windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
658 for (i = 0; i < addrs->num_sections; i++)
659 {
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
661
662 if (sect)
663 {
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
666
667 if (addrs->other[i].addr != 0)
668 {
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
671 }
672 else
673 addrs->other[i].addr = lower_offset;
674 }
675 else
676 {
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
709 }
710 }
711
712 do_cleanups (my_cleanup);
713 }
714
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
724 {
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803 }
804
805 /* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
813 {
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
843
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867 }
868
869 /* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872 static void
873 read_symbols (struct objfile *objfile, int add_flags)
874 {
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901 }
902
903 /* Initialize entry point information for this objfile. */
904
905 static void
906 init_entry_point_info (struct objfile *objfile)
907 {
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
937 }
938
939 if (ei->entry_point_p)
940 {
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
943 int found;
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
954 ei->entry_point
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975 }
976 }
977
978 /* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
981 This function does not set the OBJFILE's entry-point info.
982
983 OBJFILE is where the symbols are to be read from.
984
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
994
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
998
999 static void
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1002 int add_flags)
1003 {
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1007
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009
1010 if (objfile->sf == NULL)
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 static void
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 finish_new_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269 }
1270
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open (name, gnutarget, -1);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 {
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
1394 gdb_bfd_unref (abfd);
1395 return 0;
1396 }
1397 verified_as_different = 1;
1398 }
1399 else
1400 verified_as_different = 0;
1401
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403
1404 gdb_bfd_unref (abfd);
1405
1406 if (!file_crc_p)
1407 return 0;
1408
1409 if (crc != file_crc)
1410 {
1411 unsigned long parent_crc;
1412
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1416
1417 if (!verified_as_different)
1418 {
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1420 return 0;
1421 }
1422
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1427
1428 return 0;
1429 }
1430
1431 return 1;
1432 }
1433
1434 char *debug_file_directory = NULL;
1435 static void
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1442 value);
1443 }
1444
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1447 #endif
1448
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1455
1456 static char *
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1461 {
1462 char *debugdir;
1463 char *debugfile;
1464 int i;
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
1468
1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1470 i = strlen (dir);
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1473
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 return debugfile;
1487
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* Then try in the global debugfile directories.
1498
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1501
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1504
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
1535 }
1536 }
1537
1538 do_cleanups (back_to);
1539 xfree (debugfile);
1540 return NULL;
1541 }
1542
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547 static void
1548 terminate_after_last_dir_separator (char *path)
1549 {
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560 }
1561
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565 char *
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567 {
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 }
1622
1623 do_cleanups (cleanups);
1624 return debugfile;
1625 }
1626
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1640
1641 void
1642 symbol_file_command (char *args, int from_tty)
1643 {
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1648 symbol_file_clear (from_tty);
1649 }
1650 else
1651 {
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1659 {
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1664 else
1665 {
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1667 name = *argv;
1668 }
1669
1670 argv++;
1671 }
1672
1673 if (name == NULL)
1674 error (_("no symbol file name was specified"));
1675
1676 do_cleanups (cleanups);
1677 }
1678 }
1679
1680 /* Set the initial language.
1681
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
1690
1691 void
1692 set_initial_language (void)
1693 {
1694 enum language lang = main_language ();
1695
1696 if (lang == language_unknown)
1697 {
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1700
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
1703 }
1704
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
1709 }
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1713 }
1714
1715 /* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
1719
1720 bfd *
1721 symfile_bfd_open (const char *name)
1722 {
1723 bfd *sym_bfd;
1724 int desc = -1;
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1726
1727 if (!is_target_filename (name))
1728 {
1729 char *expanded_name, *absolute_name;
1730
1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1732
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1737 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1738 if (desc < 0)
1739 {
1740 char *exename = alloca (strlen (expanded_name) + 5);
1741
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1746 }
1747 #endif
1748 if (desc < 0)
1749 {
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1752 }
1753
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1757 }
1758
1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1760 if (!sym_bfd)
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1763
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
1766
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1768 {
1769 make_cleanup_bfd_unref (sym_bfd);
1770 error (_("`%s': can't read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1772 }
1773
1774 do_cleanups (back_to);
1775
1776 return sym_bfd;
1777 }
1778
1779 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1781
1782 int
1783 get_section_index (struct objfile *objfile, char *section_name)
1784 {
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1786
1787 if (sect)
1788 return sect->index;
1789 else
1790 return -1;
1791 }
1792
1793 /* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1797 to handle. */
1798
1799 void
1800 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1801 {
1802 registered_sym_fns fns = { flavour, sf };
1803
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1805 }
1806
1807 /* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
1811
1812 static const struct sym_fns *
1813 find_sym_fns (bfd *abfd)
1814 {
1815 registered_sym_fns *rsf;
1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1817 int i;
1818
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
1822 return NULL; /* No symbols. */
1823
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
1827
1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1829 bfd_get_target (abfd));
1830 }
1831 \f
1832
1833 /* This function runs the load command of our current target. */
1834
1835 static void
1836 load_command (char *arg, int from_tty)
1837 {
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1839
1840 dont_repeat ();
1841
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
1847 if (arg == NULL)
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
1884 target_load (arg, from_tty);
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1889
1890 do_cleanups (cleanup);
1891 }
1892
1893 /* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1896
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
1901
1902 static int validate_download = 0;
1903
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906 static void
1907 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1908 {
1909 bfd_size_type *sum = data;
1910
1911 *sum += bfd_get_section_size (asec);
1912 }
1913
1914 /* Opaque data for load_section_callback. */
1915 struct load_section_data {
1916 CORE_ADDR load_offset;
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1919 };
1920
1921 /* Opaque data for load_progress. */
1922 struct load_progress_data {
1923 /* Cumulative data. */
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
1927 };
1928
1929 /* Opaque data for load_progress for a single section. */
1930 struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
1932
1933 /* Per-section data. */
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1937 CORE_ADDR lma;
1938 gdb_byte *buffer;
1939 };
1940
1941 /* Target write callback routine for progress reporting. */
1942
1943 static void
1944 load_progress (ULONGEST bytes, void *untyped_arg)
1945 {
1946 struct load_progress_section_data *args = untyped_arg;
1947 struct load_progress_data *totals;
1948
1949 if (args == NULL)
1950 /* Writing padding data. No easy way to get at the cumulative
1951 stats, so just ignore this. */
1952 return;
1953
1954 totals = args->cumulative;
1955
1956 if (bytes == 0 && args->section_sent == 0)
1957 {
1958 /* The write is just starting. Let the user know we've started
1959 this section. */
1960 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1961 args->section_name, hex_string (args->section_size),
1962 paddress (target_gdbarch (), args->lma));
1963 return;
1964 }
1965
1966 if (validate_download)
1967 {
1968 /* Broken memories and broken monitors manifest themselves here
1969 when bring new computers to life. This doubles already slow
1970 downloads. */
1971 /* NOTE: cagney/1999-10-18: A more efficient implementation
1972 might add a verify_memory() method to the target vector and
1973 then use that. remote.c could implement that method using
1974 the ``qCRC'' packet. */
1975 gdb_byte *check = xmalloc (bytes);
1976 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1977
