Use gdb::unique_xmalloc_ptr when calling tilde_expand
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void overlay_auto_command (char *, int);
97
98 static void overlay_manual_command (char *, int);
99
100 static void overlay_off_command (char *, int);
101
102 static void overlay_load_command (char *, int);
103
104 static void overlay_command (char *, int);
105
106 static void simple_free_overlay_table (void);
107
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
110
111 static int simple_read_overlay_table (void);
112
113 static int simple_overlay_update_1 (struct obj_section *);
114
115 static void info_ext_lang_command (char *args, int from_tty);
116
117 static void symfile_find_segment_sections (struct objfile *objfile);
118
119 void _initialize_symfile (void);
120
121 /* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
123 prepared to read. */
124
125 typedef struct
126 {
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132 } registered_sym_fns;
133
134 DEF_VEC_O (registered_sym_fns);
135
136 static VEC (registered_sym_fns) *symtab_fns = NULL;
137
138 /* Values for "set print symbol-loading". */
139
140 const char print_symbol_loading_off[] = "off";
141 const char print_symbol_loading_brief[] = "brief";
142 const char print_symbol_loading_full[] = "full";
143 static const char *print_symbol_loading_enums[] =
144 {
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149 };
150 static const char *print_symbol_loading = print_symbol_loading_full;
151
152 /* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
159 library symbols are not loaded, commands like "info fun" will *not*
160 report all the functions that are actually present. */
161
162 int auto_solib_add = 1;
163 \f
164
165 /* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173 int
174 print_symbol_loading_p (int from_tty, int exec, int full)
175 {
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188 }
189
190 /* True if we are reading a symbol table. */
191
192 int currently_reading_symtab = 0;
193
194 /* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
196
197 scoped_restore_tmpl<int>
198 increment_reading_symtab (void)
199 {
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
203 }
204
205 /* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214 void
215 find_lowest_section (bfd *abfd, asection *sect, void *obj)
216 {
217 asection **lowest = (asection **) obj;
218
219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229 }
230
231 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
234
235 struct section_addr_info *
236 alloc_section_addr_info (size_t num_sections)
237 {
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
245
246 return sap;
247 }
248
249 /* Build (allocate and populate) a section_addr_info struct from
250 an existing section table. */
251
252 extern struct section_addr_info *
253 build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
255 {
256 struct section_addr_info *sap;
257 const struct target_section *stp;
258 int oidx;
259
260 sap = alloc_section_addr_info (end - start);
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
268 && oidx < end - start)
269 {
270 sap->other[oidx].addr = stp->addr;
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
273 oidx++;
274 }
275 }
276
277 sap->num_sections = oidx;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in ABFD. */
283
284 static struct section_addr_info *
285 build_section_addr_info_from_bfd (bfd *abfd)
286 {
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
294 {
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
298 i++;
299 }
300
301 sap->num_sections = i;
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in OBJFILE. */
307
308 struct section_addr_info *
309 build_section_addr_info_from_objfile (const struct objfile *objfile)
310 {
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
318 for (i = 0; i < sap->num_sections; i++)
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325 }
326
327 /* Free all memory allocated by build_section_addr_info_from_section_table. */
328
329 extern void
330 free_section_addr_info (struct section_addr_info *sap)
331 {
332 int idx;
333
334 for (idx = 0; idx < sap->num_sections; idx++)
335 xfree (sap->other[idx].name);
336 xfree (sap);
337 }
338
339 /* Initialize OBJFILE's sect_index_* members. */
340
341 static void
342 init_objfile_sect_indices (struct objfile *objfile)
343 {
344 asection *sect;
345 int i;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
348 if (sect)
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
352 if (sect)
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
356 if (sect)
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
360 if (sect)
361 objfile->sect_index_rodata = sect->index;
362
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
398 }
399
400 /* The arguments to place_section. */
401
402 struct place_section_arg
403 {
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406 };
407
408 /* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
411 static void
412 place_section (bfd *abfd, asection *sect, void *obj)
413 {
414 struct place_section_arg *arg = (struct place_section_arg *) obj;
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
418
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
421 return;
422
423 /* If the user specified an offset, honor it. */
424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
428 start_addr = (arg->lowest + align - 1) & -align;
429
430 do {
431 asection *cur_sec;
432
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
460 break;
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
469 arg->lowest = start_addr + bfd_get_section_size (sect);
470 }
471
472 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
475
476 void
477 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
479 const struct section_addr_info *addrs)
480 {
481 int i;
482
483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
484
485 /* Now calculate offsets for section that were specified by the caller. */
486 for (i = 0; i < addrs->num_sections; i++)
487 {
488 const struct other_sections *osp;
489
490 osp = &addrs->other[i];
491 if (osp->sectindex == -1)
492 continue;
493
494 /* Record all sections in offsets. */
495 /* The section_offsets in the objfile are here filled in using
496 the BFD index. */
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499 }
500
501 /* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507 static const char *
508 addr_section_name (const char *s)
509 {
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516 }
517
518 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521 static int
522 addrs_section_compar (const void *ap, const void *bp)
523 {
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
526 int retval;
527
528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
529 if (retval)
530 return retval;
531
532 return a->sectindex - b->sectindex;
533 }
534
535 /* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538 static struct other_sections **
539 addrs_section_sort (struct section_addr_info *addrs)
540 {
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
546 for (i = 0; i < addrs->num_sections; i++)
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553 }
554
555 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
558
559 void
560 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561 {
562 asection *lower_sect;
563 CORE_ADDR lower_offset;
564 int i;
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
579 }
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
603
604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
610
611 while (*abfd_addrs_sorted
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
644 for (i = 0; i < addrs->num_sections; i++)
645 {
646 struct other_sections *sect = addrs_to_abfd_addrs[i];
647
648 if (sect)
649 {
650 /* This is the index used by BFD. */
651 addrs->other[i].sectindex = sect->sectindex;
652
653 if (addrs->other[i].addr != 0)
654 {
655 addrs->other[i].addr -= sect->addr;
656 lower_offset = addrs->other[i].addr;
657 }
658 else
659 addrs->other[i].addr = lower_offset;
660 }
661 else
662 {
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
681 || strcmp (sect_name, ".gnu.conflict") == 0
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
693 addrs->other[i].addr = 0;
694 addrs->other[i].sectindex = -1;
695 }
696 }
697
698 do_cleanups (my_cleanup);
699 }
700
701 /* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707 void
708 default_symfile_offsets (struct objfile *objfile,
709 const struct section_addr_info *addrs)
710 {
711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
717
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
780 offsets[cur_sec->index]);
781 offsets[cur_sec->index] = 0;
782 }
783 }
784 }
785
786 /* Remember the bfd indexes for the .text, .data, .bss and
787 .rodata sections. */
788 init_objfile_sect_indices (objfile);
789 }
790
791 /* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797 struct symfile_segment_data *
798 default_symfile_segments (bfd *abfd)
799 {
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
825 data = XCNEW (struct symfile_segment_data);
826 data->num_segments = 1;
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
829
830 num_sections = bfd_count_sections (abfd);
831 data->segment_info = XCNEWVEC (int, num_sections);
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853 }
854
855 /* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858 static void
859 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
860 {
861 (*objfile->sf->sym_read) (objfile, add_flags);
862 objfile->per_bfd->minsyms_read = true;
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
869 {
870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
871
872 if (abfd != NULL)
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
880 }
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884 }
885
886 /* Initialize entry point information for this objfile. */
887
888 static void
889 init_entry_point_info (struct objfile *objfile)
890 {
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
919 ei->entry_point_p = 0;
920 }
921
922 if (ei->entry_point_p)
923 {
924 struct obj_section *osect;
925 CORE_ADDR entry_point = ei->entry_point;
926 int found;
