedence of the operator that we are seeing now is
976 lower than the precedence of the first operator seen before
977 this parsing process began, it means we should stop parsing
978 and return. */
979 break;
980 }
981
982 p->arg = tmp_exp_buf;
983 if (p->inside_paren_p)
984 p->arg = skip_spaces_const (p->arg);
985
986 /* Parse the right-side of the expression. */
987 stap_parse_argument_conditionally (p);
988
989 /* While we still have operators, try to parse another
990 right-side, but using the current right-side as a left-side. */
991 while (*p->arg != '\0' && stap_is_operator (p->arg))
992 {
993 enum exp_opcode lookahead_opcode;
994 enum stap_operand_prec lookahead_prec;
995
996 /* Saving the current expression buffer position. The explanation
997 is the same as above. */
998 tmp_exp_buf = p->arg;
999 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1000 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1001
1002 if (lookahead_prec <= prec)
1003 {
1004 /* If we are dealing with an operator whose precedence is lower
1005 than the first one, just abandon the attempt. */
1006 break;
1007 }
1008
1009 /* Parse the right-side of the expression, but since we already
1010 have a left-side at this point, set `has_lhs' to 1. */
1011 stap_parse_argument_1 (p, 1, lookahead_prec);
1012 }
1013
1014 write_exp_elt_opcode (&p->pstate, opcode);
1015 }
1016 }
1017
1018 /* Parse a probe's argument.
1019
1020 Assuming that:
1021
1022 LP = literal integer prefix
1023 LS = literal integer suffix
1024
1025 RP = register prefix
1026 RS = register suffix
1027
1028 RIP = register indirection prefix
1029 RIS = register indirection suffix
1030
1031 This routine assumes that arguments' tokens are of the form:
1032
1033 - [LP] NUMBER [LS]
1034 - [RP] REGISTER [RS]
1035 - [RIP] [RP] REGISTER [RS] [RIS]
1036 - If we find a number without LP, we try to parse it as a literal integer
1037 constant (if LP == NULL), or as a register displacement.
1038 - We count parenthesis, and only skip whitespaces if we are inside them.
1039 - If we find an operator, we skip it.
1040
1041 This function can also call a special function that will try to match
1042 unknown tokens. It will return 1 if the argument has been parsed
1043 successfully, or zero otherwise. */
1044
1045 static struct expression *
1046 stap_parse_argument (const char **arg, struct type *atype,
1047 struct gdbarch *gdbarch)
1048 {
1049 struct stap_parse_info p;
1050 struct cleanup *back_to;
1051
1052 /* We need to initialize the expression buffer, in order to begin
1053 our parsing efforts. We use language_c here because we may need
1054 to do pointer arithmetics. */
1055 initialize_expout (&p.pstate, 10, language_def (language_c), gdbarch);
1056 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
1057
1058 p.saved_arg = *arg;
1059 p.arg = *arg;
1060 p.arg_type = atype;
1061 p.gdbarch = gdbarch;
1062 p.inside_paren_p = 0;
1063
1064 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1065
1066 discard_cleanups (back_to);
1067
1068 gdb_assert (p.inside_paren_p == 0);
1069
1070 /* Casting the final expression to the appropriate type. */
1071 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1072 write_exp_elt_type (&p.pstate, atype);
1073 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1074
1075 reallocate_expout (&p.pstate);
1076
1077 p.arg = skip_spaces_const (p.arg);
1078 *arg = p.arg;
1079
1080 /* We can safely return EXPOUT here. */
1081 return p.pstate.expout;
1082 }
1083
1084 /* Function which parses an argument string from PROBE, correctly splitting
1085 the arguments and storing their information in properly ways.