1978 if (target_read_memory (args->lma, check, bytes) != 0)
1979 error (_("Download verify read failed at %s"),
1980 paddress (target_gdbarch (), args->lma));
1981 if (memcmp (args->buffer, check, bytes) != 0)
1982 error (_("Download verify compare failed at %s"),
1983 paddress (target_gdbarch (), args->lma));
1984 do_cleanups (verify_cleanups);
1985 }
1986 totals->data_count += bytes;
1987 args->lma += bytes;
1988 args->buffer += bytes;
1989 totals->write_count += 1;
1990 args->section_sent += bytes;
1991 if (check_quit_flag ()
1992 || (deprecated_ui_load_progress_hook != NULL
1993 && deprecated_ui_load_progress_hook (args->section_name,
1994 args->section_sent)))
1995 error (_("Canceled the download"));
1996
1997 if (deprecated_show_load_progress != NULL)
1998 deprecated_show_load_progress (args->section_name,
1999 args->section_sent,
2000 args->section_size,
2001 totals->data_count,
2002 totals->total_size);
2003 }
2004
2005 /* Callback service function for generic_load (bfd_map_over_sections). */
2006
2007 static void
2008 load_section_callback (bfd *abfd, asection *asec, void *data)
2009 {
2010 struct memory_write_request *new_request;
2011 struct load_section_data *args = data;
2012 struct load_progress_section_data *section_data;
2013 bfd_size_type size = bfd_get_section_size (asec);
2014 gdb_byte *buffer;
2015 const char *sect_name = bfd_get_section_name (abfd, asec);
2016
2017 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2018 return;
2019
2020 if (size == 0)
2021 return;
2022
2023 new_request = VEC_safe_push (memory_write_request_s,
2024 args->requests, NULL);
2025 memset (new_request, 0, sizeof (struct memory_write_request));
2026 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2027 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2028 new_request->end = new_request->begin + size; /* FIXME Should size
2029 be in instead? */
2030 new_request->data = xmalloc (size);
2031 new_request->baton = section_data;
2032
2033 buffer = new_request->data;
2034
2035 section_data->cumulative = args->progress_data;
2036 section_data->section_name = sect_name;
2037 section_data->section_size = size;
2038 section_data->lma = new_request->begin;
2039 section_data->buffer = buffer;
2040
2041 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2042 }
2043
2044 /* Clean up an entire memory request vector, including load
2045 data and progress records. */
2046
2047 static void
2048 clear_memory_write_data (void *arg)
2049 {
2050 VEC(memory_write_request_s) **vec_p = arg;
2051 VEC(memory_write_request_s) *vec = *vec_p;
2052 int i;
2053 struct memory_write_request *mr;
2054
2055 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2056 {
2057 xfree (mr->data);
2058 xfree (mr->baton);
2059 }
2060 VEC_free (memory_write_request_s, vec);
2061 }
2062
2063 void
2064 generic_load (const char *args, int from_tty)
2065 {
2066 bfd *loadfile_bfd;
2067 struct timeval start_time, end_time;
2068 char *filename;
2069 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2070 struct load_section_data cbdata;
2071 struct load_progress_data total_progress;
2072 struct ui_out *uiout = current_uiout;
2073
2074 CORE_ADDR entry;
2075 char **argv;
2076
2077 memset (&cbdata, 0, sizeof (cbdata));
2078 memset (&total_progress, 0, sizeof (total_progress));
2079 cbdata.progress_data = &total_progress;
2080
2081 make_cleanup (clear_memory_write_data, &cbdata.requests);
2082
2083 if (args == NULL)
2084 error_no_arg (_("file to load"));
2085
2086 argv = gdb_buildargv (args);
2087 make_cleanup_freeargv (argv);
2088
2089 filename = tilde_expand (argv[0]);
2090 make_cleanup (xfree, filename);
2091
2092 if (argv[1] != NULL)
2093 {
2094 const char *endptr;
2095
2096 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2097
2098 /* If the last word was not a valid number then
2099 treat it as a file name with spaces in. */
2100 if (argv[1] == endptr)
2101 error (_("Invalid download offset:%s."), argv[1]);
2102
2103 if (argv[2] != NULL)
2104 error (_("Too many parameters."));
2105 }
2106
2107 /* Open the file for loading. */
2108 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2109 if (loadfile_bfd == NULL)
2110 {
2111 perror_with_name (filename);
2112 return;
2113 }
2114
2115 make_cleanup_bfd_unref (loadfile_bfd);
2116
2117 if (!bfd_check_format (loadfile_bfd, bfd_object))
2118 {
2119 error (_("\"%s\" is not an object file: %s"), filename,
2120 bfd_errmsg (bfd_get_error ()));
2121 }
2122
2123 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2124 (void *) &total_progress.total_size);
2125
2126 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2127
2128 gettimeofday (&start_time, NULL);
2129
2130 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2131 load_progress) != 0)
2132 error (_("Load failed"));
2133
2134 gettimeofday (&end_time, NULL);
2135
2136 entry = bfd_get_start_address (loadfile_bfd);
2137 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2138 ui_out_text (uiout, "Start address ");
2139 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2140 ui_out_text (uiout, ", load size ");
2141 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2142 ui_out_text (uiout, "\n");
2143 /* We were doing this in remote-mips.c, I suspect it is right
2144 for other targets too. */
2145 regcache_write_pc (get_current_regcache (), entry);
2146
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2153 memory. */
2154
2155 breakpoint_re_set ();
2156
2157 /* FIXME: are we supposed to call symbol_file_add or not? According
2158 to a comment from remote-mips.c (where a call to symbol_file_add
2159 was commented out), making the call confuses GDB if more than one
2160 file is loaded in. Some targets do (e.g., remote-vx.c) but
2161 others don't (or didn't - perhaps they have all been deleted). */
2162
2163 print_transfer_performance (gdb_stdout, total_progress.data_count,
2164 total_progress.write_count,
2165 &start_time, &end_time);
2166
2167 do_cleanups (old_cleanups);
2168 }
2169
2170 /* Report how fast the transfer went. */
2171
2172 void
2173 print_transfer_performance (struct ui_file *stream,
2174 unsigned long data_count,
2175 unsigned long write_count,
2176 const struct timeval *start_time,
2177 const struct timeval *end_time)
2178 {
2179 ULONGEST time_count;
2180 struct ui_out *uiout = current_uiout;
2181
2182 /* Compute the elapsed time in milliseconds, as a tradeoff between
2183 accuracy and overflow. */
2184 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2185 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2186
2187 ui_out_text (uiout, "Transfer rate: ");
2188 if (time_count > 0)
2189 {
2190 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2191
2192 if (ui_out_is_mi_like_p (uiout))
2193 {
2194 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2195 ui_out_text (uiout, " bits/sec");
2196 }
2197 else if (rate < 1024)
2198 {
2199 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2200 ui_out_text (uiout, " bytes/sec");
2201 }
2202 else
2203 {
2204 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2205 ui_out_text (uiout, " KB/sec");
2206 }
2207 }
2208 else
2209 {
2210 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2211 ui_out_text (uiout, " bits in <1 sec");
2212 }
2213 if (write_count > 0)
2214 {
2215 ui_out_text (uiout, ", ");
2216 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2217 ui_out_text (uiout, " bytes/write");
2218 }
2219 ui_out_text (uiout, ".\n");
2220 }
2221
2222 /* This function allows the addition of incrementally linked object files.
2223 It does not modify any state in the target, only in the debugger. */
2224 /* Note: ezannoni 2000-04-13 This function/command used to have a
2225 special case syntax for the rombug target (Rombug is the boot
2226 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2227 rombug case, the user doesn't need to supply a text address,
2228 instead a call to target_link() (in target.c) would supply the
2229 value to use. We are now discontinuing this type of ad hoc syntax. */
2230
2231 static void
2232 add_symbol_file_command (char *args, int from_tty)
2233 {
2234 struct gdbarch *gdbarch = get_current_arch ();
2235 char *filename = NULL;
2236 int flags = OBJF_USERLOADED | OBJF_SHARED;
2237 char *arg;
2238 int section_index = 0;
2239 int argcnt = 0;
2240 int sec_num = 0;
2241 int i;
2242 int expecting_sec_name = 0;
2243 int expecting_sec_addr = 0;
2244 char **argv;
2245 struct objfile *objf;
2246
2247 struct sect_opt
2248 {
2249 char *name;
2250 char *value;
2251 };
2252
2253 struct section_addr_info *section_addrs;
2254 struct sect_opt *sect_opts = NULL;
2255 size_t num_sect_opts = 0;
2256 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2257
2258 num_sect_opts = 16;
2259 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2260 * sizeof (struct sect_opt));
2261
2262 dont_repeat ();
2263
2264 if (args == NULL)
2265 error (_("add-symbol-file takes a file name and an address"));
2266
2267 argv = gdb_buildargv (args);
2268 make_cleanup_freeargv (argv);
2269
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2271 {
2272 /* Process the argument. */
2273 if (argcnt == 0)
2274 {
2275 /* The first argument is the file name. */
2276 filename = tilde_expand (arg);
2277 make_cleanup (xfree, filename);
2278 }
2279 else if (argcnt == 1)
2280 {
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2286 {
2287 num_sect_opts *= 2;
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2290 num_sect_opts
2291 * sizeof (struct sect_opt)));
2292 }
2293 }
2294 else
2295 {
2296 /* It's an option (starting with '-') or it's an argument
2297 to an option. */
2298 if (expecting_sec_name)
2299 {
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2302 }
2303 else if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 else
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2326 }
2327 }
2328
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2332 user. */
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2335
2336 /* Print the prompt for the query below. And save the arguments into
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
2339 statements because hex_string returns a local static
2340 string. */
2341
2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
2345 for (i = 0; i < section_index; i++)
2346 {
2347 CORE_ADDR addr;
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
2350
2351 addr = parse_and_eval_address (val);
2352
2353 /* Here we store the section offsets in the order they were
2354 entered on the command line. */
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
2359 sec_num++;
2360
2361 /* The object's sections are initialized when a
2362 call is made to build_objfile_section_table (objfile).
