1c9f836eb31f9d985848c4adbdbd9ca58f18573c
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static const struct sym_fns *find_sym_fns (bfd *);
91
92 static void overlay_invalidate_all (void);
93
94 static void simple_free_overlay_table (void);
95
96 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
97 enum bfd_endian);
98
99 static int simple_read_overlay_table (void);
100
101 static int simple_overlay_update_1 (struct obj_section *);
102
103 static void symfile_find_segment_sections (struct objfile *objfile);
104
105 /* List of all available sym_fns. On gdb startup, each object file reader
106 calls add_symtab_fns() to register information on each format it is
107 prepared to read. */
108
109 struct registered_sym_fns
110 {
111 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
112 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
113 {}
114
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120 };
121
122 static std::vector<registered_sym_fns> symtab_fns;
123
124 /* Values for "set print symbol-loading". */
125
126 const char print_symbol_loading_off[] = "off";
127 const char print_symbol_loading_brief[] = "brief";
128 const char print_symbol_loading_full[] = "full";
129 static const char *print_symbol_loading_enums[] =
130 {
131 print_symbol_loading_off,
132 print_symbol_loading_brief,
133 print_symbol_loading_full,
134 NULL
135 };
136 static const char *print_symbol_loading = print_symbol_loading_full;
137
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
147
148 int auto_solib_add = 1;
149 \f
150
151 /* Return non-zero if symbol-loading messages should be printed.
152 FROM_TTY is the standard from_tty argument to gdb commands.
153 If EXEC is non-zero the messages are for the executable.
154 Otherwise, messages are for shared libraries.
155 If FULL is non-zero then the caller is printing a detailed message.
156 E.g., the message includes the shared library name.
157 Otherwise, the caller is printing a brief "summary" message. */
158
159 int
160 print_symbol_loading_p (int from_tty, int exec, int full)
161 {
162 if (!from_tty && !info_verbose)
163 return 0;
164
165 if (exec)
166 {
167 /* We don't check FULL for executables, there are few such
168 messages, therefore brief == full. */
169 return print_symbol_loading != print_symbol_loading_off;
170 }
171 if (full)
172 return print_symbol_loading == print_symbol_loading_full;
173 return print_symbol_loading == print_symbol_loading_brief;
174 }
175
176 /* True if we are reading a symbol table. */
177
178 int currently_reading_symtab = 0;
179
180 /* Increment currently_reading_symtab and return a cleanup that can be
181 used to decrement it. */
182
183 scoped_restore_tmpl<int>
184 increment_reading_symtab (void)
185 {
186 gdb_assert (currently_reading_symtab >= 0);
187 return make_scoped_restore (&currently_reading_symtab,
188 currently_reading_symtab + 1);
189 }
190
191 /* Remember the lowest-addressed loadable section we've seen.
192 This function is called via bfd_map_over_sections.
193
194 In case of equal vmas, the section with the largest size becomes the
195 lowest-addressed loadable section.
196
197 If the vmas and sizes are equal, the last section is considered the
198 lowest-addressed loadable section. */
199
200 void
201 find_lowest_section (bfd *abfd, asection *sect, void *obj)
202 {
203 asection **lowest = (asection **) obj;
204
205 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
212 && (bfd_section_size (abfd, (*lowest))
213 <= bfd_section_size (abfd, sect)))
214 *lowest = sect;
215 }
216
217 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
218 new object's 'num_sections' field is set to 0; it must be updated
219 by the caller. */
220
221 struct section_addr_info *
222 alloc_section_addr_info (size_t num_sections)
223 {
224 struct section_addr_info *sap;
225 size_t size;
226
227 size = (sizeof (struct section_addr_info)
228 + sizeof (struct other_sections) * (num_sections - 1));
229 sap = (struct section_addr_info *) xmalloc (size);
230 memset (sap, 0, size);
231
232 return sap;
233 }
234
235 /* Build (allocate and populate) a section_addr_info struct from
236 an existing section table. */
237
238 extern struct section_addr_info *
239 build_section_addr_info_from_section_table (const struct target_section *start,
240 const struct target_section *end)
241 {
242 struct section_addr_info *sap;
243 const struct target_section *stp;
244 int oidx;
245
246 sap = alloc_section_addr_info (end - start);
247
248 for (stp = start, oidx = 0; stp != end; stp++)
249 {
250 struct bfd_section *asect = stp->the_bfd_section;
251 bfd *abfd = asect->owner;
252
253 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
254 && oidx < end - start)
255 {
256 sap->other[oidx].addr = stp->addr;
257 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
258 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
259 oidx++;
260 }
261 }
262
263 sap->num_sections = oidx;
264
265 return sap;
266 }
267
268 /* Create a section_addr_info from section offsets in ABFD. */
269
270 static struct section_addr_info *
271 build_section_addr_info_from_bfd (bfd *abfd)
272 {
273 struct section_addr_info *sap;
274 int i;
275 struct bfd_section *sec;
276
277 sap = alloc_section_addr_info (bfd_count_sections (abfd));
278 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
279 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
280 {
281 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
282 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
283 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
284 i++;
285 }
286
287 sap->num_sections = i;
288
289 return sap;
290 }
291
292 /* Create a section_addr_info from section offsets in OBJFILE. */
293
294 struct section_addr_info *
295 build_section_addr_info_from_objfile (const struct objfile *objfile)
296 {
297 struct section_addr_info *sap;
298 int i;
299
300 /* Before reread_symbols gets rewritten it is not safe to call:
301 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
302 */
303 sap = build_section_addr_info_from_bfd (objfile->obfd);
304 for (i = 0; i < sap->num_sections; i++)
305 {
306 int sectindex = sap->other[i].sectindex;
307
308 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
309 }
310 return sap;
311 }
312
313 /* Free all memory allocated by build_section_addr_info_from_section_table. */
314
315 extern void
316 free_section_addr_info (struct section_addr_info *sap)
317 {
318 int idx;
319
320 for (idx = 0; idx < sap->num_sections; idx++)
321 xfree (sap->other[idx].name);
322 xfree (sap);
323 }
324
325 /* Initialize OBJFILE's sect_index_* members. */
326
327 static void
328 init_objfile_sect_indices (struct objfile *objfile)
329 {
330 asection *sect;
331 int i;
332
333 sect = bfd_get_section_by_name (objfile->obfd, ".text");
334 if (sect)
335 objfile->sect_index_text = sect->index;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".data");
338 if (sect)
339 objfile->sect_index_data = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
342 if (sect)
343 objfile->sect_index_bss = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
346 if (sect)
347 objfile->sect_index_rodata = sect->index;
348
349 /* This is where things get really weird... We MUST have valid
350 indices for the various sect_index_* members or gdb will abort.
351 So if for example, there is no ".text" section, we have to
352 accomodate that. First, check for a file with the standard
353 one or two segments. */
354
355 symfile_find_segment_sections (objfile);
356
357 /* Except when explicitly adding symbol files at some address,
358 section_offsets contains nothing but zeros, so it doesn't matter
359 which slot in section_offsets the individual sect_index_* members
360 index into. So if they are all zero, it is safe to just point
361 all the currently uninitialized indices to the first slot. But
362 beware: if this is the main executable, it may be relocated
363 later, e.g. by the remote qOffsets packet, and then this will
364 be wrong! That's why we try segments first. */
365
366 for (i = 0; i < objfile->num_sections; i++)
367 {
368 if (ANOFFSET (objfile->section_offsets, i) != 0)
369 {
370 break;
371 }
372 }
373 if (i == objfile->num_sections)
374 {
375 if (objfile->sect_index_text == -1)
376 objfile->sect_index_text = 0;
377 if (objfile->sect_index_data == -1)
378 objfile->sect_index_data = 0;
379 if (objfile->sect_index_bss == -1)
380 objfile->sect_index_bss = 0;
381 if (objfile->sect_index_rodata == -1)
382 objfile->sect_index_rodata = 0;
383 }
384 }
385
386 /* The arguments to place_section. */
387
388 struct place_section_arg
389 {
390 struct section_offsets *offsets;
391 CORE_ADDR lowest;
392 };
393
394 /* Find a unique offset to use for loadable section SECT if
395 the user did not provide an offset. */
396
397 static void
398 place_section (bfd *abfd, asection *sect, void *obj)
399 {
400 struct place_section_arg *arg = (struct place_section_arg *) obj;
401 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
402 int done;
403 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
404
405 /* We are only interested in allocated sections. */
406 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
407 return;
408
409 /* If the user specified an offset, honor it. */
410 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
411 return;
412
413 /* Otherwise, let's try to find a place for the section. */
414 start_addr = (arg->lowest + align - 1) & -align;
415
416 do {
417 asection *cur_sec;
418
419 done = 1;
420
421 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
422 {
423 int indx = cur_sec->index;
424
425 /* We don't need to compare against ourself. */
426 if (cur_sec == sect)
427 continue;
428
429 /* We can only conflict with allocated sections. */
430 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
431 continue;
432
433 /* If the section offset is 0, either the section has not been placed
434 yet, or it was the lowest section placed (in which case LOWEST
435 will be past its end). */
436 if (offsets[indx] == 0)
437 continue;
438
439 /* If this section would overlap us, then we must move up. */
440 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
441 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
442 {
443 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
444 start_addr = (start_addr + align - 1) & -align;
445 done = 0;
446 break;
447 }
448
449 /* Otherwise, we appear to be OK. So far. */
450 }
451 }
452 while (!done);
453
454 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
455 arg->lowest = start_addr + bfd_get_section_size (sect);
456 }
457
458 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
459 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
460 entries. */
461
462 void
463 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
464 int num_sections,
465 const struct section_addr_info *addrs)
466 {
467 int i;
468
469 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
470
471 /* Now calculate offsets for section that were specified by the caller. */
472 for (i = 0; i < addrs->num_sections; i++)
473 {
474 const struct other_sections *osp;
475
476 osp = &addrs->other[i];
477 if (osp->sectindex == -1)
478 continue;
479
480 /* Record all sections in offsets. */
481 /* The section_offsets in the objfile are here filled in using
482 the BFD index. */
483 section_offsets->offsets[osp->sectindex] = osp->addr;
484 }
485 }
486
487 /* Transform section name S for a name comparison. prelink can split section
488 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
489 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
490 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
491 (`.sbss') section has invalid (increased) virtual address. */
492
493 static const char *
494 addr_section_name (const char *s)
495 {
496 if (strcmp (s, ".dynbss") == 0)
497 return ".bss";
498 if (strcmp (s, ".sdynbss") == 0)
499 return ".sbss";
500
501 return s;
502 }
503
504 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
505 their (name, sectindex) pair. sectindex makes the sort by name stable. */
506
507 static int
508 addrs_section_compar (const void *ap, const void *bp)
509 {
510 const struct other_sections *a = *((struct other_sections **) ap);
511 const struct other_sections *b = *((struct other_sections **) bp);
512 int retval;
513
514 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
515 if (retval)
516 return retval;
517
518 return a->sectindex - b->sectindex;
519 }
520
521 /* Provide sorted array of pointers to sections of ADDRS. The array is
522 terminated by NULL. Caller is responsible to call xfree for it. */
523
524 static struct other_sections **
525 addrs_section_sort (struct section_addr_info *addrs)
526 {
527 struct other_sections **array;
528 int i;
529
530 /* `+ 1' for the NULL terminator. */
531 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
532 for (i = 0; i < addrs->num_sections; i++)
533 array[i] = &addrs->other[i];
534 array[i] = NULL;
535
536 qsort (array, i, sizeof (*array), addrs_section_compar);
537
538 return array;
539 }
540
541 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
542 also SECTINDEXes specific to ABFD there. This function can be used to
543 rebase ADDRS to start referencing different BFD than before. */
544
545 void
546 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
547 {
548 asection *lower_sect;
549 CORE_ADDR lower_offset;
550 int i;
551 struct cleanup *my_cleanup;
552 struct section_addr_info *abfd_addrs;
553 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
554 struct other_sections **addrs_to_abfd_addrs;
555
556 /* Find lowest loadable section to be used as starting point for
557 continguous sections. */
558 lower_sect = NULL;
559 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
560 if (lower_sect == NULL)
561 {
562 warning (_("no loadable sections found in added symbol-file %s"),
563 bfd_get_filename (abfd));
564 lower_offset = 0;
565 }
566 else
567 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
568
569 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
570 in ABFD. Section names are not unique - there can be multiple sections of
571 the same name. Also the sections of the same name do not have to be
572 adjacent to each other. Some sections may be present only in one of the
573 files. Even sections present in both files do not have to be in the same
574 order.
575
576 Use stable sort by name for the sections in both files. Then linearly
577 scan both lists matching as most of the entries as possible. */
578
579 addrs_sorted = addrs_section_sort (addrs);
580 my_cleanup = make_cleanup (xfree, addrs_sorted);
581
582 abfd_addrs = build_section_addr_info_from_bfd (abfd);
583 make_cleanup_free_section_addr_info (abfd_addrs);
584 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
585 make_cleanup (xfree, abfd_addrs_sorted);
586
587 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
588 ABFD_ADDRS_SORTED. */
589
590 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
591 make_cleanup (xfree, addrs_to_abfd_addrs);
592
593 while (*addrs_sorted)
594 {
595 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
596
597 while (*abfd_addrs_sorted
598 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
599 sect_name) < 0)
600 abfd_addrs_sorted++;
601
602 if (*abfd_addrs_sorted
603 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
604 sect_name) == 0)
605 {
606 int index_in_addrs;
607
608 /* Make the found item directly addressable from ADDRS. */
609 index_in_addrs = *addrs_sorted - addrs->other;
610 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
611 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
612
613 /* Never use the same ABFD entry twice. */
614 abfd_addrs_sorted++;
615 }
616
617 addrs_sorted++;
618 }
619
620 /* Calculate offsets for the loadable sections.
