Class-ify ui_out
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void info_ext_lang_command (char *args, int from_tty);
118
119 static void symfile_find_segment_sections (struct objfile *objfile);
120
121 void _initialize_symfile (void);
122
123 /* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
125 prepared to read. */
126
127 typedef struct
128 {
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134 } registered_sym_fns;
135
136 DEF_VEC_O (registered_sym_fns);
137
138 static VEC (registered_sym_fns) *symtab_fns = NULL;
139
140 /* Values for "set print symbol-loading". */
141
142 const char print_symbol_loading_off[] = "off";
143 const char print_symbol_loading_brief[] = "brief";
144 const char print_symbol_loading_full[] = "full";
145 static const char *print_symbol_loading_enums[] =
146 {
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151 };
152 static const char *print_symbol_loading = print_symbol_loading_full;
153
154 /* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
161 library symbols are not loaded, commands like "info fun" will *not*
162 report all the functions that are actually present. */
163
164 int auto_solib_add = 1;
165 \f
166
167 /* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175 int
176 print_symbol_loading_p (int from_tty, int exec, int full)
177 {
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190 }
191
192 /* True if we are reading a symbol table. */
193
194 int currently_reading_symtab = 0;
195
196 static void
197 decrement_reading_symtab (void *dummy)
198 {
199 currently_reading_symtab--;
200 gdb_assert (currently_reading_symtab >= 0);
201 }
202
203 /* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
205
206 struct cleanup *
207 increment_reading_symtab (void)
208 {
209 ++currently_reading_symtab;
210 gdb_assert (currently_reading_symtab > 0);
211 return make_cleanup (decrement_reading_symtab, NULL);
212 }
213
214 /* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223 void
224 find_lowest_section (bfd *abfd, asection *sect, void *obj)
225 {
226 asection **lowest = (asection **) obj;
227
228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238 }
239
240 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
243
244 struct section_addr_info *
245 alloc_section_addr_info (size_t num_sections)
246 {
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
254
255 return sap;
256 }
257
258 /* Build (allocate and populate) a section_addr_info struct from
259 an existing section table. */
260
261 extern struct section_addr_info *
262 build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
264 {
265 struct section_addr_info *sap;
266 const struct target_section *stp;
267 int oidx;
268
269 sap = alloc_section_addr_info (end - start);
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
277 && oidx < end - start)
278 {
279 sap->other[oidx].addr = stp->addr;
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
282 oidx++;
283 }
284 }
285
286 sap->num_sections = oidx;
287
288 return sap;
289 }
290
291 /* Create a section_addr_info from section offsets in ABFD. */
292
293 static struct section_addr_info *
294 build_section_addr_info_from_bfd (bfd *abfd)
295 {
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
303 {
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
307 i++;
308 }
309
310 sap->num_sections = i;
311
312 return sap;
313 }
314
315 /* Create a section_addr_info from section offsets in OBJFILE. */
316
317 struct section_addr_info *
318 build_section_addr_info_from_objfile (const struct objfile *objfile)
319 {
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
327 for (i = 0; i < sap->num_sections; i++)
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334 }
335
336 /* Free all memory allocated by build_section_addr_info_from_section_table. */
337
338 extern void
339 free_section_addr_info (struct section_addr_info *sap)
340 {
341 int idx;
342
343 for (idx = 0; idx < sap->num_sections; idx++)
344 xfree (sap->other[idx].name);
345 xfree (sap);
346 }
347
348 /* Initialize OBJFILE's sect_index_* members. */
349
350 static void
351 init_objfile_sect_indices (struct objfile *objfile)
352 {
353 asection *sect;
354 int i;
355
356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
357 if (sect)
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
361 if (sect)
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
365 if (sect)
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
369 if (sect)
370 objfile->sect_index_rodata = sect->index;
371
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
407 }
408
409 /* The arguments to place_section. */
410
411 struct place_section_arg
412 {
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415 };
416
417 /* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
420 static void
421 place_section (bfd *abfd, asection *sect, void *obj)
422 {
423 struct place_section_arg *arg = (struct place_section_arg *) obj;
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
427
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
430 return;
431
432 /* If the user specified an offset, honor it. */
433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
437 start_addr = (arg->lowest + align - 1) & -align;
438
439 do {
440 asection *cur_sec;
441
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
469 break;
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
478 arg->lowest = start_addr + bfd_get_section_size (sect);
479 }
480
481 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
484
485 void
486 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
488 const struct section_addr_info *addrs)
489 {
490 int i;
491
492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
493
494 /* Now calculate offsets for section that were specified by the caller. */
495 for (i = 0; i < addrs->num_sections; i++)
496 {
497 const struct other_sections *osp;
498
499 osp = &addrs->other[i];
500 if (osp->sectindex == -1)
501 continue;
502
503 /* Record all sections in offsets. */
504 /* The section_offsets in the objfile are here filled in using
505 the BFD index. */
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508 }
509
510 /* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516 static const char *
517 addr_section_name (const char *s)
518 {
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525 }
526
527 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530 static int
531 addrs_section_compar (const void *ap, const void *bp)
532 {
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
535 int retval;
536
537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
538 if (retval)
539 return retval;
540
541 return a->sectindex - b->sectindex;
542 }
543
544 /* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547 static struct other_sections **
548 addrs_section_sort (struct section_addr_info *addrs)
549 {
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
555 for (i = 0; i < addrs->num_sections; i++)
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562 }
563
564 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
567
568 void
569 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570 {
571 asection *lower_sect;
572 CORE_ADDR lower_offset;
573 int i;
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
578
579 /* Find lowest loadable section to be used as starting point for
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
588 }
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
612
613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
619
620 while (*abfd_addrs_sorted
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
653 for (i = 0; i < addrs->num_sections; i++)
654 {
655 struct other_sections *sect = addrs_to_abfd_addrs[i];
656
657 if (sect)
658 {
659 /* This is the index used by BFD. */
660 addrs->other[i].sectindex = sect->sectindex;
661
662 if (addrs->other[i].addr != 0)
663 {
664 addrs->other[i].addr -= sect->addr;
665 lower_offset = addrs->other[i].addr;
666 }
667 else
668 addrs->other[i].addr = lower_offset;
669 }
670 else
671 {
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
690 || strcmp (sect_name, ".gnu.conflict") == 0
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
702 addrs->other[i].addr = 0;
703 addrs->other[i].sectindex = -1;
704 }
705 }
706
707 do_cleanups (my_cleanup);
708 }
709
710 /* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716 void
717 default_symfile_offsets (struct objfile *objfile,
718 const struct section_addr_info *addrs)
719 {
720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
726
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
789 offsets[cur_sec->index]);
790 offsets[cur_sec->index] = 0;
791 }
792 }
793 }
794
795 /* Remember the bfd indexes for the .text, .data, .bss and
796 .rodata sections. */
797 init_objfile_sect_indices (objfile);
798 }
799
800 /* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806 struct symfile_segment_data *
807 default_symfile_segments (bfd *abfd)
808 {
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
834 data = XCNEW (struct symfile_segment_data);
835 data->num_segments = 1;
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
838
839 num_sections = bfd_count_sections (abfd);
840 data->segment_info = XCNEWVEC (int, num_sections);
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862 }
863
864 /* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867 static void
868 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
869 {
870 (*objfile->sf->sym_read) (objfile, add_flags);
871 objfile->per_bfd->minsyms_read = 1;
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
878 {
879 bfd *abfd = find_separate_debug_file_in_section (objfile);
880 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
881
882 if (abfd != NULL)
883 {
884 /* find_separate_debug_file_in_section uses the same filename for the
885 virtual section-as-bfd like the bfd filename containing the
886 section. Therefore use also non-canonical name form for the same
887 file containing the section. */
888 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
889 objfile);
890 }
891
892 do_cleanups (cleanup);
893 }
894 if ((add_flags & SYMFILE_NO_READ) == 0)
895 require_partial_symbols (objfile, 0);
896 }
897
898 /* Initialize entry point information for this objfile. */
899
900 static void
901 init_entry_point_info (struct objfile *objfile)
902 {
903 struct entry_info *ei = &objfile->per_bfd->ei;
904
905 if (ei->initialized)
906 return;
907 ei->initialized = 1;
908
909 /* Save startup file's range of PC addresses to help blockframe.c
910 decide where the bottom of the stack is. */
911
912 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
913 {
914 /* Executable file -- record its entry point so we'll recognize
915 the startup file because it contains the entry point. */
916 ei->entry_point = bfd_get_start_address (objfile->obfd);
917 ei->entry_point_p = 1;
918 }
919 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
920 && bfd_get_start_address (objfile->obfd) != 0)
921 {
922 /* Some shared libraries may have entry points set and be
923 runnable. There's no clear way to indicate this, so just check
924 for values other than zero. */
925 ei->entry_point = bfd_get_start_address (objfile->obfd);
926 ei->entry_point_p = 1;
927 }
928 else
929 {
930 /* Examination of non-executable.o files. Short-circuit this stuff. */
931 ei->entry_point_p = 0;
932 }
933
934 if (ei->entry_point_p)
935 {
936 struct obj_section *osect;
937 CORE_ADDR entry_point = ei->entry_point;
938 int found;
939
940 /* Make certain that the address points at real code, and not a
941 function descriptor. */
942 entry_point
943 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
944 entry_point,
945 &current_target);
946
947 /* Remove any ISA markers, so that this matches entries in the
948 symbol table. */
949 ei->entry_point
950 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
951
952 found = 0;
953 ALL_OBJFILE_OSECTIONS (objfile, osect)
954 {
955 struct bfd_section *sect = osect->the_bfd_section;
956
957 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
958 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
959 + bfd_get_section_size (sect)))
960 {
961 ei->the_bfd_section_index
962 = gdb_bfd_section_index (objfile->obfd, sect);
963 found = 1;
964 break;
965 }
966 }
967
968 if (!found)
969 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
970 }
971 }
972
973 /* Process a symbol file, as either the main file or as a dynamically
974 loaded file.
975
976 This function does not set the OBJFILE's entry-point info.
977
978 OBJFILE is where the symbols are to be read from.
979
980 ADDRS is the list of section load addresses. If the user has given
981 an 'add-symbol-file' command, then this is the list of offsets and
982 addresses he or she provided as arguments to the command; or, if
983 we're handling a shared library, these are the actual addresses the
984 sections are loaded at, according to the inferior's dynamic linker
985 (as gleaned by GDB's shared library code). We convert each address
986 into an offset from the section VMA's as it appears in the object
987 file, and then call the file's sym_offsets function to convert this
988 into a format-specific offset table --- a `struct section_offsets'.
989
990 ADD_FLAGS encodes verbosity level, whether this is main symbol or
991 an extra symbol file such as dynamically loaded code, and wether
992 breakpoint reset should be deferred. */
993
994 static void
995 syms_from_objfile_1 (struct objfile *objfile,
996 struct section_addr_info *addrs,
997 symfile_add_flags add_flags)
998 {
999 struct section_addr_info *local_addr = NULL;
1000 struct cleanup *old_chain;
1001 const int mainline = add_flags & SYMFILE_MAINLINE;
1002
1003 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1004
1005 if (objfile->sf == NULL)
1006 {
1007 /* No symbols to load, but we still need to make sure
1008 that the section_offsets table is allocated. */
1009 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1010 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1011
1012 objfile->num_sections = num_sections;
1013 objfile->section_offsets
1014 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1015 size);
1016 memset (objfile->section_offsets, 0, size);
1017 return;
1018 }
1019
1020 /* Make sure that partially constructed symbol tables will be cleaned up
1021 if an error occurs during symbol reading. */
1022 old_chain = make_cleanup_free_objfile (objfile);
1023
1024 /* If ADDRS is NULL, put together a dummy address list.
