Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
74 void (*deprecated_show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*deprecated_pre_add_symbol_hook) (const char *);
80 void (*deprecated_post_add_symbol_hook) (void);
81
82 using clear_symtab_users_cleanup
83 = FORWARD_SCOPE_EXIT (clear_symtab_users);
84
85 /* Global variables owned by this file. */
86
87 /* See symfile.h. */
88
89 int readnow_symbol_files;
90
91 /* See symfile.h. */
92
93 int readnever_symbol_files;
94
95 /* Functions this file defines. */
96
97 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
98 objfile_flags flags, CORE_ADDR reloff);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void overlay_invalidate_all (void);
103
104 static void simple_free_overlay_table (void);
105
106 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
107 enum bfd_endian);
108
109 static int simple_read_overlay_table (void);
110
111 static int simple_overlay_update_1 (struct obj_section *);
112
113 static void symfile_find_segment_sections (struct objfile *objfile);
114
115 /* List of all available sym_fns. On gdb startup, each object file reader
116 calls add_symtab_fns() to register information on each format it is
117 prepared to read. */
118
119 struct registered_sym_fns
120 {
121 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
122 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
123 {}
124
125 /* BFD flavour that we handle. */
126 enum bfd_flavour sym_flavour;
127
128 /* The "vtable" of symbol functions. */
129 const struct sym_fns *sym_fns;
130 };
131
132 static std::vector<registered_sym_fns> symtab_fns;
133
134 /* Values for "set print symbol-loading". */
135
136 const char print_symbol_loading_off[] = "off";
137 const char print_symbol_loading_brief[] = "brief";
138 const char print_symbol_loading_full[] = "full";
139 static const char *print_symbol_loading_enums[] =
140 {
141 print_symbol_loading_off,
142 print_symbol_loading_brief,
143 print_symbol_loading_full,
144 NULL
145 };
146 static const char *print_symbol_loading = print_symbol_loading_full;
147
148 /* See symfile.h. */
149
150 bool auto_solib_add = true;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 static void
202 find_lowest_section (asection *sect, asection **lowest)
203 {
204 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
205 return;
206 if (!*lowest)
207 *lowest = sect; /* First loadable section */
208 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
209 *lowest = sect; /* A lower loadable section */
210 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
211 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
212 *lowest = sect;
213 }
214
215 /* Build (allocate and populate) a section_addr_info struct from
216 an existing section table. */
217
218 section_addr_info
219 build_section_addr_info_from_section_table (const target_section_table &table)
220 {
221 section_addr_info sap;
222
223 for (const target_section &stp : table)
224 {
225 struct bfd_section *asect = stp.the_bfd_section;
226 bfd *abfd = asect->owner;
227
228 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
229 && sap.size () < table.size ())
230 sap.emplace_back (stp.addr,
231 bfd_section_name (asect),
232 gdb_bfd_section_index (abfd, asect));
233 }
234
235 return sap;
236 }
237
238 /* Create a section_addr_info from section offsets in ABFD. */
239
240 static section_addr_info
241 build_section_addr_info_from_bfd (bfd *abfd)
242 {
243 struct bfd_section *sec;
244
245 section_addr_info sap;
246 for (sec = abfd->sections; sec != NULL; sec = sec->next)
247 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
248 sap.emplace_back (bfd_section_vma (sec),
249 bfd_section_name (sec),
250 gdb_bfd_section_index (abfd, sec));
251
252 return sap;
253 }
254
255 /* Create a section_addr_info from section offsets in OBJFILE. */
256
257 section_addr_info
258 build_section_addr_info_from_objfile (const struct objfile *objfile)
259 {
260 int i;
261
262 /* Before reread_symbols gets rewritten it is not safe to call:
263 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
264 */
265 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
266 for (i = 0; i < sap.size (); i++)
267 {
268 int sectindex = sap[i].sectindex;
269
270 sap[i].addr += objfile->section_offsets[sectindex];
271 }
272 return sap;
273 }
274
275 /* Initialize OBJFILE's sect_index_* members. */
276
277 static void
278 init_objfile_sect_indices (struct objfile *objfile)
279 {
280 asection *sect;
281 int i;
282
283 sect = bfd_get_section_by_name (objfile->obfd, ".text");
284 if (sect)
285 objfile->sect_index_text = sect->index;
286
287 sect = bfd_get_section_by_name (objfile->obfd, ".data");
288 if (sect)
289 objfile->sect_index_data = sect->index;
290
291 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
292 if (sect)
293 objfile->sect_index_bss = sect->index;
294
295 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
296 if (sect)
297 objfile->sect_index_rodata = sect->index;
298
299 /* This is where things get really weird... We MUST have valid
300 indices for the various sect_index_* members or gdb will abort.
301 So if for example, there is no ".text" section, we have to
302 accomodate that. First, check for a file with the standard
303 one or two segments. */
304
305 symfile_find_segment_sections (objfile);
306
307 /* Except when explicitly adding symbol files at some address,
308 section_offsets contains nothing but zeros, so it doesn't matter
309 which slot in section_offsets the individual sect_index_* members
310 index into. So if they are all zero, it is safe to just point
311 all the currently uninitialized indices to the first slot. But
312 beware: if this is the main executable, it may be relocated
313 later, e.g. by the remote qOffsets packet, and then this will
314 be wrong! That's why we try segments first. */
315
316 for (i = 0; i < objfile->section_offsets.size (); i++)
317 {
318 if (objfile->section_offsets[i] != 0)
319 {
320 break;
321 }
322 }
323 if (i == objfile->section_offsets.size ())
324 {
325 if (objfile->sect_index_text == -1)
326 objfile->sect_index_text = 0;
327 if (objfile->sect_index_data == -1)
328 objfile->sect_index_data = 0;
329 if (objfile->sect_index_bss == -1)
330 objfile->sect_index_bss = 0;
331 if (objfile->sect_index_rodata == -1)
332 objfile->sect_index_rodata = 0;
333 }
334 }
335
336 /* Find a unique offset to use for loadable section SECT if
337 the user did not provide an offset. */
338
339 static void
340 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
341 CORE_ADDR &lowest)
342 {
343 CORE_ADDR start_addr;
344 int done;
345 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
346
347 /* We are only interested in allocated sections. */
348 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
349 return;
350
351 /* If the user specified an offset, honor it. */
352 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
353 return;
354
355 /* Otherwise, let's try to find a place for the section. */
356 start_addr = (lowest + align - 1) & -align;
357
358 do {
359 asection *cur_sec;
360
361 done = 1;
362
363 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
364 {
365 int indx = cur_sec->index;
366
367 /* We don't need to compare against ourself. */
368 if (cur_sec == sect)
369 continue;
370
371 /* We can only conflict with allocated sections. */
372 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
373 continue;
374
375 /* If the section offset is 0, either the section has not been placed
376 yet, or it was the lowest section placed (in which case LOWEST
377 will be past its end). */
378 if (offsets[indx] == 0)
379 continue;
380
381 /* If this section would overlap us, then we must move up. */
382 if (start_addr + bfd_section_size (sect) > offsets[indx]
383 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
384 {
385 start_addr = offsets[indx] + bfd_section_size (cur_sec);
386 start_addr = (start_addr + align - 1) & -align;
387 done = 0;
388 break;
389 }
390
391 /* Otherwise, we appear to be OK. So far. */
392 }
393 }
394 while (!done);
395
396 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
397 lowest = start_addr + bfd_section_size (sect);
398 }
399
400 /* Store section_addr_info as prepared (made relative and with SECTINDEX
401 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
402
403 void
404 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
405 const section_addr_info &addrs)
406 {
407 int i;
408
409 section_offsets.assign (section_offsets.size (), 0);
410
411 /* Now calculate offsets for section that were specified by the caller. */
412 for (i = 0; i < addrs.size (); i++)
413 {
414 const struct other_sections *osp;
415
416 osp = &addrs[i];
417 if (osp->sectindex == -1)
418 continue;
419
420 /* Record all sections in offsets. */
421 /* The section_offsets in the objfile are here filled in using
422 the BFD index. */
423 section_offsets[osp->sectindex] = osp->addr;
424 }
425 }
426
427 /* Transform section name S for a name comparison. prelink can split section
428 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
429 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
430 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
431 (`.sbss') section has invalid (increased) virtual address. */
432
433 static const char *
434 addr_section_name (const char *s)
435 {
436 if (strcmp (s, ".dynbss") == 0)
437 return ".bss";
438 if (strcmp (s, ".sdynbss") == 0)
439 return ".sbss";
440
441 return s;
442 }
443
444 /* std::sort comparator for addrs_section_sort. Sort entries in
445 ascending order by their (name, sectindex) pair. sectindex makes
446 the sort by name stable. */
447
448 static bool
449 addrs_section_compar (const struct other_sections *a,
450 const struct other_sections *b)
451 {
452 int retval;
453
454 retval = strcmp (addr_section_name (a->name.c_str ()),
455 addr_section_name (b->name.c_str ()));
456 if (retval != 0)
457 return retval < 0;
458
459 return a->sectindex < b->sectindex;
460 }
461
462 /* Provide sorted array of pointers to sections of ADDRS. */
463
464 static std::vector<const struct other_sections *>
465 addrs_section_sort (const section_addr_info &addrs)
466 {
467 int i;
468
469 std::vector<const struct other_sections *> array (addrs.size ());
470 for (i = 0; i < addrs.size (); i++)
471 array[i] = &addrs[i];
472
473 std::sort (array.begin (), array.end (), addrs_section_compar);
474
475 return array;
476 }
477
478 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
479 also SECTINDEXes specific to ABFD there. This function can be used to
480 rebase ADDRS to start referencing different BFD than before. */
481
482 void
483 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
484 {
485 asection *lower_sect;
486 CORE_ADDR lower_offset;
487 int i;
488
489 /* Find lowest loadable section to be used as starting point for
490 contiguous sections. */
491 lower_sect = NULL;
492 for (asection *iter : gdb_bfd_sections (abfd))
493 find_lowest_section (iter, &lower_sect);
494 if (lower_sect == NULL)
495 {
496 warning (_("no loadable sections found in added symbol-file %s"),
497 bfd_get_filename (abfd));
498 lower_offset = 0;
499 }
500 else
501 lower_offset = bfd_section_vma (lower_sect);
502
503 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
504 in ABFD. Section names are not unique - there can be multiple sections of
505 the same name. Also the sections of the same name do not have to be
506 adjacent to each other. Some sections may be present only in one of the
507 files. Even sections present in both files do not have to be in the same
508 order.
509
510 Use stable sort by name for the sections in both files. Then linearly
511 scan both lists matching as most of the entries as possible. */
512
513 std::vector<const struct other_sections *> addrs_sorted
514 = addrs_section_sort (*addrs);
515
516 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
517 std::vector<const struct other_sections *> abfd_addrs_sorted
518 = addrs_section_sort (abfd_addrs);
519
520 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
521 ABFD_ADDRS_SORTED. */
522
523 std::vector<const struct other_sections *>
524 addrs_to_abfd_addrs (addrs->size (), nullptr);
525
526 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
527 = abfd_addrs_sorted.begin ();
528 for (const other_sections *sect : addrs_sorted)
529 {
530 const char *sect_name = addr_section_name (sect->name.c_str ());
531
532 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
533 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
534 sect_name) < 0)
535 abfd_sorted_iter++;
536
537 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
538 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
539 sect_name) == 0)
540 {
541 int index_in_addrs;
542
543 /* Make the found item directly addressable from ADDRS. */
544 index_in_addrs = sect - addrs->data ();
545 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
546 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
547
548 /* Never use the same ABFD entry twice. */
549 abfd_sorted_iter++;
550 }
551 }
552
553 /* Calculate offsets for the loadable sections.
554 FIXME! Sections must be in order of increasing loadable section
555 so that contiguous sections can use the lower-offset!!!
556
557 Adjust offsets if the segments are not contiguous.
558 If the section is contiguous, its offset should be set to
559 the offset of the highest loadable section lower than it
560 (the loadable section directly below it in memory).
561 this_offset = lower_offset = lower_addr - lower_orig_addr */
562
563 for (i = 0; i < addrs->size (); i++)
564 {
565 const struct other_sections *sect = addrs_to_abfd_addrs[i];
566
567 if (sect)
568 {
569 /* This is the index used by BFD. */
570 (*addrs)[i].sectindex = sect->sectindex;
571
572 if ((*addrs)[i].addr != 0)
573 {
574 (*addrs)[i].addr -= sect->addr;
575 lower_offset = (*addrs)[i].addr;
576 }
577 else
578 (*addrs)[i].addr = lower_offset;
579 }
580 else
581 {
582 /* addr_section_name transformation is not used for SECT_NAME. */
583 const std::string &sect_name = (*addrs)[i].name;
584
585 /* This section does not exist in ABFD, which is normally
586 unexpected and we want to issue a warning.
587
588 However, the ELF prelinker does create a few sections which are
589 marked in the main executable as loadable (they are loaded in
590 memory from the DYNAMIC segment) and yet are not present in
591 separate debug info files. This is fine, and should not cause
592 a warning. Shared libraries contain just the section
593 ".gnu.liblist" but it is not marked as loadable there. There is
594 no other way to identify them than by their name as the sections
595 created by prelink have no special flags.
596
597 For the sections `.bss' and `.sbss' see addr_section_name. */
598
599 if (!(sect_name == ".gnu.liblist"
600 || sect_name == ".gnu.conflict"
601 || (sect_name == ".bss"
602 && i > 0
603 && (*addrs)[i - 1].name == ".dynbss"
604 && addrs_to_abfd_addrs[i - 1] != NULL)
605 || (sect_name == ".sbss"
606 && i > 0
607 && (*addrs)[i - 1].name == ".sdynbss"
608 && addrs_to_abfd_addrs[i - 1] != NULL)))
609 warning (_("section %s not found in %s"), sect_name.c_str (),
610 bfd_get_filename (abfd));
611
612 (*addrs)[i].addr = 0;
613 (*addrs)[i].sectindex = -1;
614 }
615 }
616 }
617
618 /* Parse the user's idea of an offset for dynamic linking, into our idea
619 of how to represent it for fast symbol reading. This is the default
620 version of the sym_fns.sym_offsets function for symbol readers that
621 don't need to do anything special. It allocates a section_offsets table
622 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
623
624 void
625 default_symfile_offsets (struct objfile *objfile,
626 const section_addr_info &addrs)
627 {
628 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
629 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
630
631 /* For relocatable files, all loadable sections will start at zero.