2363 This happens in reread_symbols.
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2366 }
2367 section_addrs->num_sections = sec_num;
2368
2369 if (from_tty && (!query ("%s", "")))
2370 error (_("Not confirmed."));
2371
2372 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2373 section_addrs, flags);
2374
2375 add_target_sections_of_objfile (objf);
2376
2377 /* Getting new symbols may change our opinion about what is
2378 frameless. */
2379 reinit_frame_cache ();
2380 do_cleanups (my_cleanups);
2381 }
2382 \f
2383
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2385
2386 static void
2387 remove_symbol_file_command (char *args, int from_tty)
2388 {
2389 char **argv;
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
2393 struct gdbarch *gdbarch = get_current_arch ();
2394
2395 dont_repeat ();
2396
2397 if (args == NULL)
2398 error (_("remove-symbol-file: no symbol file provided"));
2399
2400 my_cleanups = make_cleanup (null_cleanup, NULL);
2401
2402 argv = gdb_buildargv (args);
2403
2404 if (strcmp (argv[0], "-a") == 0)
2405 {
2406 /* Interpret the next argument as an address. */
2407 CORE_ADDR addr;
2408
2409 if (argv[1] == NULL)
2410 error (_("Missing address argument"));
2411
2412 if (argv[2] != NULL)
2413 error (_("Junk after %s"), argv[1]);
2414
2415 addr = parse_and_eval_address (argv[1]);
2416
2417 ALL_OBJFILES (objf)
2418 {
2419 if ((objf->flags & OBJF_USERLOADED) != 0
2420 && (objf->flags & OBJF_SHARED) != 0
2421 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2422 break;
2423 }
2424 }
2425 else if (argv[0] != NULL)
2426 {
2427 /* Interpret the current argument as a file name. */
2428 char *filename;
2429
2430 if (argv[1] != NULL)
2431 error (_("Junk after %s"), argv[0]);
2432
2433 filename = tilde_expand (argv[0]);
2434 make_cleanup (xfree, filename);
2435
2436 ALL_OBJFILES (objf)
2437 {
2438 if ((objf->flags & OBJF_USERLOADED) != 0
2439 && (objf->flags & OBJF_SHARED) != 0
2440 && objf->pspace == pspace
2441 && filename_cmp (filename, objfile_name (objf)) == 0)
2442 break;
2443 }
2444 }
2445
2446 if (objf == NULL)
2447 error (_("No symbol file found"));
2448
2449 if (from_tty
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2453
2454 free_objfile (objf);
2455 clear_symtab_users (0);
2456
2457 do_cleanups (my_cleanups);
2458 }
2459
2460 typedef struct objfile *objfilep;
2461
2462 DEF_VEC_P (objfilep);
2463
2464 /* Re-read symbols if a symbol-file has changed. */
2465
2466 void
2467 reread_symbols (void)
2468 {
2469 struct objfile *objfile;
2470 long new_modtime;
2471 struct stat new_statbuf;
2472 int res;
2473 VEC (objfilep) *new_objfiles = NULL;
2474 struct cleanup *all_cleanups;
2475
2476 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2477
2478 /* With the addition of shared libraries, this should be modified,
2479 the load time should be saved in the partial symbol tables, since
2480 different tables may come from different source files. FIXME.
2481 This routine should then walk down each partial symbol table
2482 and see if the symbol table that it originates from has been changed. */
2483
2484 for (objfile = object_files; objfile; objfile = objfile->next)
2485 {
2486 if (objfile->obfd == NULL)
2487 continue;
2488
2489 /* Separate debug objfiles are handled in the main objfile. */
2490 if (objfile->separate_debug_objfile_backlink)
2491 continue;
2492
2493 /* If this object is from an archive (what you usually create with
2494 `ar', often called a `static library' on most systems, though
2495 a `shared library' on AIX is also an archive), then you should
2496 stat on the archive name, not member name. */
2497 if (objfile->obfd->my_archive)
2498 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2499 else
2500 res = stat (objfile_name (objfile), &new_statbuf);
2501 if (res != 0)
2502 {
2503 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2504 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2505 objfile_name (objfile));
2506 continue;
2507 }
2508 new_modtime = new_statbuf.st_mtime;
2509 if (new_modtime != objfile->mtime)
2510 {
2511 struct cleanup *old_cleanups;
2512 struct section_offsets *offsets;
2513 int num_offsets;
2514 char *original_name;
2515
2516 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2517 objfile_name (objfile));
2518
2519 /* There are various functions like symbol_file_add,
2520 symfile_bfd_open, syms_from_objfile, etc., which might
2521 appear to do what we want. But they have various other
2522 effects which we *don't* want. So we just do stuff
2523 ourselves. We don't worry about mapped files (for one thing,
2524 any mapped file will be out of date). */
2525
2526 /* If we get an error, blow away this objfile (not sure if
2527 that is the correct response for things like shared
2528 libraries). */
2529 old_cleanups = make_cleanup_free_objfile (objfile);
2530 /* We need to do this whenever any symbols go away. */
2531 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2532
2533 if (exec_bfd != NULL
2534 && filename_cmp (bfd_get_filename (objfile->obfd),
2535 bfd_get_filename (exec_bfd)) == 0)
2536 {
2537 /* Reload EXEC_BFD without asking anything. */
2538
2539 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2540 }
2541
2542 /* Keep the calls order approx. the same as in free_objfile. */
2543
2544 /* Free the separate debug objfiles. It will be
2545 automatically recreated by sym_read. */
2546 free_objfile_separate_debug (objfile);
2547
2548 /* Remove any references to this objfile in the global
2549 value lists. */
2550 preserve_values (objfile);
2551
2552 /* Nuke all the state that we will re-read. Much of the following
2553 code which sets things to NULL really is necessary to tell
2554 other parts of GDB that there is nothing currently there.
2555
2556 Try to keep the freeing order compatible with free_objfile. */
2557
2558 if (objfile->sf != NULL)
2559 {
2560 (*objfile->sf->sym_finish) (objfile);
2561 }
2562
2563 clear_objfile_data (objfile);
2564
2565 /* Clean up any state BFD has sitting around. */
2566 {
2567 struct bfd *obfd = objfile->obfd;
2568 char *obfd_filename;
2569
2570 obfd_filename = bfd_get_filename (objfile->obfd);
2571 /* Open the new BFD before freeing the old one, so that
2572 the filename remains live. */
2573 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2574 if (objfile->obfd == NULL)
2575 {
2576 /* We have to make a cleanup and error here, rather
2577 than erroring later, because once we unref OBFD,
2578 OBFD_FILENAME will be freed. */
2579 make_cleanup_bfd_unref (obfd);
2580 error (_("Can't open %s to read symbols."), obfd_filename);
2581 }
2582 gdb_bfd_unref (obfd);
2583 }
2584
2585 original_name = xstrdup (objfile->original_name);
2586 make_cleanup (xfree, original_name);
2587
2588 /* bfd_openr sets cacheable to true, which is what we want. */
2589 if (!bfd_check_format (objfile->obfd, bfd_object))
2590 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2591 bfd_errmsg (bfd_get_error ()));
2592
2593 /* Save the offsets, we will nuke them with the rest of the
2594 objfile_obstack. */
2595 num_offsets = objfile->num_sections;
2596 offsets = ((struct section_offsets *)
2597 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2598 memcpy (offsets, objfile->section_offsets,
2599 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2600
2601 /* FIXME: Do we have to free a whole linked list, or is this
2602 enough? */
2603 if (objfile->global_psymbols.list)
2604 xfree (objfile->global_psymbols.list);
2605 memset (&objfile->global_psymbols, 0,
2606 sizeof (objfile->global_psymbols));
2607 if (objfile->static_psymbols.list)
2608 xfree (objfile->static_psymbols.list);
2609 memset (&objfile->static_psymbols, 0,
2610 sizeof (objfile->static_psymbols));
2611
2612 /* Free the obstacks for non-reusable objfiles. */
2613 psymbol_bcache_free (objfile->psymbol_cache);
2614 objfile->psymbol_cache = psymbol_bcache_init ();
2615 obstack_free (&objfile->objfile_obstack, 0);
2616 objfile->sections = NULL;
2617 objfile->compunit_symtabs = NULL;
2618 objfile->psymtabs = NULL;
2619 objfile->psymtabs_addrmap = NULL;
2620 objfile->free_psymtabs = NULL;
2621 objfile->template_symbols = NULL;
2622
2623 /* obstack_init also initializes the obstack so it is
2624 empty. We could use obstack_specify_allocation but
2625 gdb_obstack.h specifies the alloc/dealloc functions. */
2626 obstack_init (&objfile->objfile_obstack);
2627
2628 /* set_objfile_per_bfd potentially allocates the per-bfd
2629 data on the objfile's obstack (if sharing data across
2630 multiple users is not possible), so it's important to
2631 do it *after* the obstack has been initialized. */
2632 set_objfile_per_bfd (objfile);
2633
2634 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2635 original_name,
2636 strlen (original_name));
2637
2638 /* Reset the sym_fns pointer. The ELF reader can change it
2639 based on whether .gdb_index is present, and we need it to
2640 start over. PR symtab/15885 */
2641 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2642
2643 build_objfile_section_table (objfile);
2644 terminate_minimal_symbol_table (objfile);
2645
2646 /* We use the same section offsets as from last time. I'm not
2647 sure whether that is always correct for shared libraries. */
2648 objfile->section_offsets = (struct section_offsets *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 memcpy (objfile->section_offsets, offsets,