1025 We now establish the convention that an addr of zero means
1026 no load address was specified. */
1027 if (! addrs)
1028 {
1029 local_addr = alloc_section_addr_info (1);
1030 make_cleanup (xfree, local_addr);
1031 addrs = local_addr;
1032 }
1033
1034 if (mainline)
1035 {
1036 /* We will modify the main symbol table, make sure that all its users
1037 will be cleaned up if an error occurs during symbol reading. */
1038 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1039
1040 /* Since no error yet, throw away the old symbol table. */
1041
1042 if (symfile_objfile != NULL)
1043 {
1044 free_objfile (symfile_objfile);
1045 gdb_assert (symfile_objfile == NULL);
1046 }
1047
1048 /* Currently we keep symbols from the add-symbol-file command.
1049 If the user wants to get rid of them, they should do "symbol-file"
1050 without arguments first. Not sure this is the best behavior
1051 (PR 2207). */
1052
1053 (*objfile->sf->sym_new_init) (objfile);
1054 }
1055
1056 /* Convert addr into an offset rather than an absolute address.
1057 We find the lowest address of a loaded segment in the objfile,
1058 and assume that <addr> is where that got loaded.
1059
1060 We no longer warn if the lowest section is not a text segment (as
1061 happens for the PA64 port. */
1062 if (addrs->num_sections > 0)
1063 addr_info_make_relative (addrs, objfile->obfd);
1064
1065 /* Initialize symbol reading routines for this objfile, allow complaints to
1066 appear for this new file, and record how verbose to be, then do the
1067 initial symbol reading for this file. */
1068
1069 (*objfile->sf->sym_init) (objfile);
1070 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1071
1072 (*objfile->sf->sym_offsets) (objfile, addrs);
1073
1074 read_symbols (objfile, add_flags);
1075
1076 /* Discard cleanups as symbol reading was successful. */
1077
1078 discard_cleanups (old_chain);
1079 xfree (local_addr);
1080 }
1081
1082 /* Same as syms_from_objfile_1, but also initializes the objfile
1083 entry-point info. */
1084
1085 static void
1086 syms_from_objfile (struct objfile *objfile,
1087 struct section_addr_info *addrs,
1088 symfile_add_flags add_flags)
1089 {
1090 syms_from_objfile_1 (objfile, addrs, add_flags);
1091 init_entry_point_info (objfile);
1092 }
1093
1094 /* Perform required actions after either reading in the initial
1095 symbols for a new objfile, or mapping in the symbols from a reusable
1096 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1097
1098 static void
1099 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1100 {
1101 /* If this is the main symbol file we have to clean up all users of the
1102 old main symbol file. Otherwise it is sufficient to fixup all the
1103 breakpoints that may have been redefined by this symbol file. */
1104 if (add_flags & SYMFILE_MAINLINE)
1105 {
1106 /* OK, make it the "real" symbol file. */
1107 symfile_objfile = objfile;
1108
1109 clear_symtab_users (add_flags);
1110 }
1111 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1112 {
1113 breakpoint_re_set ();
1114 }
1115
1116 /* We're done reading the symbol file; finish off complaints. */
1117 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1118 }
1119
1120 /* Process a symbol file, as either the main file or as a dynamically
1121 loaded file.
1122
1123 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1124 A new reference is acquired by this function.
1125
1126 For NAME description see allocate_objfile's definition.
1127
1128 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1129 extra, such as dynamically loaded code, and what to do with breakpoins.
1130
1131 ADDRS is as described for syms_from_objfile_1, above.
1132 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1133
1134 PARENT is the original objfile if ABFD is a separate debug info file.
1135 Otherwise PARENT is NULL.
1136
1137 Upon success, returns a pointer to the objfile that was added.
1138 Upon failure, jumps back to command level (never returns). */
1139
1140 static struct objfile *
1141 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1142 symfile_add_flags add_flags,
1143 struct section_addr_info *addrs,
1144 objfile_flags flags, struct objfile *parent)
1145 {
1146 struct objfile *objfile;
1147 const int from_tty = add_flags & SYMFILE_VERBOSE;
1148 const int mainline = add_flags & SYMFILE_MAINLINE;
1149 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1150 && (readnow_symbol_files
1151 || (add_flags & SYMFILE_NO_READ) == 0));
1152
1153 if (readnow_symbol_files)
1154 {
1155 flags |= OBJF_READNOW;
1156 add_flags &= ~SYMFILE_NO_READ;
1157 }
1158
1159 /* Give user a chance to burp if we'd be
1160 interactively wiping out any existing symbols. */
1161
1162 if ((have_full_symbols () || have_partial_symbols ())
1163 && mainline
1164 && from_tty
1165 && !query (_("Load new symbol table from \"%s\"? "), name))
1166 error (_("Not confirmed."));
1167
1168 if (mainline)
1169 flags |= OBJF_MAINLINE;
1170 objfile = allocate_objfile (abfd, name, flags);
1171
1172 if (parent)
1173 add_separate_debug_objfile (objfile, parent);
1174
1175 /* We either created a new mapped symbol table, mapped an existing
1176 symbol table file which has not had initial symbol reading
1177 performed, or need to read an unmapped symbol table. */
1178 if (should_print)
1179 {
1180 if (deprecated_pre_add_symbol_hook)
1181 deprecated_pre_add_symbol_hook (name);
1182 else
1183 {
1184 printf_unfiltered (_("Reading symbols from %s..."), name);
1185 wrap_here ("");
1186 gdb_flush (gdb_stdout);
1187 }
1188 }
1189 syms_from_objfile (objfile, addrs, add_flags);
1190
1191 /* We now have at least a partial symbol table. Check to see if the
1192 user requested that all symbols be read on initial access via either
1193 the gdb startup command line or on a per symbol file basis. Expand
1194 all partial symbol tables for this objfile if so. */
1195
1196 if ((flags & OBJF_READNOW))
1197 {
1198 if (should_print)
1199 {
1200 printf_unfiltered (_("expanding to full symbols..."));
1201 wrap_here ("");
1202 gdb_flush (gdb_stdout);
1203 }
1204
1205 if (objfile->sf)
1206 objfile->sf->qf->expand_all_symtabs (objfile);
1207 }
1208
1209 if (should_print && !objfile_has_symbols (objfile))
1210 {
1211 wrap_here ("");
1212 printf_unfiltered (_("(no debugging symbols found)..."));
1213 wrap_here ("");
1214 }
1215
1216 if (should_print)
1217 {
1218 if (deprecated_post_add_symbol_hook)
1219 deprecated_post_add_symbol_hook ();
1220 else
1221 printf_unfiltered (_("done.\n"));
1222 }
1223
1224 /* We print some messages regardless of whether 'from_tty ||
1225 info_verbose' is true, so make sure they go out at the right
1226 time. */
1227 gdb_flush (gdb_stdout);
1228
1229 if (objfile->sf == NULL)
1230 {
1231 observer_notify_new_objfile (objfile);
1232 return objfile; /* No symbols. */
1233 }
1234
1235 finish_new_objfile (objfile, add_flags);
1236
1237 observer_notify_new_objfile (objfile);
1238
1239 bfd_cache_close_all ();
1240 return (objfile);
1241 }
1242
1243 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1244 see allocate_objfile's definition. */
1245
1246 void
1247 symbol_file_add_separate (bfd *bfd, const char *name,
1248 symfile_add_flags symfile_flags,
1249 struct objfile *objfile)
1250 {
1251 struct section_addr_info *sap;
1252 struct cleanup *my_cleanup;
1253
1254 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1255 because sections of BFD may not match sections of OBJFILE and because
1256 vma may have been modified by tools such as prelink. */
1257 sap = build_section_addr_info_from_objfile (objfile);
1258 my_cleanup = make_cleanup_free_section_addr_info (sap);
1259
1260 symbol_file_add_with_addrs
1261 (bfd, name, symfile_flags, sap,
1262 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1263 | OBJF_USERLOADED),
1264 objfile);
1265
1266 do_cleanups (my_cleanup);
1267 }
1268
1269 /* Process the symbol file ABFD, as either the main file or as a
1270 dynamically loaded file.
1271 See symbol_file_add_with_addrs's comments for details. */
1272
1273 struct objfile *
1274 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1275 symfile_add_flags add_flags,
1276 struct section_addr_info *addrs,
1277 objfile_flags flags, struct objfile *parent)
1278 {
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
1281 }
1282
1283 /* Process a symbol file, as either the main file or as a dynamically
1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
1285
1286 struct objfile *
1287 symbol_file_add (const char *name, symfile_add_flags add_flags,
1288 struct section_addr_info *addrs, objfile_flags flags)
1289 {
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1295 do_cleanups (cleanup);
1296 return objf;
1297 }
1298
1299 /* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
1306
1307 void
1308 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1309 {
1310 symbol_file_add_main_1 (args, add_flags, 0);
1311 }
1312
1313 static void
1314 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1315 objfile_flags flags)
1316 {
1317 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1318
1319 symbol_file_add (args, add_flags, NULL, flags);
1320
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
1325 if ((add_flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1327 }
1328
1329 void
1330 symbol_file_clear (int from_tty)
1331 {
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
1336 objfile_name (symfile_objfile))
1337 : !query (_("Discard symbol table? "))))
1338 error (_("Not confirmed."));
1339
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
1342 no_shared_libraries (NULL, from_tty);
1343
1344 free_all_objfiles ();
1345
1346 gdb_assert (symfile_objfile == NULL);
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1349 }
1350
1351 static int
1352 separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1354 {
1355 unsigned long file_crc;
1356 int file_crc_p;
1357 bfd *abfd;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1366
1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1368 return 0;
1369
1370 abfd = gdb_bfd_open (name, gnutarget, -1);
1371
1372 if (!abfd)
1373 return 0;
1374
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389 {
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 gdb_bfd_unref (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
1397 }
1398 else
1399 verified_as_different = 0;
1400
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402
1403 gdb_bfd_unref (abfd);
1404
1405 if (!file_crc_p)
1406 return 0;
1407
1408 if (crc != file_crc)
1409 {
1410 unsigned long parent_crc;
1411
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
1415
1416 if (!verified_as_different)
1417 {
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 return 0;
1420 }
1421
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1426
1427 return 0;
1428 }
1429
1430 return 1;
1431 }
1432
1433 char *debug_file_directory = NULL;
1434 static void
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437 {
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1441 value);
1442 }
1443
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1446 #endif
1447
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1454
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460 {
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 return debugfile;
1487
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* Then try in the global debugfile directories.
1498
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1501
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1504
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
1535 }
1536 }
1537
1538 do_cleanups (back_to);
1539 xfree (debugfile);
1540 return NULL;
1541 }
1542
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547 static void
1548 terminate_after_last_dir_separator (char *path)
1549 {
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560 }
1561
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565 char *
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567 {
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 }
1622
1623 do_cleanups (cleanups);
1624 return debugfile;
1625 }
1626
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1640
1641 void
1642 symbol_file_command (char *args, int from_tty)
1643 {
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1648 symbol_file_clear (from_tty);
1649 }
1650 else
1651 {
1652 char **argv = gdb_buildargv (args);
1653 objfile_flags flags = OBJF_USERLOADED;
1654 symfile_add_flags add_flags = 0;
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
1658 if (from_tty)
1659 add_flags |= SYMFILE_VERBOSE;
1660
1661 cleanups = make_cleanup_freeargv (argv);
1662 while (*argv != NULL)
1663 {
1664 if (strcmp (*argv, "-readnow") == 0)
1665 flags |= OBJF_READNOW;
1666 else if (**argv == '-')
1667 error (_("unknown option `%s'"), *argv);
1668 else
1669 {
1670 symbol_file_add_main_1 (*argv, add_flags, flags);
1671 name = *argv;
1672 }
1673
1674 argv++;
1675 }
1676
1677 if (name == NULL)
1678 error (_("no symbol file name was specified"));
1679
1680 do_cleanups (cleanups);
1681 }
1682 }
1683
1684 /* Set the initial language.