632 The zero is meaningless, so try to pick arbitrary addresses such
633 that no loadable sections overlap. This algorithm is quadratic,
634 but the number of sections in a single object file is generally
635 small. */
636 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
637 {
638 bfd *abfd = objfile->obfd;
639 asection *cur_sec;
640
641 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
642 /* We do not expect this to happen; just skip this step if the
643 relocatable file has a section with an assigned VMA. */
644 if (bfd_section_vma (cur_sec) != 0)
645 break;
646
647 if (cur_sec == NULL)
648 {
649 section_offsets &offsets = objfile->section_offsets;
650
651 /* Pick non-overlapping offsets for sections the user did not
652 place explicitly. */
653 CORE_ADDR lowest = 0;
654 for (asection *sect : gdb_bfd_sections (objfile->obfd))
655 place_section (objfile->obfd, sect, objfile->section_offsets,
656 lowest);
657
658 /* Correctly filling in the section offsets is not quite
659 enough. Relocatable files have two properties that
660 (most) shared objects do not:
661
662 - Their debug information will contain relocations. Some
663 shared libraries do also, but many do not, so this can not
664 be assumed.
665
666 - If there are multiple code sections they will be loaded
667 at different relative addresses in memory than they are
668 in the objfile, since all sections in the file will start
669 at address zero.
670
671 Because GDB has very limited ability to map from an
672 address in debug info to the correct code section,
673 it relies on adding SECT_OFF_TEXT to things which might be
674 code. If we clear all the section offsets, and set the
675 section VMAs instead, then symfile_relocate_debug_section
676 will return meaningful debug information pointing at the
677 correct sections.
678
679 GDB has too many different data structures for section
680 addresses - a bfd, objfile, and so_list all have section
681 tables, as does exec_ops. Some of these could probably
682 be eliminated. */
683
684 for (cur_sec = abfd->sections; cur_sec != NULL;
685 cur_sec = cur_sec->next)
686 {
687 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
688 continue;
689
690 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
691 exec_set_section_address (bfd_get_filename (abfd),
692 cur_sec->index,
693 offsets[cur_sec->index]);
694 offsets[cur_sec->index] = 0;
695 }
696 }
697 }
698
699 /* Remember the bfd indexes for the .text, .data, .bss and
700 .rodata sections. */
701 init_objfile_sect_indices (objfile);
702 }
703
704 /* Divide the file into segments, which are individual relocatable units.
705 This is the default version of the sym_fns.sym_segments function for
706 symbol readers that do not have an explicit representation of segments.
707 It assumes that object files do not have segments, and fully linked
708 files have a single segment. */
709
710 symfile_segment_data_up
711 default_symfile_segments (bfd *abfd)
712 {
713 int num_sections, i;
714 asection *sect;
715 CORE_ADDR low, high;
716
717 /* Relocatable files contain enough information to position each
718 loadable section independently; they should not be relocated
719 in segments. */
720 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
721 return NULL;
722
723 /* Make sure there is at least one loadable section in the file. */
724 for (sect = abfd->sections; sect != NULL; sect = sect->next)
725 {
726 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
727 continue;
728
729 break;
730 }
731 if (sect == NULL)
732 return NULL;
733
734 low = bfd_section_vma (sect);
735 high = low + bfd_section_size (sect);
736
737 symfile_segment_data_up data (new symfile_segment_data);
738
739 num_sections = bfd_count_sections (abfd);
740
741 /* All elements are initialized to 0 (map to no segment). */
742 data->segment_info.resize (num_sections);
743
744 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
745 {
746 CORE_ADDR vma;
747
748 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
749 continue;
750
751 vma = bfd_section_vma (sect);
752 if (vma < low)
753 low = vma;
754 if (vma + bfd_section_size (sect) > high)
755 high = vma + bfd_section_size (sect);
756
757 data->segment_info[i] = 1;
758 }
759
760 data->segments.emplace_back (low, high - low);
761
762 return data;
763 }
764
765 /* This is a convenience function to call sym_read for OBJFILE and
766 possibly force the partial symbols to be read. */
767
768 static void
769 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
770 {
771 (*objfile->sf->sym_read) (objfile, add_flags);
772 objfile->per_bfd->minsyms_read = true;
773
774 /* find_separate_debug_file_in_section should be called only if there is
775 single binary with no existing separate debug info file. */
776 if (!objfile->has_partial_symbols ()
777 && objfile->separate_debug_objfile == NULL
778 && objfile->separate_debug_objfile_backlink == NULL)
779 {
780 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
781
782 if (abfd != NULL)
783 {
784 /* find_separate_debug_file_in_section uses the same filename for the
785 virtual section-as-bfd like the bfd filename containing the
786 section. Therefore use also non-canonical name form for the same
787 file containing the section. */
788 symbol_file_add_separate (abfd.get (),
789 bfd_get_filename (abfd.get ()),
790 add_flags | SYMFILE_NOT_FILENAME, objfile);
791 }
792 }
793 if ((add_flags & SYMFILE_NO_READ) == 0)
794 objfile->require_partial_symbols (false);
795 }
796
797 /* Initialize entry point information for this objfile. */
798
799 static void
800 init_entry_point_info (struct objfile *objfile)
801 {
802 struct entry_info *ei = &objfile->per_bfd->ei;
803
804 if (ei->initialized)
805 return;
806 ei->initialized = 1;
807
808 /* Save startup file's range of PC addresses to help blockframe.c
809 decide where the bottom of the stack is. */
810
811 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
812 {
813 /* Executable file -- record its entry point so we'll recognize
814 the startup file because it contains the entry point. */
815 ei->entry_point = bfd_get_start_address (objfile->obfd);
816 ei->entry_point_p = 1;
817 }
818 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
819 && bfd_get_start_address (objfile->obfd) != 0)
820 {
821 /* Some shared libraries may have entry points set and be
822 runnable. There's no clear way to indicate this, so just check
823 for values other than zero. */
824 ei->entry_point = bfd_get_start_address (objfile->obfd);
825 ei->entry_point_p = 1;
826 }
827 else
828 {
829 /* Examination of non-executable.o files. Short-circuit this stuff. */
830 ei->entry_point_p = 0;
831 }
832
833 if (ei->entry_point_p)
834 {
835 struct obj_section *osect;
836 CORE_ADDR entry_point = ei->entry_point;
837 int found;
838
839 /* Make certain that the address points at real code, and not a
840 function descriptor. */
841 entry_point = gdbarch_convert_from_func_ptr_addr
842 (objfile->arch (), entry_point, current_inferior ()->top_target ());
843
844 /* Remove any ISA markers, so that this matches entries in the
845 symbol table. */
846 ei->entry_point
847 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
848
849 found = 0;
850 ALL_OBJFILE_OSECTIONS (objfile, osect)
851 {
852 struct bfd_section *sect = osect->the_bfd_section;
853
854 if (entry_point >= bfd_section_vma (sect)
855 && entry_point < (bfd_section_vma (sect)
856 + bfd_section_size (sect)))
857 {
858 ei->the_bfd_section_index
859 = gdb_bfd_section_index (objfile->obfd, sect);
860 found = 1;
861 break;
862 }
863 }
864
865 if (!found)
866 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
867 }
868 }
869
870 /* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
873 This function does not set the OBJFILE's entry-point info.
874
875 OBJFILE is where the symbols are to be read from.
876
877 ADDRS is the list of section load addresses. If the user has given
878 an 'add-symbol-file' command, then this is the list of offsets and
879 addresses he or she provided as arguments to the command; or, if
880 we're handling a shared library, these are the actual addresses the
881 sections are loaded at, according to the inferior's dynamic linker
882 (as gleaned by GDB's shared library code). We convert each address
883 into an offset from the section VMA's as it appears in the object
884 file, and then call the file's sym_offsets function to convert this
885 into a format-specific offset table --- a `section_offsets'.
886 The sectindex field is used to control the ordering of sections
887 with the same name. Upon return, it is updated to contain the
888 corresponding BFD section index, or -1 if the section was not found.
889
890 ADD_FLAGS encodes verbosity level, whether this is main symbol or
891 an extra symbol file such as dynamically loaded code, and whether
892 breakpoint reset should be deferred. */
893
894 static void
895 syms_from_objfile_1 (struct objfile *objfile,
896 section_addr_info *addrs,
897 symfile_add_flags add_flags)
898 {
899 section_addr_info local_addr;
900 const int mainline = add_flags & SYMFILE_MAINLINE;
901
902 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
903 objfile->qf.clear ();
904
905 if (objfile->sf == NULL)
906 {
907 /* No symbols to load, but we still need to make sure
908 that the section_offsets table is allocated. */
909 int num_sections = gdb_bfd_count_sections (objfile->obfd);
910
911 objfile->section_offsets.assign (num_sections, 0);
912 return;
913 }
914
915 /* Make sure that partially constructed symbol tables will be cleaned up
916 if an error occurs during symbol reading. */
917 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
918
919 objfile_up objfile_holder (objfile);
920
921 /* If ADDRS is NULL, put together a dummy address list.
922 We now establish the convention that an addr of zero means
923 no load address was specified. */
924 if (! addrs)
925 addrs = &local_addr;
926
927 if (mainline)
928 {
929 /* We will modify the main symbol table, make sure that all its users
930 will be cleaned up if an error occurs during symbol reading. */
931 defer_clear_users.emplace ((symfile_add_flag) 0);
932
933 /* Since no error yet, throw away the old symbol table. */
934
935 if (current_program_space->symfile_object_file != NULL)
936 {
937 current_program_space->symfile_object_file->unlink ();
938 gdb_assert (current_program_space->symfile_object_file == NULL);
939 }
940
941 /* Currently we keep symbols from the add-symbol-file command.
942 If the user wants to get rid of them, they should do "symbol-file"
943 without arguments first. Not sure this is the best behavior
944 (PR 2207). */
945
946 (*objfile->sf->sym_new_init) (objfile);
947 }
948
949 /* Convert addr into an offset rather than an absolute address.
950 We find the lowest address of a loaded segment in the objfile,
951 and assume that <addr> is where that got loaded.
952
953 We no longer warn if the lowest section is not a text segment (as
954 happens for the PA64 port. */
955 if (addrs->size () > 0)
956 addr_info_make_relative (addrs, objfile->obfd);
957
958 /* Initialize symbol reading routines for this objfile, allow complaints to
959 appear for this new file, and record how verbose to be, then do the
960 initial symbol reading for this file. */
961
962 (*objfile->sf->sym_init) (objfile);
963 clear_complaints ();
964
965 (*objfile->sf->sym_offsets) (objfile, *addrs);
966
967 read_symbols (objfile, add_flags);
968
969 /* Discard cleanups as symbol reading was successful. */
970
971 objfile_holder.release ();
972 if (defer_clear_users)
973 defer_clear_users->release ();
974 }
975
976 /* Same as syms_from_objfile_1, but also initializes the objfile
977 entry-point info. */
978
979 static void
980 syms_from_objfile (struct objfile *objfile,
981 section_addr_info *addrs,
982 symfile_add_flags add_flags)
983 {
984 syms_from_objfile_1 (objfile, addrs, add_flags);
985 init_entry_point_info (objfile);
986 }
987
988 /* Perform required actions after either reading in the initial
989 symbols for a new objfile, or mapping in the symbols from a reusable
990 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
991
992 static void
993 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
994 {
995 /* If this is the main symbol file we have to clean up all users of the
996 old main symbol file. Otherwise it is sufficient to fixup all the
997 breakpoints that may have been redefined by this symbol file. */
998 if (add_flags & SYMFILE_MAINLINE)
999 {
1000 /* OK, make it the "real" symbol file. */
1001 current_program_space->symfile_object_file = objfile;
1002
1003 clear_symtab_users (add_flags);
1004 }
1005 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1006 {
1007 breakpoint_re_set ();
1008 }
1009
1010 /* We're done reading the symbol file; finish off complaints. */
1011 clear_complaints ();
1012 }
1013
1014 /* Process a symbol file, as either the main file or as a dynamically
1015 loaded file.
1016
1017 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1018 A new reference is acquired by this function.
1019
1020 For NAME description see the objfile constructor.
1021
1022 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1023 extra, such as dynamically loaded code, and what to do with breakpoints.
1024
1025 ADDRS is as described for syms_from_objfile_1, above.
1026 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1027
1028 PARENT is the original objfile if ABFD is a separate debug info file.
1029 Otherwise PARENT is NULL.
1030
1031 Upon success, returns a pointer to the objfile that was added.
1032 Upon failure, jumps back to command level (never returns). */
1033
1034 static struct objfile *
1035 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1036 symfile_add_flags add_flags,
1037 section_addr_info *addrs,
1038 objfile_flags flags, struct objfile *parent)
1039 {
1040 struct objfile *objfile;
1041 const int from_tty = add_flags & SYMFILE_VERBOSE;
1042 const int mainline = add_flags & SYMFILE_MAINLINE;
1043 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1044 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1045 && (readnow_symbol_files
1046 || (add_flags & SYMFILE_NO_READ) == 0));
1047
1048 if (readnow_symbol_files)
1049 {
1050 flags |= OBJF_READNOW;
1051 add_flags &= ~SYMFILE_NO_READ;
1052 }
1053 else if (readnever_symbol_files
1054 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1055 {
1056 flags |= OBJF_READNEVER;
1057 add_flags |= SYMFILE_NO_READ;
1058 }
1059 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1060 flags |= OBJF_NOT_FILENAME;
1061
1062 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1063 interactively wiping out any existing symbols. */
1064
1065 if (from_tty
1066 && (always_confirm
1067 || ((have_full_symbols () || have_partial_symbols ())
1068 && mainline))
1069 && !query (_("Load new symbol table from \"%s\"? "), name))
1070 error (_("Not confirmed."));
1071
1072 if (mainline)
1073 flags |= OBJF_MAINLINE;
1074 objfile = objfile::make (abfd, name, flags, parent);
1075
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (should_print)
1080 {
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1083 else
1084 printf_filtered (_("Reading symbols from %ps...\n"),
1085 styled_string (file_name_style.style (), name));
1086 }
1087 syms_from_objfile (objfile, addrs, add_flags);
1088
1089 /* We now have at least a partial symbol table. Check to see if the
1090 user requested that all symbols be read on initial access via either
1091 the gdb startup command line or on a per symbol file basis. Expand
1092 all partial symbol tables for this objfile if so. */
1093
1094 if ((flags & OBJF_READNOW))
1095 {
1096 if (should_print)
1097 printf_filtered (_("Expanding full symbols from %ps...\n"),
1098 styled_string (file_name_style.style (), name));
1099
1100 objfile->expand_all_symtabs ();
1101 }
1102
1103 /* Note that we only print a message if we have no symbols and have
1104 no separate debug file. If there is a separate debug file which
1105 does not have symbols, we'll have emitted this message for that
1106 file, and so printing it twice is just redundant. */
1107 if (should_print && !objfile_has_symbols (objfile)
1108 && objfile->separate_debug_objfile == nullptr)
1109 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (should_print)
1113 {
1114 if (deprecated_post_add_symbol_hook)
1115 deprecated_post_add_symbol_hook ();
1116 }
1117
1118 /* We print some messages regardless of whether 'from_tty ||
1119 info_verbose' is true, so make sure they go out at the right
1120 time. */
1121 gdb_flush (gdb_stdout);
1122
1123 if (objfile->sf == NULL)
1124 {
1125 gdb::observers::new_objfile.notify (objfile);
1126 return objfile; /* No symbols. */
1127 }
1128
1129 finish_new_objfile (objfile, add_flags);
1130
1131 gdb::observers::new_objfile.notify (objfile);
1132
1133 bfd_cache_close_all ();
1134 return (objfile);
1135 }
1136
1137 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1138 see the objfile constructor. */
1139
1140 void
1141 symbol_file_add_separate (bfd *bfd, const char *name,
1142 symfile_add_flags symfile_flags,
1143 struct objfile *objfile)
1144 {
1145 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1146 because sections of BFD may not match sections of OBJFILE and because
1147 vma may have been modified by tools such as prelink. */
1148 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1149
1150 symbol_file_add_with_addrs
1151 (bfd, name, symfile_flags, &sap,
1152 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1153 | OBJF_USERLOADED | OBJF_MAINLINE),
1154 objfile);
1155 }
1156
1157 /* Process the symbol file ABFD, as either the main file or as a
1158 dynamically loaded file.