2652 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2653 objfile->num_sections = num_offsets;
2654
2655 /* What the hell is sym_new_init for, anyway? The concept of
2656 distinguishing between the main file and additional files
2657 in this way seems rather dubious. */
2658 if (objfile == symfile_objfile)
2659 {
2660 (*objfile->sf->sym_new_init) (objfile);
2661 }
2662
2663 (*objfile->sf->sym_init) (objfile);
2664 clear_complaints (&symfile_complaints, 1, 1);
2665
2666 objfile->flags &= ~OBJF_PSYMTABS_READ;
2667 read_symbols (objfile, 0);
2668
2669 if (!objfile_has_symbols (objfile))
2670 {
2671 wrap_here ("");
2672 printf_unfiltered (_("(no debugging symbols found)\n"));
2673 wrap_here ("");
2674 }
2675
2676 /* We're done reading the symbol file; finish off complaints. */
2677 clear_complaints (&symfile_complaints, 0, 1);
2678
2679 /* Getting new symbols may change our opinion about what is
2680 frameless. */
2681
2682 reinit_frame_cache ();
2683
2684 /* Discard cleanups as symbol reading was successful. */
2685 discard_cleanups (old_cleanups);
2686
2687 /* If the mtime has changed between the time we set new_modtime
2688 and now, we *want* this to be out of date, so don't call stat
2689 again now. */
2690 objfile->mtime = new_modtime;
2691 init_entry_point_info (objfile);
2692
2693 VEC_safe_push (objfilep, new_objfiles, objfile);
2694 }
2695 }
2696
2697 if (new_objfiles)
2698 {
2699 int ix;
2700
2701 /* Notify objfiles that we've modified objfile sections. */
2702 objfiles_changed ();
2703
2704 clear_symtab_users (0);
2705
2706 /* clear_objfile_data for each objfile was called before freeing it and
2707 observer_notify_new_objfile (NULL) has been called by
2708 clear_symtab_users above. Notify the new files now. */
2709 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2710 observer_notify_new_objfile (objfile);
2711
2712 /* At least one objfile has changed, so we can consider that
2713 the executable we're debugging has changed too. */
2714 observer_notify_executable_changed ();
2715 }
2716
2717 do_cleanups (all_cleanups);
2718 }
2719 \f
2720
2721 typedef struct
2722 {
2723 char *ext;
2724 enum language lang;
2725 }
2726 filename_language;
2727
2728 static filename_language *filename_language_table;
2729 static int fl_table_size, fl_table_next;
2730
2731 static void
2732 add_filename_language (char *ext, enum language lang)
2733 {
2734 if (fl_table_next >= fl_table_size)
2735 {
2736 fl_table_size += 10;
2737 filename_language_table =
2738 xrealloc (filename_language_table,
2739 fl_table_size * sizeof (*filename_language_table));
2740 }
2741
2742 filename_language_table[fl_table_next].ext = xstrdup (ext);
2743 filename_language_table[fl_table_next].lang = lang;
2744 fl_table_next++;
2745 }
2746
2747 static char *ext_args;
2748 static void
2749 show_ext_args (struct ui_file *file, int from_tty,
2750 struct cmd_list_element *c, const char *value)
2751 {
2752 fprintf_filtered (file,
2753 _("Mapping between filename extension "
2754 "and source language is \"%s\".\n"),
2755 value);
2756 }
2757
2758 static void
2759 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2760 {
2761 int i;
2762 char *cp = ext_args;
2763 enum language lang;
2764
2765 /* First arg is filename extension, starting with '.' */
2766 if (*cp != '.')
2767 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2768
2769 /* Find end of first arg. */
2770 while (*cp && !isspace (*cp))
2771 cp++;
2772
2773 if (*cp == '\0')
2774 error (_("'%s': two arguments required -- "
2775 "filename extension and language"),
2776 ext_args);
2777
2778 /* Null-terminate first arg. */
2779 *cp++ = '\0';
2780
2781 /* Find beginning of second arg, which should be a source language. */
2782 cp = skip_spaces (cp);
2783
2784 if (*cp == '\0')
2785 error (_("'%s': two arguments required -- "
2786 "filename extension and language"),
2787 ext_args);
2788
2789 /* Lookup the language from among those we know. */
2790 lang = language_enum (cp);
2791
2792 /* Now lookup the filename extension: do we already know it? */
2793 for (i = 0; i < fl_table_next; i++)
2794 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2795 break;
2796
2797 if (i >= fl_table_next)
2798 {
2799 /* New file extension. */
2800 add_filename_language (ext_args, lang);
2801 }
2802 else
2803 {
2804 /* Redefining a previously known filename extension. */
2805
2806 /* if (from_tty) */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2809
2810 xfree (filename_language_table[i].ext);
2811 filename_language_table[i].ext = xstrdup (ext_args);
2812 filename_language_table[i].lang = lang;
2813 }
2814 }
2815
2816 static void
2817 info_ext_lang_command (char *args, int from_tty)
2818 {
2819 int i;
2820
2821 printf_filtered (_("Filename extensions and the languages they represent:"));
2822 printf_filtered ("\n\n");
2823 for (i = 0; i < fl_table_next; i++)
2824 printf_filtered ("\t%s\t- %s\n",
2825 filename_language_table[i].ext,
2826 language_str (filename_language_table[i].lang));
2827 }
2828
2829 static void
2830 init_filename_language_table (void)
2831 {
2832 if (fl_table_size == 0) /* Protect against repetition. */
2833 {
2834 fl_table_size = 20;
2835 fl_table_next = 0;
2836 filename_language_table =
2837 xmalloc (fl_table_size * sizeof (*filename_language_table));
2838 add_filename_language (".c", language_c);
2839 add_filename_language (".d", language_d);
2840 add_filename_language (".C", language_cplus);
2841 add_filename_language (".cc", language_cplus);
2842 add_filename_language (".cp", language_cplus);
2843 add_filename_language (".cpp", language_cplus);
2844 add_filename_language (".cxx", language_cplus);
2845 add_filename_language (".c++", language_cplus);
2846 add_filename_language (".java", language_java);
2847 add_filename_language (".class", language_java);
2848 add_filename_language (".m", language_objc);
2849 add_filename_language (".f", language_fortran);
2850 add_filename_language (".F", language_fortran);
2851 add_filename_language (".for", language_fortran);
2852 add_filename_language (".FOR", language_fortran);
2853 add_filename_language (".ftn", language_fortran);
2854 add_filename_language (".FTN", language_fortran);
2855 add_filename_language (".fpp", language_fortran);
2856 add_filename_language (".FPP", language_fortran);
2857 add_filename_language (".f90", language_fortran);
2858 add_filename_language (".F90", language_fortran);
2859 add_filename_language (".f95", language_fortran);
2860 add_filename_language (".F95", language_fortran);
2861 add_filename_language (".f03", language_fortran);
2862 add_filename_language (".F03", language_fortran);
2863 add_filename_language (".f08", language_fortran);
2864 add_filename_language (".F08", language_fortran);
2865 add_filename_language (".s", language_asm);
2866 add_filename_language (".sx", language_asm);
2867 add_filename_language (".S", language_asm);
2868 add_filename_language (".pas", language_pascal);
2869 add_filename_language (".p", language_pascal);
2870 add_filename_language (".pp", language_pascal);
2871 add_filename_language (".adb", language_ada);
2872 add_filename_language (".ads", language_ada);
2873 add_filename_language (".a", language_ada);
2874 add_filename_language (".ada", language_ada);
2875 add_filename_language (".dg", language_ada);
2876 }
2877 }
2878
2879 enum language
2880 deduce_language_from_filename (const char *filename)
2881 {
2882 int i;
2883 char *cp;
2884
2885 if (filename != NULL)
2886 if ((cp = strrchr (filename, '.')) != NULL)
2887 for (i = 0; i < fl_table_next; i++)
2888 if (strcmp (cp, filename_language_table[i].ext) == 0)
2889 return filename_language_table[i].lang;
2890
2891 return language_unknown;
2892 }
2893 \f
2894 /* Allocate and initialize a new symbol table.
2895 CUST is from the result of allocate_compunit_symtab. */
2896
2897 struct symtab *
2898 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2899 {
2900 struct objfile *objfile = cust->objfile;
2901 struct symtab *symtab
2902 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2903
2904 symtab->filename = bcache (filename, strlen (filename) + 1,
2905 objfile->per_bfd->filename_cache);
2906 symtab->fullname = NULL;
2907 symtab->language = deduce_language_from_filename (filename);
2908
2909 /* This can be very verbose with lots of headers.
2910 Only print at higher debug levels. */
2911 if (symtab_create_debug >= 2)
2912 {
2913 /* Be a bit clever with debugging messages, and don't print objfile
2914 every time, only when it changes. */
2915 static char *last_objfile_name = NULL;
2916
2917 if (last_objfile_name == NULL
2918 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2919 {
2920 xfree (last_objfile_name);
2921 last_objfile_name = xstrdup (objfile_name (objfile));
2922 fprintf_unfiltered (gdb_stdlog,
2923 "Creating one or more symtabs for objfile %s ...\n",
2924 last_objfile_name);
2925 }
2926 fprintf_unfiltered (gdb_stdlog,
2927 "Created symtab %s for module %s.\n",
2928 host_address_to_string (symtab), filename);
2929 }
2930
2931 /* Add it to CUST's list of symtabs. */
2932 if (cust->filetabs == NULL)
2933 {
2934 cust->filetabs = symtab;
2935 cust->last_filetab = symtab;
2936 }
2937 else
2938 {
2939 cust->last_filetab->next = symtab;
2940 cust->last_filetab = symtab;
2941 }
2942
2943 /* Backlink to the containing compunit symtab. */
2944 symtab->compunit_symtab = cust;
2945
2946 return symtab;
2947 }
2948
2949 /* Allocate and initialize a new compunit.