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
937 ei->entry_point
938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
949 ei->the_bfd_section_index
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
958 }
959 }
960
961 /* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
964 This function does not set the OBJFILE's entry-point info.
965
966 OBJFILE is where the symbols are to be read from.
967
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
977
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
981
982 static void
983 syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
985 symfile_add_flags add_flags)
986 {
987 struct section_addr_info *local_addr = NULL;
988 struct cleanup *old_chain;
989 const int mainline = add_flags & SYMFILE_MAINLINE;
990
991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
992
993 if (objfile->sf == NULL)
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
1007
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
1010 old_chain = make_cleanup_free_objfile (objfile);
1011
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
1014 no load address was specified. */
1015 if (! addrs)
1016 {
1017 local_addr = alloc_section_addr_info (1);
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
1022 if (mainline)
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
1025 will be cleaned up if an error occurs during symbol reading. */
1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
1033 gdb_assert (symfile_objfile == NULL);
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
1040
1041 (*objfile->sf->sym_new_init) (objfile);
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
1046 and assume that <addr> is where that got loaded.
1047
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
1050 if (addrs->num_sections > 0)
1051 addr_info_make_relative (addrs, objfile->obfd);
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
1055 initial symbol reading for this file. */
1056
1057 (*objfile->sf->sym_init) (objfile);
1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1059
1060 (*objfile->sf->sym_offsets) (objfile, addrs);
1061
1062 read_symbols (objfile, add_flags);
1063
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
1067 xfree (local_addr);
1068 }
1069
1070 /* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
1073 static void
1074 syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
1076 symfile_add_flags add_flags)
1077 {
1078 syms_from_objfile_1 (objfile, addrs, add_flags);
1079 init_entry_point_info (objfile);
1080 }
1081
1082 /* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1085
1086 static void
1087 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1088 {
1089 /* If this is the main symbol file we have to clean up all users of the
1090 old main symbol file. Otherwise it is sufficient to fixup all the
1091 breakpoints that may have been redefined by this symbol file. */
1092 if (add_flags & SYMFILE_MAINLINE)
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
1097 clear_symtab_users (add_flags);
1098 }
1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1100 {
1101 breakpoint_re_set ();
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1106 }
1107
1108 /* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1112 A new reference is acquired by this function.
1113
1114 For NAME description see allocate_objfile's definition.
1115
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
1118
1119 ADDRS is as described for syms_from_objfile_1, above.
1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1121
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
1125 Upon success, returns a pointer to the objfile that was added.
1126 Upon failure, jumps back to command level (never returns). */
1127
1128 static struct objfile *
1129 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
1131 struct section_addr_info *addrs,
1132 objfile_flags flags, struct objfile *parent)
1133 {
1134 struct objfile *objfile;
1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
1136 const int mainline = add_flags & SYMFILE_MAINLINE;
1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
1140
1141 if (readnow_symbol_files)
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
1146
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && mainline
1152 && from_tty
1153 && !query (_("Load new symbol table from \"%s\"? "), name))
1154 error (_("Not confirmed."));
1155
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
1159
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
1165 performed, or need to read an unmapped symbol table. */
1166 if (should_print)
1167 {
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
1170 else
1171 {
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
1175 }
1176 }
1177 syms_from_objfile (objfile, addrs, add_flags);
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
1182 all partial symbol tables for this objfile if so. */
1183
1184 if ((flags & OBJF_READNOW))
1185 {
1186 if (should_print)
1187 {
1188 printf_unfiltered (_("expanding to full symbols..."));
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
1195 }
1196
1197 if (should_print && !objfile_has_symbols (objfile))
1198 {
1199 wrap_here ("");
1200 printf_unfiltered (_("(no debugging symbols found)..."));
1201 wrap_here ("");
1202 }
1203
1204 if (should_print)
1205 {
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
1208 else
1209 printf_unfiltered (_("done.\n"));
1210 }
1211
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
1217 if (objfile->sf == NULL)
1218 {
1219 observer_notify_new_objfile (objfile);
1220 return objfile; /* No symbols. */
1221 }
1222
1223 finish_new_objfile (objfile, add_flags);
1224
1225 observer_notify_new_objfile (objfile);
1226
1227 bfd_cache_close_all ();
1228 return (objfile);
1229 }
1230
1231 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
1233
1234 void
1235 symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
1237 struct objfile *objfile)
1238 {
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
1247
1248 symbol_file_add_with_addrs
1249 (bfd, name, symfile_flags, sap,
1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1251 | OBJF_USERLOADED),
1252 objfile);
1253
1254 do_cleanups (my_cleanup);
1255 }
1256
1257 /* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
1259 See symbol_file_add_with_addrs's comments for details. */
1260
1261 struct objfile *
1262 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
1264 struct section_addr_info *addrs,
1265 objfile_flags flags, struct objfile *parent)
1266 {
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
1269 }
1270
1271 /* Process a symbol file, as either the main file or as a dynamically
1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
1277 {
1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1279
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
1282 }
1283
1284 /* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
1291
1292 void
1293 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1294 {
1295 symbol_file_add_main_1 (args, add_flags, 0);
1296 }
1297
1298 static void
1299 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
1301 {
1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1303
1304 symbol_file_add (args, add_flags, NULL, flags);
1305
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
1310 if ((add_flags & SYMFILE_NO_READ) == 0)
1311 set_initial_language ();
1312 }
1313
1314 void
1315 symbol_file_clear (int from_tty)
1316 {
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
1321 objfile_name (symfile_objfile))
1322 : !query (_("Discard symbol table? "))))
1323 error (_("Not confirmed."));
1324
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
1327 no_shared_libraries (NULL, from_tty);
1328
1329 free_all_objfiles ();
1330
1331 gdb_assert (symfile_objfile == NULL);
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1334 }
1335
1336 /* See symfile.h. */
1337
1338 int separate_debug_file_debug = 0;
1339
1340 static int
1341 separate_debug_file_exists (const char *name, unsigned long crc,
1342 struct objfile *parent_objfile)
1343 {
1344 unsigned long file_crc;
1345 int file_crc_p;
1346 struct stat parent_stat, abfd_stat;
1347 int verified_as_different;
1348
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1353 the separate debug infos with the same basename can exist. */
1354
1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1356 return 0;
1357
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1360
1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1362
1363 if (abfd == NULL)
1364 return 0;
1365
1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
1367
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
1376
1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1380 {
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
1383 return 0;
1384 verified_as_different = 1;
1385 }
1386 else
1387 verified_as_different = 0;
1388
1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1390
1391 if (!file_crc_p)
1392 return 0;
1393
1394 if (crc != file_crc)
1395 {
1396 unsigned long parent_crc;
1397
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
1401
1402 if (!verified_as_different)
1403 {
1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1405 return 0;
1406 }
1407
1408 if (verified_as_different || parent_crc != file_crc)
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
1411 name, objfile_name (parent_objfile));
1412
1413 return 0;
1414 }
1415
1416 return 1;
1417 }
1418
1419 char *debug_file_directory = NULL;
1420 static void
1421 show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423 {
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
1427 value);
1428 }
1429
1430 #if ! defined (DEBUG_SUBDIRECTORY)
1431 #define DEBUG_SUBDIRECTORY ".debug"
1432 #endif
1433
1434 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1440
1441 static char *
1442 find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
1446 {
1447 char *debugdir;
1448 char *debugfile;
1449 int i;
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1452 int ix;
1453
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1457
1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1459 i = strlen (dir);
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1462
1463 debugfile
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1465 + i
1466 + strlen (DEBUG_SUBDIRECTORY)
1467 + strlen ("/")
1468 + strlen (debuglink)
1469 + 1);
1470
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1473 strcat (debugfile, debuglink);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the global debugfile directories.