1685
1686 FIXME: A better solution would be to record the language in the
1687 psymtab when reading partial symbols, and then use it (if known) to
1688 set the language. This would be a win for formats that encode the
1689 language in an easily discoverable place, such as DWARF. For
1690 stabs, we can jump through hoops looking for specially named
1691 symbols or try to intuit the language from the specific type of
1692 stabs we find, but we can't do that until later when we read in
1693 full symbols. */
1694
1695 void
1696 set_initial_language (void)
1697 {
1698 enum language lang = main_language ();
1699
1700 if (lang == language_unknown)
1701 {
1702 char *name = main_name ();
1703 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1704
1705 if (sym != NULL)
1706 lang = SYMBOL_LANGUAGE (sym);
1707 }
1708
1709 if (lang == language_unknown)
1710 {
1711 /* Make C the default language */
1712 lang = language_c;
1713 }
1714
1715 set_language (lang);
1716 expected_language = current_language; /* Don't warn the user. */
1717 }
1718
1719 /* Open the file specified by NAME and hand it off to BFD for
1720 preliminary analysis. Return a newly initialized bfd *, which
1721 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1722 absolute). In case of trouble, error() is called. */
1723
1724 bfd *
1725 symfile_bfd_open (const char *name)
1726 {
1727 bfd *sym_bfd;
1728 int desc = -1;
1729 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1730
1731 if (!is_target_filename (name))
1732 {
1733 char *expanded_name, *absolute_name;
1734
1735 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1736
1737 /* Look down path for it, allocate 2nd new malloc'd copy. */
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1741 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1742 if (desc < 0)
1743 {
1744 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1745
1746 strcat (strcpy (exename, expanded_name), ".exe");
1747 desc = openp (getenv ("PATH"),
1748 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1749 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 }
1751 #endif
1752 if (desc < 0)
1753 {
1754 make_cleanup (xfree, expanded_name);
1755 perror_with_name (expanded_name);
1756 }
1757
1758 xfree (expanded_name);
1759 make_cleanup (xfree, absolute_name);
1760 name = absolute_name;
1761 }
1762
1763 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1764 if (!sym_bfd)
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
1767
1768 if (!gdb_bfd_has_target_filename (sym_bfd))
1769 bfd_set_cacheable (sym_bfd, 1);
1770
1771 if (!bfd_check_format (sym_bfd, bfd_object))
1772 {
1773 make_cleanup_bfd_unref (sym_bfd);
1774 error (_("`%s': can't read symbols: %s."), name,
1775 bfd_errmsg (bfd_get_error ()));
1776 }
1777
1778 do_cleanups (back_to);
1779
1780 return sym_bfd;
1781 }
1782
1783 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1784 the section was not found. */
1785
1786 int
1787 get_section_index (struct objfile *objfile, char *section_name)
1788 {
1789 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1790
1791 if (sect)
1792 return sect->index;
1793 else
1794 return -1;
1795 }
1796
1797 /* Link SF into the global symtab_fns list.
1798 FLAVOUR is the file format that SF handles.
1799 Called on startup by the _initialize routine in each object file format
1800 reader, to register information about each format the reader is prepared
1801 to handle. */
1802
1803 void
1804 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1805 {
1806 registered_sym_fns fns = { flavour, sf };
1807
1808 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1809 }
1810
1811 /* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
1815
1816 static const struct sym_fns *
1817 find_sym_fns (bfd *abfd)
1818 {
1819 registered_sym_fns *rsf;
1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1821 int i;
1822
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
1826 return NULL; /* No symbols. */
1827
1828 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1829 if (our_flavour == rsf->sym_flavour)
1830 return rsf->sym_fns;
1831
1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1833 bfd_get_target (abfd));
1834 }
1835 \f
1836
1837 /* This function runs the load command of our current target. */
1838
1839 static void
1840 load_command (char *arg, int from_tty)
1841 {
1842 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1843
1844 dont_repeat ();
1845
1846 /* The user might be reloading because the binary has changed. Take
1847 this opportunity to check. */
1848 reopen_exec_file ();
1849 reread_symbols ();
1850
1851 if (arg == NULL)
1852 {
1853 char *parg;
1854 int count = 0;
1855
1856 parg = arg = get_exec_file (1);
1857
1858 /* Count how many \ " ' tab space there are in the name. */
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 parg++;
1862 count++;
1863 }
1864
1865 if (count)
1866 {
1867 /* We need to quote this string so buildargv can pull it apart. */
1868 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1869 char *ptemp = temp;
1870 char *prev;
1871
1872 make_cleanup (xfree, temp);
1873
1874 prev = parg = arg;
1875 while ((parg = strpbrk (parg, "\\\"'\t ")))
1876 {
1877 strncpy (ptemp, prev, parg - prev);
1878 ptemp += parg - prev;
1879 prev = parg++;
1880 *ptemp++ = '\\';
1881 }
1882 strcpy (ptemp, prev);
1883
1884 arg = temp;
1885 }
1886 }
1887
1888 target_load (arg, from_tty);
1889
1890 /* After re-loading the executable, we don't really know which
1891 overlays are mapped any more. */
1892 overlay_cache_invalid = 1;
1893
1894 do_cleanups (cleanup);
1895 }
1896
1897 /* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
1905
1906 static int validate_download = 0;
1907
1908 /* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910 static void
1911 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912 {
1913 bfd_size_type *sum = (bfd_size_type *) data;
1914
1915 *sum += bfd_get_section_size (asec);
1916 }
1917
1918 /* Opaque data for load_section_callback. */
1919 struct load_section_data {
1920 CORE_ADDR load_offset;
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923 };
1924
1925 /* Opaque data for load_progress. */
1926 struct load_progress_data {
1927 /* Cumulative data. */
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
1931 };
1932
1933 /* Opaque data for load_progress for a single section. */
1934 struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
1936
1937 /* Per-section data. */
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
1943 };
1944
1945 /* Target write callback routine for progress reporting. */
1946
1947 static void
1948 load_progress (ULONGEST bytes, void *untyped_arg)
1949 {
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
1965 current_uiout->message ("Loading section %s, size %s lma %s\n",
1966 args->section_name,
1967 hex_string (args->section_size),
1968 paddress (target_gdbarch (), args->lma));
1969 return;
1970 }
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
1985 error (_("Download verify read failed at %s"),
1986 paddress (target_gdbarch (), args->lma));
1987 if (memcmp (args->buffer, check, bytes) != 0)
1988 error (_("Download verify compare failed at %s"),
1989 paddress (target_gdbarch (), args->lma));
1990 do_cleanups (verify_cleanups);
1991 }
1992 totals->data_count += bytes;
1993 args->lma += bytes;
1994 args->buffer += bytes;
1995 totals->write_count += 1;
1996 args->section_sent += bytes;
1997 if (check_quit_flag ()
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
2007 totals->data_count,
2008 totals->total_size);
2009 }
2010
2011 /* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013 static void
2014 load_section_callback (bfd *abfd, asection *asec, void *data)
2015 {
2016 struct memory_write_request *new_request;
2017 struct load_section_data *args = (struct load_section_data *) data;
2018 struct load_progress_section_data *section_data;
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
2021 const char *sect_name = bfd_get_section_name (abfd, asec);
2022
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
2025
2026 if (size == 0)
2027 return;
2028
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
2032 section_data = XCNEW (struct load_progress_section_data);
2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
2036 new_request->data = (gdb_byte *) xmalloc (size);
2037 new_request->baton = section_data;
2038
2039 buffer = new_request->data;
2040
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2048 }
2049
2050 /* Clean up an entire memory request vector, including load
2051 data and progress records. */
2052
2053 static void
2054 clear_memory_write_data (void *arg)
2055 {
2056 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
2060
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
2067 }
2068
2069 static void print_transfer_performance (struct ui_file *stream,
2070 unsigned long data_count,
2071 unsigned long write_count,
2072 std::chrono::steady_clock::duration d);
2073
2074 void
2075 generic_load (const char *args, int from_tty)
2076 {
2077 bfd *loadfile_bfd;
2078 char *filename;
2079 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2080 struct load_section_data cbdata;
2081 struct load_progress_data total_progress;
2082 struct ui_out *uiout = current_uiout;
2083
2084 CORE_ADDR entry;
2085 char **argv;
2086
2087 memset (&cbdata, 0, sizeof (cbdata));
2088 memset (&total_progress, 0, sizeof (total_progress));
2089 cbdata.progress_data = &total_progress;
2090
2091 make_cleanup (clear_memory_write_data, &cbdata.requests);
2092
2093 if (args == NULL)
2094 error_no_arg (_("file to load"));
2095
2096 argv = gdb_buildargv (args);
2097 make_cleanup_freeargv (argv);
2098
2099 filename = tilde_expand (argv[0]);
2100 make_cleanup (xfree, filename);
2101
2102 if (argv[1] != NULL)
2103 {
2104 const char *endptr;
2105
2106 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2107
2108 /* If the last word was not a valid number then
2109 treat it as a file name with spaces in. */
2110 if (argv[1] == endptr)
2111 error (_("Invalid download offset:%s."), argv[1]);
2112
2113 if (argv[2] != NULL)
2114 error (_("Too many parameters."));
2115 }
2116
2117 /* Open the file for loading. */
2118 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2119 if (loadfile_bfd == NULL)
2120 {
2121 perror_with_name (filename);
2122 return;
2123 }
2124
2125 make_cleanup_bfd_unref (loadfile_bfd);
2126
2127 if (!bfd_check_format (loadfile_bfd, bfd_object))
2128 {
2129 error (_("\"%s\" is not an object file: %s"), filename,
2130 bfd_errmsg (bfd_get_error ()));
2131 }
2132
2133 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2134 (void *) &total_progress.total_size);
2135
2136 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2137
2138 using namespace std::chrono;
2139
2140 steady_clock::time_point start_time = steady_clock::now ();
2141
2142 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2143 load_progress) != 0)
2144 error (_("Load failed"));
2145
2146 steady_clock::time_point end_time = steady_clock::now ();
2147
2148 entry = bfd_get_start_address (loadfile_bfd);
2149 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2150 uiout->text ("Start address ");
2151 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2152 uiout->text (", load size ");
2153 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2154 uiout->text ("\n");
2155 regcache_write_pc (get_current_regcache (), entry);
2156
2157 /* Reset breakpoints, now that we have changed the load image. For
2158 instance, breakpoints may have been set (or reset, by
2159 post_create_inferior) while connected to the target but before we
2160 loaded the program. In that case, the prologue analyzer could
2161 have read instructions from the target to find the right
2162 breakpoint locations. Loading has changed the contents of that
2163 memory. */
2164
2165 breakpoint_re_set ();
2166
2167 print_transfer_performance (gdb_stdout, total_progress.data_count,
2168 total_progress.write_count,
2169 end_time - start_time);
2170
2171 do_cleanups (old_cleanups);
2172 }
2173
2174 /* Report on STREAM the performance of a memory transfer operation,
2175 such as 'load'. DATA_COUNT is the number of bytes transferred.