621 FIXME! Sections must be in order of increasing loadable section
622 so that contiguous sections can use the lower-offset!!!
623
624 Adjust offsets if the segments are not contiguous.
625 If the section is contiguous, its offset should be set to
626 the offset of the highest loadable section lower than it
627 (the loadable section directly below it in memory).
628 this_offset = lower_offset = lower_addr - lower_orig_addr */
629
630 for (i = 0; i < addrs->num_sections; i++)
631 {
632 struct other_sections *sect = addrs_to_abfd_addrs[i];
633
634 if (sect)
635 {
636 /* This is the index used by BFD. */
637 addrs->other[i].sectindex = sect->sectindex;
638
639 if (addrs->other[i].addr != 0)
640 {
641 addrs->other[i].addr -= sect->addr;
642 lower_offset = addrs->other[i].addr;
643 }
644 else
645 addrs->other[i].addr = lower_offset;
646 }
647 else
648 {
649 /* addr_section_name transformation is not used for SECT_NAME. */
650 const char *sect_name = addrs->other[i].name;
651
652 /* This section does not exist in ABFD, which is normally
653 unexpected and we want to issue a warning.
654
655 However, the ELF prelinker does create a few sections which are
656 marked in the main executable as loadable (they are loaded in
657 memory from the DYNAMIC segment) and yet are not present in
658 separate debug info files. This is fine, and should not cause
659 a warning. Shared libraries contain just the section
660 ".gnu.liblist" but it is not marked as loadable there. There is
661 no other way to identify them than by their name as the sections
662 created by prelink have no special flags.
663
664 For the sections `.bss' and `.sbss' see addr_section_name. */
665
666 if (!(strcmp (sect_name, ".gnu.liblist") == 0
667 || strcmp (sect_name, ".gnu.conflict") == 0
668 || (strcmp (sect_name, ".bss") == 0
669 && i > 0
670 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
671 && addrs_to_abfd_addrs[i - 1] != NULL)
672 || (strcmp (sect_name, ".sbss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)))
676 warning (_("section %s not found in %s"), sect_name,
677 bfd_get_filename (abfd));
678
679 addrs->other[i].addr = 0;
680 addrs->other[i].sectindex = -1;
681 }
682 }
683
684 do_cleanups (my_cleanup);
685 }
686
687 /* Parse the user's idea of an offset for dynamic linking, into our idea
688 of how to represent it for fast symbol reading. This is the default
689 version of the sym_fns.sym_offsets function for symbol readers that
690 don't need to do anything special. It allocates a section_offsets table
691 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
692
693 void
694 default_symfile_offsets (struct objfile *objfile,
695 const struct section_addr_info *addrs)
696 {
697 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
698 objfile->section_offsets = (struct section_offsets *)
699 obstack_alloc (&objfile->objfile_obstack,
700 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701 relative_addr_info_to_section_offsets (objfile->section_offsets,
702 objfile->num_sections, addrs);
703
704 /* For relocatable files, all loadable sections will start at zero.
705 The zero is meaningless, so try to pick arbitrary addresses such
706 that no loadable sections overlap. This algorithm is quadratic,
707 but the number of sections in a single object file is generally
708 small. */
709 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
710 {
711 struct place_section_arg arg;
712 bfd *abfd = objfile->obfd;
713 asection *cur_sec;
714
715 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
716 /* We do not expect this to happen; just skip this step if the
717 relocatable file has a section with an assigned VMA. */
718 if (bfd_section_vma (abfd, cur_sec) != 0)
719 break;
720
721 if (cur_sec == NULL)
722 {
723 CORE_ADDR *offsets = objfile->section_offsets->offsets;
724
725 /* Pick non-overlapping offsets for sections the user did not
726 place explicitly. */
727 arg.offsets = objfile->section_offsets;
728 arg.lowest = 0;
729 bfd_map_over_sections (objfile->obfd, place_section, &arg);
730
731 /* Correctly filling in the section offsets is not quite
732 enough. Relocatable files have two properties that
733 (most) shared objects do not:
734
735 - Their debug information will contain relocations. Some
736 shared libraries do also, but many do not, so this can not
737 be assumed.
738
739 - If there are multiple code sections they will be loaded
740 at different relative addresses in memory than they are
741 in the objfile, since all sections in the file will start
742 at address zero.
743
744 Because GDB has very limited ability to map from an
745 address in debug info to the correct code section,
746 it relies on adding SECT_OFF_TEXT to things which might be
747 code. If we clear all the section offsets, and set the
748 section VMAs instead, then symfile_relocate_debug_section
749 will return meaningful debug information pointing at the
750 correct sections.
751
752 GDB has too many different data structures for section
753 addresses - a bfd, objfile, and so_list all have section
754 tables, as does exec_ops. Some of these could probably
755 be eliminated. */
756
757 for (cur_sec = abfd->sections; cur_sec != NULL;
758 cur_sec = cur_sec->next)
759 {
760 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
761 continue;
762
763 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
764 exec_set_section_address (bfd_get_filename (abfd),
765 cur_sec->index,
766 offsets[cur_sec->index]);
767 offsets[cur_sec->index] = 0;
768 }
769 }
770 }
771
772 /* Remember the bfd indexes for the .text, .data, .bss and
773 .rodata sections. */
774 init_objfile_sect_indices (objfile);
775 }
776
777 /* Divide the file into segments, which are individual relocatable units.
778 This is the default version of the sym_fns.sym_segments function for
779 symbol readers that do not have an explicit representation of segments.
780 It assumes that object files do not have segments, and fully linked
781 files have a single segment. */
782
783 struct symfile_segment_data *
784 default_symfile_segments (bfd *abfd)
785 {
786 int num_sections, i;
787 asection *sect;
788 struct symfile_segment_data *data;
789 CORE_ADDR low, high;
790
791 /* Relocatable files contain enough information to position each
792 loadable section independently; they should not be relocated
793 in segments. */
794 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
795 return NULL;
796
797 /* Make sure there is at least one loadable section in the file. */
798 for (sect = abfd->sections; sect != NULL; sect = sect->next)
799 {
800 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
801 continue;
802
803 break;
804 }
805 if (sect == NULL)
806 return NULL;
807
808 low = bfd_get_section_vma (abfd, sect);
809 high = low + bfd_get_section_size (sect);
810
811 data = XCNEW (struct symfile_segment_data);
812 data->num_segments = 1;
813 data->segment_bases = XCNEW (CORE_ADDR);
814 data->segment_sizes = XCNEW (CORE_ADDR);
815
816 num_sections = bfd_count_sections (abfd);
817 data->segment_info = XCNEWVEC (int, num_sections);
818
819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
820 {
821 CORE_ADDR vma;
822
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 vma = bfd_get_section_vma (abfd, sect);
827 if (vma < low)
828 low = vma;
829 if (vma + bfd_get_section_size (sect) > high)
830 high = vma + bfd_get_section_size (sect);
831
832 data->segment_info[i] = 1;
833 }
834
835 data->segment_bases[0] = low;
836 data->segment_sizes[0] = high - low;
837
838 return data;
839 }
840
841 /* This is a convenience function to call sym_read for OBJFILE and
842 possibly force the partial symbols to be read. */
843
844 static void
845 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
846 {
847 (*objfile->sf->sym_read) (objfile, add_flags);
848 objfile->per_bfd->minsyms_read = true;
849
850 /* find_separate_debug_file_in_section should be called only if there is
851 single binary with no existing separate debug info file. */
852 if (!objfile_has_partial_symbols (objfile)
853 && objfile->separate_debug_objfile == NULL
854 && objfile->separate_debug_objfile_backlink == NULL)
855 {
856 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
857
858 if (abfd != NULL)
859 {
860 /* find_separate_debug_file_in_section uses the same filename for the
861 virtual section-as-bfd like the bfd filename containing the
862 section. Therefore use also non-canonical name form for the same
863 file containing the section. */
864 symbol_file_add_separate (abfd.get (), objfile->original_name,
865 add_flags, objfile);
866 }
867 }
868 if ((add_flags & SYMFILE_NO_READ) == 0)
869 require_partial_symbols (objfile, 0);
870 }
871
872 /* Initialize entry point information for this objfile. */
873
874 static void
875 init_entry_point_info (struct objfile *objfile)
876 {
877 struct entry_info *ei = &objfile->per_bfd->ei;
878
879 if (ei->initialized)
880 return;
881 ei->initialized = 1;
882
883 /* Save startup file's range of PC addresses to help blockframe.c
884 decide where the bottom of the stack is. */
885
886 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
887 {
888 /* Executable file -- record its entry point so we'll recognize
889 the startup file because it contains the entry point. */
890 ei->entry_point = bfd_get_start_address (objfile->obfd);
891 ei->entry_point_p = 1;
892 }
893 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
894 && bfd_get_start_address (objfile->obfd) != 0)
895 {
896 /* Some shared libraries may have entry points set and be
897 runnable. There's no clear way to indicate this, so just check
898 for values other than zero. */
899 ei->entry_point = bfd_get_start_address (objfile->obfd);
900 ei->entry_point_p = 1;
901 }
902 else
903 {
904 /* Examination of non-executable.o files. Short-circuit this stuff. */
905 ei->entry_point_p = 0;
906 }
907
908 if (ei->entry_point_p)
909 {
910 struct obj_section *osect;
911 CORE_ADDR entry_point = ei->entry_point;
912 int found;
913
914 /* Make certain that the address points at real code, and not a
915 function descriptor. */
916 entry_point
917 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
918 entry_point,
919 &current_target);
920
921 /* Remove any ISA markers, so that this matches entries in the
922 symbol table. */
923 ei->entry_point
924 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
925
926 found = 0;
927 ALL_OBJFILE_OSECTIONS (objfile, osect)
928 {
929 struct bfd_section *sect = osect->the_bfd_section;
930
931 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
932 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
933 + bfd_get_section_size (sect)))
934 {
935 ei->the_bfd_section_index
936 = gdb_bfd_section_index (objfile->obfd, sect);
937 found = 1;
938 break;
939 }
940 }
941
942 if (!found)
943 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
944 }
945 }
946
947 /* Process a symbol file, as either the main file or as a dynamically
948 loaded file.
949
950 This function does not set the OBJFILE's entry-point info.
951
952 OBJFILE is where the symbols are to be read from.
953
954 ADDRS is the list of section load addresses. If the user has given
955 an 'add-symbol-file' command, then this is the list of offsets and
956 addresses he or she provided as arguments to the command; or, if
957 we're handling a shared library, these are the actual addresses the
958 sections are loaded at, according to the inferior's dynamic linker
959 (as gleaned by GDB's shared library code). We convert each address
960 into an offset from the section VMA's as it appears in the object
961 file, and then call the file's sym_offsets function to convert this
962 into a format-specific offset table --- a `struct section_offsets'.
963
964 ADD_FLAGS encodes verbosity level, whether this is main symbol or
965 an extra symbol file such as dynamically loaded code, and wether
966 breakpoint reset should be deferred. */
967
968 static void
969 syms_from_objfile_1 (struct objfile *objfile,
970 struct section_addr_info *addrs,
971 symfile_add_flags add_flags)
972 {
973 struct section_addr_info *local_addr = NULL;
974 struct cleanup *old_chain;
975 const int mainline = add_flags & SYMFILE_MAINLINE;
976
977 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
978
979 if (objfile->sf == NULL)
980 {
981 /* No symbols to load, but we still need to make sure
982 that the section_offsets table is allocated. */
983 int num_sections = gdb_bfd_count_sections (objfile->obfd);
984 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
985
986 objfile->num_sections = num_sections;
987 objfile->section_offsets
988 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
989 size);
990 memset (objfile->section_offsets, 0, size);
991 return;
992 }
993
994 /* Make sure that partially constructed symbol tables will be cleaned up
995 if an error occurs during symbol reading. */
996 old_chain = make_cleanup (null_cleanup, NULL);
997 std::unique_ptr<struct objfile> objfile_holder (objfile);
998
999 /* If ADDRS is NULL, put together a dummy address list.
1000 We now establish the convention that an addr of zero means
1001 no load address was specified. */
1002 if (! addrs)
1003 {
1004 local_addr = alloc_section_addr_info (1);
1005 make_cleanup (xfree, local_addr);
1006 addrs = local_addr;
1007 }
1008
1009 if (mainline)
1010 {
1011 /* We will modify the main symbol table, make sure that all its users
1012 will be cleaned up if an error occurs during symbol reading. */
1013 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1014
1015 /* Since no error yet, throw away the old symbol table. */
1016
1017 if (symfile_objfile != NULL)
1018 {
1019 delete symfile_objfile;
1020 gdb_assert (symfile_objfile == NULL);
1021 }
1022
1023 /* Currently we keep symbols from the add-symbol-file command.
1024 If the user wants to get rid of them, they should do "symbol-file"
1025 without arguments first. Not sure this is the best behavior
1026 (PR 2207). */
1027
1028 (*objfile->sf->sym_new_init) (objfile);
1029 }
1030
1031 /* Convert addr into an offset rather than an absolute address.