1159 See symbol_file_add_with_addrs's comments for details. */
1160
1161 struct objfile *
1162 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1163 symfile_add_flags add_flags,
1164 section_addr_info *addrs,
1165 objfile_flags flags, struct objfile *parent)
1166 {
1167 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1168 parent);
1169 }
1170
1171 /* Process a symbol file, as either the main file or as a dynamically
1172 loaded file. See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add (const char *name, symfile_add_flags add_flags,
1176 section_addr_info *addrs, objfile_flags flags)
1177 {
1178 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1179
1180 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1181 flags, NULL);
1182 }
1183
1184 /* Call symbol_file_add() with default values and update whatever is
1185 affected by the loading of a new main().
1186 Used when the file is supplied in the gdb command line
1187 and by some targets with special loading requirements.
1188 The auxiliary function, symbol_file_add_main_1(), has the flags
1189 argument for the switches that can only be specified in the symbol_file
1190 command itself. */
1191
1192 void
1193 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1194 {
1195 symbol_file_add_main_1 (args, add_flags, 0, 0);
1196 }
1197
1198 static void
1199 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1200 objfile_flags flags, CORE_ADDR reloff)
1201 {
1202 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1203
1204 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1205 if (reloff != 0)
1206 objfile_rebase (objfile, reloff);
1207
1208 /* Getting new symbols may change our opinion about
1209 what is frameless. */
1210 reinit_frame_cache ();
1211
1212 if ((add_flags & SYMFILE_NO_READ) == 0)
1213 set_initial_language ();
1214 }
1215
1216 void
1217 symbol_file_clear (int from_tty)
1218 {
1219 if ((have_full_symbols () || have_partial_symbols ())
1220 && from_tty
1221 && (current_program_space->symfile_object_file
1222 ? !query (_("Discard symbol table from `%s'? "),
1223 objfile_name (current_program_space->symfile_object_file))
1224 : !query (_("Discard symbol table? "))))
1225 error (_("Not confirmed."));
1226
1227 /* solib descriptors may have handles to objfiles. Wipe them before their
1228 objfiles get stale by free_all_objfiles. */
1229 no_shared_libraries (NULL, from_tty);
1230
1231 current_program_space->free_all_objfiles ();
1232
1233 clear_symtab_users (0);
1234
1235 gdb_assert (current_program_space->symfile_object_file == NULL);
1236 if (from_tty)
1237 printf_filtered (_("No symbol file now.\n"));
1238 }
1239
1240 /* See symfile.h. */
1241
1242 bool separate_debug_file_debug = false;
1243
1244 static int
1245 separate_debug_file_exists (const std::string &name, unsigned long crc,
1246 struct objfile *parent_objfile)
1247 {
1248 unsigned long file_crc;
1249 int file_crc_p;
1250 struct stat parent_stat, abfd_stat;
1251 int verified_as_different;
1252
1253 /* Find a separate debug info file as if symbols would be present in
1254 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1255 section can contain just the basename of PARENT_OBJFILE without any
1256 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1257 the separate debug infos with the same basename can exist. */
1258
1259 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1260 return 0;
1261
1262 if (separate_debug_file_debug)
1263 {
1264 printf_filtered (_(" Trying %s..."), name.c_str ());
1265 gdb_flush (gdb_stdout);
1266 }
1267
1268 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1269
1270 if (abfd == NULL)
1271 {
1272 if (separate_debug_file_debug)
1273 printf_filtered (_(" no, unable to open.\n"));
1274
1275 return 0;
1276 }
1277
1278 /* Verify symlinks were not the cause of filename_cmp name difference above.
1279
1280 Some operating systems, e.g. Windows, do not provide a meaningful
1281 st_ino; they always set it to zero. (Windows does provide a
1282 meaningful st_dev.) Files accessed from gdbservers that do not
1283 support the vFile:fstat packet will also have st_ino set to zero.
1284 Do not indicate a duplicate library in either case. While there
1285 is no guarantee that a system that provides meaningful inode
1286 numbers will never set st_ino to zero, this is merely an
1287 optimization, so we do not need to worry about false negatives. */
1288
1289 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1290 && abfd_stat.st_ino != 0
1291 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1292 {
1293 if (abfd_stat.st_dev == parent_stat.st_dev
1294 && abfd_stat.st_ino == parent_stat.st_ino)
1295 {
1296 if (separate_debug_file_debug)
1297 printf_filtered (_(" no, same file as the objfile.\n"));
1298
1299 return 0;
1300 }
1301 verified_as_different = 1;
1302 }
1303 else
1304 verified_as_different = 0;
1305
1306 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1307
1308 if (!file_crc_p)
1309 {
1310 if (separate_debug_file_debug)
1311 printf_filtered (_(" no, error computing CRC.\n"));
1312
1313 return 0;
1314 }
1315
1316 if (crc != file_crc)
1317 {
1318 unsigned long parent_crc;
1319
1320 /* If the files could not be verified as different with
1321 bfd_stat then we need to calculate the parent's CRC
1322 to verify whether the files are different or not. */
1323
1324 if (!verified_as_different)
1325 {
1326 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1327 {
1328 if (separate_debug_file_debug)
1329 printf_filtered (_(" no, error computing CRC.\n"));
1330
1331 return 0;
1332 }
1333 }
1334
1335 if (verified_as_different || parent_crc != file_crc)
1336 warning (_("the debug information found in \"%s\""
1337 " does not match \"%s\" (CRC mismatch).\n"),
1338 name.c_str (), objfile_name (parent_objfile));
1339
1340 if (separate_debug_file_debug)
1341 printf_filtered (_(" no, CRC doesn't match.\n"));
1342
1343 return 0;
1344 }
1345
1346 if (separate_debug_file_debug)
1347 printf_filtered (_(" yes!\n"));
1348
1349 return 1;
1350 }
1351
1352 char *debug_file_directory = NULL;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, or an empty
1373 string. */
1374
1375 static std::string
1376 find_separate_debug_file (const char *dir,
1377 const char *canon_dir,
1378 const char *debuglink,
1379 unsigned long crc32, struct objfile *objfile)
1380 {
1381 if (separate_debug_file_debug)
1382 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1383 "%s\n"), objfile_name (objfile));
1384
1385 /* First try in the same directory as the original file. */
1386 std::string debugfile = dir;
1387 debugfile += debuglink;
1388
1389 if (separate_debug_file_exists (debugfile, crc32, objfile))
1390 return debugfile;
1391
1392 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1393 debugfile = dir;
1394 debugfile += DEBUG_SUBDIRECTORY;
1395 debugfile += "/";
1396 debugfile += debuglink;
1397
1398 if (separate_debug_file_exists (debugfile, crc32, objfile))
1399 return debugfile;
1400
1401 /* Then try in the global debugfile directories.
1402
1403 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1404 cause "/..." lookups. */
1405
1406 bool target_prefix = startswith (dir, "target:");
1407 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1408 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1409 = dirnames_to_char_ptr_vec (debug_file_directory);
1410 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1411
1412 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1413 convert the drive letter into a one-letter directory, so that the
1414 file name resulting from splicing below will be valid.
1415
1416 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1417 There are various remote-debugging scenarios where such a
1418 transformation of the drive letter might be required when GDB runs
1419 on a Posix host, see
1420
1421 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1422
1423 If some of those scenarios need to be supported, we will need to
1424 use a different condition for HAS_DRIVE_SPEC and a different macro
1425 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1426 std::string drive;
1427 if (HAS_DRIVE_SPEC (dir_notarget))
1428 {
1429 drive = dir_notarget[0];
1430 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1431 }
1432
1433 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1434 {
1435 debugfile = target_prefix ? "target:" : "";
1436 debugfile += debugdir.get ();
1437 debugfile += "/";
1438 debugfile += drive;
1439 debugfile += dir_notarget;
1440 debugfile += debuglink;
1441
1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
1443 return debugfile;
1444
1445 const char *base_path = NULL;
1446 if (canon_dir != NULL)
1447 {
1448 if (canon_sysroot.get () != NULL)
1449 base_path = child_path (canon_sysroot.get (), canon_dir);
1450 else
1451 base_path = child_path (gdb_sysroot, canon_dir);
1452 }
1453 if (base_path != NULL)
1454 {
1455 /* If the file is in the sysroot, try using its base path in
1456 the global debugfile directory. */
1457 debugfile = target_prefix ? "target:" : "";
1458 debugfile += debugdir.get ();
1459 debugfile += "/";
1460 debugfile += base_path;
1461 debugfile += "/";
1462 debugfile += debuglink;
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* If the file is in the sysroot, try using its base path in
1468 the sysroot's global debugfile directory. */
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += gdb_sysroot;
1471 debugfile += debugdir.get ();
1472 debugfile += "/";
1473 debugfile += base_path;
1474 debugfile += "/";
1475 debugfile += debuglink;
1476
1477 if (separate_debug_file_exists (debugfile, crc32, objfile))
1478 return debugfile;
1479 }
1480
1481 }
1482
1483 return std::string ();
1484 }
1485
1486 /* Modify PATH to contain only "[/]directory/" part of PATH.
1487 If there were no directory separators in PATH, PATH will be empty
1488 string on return. */
1489
1490 static void
1491 terminate_after_last_dir_separator (char *path)
1492 {
1493 int i;
1494
1495 /* Strip off the final filename part, leaving the directory name,
1496 followed by a slash. The directory can be relative or absolute. */
1497 for (i = strlen(path) - 1; i >= 0; i--)
1498 if (IS_DIR_SEPARATOR (path[i]))
1499 break;
1500
1501 /* If I is -1 then no directory is present there and DIR will be "". */
1502 path[i + 1] = '\0';
1503 }
1504
1505 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1506 Returns pathname, or an empty string. */
1507
1508 std::string
1509 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1510 {
1511 unsigned long crc32;
1512
1513 gdb::unique_xmalloc_ptr<char> debuglink
1514 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1515
1516 if (debuglink == NULL)
1517 {
1518 /* There's no separate debug info, hence there's no way we could
1519 load it => no warning. */
1520 return std::string ();
1521 }
1522
1523 std::string dir = objfile_name (objfile);
1524 terminate_after_last_dir_separator (&dir[0]);
1525 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1526
1527 std::string debugfile
1528 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1529 debuglink.get (), crc32, objfile);
1530
1531 if (debugfile.empty ())
1532 {
1533 /* For PR gdb/9538, try again with realpath (if different from the
1534 original). */
1535
1536 struct stat st_buf;
1537
1538 if (lstat (objfile_name (objfile), &st_buf) == 0
1539 && S_ISLNK (st_buf.st_mode))
1540 {
1541 gdb::unique_xmalloc_ptr<char> symlink_dir
1542 (lrealpath (objfile_name (objfile)));
1543 if (symlink_dir != NULL)
1544 {
1545 terminate_after_last_dir_separator (symlink_dir.get ());
1546 if (dir != symlink_dir.get ())
1547 {
1548 /* Different directory, so try using it. */
1549 debugfile = find_separate_debug_file (symlink_dir.get (),
1550 symlink_dir.get (),
1551 debuglink.get (),
1552 crc32,
1553 objfile);
1554 }
1555 }
1556 }
1557 }
1558
1559 return debugfile;
1560 }
1561
1562 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1563 simultaneously. */
1564
1565 static void
1566 validate_readnow_readnever (objfile_flags flags)
1567 {
1568 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1569 error (_("-readnow and -readnever cannot be used simultaneously"));
1570 }
1571
1572 /* This is the symbol-file command. Read the file, analyze its
1573 symbols, and add a struct symtab to a symtab list. The syntax of
1574 the command is rather bizarre:
1575
1576 1. The function buildargv implements various quoting conventions
1577 which are undocumented and have little or nothing in common with
1578 the way things are quoted (or not quoted) elsewhere in GDB.