2176 WRITE_COUNT is the number of separate write operations, or 0, if
2177 that information is not available. TIME is how long the operation
2178 lasted. */
2179
2180 static void
2181 print_transfer_performance (struct ui_file *stream,
2182 unsigned long data_count,
2183 unsigned long write_count,
2184 std::chrono::steady_clock::duration time)
2185 {
2186 using namespace std::chrono;
2187 struct ui_out *uiout = current_uiout;
2188
2189 milliseconds ms = duration_cast<milliseconds> (time);
2190
2191 uiout->text ("Transfer rate: ");
2192 if (ms.count () > 0)
2193 {
2194 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2195
2196 if (uiout->is_mi_like_p ())
2197 {
2198 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2199 uiout->text (" bits/sec");
2200 }
2201 else if (rate < 1024)
2202 {
2203 uiout->field_fmt ("transfer-rate", "%lu", rate);
2204 uiout->text (" bytes/sec");
2205 }
2206 else
2207 {
2208 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2209 uiout->text (" KB/sec");
2210 }
2211 }
2212 else
2213 {
2214 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2215 uiout->text (" bits in <1 sec");
2216 }
2217 if (write_count > 0)
2218 {
2219 uiout->text (", ");
2220 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2221 uiout->text (" bytes/write");
2222 }
2223 uiout->text (".\n");
2224 }
2225
2226 /* This function allows the addition of incrementally linked object files.
2227 It does not modify any state in the target, only in the debugger. */
2228 /* Note: ezannoni 2000-04-13 This function/command used to have a
2229 special case syntax for the rombug target (Rombug is the boot
2230 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2231 rombug case, the user doesn't need to supply a text address,
2232 instead a call to target_link() (in target.c) would supply the
2233 value to use. We are now discontinuing this type of ad hoc syntax. */
2234
2235 static void
2236 add_symbol_file_command (char *args, int from_tty)
2237 {
2238 struct gdbarch *gdbarch = get_current_arch ();
2239 char *filename = NULL;
2240 char *arg;
2241 int section_index = 0;
2242 int argcnt = 0;
2243 int sec_num = 0;
2244 int i;
2245 int expecting_sec_name = 0;
2246 int expecting_sec_addr = 0;
2247 char **argv;
2248 struct objfile *objf;
2249 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2250 symfile_add_flags add_flags = 0;
2251
2252 if (from_tty)
2253 add_flags |= SYMFILE_VERBOSE;
2254
2255 struct sect_opt
2256 {
2257 char *name;
2258 char *value;
2259 };
2260
2261 struct section_addr_info *section_addrs;
2262 struct sect_opt *sect_opts = NULL;
2263 size_t num_sect_opts = 0;
2264 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2265
2266 num_sect_opts = 16;
2267 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2268
2269 dont_repeat ();
2270
2271 if (args == NULL)
2272 error (_("add-symbol-file takes a file name and an address"));
2273
2274 argv = gdb_buildargv (args);
2275 make_cleanup_freeargv (argv);
2276
2277 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2278 {
2279 /* Process the argument. */
2280 if (argcnt == 0)
2281 {
2282 /* The first argument is the file name. */
2283 filename = tilde_expand (arg);
2284 make_cleanup (xfree, filename);
2285 }
2286 else if (argcnt == 1)
2287 {
2288 /* The second argument is always the text address at which
2289 to load the program. */
2290 sect_opts[section_index].name = ".text";
2291 sect_opts[section_index].value = arg;
2292 if (++section_index >= num_sect_opts)
2293 {
2294 num_sect_opts *= 2;
2295 sect_opts = ((struct sect_opt *)
2296 xrealloc (sect_opts,
2297 num_sect_opts
2298 * sizeof (struct sect_opt)));
2299 }
2300 }
2301 else
2302 {
2303 /* It's an option (starting with '-') or it's an argument
2304 to an option. */
2305 if (expecting_sec_name)
2306 {
2307 sect_opts[section_index].name = arg;
2308 expecting_sec_name = 0;
2309 }
2310 else if (expecting_sec_addr)
2311 {
2312 sect_opts[section_index].value = arg;
2313 expecting_sec_addr = 0;
2314 if (++section_index >= num_sect_opts)
2315 {
2316 num_sect_opts *= 2;
2317 sect_opts = ((struct sect_opt *)
2318 xrealloc (sect_opts,
2319 num_sect_opts
2320 * sizeof (struct sect_opt)));
2321 }
2322 }
2323 else if (strcmp (arg, "-readnow") == 0)
2324 flags |= OBJF_READNOW;
2325 else if (strcmp (arg, "-s") == 0)
2326 {
2327 expecting_sec_name = 1;
2328 expecting_sec_addr = 1;
2329 }
2330 else
2331 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2332 " [-readnow] [-s <secname> <addr>]*"));
2333 }
2334 }
2335
2336 /* This command takes at least two arguments. The first one is a
2337 filename, and the second is the address where this file has been
2338 loaded. Abort now if this address hasn't been provided by the
2339 user. */
2340 if (section_index < 1)
2341 error (_("The address where %s has been loaded is missing"), filename);
2342
2343 /* Print the prompt for the query below. And save the arguments into
2344 a sect_addr_info structure to be passed around to other
2345 functions. We have to split this up into separate print
2346 statements because hex_string returns a local static
2347 string. */
2348
2349 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2350 section_addrs = alloc_section_addr_info (section_index);
2351 make_cleanup (xfree, section_addrs);
2352 for (i = 0; i < section_index; i++)
2353 {
2354 CORE_ADDR addr;
2355 char *val = sect_opts[i].value;
2356 char *sec = sect_opts[i].name;
2357
2358 addr = parse_and_eval_address (val);
2359
2360 /* Here we store the section offsets in the order they were
2361 entered on the command line. */
2362 section_addrs->other[sec_num].name = sec;
2363 section_addrs->other[sec_num].addr = addr;
2364 printf_unfiltered ("\t%s_addr = %s\n", sec,
2365 paddress (gdbarch, addr));
2366 sec_num++;
2367
2368 /* The object's sections are initialized when a
2369 call is made to build_objfile_section_table (objfile).
2370 This happens in reread_symbols.
2371 At this point, we don't know what file type this is,
2372 so we can't determine what section names are valid. */
2373 }
2374 section_addrs->num_sections = sec_num;
2375
2376 if (from_tty && (!query ("%s", "")))
2377 error (_("Not confirmed."));
2378
2379 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2380
2381 add_target_sections_of_objfile (objf);
2382
2383 /* Getting new symbols may change our opinion about what is
2384 frameless. */
2385 reinit_frame_cache ();
2386 do_cleanups (my_cleanups);
2387 }
2388 \f
2389
2390 /* This function removes a symbol file that was added via add-symbol-file. */
2391
2392 static void
2393 remove_symbol_file_command (char *args, int from_tty)
2394 {
2395 char **argv;
2396 struct objfile *objf = NULL;
2397 struct cleanup *my_cleanups;
2398 struct program_space *pspace = current_program_space;
2399
2400 dont_repeat ();
2401
2402 if (args == NULL)
2403 error (_("remove-symbol-file: no symbol file provided"));
2404
2405 my_cleanups = make_cleanup (null_cleanup, NULL);
2406
2407 argv = gdb_buildargv (args);
2408
2409 if (strcmp (argv[0], "-a") == 0)
2410 {
2411 /* Interpret the next argument as an address. */
2412 CORE_ADDR addr;
2413
2414 if (argv[1] == NULL)
2415 error (_("Missing address argument"));
2416
2417 if (argv[2] != NULL)
2418 error (_("Junk after %s"), argv[1]);
2419
2420 addr = parse_and_eval_address (argv[1]);
2421
2422 ALL_OBJFILES (objf)
2423 {
2424 if ((objf->flags & OBJF_USERLOADED) != 0
2425 && (objf->flags & OBJF_SHARED) != 0
2426 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2427 break;
2428 }
2429 }
2430 else if (argv[0] != NULL)
2431 {
2432 /* Interpret the current argument as a file name. */
2433 char *filename;
2434
2435 if (argv[1] != NULL)
2436 error (_("Junk after %s"), argv[0]);
2437
2438 filename = tilde_expand (argv[0]);
2439 make_cleanup (xfree, filename);
2440
2441 ALL_OBJFILES (objf)
2442 {
2443 if ((objf->flags & OBJF_USERLOADED) != 0
2444 && (objf->flags & OBJF_SHARED) != 0
2445 && objf->pspace == pspace
2446 && filename_cmp (filename, objfile_name (objf)) == 0)
2447 break;
2448 }
2449 }
2450
2451 if (objf == NULL)
2452 error (_("No symbol file found"));
2453
2454 if (from_tty
2455 && !query (_("Remove symbol table from file \"%s\"? "),
2456 objfile_name (objf)))
2457 error (_("Not confirmed."));
2458
2459 free_objfile (objf);
2460 clear_symtab_users (0);
2461
2462 do_cleanups (my_cleanups);
2463 }
2464
2465 typedef struct objfile *objfilep;
2466
2467 DEF_VEC_P (objfilep);
2468
2469 /* Re-read symbols if a symbol-file has changed. */
2470
2471 void
2472 reread_symbols (void)
2473 {
2474 struct objfile *objfile;
2475 long new_modtime;
2476 struct stat new_statbuf;
2477 int res;
2478 VEC (objfilep) *new_objfiles = NULL;
2479 struct cleanup *all_cleanups;
2480
2481 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2482
2483 /* With the addition of shared libraries, this should be modified,
2484 the load time should be saved in the partial symbol tables, since
2485 different tables may come from different source files. FIXME.
2486 This routine should then walk down each partial symbol table
2487 and see if the symbol table that it originates from has been changed. */
2488
2489 for (objfile = object_files; objfile; objfile = objfile->next)
2490 {
2491 if (objfile->obfd == NULL)
2492 continue;
2493
2494 /* Separate debug objfiles are handled in the main objfile. */
2495 if (objfile->separate_debug_objfile_backlink)
2496 continue;
2497
2498 /* If this object is from an archive (what you usually create with
2499 `ar', often called a `static library' on most systems, though
2500 a `shared library' on AIX is also an archive), then you should
2501 stat on the archive name, not member name. */
2502 if (objfile->obfd->my_archive)
2503 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2504 else
2505 res = stat (objfile_name (objfile), &new_statbuf);
2506 if (res != 0)
2507 {
2508 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2509 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2510 objfile_name (objfile));
2511 continue;
2512 }
2513 new_modtime = new_statbuf.st_mtime;
2514 if (new_modtime != objfile->mtime)
2515 {
2516 struct cleanup *old_cleanups;
2517 struct section_offsets *offsets;
2518 int num_offsets;
2519 char *original_name;
2520
2521 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2522 objfile_name (objfile));
2523
2524 /* There are various functions like symbol_file_add,
2525 symfile_bfd_open, syms_from_objfile, etc., which might
2526 appear to do what we want. But they have various other
2527 effects which we *don't* want. So we just do stuff
2528 ourselves. We don't worry about mapped files (for one thing,
2529 any mapped file will be out of date). */
2530
2531 /* If we get an error, blow away this objfile (not sure if
2532 that is the correct response for things like shared
2533 libraries). */
2534 old_cleanups = make_cleanup_free_objfile (objfile);
2535 /* We need to do this whenever any symbols go away. */
2536 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2537
2538 if (exec_bfd != NULL
2539 && filename_cmp (bfd_get_filename (objfile->obfd),
2540 bfd_get_filename (exec_bfd)) == 0)
2541 {
2542 /* Reload EXEC_BFD without asking anything. */
2543
2544 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2545 }
2546
2547 /* Keep the calls order approx. the same as in free_objfile. */
2548
2549 /* Free the separate debug objfiles. It will be
2550 automatically recreated by sym_read. */
2551 free_objfile_separate_debug (objfile);
2552
2553 /* Remove any references to this objfile in the global
2554 value lists. */
2555 preserve_values (objfile);
2556
2557 /* Nuke all the state that we will re-read. Much of the following
2558 code which sets things to NULL really is necessary to tell
2559 other parts of GDB that there is nothing currently there.