1032 We find the lowest address of a loaded segment in the objfile,
1033 and assume that <addr> is where that got loaded.
1034
1035 We no longer warn if the lowest section is not a text segment (as
1036 happens for the PA64 port. */
1037 if (addrs->num_sections > 0)
1038 addr_info_make_relative (addrs, objfile->obfd);
1039
1040 /* Initialize symbol reading routines for this objfile, allow complaints to
1041 appear for this new file, and record how verbose to be, then do the
1042 initial symbol reading for this file. */
1043
1044 (*objfile->sf->sym_init) (objfile);
1045 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1046
1047 (*objfile->sf->sym_offsets) (objfile, addrs);
1048
1049 read_symbols (objfile, add_flags);
1050
1051 /* Discard cleanups as symbol reading was successful. */
1052
1053 objfile_holder.release ();
1054 discard_cleanups (old_chain);
1055 xfree (local_addr);
1056 }
1057
1058 /* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
1061 static void
1062 syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
1064 symfile_add_flags add_flags)
1065 {
1066 syms_from_objfile_1 (objfile, addrs, add_flags);
1067 init_entry_point_info (objfile);
1068 }
1069
1070 /* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1073
1074 static void
1075 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1076 {
1077 /* If this is the main symbol file we have to clean up all users of the
1078 old main symbol file. Otherwise it is sufficient to fixup all the
1079 breakpoints that may have been redefined by this symbol file. */
1080 if (add_flags & SYMFILE_MAINLINE)
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
1085 clear_symtab_users (add_flags);
1086 }
1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1088 {
1089 breakpoint_re_set ();
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1094 }
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1100 A new reference is acquired by this function.
1101
1102 For NAME description see the objfile constructor.
1103
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
1106
1107 ADDRS is as described for syms_from_objfile_1, above.
1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1109
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
1113 Upon success, returns a pointer to the objfile that was added.
1114 Upon failure, jumps back to command level (never returns). */
1115
1116 static struct objfile *
1117 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
1119 struct section_addr_info *addrs,
1120 objfile_flags flags, struct objfile *parent)
1121 {
1122 struct objfile *objfile;
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = new struct objfile (abfd, name, flags);
1147
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
1153 performed, or need to read an unmapped symbol table. */
1154 if (should_print)
1155 {
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
1158 else
1159 {
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164 }
1165 syms_from_objfile (objfile, addrs, add_flags);
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
1170 all partial symbol tables for this objfile if so. */
1171
1172 if ((flags & OBJF_READNOW))
1173 {
1174 if (should_print)
1175 {
1176 printf_unfiltered (_("expanding to full symbols..."));
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
1183 }
1184
1185 if (should_print && !objfile_has_symbols (objfile))
1186 {
1187 wrap_here ("");
1188 printf_unfiltered (_("(no debugging symbols found)..."));
1189 wrap_here ("");
1190 }
1191
1192 if (should_print)
1193 {
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
1196 else
1197 printf_unfiltered (_("done.\n"));
1198 }
1199
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
1205 if (objfile->sf == NULL)
1206 {
1207 observer_notify_new_objfile (objfile);
1208 return objfile; /* No symbols. */
1209 }
1210
1211 finish_new_objfile (objfile, add_flags);
1212
1213 observer_notify_new_objfile (objfile);
1214
1215 bfd_cache_close_all ();
1216 return (objfile);
1217 }
1218
1219 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see the objfile constructor. */
1221
1222 void
1223 symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
1225 struct objfile *objfile)
1226 {
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
1235
1236 symbol_file_add_with_addrs
1237 (bfd, name, symfile_flags, sap,
1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1239 | OBJF_USERLOADED),
1240 objfile);
1241
1242 do_cleanups (my_cleanup);
1243 }
1244
1245 /* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
1247 See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
1252 struct section_addr_info *addrs,
1253 objfile_flags flags, struct objfile *parent)
1254 {
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
1257 }
1258
1259 /* Process a symbol file, as either the main file or as a dynamically
1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
1261
1262 struct objfile *
1263 symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
1265 {
1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1267
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
1270 }
1271
1272 /* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
1279
1280 void
1281 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1282 {
1283 symbol_file_add_main_1 (args, add_flags, 0);
1284 }
1285
1286 static void
1287 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
1289 {
1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1291
1292 symbol_file_add (args, add_flags, NULL, flags);
1293
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
1298 if ((add_flags & SYMFILE_NO_READ) == 0)
1299 set_initial_language ();
1300 }
1301
1302 void
1303 symbol_file_clear (int from_tty)
1304 {
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
1309 objfile_name (symfile_objfile))
1310 : !query (_("Discard symbol table? "))))
1311 error (_("Not confirmed."));
1312
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
1315 no_shared_libraries (NULL, from_tty);
1316
1317 free_all_objfiles ();
1318
1319 gdb_assert (symfile_objfile == NULL);
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1322 }
1323
1324 /* See symfile.h. */
1325
1326 int separate_debug_file_debug = 0;
1327
1328 static int
1329 separate_debug_file_exists (const char *name, unsigned long crc,
1330 struct objfile *parent_objfile)
1331 {
1332 unsigned long file_crc;
1333 int file_crc_p;
1334 struct stat parent_stat, abfd_stat;
1335 int verified_as_different;
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1341 the separate debug infos with the same basename can exist. */
1342
1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1344 return 0;
1345
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1350
1351 if (abfd == NULL)
1352 return 0;
1353
1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
1364
1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1368 {
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
1371 return 0;
1372 verified_as_different = 1;
1373 }
1374 else
1375 verified_as_different = 0;
1376
1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1378
1379 if (!file_crc_p)
1380 return 0;
1381
1382 if (crc != file_crc)
1383 {
1384 unsigned long parent_crc;
1385
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
1389
1390 if (!verified_as_different)
1391 {
1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1393 return 0;
1394 }
1395
1396 if (verified_as_different || parent_crc != file_crc)
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
1399 name, objfile_name (parent_objfile));
1400
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 char *debug_file_directory = NULL;
1408 static void
1409 show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411 {
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
1415 value);
1416 }
1417
1418 #if ! defined (DEBUG_SUBDIRECTORY)
1419 #define DEBUG_SUBDIRECTORY ".debug"
1420 #endif
1421
1422 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1428
1429 static char *
1430 find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
1434 {
1435 char *debugdir;
1436 char *debugfile;
1437 int i;
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
1441
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1447 i = strlen (dir);
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1450
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1464 return debugfile;
1465
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* Then try in the global debugfile directories.
1476
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
1479
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1482
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, debuglink);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
1513 }
1514 }
1515
1516 do_cleanups (back_to);
1517 xfree (debugfile);
1518 return NULL;
1519 }
1520
1521 /* Modify PATH to contain only "[/]directory/" part of PATH.
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525 static void
1526 terminate_after_last_dir_separator (char *path)
1527 {
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538 }
1539
1540 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543 char *
1544 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 {
1546 char *debugfile;
1547 unsigned long crc32;
1548
1549 gdb::unique_xmalloc_ptr<char> debuglink
1550 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
1559 std::string dir = objfile_name (objfile);
1560 terminate_after_last_dir_separator (&dir[0]);
1561 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1562
1563 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1564 debuglink.get (), crc32, objfile);
1565
1566 if (debugfile == NULL)
1567 {
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile_name (objfile), &st_buf) == 0
1574 && S_ISLNK (st_buf.st_mode))
1575 {
1576 gdb::unique_xmalloc_ptr<char> symlink_dir
1577 (lrealpath (objfile_name (objfile)));
1578 if (symlink_dir != NULL)
1579 {
1580 terminate_after_last_dir_separator (symlink_dir.get ());
1581 if (dir != symlink_dir.get ())
1582 {
1583 /* Different directory, so try using it. */
1584 debugfile = find_separate_debug_file (symlink_dir.get (),
1585 symlink_dir.get (),
1586 debuglink.get (),
1587 crc32,
1588 objfile);
1589 }
1590 }
1591 }
1592 }
1593
1594 return debugfile;
1595 }
1596
1597 /* This is the symbol-file command. Read the file, analyze its
1598 symbols, and add a struct symtab to a symtab list. The syntax of
1599 the command is rather bizarre:
1600
1601 1. The function buildargv implements various quoting conventions
1602 which are undocumented and have little or nothing in common with
1603 the way things are quoted (or not quoted) elsewhere in GDB.
1604
1605 2. Options are used, which are not generally used in GDB (perhaps
1606 "set mapped on", "set readnow on" would be better)
1607
1608 3. The order of options matters, which is contrary to GNU
1609 conventions (because it is confusing and inconvenient). */
1610
1611 void
1612 symbol_file_command (const char *args, int from_tty)
1613 {
1614 dont_repeat ();
1615
1616 if (args == NULL)
1617 {
1618 symbol_file_clear (from_tty);
1619 }
1620 else
1621 {
1622 objfile_flags flags = OBJF_USERLOADED;
1623 symfile_add_flags add_flags = 0;
1624 char *name = NULL;
1625 bool stop_processing_options = false;
1626 int idx;
1627 char *arg;
1628
1629 if (from_tty)
1630 add_flags |= SYMFILE_VERBOSE;
1631
1632 gdb_argv built_argv (args);
1633 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1634 {
1635 if (stop_processing_options || *arg != '-')
1636 {
1637 if (name == NULL)
1638 name = arg;
1639 else
1640 error (_("Unrecognized argument \"%s\""), arg);
1641 }
1642 else if (strcmp (arg, "-readnow") == 0)
1643 flags |= OBJF_READNOW;
1644 else if (strcmp (arg, "--") == 0)
1645 stop_processing_options = true;
1646 else
1647 error (_("Unrecognized argument \"%s\""), arg);
1648 }
1649
1650 if (name == NULL)
1651 error (_("no symbol file name was specified"));
1652
1653 symbol_file_add_main_1 (name, add_flags, flags);
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = main_language ();
1672
1673 if (lang == language_unknown)
1674 {
1675 char *name = main_name ();
1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1677
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
1680 }
1681
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1702
1703 if (!is_target_filename (name))
1704 {
1705 char *absolute_name;
1706
1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1708
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1713 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1714 if (desc < 0)
1715 {
1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1717
1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
1723 #endif
1724 if (desc < 0)
1725 perror_with_name (expanded_name.get ());
1726
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
1730
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
1738
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742
1743 do_cleanups (back_to);
1744
1745 return sym_bfd;
1746 }
1747
1748 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
1751 int
1752 get_section_index (struct objfile *objfile, const char *section_name)
1753 {
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1755
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760 }
1761
1762 /* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
1767
1768 void
1769 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1770 {
1771 symtab_fns.emplace_back (flavour, sf);
1772 }
1773
1774 /* Initialize OBJFILE to read symbols from its associated BFD. It
1775 either returns or calls error(). The result is an initialized
1776 struct sym_fns in the objfile structure, that contains cached
1777 information about the symbol file. */
1778
1779 static const struct sym_fns *
1780 find_sym_fns (bfd *abfd)
1781 {
1782 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1783
1784 if (our_flavour == bfd_target_srec_flavour
1785 || our_flavour == bfd_target_ihex_flavour
1786 || our_flavour == bfd_target_tekhex_flavour)
1787 return NULL; /* No symbols. */
1788
1789 for (const registered_sym_fns &rsf : symtab_fns)
1790 if (our_flavour == rsf.sym_flavour)
1791 return rsf.sym_fns;
1792
1793 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1794 bfd_get_target (abfd));
1795 }
1796 \f
1797
1798 /* This function runs the load command of our current target. */
1799
1800 static void
1801 load_command (const char *arg, int from_tty)
1802 {
1803 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1804
1805 dont_repeat ();
1806
1807 /* The user might be reloading because the binary has changed. Take
1808 this opportunity to check. */
1809 reopen_exec_file ();
1810 reread_symbols ();
1811
1812 if (arg == NULL)
1813 {
1814 const char *parg;
1815 int count = 0;
1816
1817 parg = arg = get_exec_file (1);
1818
1819 /* Count how many \ " ' tab space there are in the name. */
1820 while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 {
1822 parg++;
1823 count++;
1824 }
1825
1826 if (count)
1827 {
1828 /* We need to quote this string so buildargv can pull it apart. */
1829 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1830 char *ptemp = temp;
1831 const char *prev;
1832
1833 make_cleanup (xfree, temp);
1834
1835 prev = parg = arg;
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 strncpy (ptemp, prev, parg - prev);
1839 ptemp += parg - prev;
1840 prev = parg++;
1841 *ptemp++ = '\\';
1842 }
1843 strcpy (ptemp, prev);
1844
1845 arg = temp;
1846 }
1847 }
1848
1849 target_load (arg, from_tty);
1850
1851 /* After re-loading the executable, we don't really know which
1852 overlays are mapped any more. */
1853 overlay_cache_invalid = 1;
1854
1855 do_cleanups (cleanup);
1856 }
1857
1858 /* This version of "load" should be usable for any target. Currently
1859 it is just used for remote targets, not inftarg.c or core files,
1860 on the theory that only in that case is it useful.