2950 NAME is the name of the main source file, if there is one, or some
2951 descriptive text if there are no source files. */
2952
2953 struct compunit_symtab *
2954 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2955 {
2956 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2957 struct compunit_symtab);
2958 const char *saved_name;
2959
2960 cu->objfile = objfile;
2961
2962 /* The name we record here is only for display/debugging purposes.
2963 Just save the basename to avoid path issues (too long for display,
2964 relative vs absolute, etc.). */
2965 saved_name = lbasename (name);
2966 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2967 strlen (saved_name));
2968
2969 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2970
2971 if (symtab_create_debug)
2972 {
2973 fprintf_unfiltered (gdb_stdlog,
2974 "Created compunit symtab %s for %s.\n",
2975 host_address_to_string (cu),
2976 cu->name);
2977 }
2978
2979 return cu;
2980 }
2981
2982 /* Hook CU to the objfile it comes from. */
2983
2984 void
2985 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2986 {
2987 cu->next = cu->objfile->compunit_symtabs;
2988 cu->objfile->compunit_symtabs = cu;
2989 }
2990 \f
2991
2992 /* Reset all data structures in gdb which may contain references to symbol
2993 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2994
2995 void
2996 clear_symtab_users (int add_flags)
2997 {
2998 /* Someday, we should do better than this, by only blowing away
2999 the things that really need to be blown. */
3000
3001 /* Clear the "current" symtab first, because it is no longer valid.
3002 breakpoint_re_set may try to access the current symtab. */
3003 clear_current_source_symtab_and_line ();
3004
3005 clear_displays ();
3006 clear_last_displayed_sal ();
3007 clear_pc_function_cache ();
3008 observer_notify_new_objfile (NULL);
3009
3010 /* Clear globals which might have pointed into a removed objfile.
3011 FIXME: It's not clear which of these are supposed to persist
3012 between expressions and which ought to be reset each time. */
3013 expression_context_block = NULL;
3014 innermost_block = NULL;
3015
3016 /* Varobj may refer to old symbols, perform a cleanup. */
3017 varobj_invalidate ();
3018
3019 /* Now that the various caches have been cleared, we can re_set
3020 our breakpoints without risking it using stale data. */
3021 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3022 breakpoint_re_set ();
3023 }
3024
3025 static void
3026 clear_symtab_users_cleanup (void *ignore)
3027 {
3028 clear_symtab_users (0);
3029 }
3030 \f
3031 /* OVERLAYS:
3032 The following code implements an abstraction for debugging overlay sections.
3033
3034 The target model is as follows:
3035 1) The gnu linker will permit multiple sections to be mapped into the
3036 same VMA, each with its own unique LMA (or load address).
3037 2) It is assumed that some runtime mechanism exists for mapping the
3038 sections, one by one, from the load address into the VMA address.
3039 3) This code provides a mechanism for gdb to keep track of which
3040 sections should be considered to be mapped from the VMA to the LMA.
3041 This information is used for symbol lookup, and memory read/write.
3042 For instance, if a section has been mapped then its contents
3043 should be read from the VMA, otherwise from the LMA.
3044
3045 Two levels of debugger support for overlays are available. One is
3046 "manual", in which the debugger relies on the user to tell it which
3047 overlays are currently mapped. This level of support is
3048 implemented entirely in the core debugger, and the information about
3049 whether a section is mapped is kept in the objfile->obj_section table.
3050
3051 The second level of support is "automatic", and is only available if
3052 the target-specific code provides functionality to read the target's
3053 overlay mapping table, and translate its contents for the debugger
3054 (by updating the mapped state information in the obj_section tables).
3055
3056 The interface is as follows:
3057 User commands:
3058 overlay map <name> -- tell gdb to consider this section mapped
3059 overlay unmap <name> -- tell gdb to consider this section unmapped
3060 overlay list -- list the sections that GDB thinks are mapped
3061 overlay read-target -- get the target's state of what's mapped
3062 overlay off/manual/auto -- set overlay debugging state
3063 Functional interface:
3064 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3065 section, return that section.
3066 find_pc_overlay(pc): find any overlay section that contains
3067 the pc, either in its VMA or its LMA
3068 section_is_mapped(sect): true if overlay is marked as mapped
3069 section_is_overlay(sect): true if section's VMA != LMA
3070 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3071 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3072 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3073 overlay_mapped_address(...): map an address from section's LMA to VMA
3074 overlay_unmapped_address(...): map an address from section's VMA to LMA
3075 symbol_overlayed_address(...): Return a "current" address for symbol:
3076 either in VMA or LMA depending on whether
3077 the symbol's section is currently mapped. */
3078
3079 /* Overlay debugging state: */
3080
3081 enum overlay_debugging_state overlay_debugging = ovly_off;
3082 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3083
3084 /* Function: section_is_overlay (SECTION)
3085 Returns true if SECTION has VMA not equal to LMA, ie.
3086 SECTION is loaded at an address different from where it will "run". */
3087
3088 int
3089 section_is_overlay (struct obj_section *section)
3090 {
3091 if (overlay_debugging && section)
3092 {
3093 bfd *abfd = section->objfile->obfd;
3094 asection *bfd_section = section->the_bfd_section;
3095
3096 if (bfd_section_lma (abfd, bfd_section) != 0
3097 && bfd_section_lma (abfd, bfd_section)
3098 != bfd_section_vma (abfd, bfd_section))
3099 return 1;
3100 }
3101
3102 return 0;
3103 }
3104
3105 /* Function: overlay_invalidate_all (void)
3106 Invalidate the mapped state of all overlay sections (mark it as stale). */
3107
3108 static void
3109 overlay_invalidate_all (void)
3110 {
3111 struct objfile *objfile;
3112 struct obj_section *sect;
3113
3114 ALL_OBJSECTIONS (objfile, sect)
3115 if (section_is_overlay (sect))
3116 sect->ovly_mapped = -1;
3117 }
3118
3119 /* Function: section_is_mapped (SECTION)
3120 Returns true if section is an overlay, and is currently mapped.
3121
3122 Access to the ovly_mapped flag is restricted to this function, so
3123 that we can do automatic update. If the global flag
3124 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3125 overlay_invalidate_all. If the mapped state of the particular
3126 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3127
3128 int
3129 section_is_mapped (struct obj_section *osect)
3130 {
3131 struct gdbarch *gdbarch;
3132
3133 if (osect == 0 || !section_is_overlay (osect))
3134 return 0;
3135
3136 switch (overlay_debugging)
3137 {
3138 default:
3139 case ovly_off:
3140 return 0; /* overlay debugging off */
3141 case ovly_auto: /* overlay debugging automatic */
3142 /* Unles there is a gdbarch_overlay_update function,
3143 there's really nothing useful to do here (can't really go auto). */
3144 gdbarch = get_objfile_arch (osect->objfile);
3145 if (gdbarch_overlay_update_p (gdbarch))
3146 {
3147 if (overlay_cache_invalid)
3148 {
3149 overlay_invalidate_all ();
3150 overlay_cache_invalid = 0;
3151 }
3152 if (osect->ovly_mapped == -1)
3153 gdbarch_overlay_update (gdbarch, osect);
3154 }
3155 /* fall thru to manual case */
3156 case ovly_on: /* overlay debugging manual */
3157 return osect->ovly_mapped == 1;
3158 }
3159 }
3160
3161 /* Function: pc_in_unmapped_range
3162 If PC falls into the lma range of SECTION, return true, else false. */
3163
3164 CORE_ADDR
3165 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3166 {
3167 if (section_is_overlay (section))
3168 {
3169 bfd *abfd = section->objfile->obfd;
3170 asection *bfd_section = section->the_bfd_section;
3171
3172 /* We assume the LMA is relocated by the same offset as the VMA. */
3173 bfd_vma size = bfd_get_section_size (bfd_section);
3174 CORE_ADDR offset = obj_section_offset (section);
3175
3176 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3177 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3178 return 1;
3179 }
3180
3181 return 0;
3182 }
3183
3184 /* Function: pc_in_mapped_range
3185 If PC falls into the vma range of SECTION, return true, else false. */
3186
3187 CORE_ADDR
3188 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3189 {
3190 if (section_is_overlay (section))
3191 {
3192 if (obj_section_addr (section) <= pc
3193 && pc < obj_section_endaddr (section))
3194 return 1;
3195 }
3196
3197 return 0;
3198 }
3199
3200 /* Return true if the mapped ranges of sections A and B overlap, false
3201 otherwise. */
3202
3203 static int
3204 sections_overlap (struct obj_section *a, struct obj_section *b)
3205 {
3206 CORE_ADDR a_start = obj_section_addr (a);
3207 CORE_ADDR a_end = obj_section_endaddr (a);
3208 CORE_ADDR b_start = obj_section_addr (b);
3209 CORE_ADDR b_end = obj_section_endaddr (b);
3210
3211 return (a_start < b_end && b_start < a_end);
3212 }
3213
3214 /* Function: overlay_unmapped_address (PC, SECTION)