2560
2561 Try to keep the freeing order compatible with free_objfile. */
2562
2563 if (objfile->sf != NULL)
2564 {
2565 (*objfile->sf->sym_finish) (objfile);
2566 }
2567
2568 clear_objfile_data (objfile);
2569
2570 /* Clean up any state BFD has sitting around. */
2571 {
2572 struct bfd *obfd = objfile->obfd;
2573 char *obfd_filename;
2574
2575 obfd_filename = bfd_get_filename (objfile->obfd);
2576 /* Open the new BFD before freeing the old one, so that
2577 the filename remains live. */
2578 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2579 if (objfile->obfd == NULL)
2580 {
2581 /* We have to make a cleanup and error here, rather
2582 than erroring later, because once we unref OBFD,
2583 OBFD_FILENAME will be freed. */
2584 make_cleanup_bfd_unref (obfd);
2585 error (_("Can't open %s to read symbols."), obfd_filename);
2586 }
2587 gdb_bfd_unref (obfd);
2588 }
2589
2590 original_name = xstrdup (objfile->original_name);
2591 make_cleanup (xfree, original_name);
2592
2593 /* bfd_openr sets cacheable to true, which is what we want. */
2594 if (!bfd_check_format (objfile->obfd, bfd_object))
2595 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2596 bfd_errmsg (bfd_get_error ()));
2597
2598 /* Save the offsets, we will nuke them with the rest of the
2599 objfile_obstack. */
2600 num_offsets = objfile->num_sections;
2601 offsets = ((struct section_offsets *)
2602 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2603 memcpy (offsets, objfile->section_offsets,
2604 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2605
2606 /* FIXME: Do we have to free a whole linked list, or is this
2607 enough? */
2608 if (objfile->global_psymbols.list)
2609 xfree (objfile->global_psymbols.list);
2610 memset (&objfile->global_psymbols, 0,
2611 sizeof (objfile->global_psymbols));
2612 if (objfile->static_psymbols.list)
2613 xfree (objfile->static_psymbols.list);
2614 memset (&objfile->static_psymbols, 0,
2615 sizeof (objfile->static_psymbols));
2616
2617 /* Free the obstacks for non-reusable objfiles. */
2618 psymbol_bcache_free (objfile->psymbol_cache);
2619 objfile->psymbol_cache = psymbol_bcache_init ();
2620 obstack_free (&objfile->objfile_obstack, 0);
2621 objfile->sections = NULL;
2622 objfile->compunit_symtabs = NULL;
2623 objfile->psymtabs = NULL;
2624 objfile->psymtabs_addrmap = NULL;
2625 objfile->free_psymtabs = NULL;
2626 objfile->template_symbols = NULL;
2627
2628 /* obstack_init also initializes the obstack so it is
2629 empty. We could use obstack_specify_allocation but
2630 gdb_obstack.h specifies the alloc/dealloc functions. */
2631 obstack_init (&objfile->objfile_obstack);
2632
2633 /* set_objfile_per_bfd potentially allocates the per-bfd
2634 data on the objfile's obstack (if sharing data across
2635 multiple users is not possible), so it's important to
2636 do it *after* the obstack has been initialized. */
2637 set_objfile_per_bfd (objfile);
2638
2639 objfile->original_name
2640 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2641 strlen (original_name));
2642
2643 /* Reset the sym_fns pointer. The ELF reader can change it
2644 based on whether .gdb_index is present, and we need it to
2645 start over. PR symtab/15885 */
2646 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2647
2648 build_objfile_section_table (objfile);
2649 terminate_minimal_symbol_table (objfile);
2650
2651 /* We use the same section offsets as from last time. I'm not
2652 sure whether that is always correct for shared libraries. */
2653 objfile->section_offsets = (struct section_offsets *)
2654 obstack_alloc (&objfile->objfile_obstack,
2655 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2656 memcpy (objfile->section_offsets, offsets,
2657 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2658 objfile->num_sections = num_offsets;
2659
2660 /* What the hell is sym_new_init for, anyway? The concept of
2661 distinguishing between the main file and additional files
2662 in this way seems rather dubious. */
2663 if (objfile == symfile_objfile)
2664 {
2665 (*objfile->sf->sym_new_init) (objfile);
2666 }
2667
2668 (*objfile->sf->sym_init) (objfile);
2669 clear_complaints (&symfile_complaints, 1, 1);
2670
2671 objfile->flags &= ~OBJF_PSYMTABS_READ;
2672 read_symbols (objfile, 0);
2673
2674 if (!objfile_has_symbols (objfile))
2675 {
2676 wrap_here ("");
2677 printf_unfiltered (_("(no debugging symbols found)\n"));
2678 wrap_here ("");
2679 }
2680
2681 /* We're done reading the symbol file; finish off complaints. */
2682 clear_complaints (&symfile_complaints, 0, 1);
2683
2684 /* Getting new symbols may change our opinion about what is
2685 frameless. */
2686
2687 reinit_frame_cache ();
2688
2689 /* Discard cleanups as symbol reading was successful. */
2690 discard_cleanups (old_cleanups);
2691
2692 /* If the mtime has changed between the time we set new_modtime
2693 and now, we *want* this to be out of date, so don't call stat
2694 again now. */
2695 objfile->mtime = new_modtime;
2696 init_entry_point_info (objfile);
2697
2698 VEC_safe_push (objfilep, new_objfiles, objfile);
2699 }
2700 }
2701
2702 if (new_objfiles)
2703 {
2704 int ix;
2705
2706 /* Notify objfiles that we've modified objfile sections. */
2707 objfiles_changed ();
2708
2709 clear_symtab_users (0);
2710
2711 /* clear_objfile_data for each objfile was called before freeing it and
2712 observer_notify_new_objfile (NULL) has been called by
2713 clear_symtab_users above. Notify the new files now. */
2714 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2715 observer_notify_new_objfile (objfile);
2716
2717 /* At least one objfile has changed, so we can consider that
2718 the executable we're debugging has changed too. */
2719 observer_notify_executable_changed ();
2720 }
2721
2722 do_cleanups (all_cleanups);
2723 }
2724 \f
2725
2726 typedef struct
2727 {
2728 char *ext;
2729 enum language lang;
2730 } filename_language;
2731
2732 DEF_VEC_O (filename_language);
2733
2734 static VEC (filename_language) *filename_language_table;
2735
2736 /* See symfile.h. */
2737
2738 void
2739 add_filename_language (const char *ext, enum language lang)
2740 {
2741 filename_language entry;
2742
2743 entry.ext = xstrdup (ext);
2744 entry.lang = lang;
2745
2746 VEC_safe_push (filename_language, filename_language_table, &entry);
2747 }
2748
2749 static char *ext_args;
2750 static void
2751 show_ext_args (struct ui_file *file, int from_tty,
2752 struct cmd_list_element *c, const char *value)
2753 {
2754 fprintf_filtered (file,
2755 _("Mapping between filename extension "
2756 "and source language is \"%s\".\n"),
2757 value);
2758 }
2759
2760 static void
2761 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2762 {
2763 int i;
2764 char *cp = ext_args;
2765 enum language lang;
2766 filename_language *entry;
2767
2768 /* First arg is filename extension, starting with '.' */
2769 if (*cp != '.')
2770 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2771
2772 /* Find end of first arg. */
2773 while (*cp && !isspace (*cp))
2774 cp++;
2775
2776 if (*cp == '\0')
2777 error (_("'%s': two arguments required -- "
2778 "filename extension and language"),
2779 ext_args);
2780
2781 /* Null-terminate first arg. */
2782 *cp++ = '\0';
2783
2784 /* Find beginning of second arg, which should be a source language. */
2785 cp = skip_spaces (cp);
2786
2787 if (*cp == '\0')
2788 error (_("'%s': two arguments required -- "
2789 "filename extension and language"),
2790 ext_args);
2791
2792 /* Lookup the language from among those we know. */
2793 lang = language_enum (cp);
2794
2795 /* Now lookup the filename extension: do we already know it? */
2796 for (i = 0;
2797 VEC_iterate (filename_language, filename_language_table, i, entry);
2798 ++i)
2799 {
2800 if (0 == strcmp (ext_args, entry->ext))
2801 break;
2802 }
2803
2804 if (entry == NULL)
2805 {
2806 /* New file extension. */
2807 add_filename_language (ext_args, lang);
2808 }
2809 else
2810 {
2811 /* Redefining a previously known filename extension. */
2812
2813 /* if (from_tty) */
2814 /* query ("Really make files of type %s '%s'?", */
2815 /* ext_args, language_str (lang)); */
2816
2817 xfree (entry->ext);
2818 entry->ext = xstrdup (ext_args);
2819 entry->lang = lang;
2820 }
2821 }
2822
2823 static void
2824 info_ext_lang_command (char *args, int from_tty)
2825 {
2826 int i;
2827 filename_language *entry;
2828
2829 printf_filtered (_("Filename extensions and the languages they represent:"));
2830 printf_filtered ("\n\n");
2831 for (i = 0;
2832 VEC_iterate (filename_language, filename_language_table, i, entry);
2833 ++i)
2834 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2835 }
2836
2837 enum language
2838 deduce_language_from_filename (const char *filename)
2839 {
2840 int i;
2841 const char *cp;
2842
2843 if (filename != NULL)
2844 if ((cp = strrchr (filename, '.')) != NULL)
2845 {
2846 filename_language *entry;
2847
2848 for (i = 0;
2849 VEC_iterate (filename_language, filename_language_table, i, entry);
2850 ++i)
2851 if (strcmp (cp, entry->ext) == 0)
2852 return entry->lang;
2853 }
2854
2855 return language_unknown;
2856 }
2857 \f
2858 /* Allocate and initialize a new symbol table.
2859 CUST is from the result of allocate_compunit_symtab. */
2860
2861 struct symtab *
2862 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2863 {
2864 struct objfile *objfile = cust->objfile;
2865 struct symtab *symtab
2866 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2867
2868 symtab->filename
2869 = (const char *) bcache (filename, strlen (filename) + 1,
2870 objfile->per_bfd->filename_cache);
2871 symtab->fullname = NULL;
2872 symtab->language = deduce_language_from_filename (filename);
2873
2874 /* This can be very verbose with lots of headers.
2875 Only print at higher debug levels. */
2876 if (symtab_create_debug >= 2)
2877 {
2878 /* Be a bit clever with debugging messages, and don't print objfile
2879 every time, only when it changes. */
2880 static char *last_objfile_name = NULL;
2881
2882 if (last_objfile_name == NULL
2883 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2884 {
2885 xfree (last_objfile_name);
2886 last_objfile_name = xstrdup (objfile_name (objfile));
2887 fprintf_unfiltered (gdb_stdlog,
2888 "Creating one or more symtabs for objfile %s ...\n",
2889 last_objfile_name);
2890 }
2891 fprintf_unfiltered (gdb_stdlog,
2892 "Created symtab %s for module %s.\n",
2893 host_address_to_string (symtab), filename);
2894 }
2895
2896 /* Add it to CUST's list of symtabs. */
2897 if (cust->filetabs == NULL)
2898 {
2899 cust->filetabs = symtab;
2900 cust->last_filetab = symtab;
2901 }
2902 else
2903 {
2904 cust->last_filetab->next = symtab;
2905 cust->last_filetab = symtab;
2906 }
2907
2908 /* Backlink to the containing compunit symtab. */
2909 symtab->compunit_symtab = cust;
2910
2911 return symtab;
2912 }
2913
2914 /* Allocate and initialize a new compunit.
2915 NAME is the name of the main source file, if there is one, or some
2916 descriptive text if there are no source files. */
2917
2918 struct compunit_symtab *
2919 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2920 {
2921 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2922 struct compunit_symtab);
2923 const char *saved_name;
2924
2925 cu->objfile = objfile;
2926
2927 /* The name we record here is only for display/debugging purposes.