1861
1862 Avoiding xmodem and the like seems like a win (a) because we don't have
1863 to worry about finding it, and (b) On VMS, fork() is very slow and so
1864 we don't want to run a subprocess. On the other hand, I'm not sure how
1865 performance compares. */
1866
1867 static int validate_download = 0;
1868
1869 /* Callback service function for generic_load (bfd_map_over_sections). */
1870
1871 static void
1872 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1873 {
1874 bfd_size_type *sum = (bfd_size_type *) data;
1875
1876 *sum += bfd_get_section_size (asec);
1877 }
1878
1879 /* Opaque data for load_section_callback. */
1880 struct load_section_data {
1881 CORE_ADDR load_offset;
1882 struct load_progress_data *progress_data;
1883 VEC(memory_write_request_s) *requests;
1884 };
1885
1886 /* Opaque data for load_progress. */
1887 struct load_progress_data {
1888 /* Cumulative data. */
1889 unsigned long write_count;
1890 unsigned long data_count;
1891 bfd_size_type total_size;
1892 };
1893
1894 /* Opaque data for load_progress for a single section. */
1895 struct load_progress_section_data {
1896 struct load_progress_data *cumulative;
1897
1898 /* Per-section data. */
1899 const char *section_name;
1900 ULONGEST section_sent;
1901 ULONGEST section_size;
1902 CORE_ADDR lma;
1903 gdb_byte *buffer;
1904 };
1905
1906 /* Target write callback routine for progress reporting. */
1907
1908 static void
1909 load_progress (ULONGEST bytes, void *untyped_arg)
1910 {
1911 struct load_progress_section_data *args
1912 = (struct load_progress_section_data *) untyped_arg;
1913 struct load_progress_data *totals;
1914
1915 if (args == NULL)
1916 /* Writing padding data. No easy way to get at the cumulative
1917 stats, so just ignore this. */
1918 return;
1919
1920 totals = args->cumulative;
1921
1922 if (bytes == 0 && args->section_sent == 0)
1923 {
1924 /* The write is just starting. Let the user know we've started
1925 this section. */
1926 current_uiout->message ("Loading section %s, size %s lma %s\n",
1927 args->section_name,
1928 hex_string (args->section_size),
1929 paddress (target_gdbarch (), args->lma));
1930 return;
1931 }
1932
1933 if (validate_download)
1934 {
1935 /* Broken memories and broken monitors manifest themselves here
1936 when bring new computers to life. This doubles already slow
1937 downloads. */
1938 /* NOTE: cagney/1999-10-18: A more efficient implementation
1939 might add a verify_memory() method to the target vector and
1940 then use that. remote.c could implement that method using
1941 the ``qCRC'' packet. */
1942 gdb::byte_vector check (bytes);
1943
1944 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1945 error (_("Download verify read failed at %s"),
1946 paddress (target_gdbarch (), args->lma));
1947 if (memcmp (args->buffer, check.data (), bytes) != 0)
1948 error (_("Download verify compare failed at %s"),
1949 paddress (target_gdbarch (), args->lma));
1950 }
1951 totals->data_count += bytes;
1952 args->lma += bytes;
1953 args->buffer += bytes;
1954 totals->write_count += 1;
1955 args->section_sent += bytes;
1956 if (check_quit_flag ()
1957 || (deprecated_ui_load_progress_hook != NULL
1958 && deprecated_ui_load_progress_hook (args->section_name,
1959 args->section_sent)))
1960 error (_("Canceled the download"));
1961
1962 if (deprecated_show_load_progress != NULL)
1963 deprecated_show_load_progress (args->section_name,
1964 args->section_sent,
1965 args->section_size,
1966 totals->data_count,
1967 totals->total_size);
1968 }
1969
1970 /* Callback service function for generic_load (bfd_map_over_sections). */
1971
1972 static void
1973 load_section_callback (bfd *abfd, asection *asec, void *data)
1974 {
1975 struct memory_write_request *new_request;
1976 struct load_section_data *args = (struct load_section_data *) data;
1977 struct load_progress_section_data *section_data;
1978 bfd_size_type size = bfd_get_section_size (asec);
1979 gdb_byte *buffer;
1980 const char *sect_name = bfd_get_section_name (abfd, asec);
1981
1982 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1983 return;
1984
1985 if (size == 0)
1986 return;
1987
1988 new_request = VEC_safe_push (memory_write_request_s,
1989 args->requests, NULL);
1990 memset (new_request, 0, sizeof (struct memory_write_request));
1991 section_data = XCNEW (struct load_progress_section_data);
1992 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1993 new_request->end = new_request->begin + size; /* FIXME Should size
1994 be in instead? */
1995 new_request->data = (gdb_byte *) xmalloc (size);
1996 new_request->baton = section_data;
1997
1998 buffer = new_request->data;
1999
2000 section_data->cumulative = args->progress_data;
2001 section_data->section_name = sect_name;
2002 section_data->section_size = size;
2003 section_data->lma = new_request->begin;
2004 section_data->buffer = buffer;
2005
2006 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2007 }
2008
2009 /* Clean up an entire memory request vector, including load
2010 data and progress records. */
2011
2012 static void
2013 clear_memory_write_data (void *arg)
2014 {
2015 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2016 VEC(memory_write_request_s) *vec = *vec_p;
2017 int i;
2018 struct memory_write_request *mr;
2019
2020 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2021 {
2022 xfree (mr->data);
2023 xfree (mr->baton);
2024 }
2025 VEC_free (memory_write_request_s, vec);
2026 }
2027
2028 static void print_transfer_performance (struct ui_file *stream,
2029 unsigned long data_count,
2030 unsigned long write_count,
2031 std::chrono::steady_clock::duration d);
2032
2033 void
2034 generic_load (const char *args, int from_tty)
2035 {
2036 struct cleanup *old_cleanups;
2037 struct load_section_data cbdata;
2038 struct load_progress_data total_progress;
2039 struct ui_out *uiout = current_uiout;
2040
2041 CORE_ADDR entry;
2042
2043 memset (&cbdata, 0, sizeof (cbdata));
2044 memset (&total_progress, 0, sizeof (total_progress));
2045 cbdata.progress_data = &total_progress;
2046
2047 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2048
2049 if (args == NULL)
2050 error_no_arg (_("file to load"));
2051
2052 gdb_argv argv (args);
2053
2054 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2055
2056 if (argv[1] != NULL)
2057 {
2058 const char *endptr;
2059
2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
2069 }
2070
2071 /* Open the file for loading. */
2072 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2073 if (loadfile_bfd == NULL)
2074 perror_with_name (filename.get ());
2075
2076 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2077 {
2078 error (_("\"%s\" is not an object file: %s"), filename.get (),
2079 bfd_errmsg (bfd_get_error ()));
2080 }
2081
2082 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2083 (void *) &total_progress.total_size);
2084
2085 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2086
2087 using namespace std::chrono;
2088
2089 steady_clock::time_point start_time = steady_clock::now ();
2090
2091 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2092 load_progress) != 0)
2093 error (_("Load failed"));
2094
2095 steady_clock::time_point end_time = steady_clock::now ();
2096
2097 entry = bfd_get_start_address (loadfile_bfd.get ());
2098 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2099 uiout->text ("Start address ");
2100 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2101 uiout->text (", load size ");
2102 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2103 uiout->text ("\n");
2104 regcache_write_pc (get_current_regcache (), entry);
2105
2106 /* Reset breakpoints, now that we have changed the load image. For
2107 instance, breakpoints may have been set (or reset, by
2108 post_create_inferior) while connected to the target but before we
2109 loaded the program. In that case, the prologue analyzer could
2110 have read instructions from the target to find the right
2111 breakpoint locations. Loading has changed the contents of that
2112 memory. */
2113
2114 breakpoint_re_set ();
2115
2116 print_transfer_performance (gdb_stdout, total_progress.data_count,
2117 total_progress.write_count,
2118 end_time - start_time);
2119
2120 do_cleanups (old_cleanups);
2121 }
2122
2123 /* Report on STREAM the performance of a memory transfer operation,
2124 such as 'load'. DATA_COUNT is the number of bytes transferred.
2125 WRITE_COUNT is the number of separate write operations, or 0, if
2126 that information is not available. TIME is how long the operation
2127 lasted. */
2128
2129 static void
2130 print_transfer_performance (struct ui_file *stream,
2131 unsigned long data_count,
2132 unsigned long write_count,
2133 std::chrono::steady_clock::duration time)
2134 {
2135 using namespace std::chrono;
2136 struct ui_out *uiout = current_uiout;
2137
2138 milliseconds ms = duration_cast<milliseconds> (time);
2139
2140 uiout->text ("Transfer rate: ");
2141 if (ms.count () > 0)
2142 {
2143 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2144
2145 if (uiout->is_mi_like_p ())
2146 {
2147 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2148 uiout->text (" bits/sec");
2149 }
2150 else if (rate < 1024)
2151 {
2152 uiout->field_fmt ("transfer-rate", "%lu", rate);
2153 uiout->text (" bytes/sec");
2154 }
2155 else
2156 {
2157 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2158 uiout->text (" KB/sec");
2159 }
2160 }
2161 else
2162 {
2163 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2164 uiout->text (" bits in <1 sec");
2165 }
2166 if (write_count > 0)
2167 {
2168 uiout->text (", ");
2169 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2170 uiout->text (" bytes/write");
2171 }
2172 uiout->text (".\n");
2173 }
2174
2175 /* This function allows the addition of incrementally linked object files.
2176 It does not modify any state in the target, only in the debugger. */
2177 /* Note: ezannoni 2000-04-13 This function/command used to have a
2178 special case syntax for the rombug target (Rombug is the boot
2179 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2180 rombug case, the user doesn't need to supply a text address,
2181 instead a call to target_link() (in target.c) would supply the
2182 value to use. We are now discontinuing this type of ad hoc syntax. */
2183
2184 static void
2185 add_symbol_file_command (const char *args, int from_tty)
2186 {
2187 struct gdbarch *gdbarch = get_current_arch ();
2188 gdb::unique_xmalloc_ptr<char> filename;
2189 char *arg;
2190 int argcnt = 0;
2191 int sec_num = 0;
2192 struct objfile *objf;
2193 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2194 symfile_add_flags add_flags = 0;
2195
2196 if (from_tty)
2197 add_flags |= SYMFILE_VERBOSE;
2198
2199 struct sect_opt
2200 {
2201 const char *name;
2202 const char *value;
2203 };
2204
2205 struct section_addr_info *section_addrs;
2206 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2207 bool stop_processing_options = false;
2208 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2209
2210 dont_repeat ();
2211
2212 if (args == NULL)
2213 error (_("add-symbol-file takes a file name and an address"));
2214
2215 bool seen_addr = false;
2216 gdb_argv argv (args);
2217
2218 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2219 {
2220 if (stop_processing_options || *arg != '-')
2221 {
2222 if (filename == NULL)
2223 {
2224 /* First non-option argument is always the filename. */
2225 filename.reset (tilde_expand (arg));
2226 }
2227 else if (!seen_addr)
2228 {
2229 /* The second non-option argument is always the text
2230 address at which to load the program. */
2231 sect_opts[0].value = arg;
2232 seen_addr = true;
2233 }
2234 else
2235 error (_("Unrecognized argument \"%s\""), arg);
2236 }
2237 else if (strcmp (arg, "-readnow") == 0)
2238 flags |= OBJF_READNOW;
2239 else if (strcmp (arg, "-s") == 0)
2240 {
2241 if (argv[argcnt + 1] == NULL)
2242 error (_("Missing section name after \"-s\""));
2243 else if (argv[argcnt + 2] == NULL)
2244 error (_("Missing section address after \"-s\""));
2245
2246 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2247
2248 sect_opts.push_back (sect);
2249 argcnt += 2;
2250 }
2251 else if (strcmp (arg, "--") == 0)
2252 stop_processing_options = true;
2253 else
2254 error (_("Unrecognized argument \"%s\""), arg);
2255 }
2256
2257 if (filename == NULL)
2258 error (_("You must provide a filename to be loaded."));
2259
2260 /* This command takes at least two arguments. The first one is a
2261 filename, and the second is the address where this file has been
2262 loaded. Abort now if this address hasn't been provided by the
2263 user. */
2264 if (!seen_addr)
2265 error (_("The address where %s has been loaded is missing"),
2266 filename.get ());
2267
2268 /* Print the prompt for the query below. And save the arguments into
2269 a sect_addr_info structure to be passed around to other
2270 functions. We have to split this up into separate print
2271 statements because hex_string returns a local static
2272 string. */
2273
2274 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2275 filename.get ());
2276 section_addrs = alloc_section_addr_info (sect_opts.size ());
2277 make_cleanup (xfree, section_addrs);
2278 for (sect_opt &sect : sect_opts)
2279 {
2280 CORE_ADDR addr;
2281 const char *val = sect.value;
2282 const char *sec = sect.name;
2283
2284 addr = parse_and_eval_address (val);
2285
2286 /* Here we store the section offsets in the order they were
2287 entered on the command line. */
2288 section_addrs->other[sec_num].name = (char *) sec;
2289 section_addrs->other[sec_num].addr = addr;
2290 printf_unfiltered ("\t%s_addr = %s\n", sec,
2291 paddress (gdbarch, addr));
2292 sec_num++;
2293
2294 /* The object's sections are initialized when a
2295 call is made to build_objfile_section_table (objfile).