1488
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
1491
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1494
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1496 {
1497 strcpy (debugfile, debugdir);
1498 strcat (debugfile, "/");
1499 strcat (debugfile, dir);
1500 strcat (debugfile, debuglink);
1501
1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
1503 {
1504 do_cleanups (back_to);
1505 return debugfile;
1506 }
1507
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
1512 strlen (gdb_sysroot)) == 0
1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1514 {
1515 strcpy (debugfile, debugdir);
1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1517 strcat (debugfile, "/");
1518 strcat (debugfile, debuglink);
1519
1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
1521 {
1522 do_cleanups (back_to);
1523 return debugfile;
1524 }
1525 }
1526 }
1527
1528 do_cleanups (back_to);
1529 xfree (debugfile);
1530 return NULL;
1531 }
1532
1533 /* Modify PATH to contain only "[/]directory/" part of PATH.
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1536
1537 static void
1538 terminate_after_last_dir_separator (char *path)
1539 {
1540 int i;
1541
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1546 break;
1547
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1549 path[i + 1] = '\0';
1550 }
1551
1552 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1554
1555 char *
1556 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1557 {
1558 char *debuglink;
1559 char *dir, *canon_dir;
1560 char *debugfile;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1563
1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1565
1566 if (debuglink == NULL)
1567 {
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1570 return NULL;
1571 }
1572
1573 cleanups = make_cleanup (xfree, debuglink);
1574 dir = xstrdup (objfile_name (objfile));
1575 make_cleanup (xfree, dir);
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1578
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1580 crc32, objfile);
1581 xfree (canon_dir);
1582
1583 if (debugfile == NULL)
1584 {
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1592 {
1593 char *symlink_dir;
1594
1595 symlink_dir = lrealpath (objfile_name (objfile));
1596 if (symlink_dir != NULL)
1597 {
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1601 {
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1604 symlink_dir,
1605 debuglink,
1606 crc32,
1607 objfile);
1608 }
1609 }
1610 }
1611 }
1612
1613 do_cleanups (cleanups);
1614 return debugfile;
1615 }
1616
1617 /* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
1619 the command is rather bizarre:
1620
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1624
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1627
1628 3. The order of options matters, which is contrary to GNU
1629 conventions (because it is confusing and inconvenient). */
1630
1631 void
1632 symbol_file_command (char *args, int from_tty)
1633 {
1634 dont_repeat ();
1635
1636 if (args == NULL)
1637 {
1638 symbol_file_clear (from_tty);
1639 }
1640 else
1641 {
1642 objfile_flags flags = OBJF_USERLOADED;
1643 symfile_add_flags add_flags = 0;
1644 struct cleanup *cleanups;
1645 char *name = NULL;
1646
1647 if (from_tty)
1648 add_flags |= SYMFILE_VERBOSE;
1649
1650 gdb_argv built_argv (args);
1651 for (char *arg : built_argv)
1652 {
1653 if (strcmp (arg, "-readnow") == 0)
1654 flags |= OBJF_READNOW;
1655 else if (*arg == '-')
1656 error (_("unknown option `%s'"), arg);
1657 else
1658 {
1659 symbol_file_add_main_1 (arg, add_flags, flags);
1660 name = arg;
1661 }
1662 }
1663
1664 if (name == NULL)
1665 error (_("no symbol file name was specified"));
1666 }
1667 }
1668
1669 /* Set the initial language.
1670
1671 FIXME: A better solution would be to record the language in the
1672 psymtab when reading partial symbols, and then use it (if known) to
1673 set the language. This would be a win for formats that encode the
1674 language in an easily discoverable place, such as DWARF. For
1675 stabs, we can jump through hoops looking for specially named
1676 symbols or try to intuit the language from the specific type of
1677 stabs we find, but we can't do that until later when we read in
1678 full symbols. */
1679
1680 void
1681 set_initial_language (void)
1682 {
1683 enum language lang = main_language ();
1684
1685 if (lang == language_unknown)
1686 {
1687 char *name = main_name ();
1688 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1689
1690 if (sym != NULL)
1691 lang = SYMBOL_LANGUAGE (sym);
1692 }
1693
1694 if (lang == language_unknown)
1695 {
1696 /* Make C the default language */
1697 lang = language_c;
1698 }
1699
1700 set_language (lang);
1701 expected_language = current_language; /* Don't warn the user. */
1702 }
1703
1704 /* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
1708
1709 gdb_bfd_ref_ptr
1710 symfile_bfd_open (const char *name)
1711 {
1712 int desc = -1;
1713 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1714
1715 if (!is_target_filename (name))
1716 {
1717 char *absolute_name;
1718
1719 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1720
1721 /* Look down path for it, allocate 2nd new malloc'd copy. */
1722 desc = openp (getenv ("PATH"),
1723 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1724 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1725 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1726 if (desc < 0)
1727 {
1728 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1729
1730 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 exename, O_RDONLY | O_BINARY, &absolute_name);
1734 }
1735 #endif
1736 if (desc < 0)
1737 perror_with_name (expanded_name.get ());
1738
1739 make_cleanup (xfree, absolute_name);
1740 name = absolute_name;
1741 }
1742
1743 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1744 if (sym_bfd == NULL)
1745 error (_("`%s': can't open to read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
1747
1748 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1749 bfd_set_cacheable (sym_bfd.get (), 1);
1750
1751 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1752 error (_("`%s': can't read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 do_cleanups (back_to);
1756
1757 return sym_bfd;
1758 }
1759
1760 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1761 the section was not found. */
1762
1763 int
1764 get_section_index (struct objfile *objfile, const char *section_name)
1765 {
1766 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1767
1768 if (sect)
1769 return sect->index;
1770 else
1771 return -1;
1772 }
1773
1774 /* Link SF into the global symtab_fns list.