2928 Just save the basename to avoid path issues (too long for display,
2929 relative vs absolute, etc.). */
2930 saved_name = lbasename (name);
2931 cu->name
2932 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2933 strlen (saved_name));
2934
2935 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2936
2937 if (symtab_create_debug)
2938 {
2939 fprintf_unfiltered (gdb_stdlog,
2940 "Created compunit symtab %s for %s.\n",
2941 host_address_to_string (cu),
2942 cu->name);
2943 }
2944
2945 return cu;
2946 }
2947
2948 /* Hook CU to the objfile it comes from. */
2949
2950 void
2951 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2952 {
2953 cu->next = cu->objfile->compunit_symtabs;
2954 cu->objfile->compunit_symtabs = cu;
2955 }
2956 \f
2957
2958 /* Reset all data structures in gdb which may contain references to
2959 symbol table data. */
2960
2961 void
2962 clear_symtab_users (symfile_add_flags add_flags)
2963 {
2964 /* Someday, we should do better than this, by only blowing away
2965 the things that really need to be blown. */
2966
2967 /* Clear the "current" symtab first, because it is no longer valid.
2968 breakpoint_re_set may try to access the current symtab. */
2969 clear_current_source_symtab_and_line ();
2970
2971 clear_displays ();
2972 clear_last_displayed_sal ();
2973 clear_pc_function_cache ();
2974 observer_notify_new_objfile (NULL);
2975
2976 /* Clear globals which might have pointed into a removed objfile.
2977 FIXME: It's not clear which of these are supposed to persist
2978 between expressions and which ought to be reset each time. */
2979 expression_context_block = NULL;
2980 innermost_block = NULL;
2981
2982 /* Varobj may refer to old symbols, perform a cleanup. */
2983 varobj_invalidate ();
2984
2985 /* Now that the various caches have been cleared, we can re_set
2986 our breakpoints without risking it using stale data. */
2987 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2988 breakpoint_re_set ();
2989 }
2990
2991 static void
2992 clear_symtab_users_cleanup (void *ignore)
2993 {
2994 clear_symtab_users (0);
2995 }
2996 \f
2997 /* OVERLAYS:
2998 The following code implements an abstraction for debugging overlay sections.
2999
3000 The target model is as follows:
3001 1) The gnu linker will permit multiple sections to be mapped into the
3002 same VMA, each with its own unique LMA (or load address).
3003 2) It is assumed that some runtime mechanism exists for mapping the
3004 sections, one by one, from the load address into the VMA address.
3005 3) This code provides a mechanism for gdb to keep track of which
3006 sections should be considered to be mapped from the VMA to the LMA.
3007 This information is used for symbol lookup, and memory read/write.
3008 For instance, if a section has been mapped then its contents
3009 should be read from the VMA, otherwise from the LMA.
3010
3011 Two levels of debugger support for overlays are available. One is
3012 "manual", in which the debugger relies on the user to tell it which
3013 overlays are currently mapped. This level of support is
3014 implemented entirely in the core debugger, and the information about
3015 whether a section is mapped is kept in the objfile->obj_section table.
3016
3017 The second level of support is "automatic", and is only available if
3018 the target-specific code provides functionality to read the target's
3019 overlay mapping table, and translate its contents for the debugger
3020 (by updating the mapped state information in the obj_section tables).
3021
3022 The interface is as follows:
3023 User commands:
3024 overlay map <name> -- tell gdb to consider this section mapped
3025 overlay unmap <name> -- tell gdb to consider this section unmapped
3026 overlay list -- list the sections that GDB thinks are mapped
3027 overlay read-target -- get the target's state of what's mapped
3028 overlay off/manual/auto -- set overlay debugging state
3029 Functional interface:
3030 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3031 section, return that section.
3032 find_pc_overlay(pc): find any overlay section that contains
3033 the pc, either in its VMA or its LMA
3034 section_is_mapped(sect): true if overlay is marked as mapped
3035 section_is_overlay(sect): true if section's VMA != LMA
3036 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3037 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3038 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3039 overlay_mapped_address(...): map an address from section's LMA to VMA
3040 overlay_unmapped_address(...): map an address from section's VMA to LMA
3041 symbol_overlayed_address(...): Return a "current" address for symbol:
3042 either in VMA or LMA depending on whether
3043 the symbol's section is currently mapped. */
3044
3045 /* Overlay debugging state: */
3046
3047 enum overlay_debugging_state overlay_debugging = ovly_off;
3048 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3049
3050 /* Function: section_is_overlay (SECTION)
3051 Returns true if SECTION has VMA not equal to LMA, ie.
3052 SECTION is loaded at an address different from where it will "run". */
3053
3054 int
3055 section_is_overlay (struct obj_section *section)
3056 {
3057 if (overlay_debugging && section)
3058 {
3059 bfd *abfd = section->objfile->obfd;
3060 asection *bfd_section = section->the_bfd_section;
3061
3062 if (bfd_section_lma (abfd, bfd_section) != 0
3063 && bfd_section_lma (abfd, bfd_section)
3064 != bfd_section_vma (abfd, bfd_section))
3065 return 1;
3066 }
3067
3068 return 0;
3069 }
3070
3071 /* Function: overlay_invalidate_all (void)
3072 Invalidate the mapped state of all overlay sections (mark it as stale). */
3073
3074 static void
3075 overlay_invalidate_all (void)
3076 {
3077 struct objfile *objfile;
3078 struct obj_section *sect;
3079
3080 ALL_OBJSECTIONS (objfile, sect)
3081 if (section_is_overlay (sect))
3082 sect->ovly_mapped = -1;
3083 }
3084
3085 /* Function: section_is_mapped (SECTION)
3086 Returns true if section is an overlay, and is currently mapped.
3087
3088 Access to the ovly_mapped flag is restricted to this function, so
3089 that we can do automatic update. If the global flag
3090 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3091 overlay_invalidate_all. If the mapped state of the particular
3092 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3093
3094 int
3095 section_is_mapped (struct obj_section *osect)
3096 {
3097 struct gdbarch *gdbarch;
3098
3099 if (osect == 0 || !section_is_overlay (osect))
3100 return 0;
3101
3102 switch (overlay_debugging)
3103 {
3104 default:
3105 case ovly_off:
3106 return 0; /* overlay debugging off */
3107 case ovly_auto: /* overlay debugging automatic */
3108 /* Unles there is a gdbarch_overlay_update function,
3109 there's really nothing useful to do here (can't really go auto). */
3110 gdbarch = get_objfile_arch (osect->objfile);
3111 if (gdbarch_overlay_update_p (gdbarch))
3112 {
3113 if (overlay_cache_invalid)
3114 {
3115 overlay_invalidate_all ();
3116 overlay_cache_invalid = 0;
3117 }
3118 if (osect->ovly_mapped == -1)
3119 gdbarch_overlay_update (gdbarch, osect);
3120 }
3121 /* fall thru to manual case */
3122 case ovly_on: /* overlay debugging manual */
3123 return osect->ovly_mapped == 1;
3124 }
3125 }
3126
3127 /* Function: pc_in_unmapped_range
3128 If PC falls into the lma range of SECTION, return true, else false. */
3129
3130 CORE_ADDR
3131 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3132 {
3133 if (section_is_overlay (section))
3134 {
3135 bfd *abfd = section->objfile->obfd;
3136 asection *bfd_section = section->the_bfd_section;
3137
3138 /* We assume the LMA is relocated by the same offset as the VMA. */
3139 bfd_vma size = bfd_get_section_size (bfd_section);
3140 CORE_ADDR offset = obj_section_offset (section);
3141
3142 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3143 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3144 return 1;
3145 }
3146
3147 return 0;
3148 }
3149
3150 /* Function: pc_in_mapped_range
3151 If PC falls into the vma range of SECTION, return true, else false. */
3152
3153 CORE_ADDR
3154 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3155 {
3156 if (section_is_overlay (section))
3157 {
3158 if (obj_section_addr (section) <= pc
3159 && pc < obj_section_endaddr (section))
3160 return 1;
3161 }
3162
3163 return 0;
3164 }
3165
3166 /* Return true if the mapped ranges of sections A and B overlap, false
3167 otherwise. */
3168
3169 static int
3170 sections_overlap (struct obj_section *a, struct obj_section *b)
3171 {
3172 CORE_ADDR a_start = obj_section_addr (a);
3173 CORE_ADDR a_end = obj_section_endaddr (a);
3174 CORE_ADDR b_start = obj_section_addr (b);
3175 CORE_ADDR b_end = obj_section_endaddr (b);
3176
3177 return (a_start < b_end && b_start < a_end);
3178 }
3179
3180 /* Function: overlay_unmapped_address (PC, SECTION)
3181 Returns the address corresponding to PC in the unmapped (load) range.
3182 May be the same as PC. */
3183
3184 CORE_ADDR
3185 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3186 {
3187 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3188 {
3189 bfd *abfd = section->objfile->obfd;
3190 asection *bfd_section = section->the_bfd_section;
3191
3192 return pc + bfd_section_lma (abfd, bfd_section)
3193 - bfd_section_vma (abfd, bfd_section);
3194 }
3195
3196 return pc;
3197 }
3198
3199 /* Function: overlay_mapped_address (PC, SECTION)
3200 Returns the address corresponding to PC in the mapped (runtime) range.
3201 May be the same as PC. */
3202
3203 CORE_ADDR
3204 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3205 {
3206 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3207 {
3208 bfd *abfd = section->objfile->obfd;
3209 asection *bfd_section = section->the_bfd_section;
3210
3211 return pc + bfd_section_vma (abfd, bfd_section)
3212 - bfd_section_lma (abfd, bfd_section);
3213 }
3214
3215 return pc;
3216 }
3217
3218 /* Function: symbol_overlayed_address
3219 Return one of two addresses (relative to the VMA or to the LMA),
3220 depending on whether the section is mapped or not. */
3221
3222 CORE_ADDR
3223 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3224 {
3225 if (overlay_debugging)
3226 {
3227 /* If the symbol has no section, just return its regular address. */
3228 if (section == 0)
3229 return address;
3230 /* If the symbol's section is not an overlay, just return its
3231 address. */
3232 if (!section_is_overlay (section))
3233 return address;
3234 /* If the symbol's section is mapped, just return its address. */
3235 if (section_is_mapped (section))
3236 return address;
3237 /*
3238 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3239 * then return its LOADED address rather than its vma address!!