2296 This happens in reread_symbols.
2297 At this point, we don't know what file type this is,
2298 so we can't determine what section names are valid. */
2299 }
2300 section_addrs->num_sections = sec_num;
2301
2302 if (from_tty && (!query ("%s", "")))
2303 error (_("Not confirmed."));
2304
2305 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2306
2307 add_target_sections_of_objfile (objf);
2308
2309 /* Getting new symbols may change our opinion about what is
2310 frameless. */
2311 reinit_frame_cache ();
2312 do_cleanups (my_cleanups);
2313 }
2314 \f
2315
2316 /* This function removes a symbol file that was added via add-symbol-file. */
2317
2318 static void
2319 remove_symbol_file_command (const char *args, int from_tty)
2320 {
2321 struct objfile *objf = NULL;
2322 struct program_space *pspace = current_program_space;
2323
2324 dont_repeat ();
2325
2326 if (args == NULL)
2327 error (_("remove-symbol-file: no symbol file provided"));
2328
2329 gdb_argv argv (args);
2330
2331 if (strcmp (argv[0], "-a") == 0)
2332 {
2333 /* Interpret the next argument as an address. */
2334 CORE_ADDR addr;
2335
2336 if (argv[1] == NULL)
2337 error (_("Missing address argument"));
2338
2339 if (argv[2] != NULL)
2340 error (_("Junk after %s"), argv[1]);
2341
2342 addr = parse_and_eval_address (argv[1]);
2343
2344 ALL_OBJFILES (objf)
2345 {
2346 if ((objf->flags & OBJF_USERLOADED) != 0
2347 && (objf->flags & OBJF_SHARED) != 0
2348 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2349 break;
2350 }
2351 }
2352 else if (argv[0] != NULL)
2353 {
2354 /* Interpret the current argument as a file name. */
2355
2356 if (argv[1] != NULL)
2357 error (_("Junk after %s"), argv[0]);
2358
2359 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2360
2361 ALL_OBJFILES (objf)
2362 {
2363 if ((objf->flags & OBJF_USERLOADED) != 0
2364 && (objf->flags & OBJF_SHARED) != 0
2365 && objf->pspace == pspace
2366 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2367 break;
2368 }
2369 }
2370
2371 if (objf == NULL)
2372 error (_("No symbol file found"));
2373
2374 if (from_tty
2375 && !query (_("Remove symbol table from file \"%s\"? "),
2376 objfile_name (objf)))
2377 error (_("Not confirmed."));
2378
2379 delete objf;
2380 clear_symtab_users (0);
2381 }
2382
2383 /* Re-read symbols if a symbol-file has changed. */
2384
2385 void
2386 reread_symbols (void)
2387 {
2388 struct objfile *objfile;
2389 long new_modtime;
2390 struct stat new_statbuf;
2391 int res;
2392 std::vector<struct objfile *> new_objfiles;
2393
2394 /* With the addition of shared libraries, this should be modified,
2395 the load time should be saved in the partial symbol tables, since
2396 different tables may come from different source files. FIXME.
2397 This routine should then walk down each partial symbol table
2398 and see if the symbol table that it originates from has been changed. */
2399
2400 for (objfile = object_files; objfile; objfile = objfile->next)
2401 {
2402 if (objfile->obfd == NULL)
2403 continue;
2404
2405 /* Separate debug objfiles are handled in the main objfile. */
2406 if (objfile->separate_debug_objfile_backlink)
2407 continue;
2408
2409 /* If this object is from an archive (what you usually create with
2410 `ar', often called a `static library' on most systems, though
2411 a `shared library' on AIX is also an archive), then you should
2412 stat on the archive name, not member name. */
2413 if (objfile->obfd->my_archive)
2414 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2415 else
2416 res = stat (objfile_name (objfile), &new_statbuf);
2417 if (res != 0)
2418 {
2419 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2420 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2421 objfile_name (objfile));
2422 continue;
2423 }
2424 new_modtime = new_statbuf.st_mtime;
2425 if (new_modtime != objfile->mtime)
2426 {
2427 struct cleanup *old_cleanups;
2428 struct section_offsets *offsets;
2429 int num_offsets;
2430 char *original_name;
2431
2432 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2433 objfile_name (objfile));
2434
2435 /* There are various functions like symbol_file_add,
2436 symfile_bfd_open, syms_from_objfile, etc., which might
2437 appear to do what we want. But they have various other
2438 effects which we *don't* want. So we just do stuff
2439 ourselves. We don't worry about mapped files (for one thing,
2440 any mapped file will be out of date). */
2441
2442 /* If we get an error, blow away this objfile (not sure if
2443 that is the correct response for things like shared
2444 libraries). */
2445 std::unique_ptr<struct objfile> objfile_holder (objfile);
2446
2447 /* We need to do this whenever any symbols go away. */
2448 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2449
2450 if (exec_bfd != NULL
2451 && filename_cmp (bfd_get_filename (objfile->obfd),
2452 bfd_get_filename (exec_bfd)) == 0)
2453 {
2454 /* Reload EXEC_BFD without asking anything. */
2455
2456 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2457 }
2458
2459 /* Keep the calls order approx. the same as in free_objfile. */
2460
2461 /* Free the separate debug objfiles. It will be
2462 automatically recreated by sym_read. */
2463 free_objfile_separate_debug (objfile);
2464
2465 /* Remove any references to this objfile in the global
2466 value lists. */
2467 preserve_values (objfile);
2468
2469 /* Nuke all the state that we will re-read. Much of the following
2470 code which sets things to NULL really is necessary to tell
2471 other parts of GDB that there is nothing currently there.
2472
2473 Try to keep the freeing order compatible with free_objfile. */
2474
2475 if (objfile->sf != NULL)
2476 {
2477 (*objfile->sf->sym_finish) (objfile);
2478 }
2479
2480 clear_objfile_data (objfile);
2481
2482 /* Clean up any state BFD has sitting around. */
2483 {
2484 gdb_bfd_ref_ptr obfd (objfile->obfd);
2485 char *obfd_filename;
2486
2487 obfd_filename = bfd_get_filename (objfile->obfd);
2488 /* Open the new BFD before freeing the old one, so that
2489 the filename remains live. */
2490 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2491 objfile->obfd = temp.release ();
2492 if (objfile->obfd == NULL)
2493 error (_("Can't open %s to read symbols."), obfd_filename);
2494 }
2495
2496 original_name = xstrdup (objfile->original_name);
2497 make_cleanup (xfree, original_name);
2498
2499 /* bfd_openr sets cacheable to true, which is what we want. */
2500 if (!bfd_check_format (objfile->obfd, bfd_object))
2501 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2502 bfd_errmsg (bfd_get_error ()));
2503
2504 /* Save the offsets, we will nuke them with the rest of the
2505 objfile_obstack. */
2506 num_offsets = objfile->num_sections;
2507 offsets = ((struct section_offsets *)
2508 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2509 memcpy (offsets, objfile->section_offsets,
2510 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2511
2512 /* FIXME: Do we have to free a whole linked list, or is this
2513 enough? */
2514 objfile->global_psymbols.clear ();
2515 objfile->static_psymbols.clear ();
2516
2517 /* Free the obstacks for non-reusable objfiles. */
2518 psymbol_bcache_free (objfile->psymbol_cache);
2519 objfile->psymbol_cache = psymbol_bcache_init ();
2520
2521 /* NB: after this call to obstack_free, objfiles_changed
2522 will need to be called (see discussion below). */
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->compunit_symtabs = NULL;
2526 objfile->psymtabs = NULL;
2527 objfile->psymtabs_addrmap = NULL;
2528 objfile->free_psymtabs = NULL;
2529 objfile->template_symbols = NULL;
2530
2531 /* obstack_init also initializes the obstack so it is
2532 empty. We could use obstack_specify_allocation but
2533 gdb_obstack.h specifies the alloc/dealloc functions. */
2534 obstack_init (&objfile->objfile_obstack);
2535
2536 /* set_objfile_per_bfd potentially allocates the per-bfd
2537 data on the objfile's obstack (if sharing data across
2538 multiple users is not possible), so it's important to
2539 do it *after* the obstack has been initialized. */
2540 set_objfile_per_bfd (objfile);
2541
2542 objfile->original_name
2543 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2544 strlen (original_name));
2545
2546 /* Reset the sym_fns pointer. The ELF reader can change it
2547 based on whether .gdb_index is present, and we need it to
2548 start over. PR symtab/15885 */
2549 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2550
2551 build_objfile_section_table (objfile);
2552 terminate_minimal_symbol_table (objfile);
2553
2554 /* We use the same section offsets as from last time. I'm not
2555 sure whether that is always correct for shared libraries. */
2556 objfile->section_offsets = (struct section_offsets *)
2557 obstack_alloc (&objfile->objfile_obstack,
2558 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2559 memcpy (objfile->section_offsets, offsets,
2560 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2561 objfile->num_sections = num_offsets;
2562
2563 /* What the hell is sym_new_init for, anyway? The concept of
2564 distinguishing between the main file and additional files
2565 in this way seems rather dubious. */
2566 if (objfile == symfile_objfile)
2567 {
2568 (*objfile->sf->sym_new_init) (objfile);
2569 }
2570
2571 (*objfile->sf->sym_init) (objfile);
2572 clear_complaints (&symfile_complaints, 1, 1);
2573
2574 objfile->flags &= ~OBJF_PSYMTABS_READ;
2575
2576 /* We are about to read new symbols and potentially also
2577 DWARF information. Some targets may want to pass addresses
2578 read from DWARF DIE's through an adjustment function before
2579 saving them, like MIPS, which may call into
2580 "find_pc_section". When called, that function will make
2581 use of per-objfile program space data.
2582
2583 Since we discarded our section information above, we have
2584 dangling pointers in the per-objfile program space data
2585 structure. Force GDB to update the section mapping
2586 information by letting it know the objfile has changed,
2587 making the dangling pointers point to correct data
2588 again. */
2589
2590 objfiles_changed ();
2591
2592 read_symbols (objfile, 0);
2593
2594 if (!objfile_has_symbols (objfile))
2595 {
2596 wrap_here ("");
2597 printf_unfiltered (_("(no debugging symbols found)\n"));
2598 wrap_here ("");
2599 }
2600
2601 /* We're done reading the symbol file; finish off complaints. */
2602 clear_complaints (&symfile_complaints, 0, 1);
2603
2604 /* Getting new symbols may change our opinion about what is
2605 frameless. */
2606
2607 reinit_frame_cache ();
2608
2609 /* Discard cleanups as symbol reading was successful. */
2610 objfile_holder.release ();
2611 discard_cleanups (old_cleanups);
2612
2613 /* If the mtime has changed between the time we set new_modtime
2614 and now, we *want* this to be out of date, so don't call stat
2615 again now. */
2616 objfile->mtime = new_modtime;
2617 init_entry_point_info (objfile);
2618
2619 new_objfiles.push_back (objfile);
2620 }
2621 }
2622
2623 if (!new_objfiles.empty ())
2624 {
2625 clear_symtab_users (0);
2626
2627 /* clear_objfile_data for each objfile was called before freeing it and
2628 observer_notify_new_objfile (NULL) has been called by
2629 clear_symtab_users above. Notify the new files now. */
2630 for (auto iter : new_objfiles)
2631 observer_notify_new_objfile (iter);
2632
2633 /* At least one objfile has changed, so we can consider that
2634 the executable we're debugging has changed too. */
2635 observer_notify_executable_changed ();
2636 }
2637 }
2638 \f
2639
2640 struct filename_language
2641 {
2642 filename_language (const std::string &ext_, enum language lang_)
2643 : ext (ext_), lang (lang_)
2644 {}
2645
2646 std::string ext;
2647 enum language lang;
2648 };
2649
2650 static std::vector<filename_language> filename_language_table;
2651
2652 /* See symfile.h. */
2653
2654 void
2655 add_filename_language (const char *ext, enum language lang)
2656 {
2657 filename_language_table.emplace_back (ext, lang);
2658 }
2659
2660 static char *ext_args;
2661 static void
2662 show_ext_args (struct ui_file *file, int from_tty,
2663 struct cmd_list_element *c, const char *value)
2664 {
2665 fprintf_filtered (file,
2666 _("Mapping between filename extension "
2667 "and source language is \"%s\".\n"),
2668 value);
2669 }
2670
2671 static void
2672 set_ext_lang_command (const char *args,
2673 int from_tty, struct cmd_list_element *e)
2674 {
2675 char *cp = ext_args;
2676 enum language lang;
2677
2678 /* First arg is filename extension, starting with '.' */
2679 if (*cp != '.')
2680 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2681
2682 /* Find end of first arg. */
2683 while (*cp && !isspace (*cp))
2684 cp++;
2685
2686 if (*cp == '\0')
2687 error (_("'%s': two arguments required -- "
2688 "filename extension and language"),
2689 ext_args);
2690
2691 /* Null-terminate first arg. */
2692 *cp++ = '\0';
2693
2694 /* Find beginning of second arg, which should be a source language. */
2695 cp = skip_spaces (cp);
2696
2697 if (*cp == '\0')
2698 error (_("'%s': two arguments required -- "
2699 "filename extension and language"),
2700 ext_args);
2701
2702 /* Lookup the language from among those we know. */
2703 lang = language_enum (cp);
2704
2705 auto it = filename_language_table.begin ();
2706 /* Now lookup the filename extension: do we already know it? */
2707 for (; it != filename_language_table.end (); it++)
2708 {
2709 if (it->ext == ext_args)
2710 break;
2711 }
2712
2713 if (it == filename_language_table.end ())
2714 {
2715 /* New file extension. */
2716 add_filename_language (ext_args, lang);
2717 }
2718 else
2719 {
2720 /* Redefining a previously known filename extension. */
2721
2722 /* if (from_tty) */
2723 /* query ("Really make files of type %s '%s'?", */
2724 /* ext_args, language_str (lang)); */
2725
2726 it->lang = lang;
2727 }
2728 }
2729
2730 static void
2731 info_ext_lang_command (const char *args, int from_tty)
2732 {
2733 printf_filtered (_("Filename extensions and the languages they represent:"));
2734 printf_filtered ("\n\n");
2735 for (const filename_language &entry : filename_language_table)
2736 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2737 language_str (entry.lang));
2738 }
2739
2740 enum language
2741 deduce_language_from_filename (const char *filename)
2742 {
2743 const char *cp;
2744
2745 if (filename != NULL)
2746 if ((cp = strrchr (filename, '.')) != NULL)
2747 {
2748 for (const filename_language &entry : filename_language_table)
2749 if (entry.ext == cp)
2750 return entry.lang;
2751 }
2752
2753 return language_unknown;
2754 }
2755 \f
2756 /* Allocate and initialize a new symbol table.