1579
1580 2. Options are used, which are not generally used in GDB (perhaps
1581 "set mapped on", "set readnow on" would be better)
1582
1583 3. The order of options matters, which is contrary to GNU
1584 conventions (because it is confusing and inconvenient). */
1585
1586 void
1587 symbol_file_command (const char *args, int from_tty)
1588 {
1589 dont_repeat ();
1590
1591 if (args == NULL)
1592 {
1593 symbol_file_clear (from_tty);
1594 }
1595 else
1596 {
1597 objfile_flags flags = OBJF_USERLOADED;
1598 symfile_add_flags add_flags = 0;
1599 char *name = NULL;
1600 bool stop_processing_options = false;
1601 CORE_ADDR offset = 0;
1602 int idx;
1603 char *arg;
1604
1605 if (from_tty)
1606 add_flags |= SYMFILE_VERBOSE;
1607
1608 gdb_argv built_argv (args);
1609 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1610 {
1611 if (stop_processing_options || *arg != '-')
1612 {
1613 if (name == NULL)
1614 name = arg;
1615 else
1616 error (_("Unrecognized argument \"%s\""), arg);
1617 }
1618 else if (strcmp (arg, "-readnow") == 0)
1619 flags |= OBJF_READNOW;
1620 else if (strcmp (arg, "-readnever") == 0)
1621 flags |= OBJF_READNEVER;
1622 else if (strcmp (arg, "-o") == 0)
1623 {
1624 arg = built_argv[++idx];
1625 if (arg == NULL)
1626 error (_("Missing argument to -o"));
1627
1628 offset = parse_and_eval_address (arg);
1629 }
1630 else if (strcmp (arg, "--") == 0)
1631 stop_processing_options = true;
1632 else
1633 error (_("Unrecognized argument \"%s\""), arg);
1634 }
1635
1636 if (name == NULL)
1637 error (_("no symbol file name was specified"));
1638
1639 validate_readnow_readnever (flags);
1640
1641 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1642 (Position Independent Executable) main symbol file will only be
1643 computed by the solib_create_inferior_hook below. Without it,
1644 breakpoint_re_set would fail to insert the breakpoints with the zero
1645 displacement. */
1646 add_flags |= SYMFILE_DEFER_BP_RESET;
1647
1648 symbol_file_add_main_1 (name, add_flags, flags, offset);
1649
1650 solib_create_inferior_hook (from_tty);
1651
1652 /* Now it's safe to re-add the breakpoints. */
1653 breakpoint_re_set ();
1654 }
1655 }
1656
1657 /* Set the initial language. */
1658
1659 void
1660 set_initial_language (void)
1661 {
1662 if (language_mode == language_mode_manual)
1663 return;
1664 enum language lang = main_language ();
1665 /* Make C the default language. */
1666 enum language default_lang = language_c;
1667
1668 if (lang == language_unknown)
1669 {
1670 const char *name = main_name ();
1671 struct symbol *sym
1672 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1673 NULL).symbol;
1674
1675 if (sym != NULL)
1676 lang = sym->language ();
1677 }
1678
1679 if (lang == language_unknown)
1680 {
1681 lang = default_lang;
1682 }
1683
1684 set_language (lang);
1685 expected_language = current_language; /* Don't warn the user. */
1686 }
1687
1688 /* Open the file specified by NAME and hand it off to BFD for
1689 preliminary analysis. Return a newly initialized bfd *, which
1690 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1691 absolute). In case of trouble, error() is called. */
1692
1693 gdb_bfd_ref_ptr
1694 symfile_bfd_open (const char *name)
1695 {
1696 int desc = -1;
1697
1698 gdb::unique_xmalloc_ptr<char> absolute_name;
1699 if (!is_target_filename (name))
1700 {
1701 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1702
1703 /* Look down path for it, allocate 2nd new malloc'd copy. */
1704 desc = openp (getenv ("PATH"),
1705 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1706 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1707 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1708 if (desc < 0)
1709 {
1710 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1711
1712 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1713 desc = openp (getenv ("PATH"),
1714 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1715 exename, O_RDONLY | O_BINARY, &absolute_name);
1716 }
1717 #endif
1718 if (desc < 0)
1719 perror_with_name (expanded_name.get ());
1720
1721 name = absolute_name.get ();
1722 }
1723
1724 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1725 if (sym_bfd == NULL)
1726 error (_("`%s': can't open to read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1728
1729 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1730 bfd_set_cacheable (sym_bfd.get (), 1);
1731
1732 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 return sym_bfd;
1737 }
1738
1739 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1740 the section was not found. */
1741
1742 int
1743 get_section_index (struct objfile *objfile, const char *section_name)
1744 {
1745 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1746
1747 if (sect)
1748 return sect->index;
1749 else
1750 return -1;
1751 }
1752
1753 /* Link SF into the global symtab_fns list.
1754 FLAVOUR is the file format that SF handles.
1755 Called on startup by the _initialize routine in each object file format
1756 reader, to register information about each format the reader is prepared
1757 to handle. */
1758
1759 void
1760 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1761 {
1762 symtab_fns.emplace_back (flavour, sf);
1763 }
1764
1765 /* Initialize OBJFILE to read symbols from its associated BFD. It
1766 either returns or calls error(). The result is an initialized
1767 struct sym_fns in the objfile structure, that contains cached
1768 information about the symbol file. */
1769
1770 static const struct sym_fns *
1771 find_sym_fns (bfd *abfd)
1772 {
1773 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1774
1775 if (our_flavour == bfd_target_srec_flavour
1776 || our_flavour == bfd_target_ihex_flavour
1777 || our_flavour == bfd_target_tekhex_flavour)
1778 return NULL; /* No symbols. */
1779
1780 for (const registered_sym_fns &rsf : symtab_fns)
1781 if (our_flavour == rsf.sym_flavour)
1782 return rsf.sym_fns;
1783
1784 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1785 bfd_get_target (abfd));
1786 }
1787 \f
1788
1789 /* This function runs the load command of our current target. */
1790
1791 static void
1792 load_command (const char *arg, int from_tty)
1793 {
1794 dont_repeat ();
1795
1796 /* The user might be reloading because the binary has changed. Take
1797 this opportunity to check. */
1798 reopen_exec_file ();
1799 reread_symbols ();
1800
1801 std::string temp;
1802 if (arg == NULL)
1803 {
1804 const char *parg, *prev;
1805
1806 arg = get_exec_file (1);
1807
1808 /* We may need to quote this string so buildargv can pull it
1809 apart. */
1810 prev = parg = arg;
1811 while ((parg = strpbrk (parg, "\\\"'\t ")))
1812 {
1813 temp.append (prev, parg - prev);
1814 prev = parg++;
1815 temp.push_back ('\\');
1816 }
1817 /* If we have not copied anything yet, then we didn't see a
1818 character to quote, and we can just leave ARG unchanged. */
1819 if (!temp.empty ())
1820 {
1821 temp.append (prev);
1822 arg = temp.c_str ();
1823 }
1824 }
1825
1826 target_load (arg, from_tty);
1827
1828 /* After re-loading the executable, we don't really know which
1829 overlays are mapped any more. */
1830 overlay_cache_invalid = 1;
1831 }
1832
1833 /* This version of "load" should be usable for any target. Currently
1834 it is just used for remote targets, not inftarg.c or core files,
1835 on the theory that only in that case is it useful.
1836
1837 Avoiding xmodem and the like seems like a win (a) because we don't have
1838 to worry about finding it, and (b) On VMS, fork() is very slow and so
1839 we don't want to run a subprocess. On the other hand, I'm not sure how
1840 performance compares. */
1841
1842 static int validate_download = 0;
1843
1844 /* Opaque data for load_progress. */
1845 struct load_progress_data
1846 {
1847 /* Cumulative data. */
1848 unsigned long write_count = 0;
1849 unsigned long data_count = 0;
1850 bfd_size_type total_size = 0;
1851 };
1852
1853 /* Opaque data for load_progress for a single section. */
1854 struct load_progress_section_data
1855 {
1856 load_progress_section_data (load_progress_data *cumulative_,
1857 const char *section_name_, ULONGEST section_size_,
1858 CORE_ADDR lma_, gdb_byte *buffer_)
1859 : cumulative (cumulative_), section_name (section_name_),
1860 section_size (section_size_), lma (lma_), buffer (buffer_)
1861 {}
1862
1863 struct load_progress_data *cumulative;
1864
1865 /* Per-section data. */
1866 const char *section_name;
1867 ULONGEST section_sent = 0;
1868 ULONGEST section_size;
1869 CORE_ADDR lma;
1870 gdb_byte *buffer;
1871 };
1872
1873 /* Opaque data for load_section_callback. */
1874 struct load_section_data
1875 {
1876 load_section_data (load_progress_data *progress_data_)
1877 : progress_data (progress_data_)
1878 {}
1879
1880 ~load_section_data ()
1881 {
1882 for (auto &&request : requests)
1883 {
1884 xfree (request.data);
1885 delete ((load_progress_section_data *) request.baton);
1886 }
1887 }
1888
1889 CORE_ADDR load_offset = 0;
1890 struct load_progress_data *progress_data;
1891 std::vector<struct memory_write_request> requests;
1892 };
1893
1894 /* Target write callback routine for progress reporting. */
1895
1896 static void
1897 load_progress (ULONGEST bytes, void *untyped_arg)
1898 {
1899 struct load_progress_section_data *args
1900 = (struct load_progress_section_data *) untyped_arg;
1901 struct load_progress_data *totals;
1902
1903 if (args == NULL)
1904 /* Writing padding data. No easy way to get at the cumulative
1905 stats, so just ignore this. */
1906 return;
1907
1908 totals = args->cumulative;
1909
1910 if (bytes == 0 && args->section_sent == 0)
1911 {
1912 /* The write is just starting. Let the user know we've started
1913 this section. */
1914 current_uiout->message ("Loading section %s, size %s lma %s\n",
1915 args->section_name,
1916 hex_string (args->section_size),
1917 paddress (target_gdbarch (), args->lma));
1918 return;
1919 }
1920
1921 if (validate_download)
1922 {
1923 /* Broken memories and broken monitors manifest themselves here
1924 when bring new computers to life. This doubles already slow
1925 downloads. */
1926 /* NOTE: cagney/1999-10-18: A more efficient implementation
1927 might add a verify_memory() method to the target vector and
1928 then use that. remote.c could implement that method using
1929 the ``qCRC'' packet. */
1930 gdb::byte_vector check (bytes);
1931
1932 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1933 error (_("Download verify read failed at %s"),
1934 paddress (target_gdbarch (), args->lma));
1935 if (memcmp (args->buffer, check.data (), bytes) != 0)
1936 error (_("Download verify compare failed at %s"),
1937 paddress (target_gdbarch (), args->lma));
1938 }
1939 totals->data_count += bytes;
1940 args->lma += bytes;
1941 args->buffer += bytes;
1942 totals->write_count += 1;
1943 args->section_sent += bytes;
1944 if (check_quit_flag ()
1945 || (deprecated_ui_load_progress_hook != NULL
1946 && deprecated_ui_load_progress_hook (args->section_name,
1947 args->section_sent)))
1948 error (_("Canceled the download"));
1949
1950 if (deprecated_show_load_progress != NULL)
1951 deprecated_show_load_progress (args->section_name,
1952 args->section_sent,
1953 args->section_size,
1954 totals->data_count,
1955 totals->total_size);
1956 }
1957
1958 /* Service function for generic_load. */
1959
1960 static void
1961 load_one_section (bfd *abfd, asection *asec,
1962 struct load_section_data *args)
1963 {
1964 bfd_size_type size = bfd_section_size (asec);
1965 const char *sect_name = bfd_section_name (asec);
1966
1967 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1968 return;
1969
1970 if (size == 0)
1971 return;
1972
1973 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1974 ULONGEST end = begin + size;
1975 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1976 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1977
1978 load_progress_section_data *section_data
1979 = new load_progress_section_data (args->progress_data, sect_name, size,
1980 begin, buffer);
1981
1982 args->requests.emplace_back (begin, end, buffer, section_data);
1983 }
1984
1985 static void print_transfer_performance (struct ui_file *stream,
1986 unsigned long data_count,
1987 unsigned long write_count,
1988 std::chrono::steady_clock::duration d);
1989
1990 /* See symfile.h. */
1991
1992 void
1993 generic_load (const char *args, int from_tty)
1994 {
1995 struct load_progress_data total_progress;
1996 struct load_section_data cbdata (&total_progress);
1997 struct ui_out *uiout = current_uiout;
1998
1999 if (args == NULL)
2000 error_no_arg (_("file to load"));
2001
2002 gdb_argv argv (args);
2003
2004 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2005
2006 if (argv[1] != NULL)
2007 {
2008 const char *endptr;
2009
2010 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2011
2012 /* If the last word was not a valid number then
2013 treat it as a file name with spaces in. */
2014 if (argv[1] == endptr)
2015 error (_("Invalid download offset:%s."), argv[1]);
2016
2017 if (argv[2] != NULL)
2018 error (_("Too many parameters."));
2019 }
2020
2021 /* Open the file for loading. */
2022 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2023 if (loadfile_bfd == NULL)
2024 perror_with_name (filename.get ());
2025
2026 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2027 {
2028 error (_("\"%s\" is not an object file: %s"), filename.get (),
2029 bfd_errmsg (bfd_get_error ()));
2030 }
2031
2032 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2033 total_progress.total_size += bfd_section_size (asec);
2034
2035 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2036 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2037
2038 using namespace std::chrono;
2039
2040 steady_clock::time_point start_time = steady_clock::now ();
2041
2042 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2043 load_progress) != 0)
2044 error (_("Load failed"));
2045
2046 steady_clock::time_point end_time = steady_clock::now ();
2047
2048 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2049 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2050 uiout->text ("Start address ");
2051 uiout->field_core_addr ("address", target_gdbarch (), entry);
2052 uiout->text (", load size ");
2053 uiout->field_unsigned ("load-size", total_progress.data_count);
2054 uiout->text ("\n");
2055 regcache_write_pc (get_current_regcache (), entry);
2056
2057 /* Reset breakpoints, now that we have changed the load image. For
2058 instance, breakpoints may have been set (or reset, by
2059 post_create_inferior) while connected to the target but before we
2060 loaded the program. In that case, the prologue analyzer could
2061 have read instructions from the target to find the right
2062 breakpoint locations. Loading has changed the contents of that
2063 memory. */
2064
2065 breakpoint_re_set ();
2066
2067 print_transfer_performance (gdb_stdout, total_progress.data_count,
2068 total_progress.write_count,
2069 end_time - start_time);
2070 }
2071
2072 /* Report on STREAM the performance of a memory transfer operation,
2073 such as 'load'. DATA_COUNT is the number of bytes transferred.