3215 Returns the address corresponding to PC in the unmapped (load) range.
3216 May be the same as PC. */
3217
3218 CORE_ADDR
3219 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3220 {
3221 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3222 {
3223 bfd *abfd = section->objfile->obfd;
3224 asection *bfd_section = section->the_bfd_section;
3225
3226 return pc + bfd_section_lma (abfd, bfd_section)
3227 - bfd_section_vma (abfd, bfd_section);
3228 }
3229
3230 return pc;
3231 }
3232
3233 /* Function: overlay_mapped_address (PC, SECTION)
3234 Returns the address corresponding to PC in the mapped (runtime) range.
3235 May be the same as PC. */
3236
3237 CORE_ADDR
3238 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3239 {
3240 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3241 {
3242 bfd *abfd = section->objfile->obfd;
3243 asection *bfd_section = section->the_bfd_section;
3244
3245 return pc + bfd_section_vma (abfd, bfd_section)
3246 - bfd_section_lma (abfd, bfd_section);
3247 }
3248
3249 return pc;
3250 }
3251
3252 /* Function: symbol_overlayed_address
3253 Return one of two addresses (relative to the VMA or to the LMA),
3254 depending on whether the section is mapped or not. */
3255
3256 CORE_ADDR
3257 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3258 {
3259 if (overlay_debugging)
3260 {
3261 /* If the symbol has no section, just return its regular address. */
3262 if (section == 0)
3263 return address;
3264 /* If the symbol's section is not an overlay, just return its
3265 address. */
3266 if (!section_is_overlay (section))
3267 return address;
3268 /* If the symbol's section is mapped, just return its address. */
3269 if (section_is_mapped (section))
3270 return address;
3271 /*
3272 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3273 * then return its LOADED address rather than its vma address!!
3274 */
3275 return overlay_unmapped_address (address, section);
3276 }
3277 return address;
3278 }
3279
3280 /* Function: find_pc_overlay (PC)
3281 Return the best-match overlay section for PC:
3282 If PC matches a mapped overlay section's VMA, return that section.
3283 Else if PC matches an unmapped section's VMA, return that section.
3284 Else if PC matches an unmapped section's LMA, return that section. */
3285
3286 struct obj_section *
3287 find_pc_overlay (CORE_ADDR pc)
3288 {
3289 struct objfile *objfile;
3290 struct obj_section *osect, *best_match = NULL;
3291
3292 if (overlay_debugging)
3293 ALL_OBJSECTIONS (objfile, osect)
3294 if (section_is_overlay (osect))
3295 {
3296 if (pc_in_mapped_range (pc, osect))
3297 {
3298 if (section_is_mapped (osect))
3299 return osect;
3300 else
3301 best_match = osect;
3302 }
3303 else if (pc_in_unmapped_range (pc, osect))
3304 best_match = osect;
3305 }
3306 return best_match;
3307 }
3308
3309 /* Function: find_pc_mapped_section (PC)
3310 If PC falls into the VMA address range of an overlay section that is
3311 currently marked as MAPPED, return that section. Else return NULL. */
3312
3313 struct obj_section *
3314 find_pc_mapped_section (CORE_ADDR pc)
3315 {
3316 struct objfile *objfile;
3317 struct obj_section *osect;
3318
3319 if (overlay_debugging)
3320 ALL_OBJSECTIONS (objfile, osect)
3321 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3322 return osect;
3323
3324 return NULL;
3325 }
3326
3327 /* Function: list_overlays_command
3328 Print a list of mapped sections and their PC ranges. */
3329
3330 static void
3331 list_overlays_command (char *args, int from_tty)
3332 {
3333 int nmapped = 0;
3334 struct objfile *objfile;
3335 struct obj_section *osect;
3336
3337 if (overlay_debugging)
3338 ALL_OBJSECTIONS (objfile, osect)
3339 if (section_is_mapped (osect))
3340 {
3341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3342 const char *name;
3343 bfd_vma lma, vma;
3344 int size;
3345
3346 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3347 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3348 size = bfd_get_section_size (osect->the_bfd_section);
3349 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3350
3351 printf_filtered ("Section %s, loaded at ", name);
3352 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3353 puts_filtered (" - ");
3354 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3355 printf_filtered (", mapped at ");
3356 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3357 puts_filtered (" - ");
3358 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3359 puts_filtered ("\n");
3360
3361 nmapped++;
3362 }
3363 if (nmapped == 0)
3364 printf_filtered (_("No sections are mapped.\n"));
3365 }
3366
3367 /* Function: map_overlay_command
3368 Mark the named section as mapped (ie. residing at its VMA address). */
3369
3370 static void
3371 map_overlay_command (char *args, int from_tty)
3372 {
3373 struct objfile *objfile, *objfile2;
3374 struct obj_section *sec, *sec2;
3375
3376 if (!overlay_debugging)
3377 error (_("Overlay debugging not enabled. Use "
3378 "either the 'overlay auto' or\n"
3379 "the 'overlay manual' command."));
3380
3381 if (args == 0 || *args == 0)
3382 error (_("Argument required: name of an overlay section"));
3383
3384 /* First, find a section matching the user supplied argument. */
3385 ALL_OBJSECTIONS (objfile, sec)
3386 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3387 {
3388 /* Now, check to see if the section is an overlay. */
3389 if (!section_is_overlay (sec))
3390 continue; /* not an overlay section */
3391
3392 /* Mark the overlay as "mapped". */
3393 sec->ovly_mapped = 1;
3394
3395 /* Next, make a pass and unmap any sections that are
3396 overlapped by this new section: */
3397 ALL_OBJSECTIONS (objfile2, sec2)
3398 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3399 {
3400 if (info_verbose)
3401 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3402 bfd_section_name (objfile->obfd,
3403 sec2->the_bfd_section));
3404 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3405 }
3406 return;
3407 }
3408 error (_("No overlay section called %s"), args);
3409 }
3410
3411 /* Function: unmap_overlay_command
3412 Mark the overlay section as unmapped
3413 (ie. resident in its LMA address range, rather than the VMA range). */
3414
3415 static void
3416 unmap_overlay_command (char *args, int from_tty)
3417 {
3418 struct objfile *objfile;
3419 struct obj_section *sec = NULL;
3420
3421 if (!overlay_debugging)
3422 error (_("Overlay debugging not enabled. "
3423 "Use either the 'overlay auto' or\n"
3424 "the 'overlay manual' command."));
3425
3426 if (args == 0 || *args == 0)
3427 error (_("Argument required: name of an overlay section"));
3428
3429 /* First, find a section matching the user supplied argument. */
3430 ALL_OBJSECTIONS (objfile, sec)
3431 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3432 {
3433 if (!sec->ovly_mapped)
3434 error (_("Section %s is not mapped"), args);
3435 sec->ovly_mapped = 0;
3436 return;
3437 }
3438 error (_("No overlay section called %s"), args);
3439 }
3440
3441 /* Function: overlay_auto_command
3442 A utility command to turn on overlay debugging.
3443 Possibly this should be done via a set/show command. */
3444
3445 static void
3446 overlay_auto_command (char *args, int from_tty)
3447 {
3448 overlay_debugging = ovly_auto;
3449 enable_overlay_breakpoints ();
3450 if (info_verbose)
3451 printf_unfiltered (_("Automatic overlay debugging enabled."));
3452 }
3453
3454 /* Function: overlay_manual_command
3455 A utility command to turn on overlay debugging.
3456 Possibly this should be done via a set/show command. */
3457
3458 static void
3459 overlay_manual_command (char *args, int from_tty)
3460 {
3461 overlay_debugging = ovly_on;
3462 disable_overlay_breakpoints ();
3463 if (info_verbose)
3464 printf_unfiltered (_("Overlay debugging enabled."));
3465 }
3466
3467 /* Function: overlay_off_command
3468 A utility command to turn on overlay debugging.
3469 Possibly this should be done via a set/show command. */
3470
3471 static void
3472 overlay_off_command (char *args, int from_tty)
3473 {
3474 overlay_debugging = ovly_off;
3475 disable_overlay_breakpoints ();
3476 if (info_verbose)
3477 printf_unfiltered (_("Overlay debugging disabled."));
3478 }
3479
3480 static void
3481 overlay_load_command (char *args, int from_tty)
3482 {
3483 struct gdbarch *gdbarch = get_current_arch ();
3484
3485 if (gdbarch_overlay_update_p (gdbarch))
3486 gdbarch_overlay_update (gdbarch, NULL);
3487 else
3488 error (_("This target does not know how to read its overlay state."));
3489 }
3490
3491 /* Function: overlay_command
3492 A place-holder for a mis-typed command. */
3493
3494 /* Command list chain containing all defined "overlay" subcommands. */
3495 static struct cmd_list_element *overlaylist;
3496
3497 static void
3498 overlay_command (char *args, int from_tty)
3499 {
3500 printf_unfiltered
3501 ("\"overlay\" must be followed by the name of an overlay command.\n");
3502 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3503 }
3504
3505 /* Target Overlays for the "Simplest" overlay manager:
3506
3507 This is GDB's default target overlay layer. It works with the
3508 minimal overlay manager supplied as an example by Cygnus. The
3509 entry point is via a function pointer "gdbarch_overlay_update",
3510 so targets that use a different runtime overlay manager can
3511 substitute their own overlay_update function and take over the
3512 function pointer.