1086
1087 Consider the following argument string (x86 syntax):
1088
1089 `4@%eax 4@$10'
1090
1091 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1092 This function basically handles them, properly filling some structures with
1093 this information. */
1094
1095 static void
1096 stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
1097 {
1098 const char *cur;
1099
1100 gdb_assert (!probe->args_parsed);
1101 cur = probe->args_u.text;
1102 probe->args_parsed = 1;
1103 probe->args_u.vec = NULL;
1104
1105 if (cur == NULL || *cur == '\0' || *cur == ':')
1106 return;
1107
1108 while (*cur != '\0')
1109 {
1110 struct stap_probe_arg arg;
1111 enum stap_arg_bitness b;
1112 int got_minus = 0;
1113 struct expression *expr;
1114
1115 memset (&arg, 0, sizeof (arg));
1116
1117 /* We expect to find something like:
1118
1119 N@OP
1120
1121 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1122 we check it here. If we don't find it, go to the next
1123 state. */
1124 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1125 || (isdigit (cur[0]) && cur[1] == '@'))
1126 {
1127 if (*cur == '-')
1128 {
1129 /* Discard the `-'. */
1130 ++cur;
1131 got_minus = 1;
1132 }
1133
1134 /* Defining the bitness. */
1135 switch (*cur)
1136 {
1137 case '1':
1138 b = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1139 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1140 break;
1141
1142 case '2':
1143 b = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1144 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1145 break;
1146
1147 case '4':
1148 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1149 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1150 break;
1151
1152 case '8':
1153 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1154 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1155 break;
1156
1157 default:
1158 {
1159 /* We have an error, because we don't expect anything
1160 except 1, 2, 4 and 8. */
1161 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1162 got_minus ? "`-" : "`", *cur, probe->p.name);
1163 return;
1164 }
1165 }
1166
1167 arg.bitness = b;
1168
1169 /* Discard the number and the `@' sign. */
1170 cur += 2;
1171 }
1172 else
1173 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1174
1175 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness,
1176 probe);
1177
1178 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1179
1180 if (stap_expression_debug)
1181 dump_raw_expression (expr, gdb_stdlog,
1182 "before conversion to prefix form");
1183
1184 prefixify_expression (expr);
1185
1186 if (stap_expression_debug)
1187 dump_prefix_expression (expr, gdb_stdlog);
1188
1189 arg.aexpr = expr;
1190
1191 /* Start it over again. */
1192 cur = skip_spaces_const (cur);
1193
1194 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1195 }
1196 }
1197
1198 /* Implementation of the get_probe_address method. */
1199
1200 static CORE_ADDR
1201 stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1202 {
1203 return probe->address + ANOFFSET (objfile->section_offsets,
1204 SECT_OFF_DATA (objfile));
1205 }
1206
1207 /* Given PROBE, returns the number of arguments present in that probe's
1208 argument string. */
1209
1210 static unsigned
1211 stap_get_probe_argument_count (struct probe *probe_generic,
1212 struct frame_info *frame)
1213 {
1214 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1215 struct gdbarch *gdbarch = get_frame_arch (frame);
1216
1217 gdb_assert (probe_generic->pops == &stap_probe_ops);
1218
1219 if (!probe->args_parsed)
1220 {
1221 if (can_evaluate_probe_arguments (probe_generic))
1222 stap_parse_probe_arguments (probe, gdbarch);
1223 else
1224 {
1225 static int have_warned_stap_incomplete = 0;
1226
1227 if (!have_warned_stap_incomplete)
1228 {
1229 warning (_(
1230 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1231 "you will not be able to inspect the arguments of the probes.\n"
1232 "Please report a bug against GDB requesting a port to this target."));
1233 have_warned_stap_incomplete = 1;
1234 }
1235
1236 /* Marking the arguments as "already parsed". */
1237 probe->args_u.vec = NULL;
1238 probe->args_parsed = 1;
1239 }
1240 }
1241
1242 gdb_assert (probe->args_parsed);
1243 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1244 }
1245
1246 /* Return 1 if OP is a valid operator inside a probe argument, or zero
1247 otherwise. */
1248
1249 static int
1250 stap_is_operator (const char *op)
1251 {
1252 int ret = 1;
1253
1254 switch (*op)
1255 {
1256 case '*':
1257 case '/':
1258 case '%':
1259 case '^':
1260 case '!':
1261 case '+':
1262 case '-':
1263 case '<':
1264 case '>':
1265 case '|':
1266 case '&':
1267 break;
1268
1269 case '=':
1270 if (op[1] != '=')
1271 ret = 0;
1272 break;
1273
1274 default:
1275 /* We didn't find any operator. */
1276 ret = 0;
1277 }
1278
1279 return ret;
1280 }
1281
1282 /* Return argument N of probe PROBE.