2757 CUST is from the result of allocate_compunit_symtab. */
2758
2759 struct symtab *
2760 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2761 {
2762 struct objfile *objfile = cust->objfile;
2763 struct symtab *symtab
2764 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2765
2766 symtab->filename
2767 = (const char *) bcache (filename, strlen (filename) + 1,
2768 objfile->per_bfd->filename_cache);
2769 symtab->fullname = NULL;
2770 symtab->language = deduce_language_from_filename (filename);
2771
2772 /* This can be very verbose with lots of headers.
2773 Only print at higher debug levels. */
2774 if (symtab_create_debug >= 2)
2775 {
2776 /* Be a bit clever with debugging messages, and don't print objfile
2777 every time, only when it changes. */
2778 static char *last_objfile_name = NULL;
2779
2780 if (last_objfile_name == NULL
2781 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2782 {
2783 xfree (last_objfile_name);
2784 last_objfile_name = xstrdup (objfile_name (objfile));
2785 fprintf_unfiltered (gdb_stdlog,
2786 "Creating one or more symtabs for objfile %s ...\n",
2787 last_objfile_name);
2788 }
2789 fprintf_unfiltered (gdb_stdlog,
2790 "Created symtab %s for module %s.\n",
2791 host_address_to_string (symtab), filename);
2792 }
2793
2794 /* Add it to CUST's list of symtabs. */
2795 if (cust->filetabs == NULL)
2796 {
2797 cust->filetabs = symtab;
2798 cust->last_filetab = symtab;
2799 }
2800 else
2801 {
2802 cust->last_filetab->next = symtab;
2803 cust->last_filetab = symtab;
2804 }
2805
2806 /* Backlink to the containing compunit symtab. */
2807 symtab->compunit_symtab = cust;
2808
2809 return symtab;
2810 }
2811
2812 /* Allocate and initialize a new compunit.
2813 NAME is the name of the main source file, if there is one, or some
2814 descriptive text if there are no source files. */
2815
2816 struct compunit_symtab *
2817 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2818 {
2819 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2820 struct compunit_symtab);
2821 const char *saved_name;
2822
2823 cu->objfile = objfile;
2824
2825 /* The name we record here is only for display/debugging purposes.
2826 Just save the basename to avoid path issues (too long for display,
2827 relative vs absolute, etc.). */
2828 saved_name = lbasename (name);
2829 cu->name
2830 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2831 strlen (saved_name));
2832
2833 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2834
2835 if (symtab_create_debug)
2836 {
2837 fprintf_unfiltered (gdb_stdlog,
2838 "Created compunit symtab %s for %s.\n",
2839 host_address_to_string (cu),
2840 cu->name);
2841 }
2842
2843 return cu;
2844 }
2845
2846 /* Hook CU to the objfile it comes from. */
2847
2848 void
2849 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2850 {
2851 cu->next = cu->objfile->compunit_symtabs;
2852 cu->objfile->compunit_symtabs = cu;
2853 }
2854 \f
2855
2856 /* Reset all data structures in gdb which may contain references to
2857 symbol table data. */
2858
2859 void
2860 clear_symtab_users (symfile_add_flags add_flags)
2861 {
2862 /* Someday, we should do better than this, by only blowing away
2863 the things that really need to be blown. */
2864
2865 /* Clear the "current" symtab first, because it is no longer valid.
2866 breakpoint_re_set may try to access the current symtab. */
2867 clear_current_source_symtab_and_line ();
2868
2869 clear_displays ();
2870 clear_last_displayed_sal ();
2871 clear_pc_function_cache ();
2872 observer_notify_new_objfile (NULL);
2873
2874 /* Clear globals which might have pointed into a removed objfile.
2875 FIXME: It's not clear which of these are supposed to persist
2876 between expressions and which ought to be reset each time. */
2877 expression_context_block = NULL;
2878 innermost_block = NULL;
2879
2880 /* Varobj may refer to old symbols, perform a cleanup. */
2881 varobj_invalidate ();
2882
2883 /* Now that the various caches have been cleared, we can re_set
2884 our breakpoints without risking it using stale data. */
2885 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2886 breakpoint_re_set ();
2887 }
2888
2889 static void
2890 clear_symtab_users_cleanup (void *ignore)
2891 {
2892 clear_symtab_users (0);
2893 }
2894 \f
2895 /* OVERLAYS:
2896 The following code implements an abstraction for debugging overlay sections.
2897
2898 The target model is as follows:
2899 1) The gnu linker will permit multiple sections to be mapped into the
2900 same VMA, each with its own unique LMA (or load address).
2901 2) It is assumed that some runtime mechanism exists for mapping the
2902 sections, one by one, from the load address into the VMA address.
2903 3) This code provides a mechanism for gdb to keep track of which
2904 sections should be considered to be mapped from the VMA to the LMA.
2905 This information is used for symbol lookup, and memory read/write.
2906 For instance, if a section has been mapped then its contents
2907 should be read from the VMA, otherwise from the LMA.
2908
2909 Two levels of debugger support for overlays are available. One is
2910 "manual", in which the debugger relies on the user to tell it which
2911 overlays are currently mapped. This level of support is
2912 implemented entirely in the core debugger, and the information about
2913 whether a section is mapped is kept in the objfile->obj_section table.
2914
2915 The second level of support is "automatic", and is only available if
2916 the target-specific code provides functionality to read the target's
2917 overlay mapping table, and translate its contents for the debugger
2918 (by updating the mapped state information in the obj_section tables).
2919
2920 The interface is as follows:
2921 User commands:
2922 overlay map <name> -- tell gdb to consider this section mapped
2923 overlay unmap <name> -- tell gdb to consider this section unmapped
2924 overlay list -- list the sections that GDB thinks are mapped
2925 overlay read-target -- get the target's state of what's mapped
2926 overlay off/manual/auto -- set overlay debugging state
2927 Functional interface:
2928 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2929 section, return that section.
2930 find_pc_overlay(pc): find any overlay section that contains
2931 the pc, either in its VMA or its LMA
2932 section_is_mapped(sect): true if overlay is marked as mapped
2933 section_is_overlay(sect): true if section's VMA != LMA
2934 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2935 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2936 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2937 overlay_mapped_address(...): map an address from section's LMA to VMA
2938 overlay_unmapped_address(...): map an address from section's VMA to LMA
2939 symbol_overlayed_address(...): Return a "current" address for symbol:
2940 either in VMA or LMA depending on whether
2941 the symbol's section is currently mapped. */
2942
2943 /* Overlay debugging state: */
2944
2945 enum overlay_debugging_state overlay_debugging = ovly_off;
2946 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2947
2948 /* Function: section_is_overlay (SECTION)
2949 Returns true if SECTION has VMA not equal to LMA, ie.
2950 SECTION is loaded at an address different from where it will "run". */
2951
2952 int
2953 section_is_overlay (struct obj_section *section)
2954 {
2955 if (overlay_debugging && section)
2956 {
2957 bfd *abfd = section->objfile->obfd;
2958 asection *bfd_section = section->the_bfd_section;
2959
2960 if (bfd_section_lma (abfd, bfd_section) != 0
2961 && bfd_section_lma (abfd, bfd_section)
2962 != bfd_section_vma (abfd, bfd_section))
2963 return 1;
2964 }
2965
2966 return 0;
2967 }
2968
2969 /* Function: overlay_invalidate_all (void)
2970 Invalidate the mapped state of all overlay sections (mark it as stale). */
2971
2972 static void
2973 overlay_invalidate_all (void)
2974 {
2975 struct objfile *objfile;
2976 struct obj_section *sect;
2977
2978 ALL_OBJSECTIONS (objfile, sect)
2979 if (section_is_overlay (sect))
2980 sect->ovly_mapped = -1;
2981 }
2982
2983 /* Function: section_is_mapped (SECTION)
2984 Returns true if section is an overlay, and is currently mapped.
2985
2986 Access to the ovly_mapped flag is restricted to this function, so
2987 that we can do automatic update. If the global flag
2988 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2989 overlay_invalidate_all. If the mapped state of the particular
2990 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2991
2992 int
2993 section_is_mapped (struct obj_section *osect)
2994 {
2995 struct gdbarch *gdbarch;
2996
2997 if (osect == 0 || !section_is_overlay (osect))
2998 return 0;
2999
3000 switch (overlay_debugging)
3001 {
3002 default:
3003 case ovly_off:
3004 return 0; /* overlay debugging off */
3005 case ovly_auto: /* overlay debugging automatic */
3006 /* Unles there is a gdbarch_overlay_update function,
3007 there's really nothing useful to do here (can't really go auto). */
3008 gdbarch = get_objfile_arch (osect->objfile);
3009 if (gdbarch_overlay_update_p (gdbarch))
3010 {
3011 if (overlay_cache_invalid)
3012 {
3013 overlay_invalidate_all ();
3014 overlay_cache_invalid = 0;
3015 }
3016 if (osect->ovly_mapped == -1)
3017 gdbarch_overlay_update (gdbarch, osect);
3018 }
3019 /* fall thru to manual case */
3020 case ovly_on: /* overlay debugging manual */
3021 return osect->ovly_mapped == 1;
3022 }
3023 }
3024
3025 /* Function: pc_in_unmapped_range
3026 If PC falls into the lma range of SECTION, return true, else false. */
3027
3028 CORE_ADDR
3029 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3030 {
3031 if (section_is_overlay (section))
3032 {
3033 bfd *abfd = section->objfile->obfd;
3034 asection *bfd_section = section->the_bfd_section;
3035
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_get_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3041 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066
3067 static int
3068 sections_overlap (struct obj_section *a, struct obj_section *b)
3069 {
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
3074
3075 return (a_start < b_end && b_start < a_end);
3076 }
3077
3078 /* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082 CORE_ADDR
3083 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 bfd *abfd = section->objfile->obfd;
3088 asection *bfd_section = section->the_bfd_section;
3089
3090 return pc + bfd_section_lma (abfd, bfd_section)
3091 - bfd_section_vma (abfd, bfd_section);
3092 }
3093
3094 return pc;
3095 }
3096
3097 /* Function: overlay_mapped_address (PC, SECTION)
3098 Returns the address corresponding to PC in the mapped (runtime) range.
3099 May be the same as PC. */
3100
3101 CORE_ADDR
3102 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3103 {
3104 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3105 {
3106 bfd *abfd = section->objfile->obfd;
3107 asection *bfd_section = section->the_bfd_section;
3108
3109 return pc + bfd_section_vma (abfd, bfd_section)
3110 - bfd_section_lma (abfd, bfd_section);
3111 }
3112
3113 return pc;
3114 }
3115
3116 /* Function: symbol_overlayed_address
3117 Return one of two addresses (relative to the VMA or to the LMA),
3118 depending on whether the section is mapped or not. */
3119
3120 CORE_ADDR
3121 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3122 {
3123 if (overlay_debugging)
3124 {
3125 /* If the symbol has no section, just return its regular address. */
3126 if (section == 0)
3127 return address;
3128 /* If the symbol's section is not an overlay, just return its
3129 address. */
3130 if (!section_is_overlay (section))
3131 return address;
3132 /* If the symbol's section is mapped, just return its address. */
3133 if (section_is_mapped (section))
3134 return address;
3135 /*
3136 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3137 * then return its LOADED address rather than its vma address!!