3513
3514 The overlay_update function pokes around in the target's data structures
3515 to see what overlays are mapped, and updates GDB's overlay mapping with
3516 this information.
3517
3518 In this simple implementation, the target data structures are as follows:
3519 unsigned _novlys; /# number of overlay sections #/
3520 unsigned _ovly_table[_novlys][4] = {
3521 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3522 {..., ..., ..., ...},
3523 }
3524 unsigned _novly_regions; /# number of overlay regions #/
3525 unsigned _ovly_region_table[_novly_regions][3] = {
3526 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3527 {..., ..., ...},
3528 }
3529 These functions will attempt to update GDB's mappedness state in the
3530 symbol section table, based on the target's mappedness state.
3531
3532 To do this, we keep a cached copy of the target's _ovly_table, and
3533 attempt to detect when the cached copy is invalidated. The main
3534 entry point is "simple_overlay_update(SECT), which looks up SECT in
3535 the cached table and re-reads only the entry for that section from
3536 the target (whenever possible). */
3537
3538 /* Cached, dynamically allocated copies of the target data structures: */
3539 static unsigned (*cache_ovly_table)[4] = 0;
3540 static unsigned cache_novlys = 0;
3541 static CORE_ADDR cache_ovly_table_base = 0;
3542 enum ovly_index
3543 {
3544 VMA, SIZE, LMA, MAPPED
3545 };
3546
3547 /* Throw away the cached copy of _ovly_table. */
3548
3549 static void
3550 simple_free_overlay_table (void)
3551 {
3552 if (cache_ovly_table)
3553 xfree (cache_ovly_table);
3554 cache_novlys = 0;
3555 cache_ovly_table = NULL;
3556 cache_ovly_table_base = 0;
3557 }
3558
3559 /* Read an array of ints of size SIZE from the target into a local buffer.
3560 Convert to host order. int LEN is number of ints. */
3561
3562 static void
3563 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3564 int len, int size, enum bfd_endian byte_order)
3565 {
3566 /* FIXME (alloca): Not safe if array is very large. */
3567 gdb_byte *buf = alloca (len * size);
3568 int i;
3569
3570 read_memory (memaddr, buf, len * size);
3571 for (i = 0; i < len; i++)
3572 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3573 }
3574
3575 /* Find and grab a copy of the target _ovly_table
3576 (and _novlys, which is needed for the table's size). */
3577
3578 static int
3579 simple_read_overlay_table (void)
3580 {
3581 struct bound_minimal_symbol novlys_msym;
3582 struct bound_minimal_symbol ovly_table_msym;
3583 struct gdbarch *gdbarch;
3584 int word_size;
3585 enum bfd_endian byte_order;
3586
3587 simple_free_overlay_table ();
3588 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3589 if (! novlys_msym.minsym)
3590 {
3591 error (_("Error reading inferior's overlay table: "
3592 "couldn't find `_novlys' variable\n"
3593 "in inferior. Use `overlay manual' mode."));
3594 return 0;
3595 }
3596
3597 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3598 if (! ovly_table_msym.minsym)
3599 {
3600 error (_("Error reading inferior's overlay table: couldn't find "
3601 "`_ovly_table' array\n"
3602 "in inferior. Use `overlay manual' mode."));
3603 return 0;
3604 }
3605
3606 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3607 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3608 byte_order = gdbarch_byte_order (gdbarch);
3609
3610 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3611 4, byte_order);
3612 cache_ovly_table
3613 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3614 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3615 read_target_long_array (cache_ovly_table_base,
3616 (unsigned int *) cache_ovly_table,
3617 cache_novlys * 4, word_size, byte_order);
3618
3619 return 1; /* SUCCESS */
3620 }
3621
3622 /* Function: simple_overlay_update_1
3623 A helper function for simple_overlay_update. Assuming a cached copy
3624 of _ovly_table exists, look through it to find an entry whose vma,
3625 lma and size match those of OSECT. Re-read the entry and make sure
3626 it still matches OSECT (else the table may no longer be valid).
3627 Set OSECT's mapped state to match the entry. Return: 1 for
3628 success, 0 for failure. */
3629
3630 static int
3631 simple_overlay_update_1 (struct obj_section *osect)
3632 {
3633 int i, size;
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
3636 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3637 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3639
3640 size = bfd_get_section_size (osect->the_bfd_section);
3641 for (i = 0; i < cache_novlys; i++)
3642 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3643 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3644 /* && cache_ovly_table[i][SIZE] == size */ )
3645 {
3646 read_target_long_array (cache_ovly_table_base + i * word_size,
3647 (unsigned int *) cache_ovly_table[i],
3648 4, word_size, byte_order);
3649 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3650 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3651 /* && cache_ovly_table[i][SIZE] == size */ )
3652 {
3653 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3654 return 1;
3655 }
3656 else /* Warning! Warning! Target's ovly table has changed! */
3657 return 0;
3658 }
3659 return 0;
3660 }
3661
3662 /* Function: simple_overlay_update
3663 If OSECT is NULL, then update all sections' mapped state
3664 (after re-reading the entire target _ovly_table).
3665 If OSECT is non-NULL, then try to find a matching entry in the
3666 cached ovly_table and update only OSECT's mapped state.
3667 If a cached entry can't be found or the cache isn't valid, then
3668 re-read the entire cache, and go ahead and update all sections. */
3669
3670 void
3671 simple_overlay_update (struct obj_section *osect)
3672 {
3673 struct objfile *objfile;
3674
3675 /* Were we given an osect to look up? NULL means do all of them. */
3676 if (osect)
3677 /* Have we got a cached copy of the target's overlay table? */
3678 if (cache_ovly_table != NULL)
3679 {
3680 /* Does its cached location match what's currently in the
3681 symtab? */
3682 struct bound_minimal_symbol minsym
3683 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3684
3685 if (minsym.minsym == NULL)
3686 error (_("Error reading inferior's overlay table: couldn't "
3687 "find `_ovly_table' array\n"
3688 "in inferior. Use `overlay manual' mode."));
3689
3690 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3691 /* Then go ahead and try to look up this single section in
3692 the cache. */
3693 if (simple_overlay_update_1 (osect))
3694 /* Found it! We're done. */
3695 return;
3696 }
3697
3698 /* Cached table no good: need to read the entire table anew.
3699 Or else we want all the sections, in which case it's actually
3700 more efficient to read the whole table in one block anyway. */
3701
3702 if (! simple_read_overlay_table ())
3703 return;
3704
3705 /* Now may as well update all sections, even if only one was requested. */
3706 ALL_OBJSECTIONS (objfile, osect)
3707 if (section_is_overlay (osect))
3708 {
3709 int i, size;
3710 bfd *obfd = osect->objfile->obfd;
3711 asection *bsect = osect->the_bfd_section;
3712
3713 size = bfd_get_section_size (bsect);
3714 for (i = 0; i < cache_novlys; i++)
3715 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3716 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3717 /* && cache_ovly_table[i][SIZE] == size */ )
3718 { /* obj_section matches i'th entry in ovly_table. */
3719 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3720 break; /* finished with inner for loop: break out. */
3721 }
3722 }
3723 }
3724
3725 /* Set the output sections and output offsets for section SECTP in
3726 ABFD. The relocation code in BFD will read these offsets, so we
3727 need to be sure they're initialized. We map each section to itself,
3728 with no offset; this means that SECTP->vma will be honored. */
3729
3730 static void
3731 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3732 {
3733 sectp->output_section = sectp;
3734 sectp->output_offset = 0;
3735 }
3736
3737 /* Default implementation for sym_relocate. */
3738
3739 bfd_byte *
3740 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3741 bfd_byte *buf)
3742 {
3743 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3744 DWO file. */
3745 bfd *abfd = sectp->owner;
3746
3747 /* We're only interested in sections with relocation
3748 information. */
3749 if ((sectp->flags & SEC_RELOC) == 0)
3750 return NULL;
3751
3752 /* We will handle section offsets properly elsewhere, so relocate as if
3753 all sections begin at 0. */
3754 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3755
3756 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3757 }
3758
3759 /* Relocate the contents of a debug section SECTP in ABFD. The
3760 contents are stored in BUF if it is non-NULL, or returned in a
3761 malloc'd buffer otherwise.
3762
3763 For some platforms and debug info formats, shared libraries contain
3764 relocations against the debug sections (particularly for DWARF-2;
3765 one affected platform is PowerPC GNU/Linux, although it depends on
3766 the version of the linker in use). Also, ELF object files naturally
3767 have unresolved relocations for their debug sections. We need to apply
3768 the relocations in order to get the locations of symbols correct.