2074 WRITE_COUNT is the number of separate write operations, or 0, if
2075 that information is not available. TIME is how long the operation
2076 lasted. */
2077
2078 static void
2079 print_transfer_performance (struct ui_file *stream,
2080 unsigned long data_count,
2081 unsigned long write_count,
2082 std::chrono::steady_clock::duration time)
2083 {
2084 using namespace std::chrono;
2085 struct ui_out *uiout = current_uiout;
2086
2087 milliseconds ms = duration_cast<milliseconds> (time);
2088
2089 uiout->text ("Transfer rate: ");
2090 if (ms.count () > 0)
2091 {
2092 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2093
2094 if (uiout->is_mi_like_p ())
2095 {
2096 uiout->field_unsigned ("transfer-rate", rate * 8);
2097 uiout->text (" bits/sec");
2098 }
2099 else if (rate < 1024)
2100 {
2101 uiout->field_unsigned ("transfer-rate", rate);
2102 uiout->text (" bytes/sec");
2103 }
2104 else
2105 {
2106 uiout->field_unsigned ("transfer-rate", rate / 1024);
2107 uiout->text (" KB/sec");
2108 }
2109 }
2110 else
2111 {
2112 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2113 uiout->text (" bits in <1 sec");
2114 }
2115 if (write_count > 0)
2116 {
2117 uiout->text (", ");
2118 uiout->field_unsigned ("write-rate", data_count / write_count);
2119 uiout->text (" bytes/write");
2120 }
2121 uiout->text (".\n");
2122 }
2123
2124 /* Add an OFFSET to the start address of each section in OBJF, except
2125 sections that were specified in ADDRS. */
2126
2127 static void
2128 set_objfile_default_section_offset (struct objfile *objf,
2129 const section_addr_info &addrs,
2130 CORE_ADDR offset)
2131 {
2132 /* Add OFFSET to all sections by default. */
2133 section_offsets offsets (objf->section_offsets.size (), offset);
2134
2135 /* Create sorted lists of all sections in ADDRS as well as all
2136 sections in OBJF. */
2137
2138 std::vector<const struct other_sections *> addrs_sorted
2139 = addrs_section_sort (addrs);
2140
2141 section_addr_info objf_addrs
2142 = build_section_addr_info_from_objfile (objf);
2143 std::vector<const struct other_sections *> objf_addrs_sorted
2144 = addrs_section_sort (objf_addrs);
2145
2146 /* Walk the BFD section list, and if a matching section is found in
2147 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2148 unchanged.
2149
2150 Note that both lists may contain multiple sections with the same
2151 name, and then the sections from ADDRS are matched in BFD order
2152 (thanks to sectindex). */
2153
2154 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2155 = addrs_sorted.begin ();
2156 for (const other_sections *objf_sect : objf_addrs_sorted)
2157 {
2158 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2159 int cmp = -1;
2160
2161 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2162 {
2163 const struct other_sections *sect = *addrs_sorted_iter;
2164 const char *sect_name = addr_section_name (sect->name.c_str ());
2165 cmp = strcmp (sect_name, objf_name);
2166 if (cmp <= 0)
2167 ++addrs_sorted_iter;
2168 }
2169
2170 if (cmp == 0)
2171 offsets[objf_sect->sectindex] = 0;
2172 }
2173
2174 /* Apply the new section offsets. */
2175 objfile_relocate (objf, offsets);
2176 }
2177
2178 /* This function allows the addition of incrementally linked object files.
2179 It does not modify any state in the target, only in the debugger. */
2180
2181 static void
2182 add_symbol_file_command (const char *args, int from_tty)
2183 {
2184 struct gdbarch *gdbarch = get_current_arch ();
2185 gdb::unique_xmalloc_ptr<char> filename;
2186 char *arg;
2187 int argcnt = 0;
2188 struct objfile *objf;
2189 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2190 symfile_add_flags add_flags = 0;
2191
2192 if (from_tty)
2193 add_flags |= SYMFILE_VERBOSE;
2194
2195 struct sect_opt
2196 {
2197 const char *name;
2198 const char *value;
2199 };
2200
2201 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2202 bool stop_processing_options = false;
2203 CORE_ADDR offset = 0;
2204
2205 dont_repeat ();
2206
2207 if (args == NULL)
2208 error (_("add-symbol-file takes a file name and an address"));
2209
2210 bool seen_addr = false;
2211 bool seen_offset = false;
2212 gdb_argv argv (args);
2213
2214 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2215 {
2216 if (stop_processing_options || *arg != '-')
2217 {
2218 if (filename == NULL)
2219 {
2220 /* First non-option argument is always the filename. */
2221 filename.reset (tilde_expand (arg));
2222 }
2223 else if (!seen_addr)
2224 {
2225 /* The second non-option argument is always the text
2226 address at which to load the program. */
2227 sect_opts[0].value = arg;
2228 seen_addr = true;
2229 }
2230 else
2231 error (_("Unrecognized argument \"%s\""), arg);
2232 }
2233 else if (strcmp (arg, "-readnow") == 0)
2234 flags |= OBJF_READNOW;
2235 else if (strcmp (arg, "-readnever") == 0)
2236 flags |= OBJF_READNEVER;
2237 else if (strcmp (arg, "-s") == 0)
2238 {
2239 if (argv[argcnt + 1] == NULL)
2240 error (_("Missing section name after \"-s\""));
2241 else if (argv[argcnt + 2] == NULL)
2242 error (_("Missing section address after \"-s\""));
2243
2244 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2245
2246 sect_opts.push_back (sect);
2247 argcnt += 2;
2248 }
2249 else if (strcmp (arg, "-o") == 0)
2250 {
2251 arg = argv[++argcnt];
2252 if (arg == NULL)
2253 error (_("Missing argument to -o"));
2254
2255 offset = parse_and_eval_address (arg);
2256 seen_offset = true;
2257 }
2258 else if (strcmp (arg, "--") == 0)
2259 stop_processing_options = true;
2260 else
2261 error (_("Unrecognized argument \"%s\""), arg);
2262 }
2263
2264 if (filename == NULL)
2265 error (_("You must provide a filename to be loaded."));
2266
2267 validate_readnow_readnever (flags);
2268
2269 /* Print the prompt for the query below. And save the arguments into
2270 a sect_addr_info structure to be passed around to other
2271 functions. We have to split this up into separate print
2272 statements because hex_string returns a local static
2273 string. */
2274
2275 printf_unfiltered (_("add symbol table from file \"%s\""),
2276 filename.get ());
2277 section_addr_info section_addrs;
2278 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2279 if (!seen_addr)
2280 ++it;
2281 for (; it != sect_opts.end (); ++it)
2282 {
2283 CORE_ADDR addr;
2284 const char *val = it->value;
2285 const char *sec = it->name;
2286
2287 if (section_addrs.empty ())
2288 printf_unfiltered (_(" at\n"));
2289 addr = parse_and_eval_address (val);
2290
2291 /* Here we store the section offsets in the order they were
2292 entered on the command line. Every array element is
2293 assigned an ascending section index to preserve the above
2294 order over an unstable sorting algorithm. This dummy
2295 index is not used for any other purpose.
2296 */
2297 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2298 printf_filtered ("\t%s_addr = %s\n", sec,
2299 paddress (gdbarch, addr));
2300
2301 /* The object's sections are initialized when a
2302 call is made to build_objfile_section_table (objfile).
2303 This happens in reread_symbols.
2304 At this point, we don't know what file type this is,
2305 so we can't determine what section names are valid. */
2306 }
2307 if (seen_offset)
2308 printf_unfiltered (_("%s offset by %s\n"),
2309 (section_addrs.empty ()
2310 ? _(" with all sections")
2311 : _("with other sections")),
2312 paddress (gdbarch, offset));
2313 else if (section_addrs.empty ())
2314 printf_unfiltered ("\n");
2315
2316 if (from_tty && (!query ("%s", "")))
2317 error (_("Not confirmed."));
2318
2319 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2320 flags);
2321 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2322 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2323 filename.get ());
2324
2325 if (seen_offset)
2326 set_objfile_default_section_offset (objf, section_addrs, offset);
2327
2328 current_program_space->add_target_sections (objf);
2329
2330 /* Getting new symbols may change our opinion about what is
2331 frameless. */
2332 reinit_frame_cache ();
2333 }
2334 \f
2335
2336 /* This function removes a symbol file that was added via add-symbol-file. */
2337
2338 static void
2339 remove_symbol_file_command (const char *args, int from_tty)
2340 {
2341 struct objfile *objf = NULL;
2342 struct program_space *pspace = current_program_space;
2343
2344 dont_repeat ();
2345
2346 if (args == NULL)
2347 error (_("remove-symbol-file: no symbol file provided"));
2348
2349 gdb_argv argv (args);
2350
2351 if (strcmp (argv[0], "-a") == 0)
2352 {
2353 /* Interpret the next argument as an address. */
2354 CORE_ADDR addr;
2355
2356 if (argv[1] == NULL)
2357 error (_("Missing address argument"));
2358
2359 if (argv[2] != NULL)
2360 error (_("Junk after %s"), argv[1]);
2361
2362 addr = parse_and_eval_address (argv[1]);
2363
2364 for (objfile *objfile : current_program_space->objfiles ())
2365 {
2366 if ((objfile->flags & OBJF_USERLOADED) != 0
2367 && (objfile->flags & OBJF_SHARED) != 0
2368 && objfile->pspace == pspace
2369 && is_addr_in_objfile (addr, objfile))
2370 {
2371 objf = objfile;
2372 break;
2373 }
2374 }
2375 }
2376 else if (argv[0] != NULL)
2377 {
2378 /* Interpret the current argument as a file name. */
2379
2380 if (argv[1] != NULL)
2381 error (_("Junk after %s"), argv[0]);
2382
2383 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2384
2385 for (objfile *objfile : current_program_space->objfiles ())
2386 {
2387 if ((objfile->flags & OBJF_USERLOADED) != 0
2388 && (objfile->flags & OBJF_SHARED) != 0
2389 && objfile->pspace == pspace
2390 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2391 {
2392 objf = objfile;
2393 break;
2394 }
2395 }
2396 }
2397
2398 if (objf == NULL)
2399 error (_("No symbol file found"));
2400
2401 if (from_tty
2402 && !query (_("Remove symbol table from file \"%s\"? "),
2403 objfile_name (objf)))
2404 error (_("Not confirmed."));
2405
2406 objf->unlink ();
2407 clear_symtab_users (0);
2408 }
2409
2410 /* Re-read symbols if a symbol-file has changed. */
2411
2412 void
2413 reread_symbols (void)
2414 {
2415 long new_modtime;
2416 struct stat new_statbuf;
2417 int res;
2418 std::vector<struct objfile *> new_objfiles;
2419
2420 for (objfile *objfile : current_program_space->objfiles ())
2421 {
2422 if (objfile->obfd == NULL)
2423 continue;
2424
2425 /* Separate debug objfiles are handled in the main objfile. */
2426 if (objfile->separate_debug_objfile_backlink)
2427 continue;
2428
2429 /* If this object is from an archive (what you usually create with
2430 `ar', often called a `static library' on most systems, though
2431 a `shared library' on AIX is also an archive), then you should
2432 stat on the archive name, not member name. */
2433 if (objfile->obfd->my_archive)
2434 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2435 else
2436 res = stat (objfile_name (objfile), &new_statbuf);
2437 if (res != 0)
2438 {
2439 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2440 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2441 objfile_name (objfile));
2442 continue;
2443 }
2444 new_modtime = new_statbuf.st_mtime;
2445 if (new_modtime != objfile->mtime)
2446 {
2447 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2448 objfile_name (objfile));
2449
2450 /* There are various functions like symbol_file_add,
2451 symfile_bfd_open, syms_from_objfile, etc., which might
2452 appear to do what we want. But they have various other
2453 effects which we *don't* want. So we just do stuff
2454 ourselves. We don't worry about mapped files (for one thing,
2455 any mapped file will be out of date). */
2456
2457 /* If we get an error, blow away this objfile (not sure if
2458 that is the correct response for things like shared
2459 libraries). */
2460 objfile_up objfile_holder (objfile);
2461
2462 /* We need to do this whenever any symbols go away. */
2463 clear_symtab_users_cleanup defer_clear_users (0);
2464
2465 if (current_program_space->exec_bfd () != NULL
2466 && filename_cmp (bfd_get_filename (objfile->obfd),
2467 bfd_get_filename (current_program_space->exec_bfd ())) == 0)
2468 {
2469 /* Reload EXEC_BFD without asking anything. */
2470
2471 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2472 }
2473
2474 /* Keep the calls order approx. the same as in free_objfile. */
2475
2476 /* Free the separate debug objfiles. It will be
2477 automatically recreated by sym_read. */
2478 free_objfile_separate_debug (objfile);
2479
2480 /* Clear the stale source cache. */
2481 forget_cached_source_info ();
2482
2483 /* Remove any references to this objfile in the global
2484 value lists. */
2485 preserve_values (objfile);
2486
2487 /* Nuke all the state that we will re-read. Much of the following
2488 code which sets things to NULL really is necessary to tell
2489 other parts of GDB that there is nothing currently there.
2490
2491 Try to keep the freeing order compatible with free_objfile. */
2492
2493 if (objfile->sf != NULL)
2494 {
2495 (*objfile->sf->sym_finish) (objfile);
2496 }
2497
2498 clear_objfile_data (objfile);
2499
2500 /* Clean up any state BFD has sitting around. */
2501 {
2502 gdb_bfd_ref_ptr obfd (objfile->obfd);
2503 const char *obfd_filename;
2504
2505 obfd_filename = bfd_get_filename (objfile->obfd);
2506 /* Open the new BFD before freeing the old one, so that
2507 the filename remains live. */
2508 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2509 objfile->obfd = temp.release ();
2510 if (objfile->obfd == NULL)
2511 error (_("Can't open %s to read symbols."), obfd_filename);
2512 }
2513
2514 std::string original_name = objfile->original_name;
2515
2516 /* bfd_openr sets cacheable to true, which is what we want. */
2517 if (!bfd_check_format (objfile->obfd, bfd_object))
2518 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2519 bfd_errmsg (bfd_get_error ()));
2520
2521 /* NB: after this call to obstack_free, objfiles_changed
2522 will need to be called (see discussion below). */
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->section_offsets.clear ();
2526 objfile->sect_index_bss = -1;
2527 objfile->sect_index_data = -1;
2528 objfile->sect_index_rodata = -1;
2529 objfile->sect_index_text = -1;
2530 objfile->compunit_symtabs = NULL;
2531 objfile->template_symbols = NULL;
2532 objfile->static_links.reset (nullptr);
2533
2534 /* obstack_init also initializes the obstack so it is
2535 empty. We could use obstack_specify_allocation but
2536 gdb_obstack.h specifies the alloc/dealloc functions. */
2537 obstack_init (&objfile->objfile_obstack);
2538
2539 /* set_objfile_per_bfd potentially allocates the per-bfd
2540 data on the objfile's obstack (if sharing data across
2541 multiple users is not possible), so it's important to
2542 do it *after* the obstack has been initialized. */
2543 set_objfile_per_bfd (objfile);
2544
2545 objfile->original_name
2546 = obstack_strdup (&objfile->objfile_obstack, original_name);
2547
2548 /* Reset the sym_fns pointer. The ELF reader can change it
2549 based on whether .gdb_index is present, and we need it to
2550 start over. PR symtab/15885 */
2551 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2552 objfile->qf.clear ();
2553
2554 build_objfile_section_table (objfile);
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == current_program_space->symfile_object_file)
2560 {
2561 (*objfile->sf->sym_new_init) (objfile);
2562 }
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints ();
2566
2567 objfile->flags &= ~OBJF_PSYMTABS_READ;
2568
2569 /* We are about to read new symbols and potentially also
2570 DWARF information. Some targets may want to pass addresses
2571 read from DWARF DIE's through an adjustment function before
2572 saving them, like MIPS, which may call into
2573 "find_pc_section". When called, that function will make
2574 use of per-objfile program space data.