3138 */
3139 return overlay_unmapped_address (address, section);
3140 }
3141 return address;
3142 }
3143
3144 /* Function: find_pc_overlay (PC)
3145 Return the best-match overlay section for PC:
3146 If PC matches a mapped overlay section's VMA, return that section.
3147 Else if PC matches an unmapped section's VMA, return that section.
3148 Else if PC matches an unmapped section's LMA, return that section. */
3149
3150 struct obj_section *
3151 find_pc_overlay (CORE_ADDR pc)
3152 {
3153 struct objfile *objfile;
3154 struct obj_section *osect, *best_match = NULL;
3155
3156 if (overlay_debugging)
3157 {
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (section_is_overlay (osect))
3160 {
3161 if (pc_in_mapped_range (pc, osect))
3162 {
3163 if (section_is_mapped (osect))
3164 return osect;
3165 else
3166 best_match = osect;
3167 }
3168 else if (pc_in_unmapped_range (pc, osect))
3169 best_match = osect;
3170 }
3171 }
3172 return best_match;
3173 }
3174
3175 /* Function: find_pc_mapped_section (PC)
3176 If PC falls into the VMA address range of an overlay section that is
3177 currently marked as MAPPED, return that section. Else return NULL. */
3178
3179 struct obj_section *
3180 find_pc_mapped_section (CORE_ADDR pc)
3181 {
3182 struct objfile *objfile;
3183 struct obj_section *osect;
3184
3185 if (overlay_debugging)
3186 {
3187 ALL_OBJSECTIONS (objfile, osect)
3188 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3189 return osect;
3190 }
3191
3192 return NULL;
3193 }
3194
3195 /* Function: list_overlays_command
3196 Print a list of mapped sections and their PC ranges. */
3197
3198 static void
3199 list_overlays_command (const char *args, int from_tty)
3200 {
3201 int nmapped = 0;
3202 struct objfile *objfile;
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 {
3207 ALL_OBJSECTIONS (objfile, osect)
3208 if (section_is_mapped (osect))
3209 {
3210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3211 const char *name;
3212 bfd_vma lma, vma;
3213 int size;
3214
3215 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3216 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3217 size = bfd_get_section_size (osect->the_bfd_section);
3218 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3219
3220 printf_filtered ("Section %s, loaded at ", name);
3221 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3222 puts_filtered (" - ");
3223 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3224 printf_filtered (", mapped at ");
3225 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3226 puts_filtered (" - ");
3227 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3228 puts_filtered ("\n");
3229
3230 nmapped++;
3231 }
3232 }
3233 if (nmapped == 0)
3234 printf_filtered (_("No sections are mapped.\n"));
3235 }
3236
3237 /* Function: map_overlay_command
3238 Mark the named section as mapped (ie. residing at its VMA address). */
3239
3240 static void
3241 map_overlay_command (const char *args, int from_tty)
3242 {
3243 struct objfile *objfile, *objfile2;
3244 struct obj_section *sec, *sec2;
3245
3246 if (!overlay_debugging)
3247 error (_("Overlay debugging not enabled. Use "
3248 "either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
3250
3251 if (args == 0 || *args == 0)
3252 error (_("Argument required: name of an overlay section"));
3253
3254 /* First, find a section matching the user supplied argument. */
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3257 {
3258 /* Now, check to see if the section is an overlay. */
3259 if (!section_is_overlay (sec))
3260 continue; /* not an overlay section */
3261
3262 /* Mark the overlay as "mapped". */
3263 sec->ovly_mapped = 1;
3264
3265 /* Next, make a pass and unmap any sections that are
3266 overlapped by this new section: */
3267 ALL_OBJSECTIONS (objfile2, sec2)
3268 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3269 {
3270 if (info_verbose)
3271 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3272 bfd_section_name (objfile->obfd,
3273 sec2->the_bfd_section));
3274 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3275 }
3276 return;
3277 }
3278 error (_("No overlay section called %s"), args);
3279 }
3280
3281 /* Function: unmap_overlay_command
3282 Mark the overlay section as unmapped
3283 (ie. resident in its LMA address range, rather than the VMA range). */
3284
3285 static void
3286 unmap_overlay_command (const char *args, int from_tty)
3287 {
3288 struct objfile *objfile;
3289 struct obj_section *sec = NULL;
3290
3291 if (!overlay_debugging)
3292 error (_("Overlay debugging not enabled. "
3293 "Use either the 'overlay auto' or\n"
3294 "the 'overlay manual' command."));
3295
3296 if (args == 0 || *args == 0)
3297 error (_("Argument required: name of an overlay section"));
3298
3299 /* First, find a section matching the user supplied argument. */
3300 ALL_OBJSECTIONS (objfile, sec)
3301 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3302 {
3303 if (!sec->ovly_mapped)
3304 error (_("Section %s is not mapped"), args);
3305 sec->ovly_mapped = 0;
3306 return;
3307 }
3308 error (_("No overlay section called %s"), args);
3309 }
3310
3311 /* Function: overlay_auto_command
3312 A utility command to turn on overlay debugging.
3313 Possibly this should be done via a set/show command. */
3314
3315 static void
3316 overlay_auto_command (const char *args, int from_tty)
3317 {
3318 overlay_debugging = ovly_auto;
3319 enable_overlay_breakpoints ();
3320 if (info_verbose)
3321 printf_unfiltered (_("Automatic overlay debugging enabled."));
3322 }
3323
3324 /* Function: overlay_manual_command
3325 A utility command to turn on overlay debugging.
3326 Possibly this should be done via a set/show command. */
3327
3328 static void
3329 overlay_manual_command (const char *args, int from_tty)
3330 {
3331 overlay_debugging = ovly_on;
3332 disable_overlay_breakpoints ();
3333 if (info_verbose)
3334 printf_unfiltered (_("Overlay debugging enabled."));
3335 }
3336
3337 /* Function: overlay_off_command
3338 A utility command to turn on overlay debugging.
3339 Possibly this should be done via a set/show command. */
3340
3341 static void
3342 overlay_off_command (const char *args, int from_tty)
3343 {
3344 overlay_debugging = ovly_off;
3345 disable_overlay_breakpoints ();
3346 if (info_verbose)
3347 printf_unfiltered (_("Overlay debugging disabled."));
3348 }
3349
3350 static void
3351 overlay_load_command (const char *args, int from_tty)
3352 {
3353 struct gdbarch *gdbarch = get_current_arch ();
3354
3355 if (gdbarch_overlay_update_p (gdbarch))
3356 gdbarch_overlay_update (gdbarch, NULL);
3357 else
3358 error (_("This target does not know how to read its overlay state."));
3359 }
3360
3361 /* Function: overlay_command
3362 A place-holder for a mis-typed command. */
3363
3364 /* Command list chain containing all defined "overlay" subcommands. */
3365 static struct cmd_list_element *overlaylist;
3366
3367 static void
3368 overlay_command (const char *args, int from_tty)
3369 {
3370 printf_unfiltered
3371 ("\"overlay\" must be followed by the name of an overlay command.\n");
3372 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3373 }
3374
3375 /* Target Overlays for the "Simplest" overlay manager:
3376
3377 This is GDB's default target overlay layer. It works with the
3378 minimal overlay manager supplied as an example by Cygnus. The
3379 entry point is via a function pointer "gdbarch_overlay_update",
3380 so targets that use a different runtime overlay manager can
3381 substitute their own overlay_update function and take over the
3382 function pointer.
3383
3384 The overlay_update function pokes around in the target's data structures
3385 to see what overlays are mapped, and updates GDB's overlay mapping with
3386 this information.
3387
3388 In this simple implementation, the target data structures are as follows:
3389 unsigned _novlys; /# number of overlay sections #/
3390 unsigned _ovly_table[_novlys][4] = {
3391 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3392 {..., ..., ..., ...},
3393 }
3394 unsigned _novly_regions; /# number of overlay regions #/
3395 unsigned _ovly_region_table[_novly_regions][3] = {
3396 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3397 {..., ..., ...},
3398 }
3399 These functions will attempt to update GDB's mappedness state in the
3400 symbol section table, based on the target's mappedness state.
3401
3402 To do this, we keep a cached copy of the target's _ovly_table, and
3403 attempt to detect when the cached copy is invalidated. The main
3404 entry point is "simple_overlay_update(SECT), which looks up SECT in
3405 the cached table and re-reads only the entry for that section from
3406 the target (whenever possible). */
3407
3408 /* Cached, dynamically allocated copies of the target data structures: */
3409 static unsigned (*cache_ovly_table)[4] = 0;
3410 static unsigned cache_novlys = 0;
3411 static CORE_ADDR cache_ovly_table_base = 0;
3412 enum ovly_index
3413 {
3414 VMA, OSIZE, LMA, MAPPED
3415 };
3416
3417 /* Throw away the cached copy of _ovly_table. */
3418
3419 static void
3420 simple_free_overlay_table (void)
3421 {
3422 if (cache_ovly_table)
3423 xfree (cache_ovly_table);
3424 cache_novlys = 0;
3425 cache_ovly_table = NULL;
3426 cache_ovly_table_base = 0;
3427 }
3428
3429 /* Read an array of ints of size SIZE from the target into a local buffer.
3430 Convert to host order. int LEN is number of ints. */
3431
3432 static void
3433 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3434 int len, int size, enum bfd_endian byte_order)
3435 {
3436 /* FIXME (alloca): Not safe if array is very large. */
3437 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3438 int i;
3439
3440 read_memory (memaddr, buf, len * size);
3441 for (i = 0; i < len; i++)
3442 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3443 }
3444
3445 /* Find and grab a copy of the target _ovly_table
3446 (and _novlys, which is needed for the table's size). */
3447
3448 static int
3449 simple_read_overlay_table (void)
3450 {
3451 struct bound_minimal_symbol novlys_msym;
3452 struct bound_minimal_symbol ovly_table_msym;
3453 struct gdbarch *gdbarch;
3454 int word_size;
3455 enum bfd_endian byte_order;
3456
3457 simple_free_overlay_table ();
3458 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3459 if (! novlys_msym.minsym)
3460 {
3461 error (_("Error reading inferior's overlay table: "
3462 "couldn't find `_novlys' variable\n"
3463 "in inferior. Use `overlay manual' mode."));
3464 return 0;
3465 }
3466
3467 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3468 if (! ovly_table_msym.minsym)
3469 {
3470 error (_("Error reading inferior's overlay table: couldn't find "
3471 "`_ovly_table' array\n"
3472 "in inferior. Use `overlay manual' mode."));
3473 return 0;
3474 }
3475
3476 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3477 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3478 byte_order = gdbarch_byte_order (gdbarch);
3479
3480 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3481 4, byte_order);
3482 cache_ovly_table
3483 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3484 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3485 read_target_long_array (cache_ovly_table_base,
3486 (unsigned int *) cache_ovly_table,
3487 cache_novlys * 4, word_size, byte_order);
3488
3489 return 1; /* SUCCESS */
3490 }
3491
3492 /* Function: simple_overlay_update_1
3493 A helper function for simple_overlay_update. Assuming a cached copy
3494 of _ovly_table exists, look through it to find an entry whose vma,
3495 lma and size match those of OSECT. Re-read the entry and make sure
3496 it still matches OSECT (else the table may no longer be valid).
3497 Set OSECT's mapped state to match the entry. Return: 1 for
3498 success, 0 for failure. */
3499
3500 static int
3501 simple_overlay_update_1 (struct obj_section *osect)
3502 {
3503 int i;
3504 bfd *obfd = osect->objfile->obfd;
3505 asection *bsect = osect->the_bfd_section;
3506 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3507 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3509
3510 for (i = 0; i < cache_novlys; i++)
3511 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3512 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3513 {
3514 read_target_long_array (cache_ovly_table_base + i * word_size,
3515 (unsigned int *) cache_ovly_table[i],
3516 4, word_size, byte_order);
3517 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3518 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3519 {
3520 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3521 return 1;
3522 }
3523 else /* Warning! Warning! Target's ovly table has changed! */
3524 return 0;
3525 }
3526 return 0;
3527 }
3528
3529 /* Function: simple_overlay_update
3530 If OSECT is NULL, then update all sections' mapped state
3531 (after re-reading the entire target _ovly_table).
3532 If OSECT is non-NULL, then try to find a matching entry in the
3533 cached ovly_table and update only OSECT's mapped state.
3534 If a cached entry can't be found or the cache isn't valid, then
3535 re-read the entire cache, and go ahead and update all sections. */
3536
3537 void
3538 simple_overlay_update (struct obj_section *osect)
3539 {
3540 struct objfile *objfile;
3541
3542 /* Were we given an osect to look up? NULL means do all of them. */
3543 if (osect)
3544 /* Have we got a cached copy of the target's overlay table? */
3545 if (cache_ovly_table != NULL)
3546 {
3547 /* Does its cached location match what's currently in the
3548 symtab? */
3549 struct bound_minimal_symbol minsym
3550 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3551
3552 if (minsym.minsym == NULL)
3553 error (_("Error reading inferior's overlay table: couldn't "
3554 "find `_ovly_table' array\n"
3555 "in inferior. Use `overlay manual' mode."));
3556
3557 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3558 /* Then go ahead and try to look up this single section in
3559 the cache. */
3560 if (simple_overlay_update_1 (osect))
3561 /* Found it! We're done. */
3562 return;
3563 }
3564
3565 /* Cached table no good: need to read the entire table anew.
3566 Or else we want all the sections, in which case it's actually
3567 more efficient to read the whole table in one block anyway. */
3568
3569 if (! simple_read_overlay_table ())
3570 return;
3571
3572 /* Now may as well update all sections, even if only one was requested. */
3573 ALL_OBJSECTIONS (objfile, osect)
3574 if (section_is_overlay (osect))
3575 {
3576 int i;
3577 bfd *obfd = osect->objfile->obfd;
3578 asection *bsect = osect->the_bfd_section;
3579
3580 for (i = 0; i < cache_novlys; i++)
3581 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3582 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3583 { /* obj_section matches i'th entry in ovly_table. */
3584 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3585 break; /* finished with inner for loop: break out. */
3586 }
3587 }
3588 }
3589
3590 /* Set the output sections and output offsets for section SECTP in
3591 ABFD. The relocation code in BFD will read these offsets, so we
3592 need to be sure they're initialized. We map each section to itself,
3593 with no offset; this means that SECTP->vma will be honored. */
3594
3595 static void
3596 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3597 {
3598 sectp->output_section = sectp;
3599 sectp->output_offset = 0;
3600 }
3601
3602 /* Default implementation for sym_relocate. */
3603
3604 bfd_byte *
3605 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3606 bfd_byte *buf)
3607 {
3608 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3609 DWO file. */
3610 bfd *abfd = sectp->owner;
3611
3612 /* We're only interested in sections with relocation
3613 information. */
3614 if ((sectp->flags & SEC_RELOC) == 0)
3615 return NULL;
3616
3617 /* We will handle section offsets properly elsewhere, so relocate as if
3618 all sections begin at 0. */
3619 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3620
3621 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3622 }
3623
3624 /* Relocate the contents of a debug section SECTP in ABFD. The
3625 contents are stored in BUF if it is non-NULL, or returned in a
3626 malloc'd buffer otherwise.