3240 */
3241 return overlay_unmapped_address (address, section);
3242 }
3243 return address;
3244 }
3245
3246 /* Function: find_pc_overlay (PC)
3247 Return the best-match overlay section for PC:
3248 If PC matches a mapped overlay section's VMA, return that section.
3249 Else if PC matches an unmapped section's VMA, return that section.
3250 Else if PC matches an unmapped section's LMA, return that section. */
3251
3252 struct obj_section *
3253 find_pc_overlay (CORE_ADDR pc)
3254 {
3255 struct objfile *objfile;
3256 struct obj_section *osect, *best_match = NULL;
3257
3258 if (overlay_debugging)
3259 {
3260 ALL_OBJSECTIONS (objfile, osect)
3261 if (section_is_overlay (osect))
3262 {
3263 if (pc_in_mapped_range (pc, osect))
3264 {
3265 if (section_is_mapped (osect))
3266 return osect;
3267 else
3268 best_match = osect;
3269 }
3270 else if (pc_in_unmapped_range (pc, osect))
3271 best_match = osect;
3272 }
3273 }
3274 return best_match;
3275 }
3276
3277 /* Function: find_pc_mapped_section (PC)
3278 If PC falls into the VMA address range of an overlay section that is
3279 currently marked as MAPPED, return that section. Else return NULL. */
3280
3281 struct obj_section *
3282 find_pc_mapped_section (CORE_ADDR pc)
3283 {
3284 struct objfile *objfile;
3285 struct obj_section *osect;
3286
3287 if (overlay_debugging)
3288 {
3289 ALL_OBJSECTIONS (objfile, osect)
3290 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3291 return osect;
3292 }
3293
3294 return NULL;
3295 }
3296
3297 /* Function: list_overlays_command
3298 Print a list of mapped sections and their PC ranges. */
3299
3300 static void
3301 list_overlays_command (char *args, int from_tty)
3302 {
3303 int nmapped = 0;
3304 struct objfile *objfile;
3305 struct obj_section *osect;
3306
3307 if (overlay_debugging)
3308 {
3309 ALL_OBJSECTIONS (objfile, osect)
3310 if (section_is_mapped (osect))
3311 {
3312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3313 const char *name;
3314 bfd_vma lma, vma;
3315 int size;
3316
3317 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3318 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3319 size = bfd_get_section_size (osect->the_bfd_section);
3320 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3321
3322 printf_filtered ("Section %s, loaded at ", name);
3323 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3324 puts_filtered (" - ");
3325 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3326 printf_filtered (", mapped at ");
3327 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3328 puts_filtered (" - ");
3329 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3330 puts_filtered ("\n");
3331
3332 nmapped++;
3333 }
3334 }
3335 if (nmapped == 0)
3336 printf_filtered (_("No sections are mapped.\n"));
3337 }
3338
3339 /* Function: map_overlay_command
3340 Mark the named section as mapped (ie. residing at its VMA address). */
3341
3342 static void
3343 map_overlay_command (char *args, int from_tty)
3344 {
3345 struct objfile *objfile, *objfile2;
3346 struct obj_section *sec, *sec2;
3347
3348 if (!overlay_debugging)
3349 error (_("Overlay debugging not enabled. Use "
3350 "either the 'overlay auto' or\n"
3351 "the 'overlay manual' command."));
3352
3353 if (args == 0 || *args == 0)
3354 error (_("Argument required: name of an overlay section"));
3355
3356 /* First, find a section matching the user supplied argument. */
3357 ALL_OBJSECTIONS (objfile, sec)
3358 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3359 {
3360 /* Now, check to see if the section is an overlay. */
3361 if (!section_is_overlay (sec))
3362 continue; /* not an overlay section */
3363
3364 /* Mark the overlay as "mapped". */
3365 sec->ovly_mapped = 1;
3366
3367 /* Next, make a pass and unmap any sections that are
3368 overlapped by this new section: */
3369 ALL_OBJSECTIONS (objfile2, sec2)
3370 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3371 {
3372 if (info_verbose)
3373 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3374 bfd_section_name (objfile->obfd,
3375 sec2->the_bfd_section));
3376 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3377 }
3378 return;
3379 }
3380 error (_("No overlay section called %s"), args);
3381 }
3382
3383 /* Function: unmap_overlay_command
3384 Mark the overlay section as unmapped
3385 (ie. resident in its LMA address range, rather than the VMA range). */
3386
3387 static void
3388 unmap_overlay_command (char *args, int from_tty)
3389 {
3390 struct objfile *objfile;
3391 struct obj_section *sec = NULL;
3392
3393 if (!overlay_debugging)
3394 error (_("Overlay debugging not enabled. "
3395 "Use either the 'overlay auto' or\n"
3396 "the 'overlay manual' command."));
3397
3398 if (args == 0 || *args == 0)
3399 error (_("Argument required: name of an overlay section"));
3400
3401 /* First, find a section matching the user supplied argument. */
3402 ALL_OBJSECTIONS (objfile, sec)
3403 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3404 {
3405 if (!sec->ovly_mapped)
3406 error (_("Section %s is not mapped"), args);
3407 sec->ovly_mapped = 0;
3408 return;
3409 }
3410 error (_("No overlay section called %s"), args);
3411 }
3412
3413 /* Function: overlay_auto_command
3414 A utility command to turn on overlay debugging.
3415 Possibly this should be done via a set/show command. */
3416
3417 static void
3418 overlay_auto_command (char *args, int from_tty)
3419 {
3420 overlay_debugging = ovly_auto;
3421 enable_overlay_breakpoints ();
3422 if (info_verbose)
3423 printf_unfiltered (_("Automatic overlay debugging enabled."));
3424 }
3425
3426 /* Function: overlay_manual_command
3427 A utility command to turn on overlay debugging.
3428 Possibly this should be done via a set/show command. */
3429
3430 static void
3431 overlay_manual_command (char *args, int from_tty)
3432 {
3433 overlay_debugging = ovly_on;
3434 disable_overlay_breakpoints ();
3435 if (info_verbose)
3436 printf_unfiltered (_("Overlay debugging enabled."));
3437 }
3438
3439 /* Function: overlay_off_command
3440 A utility command to turn on overlay debugging.
3441 Possibly this should be done via a set/show command. */
3442
3443 static void
3444 overlay_off_command (char *args, int from_tty)
3445 {
3446 overlay_debugging = ovly_off;
3447 disable_overlay_breakpoints ();
3448 if (info_verbose)
3449 printf_unfiltered (_("Overlay debugging disabled."));
3450 }
3451
3452 static void
3453 overlay_load_command (char *args, int from_tty)
3454 {
3455 struct gdbarch *gdbarch = get_current_arch ();
3456
3457 if (gdbarch_overlay_update_p (gdbarch))
3458 gdbarch_overlay_update (gdbarch, NULL);
3459 else
3460 error (_("This target does not know how to read its overlay state."));
3461 }
3462
3463 /* Function: overlay_command
3464 A place-holder for a mis-typed command. */
3465
3466 /* Command list chain containing all defined "overlay" subcommands. */
3467 static struct cmd_list_element *overlaylist;
3468
3469 static void
3470 overlay_command (char *args, int from_tty)
3471 {
3472 printf_unfiltered
3473 ("\"overlay\" must be followed by the name of an overlay command.\n");
3474 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3475 }
3476
3477 /* Target Overlays for the "Simplest" overlay manager:
3478
3479 This is GDB's default target overlay layer. It works with the
3480 minimal overlay manager supplied as an example by Cygnus. The
3481 entry point is via a function pointer "gdbarch_overlay_update",
3482 so targets that use a different runtime overlay manager can
3483 substitute their own overlay_update function and take over the
3484 function pointer.
3485
3486 The overlay_update function pokes around in the target's data structures
3487 to see what overlays are mapped, and updates GDB's overlay mapping with
3488 this information.
3489
3490 In this simple implementation, the target data structures are as follows:
3491 unsigned _novlys; /# number of overlay sections #/
3492 unsigned _ovly_table[_novlys][4] = {
3493 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3494 {..., ..., ..., ...},
3495 }
3496 unsigned _novly_regions; /# number of overlay regions #/
3497 unsigned _ovly_region_table[_novly_regions][3] = {
3498 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3499 {..., ..., ...},
3500 }
3501 These functions will attempt to update GDB's mappedness state in the
3502 symbol section table, based on the target's mappedness state.
3503
3504 To do this, we keep a cached copy of the target's _ovly_table, and
3505 attempt to detect when the cached copy is invalidated. The main
3506 entry point is "simple_overlay_update(SECT), which looks up SECT in
3507 the cached table and re-reads only the entry for that section from
3508 the target (whenever possible). */
3509
3510 /* Cached, dynamically allocated copies of the target data structures: */
3511 static unsigned (*cache_ovly_table)[4] = 0;
3512 static unsigned cache_novlys = 0;
3513 static CORE_ADDR cache_ovly_table_base = 0;
3514 enum ovly_index
3515 {
3516 VMA, OSIZE, LMA, MAPPED
3517 };
3518
3519 /* Throw away the cached copy of _ovly_table. */
3520
3521 static void
3522 simple_free_overlay_table (void)
3523 {
3524 if (cache_ovly_table)
3525 xfree (cache_ovly_table);
3526 cache_novlys = 0;
3527 cache_ovly_table = NULL;
3528 cache_ovly_table_base = 0;
3529 }
3530
3531 /* Read an array of ints of size SIZE from the target into a local buffer.
3532 Convert to host order. int LEN is number of ints. */
3533
3534 static void
3535 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3536 int len, int size, enum bfd_endian byte_order)
3537 {
3538 /* FIXME (alloca): Not safe if array is very large. */
3539 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3540 int i;
3541
3542 read_memory (memaddr, buf, len * size);
3543 for (i = 0; i < len; i++)
3544 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3545 }
3546
3547 /* Find and grab a copy of the target _ovly_table
3548 (and _novlys, which is needed for the table's size). */
3549
3550 static int
3551 simple_read_overlay_table (void)
3552 {
3553 struct bound_minimal_symbol novlys_msym;
3554 struct bound_minimal_symbol ovly_table_msym;
3555 struct gdbarch *gdbarch;
3556 int word_size;
3557 enum bfd_endian byte_order;
3558
3559 simple_free_overlay_table ();
3560 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3561 if (! novlys_msym.minsym)
3562 {
3563 error (_("Error reading inferior's overlay table: "
3564 "couldn't find `_novlys' variable\n"
3565 "in inferior. Use `overlay manual' mode."));
3566 return 0;
3567 }
3568
3569 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3570 if (! ovly_table_msym.minsym)
3571 {
3572 error (_("Error reading inferior's overlay table: couldn't find "
3573 "`_ovly_table' array\n"
3574 "in inferior. Use `overlay manual' mode."));
3575 return 0;
3576 }
3577
3578 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3579 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3580 byte_order = gdbarch_byte_order (gdbarch);
3581
3582 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3583 4, byte_order);
3584 cache_ovly_table
3585 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3586 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3587 read_target_long_array (cache_ovly_table_base,
3588 (unsigned int *) cache_ovly_table,
3589 cache_novlys * 4, word_size, byte_order);
3590
3591 return 1; /* SUCCESS */
3592 }
3593
3594 /* Function: simple_overlay_update_1
3595 A helper function for simple_overlay_update. Assuming a cached copy
3596 of _ovly_table exists, look through it to find an entry whose vma,
3597 lma and size match those of OSECT. Re-read the entry and make sure
3598 it still matches OSECT (else the table may no longer be valid).
3599 Set OSECT's mapped state to match the entry. Return: 1 for
3600 success, 0 for failure. */
3601
3602 static int
3603 simple_overlay_update_1 (struct obj_section *osect)
3604 {
3605 int i;
3606 bfd *obfd = osect->objfile->obfd;
3607 asection *bsect = osect->the_bfd_section;
3608 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3609 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3611
3612 for (i = 0; i < cache_novlys; i++)
3613 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3614 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3615 {
3616 read_target_long_array (cache_ovly_table_base + i * word_size,
3617 (unsigned int *) cache_ovly_table[i],
3618 4, word_size, byte_order);
3619 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3620 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3621 {
3622 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3623 return 1;
3624 }
3625 else /* Warning! Warning! Target's ovly table has changed! */
3626 return 0;
3627 }
3628 return 0;
3629 }
3630
3631 /* Function: simple_overlay_update
3632 If OSECT is NULL, then update all sections' mapped state
3633 (after re-reading the entire target _ovly_table).
3634 If OSECT is non-NULL, then try to find a matching entry in the
3635 cached ovly_table and update only OSECT's mapped state.
3636 If a cached entry can't be found or the cache isn't valid, then
3637 re-read the entire cache, and go ahead and update all sections. */
3638
3639 void
3640 simple_overlay_update (struct obj_section *osect)
3641 {
3642 struct objfile *objfile;
3643
3644 /* Were we given an osect to look up? NULL means do all of them. */
3645 if (osect)
3646 /* Have we got a cached copy of the target's overlay table? */
3647 if (cache_ovly_table != NULL)
3648 {
3649 /* Does its cached location match what's currently in the
3650 symtab? */
3651 struct bound_minimal_symbol minsym
3652 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3653
3654 if (minsym.minsym == NULL)
3655 error (_("Error reading inferior's overlay table: couldn't "
3656 "find `_ovly_table' array\n"
3657 "in inferior. Use `overlay manual' mode."));
3658
3659 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3660 /* Then go ahead and try to look up this single section in
3661 the cache. */
3662 if (simple_overlay_update_1 (osect))
3663 /* Found it! We're done. */
3664 return;
3665 }
3666
3667 /* Cached table no good: need to read the entire table anew.