1775 FLAVOUR is the file format that SF handles.
1776 Called on startup by the _initialize routine in each object file format
1777 reader, to register information about each format the reader is prepared
1778 to handle. */
1779
1780 void
1781 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1782 {
1783 registered_sym_fns fns = { flavour, sf };
1784
1785 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1786 }
1787
1788 /* Initialize OBJFILE to read symbols from its associated BFD. It
1789 either returns or calls error(). The result is an initialized
1790 struct sym_fns in the objfile structure, that contains cached
1791 information about the symbol file. */
1792
1793 static const struct sym_fns *
1794 find_sym_fns (bfd *abfd)
1795 {
1796 registered_sym_fns *rsf;
1797 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1798 int i;
1799
1800 if (our_flavour == bfd_target_srec_flavour
1801 || our_flavour == bfd_target_ihex_flavour
1802 || our_flavour == bfd_target_tekhex_flavour)
1803 return NULL; /* No symbols. */
1804
1805 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1806 if (our_flavour == rsf->sym_flavour)
1807 return rsf->sym_fns;
1808
1809 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1810 bfd_get_target (abfd));
1811 }
1812 \f
1813
1814 /* This function runs the load command of our current target. */
1815
1816 static void
1817 load_command (char *arg, int from_tty)
1818 {
1819 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1820
1821 dont_repeat ();
1822
1823 /* The user might be reloading because the binary has changed. Take
1824 this opportunity to check. */
1825 reopen_exec_file ();
1826 reread_symbols ();
1827
1828 if (arg == NULL)
1829 {
1830 char *parg;
1831 int count = 0;
1832
1833 parg = arg = get_exec_file (1);
1834
1835 /* Count how many \ " ' tab space there are in the name. */
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 parg++;
1839 count++;
1840 }
1841
1842 if (count)
1843 {
1844 /* We need to quote this string so buildargv can pull it apart. */
1845 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1846 char *ptemp = temp;
1847 char *prev;
1848
1849 make_cleanup (xfree, temp);
1850
1851 prev = parg = arg;
1852 while ((parg = strpbrk (parg, "\\\"'\t ")))
1853 {
1854 strncpy (ptemp, prev, parg - prev);
1855 ptemp += parg - prev;
1856 prev = parg++;
1857 *ptemp++ = '\\';
1858 }
1859 strcpy (ptemp, prev);
1860
1861 arg = temp;
1862 }
1863 }
1864
1865 target_load (arg, from_tty);
1866
1867 /* After re-loading the executable, we don't really know which
1868 overlays are mapped any more. */
1869 overlay_cache_invalid = 1;
1870
1871 do_cleanups (cleanup);
1872 }
1873
1874 /* This version of "load" should be usable for any target. Currently
1875 it is just used for remote targets, not inftarg.c or core files,
1876 on the theory that only in that case is it useful.
1877
1878 Avoiding xmodem and the like seems like a win (a) because we don't have
1879 to worry about finding it, and (b) On VMS, fork() is very slow and so
1880 we don't want to run a subprocess. On the other hand, I'm not sure how
1881 performance compares. */
1882
1883 static int validate_download = 0;
1884
1885 /* Callback service function for generic_load (bfd_map_over_sections). */
1886
1887 static void
1888 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1889 {
1890 bfd_size_type *sum = (bfd_size_type *) data;
1891
1892 *sum += bfd_get_section_size (asec);
1893 }
1894
1895 /* Opaque data for load_section_callback. */
1896 struct load_section_data {
1897 CORE_ADDR load_offset;
1898 struct load_progress_data *progress_data;
1899 VEC(memory_write_request_s) *requests;
1900 };
1901
1902 /* Opaque data for load_progress. */
1903 struct load_progress_data {
1904 /* Cumulative data. */
1905 unsigned long write_count;
1906 unsigned long data_count;
1907 bfd_size_type total_size;
1908 };
1909
1910 /* Opaque data for load_progress for a single section. */
1911 struct load_progress_section_data {
1912 struct load_progress_data *cumulative;
1913
1914 /* Per-section data. */
1915 const char *section_name;
1916 ULONGEST section_sent;
1917 ULONGEST section_size;
1918 CORE_ADDR lma;
1919 gdb_byte *buffer;
1920 };
1921
1922 /* Target write callback routine for progress reporting. */
1923
1924 static void
1925 load_progress (ULONGEST bytes, void *untyped_arg)
1926 {
1927 struct load_progress_section_data *args
1928 = (struct load_progress_section_data *) untyped_arg;
1929 struct load_progress_data *totals;
1930
1931 if (args == NULL)
1932 /* Writing padding data. No easy way to get at the cumulative
1933 stats, so just ignore this. */
1934 return;
1935
1936 totals = args->cumulative;
1937
1938 if (bytes == 0 && args->section_sent == 0)
1939 {
1940 /* The write is just starting. Let the user know we've started
1941 this section. */
1942 current_uiout->message ("Loading section %s, size %s lma %s\n",
1943 args->section_name,
1944 hex_string (args->section_size),
1945 paddress (target_gdbarch (), args->lma));
1946 return;
1947 }
1948
1949 if (validate_download)
1950 {
1951 /* Broken memories and broken monitors manifest themselves here
1952 when bring new computers to life. This doubles already slow
1953 downloads. */
1954 /* NOTE: cagney/1999-10-18: A more efficient implementation
1955 might add a verify_memory() method to the target vector and
1956 then use that. remote.c could implement that method using
1957 the ``qCRC'' packet. */
1958 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1959 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1960
1961 if (target_read_memory (args->lma, check, bytes) != 0)
1962 error (_("Download verify read failed at %s"),
1963 paddress (target_gdbarch (), args->lma));
1964 if (memcmp (args->buffer, check, bytes) != 0)
1965 error (_("Download verify compare failed at %s"),
1966 paddress (target_gdbarch (), args->lma));
1967 do_cleanups (verify_cleanups);
1968 }
1969 totals->data_count += bytes;
1970 args->lma += bytes;
1971 args->buffer += bytes;
1972 totals->write_count += 1;
1973 args->section_sent += bytes;
1974 if (check_quit_flag ()
1975 || (deprecated_ui_load_progress_hook != NULL
1976 && deprecated_ui_load_progress_hook (args->section_name,
1977 args->section_sent)))
1978 error (_("Canceled the download"));
1979
1980 if (deprecated_show_load_progress != NULL)
1981 deprecated_show_load_progress (args->section_name,
1982 args->section_sent,
1983 args->section_size,
1984 totals->data_count,
1985 totals->total_size);