2575
2576 Since we discarded our section information above, we have
2577 dangling pointers in the per-objfile program space data
2578 structure. Force GDB to update the section mapping
2579 information by letting it know the objfile has changed,
2580 making the dangling pointers point to correct data
2581 again. */
2582
2583 objfiles_changed ();
2584
2585 /* Recompute section offsets and section indices. */
2586 objfile->sf->sym_offsets (objfile, {});
2587
2588 read_symbols (objfile, 0);
2589
2590 if (!objfile_has_symbols (objfile))
2591 {
2592 wrap_here ("");
2593 printf_filtered (_("(no debugging symbols found)\n"));
2594 wrap_here ("");
2595 }
2596
2597 /* We're done reading the symbol file; finish off complaints. */
2598 clear_complaints ();
2599
2600 /* Getting new symbols may change our opinion about what is
2601 frameless. */
2602
2603 reinit_frame_cache ();
2604
2605 /* Discard cleanups as symbol reading was successful. */
2606 objfile_holder.release ();
2607 defer_clear_users.release ();
2608
2609 /* If the mtime has changed between the time we set new_modtime
2610 and now, we *want* this to be out of date, so don't call stat
2611 again now. */
2612 objfile->mtime = new_modtime;
2613 init_entry_point_info (objfile);
2614
2615 new_objfiles.push_back (objfile);
2616 }
2617 }
2618
2619 if (!new_objfiles.empty ())
2620 {
2621 clear_symtab_users (0);
2622
2623 /* clear_objfile_data for each objfile was called before freeing it and
2624 gdb::observers::new_objfile.notify (NULL) has been called by
2625 clear_symtab_users above. Notify the new files now. */
2626 for (auto iter : new_objfiles)
2627 gdb::observers::new_objfile.notify (iter);
2628
2629 /* At least one objfile has changed, so we can consider that
2630 the executable we're debugging has changed too. */
2631 gdb::observers::executable_changed.notify ();
2632 }
2633 }
2634 \f
2635
2636 struct filename_language
2637 {
2638 filename_language (const std::string &ext_, enum language lang_)
2639 : ext (ext_), lang (lang_)
2640 {}
2641
2642 std::string ext;
2643 enum language lang;
2644 };
2645
2646 static std::vector<filename_language> filename_language_table;
2647
2648 /* See symfile.h. */
2649
2650 void
2651 add_filename_language (const char *ext, enum language lang)
2652 {
2653 gdb_assert (ext != nullptr);
2654 filename_language_table.emplace_back (ext, lang);
2655 }
2656
2657 static char *ext_args;
2658 static void
2659 show_ext_args (struct ui_file *file, int from_tty,
2660 struct cmd_list_element *c, const char *value)
2661 {
2662 fprintf_filtered (file,
2663 _("Mapping between filename extension "
2664 "and source language is \"%s\".\n"),
2665 value);
2666 }
2667
2668 static void
2669 set_ext_lang_command (const char *args,
2670 int from_tty, struct cmd_list_element *e)
2671 {
2672 char *cp = ext_args;
2673 enum language lang;
2674
2675 /* First arg is filename extension, starting with '.' */
2676 if (*cp != '.')
2677 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2678
2679 /* Find end of first arg. */
2680 while (*cp && !isspace (*cp))
2681 cp++;
2682
2683 if (*cp == '\0')
2684 error (_("'%s': two arguments required -- "
2685 "filename extension and language"),
2686 ext_args);
2687
2688 /* Null-terminate first arg. */
2689 *cp++ = '\0';
2690
2691 /* Find beginning of second arg, which should be a source language. */
2692 cp = skip_spaces (cp);
2693
2694 if (*cp == '\0')
2695 error (_("'%s': two arguments required -- "
2696 "filename extension and language"),
2697 ext_args);
2698
2699 /* Lookup the language from among those we know. */
2700 lang = language_enum (cp);
2701
2702 auto it = filename_language_table.begin ();
2703 /* Now lookup the filename extension: do we already know it? */
2704 for (; it != filename_language_table.end (); it++)
2705 {
2706 if (it->ext == ext_args)
2707 break;
2708 }
2709
2710 if (it == filename_language_table.end ())
2711 {
2712 /* New file extension. */
2713 add_filename_language (ext_args, lang);
2714 }
2715 else
2716 {
2717 /* Redefining a previously known filename extension. */
2718
2719 /* if (from_tty) */
2720 /* query ("Really make files of type %s '%s'?", */
2721 /* ext_args, language_str (lang)); */
2722
2723 it->lang = lang;
2724 }
2725 }
2726
2727 static void
2728 info_ext_lang_command (const char *args, int from_tty)
2729 {
2730 printf_filtered (_("Filename extensions and the languages they represent:"));
2731 printf_filtered ("\n\n");
2732 for (const filename_language &entry : filename_language_table)
2733 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2734 language_str (entry.lang));
2735 }
2736
2737 enum language
2738 deduce_language_from_filename (const char *filename)
2739 {
2740 const char *cp;
2741
2742 if (filename != NULL)
2743 if ((cp = strrchr (filename, '.')) != NULL)
2744 {
2745 for (const filename_language &entry : filename_language_table)
2746 if (entry.ext == cp)
2747 return entry.lang;
2748 }
2749
2750 return language_unknown;
2751 }
2752 \f
2753 /* Allocate and initialize a new symbol table.
2754 CUST is from the result of allocate_compunit_symtab. */
2755
2756 struct symtab *
2757 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2758 {
2759 struct objfile *objfile = cust->objfile;
2760 struct symtab *symtab
2761 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2762
2763 symtab->filename = objfile->intern (filename);
2764 symtab->fullname = NULL;
2765 symtab->language = deduce_language_from_filename (filename);
2766
2767 /* This can be very verbose with lots of headers.
2768 Only print at higher debug levels. */
2769 if (symtab_create_debug >= 2)
2770 {
2771 /* Be a bit clever with debugging messages, and don't print objfile
2772 every time, only when it changes. */
2773 static std::string last_objfile_name;
2774 const char *this_objfile_name = objfile_name (objfile);
2775
2776 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name)
2777 {
2778 last_objfile_name = this_objfile_name;
2779 fprintf_filtered (gdb_stdlog,
2780 "Creating one or more symtabs for objfile %s ...\n",
2781 this_objfile_name);
2782 }
2783 fprintf_filtered (gdb_stdlog,
2784 "Created symtab %s for module %s.\n",
2785 host_address_to_string (symtab), filename);
2786 }
2787
2788 /* Add it to CUST's list of symtabs. */
2789 if (cust->filetabs == NULL)
2790 {
2791 cust->filetabs = symtab;
2792 cust->last_filetab = symtab;
2793 }
2794 else
2795 {
2796 cust->last_filetab->next = symtab;
2797 cust->last_filetab = symtab;
2798 }
2799
2800 /* Backlink to the containing compunit symtab. */
2801 symtab->compunit_symtab = cust;
2802
2803 return symtab;
2804 }
2805
2806 /* Allocate and initialize a new compunit.
2807 NAME is the name of the main source file, if there is one, or some
2808 descriptive text if there are no source files. */
2809
2810 struct compunit_symtab *
2811 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2812 {
2813 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2814 struct compunit_symtab);
2815 const char *saved_name;
2816
2817 cu->objfile = objfile;
2818
2819 /* The name we record here is only for display/debugging purposes.
2820 Just save the basename to avoid path issues (too long for display,
2821 relative vs absolute, etc.). */
2822 saved_name = lbasename (name);
2823 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2824
2825 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2826
2827 if (symtab_create_debug)
2828 {
2829 fprintf_filtered (gdb_stdlog,
2830 "Created compunit symtab %s for %s.\n",
2831 host_address_to_string (cu),
2832 cu->name);
2833 }
2834
2835 return cu;
2836 }
2837
2838 /* Hook CU to the objfile it comes from. */
2839
2840 void
2841 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2842 {
2843 cu->next = cu->objfile->compunit_symtabs;
2844 cu->objfile->compunit_symtabs = cu;
2845 }
2846 \f
2847
2848 /* Reset all data structures in gdb which may contain references to
2849 symbol table data. */
2850
2851 void
2852 clear_symtab_users (symfile_add_flags add_flags)
2853 {
2854 /* Someday, we should do better than this, by only blowing away
2855 the things that really need to be blown. */
2856
2857 /* Clear the "current" symtab first, because it is no longer valid.
2858 breakpoint_re_set may try to access the current symtab. */
2859 clear_current_source_symtab_and_line ();
2860
2861 clear_displays ();
2862 clear_last_displayed_sal ();
2863 clear_pc_function_cache ();
2864 gdb::observers::new_objfile.notify (NULL);
2865
2866 /* Varobj may refer to old symbols, perform a cleanup. */
2867 varobj_invalidate ();
2868
2869 /* Now that the various caches have been cleared, we can re_set
2870 our breakpoints without risking it using stale data. */
2871 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2872 breakpoint_re_set ();
2873 }
2874 \f
2875 /* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
2880 same VMA, each with its own unique LMA (or load address).
2881 2) It is assumed that some runtime mechanism exists for mapping the
2882 sections, one by one, from the load address into the VMA address.
2883 3) This code provides a mechanism for gdb to keep track of which
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
2886 For instance, if a section has been mapped then its contents
2887 should be read from the VMA, otherwise from the LMA.
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
2910 find_pc_overlay(pc): find any overlay section that contains
2911 the pc, either in its VMA or its LMA
2912 section_is_mapped(sect): true if overlay is marked as mapped
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
2921 the symbol's section is currently mapped. */
2922
2923 /* Overlay debugging state: */
2924
2925 enum overlay_debugging_state overlay_debugging = ovly_off;
2926 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2927
2928 /* Function: section_is_overlay (SECTION)
2929 Returns true if SECTION has VMA not equal to LMA, ie.
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932 int
2933 section_is_overlay (struct obj_section *section)
2934 {
2935 if (overlay_debugging && section)
2936 {
2937 asection *bfd_section = section->the_bfd_section;
2938
2939 if (bfd_section_lma (bfd_section) != 0
2940 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2941 return 1;
2942 }
2943
2944 return 0;
2945 }
2946
2947 /* Function: overlay_invalidate_all (void)
2948 Invalidate the mapped state of all overlay sections (mark it as stale). */
2949
2950 static void
2951 overlay_invalidate_all (void)
2952 {
2953 struct obj_section *sect;
2954
2955 for (objfile *objfile : current_program_space->objfiles ())
2956 ALL_OBJFILE_OSECTIONS (objfile, sect)
2957 if (section_is_overlay (sect))
2958 sect->ovly_mapped = -1;
2959 }
2960
2961 /* Function: section_is_mapped (SECTION)
2962 Returns true if section is an overlay, and is currently mapped.
2963
2964 Access to the ovly_mapped flag is restricted to this function, so
2965 that we can do automatic update. If the global flag
2966 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2967 overlay_invalidate_all. If the mapped state of the particular
2968 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2969
2970 int
2971 section_is_mapped (struct obj_section *osect)
2972 {
2973 struct gdbarch *gdbarch;
2974
2975 if (osect == 0 || !section_is_overlay (osect))
2976 return 0;
2977
2978 switch (overlay_debugging)
2979 {
2980 default:
2981 case ovly_off:
2982 return 0; /* overlay debugging off */
2983 case ovly_auto: /* overlay debugging automatic */
2984 /* Unles there is a gdbarch_overlay_update function,
2985 there's really nothing useful to do here (can't really go auto). */
2986 gdbarch = osect->objfile->arch ();
2987 if (gdbarch_overlay_update_p (gdbarch))
2988 {
2989 if (overlay_cache_invalid)
2990 {
2991 overlay_invalidate_all ();
2992 overlay_cache_invalid = 0;
2993 }
2994 if (osect->ovly_mapped == -1)
2995 gdbarch_overlay_update (gdbarch, osect);
2996 }
2997 /* fall thru */
2998 case ovly_on: /* overlay debugging manual */
2999 return osect->ovly_mapped == 1;
3000 }
3001 }
3002
3003 /* Function: pc_in_unmapped_range
3004 If PC falls into the lma range of SECTION, return true, else false. */
3005
3006 CORE_ADDR
3007 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3008 {
3009 if (section_is_overlay (section))
3010 {
3011 asection *bfd_section = section->the_bfd_section;
3012
3013 /* We assume the LMA is relocated by the same offset as the VMA. */
3014 bfd_vma size = bfd_section_size (bfd_section);
3015 CORE_ADDR offset = section->offset ();
3016
3017 if (bfd_section_lma (bfd_section) + offset <= pc
3018 && pc < bfd_section_lma (bfd_section) + offset + size)
3019 return 1;
3020 }
3021
3022 return 0;
3023 }
3024
3025 /* Function: pc_in_mapped_range
3026 If PC falls into the vma range of SECTION, return true, else false. */
3027
3028 CORE_ADDR
3029 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3030 {
3031 if (section_is_overlay (section))
3032 {
3033 if (section->addr () <= pc
3034 && pc < section->endaddr ())
3035 return 1;
3036 }
3037
3038 return 0;
3039 }
3040
3041 /* Return true if the mapped ranges of sections A and B overlap, false
3042 otherwise. */
3043
3044 static int
3045 sections_overlap (struct obj_section *a, struct obj_section *b)
3046 {
3047 CORE_ADDR a_start = a->addr ();
3048 CORE_ADDR a_end = a->endaddr ();
3049 CORE_ADDR b_start = b->addr ();
3050 CORE_ADDR b_end = b->endaddr ();
3051
3052 return (a_start < b_end && b_start < a_end);
3053 }
3054
3055 /* Function: overlay_unmapped_address (PC, SECTION)
3056 Returns the address corresponding to PC in the unmapped (load) range.
3057 May be the same as PC. */
3058
3059 CORE_ADDR
3060 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3061 {
3062 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3063 {
3064 asection *bfd_section = section->the_bfd_section;
3065
3066 return (pc + bfd_section_lma (bfd_section)
3067 - bfd_section_vma (bfd_section));
3068 }
3069
3070 return pc;
3071 }
3072
3073 /* Function: overlay_mapped_address (PC, SECTION)
3074 Returns the address corresponding to PC in the mapped (runtime) range.
3075 May be the same as PC. */
3076
3077 CORE_ADDR
3078 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3079 {
3080 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3081 {
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 return (pc + bfd_section_vma (bfd_section)
3085 - bfd_section_lma (bfd_section));
3086 }
3087
3088 return pc;
3089 }
3090
3091 /* Function: symbol_overlayed_address
3092 Return one of two addresses (relative to the VMA or to the LMA),
3093 depending on whether the section is mapped or not. */
3094
3095 CORE_ADDR
3096 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3097 {
3098 if (overlay_debugging)
3099 {
3100 /* If the symbol has no section, just return its regular address. */
3101 if (section == 0)
3102 return address;
3103 /* If the symbol's section is not an overlay, just return its
3104 address. */
3105 if (!section_is_overlay (section))
3106 return address;
3107 /* If the symbol's section is mapped, just return its address. */
3108 if (section_is_mapped (section))
3109 return address;
3110 /*
3111 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3112 * then return its LOADED address rather than its vma address!!