1283
1284 If the probe's arguments have not been parsed yet, parse them. If
1285 there are no arguments, throw an exception (error). Otherwise,
1286 return the requested argument. */
1287
1288 static struct stap_probe_arg *
1289 stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
1290 {
1291 if (!probe->args_parsed)
1292 stap_parse_probe_arguments (probe, gdbarch);
1293
1294 gdb_assert (probe->args_parsed);
1295 if (probe->args_u.vec == NULL)
1296 internal_error (__FILE__, __LINE__,
1297 _("Probe '%s' apparently does not have arguments, but \n"
1298 "GDB is requesting its argument number %u anyway. "
1299 "This should not happen. Please report this bug."),
1300 probe->p.name, n);
1301
1302 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1303 }
1304
1305 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1306
1307 static int
1308 stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1309 {
1310 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1311 struct gdbarch *gdbarch = stap_probe->p.arch;
1312
1313 /* For SystemTap probes, we have to guarantee that the method
1314 stap_is_single_operand is defined on gdbarch. If it is not, then it
1315 means that argument evaluation is not implemented on this target. */
1316 return gdbarch_stap_is_single_operand_p (gdbarch);
1317 }
1318
1319 /* Evaluate the probe's argument N (indexed from 0), returning a value
1320 corresponding to it. Assertion is thrown if N does not exist. */
1321
1322 static struct value *
1323 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1324 struct frame_info *frame)
1325 {
1326 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1327 struct gdbarch *gdbarch = get_frame_arch (frame);
1328 struct stap_probe_arg *arg;
1329 int pos = 0;
1330
1331 gdb_assert (probe_generic->pops == &stap_probe_ops);
1332
1333 arg = stap_get_arg (stap_probe, n, gdbarch);
1334 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1335 }
1336
1337 /* Compile the probe's argument N (indexed from 0) to agent expression.
1338 Assertion is thrown if N does not exist. */
1339
1340 static void
1341 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1342 struct axs_value *value, unsigned n)
1343 {
1344 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1345 struct stap_probe_arg *arg;
1346 union exp_element *pc;
1347
1348 gdb_assert (probe_generic->pops == &stap_probe_ops);
1349
1350 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
1351
1352 pc = arg->aexpr->elts;
1353 gen_expr (arg->aexpr, &pc, expr, value);
1354
1355 require_rvalue (expr, value);
1356 value->type = arg->atype;
1357 }
1358
1359 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1360 as it is allocated on an obstack. */
1361
1362 static void
1363 stap_probe_destroy (struct probe *probe_generic)
1364 {
1365 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1366
1367 gdb_assert (probe_generic->pops == &stap_probe_ops);
1368
1369 if (probe->args_parsed)
1370 {
1371 struct stap_probe_arg *arg;
1372 int ix;
1373
1374 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1375 ++ix)
1376 xfree (arg->aexpr);
1377 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1378 }
1379 }
1380
1381 \f
1382
1383 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1384 address. SET is zero if the semaphore should be cleared, or one
1385 if it should be set. This is a helper function for `stap_semaphore_down'
1386 and `stap_semaphore_up'. */
1387
1388 static void
1389 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1390 {
1391 gdb_byte bytes[sizeof (LONGEST)];
1392 /* The ABI specifies "unsigned short". */
1393 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1394 ULONGEST value;
1395
1396 if (address == 0)
1397 return;
1398
1399 /* Swallow errors. */
1400 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1401 {
1402 warning (_("Could not read the value of a SystemTap semaphore."));
1403 return;
1404 }
1405
1406 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1407 gdbarch_byte_order (gdbarch));
1408 /* Note that we explicitly don't worry about overflow or
1409 underflow. */
1410 if (set)
1411 ++value;
1412 else
1413 --value;
1414
1415 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1416 gdbarch_byte_order (gdbarch), value);
1417
1418 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1419 warning (_("Could not write the value of a SystemTap semaphore."));
1420 }
1421
1422 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1423 act as reference counters, so calls to this function must be paired with
1424 calls to `stap_semaphore_down'.