1986 }
1987
1988 /* Callback service function for generic_load (bfd_map_over_sections). */
1989
1990 static void
1991 load_section_callback (bfd *abfd, asection *asec, void *data)
1992 {
1993 struct memory_write_request *new_request;
1994 struct load_section_data *args = (struct load_section_data *) data;
1995 struct load_progress_section_data *section_data;
1996 bfd_size_type size = bfd_get_section_size (asec);
1997 gdb_byte *buffer;
1998 const char *sect_name = bfd_get_section_name (abfd, asec);
1999
2000 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2001 return;
2002
2003 if (size == 0)
2004 return;
2005
2006 new_request = VEC_safe_push (memory_write_request_s,
2007 args->requests, NULL);
2008 memset (new_request, 0, sizeof (struct memory_write_request));
2009 section_data = XCNEW (struct load_progress_section_data);
2010 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2011 new_request->end = new_request->begin + size; /* FIXME Should size
2012 be in instead? */
2013 new_request->data = (gdb_byte *) xmalloc (size);
2014 new_request->baton = section_data;
2015
2016 buffer = new_request->data;
2017
2018 section_data->cumulative = args->progress_data;
2019 section_data->section_name = sect_name;
2020 section_data->section_size = size;
2021 section_data->lma = new_request->begin;
2022 section_data->buffer = buffer;
2023
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2025 }
2026
2027 /* Clean up an entire memory request vector, including load
2028 data and progress records. */
2029
2030 static void
2031 clear_memory_write_data (void *arg)
2032 {
2033 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2034 VEC(memory_write_request_s) *vec = *vec_p;
2035 int i;
2036 struct memory_write_request *mr;
2037
2038 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2039 {
2040 xfree (mr->data);
2041 xfree (mr->baton);
2042 }
2043 VEC_free (memory_write_request_s, vec);
2044 }
2045
2046 static void print_transfer_performance (struct ui_file *stream,
2047 unsigned long data_count,
2048 unsigned long write_count,
2049 std::chrono::steady_clock::duration d);
2050
2051 void
2052 generic_load (const char *args, int from_tty)
2053 {
2054 struct cleanup *old_cleanups;
2055 struct load_section_data cbdata;
2056 struct load_progress_data total_progress;
2057 struct ui_out *uiout = current_uiout;
2058
2059 CORE_ADDR entry;
2060
2061 memset (&cbdata, 0, sizeof (cbdata));
2062 memset (&total_progress, 0, sizeof (total_progress));
2063 cbdata.progress_data = &total_progress;
2064
2065 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2066
2067 if (args == NULL)
2068 error_no_arg (_("file to load"));
2069
2070 gdb_argv argv (args);
2071
2072 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2073
2074 if (argv[1] != NULL)
2075 {
2076 const char *endptr;
2077
2078 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2079
2080 /* If the last word was not a valid number then
2081 treat it as a file name with spaces in. */
2082 if (argv[1] == endptr)
2083 error (_("Invalid download offset:%s."), argv[1]);
2084
2085 if (argv[2] != NULL)
2086 error (_("Too many parameters."));
2087 }
2088
2089 /* Open the file for loading. */
2090 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2091 if (loadfile_bfd == NULL)
2092 perror_with_name (filename.get ());
2093
2094 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2095 {
2096 error (_("\"%s\" is not an object file: %s"), filename.get (),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2101 (void *) &total_progress.total_size);
2102
2103 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2104
2105 using namespace std::chrono;
2106
2107 steady_clock::time_point start_time = steady_clock::now ();
2108
2109 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2110 load_progress) != 0)
2111 error (_("Load failed"));
2112
2113 steady_clock::time_point end_time = steady_clock::now ();
2114
2115 entry = bfd_get_start_address (loadfile_bfd.get ());
2116 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2117 uiout->text ("Start address ");
2118 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2119 uiout->text (", load size ");
2120 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2121 uiout->text ("\n");
2122 regcache_write_pc (get_current_regcache (), entry);
2123
2124 /* Reset breakpoints, now that we have changed the load image. For
2125 instance, breakpoints may have been set (or reset, by
2126 post_create_inferior) while connected to the target but before we
2127 loaded the program. In that case, the prologue analyzer could
2128 have read instructions from the target to find the right
2129 breakpoint locations. Loading has changed the contents of that
2130 memory. */
2131
2132 breakpoint_re_set ();
2133
2134 print_transfer_performance (gdb_stdout, total_progress.data_count,
2135 total_progress.write_count,
2136 end_time - start_time);
2137
2138 do_cleanups (old_cleanups);
2139 }
2140
2141 /* Report on STREAM the performance of a memory transfer operation,
2142 such as 'load'. DATA_COUNT is the number of bytes transferred.
2143 WRITE_COUNT is the number of separate write operations, or 0, if
2144 that information is not available. TIME is how long the operation
2145 lasted. */
2146
2147 static void
2148 print_transfer_performance (struct ui_file *stream,
2149 unsigned long data_count,
2150 unsigned long write_count,
2151 std::chrono::steady_clock::duration time)
2152 {
2153 using namespace std::chrono;
2154 struct ui_out *uiout = current_uiout;
2155
2156 milliseconds ms = duration_cast<milliseconds> (time);
2157
2158 uiout->text ("Transfer rate: ");
2159 if (ms.count () > 0)
2160 {
2161 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2162
2163 if (uiout->is_mi_like_p ())
2164 {
2165 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2166 uiout->text (" bits/sec");
2167 }
2168 else if (rate < 1024)
2169 {
2170 uiout->field_fmt ("transfer-rate", "%lu", rate);
2171 uiout->text (" bytes/sec");
2172 }
2173 else
2174 {
2175 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2176 uiout->text (" KB/sec");
2177 }
2178 }
2179 else
2180 {
2181 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2182 uiout->text (" bits in <1 sec");
2183 }
2184 if (write_count > 0)
2185 {
2186 uiout->text (", ");
2187 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2188 uiout->text (" bytes/write");
2189 }
2190 uiout->text (".\n");
2191 }
2192
2193 /* This function allows the addition of incrementally linked object files.