3113 */
3114 return overlay_unmapped_address (address, section);
3115 }
3116 return address;
3117 }
3118
3119 /* Function: find_pc_overlay (PC)
3120 Return the best-match overlay section for PC:
3121 If PC matches a mapped overlay section's VMA, return that section.
3122 Else if PC matches an unmapped section's VMA, return that section.
3123 Else if PC matches an unmapped section's LMA, return that section. */
3124
3125 struct obj_section *
3126 find_pc_overlay (CORE_ADDR pc)
3127 {
3128 struct obj_section *osect, *best_match = NULL;
3129
3130 if (overlay_debugging)
3131 {
3132 for (objfile *objfile : current_program_space->objfiles ())
3133 ALL_OBJFILE_OSECTIONS (objfile, osect)
3134 if (section_is_overlay (osect))
3135 {
3136 if (pc_in_mapped_range (pc, osect))
3137 {
3138 if (section_is_mapped (osect))
3139 return osect;
3140 else
3141 best_match = osect;
3142 }
3143 else if (pc_in_unmapped_range (pc, osect))
3144 best_match = osect;
3145 }
3146 }
3147 return best_match;
3148 }
3149
3150 /* Function: find_pc_mapped_section (PC)
3151 If PC falls into the VMA address range of an overlay section that is
3152 currently marked as MAPPED, return that section. Else return NULL. */
3153
3154 struct obj_section *
3155 find_pc_mapped_section (CORE_ADDR pc)
3156 {
3157 struct obj_section *osect;
3158
3159 if (overlay_debugging)
3160 {
3161 for (objfile *objfile : current_program_space->objfiles ())
3162 ALL_OBJFILE_OSECTIONS (objfile, osect)
3163 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3164 return osect;
3165 }
3166
3167 return NULL;
3168 }
3169
3170 /* Function: list_overlays_command
3171 Print a list of mapped sections and their PC ranges. */
3172
3173 static void
3174 list_overlays_command (const char *args, int from_tty)
3175 {
3176 int nmapped = 0;
3177 struct obj_section *osect;
3178
3179 if (overlay_debugging)
3180 {
3181 for (objfile *objfile : current_program_space->objfiles ())
3182 ALL_OBJFILE_OSECTIONS (objfile, osect)
3183 if (section_is_mapped (osect))
3184 {
3185 struct gdbarch *gdbarch = objfile->arch ();
3186 const char *name;
3187 bfd_vma lma, vma;
3188 int size;
3189
3190 vma = bfd_section_vma (osect->the_bfd_section);
3191 lma = bfd_section_lma (osect->the_bfd_section);
3192 size = bfd_section_size (osect->the_bfd_section);
3193 name = bfd_section_name (osect->the_bfd_section);
3194
3195 printf_filtered ("Section %s, loaded at ", name);
3196 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3197 puts_filtered (" - ");
3198 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3199 printf_filtered (", mapped at ");
3200 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3201 puts_filtered (" - ");
3202 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3203 puts_filtered ("\n");
3204
3205 nmapped++;
3206 }
3207 }
3208 if (nmapped == 0)
3209 printf_filtered (_("No sections are mapped.\n"));
3210 }
3211
3212 /* Function: map_overlay_command
3213 Mark the named section as mapped (ie. residing at its VMA address). */
3214
3215 static void
3216 map_overlay_command (const char *args, int from_tty)
3217 {
3218 struct obj_section *sec, *sec2;
3219
3220 if (!overlay_debugging)
3221 error (_("Overlay debugging not enabled. Use "
3222 "either the 'overlay auto' or\n"
3223 "the 'overlay manual' command."));
3224
3225 if (args == 0 || *args == 0)
3226 error (_("Argument required: name of an overlay section"));
3227
3228 /* First, find a section matching the user supplied argument. */
3229 for (objfile *obj_file : current_program_space->objfiles ())
3230 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3231 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3232 {
3233 /* Now, check to see if the section is an overlay. */
3234 if (!section_is_overlay (sec))
3235 continue; /* not an overlay section */
3236
3237 /* Mark the overlay as "mapped". */
3238 sec->ovly_mapped = 1;
3239
3240 /* Next, make a pass and unmap any sections that are
3241 overlapped by this new section: */
3242 for (objfile *objfile2 : current_program_space->objfiles ())
3243 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3244 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3245 sec2))
3246 {
3247 if (info_verbose)
3248 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3249 bfd_section_name (sec2->the_bfd_section));
3250 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3251 }
3252 return;
3253 }
3254 error (_("No overlay section called %s"), args);
3255 }
3256
3257 /* Function: unmap_overlay_command
3258 Mark the overlay section as unmapped
3259 (ie. resident in its LMA address range, rather than the VMA range). */
3260
3261 static void
3262 unmap_overlay_command (const char *args, int from_tty)
3263 {
3264 struct obj_section *sec = NULL;
3265
3266 if (!overlay_debugging)
3267 error (_("Overlay debugging not enabled. "
3268 "Use either the 'overlay auto' or\n"
3269 "the 'overlay manual' command."));
3270
3271 if (args == 0 || *args == 0)
3272 error (_("Argument required: name of an overlay section"));
3273
3274 /* First, find a section matching the user supplied argument. */
3275 for (objfile *objfile : current_program_space->objfiles ())
3276 ALL_OBJFILE_OSECTIONS (objfile, sec)
3277 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3278 {
3279 if (!sec->ovly_mapped)
3280 error (_("Section %s is not mapped"), args);
3281 sec->ovly_mapped = 0;
3282 return;
3283 }
3284 error (_("No overlay section called %s"), args);
3285 }
3286
3287 /* Function: overlay_auto_command
3288 A utility command to turn on overlay debugging.
3289 Possibly this should be done via a set/show command. */
3290
3291 static void
3292 overlay_auto_command (const char *args, int from_tty)
3293 {
3294 overlay_debugging = ovly_auto;
3295 enable_overlay_breakpoints ();
3296 if (info_verbose)
3297 printf_unfiltered (_("Automatic overlay debugging enabled."));
3298 }
3299
3300 /* Function: overlay_manual_command
3301 A utility command to turn on overlay debugging.
3302 Possibly this should be done via a set/show command. */
3303
3304 static void
3305 overlay_manual_command (const char *args, int from_tty)
3306 {
3307 overlay_debugging = ovly_on;
3308 disable_overlay_breakpoints ();
3309 if (info_verbose)
3310 printf_unfiltered (_("Overlay debugging enabled."));
3311 }
3312
3313 /* Function: overlay_off_command
3314 A utility command to turn on overlay debugging.
3315 Possibly this should be done via a set/show command. */
3316
3317 static void
3318 overlay_off_command (const char *args, int from_tty)
3319 {
3320 overlay_debugging = ovly_off;
3321 disable_overlay_breakpoints ();
3322 if (info_verbose)
3323 printf_unfiltered (_("Overlay debugging disabled."));
3324 }
3325
3326 static void
3327 overlay_load_command (const char *args, int from_tty)
3328 {
3329 struct gdbarch *gdbarch = get_current_arch ();
3330
3331 if (gdbarch_overlay_update_p (gdbarch))
3332 gdbarch_overlay_update (gdbarch, NULL);
3333 else
3334 error (_("This target does not know how to read its overlay state."));
3335 }
3336
3337 /* Command list chain containing all defined "overlay" subcommands. */
3338 static struct cmd_list_element *overlaylist;
3339
3340 /* Target Overlays for the "Simplest" overlay manager:
3341
3342 This is GDB's default target overlay layer. It works with the
3343 minimal overlay manager supplied as an example by Cygnus. The
3344 entry point is via a function pointer "gdbarch_overlay_update",
3345 so targets that use a different runtime overlay manager can
3346 substitute their own overlay_update function and take over the
3347 function pointer.
3348
3349 The overlay_update function pokes around in the target's data structures
3350 to see what overlays are mapped, and updates GDB's overlay mapping with
3351 this information.
3352
3353 In this simple implementation, the target data structures are as follows:
3354 unsigned _novlys; /# number of overlay sections #/
3355 unsigned _ovly_table[_novlys][4] = {
3356 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3357 {..., ..., ..., ...},
3358 }
3359 unsigned _novly_regions; /# number of overlay regions #/
3360 unsigned _ovly_region_table[_novly_regions][3] = {
3361 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3362 {..., ..., ...},
3363 }
3364 These functions will attempt to update GDB's mappedness state in the
3365 symbol section table, based on the target's mappedness state.
3366
3367 To do this, we keep a cached copy of the target's _ovly_table, and
3368 attempt to detect when the cached copy is invalidated. The main
3369 entry point is "simple_overlay_update(SECT), which looks up SECT in
3370 the cached table and re-reads only the entry for that section from
3371 the target (whenever possible). */
3372
3373 /* Cached, dynamically allocated copies of the target data structures: */
3374 static unsigned (*cache_ovly_table)[4] = 0;
3375 static unsigned cache_novlys = 0;
3376 static CORE_ADDR cache_ovly_table_base = 0;
3377 enum ovly_index
3378 {
3379 VMA, OSIZE, LMA, MAPPED
3380 };
3381
3382 /* Throw away the cached copy of _ovly_table. */
3383
3384 static void
3385 simple_free_overlay_table (void)
3386 {
3387 xfree (cache_ovly_table);
3388 cache_novlys = 0;
3389 cache_ovly_table = NULL;
3390 cache_ovly_table_base = 0;
3391 }
3392
3393 /* Read an array of ints of size SIZE from the target into a local buffer.
3394 Convert to host order. int LEN is number of ints. */
3395
3396 static void
3397 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3398 int len, int size, enum bfd_endian byte_order)
3399 {
3400 /* FIXME (alloca): Not safe if array is very large. */
3401 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3402 int i;
3403
3404 read_memory (memaddr, buf, len * size);
3405 for (i = 0; i < len; i++)
3406 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3407 }
3408
3409 /* Find and grab a copy of the target _ovly_table
3410 (and _novlys, which is needed for the table's size). */
3411
3412 static int
3413 simple_read_overlay_table (void)
3414 {
3415 struct bound_minimal_symbol novlys_msym;
3416 struct bound_minimal_symbol ovly_table_msym;
3417 struct gdbarch *gdbarch;
3418 int word_size;
3419 enum bfd_endian byte_order;
3420
3421 simple_free_overlay_table ();
3422 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3423 if (! novlys_msym.minsym)
3424 {
3425 error (_("Error reading inferior's overlay table: "
3426 "couldn't find `_novlys' variable\n"
3427 "in inferior. Use `overlay manual' mode."));
3428 return 0;
3429 }
3430
3431 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3432 if (! ovly_table_msym.minsym)
3433 {
3434 error (_("Error reading inferior's overlay table: couldn't find "
3435 "`_ovly_table' array\n"
3436 "in inferior. Use `overlay manual' mode."));
3437 return 0;
3438 }
3439
3440 gdbarch = ovly_table_msym.objfile->arch ();
3441 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3442 byte_order = gdbarch_byte_order (gdbarch);
3443
3444 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3445 4, byte_order);
3446 cache_ovly_table
3447 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3448 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3449 read_target_long_array (cache_ovly_table_base,
3450 (unsigned int *) cache_ovly_table,
3451 cache_novlys * 4, word_size, byte_order);
3452
3453 return 1; /* SUCCESS */
3454 }
3455
3456 /* Function: simple_overlay_update_1
3457 A helper function for simple_overlay_update. Assuming a cached copy
3458 of _ovly_table exists, look through it to find an entry whose vma,
3459 lma and size match those of OSECT. Re-read the entry and make sure
3460 it still matches OSECT (else the table may no longer be valid).
3461 Set OSECT's mapped state to match the entry. Return: 1 for
3462 success, 0 for failure. */
3463
3464 static int
3465 simple_overlay_update_1 (struct obj_section *osect)
3466 {
3467 int i;
3468 asection *bsect = osect->the_bfd_section;
3469 struct gdbarch *gdbarch = osect->objfile->arch ();
3470 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3472
3473 for (i = 0; i < cache_novlys; i++)
3474 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3475 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3476 {
3477 read_target_long_array (cache_ovly_table_base + i * word_size,
3478 (unsigned int *) cache_ovly_table[i],
3479 4, word_size, byte_order);
3480 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3481 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3482 {
3483 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3484 return 1;
3485 }
3486 else /* Warning! Warning! Target's ovly table has changed! */
3487 return 0;
3488 }
3489 return 0;
3490 }
3491
3492 /* Function: simple_overlay_update
3493 If OSECT is NULL, then update all sections' mapped state
3494 (after re-reading the entire target _ovly_table).
3495 If OSECT is non-NULL, then try to find a matching entry in the
3496 cached ovly_table and update only OSECT's mapped state.