3627
3628 For some platforms and debug info formats, shared libraries contain
3629 relocations against the debug sections (particularly for DWARF-2;
3630 one affected platform is PowerPC GNU/Linux, although it depends on
3631 the version of the linker in use). Also, ELF object files naturally
3632 have unresolved relocations for their debug sections. We need to apply
3633 the relocations in order to get the locations of symbols correct.
3634 Another example that may require relocation processing, is the
3635 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3636 debug section. */
3637
3638 bfd_byte *
3639 symfile_relocate_debug_section (struct objfile *objfile,
3640 asection *sectp, bfd_byte *buf)
3641 {
3642 gdb_assert (objfile->sf->sym_relocate);
3643
3644 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3645 }
3646
3647 struct symfile_segment_data *
3648 get_symfile_segment_data (bfd *abfd)
3649 {
3650 const struct sym_fns *sf = find_sym_fns (abfd);
3651
3652 if (sf == NULL)
3653 return NULL;
3654
3655 return sf->sym_segments (abfd);
3656 }
3657
3658 void
3659 free_symfile_segment_data (struct symfile_segment_data *data)
3660 {
3661 xfree (data->segment_bases);
3662 xfree (data->segment_sizes);
3663 xfree (data->segment_info);
3664 xfree (data);
3665 }
3666
3667 /* Given:
3668 - DATA, containing segment addresses from the object file ABFD, and
3669 the mapping from ABFD's sections onto the segments that own them,
3670 and
3671 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3672 segment addresses reported by the target,
3673 store the appropriate offsets for each section in OFFSETS.
3674
3675 If there are fewer entries in SEGMENT_BASES than there are segments
3676 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3677
3678 If there are more entries, then ignore the extra. The target may
3679 not be able to distinguish between an empty data segment and a
3680 missing data segment; a missing text segment is less plausible. */
3681
3682 int
3683 symfile_map_offsets_to_segments (bfd *abfd,
3684 const struct symfile_segment_data *data,
3685 struct section_offsets *offsets,
3686 int num_segment_bases,
3687 const CORE_ADDR *segment_bases)
3688 {
3689 int i;
3690 asection *sect;
3691
3692 /* It doesn't make sense to call this function unless you have some
3693 segment base addresses. */
3694 gdb_assert (num_segment_bases > 0);
3695
3696 /* If we do not have segment mappings for the object file, we
3697 can not relocate it by segments. */
3698 gdb_assert (data != NULL);
3699 gdb_assert (data->num_segments > 0);
3700
3701 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3702 {
3703 int which = data->segment_info[i];
3704
3705 gdb_assert (0 <= which && which <= data->num_segments);
3706
3707 /* Don't bother computing offsets for sections that aren't
3708 loaded as part of any segment. */
3709 if (! which)
3710 continue;
3711
3712 /* Use the last SEGMENT_BASES entry as the address of any extra
3713 segments mentioned in DATA->segment_info. */
3714 if (which > num_segment_bases)
3715 which = num_segment_bases;
3716
3717 offsets->offsets[i] = (segment_bases[which - 1]
3718 - data->segment_bases[which - 1]);
3719 }
3720
3721 return 1;
3722 }
3723
3724 static void
3725 symfile_find_segment_sections (struct objfile *objfile)
3726 {
3727 bfd *abfd = objfile->obfd;
3728 int i;
3729 asection *sect;
3730 struct symfile_segment_data *data;
3731
3732 data = get_symfile_segment_data (objfile->obfd);
3733 if (data == NULL)
3734 return;
3735
3736 if (data->num_segments != 1 && data->num_segments != 2)
3737 {
3738 free_symfile_segment_data (data);
3739 return;
3740 }
3741
3742 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3743 {
3744 int which = data->segment_info[i];
3745
3746 if (which == 1)
3747 {
3748 if (objfile->sect_index_text == -1)
3749 objfile->sect_index_text = sect->index;
3750
3751 if (objfile->sect_index_rodata == -1)
3752 objfile->sect_index_rodata = sect->index;
3753 }
3754 else if (which == 2)
3755 {
3756 if (objfile->sect_index_data == -1)
3757 objfile->sect_index_data = sect->index;
3758
3759 if (objfile->sect_index_bss == -1)
3760 objfile->sect_index_bss = sect->index;
3761 }
3762 }
3763
3764 free_symfile_segment_data (data);
3765 }
3766
3767 /* Listen for free_objfile events. */
3768
3769 static void
3770 symfile_free_objfile (struct objfile *objfile)
3771 {
3772 /* Remove the target sections owned by this objfile. */
3773 if (objfile != NULL)
3774 remove_target_sections ((void *) objfile);
3775 }
3776
3777 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3778 Expand all symtabs that match the specified criteria.
3779 See quick_symbol_functions.expand_symtabs_matching for details. */
3780
3781 void
3782 expand_symtabs_matching
3783 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3784 const lookup_name_info &lookup_name,
3785 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3786 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3787 enum search_domain kind)
3788 {
3789 struct objfile *objfile;
3790
3791 ALL_OBJFILES (objfile)
3792 {
3793 if (objfile->sf)
3794 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3795 lookup_name,
3796 symbol_matcher,
3797 expansion_notify, kind);
3798 }
3799 }
3800
3801 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3802 Map function FUN over every file.
3803 See quick_symbol_functions.map_symbol_filenames for details. */
3804
3805 void
3806 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3807 int need_fullname)
3808 {
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
3814 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3815 need_fullname);
3816 }
3817 }
3818
3819 #if GDB_SELF_TEST
3820
3821 namespace selftests {
3822 namespace filename_language {
3823
3824 static void test_filename_language ()
3825 {
3826 /* This test messes up the filename_language_table global. */
3827 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3828
3829 /* Test deducing an unknown extension. */
3830 language lang = deduce_language_from_filename ("myfile.blah");
3831 SELF_CHECK (lang == language_unknown);
3832
3833 /* Test deducing a known extension. */
3834 lang = deduce_language_from_filename ("myfile.c");
3835 SELF_CHECK (lang == language_c);
3836
3837 /* Test adding a new extension using the internal API. */
3838 add_filename_language (".blah", language_pascal);
3839 lang = deduce_language_from_filename ("myfile.blah");
3840 SELF_CHECK (lang == language_pascal);
3841 }
3842
3843 static void
3844 test_set_ext_lang_command ()
3845 {
3846 /* This test messes up the filename_language_table global. */
3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3848
3849 /* Confirm that the .hello extension is not known. */
3850 language lang = deduce_language_from_filename ("cake.hello");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test adding a new extension using the CLI command. */
3854 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3855 ext_args = args_holder.get ();
3856 set_ext_lang_command (NULL, 1, NULL);
3857
3858 lang = deduce_language_from_filename ("cake.hello");
3859 SELF_CHECK (lang == language_rust);
3860
3861 /* Test overriding an existing extension using the CLI command. */
3862 int size_before = filename_language_table.size ();
3863 args_holder.reset (xstrdup (".hello pascal"));
3864 ext_args = args_holder.get ();
3865 set_ext_lang_command (NULL, 1, NULL);
3866 int size_after = filename_language_table.size ();
3867
3868 lang = deduce_language_from_filename ("cake.hello");
3869 SELF_CHECK (lang == language_pascal);
3870 SELF_CHECK (size_before == size_after);
3871 }
3872
3873 } /* namespace filename_language */
3874 } /* namespace selftests */
3875
3876 #endif /* GDB_SELF_TEST */
3877
3878 void
3879 _initialize_symfile (void)
3880 {
3881 struct cmd_list_element *c;
3882
3883 observer_attach_free_objfile (symfile_free_objfile);
3884
3885 #define READNOW_HELP \
3886 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3887 immediately. This makes the command slower, but may make future operations\n\
3888 faster."
3889
3890 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3891 Load symbol table from executable file FILE.\n\
3892 Usage: symbol-file [-readnow] FILE\n\
3893 The `file' command can also load symbol tables, as well as setting the file\n\
3894 to execute.\n" READNOW_HELP), &cmdlist);
3895 set_cmd_completer (c, filename_completer);
3896
3897 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3898 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3899 Usage: add-symbol-file FILE ADDR [-readnow | -s SECT-NAME SECT-ADDR]...\n\
3900 ADDR is the starting address of the file's text.\n\
3901 Each '-s' argument provides a section name and address, and\n\
3902 should be specified if the data and bss segments are not contiguous\n\
3903 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3904 READNOW_HELP),
3905 &cmdlist);
3906 set_cmd_completer (c, filename_completer);
3907
3908 c = add_cmd ("remove-symbol-file", class_files,
3909 remove_symbol_file_command, _("\
3910 Remove a symbol file added via the add-symbol-file command.\n\
3911 Usage: remove-symbol-file FILENAME\n\
3912 remove-symbol-file -a ADDRESS\n\
3913 The file to remove can be identified by its filename or by an address\n\
3914 that lies within the boundaries of this symbol file in memory."),
3915 &cmdlist);
3916
3917 c = add_cmd ("load", class_files, load_command, _("\
3918 Dynamically load FILE into the running program, and record its symbols\n\
3919 for access from GDB.\n\
3920 Usage: load [FILE] [OFFSET]\n\
3921 An optional load OFFSET may also be given as a literal address.\n\
3922 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3923 on its own."), &cmdlist);
3924 set_cmd_completer (c, filename_completer);
3925
3926 add_prefix_cmd ("overlay", class_support, overlay_command,
3927 _("Commands for debugging overlays."), &overlaylist,
3928 "overlay ", 0, &cmdlist);
3929
3930 add_com_alias ("ovly", "overlay", class_alias, 1);
3931 add_com_alias ("ov", "overlay", class_alias, 1);
3932
3933 add_cmd ("map-overlay", class_support, map_overlay_command,
3934 _("Assert that an overlay section is mapped."), &overlaylist);
3935
3936 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3937 _("Assert that an overlay section is unmapped."), &overlaylist);
3938
3939 add_cmd ("list-overlays", class_support, list_overlays_command,
3940 _("List mappings of overlay sections."), &overlaylist);
3941
3942 add_cmd ("manual", class_support, overlay_manual_command,
3943 _("Enable overlay debugging."), &overlaylist);
3944 add_cmd ("off", class_support, overlay_off_command,
3945 _("Disable overlay debugging."), &overlaylist);
3946 add_cmd ("auto", class_support, overlay_auto_command,
3947 _("Enable automatic overlay debugging."), &overlaylist);
3948 add_cmd ("load-target", class_support, overlay_load_command,
3949 _("Read the overlay mapping state from the target."), &overlaylist);
3950
3951 /* Filename extension to source language lookup table: */
3952 add_setshow_string_noescape_cmd ("extension-language", class_files,
3953 &ext_args, _("\
3954 Set mapping between filename extension and source language."), _("\
3955 Show mapping between filename extension and source language."), _("\
3956 Usage: set extension-language .foo bar"),
3957 set_ext_lang_command,
3958 show_ext_args,
3959 &setlist, &showlist);
3960
3961 add_info ("extensions", info_ext_lang_command,
3962 _("All filename extensions associated with a source language."));
3963
3964 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3965 &debug_file_directory, _("\
3966 Set the directories where separate debug symbols are searched for."), _("\
3967 Show the directories where separate debug symbols are searched for."), _("\
3968 Separate debug symbols are first searched for in the same\n\
3969 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3970 and lastly at the path of the directory of the binary with\n\
3971 each global debug-file-directory component prepended."),
3972 NULL,
3973 show_debug_file_directory,
3974 &setlist, &showlist);
3975
3976 add_setshow_enum_cmd ("symbol-loading", no_class,
3977 print_symbol_loading_enums, &print_symbol_loading,
3978 _("\
3979 Set printing of symbol loading messages."), _("\
3980 Show printing of symbol loading messages."), _("\
3981 off == turn all messages off\n\
3982 brief == print messages for the executable,\n\
3983 and brief messages for shared libraries\n\
3984 full == print messages for the executable,\n\
3985 and messages for each shared library."),
3986 NULL,
3987 NULL,
3988 &setprintlist, &showprintlist);
3989
3990 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3991 &separate_debug_file_debug, _("\
3992 Set printing of separate debug info file search debug."), _("\
3993 Show printing of separate debug info file search debug."), _("\
3994 When on, GDB prints the searched locations while looking for separate debug \
3995 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3996
3997 #if GDB_SELF_TEST
3998 selftests::register_test
3999 ("filename_language", selftests::filename_language::test_filename_language);
4000 selftests::register_test
4001 ("set_ext_lang_command",
4002 selftests::filename_language::test_set_ext_lang_command);
4003 #endif
4004 }
This page took 0.115011 seconds and 3 git commands to generate.