2194 It does not modify any state in the target, only in the debugger. */
2195 /* Note: ezannoni 2000-04-13 This function/command used to have a
2196 special case syntax for the rombug target (Rombug is the boot
2197 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2198 rombug case, the user doesn't need to supply a text address,
2199 instead a call to target_link() (in target.c) would supply the
2200 value to use. We are now discontinuing this type of ad hoc syntax. */
2201
2202 static void
2203 add_symbol_file_command (char *args, int from_tty)
2204 {
2205 struct gdbarch *gdbarch = get_current_arch ();
2206 gdb::unique_xmalloc_ptr<char> filename;
2207 char *arg;
2208 int section_index = 0;
2209 int argcnt = 0;
2210 int sec_num = 0;
2211 int i;
2212 int expecting_sec_name = 0;
2213 int expecting_sec_addr = 0;
2214 struct objfile *objf;
2215 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2216 symfile_add_flags add_flags = 0;
2217
2218 if (from_tty)
2219 add_flags |= SYMFILE_VERBOSE;
2220
2221 struct sect_opt
2222 {
2223 const char *name;
2224 const char *value;
2225 };
2226
2227 struct section_addr_info *section_addrs;
2228 struct sect_opt *sect_opts = NULL;
2229 size_t num_sect_opts = 0;
2230 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2231
2232 num_sect_opts = 16;
2233 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2234
2235 dont_repeat ();
2236
2237 if (args == NULL)
2238 error (_("add-symbol-file takes a file name and an address"));
2239
2240 gdb_argv argv (args);
2241
2242 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2243 {
2244 /* Process the argument. */
2245 if (argcnt == 0)
2246 {
2247 /* The first argument is the file name. */
2248 filename.reset (tilde_expand (arg));
2249 }
2250 else if (argcnt == 1)
2251 {
2252 /* The second argument is always the text address at which
2253 to load the program. */
2254 sect_opts[section_index].name = ".text";
2255 sect_opts[section_index].value = arg;
2256 if (++section_index >= num_sect_opts)
2257 {
2258 num_sect_opts *= 2;
2259 sect_opts = ((struct sect_opt *)
2260 xrealloc (sect_opts,
2261 num_sect_opts
2262 * sizeof (struct sect_opt)));
2263 }
2264 }
2265 else
2266 {
2267 /* It's an option (starting with '-') or it's an argument
2268 to an option. */
2269 if (expecting_sec_name)
2270 {
2271 sect_opts[section_index].name = arg;
2272 expecting_sec_name = 0;
2273 }
2274 else if (expecting_sec_addr)
2275 {
2276 sect_opts[section_index].value = arg;
2277 expecting_sec_addr = 0;
2278 if (++section_index >= num_sect_opts)
2279 {
2280 num_sect_opts *= 2;
2281 sect_opts = ((struct sect_opt *)
2282 xrealloc (sect_opts,
2283 num_sect_opts
2284 * sizeof (struct sect_opt)));
2285 }
2286 }
2287 else if (strcmp (arg, "-readnow") == 0)
2288 flags |= OBJF_READNOW;
2289 else if (strcmp (arg, "-s") == 0)
2290 {
2291 expecting_sec_name = 1;
2292 expecting_sec_addr = 1;
2293 }
2294 else
2295 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2296 " [-readnow] [-s <secname> <addr>]*"));
2297 }
2298 }
2299
2300 /* This command takes at least two arguments. The first one is a
2301 filename, and the second is the address where this file has been
2302 loaded. Abort now if this address hasn't been provided by the
2303 user. */
2304 if (section_index < 1)
2305 error (_("The address where %s has been loaded is missing"),
2306 filename.get ());
2307
2308 /* Print the prompt for the query below. And save the arguments into
2309 a sect_addr_info structure to be passed around to other
2310 functions. We have to split this up into separate print
2311 statements because hex_string returns a local static
2312 string. */
2313
2314 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2315 filename.get ());
2316 section_addrs = alloc_section_addr_info (section_index);
2317 make_cleanup (xfree, section_addrs);
2318 for (i = 0; i < section_index; i++)
2319 {
2320 CORE_ADDR addr;
2321 const char *val = sect_opts[i].value;
2322 const char *sec = sect_opts[i].name;
2323
2324 addr = parse_and_eval_address (val);
2325
2326 /* Here we store the section offsets in the order they were
2327 entered on the command line. */
2328 section_addrs->other[sec_num].name = (char *) sec;
2329 section_addrs->other[sec_num].addr = addr;
2330 printf_unfiltered ("\t%s_addr = %s\n", sec,
2331 paddress (gdbarch, addr));
2332 sec_num++;
2333
2334 /* The object's sections are initialized when a
2335 call is made to build_objfile_section_table (objfile).
2336 This happens in reread_symbols.
2337 At this point, we don't know what file type this is,
2338 so we can't determine what section names are valid. */
2339 }
2340 section_addrs->num_sections = sec_num;
2341
2342 if (from_tty && (!query ("%s", "")))
2343 error (_("Not confirmed."));
2344
2345 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2346
2347 add_target_sections_of_objfile (objf);
2348
2349 /* Getting new symbols may change our opinion about what is
2350 frameless. */
2351 reinit_frame_cache ();
2352 do_cleanups (my_cleanups);
2353 }
2354 \f
2355
2356 /* This function removes a symbol file that was added via add-symbol-file. */
2357
2358 static void
2359 remove_symbol_file_command (char *args, int from_tty)
2360 {
2361 struct objfile *objf = NULL;
2362 struct program_space *pspace = current_program_space;
2363
2364 dont_repeat ();
2365
2366 if (args == NULL)
2367 error (_("remove-symbol-file: no symbol file provided"));
2368
2369 gdb_argv argv (args);
2370
2371 if (strcmp (argv[0], "-a") == 0)
2372 {
2373 /* Interpret the next argument as an address. */
2374 CORE_ADDR addr;
2375
2376 if (argv[1] == NULL)
2377 error (_("Missing address argument"));
2378
2379 if (argv[2] != NULL)
2380 error (_("Junk after %s"), argv[1]);
2381
2382 addr = parse_and_eval_address (argv[1]);
2383
2384 ALL_OBJFILES (objf)
2385 {
2386 if ((objf->flags & OBJF_USERLOADED) != 0
2387 && (objf->flags & OBJF_SHARED) != 0
2388 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2389 break;
2390 }
2391 }
2392 else if (argv[0] != NULL)
2393 {
2394 /* Interpret the current argument as a file name. */
2395
2396 if (argv[1] != NULL)
2397 error (_("Junk after %s"), argv[0]);
2398
2399 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2400
2401 ALL_OBJFILES (objf)
2402 {
2403 if ((objf->flags & OBJF_USERLOADED) != 0
2404 && (objf->flags & OBJF_SHARED) != 0
2405 && objf->pspace == pspace
2406 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2407 break;
2408 }
2409 }
2410
2411 if (objf == NULL)
2412 error (_("No symbol file found"));
2413
2414 if (from_tty
2415 && !query (_("Remove symbol table from file \"%s\"? "),
2416 objfile_name (objf)))
2417 error (_("Not confirmed."));
2418
2419 free_objfile (objf);
2420 clear_symtab_users (0);
2421 }
2422
2423 /* Re-read symbols if a symbol-file has changed. */
2424
2425 void
2426 reread_symbols (void)
2427 {
2428 struct objfile *objfile;
2429 long new_modtime;
2430 struct stat new_statbuf;
2431 int res;
2432 std::vector<struct objfile *> new_objfiles;
2433
2434 /* With the addition of shared libraries, this should be modified,
2435 the load time should be saved in the partial symbol tables, since
2436 different tables may come from different source files. FIXME.