1425
1426 This function and `stap_semaphore_down' race with another tool changing
1427 the probes, but that is too rare to care. */
1428
1429 static void
1430 stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1431 struct gdbarch *gdbarch)
1432 {
1433 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1434 CORE_ADDR addr;
1435
1436 gdb_assert (probe_generic->pops == &stap_probe_ops);
1437
1438 addr = (probe->sem_addr
1439 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1440 stap_modify_semaphore (addr, 1, gdbarch);
1441 }
1442
1443 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1444
1445 static void
1446 stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1447 struct gdbarch *gdbarch)
1448 {
1449 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1450 CORE_ADDR addr;
1451
1452 gdb_assert (probe_generic->pops == &stap_probe_ops);
1453
1454 addr = (probe->sem_addr
1455 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1456 stap_modify_semaphore (addr, 0, gdbarch);
1457 }
1458
1459 /* Helper function that parses the information contained in a
1460 SystemTap's probe. Basically, the information consists in:
1461
1462 - Probe's PC address;
1463 - Link-time section address of `.stapsdt.base' section;
1464 - Link-time address of the semaphore variable, or ZERO if the
1465 probe doesn't have an associated semaphore;
1466 - Probe's provider name;
1467 - Probe's name;
1468 - Probe's argument format
1469
1470 This function returns 1 if the handling was successful, and zero
1471 otherwise. */
1472
1473 static void
1474 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1475 VEC (probe_p) **probesp, CORE_ADDR base)
1476 {
1477 bfd *abfd = objfile->obfd;
1478 int size = bfd_get_arch_size (abfd) / 8;
1479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1480 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1481 CORE_ADDR base_ref;
1482 const char *probe_args = NULL;
1483 struct stap_probe *ret;
1484
1485 ret = XOBNEW (&objfile->per_bfd->storage_obstack, struct stap_probe);
1486 ret->p.pops = &stap_probe_ops;
1487 ret->p.arch = gdbarch;
1488
1489 /* Provider and the name of the probe. */
1490 ret->p.provider = (char *) &el->data[3 * size];
1491 ret->p.name = ((const char *)
1492 memchr (ret->p.provider, '\0',
1493 (char *) el->data + el->size - ret->p.provider));
1494 /* Making sure there is a name. */
1495 if (ret->p.name == NULL)
1496 {
1497 complaint (&symfile_complaints, _("corrupt probe name when "
1498 "reading `%s'"),
1499 objfile_name (objfile));
1500
1501 /* There is no way to use a probe without a name or a provider, so
1502 returning zero here makes sense. */
1503 return;
1504 }
1505 else
1506 ++ret->p.name;
1507
1508 /* Retrieving the probe's address. */
1509 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1510
1511 /* Link-time sh_addr of `.stapsdt.base' section. */
1512 base_ref = extract_typed_address (&el->data[size], ptr_type);
1513
1514 /* Semaphore address. */
1515 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1516
1517 ret->p.address += base - base_ref;
1518 if (ret->sem_addr != 0)
1519 ret->sem_addr += base - base_ref;
1520
1521 /* Arguments. We can only extract the argument format if there is a valid
1522 name for this probe. */
1523 probe_args = ((const char*)
1524 memchr (ret->p.name, '\0',
1525 (char *) el->data + el->size - ret->p.name));
1526
1527 if (probe_args != NULL)
1528 ++probe_args;
1529
1530 if (probe_args == NULL
1531 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1532 != el->data + el->size - 1))
1533 {
1534 complaint (&symfile_complaints, _("corrupt probe argument when "
1535 "reading `%s'"),
1536 objfile_name (objfile));
1537 /* If the argument string is NULL, it means some problem happened with
1538 it. So we return 0. */
1539 return;
1540 }
1541
1542 ret->args_parsed = 0;
1543 ret->args_u.text = probe_args;
1544
1545 /* Successfully created probe. */
1546 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1547 }
1548
1549 /* Helper function which tries to find the base address of the SystemTap
1550 base section named STAP_BASE_SECTION_NAME. */
1551
1552 static void
1553 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1554 {
1555 asection **ret = (asection **) obj;
1556
1557 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1558 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1559 *ret = sect;
1560 }
1561
1562 /* Helper function which iterates over every section in the BFD file,
1563 trying to find the base address of the SystemTap base section.
1564 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1565
1566 static int
1567 get_stap_base_address (bfd *obfd, bfd_vma *base)
1568 {
1569 asection *ret = NULL;
1570
1571 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1572
1573 if (ret == NULL)
1574 {
1575 complaint (&symfile_complaints, _("could not obtain base address for "
1576 "SystemTap section on objfile `%s'."),
1577 obfd->filename);
1578 return 0;
1579 }
1580
1581 if (base != NULL)
1582 *base = ret->vma;
1583
1584 return 1;
1585 }
1586
1587 /* Helper function for `elf_get_probes', which gathers information about all
1588 SystemTap probes from OBJFILE. */
1589
1590 static void
1591 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1592 {
1593 /* If we are here, then this is the first time we are parsing the
1594 SystemTap probe's information. We basically have to count how many
1595 probes the objfile has, and then fill in the necessary information
1596 for each one. */
1597 bfd *obfd = objfile->obfd;
1598 bfd_vma base;
1599 struct sdt_note *iter;
1600 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1601
1602 if (objfile->separate_debug_objfile_backlink != NULL)
1603 {
1604 /* This is a .debug file, not the objfile itself. */
1605 return;
1606 }
1607
1608 if (elf_tdata (obfd)->sdt_note_head == NULL)
1609 {
1610 /* There isn't any probe here. */
1611 return;
1612 }
1613
1614 if (!get_stap_base_address (obfd, &base))
1615 {
1616 /* There was an error finding the base address for the section.