3769 Another example that may require relocation processing, is the
3770 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3771 debug section. */
3772
3773 bfd_byte *
3774 symfile_relocate_debug_section (struct objfile *objfile,
3775 asection *sectp, bfd_byte *buf)
3776 {
3777 gdb_assert (objfile->sf->sym_relocate);
3778
3779 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3780 }
3781
3782 struct symfile_segment_data *
3783 get_symfile_segment_data (bfd *abfd)
3784 {
3785 const struct sym_fns *sf = find_sym_fns (abfd);
3786
3787 if (sf == NULL)
3788 return NULL;
3789
3790 return sf->sym_segments (abfd);
3791 }
3792
3793 void
3794 free_symfile_segment_data (struct symfile_segment_data *data)
3795 {
3796 xfree (data->segment_bases);
3797 xfree (data->segment_sizes);
3798 xfree (data->segment_info);
3799 xfree (data);
3800 }
3801
3802 /* Given:
3803 - DATA, containing segment addresses from the object file ABFD, and
3804 the mapping from ABFD's sections onto the segments that own them,
3805 and
3806 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3807 segment addresses reported by the target,
3808 store the appropriate offsets for each section in OFFSETS.
3809
3810 If there are fewer entries in SEGMENT_BASES than there are segments
3811 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3812
3813 If there are more entries, then ignore the extra. The target may
3814 not be able to distinguish between an empty data segment and a
3815 missing data segment; a missing text segment is less plausible. */
3816
3817 int
3818 symfile_map_offsets_to_segments (bfd *abfd,
3819 const struct symfile_segment_data *data,
3820 struct section_offsets *offsets,
3821 int num_segment_bases,
3822 const CORE_ADDR *segment_bases)
3823 {
3824 int i;
3825 asection *sect;
3826
3827 /* It doesn't make sense to call this function unless you have some
3828 segment base addresses. */
3829 gdb_assert (num_segment_bases > 0);
3830
3831 /* If we do not have segment mappings for the object file, we
3832 can not relocate it by segments. */
3833 gdb_assert (data != NULL);
3834 gdb_assert (data->num_segments > 0);
3835
3836 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3837 {
3838 int which = data->segment_info[i];
3839
3840 gdb_assert (0 <= which && which <= data->num_segments);
3841
3842 /* Don't bother computing offsets for sections that aren't
3843 loaded as part of any segment. */
3844 if (! which)
3845 continue;
3846
3847 /* Use the last SEGMENT_BASES entry as the address of any extra
3848 segments mentioned in DATA->segment_info. */
3849 if (which > num_segment_bases)
3850 which = num_segment_bases;
3851
3852 offsets->offsets[i] = (segment_bases[which - 1]
3853 - data->segment_bases[which - 1]);
3854 }
3855
3856 return 1;
3857 }
3858
3859 static void
3860 symfile_find_segment_sections (struct objfile *objfile)
3861 {
3862 bfd *abfd = objfile->obfd;
3863 int i;
3864 asection *sect;
3865 struct symfile_segment_data *data;
3866
3867 data = get_symfile_segment_data (objfile->obfd);
3868 if (data == NULL)
3869 return;
3870
3871 if (data->num_segments != 1 && data->num_segments != 2)
3872 {
3873 free_symfile_segment_data (data);
3874 return;
3875 }
3876
3877 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3878 {
3879 int which = data->segment_info[i];
3880
3881 if (which == 1)
3882 {
3883 if (objfile->sect_index_text == -1)
3884 objfile->sect_index_text = sect->index;
3885
3886 if (objfile->sect_index_rodata == -1)
3887 objfile->sect_index_rodata = sect->index;
3888 }
3889 else if (which == 2)
3890 {
3891 if (objfile->sect_index_data == -1)
3892 objfile->sect_index_data = sect->index;
3893
3894 if (objfile->sect_index_bss == -1)
3895 objfile->sect_index_bss = sect->index;
3896 }
3897 }
3898
3899 free_symfile_segment_data (data);
3900 }
3901
3902 /* Listen for free_objfile events. */
3903
3904 static void
3905 symfile_free_objfile (struct objfile *objfile)
3906 {
3907 /* Remove the target sections owned by this objfile. */
3908 if (objfile != NULL)
3909 remove_target_sections ((void *) objfile);
3910 }
3911
3912 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3913 Expand all symtabs that match the specified criteria.
3914 See quick_symbol_functions.expand_symtabs_matching for details. */
3915
3916 void
3917 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3918 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3919 expand_symtabs_exp_notify_ftype *expansion_notify,
3920 enum search_domain kind,
3921 void *data)
3922 {
3923 struct objfile *objfile;
3924
3925 ALL_OBJFILES (objfile)
3926 {
3927 if (objfile->sf)
3928 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3929 symbol_matcher,
3930 expansion_notify, kind,
3931 data);
3932 }
3933 }
3934
3935 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3936 Map function FUN over every file.
3937 See quick_symbol_functions.map_symbol_filenames for details. */
3938
3939 void
3940 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3941 int need_fullname)
3942 {
3943 struct objfile *objfile;
3944
3945 ALL_OBJFILES (objfile)
3946 {
3947 if (objfile->sf)
3948 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3949 need_fullname);
3950 }
3951 }
3952
3953 void
3954 _initialize_symfile (void)
3955 {
3956 struct cmd_list_element *c;
3957
3958 observer_attach_free_objfile (symfile_free_objfile);
3959
3960 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3961 Load symbol table from executable file FILE.\n\
3962 The `file' command can also load symbol tables, as well as setting the file\n\
3963 to execute."), &cmdlist);
3964 set_cmd_completer (c, filename_completer);
3965
3966 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3967 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3968 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3969 ...]\nADDR is the starting address of the file's text.\n\
3970 The optional arguments are section-name section-address pairs and\n\
3971 should be specified if the data and bss segments are not contiguous\n\
3972 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3973 &cmdlist);
3974 set_cmd_completer (c, filename_completer);
3975
3976 c = add_cmd ("remove-symbol-file", class_files,
3977 remove_symbol_file_command, _("\
3978 Remove a symbol file added via the add-symbol-file command.\n\
3979 Usage: remove-symbol-file FILENAME\n\
3980 remove-symbol-file -a ADDRESS\n\
3981 The file to remove can be identified by its filename or by an address\n\
3982 that lies within the boundaries of this symbol file in memory."),
3983 &cmdlist);
3984
3985 c = add_cmd ("load", class_files, load_command, _("\
3986 Dynamically load FILE into the running program, and record its symbols\n\
3987 for access from GDB.\n\
3988 A load OFFSET may also be given."), &cmdlist);
3989 set_cmd_completer (c, filename_completer);
3990
3991 add_prefix_cmd ("overlay", class_support, overlay_command,
3992 _("Commands for debugging overlays."), &overlaylist,
3993 "overlay ", 0, &cmdlist);
3994
3995 add_com_alias ("ovly", "overlay", class_alias, 1);
3996 add_com_alias ("ov", "overlay", class_alias, 1);
3997
3998 add_cmd ("map-overlay", class_support, map_overlay_command,
3999 _("Assert that an overlay section is mapped."), &overlaylist);
4000
4001 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4002 _("Assert that an overlay section is unmapped."), &overlaylist);
4003
4004 add_cmd ("list-overlays", class_support, list_overlays_command,
4005 _("List mappings of overlay sections."), &overlaylist);
4006
4007 add_cmd ("manual", class_support, overlay_manual_command,
4008 _("Enable overlay debugging."), &overlaylist);
4009 add_cmd ("off", class_support, overlay_off_command,
4010 _("Disable overlay debugging."), &overlaylist);
4011 add_cmd ("auto", class_support, overlay_auto_command,
4012 _("Enable automatic overlay debugging."), &overlaylist);
4013 add_cmd ("load-target", class_support, overlay_load_command,
4014 _("Read the overlay mapping state from the target."), &overlaylist);
4015
4016 /* Filename extension to source language lookup table: */
4017 init_filename_language_table ();
4018 add_setshow_string_noescape_cmd ("extension-language", class_files,
4019 &ext_args, _("\
4020 Set mapping between filename extension and source language."), _("\
4021 Show mapping between filename extension and source language."), _("\
4022 Usage: set extension-language .foo bar"),
4023 set_ext_lang_command,
4024 show_ext_args,
4025 &setlist, &showlist);
4026
4027 add_info ("extensions", info_ext_lang_command,
4028 _("All filename extensions associated with a source language."));
4029
4030 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4031 &debug_file_directory, _("\
4032 Set the directories where separate debug symbols are searched for."), _("\
4033 Show the directories where separate debug symbols are searched for."), _("\
4034 Separate debug symbols are first searched for in the same\n\
4035 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4036 and lastly at the path of the directory of the binary with\n\
4037 each global debug-file-directory component prepended."),
4038 NULL,
4039 show_debug_file_directory,
4040 &setlist, &showlist);
4041
4042 add_setshow_enum_cmd ("symbol-loading", no_class,
4043 print_symbol_loading_enums, &print_symbol_loading,
4044 _("\
4045 Set printing of symbol loading messages."), _("\
4046 Show printing of symbol loading messages."), _("\
4047 off == turn all messages off\n\
4048 brief == print messages for the executable,\n\
4049 and brief messages for shared libraries\n\
4050 full == print messages for the executable,\n\
4051 and messages for each shared library."),
4052 NULL,
4053 NULL,
4054 &setprintlist, &showprintlist);
4055 }
This page took 0.152 seconds and 4 git commands to generate.