2437 This routine should then walk down each partial symbol table
2438 and see if the symbol table that it originates from has been changed. */
2439
2440 for (objfile = object_files; objfile; objfile = objfile->next)
2441 {
2442 if (objfile->obfd == NULL)
2443 continue;
2444
2445 /* Separate debug objfiles are handled in the main objfile. */
2446 if (objfile->separate_debug_objfile_backlink)
2447 continue;
2448
2449 /* If this object is from an archive (what you usually create with
2450 `ar', often called a `static library' on most systems, though
2451 a `shared library' on AIX is also an archive), then you should
2452 stat on the archive name, not member name. */
2453 if (objfile->obfd->my_archive)
2454 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2455 else
2456 res = stat (objfile_name (objfile), &new_statbuf);
2457 if (res != 0)
2458 {
2459 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2460 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2461 objfile_name (objfile));
2462 continue;
2463 }
2464 new_modtime = new_statbuf.st_mtime;
2465 if (new_modtime != objfile->mtime)
2466 {
2467 struct cleanup *old_cleanups;
2468 struct section_offsets *offsets;
2469 int num_offsets;
2470 char *original_name;
2471
2472 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2473 objfile_name (objfile));
2474
2475 /* There are various functions like symbol_file_add,
2476 symfile_bfd_open, syms_from_objfile, etc., which might
2477 appear to do what we want. But they have various other
2478 effects which we *don't* want. So we just do stuff
2479 ourselves. We don't worry about mapped files (for one thing,
2480 any mapped file will be out of date). */
2481
2482 /* If we get an error, blow away this objfile (not sure if
2483 that is the correct response for things like shared
2484 libraries). */
2485 old_cleanups = make_cleanup_free_objfile (objfile);
2486 /* We need to do this whenever any symbols go away. */
2487 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2488
2489 if (exec_bfd != NULL
2490 && filename_cmp (bfd_get_filename (objfile->obfd),
2491 bfd_get_filename (exec_bfd)) == 0)
2492 {
2493 /* Reload EXEC_BFD without asking anything. */
2494
2495 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2496 }
2497
2498 /* Keep the calls order approx. the same as in free_objfile. */
2499
2500 /* Free the separate debug objfiles. It will be
2501 automatically recreated by sym_read. */
2502 free_objfile_separate_debug (objfile);
2503
2504 /* Remove any references to this objfile in the global
2505 value lists. */
2506 preserve_values (objfile);
2507
2508 /* Nuke all the state that we will re-read. Much of the following
2509 code which sets things to NULL really is necessary to tell
2510 other parts of GDB that there is nothing currently there.
2511
2512 Try to keep the freeing order compatible with free_objfile. */
2513
2514 if (objfile->sf != NULL)
2515 {
2516 (*objfile->sf->sym_finish) (objfile);
2517 }
2518
2519 clear_objfile_data (objfile);
2520
2521 /* Clean up any state BFD has sitting around. */
2522 {
2523 gdb_bfd_ref_ptr obfd (objfile->obfd);
2524 char *obfd_filename;
2525
2526 obfd_filename = bfd_get_filename (objfile->obfd);
2527 /* Open the new BFD before freeing the old one, so that
2528 the filename remains live. */
2529 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2530 objfile->obfd = temp.release ();
2531 if (objfile->obfd == NULL)
2532 error (_("Can't open %s to read symbols."), obfd_filename);
2533 }
2534
2535 original_name = xstrdup (objfile->original_name);
2536 make_cleanup (xfree, original_name);
2537
2538 /* bfd_openr sets cacheable to true, which is what we want. */
2539 if (!bfd_check_format (objfile->obfd, bfd_object))
2540 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2541 bfd_errmsg (bfd_get_error ()));
2542
2543 /* Save the offsets, we will nuke them with the rest of the
2544 objfile_obstack. */
2545 num_offsets = objfile->num_sections;
2546 offsets = ((struct section_offsets *)
2547 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2548 memcpy (offsets, objfile->section_offsets,
2549 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550
2551 /* FIXME: Do we have to free a whole linked list, or is this
2552 enough? */
2553 if (objfile->global_psymbols.list)
2554 xfree (objfile->global_psymbols.list);
2555 memset (&objfile->global_psymbols, 0,
2556 sizeof (objfile->global_psymbols));
2557 if (objfile->static_psymbols.list)
2558 xfree (objfile->static_psymbols.list);
2559 memset (&objfile->static_psymbols, 0,
2560 sizeof (objfile->static_psymbols));
2561
2562 /* Free the obstacks for non-reusable objfiles. */
2563 psymbol_bcache_free (objfile->psymbol_cache);
2564 objfile->psymbol_cache = psymbol_bcache_init ();
2565
2566 /* NB: after this call to obstack_free, objfiles_changed
2567 will need to be called (see discussion below). */
2568 obstack_free (&objfile->objfile_obstack, 0);
2569 objfile->sections = NULL;
2570 objfile->compunit_symtabs = NULL;
2571 objfile->psymtabs = NULL;
2572 objfile->psymtabs_addrmap = NULL;
2573 objfile->free_psymtabs = NULL;
2574 objfile->template_symbols = NULL;
2575
2576 /* obstack_init also initializes the obstack so it is
2577 empty. We could use obstack_specify_allocation but
2578 gdb_obstack.h specifies the alloc/dealloc functions. */
2579 obstack_init (&objfile->objfile_obstack);
2580
2581 /* set_objfile_per_bfd potentially allocates the per-bfd
2582 data on the objfile's obstack (if sharing data across
2583 multiple users is not possible), so it's important to
2584 do it *after* the obstack has been initialized. */
2585 set_objfile_per_bfd (objfile);
2586
2587 objfile->original_name
2588 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2589 strlen (original_name));
2590
2591 /* Reset the sym_fns pointer. The ELF reader can change it
2592 based on whether .gdb_index is present, and we need it to
2593 start over. PR symtab/15885 */
2594 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2595
2596 build_objfile_section_table (objfile);
2597 terminate_minimal_symbol_table (objfile);
2598
2599 /* We use the same section offsets as from last time. I'm not
2600 sure whether that is always correct for shared libraries. */
2601 objfile->section_offsets = (struct section_offsets *)
2602 obstack_alloc (&objfile->objfile_obstack,
2603 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2604 memcpy (objfile->section_offsets, offsets,
2605 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2606 objfile->num_sections = num_offsets;
2607
2608 /* What the hell is sym_new_init for, anyway? The concept of
2609 distinguishing between the main file and additional files
2610 in this way seems rather dubious. */
2611 if (objfile == symfile_objfile)
2612 {
2613 (*objfile->sf->sym_new_init) (objfile);
2614 }
2615
2616 (*objfile->sf->sym_init) (objfile);
2617 clear_complaints (&symfile_complaints, 1, 1);
2618
2619 objfile->flags &= ~OBJF_PSYMTABS_READ;
2620
2621 /* We are about to read new symbols and potentially also
2622 DWARF information. Some targets may want to pass addresses
2623 read from DWARF DIE's through an adjustment function before
2624 saving them, like MIPS, which may call into
2625 "find_pc_section". When called, that function will make
2626 use of per-objfile program space data.