1617 Just return NULL. */
1618 return;
1619 }
1620
1621 /* Parsing each probe's information. */
1622 for (iter = elf_tdata (obfd)->sdt_note_head;
1623 iter != NULL;
1624 iter = iter->next)
1625 {
1626 /* We first have to handle all the information about the
1627 probe which is present in the section. */
1628 handle_stap_probe (objfile, iter, probesp, base);
1629 }
1630
1631 if (save_probesp_len == VEC_length (probe_p, *probesp))
1632 {
1633 /* If we are here, it means we have failed to parse every known
1634 probe. */
1635 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1636 "from inferior"));
1637 return;
1638 }
1639 }
1640
1641 /* Implementation of the type_name method. */
1642
1643 static const char *
1644 stap_type_name (struct probe *probe)
1645 {
1646 gdb_assert (probe->pops == &stap_probe_ops);
1647 return "stap";
1648 }
1649
1650 static int
1651 stap_probe_is_linespec (const char **linespecp)
1652 {
1653 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1654
1655 return probe_is_linespec_by_keyword (linespecp, keywords);
1656 }
1657
1658 static void
1659 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1660 {
1661 info_probe_column_s stap_probe_column;
1662
1663 stap_probe_column.field_name = "semaphore";
1664 stap_probe_column.print_name = _("Semaphore");
1665
1666 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1667 }
1668
1669 static void
1670 stap_gen_info_probes_table_values (struct probe *probe_generic,
1671 VEC (const_char_ptr) **ret)
1672 {
1673 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1674 struct gdbarch *gdbarch;
1675 const char *val = NULL;
1676
1677 gdb_assert (probe_generic->pops == &stap_probe_ops);
1678
1679 gdbarch = probe->p.arch;
1680
1681 if (probe->sem_addr != 0)
1682 val = print_core_address (gdbarch, probe->sem_addr);
1683
1684 VEC_safe_push (const_char_ptr, *ret, val);
1685 }
1686
1687 /* SystemTap probe_ops. */
1688
1689 const struct probe_ops stap_probe_ops =
1690 {
1691 stap_probe_is_linespec,
1692 stap_get_probes,
1693 stap_get_probe_address,
1694 stap_get_probe_argument_count,
1695 stap_can_evaluate_probe_arguments,
1696 stap_evaluate_probe_argument,
1697 stap_compile_to_ax,
1698 stap_set_semaphore,
1699 stap_clear_semaphore,
1700 stap_probe_destroy,
1701 stap_type_name,
1702 stap_gen_info_probes_table_header,
1703 stap_gen_info_probes_table_values,
1704 NULL, /* enable_probe */
1705 NULL /* disable_probe */
1706 };
1707
1708 /* Implementation of the `info probes stap' command. */
1709
1710 static void
1711 info_probes_stap_command (char *arg, int from_tty)
1712 {
1713 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1714 }
1715
1716 void
1717 _initialize_stap_probe (void)
1718 {
1719 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1720
1721 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1722 &stap_expression_debug,
1723 _("Set SystemTap expression debugging."),
1724 _("Show SystemTap expression debugging."),
1725 _("When non-zero, the internal representation "
1726 "of SystemTap expressions will be printed."),
1727 NULL,
1728 show_stapexpressiondebug,
1729 &setdebuglist, &showdebuglist);
1730
1731 add_cmd ("stap", class_info, info_probes_stap_command,
1732 _("\
1733 Show information about SystemTap static probes.\n\
1734 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1735 Each argument is a regular expression, used to select probes.\n\
1736 PROVIDER matches probe provider names.\n\
1737 NAME matches the probe names.\n\
1738 OBJECT matches the executable or shared library name."),
1739 info_probes_cmdlist_get ());
1740
1741 }
This page took 0.063015 seconds and 5 git commands to generate.