3668 Or else we want all the sections, in which case it's actually
3669 more efficient to read the whole table in one block anyway. */
3670
3671 if (! simple_read_overlay_table ())
3672 return;
3673
3674 /* Now may as well update all sections, even if only one was requested. */
3675 ALL_OBJSECTIONS (objfile, osect)
3676 if (section_is_overlay (osect))
3677 {
3678 int i;
3679 bfd *obfd = osect->objfile->obfd;
3680 asection *bsect = osect->the_bfd_section;
3681
3682 for (i = 0; i < cache_novlys; i++)
3683 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3684 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3685 { /* obj_section matches i'th entry in ovly_table. */
3686 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3687 break; /* finished with inner for loop: break out. */
3688 }
3689 }
3690 }
3691
3692 /* Set the output sections and output offsets for section SECTP in
3693 ABFD. The relocation code in BFD will read these offsets, so we
3694 need to be sure they're initialized. We map each section to itself,
3695 with no offset; this means that SECTP->vma will be honored. */
3696
3697 static void
3698 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3699 {
3700 sectp->output_section = sectp;
3701 sectp->output_offset = 0;
3702 }
3703
3704 /* Default implementation for sym_relocate. */
3705
3706 bfd_byte *
3707 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3708 bfd_byte *buf)
3709 {
3710 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3711 DWO file. */
3712 bfd *abfd = sectp->owner;
3713
3714 /* We're only interested in sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3724 }
3725
3726 /* Relocate the contents of a debug section SECTP in ABFD. The
3727 contents are stored in BUF if it is non-NULL, or returned in a
3728 malloc'd buffer otherwise.
3729
3730 For some platforms and debug info formats, shared libraries contain
3731 relocations against the debug sections (particularly for DWARF-2;
3732 one affected platform is PowerPC GNU/Linux, although it depends on
3733 the version of the linker in use). Also, ELF object files naturally
3734 have unresolved relocations for their debug sections. We need to apply
3735 the relocations in order to get the locations of symbols correct.
3736 Another example that may require relocation processing, is the
3737 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3738 debug section. */
3739
3740 bfd_byte *
3741 symfile_relocate_debug_section (struct objfile *objfile,
3742 asection *sectp, bfd_byte *buf)
3743 {
3744 gdb_assert (objfile->sf->sym_relocate);
3745
3746 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3747 }
3748
3749 struct symfile_segment_data *
3750 get_symfile_segment_data (bfd *abfd)
3751 {
3752 const struct sym_fns *sf = find_sym_fns (abfd);
3753
3754 if (sf == NULL)
3755 return NULL;
3756
3757 return sf->sym_segments (abfd);
3758 }
3759
3760 void
3761 free_symfile_segment_data (struct symfile_segment_data *data)
3762 {
3763 xfree (data->segment_bases);
3764 xfree (data->segment_sizes);
3765 xfree (data->segment_info);
3766 xfree (data);
3767 }
3768
3769 /* Given:
3770 - DATA, containing segment addresses from the object file ABFD, and
3771 the mapping from ABFD's sections onto the segments that own them,
3772 and
3773 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3774 segment addresses reported by the target,
3775 store the appropriate offsets for each section in OFFSETS.
3776
3777 If there are fewer entries in SEGMENT_BASES than there are segments
3778 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3779
3780 If there are more entries, then ignore the extra. The target may
3781 not be able to distinguish between an empty data segment and a
3782 missing data segment; a missing text segment is less plausible. */
3783
3784 int
3785 symfile_map_offsets_to_segments (bfd *abfd,
3786 const struct symfile_segment_data *data,
3787 struct section_offsets *offsets,
3788 int num_segment_bases,
3789 const CORE_ADDR *segment_bases)
3790 {
3791 int i;
3792 asection *sect;
3793
3794 /* It doesn't make sense to call this function unless you have some
3795 segment base addresses. */
3796 gdb_assert (num_segment_bases > 0);
3797
3798 /* If we do not have segment mappings for the object file, we
3799 can not relocate it by segments. */
3800 gdb_assert (data != NULL);
3801 gdb_assert (data->num_segments > 0);
3802
3803 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3804 {
3805 int which = data->segment_info[i];
3806
3807 gdb_assert (0 <= which && which <= data->num_segments);
3808
3809 /* Don't bother computing offsets for sections that aren't
3810 loaded as part of any segment. */
3811 if (! which)
3812 continue;
3813
3814 /* Use the last SEGMENT_BASES entry as the address of any extra
3815 segments mentioned in DATA->segment_info. */
3816 if (which > num_segment_bases)
3817 which = num_segment_bases;
3818
3819 offsets->offsets[i] = (segment_bases[which - 1]
3820 - data->segment_bases[which - 1]);
3821 }
3822
3823 return 1;
3824 }
3825
3826 static void
3827 symfile_find_segment_sections (struct objfile *objfile)
3828 {
3829 bfd *abfd = objfile->obfd;
3830 int i;
3831 asection *sect;
3832 struct symfile_segment_data *data;
3833
3834 data = get_symfile_segment_data (objfile->obfd);
3835 if (data == NULL)
3836 return;
3837
3838 if (data->num_segments != 1 && data->num_segments != 2)
3839 {
3840 free_symfile_segment_data (data);
3841 return;
3842 }
3843
3844 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3845 {
3846 int which = data->segment_info[i];
3847
3848 if (which == 1)
3849 {
3850 if (objfile->sect_index_text == -1)
3851 objfile->sect_index_text = sect->index;
3852
3853 if (objfile->sect_index_rodata == -1)
3854 objfile->sect_index_rodata = sect->index;
3855 }
3856 else if (which == 2)
3857 {
3858 if (objfile->sect_index_data == -1)
3859 objfile->sect_index_data = sect->index;
3860
3861 if (objfile->sect_index_bss == -1)
3862 objfile->sect_index_bss = sect->index;
3863 }
3864 }
3865
3866 free_symfile_segment_data (data);
3867 }
3868
3869 /* Listen for free_objfile events. */
3870
3871 static void
3872 symfile_free_objfile (struct objfile *objfile)
3873 {
3874 /* Remove the target sections owned by this objfile. */
3875 if (objfile != NULL)
3876 remove_target_sections ((void *) objfile);
3877 }
3878
3879 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3880 Expand all symtabs that match the specified criteria.
3881 See quick_symbol_functions.expand_symtabs_matching for details. */
3882
3883 void
3884 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3885 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3886 expand_symtabs_exp_notify_ftype *expansion_notify,
3887 enum search_domain kind,
3888 void *data)
3889 {
3890 struct objfile *objfile;
3891
3892 ALL_OBJFILES (objfile)
3893 {
3894 if (objfile->sf)
3895 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3896 symbol_matcher,
3897 expansion_notify, kind,
3898 data);
3899 }
3900 }
3901
3902 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3903 Map function FUN over every file.
3904 See quick_symbol_functions.map_symbol_filenames for details. */
3905
3906 void
3907 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3908 int need_fullname)
3909 {
3910 struct objfile *objfile;
3911
3912 ALL_OBJFILES (objfile)
3913 {
3914 if (objfile->sf)
3915 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3916 need_fullname);
3917 }
3918 }
3919
3920 void
3921 _initialize_symfile (void)
3922 {
3923 struct cmd_list_element *c;
3924
3925 observer_attach_free_objfile (symfile_free_objfile);
3926
3927 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3928 Load symbol table from executable file FILE.\n\
3929 The `file' command can also load symbol tables, as well as setting the file\n\
3930 to execute."), &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3932
3933 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3934 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3935 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3936 ...]\nADDR is the starting address of the file's text.\n\
3937 The optional arguments are section-name section-address pairs and\n\
3938 should be specified if the data and bss segments are not contiguous\n\
3939 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3940 &cmdlist);
3941 set_cmd_completer (c, filename_completer);
3942
3943 c = add_cmd ("remove-symbol-file", class_files,
3944 remove_symbol_file_command, _("\
3945 Remove a symbol file added via the add-symbol-file command.\n\
3946 Usage: remove-symbol-file FILENAME\n\
3947 remove-symbol-file -a ADDRESS\n\
3948 The file to remove can be identified by its filename or by an address\n\
3949 that lies within the boundaries of this symbol file in memory."),
3950 &cmdlist);
3951
3952 c = add_cmd ("load", class_files, load_command, _("\
3953 Dynamically load FILE into the running program, and record its symbols\n\
3954 for access from GDB.\n\
3955 A load OFFSET may also be given."), &cmdlist);
3956 set_cmd_completer (c, filename_completer);
3957
3958 add_prefix_cmd ("overlay", class_support, overlay_command,
3959 _("Commands for debugging overlays."), &overlaylist,
3960 "overlay ", 0, &cmdlist);
3961
3962 add_com_alias ("ovly", "overlay", class_alias, 1);
3963 add_com_alias ("ov", "overlay", class_alias, 1);
3964
3965 add_cmd ("map-overlay", class_support, map_overlay_command,
3966 _("Assert that an overlay section is mapped."), &overlaylist);
3967
3968 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3969 _("Assert that an overlay section is unmapped."), &overlaylist);
3970
3971 add_cmd ("list-overlays", class_support, list_overlays_command,
3972 _("List mappings of overlay sections."), &overlaylist);
3973
3974 add_cmd ("manual", class_support, overlay_manual_command,
3975 _("Enable overlay debugging."), &overlaylist);
3976 add_cmd ("off", class_support, overlay_off_command,
3977 _("Disable overlay debugging."), &overlaylist);
3978 add_cmd ("auto", class_support, overlay_auto_command,
3979 _("Enable automatic overlay debugging."), &overlaylist);
3980 add_cmd ("load-target", class_support, overlay_load_command,
3981 _("Read the overlay mapping state from the target."), &overlaylist);
3982
3983 /* Filename extension to source language lookup table: */
3984 add_setshow_string_noescape_cmd ("extension-language", class_files,
3985 &ext_args, _("\
3986 Set mapping between filename extension and source language."), _("\
3987 Show mapping between filename extension and source language."), _("\
3988 Usage: set extension-language .foo bar"),
3989 set_ext_lang_command,
3990 show_ext_args,
3991 &setlist, &showlist);
3992
3993 add_info ("extensions", info_ext_lang_command,
3994 _("All filename extensions associated with a source language."));
3995
3996 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3997 &debug_file_directory, _("\
3998 Set the directories where separate debug symbols are searched for."), _("\
3999 Show the directories where separate debug symbols are searched for."), _("\
4000 Separate debug symbols are first searched for in the same\n\
4001 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4002 and lastly at the path of the directory of the binary with\n\
4003 each global debug-file-directory component prepended."),
4004 NULL,
4005 show_debug_file_directory,
4006 &setlist, &showlist);
4007
4008 add_setshow_enum_cmd ("symbol-loading", no_class,
4009 print_symbol_loading_enums, &print_symbol_loading,
4010 _("\
4011 Set printing of symbol loading messages."), _("\
4012 Show printing of symbol loading messages."), _("\
4013 off == turn all messages off\n\
4014 brief == print messages for the executable,\n\
4015 and brief messages for shared libraries\n\
4016 full == print messages for the executable,\n\
4017 and messages for each shared library."),
4018 NULL,
4019 NULL,
4020 &setprintlist, &showprintlist);
4021 }
This page took 0.11196 seconds and 4 git commands to generate.