3497 If a cached entry can't be found or the cache isn't valid, then
3498 re-read the entire cache, and go ahead and update all sections. */
3499
3500 void
3501 simple_overlay_update (struct obj_section *osect)
3502 {
3503 /* Were we given an osect to look up? NULL means do all of them. */
3504 if (osect)
3505 /* Have we got a cached copy of the target's overlay table? */
3506 if (cache_ovly_table != NULL)
3507 {
3508 /* Does its cached location match what's currently in the
3509 symtab? */
3510 struct bound_minimal_symbol minsym
3511 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3512
3513 if (minsym.minsym == NULL)
3514 error (_("Error reading inferior's overlay table: couldn't "
3515 "find `_ovly_table' array\n"
3516 "in inferior. Use `overlay manual' mode."));
3517
3518 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3519 /* Then go ahead and try to look up this single section in
3520 the cache. */
3521 if (simple_overlay_update_1 (osect))
3522 /* Found it! We're done. */
3523 return;
3524 }
3525
3526 /* Cached table no good: need to read the entire table anew.
3527 Or else we want all the sections, in which case it's actually
3528 more efficient to read the whole table in one block anyway. */
3529
3530 if (! simple_read_overlay_table ())
3531 return;
3532
3533 /* Now may as well update all sections, even if only one was requested. */
3534 for (objfile *objfile : current_program_space->objfiles ())
3535 ALL_OBJFILE_OSECTIONS (objfile, osect)
3536 if (section_is_overlay (osect))
3537 {
3538 int i;
3539 asection *bsect = osect->the_bfd_section;
3540
3541 for (i = 0; i < cache_novlys; i++)
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3544 { /* obj_section matches i'th entry in ovly_table. */
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 break; /* finished with inner for loop: break out. */
3547 }
3548 }
3549 }
3550
3551 /* Default implementation for sym_relocate. */
3552
3553 bfd_byte *
3554 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3555 bfd_byte *buf)
3556 {
3557 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3558 DWO file. */
3559 bfd *abfd = sectp->owner;
3560
3561 /* We're only interested in sections with relocation
3562 information. */
3563 if ((sectp->flags & SEC_RELOC) == 0)
3564 return NULL;
3565
3566 /* We will handle section offsets properly elsewhere, so relocate as if
3567 all sections begin at 0. */
3568 for (asection *sect : gdb_bfd_sections (abfd))
3569 {
3570 sect->output_section = sect;
3571 sect->output_offset = 0;
3572 }
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 /* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
3590
3591 bfd_byte *
3592 symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
3594 {
3595 gdb_assert (objfile->sf->sym_relocate);
3596
3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3598 }
3599
3600 symfile_segment_data_up
3601 get_symfile_segment_data (bfd *abfd)
3602 {
3603 const struct sym_fns *sf = find_sym_fns (abfd);
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609 }
3610
3611 /* Given:
3612 - DATA, containing segment addresses from the object file ABFD, and
3613 the mapping from ABFD's sections onto the segments that own them,
3614 and
3615 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3616 segment addresses reported by the target,
3617 store the appropriate offsets for each section in OFFSETS.
3618
3619 If there are fewer entries in SEGMENT_BASES than there are segments
3620 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3621
3622 If there are more entries, then ignore the extra. The target may
3623 not be able to distinguish between an empty data segment and a
3624 missing data segment; a missing text segment is less plausible. */
3625
3626 int
3627 symfile_map_offsets_to_segments (bfd *abfd,
3628 const struct symfile_segment_data *data,
3629 section_offsets &offsets,
3630 int num_segment_bases,
3631 const CORE_ADDR *segment_bases)
3632 {
3633 int i;
3634 asection *sect;
3635
3636 /* It doesn't make sense to call this function unless you have some
3637 segment base addresses. */
3638 gdb_assert (num_segment_bases > 0);
3639
3640 /* If we do not have segment mappings for the object file, we
3641 can not relocate it by segments. */
3642 gdb_assert (data != NULL);
3643 gdb_assert (data->segments.size () > 0);
3644
3645 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3646 {
3647 int which = data->segment_info[i];
3648
3649 gdb_assert (0 <= which && which <= data->segments.size ());
3650
3651 /* Don't bother computing offsets for sections that aren't
3652 loaded as part of any segment. */
3653 if (! which)
3654 continue;
3655
3656 /* Use the last SEGMENT_BASES entry as the address of any extra
3657 segments mentioned in DATA->segment_info. */
3658 if (which > num_segment_bases)
3659 which = num_segment_bases;
3660
3661 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3662 }
3663
3664 return 1;
3665 }
3666
3667 static void
3668 symfile_find_segment_sections (struct objfile *objfile)
3669 {
3670 bfd *abfd = objfile->obfd;
3671 int i;
3672 asection *sect;
3673
3674 symfile_segment_data_up data
3675 = get_symfile_segment_data (objfile->obfd);
3676 if (data == NULL)
3677 return;
3678
3679 if (data->segments.size () != 1 && data->segments.size () != 2)
3680 return;
3681
3682 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3683 {
3684 int which = data->segment_info[i];
3685
3686 if (which == 1)
3687 {
3688 if (objfile->sect_index_text == -1)
3689 objfile->sect_index_text = sect->index;
3690
3691 if (objfile->sect_index_rodata == -1)
3692 objfile->sect_index_rodata = sect->index;
3693 }
3694 else if (which == 2)
3695 {
3696 if (objfile->sect_index_data == -1)
3697 objfile->sect_index_data = sect->index;
3698
3699 if (objfile->sect_index_bss == -1)
3700 objfile->sect_index_bss = sect->index;
3701 }
3702 }
3703 }
3704
3705 /* Listen for free_objfile events. */
3706
3707 static void
3708 symfile_free_objfile (struct objfile *objfile)
3709 {
3710 /* Remove the target sections owned by this objfile. */
3711 if (objfile != NULL)
3712 current_program_space->remove_target_sections ((void *) objfile);
3713 }
3714
3715 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3716 Expand all symtabs that match the specified criteria.
3717 See quick_symbol_functions.expand_symtabs_matching for details. */
3718
3719 bool
3720 expand_symtabs_matching
3721 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3722 const lookup_name_info &lookup_name,
3723 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3724 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3725 block_search_flags search_flags,
3726 enum search_domain kind)
3727 {
3728 for (objfile *objfile : current_program_space->objfiles ())
3729 if (!objfile->expand_symtabs_matching (file_matcher,
3730 &lookup_name,
3731 symbol_matcher,
3732 expansion_notify,
3733 search_flags,
3734 UNDEF_DOMAIN,
3735 kind))
3736 return false;
3737 return true;
3738 }
3739
3740 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3741 Map function FUN over every file.
3742 See quick_symbol_functions.map_symbol_filenames for details. */
3743
3744 void
3745 map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
3746 bool need_fullname)
3747 {
3748 for (objfile *objfile : current_program_space->objfiles ())
3749 objfile->map_symbol_filenames (fun, need_fullname);
3750 }
3751
3752 #if GDB_SELF_TEST
3753
3754 namespace selftests {
3755 namespace filename_language {
3756
3757 static void test_filename_language ()
3758 {
3759 /* This test messes up the filename_language_table global. */
3760 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3761
3762 /* Test deducing an unknown extension. */
3763 language lang = deduce_language_from_filename ("myfile.blah");
3764 SELF_CHECK (lang == language_unknown);
3765
3766 /* Test deducing a known extension. */
3767 lang = deduce_language_from_filename ("myfile.c");
3768 SELF_CHECK (lang == language_c);
3769
3770 /* Test adding a new extension using the internal API. */
3771 add_filename_language (".blah", language_pascal);
3772 lang = deduce_language_from_filename ("myfile.blah");
3773 SELF_CHECK (lang == language_pascal);
3774 }
3775
3776 static void
3777 test_set_ext_lang_command ()
3778 {
3779 /* This test messes up the filename_language_table global. */
3780 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3781
3782 /* Confirm that the .hello extension is not known. */
3783 language lang = deduce_language_from_filename ("cake.hello");
3784 SELF_CHECK (lang == language_unknown);
3785
3786 /* Test adding a new extension using the CLI command. */
3787 auto args_holder = make_unique_xstrdup (".hello rust");
3788 ext_args = args_holder.get ();
3789 set_ext_lang_command (NULL, 1, NULL);
3790
3791 lang = deduce_language_from_filename ("cake.hello");
3792 SELF_CHECK (lang == language_rust);
3793
3794 /* Test overriding an existing extension using the CLI command. */
3795 int size_before = filename_language_table.size ();
3796 args_holder.reset (xstrdup (".hello pascal"));
3797 ext_args = args_holder.get ();
3798 set_ext_lang_command (NULL, 1, NULL);
3799 int size_after = filename_language_table.size ();
3800
3801 lang = deduce_language_from_filename ("cake.hello");
3802 SELF_CHECK (lang == language_pascal);
3803 SELF_CHECK (size_before == size_after);
3804 }
3805
3806 } /* namespace filename_language */
3807 } /* namespace selftests */
3808
3809 #endif /* GDB_SELF_TEST */
3810
3811 void _initialize_symfile ();
3812 void
3813 _initialize_symfile ()
3814 {
3815 struct cmd_list_element *c;
3816
3817 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile");
3818
3819 #define READNOW_READNEVER_HELP \
3820 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3821 immediately. This makes the command slower, but may make future operations\n\
3822 faster.\n\
3823 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3824 symbolic debug information."
3825
3826 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3827 Load symbol table from executable file FILE.\n\
3828 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3829 OFF is an optional offset which is added to each section address.\n\
3830 The `file' command can also load symbol tables, as well as setting the file\n\
3831 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3832 set_cmd_completer (c, filename_completer);
3833
3834 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3835 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3836 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3837 [-s SECT-NAME SECT-ADDR]...\n\
3838 ADDR is the starting address of the file's text.\n\
3839 Each '-s' argument provides a section name and address, and\n\
3840 should be specified if the data and bss segments are not contiguous\n\
3841 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3842 OFF is an optional offset which is added to the default load addresses\n\
3843 of all sections for which no other address was specified.\n"
3844 READNOW_READNEVER_HELP),
3845 &cmdlist);
3846 set_cmd_completer (c, filename_completer);
3847
3848 c = add_cmd ("remove-symbol-file", class_files,
3849 remove_symbol_file_command, _("\
3850 Remove a symbol file added via the add-symbol-file command.\n\
3851 Usage: remove-symbol-file FILENAME\n\
3852 remove-symbol-file -a ADDRESS\n\
3853 The file to remove can be identified by its filename or by an address\n\
3854 that lies within the boundaries of this symbol file in memory."),
3855 &cmdlist);
3856
3857 c = add_cmd ("load", class_files, load_command, _("\
3858 Dynamically load FILE into the running program.\n\
3859 FILE symbols are recorded for access from GDB.\n\
3860 Usage: load [FILE] [OFFSET]\n\
3861 An optional load OFFSET may also be given as a literal address.\n\
3862 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3863 on its own."), &cmdlist);
3864 set_cmd_completer (c, filename_completer);
3865
3866 cmd_list_element *overlay_cmd
3867 = add_basic_prefix_cmd ("overlay", class_support,
3868 _("Commands for debugging overlays."), &overlaylist,
3869 0, &cmdlist);
3870
3871 add_com_alias ("ovly", overlay_cmd, class_support, 1);
3872 add_com_alias ("ov", overlay_cmd, class_support, 1);
3873
3874 add_cmd ("map-overlay", class_support, map_overlay_command,
3875 _("Assert that an overlay section is mapped."), &overlaylist);
3876
3877 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3878 _("Assert that an overlay section is unmapped."), &overlaylist);
3879
3880 add_cmd ("list-overlays", class_support, list_overlays_command,
3881 _("List mappings of overlay sections."), &overlaylist);
3882
3883 add_cmd ("manual", class_support, overlay_manual_command,
3884 _("Enable overlay debugging."), &overlaylist);
3885 add_cmd ("off", class_support, overlay_off_command,
3886 _("Disable overlay debugging."), &overlaylist);
3887 add_cmd ("auto", class_support, overlay_auto_command,
3888 _("Enable automatic overlay debugging."), &overlaylist);
3889 add_cmd ("load-target", class_support, overlay_load_command,
3890 _("Read the overlay mapping state from the target."), &overlaylist);
3891
3892 /* Filename extension to source language lookup table: */
3893 add_setshow_string_noescape_cmd ("extension-language", class_files,
3894 &ext_args, _("\
3895 Set mapping between filename extension and source language."), _("\
3896 Show mapping between filename extension and source language."), _("\
3897 Usage: set extension-language .foo bar"),
3898 set_ext_lang_command,
3899 show_ext_args,
3900 &setlist, &showlist);
3901
3902 add_info ("extensions", info_ext_lang_command,
3903 _("All filename extensions associated with a source language."));
3904
3905 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3906 &debug_file_directory, _("\
3907 Set the directories where separate debug symbols are searched for."), _("\
3908 Show the directories where separate debug symbols are searched for."), _("\
3909 Separate debug symbols are first searched for in the same\n\
3910 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3911 and lastly at the path of the directory of the binary with\n\
3912 each global debug-file-directory component prepended."),
3913 NULL,
3914 show_debug_file_directory,
3915 &setlist, &showlist);
3916
3917 add_setshow_enum_cmd ("symbol-loading", no_class,
3918 print_symbol_loading_enums, &print_symbol_loading,
3919 _("\
3920 Set printing of symbol loading messages."), _("\
3921 Show printing of symbol loading messages."), _("\
3922 off == turn all messages off\n\
3923 brief == print messages for the executable,\n\
3924 and brief messages for shared libraries\n\
3925 full == print messages for the executable,\n\
3926 and messages for each shared library."),
3927 NULL,
3928 NULL,
3929 &setprintlist, &showprintlist);
3930
3931 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3932 &separate_debug_file_debug, _("\
3933 Set printing of separate debug info file search debug."), _("\
3934 Show printing of separate debug info file search debug."), _("\
3935 When on, GDB prints the searched locations while looking for separate debug \
3936 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3937
3938 #if GDB_SELF_TEST
3939 selftests::register_test
3940 ("filename_language", selftests::filename_language::test_filename_language);
3941 selftests::register_test
3942 ("set_ext_lang_command",
3943 selftests::filename_language::test_set_ext_lang_command);
3944 #endif
3945 }
This page took 0.119975 seconds and 4 git commands to generate.