2627
2628 Since we discarded our section information above, we have
2629 dangling pointers in the per-objfile program space data
2630 structure. Force GDB to update the section mapping
2631 information by letting it know the objfile has changed,
2632 making the dangling pointers point to correct data
2633 again. */
2634
2635 objfiles_changed ();
2636
2637 read_symbols (objfile, 0);
2638
2639 if (!objfile_has_symbols (objfile))
2640 {
2641 wrap_here ("");
2642 printf_unfiltered (_("(no debugging symbols found)\n"));
2643 wrap_here ("");
2644 }
2645
2646 /* We're done reading the symbol file; finish off complaints. */
2647 clear_complaints (&symfile_complaints, 0, 1);
2648
2649 /* Getting new symbols may change our opinion about what is
2650 frameless. */
2651
2652 reinit_frame_cache ();
2653
2654 /* Discard cleanups as symbol reading was successful. */
2655 discard_cleanups (old_cleanups);
2656
2657 /* If the mtime has changed between the time we set new_modtime
2658 and now, we *want* this to be out of date, so don't call stat
2659 again now. */
2660 objfile->mtime = new_modtime;
2661 init_entry_point_info (objfile);
2662
2663 new_objfiles.push_back (objfile);
2664 }
2665 }
2666
2667 if (!new_objfiles.empty ())
2668 {
2669 clear_symtab_users (0);
2670
2671 /* clear_objfile_data for each objfile was called before freeing it and
2672 observer_notify_new_objfile (NULL) has been called by
2673 clear_symtab_users above. Notify the new files now. */
2674 for (auto iter : new_objfiles)
2675 observer_notify_new_objfile (iter);
2676
2677 /* At least one objfile has changed, so we can consider that
2678 the executable we're debugging has changed too. */
2679 observer_notify_executable_changed ();
2680 }
2681 }
2682 \f
2683
2684 typedef struct
2685 {
2686 char *ext;
2687 enum language lang;
2688 } filename_language;
2689
2690 DEF_VEC_O (filename_language);
2691
2692 static VEC (filename_language) *filename_language_table;
2693
2694 /* See symfile.h. */
2695
2696 void
2697 add_filename_language (const char *ext, enum language lang)
2698 {
2699 filename_language entry;
2700
2701 entry.ext = xstrdup (ext);
2702 entry.lang = lang;
2703
2704 VEC_safe_push (filename_language, filename_language_table, &entry);
2705 }
2706
2707 static char *ext_args;
2708 static void
2709 show_ext_args (struct ui_file *file, int from_tty,
2710 struct cmd_list_element *c, const char *value)
2711 {
2712 fprintf_filtered (file,
2713 _("Mapping between filename extension "
2714 "and source language is \"%s\".\n"),
2715 value);
2716 }
2717
2718 static void
2719 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2720 {
2721 int i;
2722 char *cp = ext_args;
2723 enum language lang;
2724 filename_language *entry;
2725
2726 /* First arg is filename extension, starting with '.' */
2727 if (*cp != '.')
2728 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2729
2730 /* Find end of first arg. */
2731 while (*cp && !isspace (*cp))
2732 cp++;
2733
2734 if (*cp == '\0')
2735 error (_("'%s': two arguments required -- "
2736 "filename extension and language"),
2737 ext_args);
2738
2739 /* Null-terminate first arg. */
2740 *cp++ = '\0';
2741
2742 /* Find beginning of second arg, which should be a source language. */
2743 cp = skip_spaces (cp);
2744
2745 if (*cp == '\0')
2746 error (_("'%s': two arguments required -- "
2747 "filename extension and language"),
2748 ext_args);
2749
2750 /* Lookup the language from among those we know. */
2751 lang = language_enum (cp);
2752
2753 /* Now lookup the filename extension: do we already know it? */
2754 for (i = 0;
2755 VEC_iterate (filename_language, filename_language_table, i, entry);
2756 ++i)
2757 {
2758 if (0 == strcmp (ext_args, entry->ext))
2759 break;
2760 }
2761
2762 if (entry == NULL)
2763 {
2764 /* New file extension. */
2765 add_filename_language (ext_args, lang);
2766 }
2767 else
2768 {
2769 /* Redefining a previously known filename extension. */
2770
2771 /* if (from_tty) */
2772 /* query ("Really make files of type %s '%s'?", */
2773 /* ext_args, language_str (lang)); */
2774
2775 xfree (entry->ext);
2776 entry->ext = xstrdup (ext_args);
2777 entry->lang = lang;
2778 }
2779 }
2780
2781 static void
2782 info_ext_lang_command (char *args, int from_tty)
2783 {
2784 int i;
2785 filename_language *entry;
2786
2787 printf_filtered (_("Filename extensions and the languages they represent:"));
2788 printf_filtered ("\n\n");
2789 for (i = 0;
2790 VEC_iterate (filename_language, filename_language_table, i, entry);
2791 ++i)
2792 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2793 }
2794
2795 enum language
2796 deduce_language_from_filename (const char *filename)
2797 {
2798 int i;
2799 const char *cp;
2800
2801 if (filename != NULL)
2802 if ((cp = strrchr (filename, '.')) != NULL)
2803 {
2804 filename_language *entry;
2805
2806 for (i = 0;
2807 VEC_iterate (filename_language, filename_language_table, i, entry);
2808 ++i)
2809 if (strcmp (cp, entry->ext) == 0)
2810 return entry->lang;
2811 }
2812
2813 return language_unknown;
2814 }
2815 \f
2816 /* Allocate and initialize a new symbol table.
2817 CUST is from the result of allocate_compunit_symtab. */
2818
2819 struct symtab *
2820 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2821 {
2822 struct objfile *objfile = cust->objfile;
2823 struct symtab *symtab
2824 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2825
2826 symtab->filename
2827 = (const char *) bcache (filename, strlen (filename) + 1,
2828 objfile->per_bfd->filename_cache);
2829 symtab->fullname = NULL;
2830 symtab->language = deduce_language_from_filename (filename);
2831
2832 /* This can be very verbose with lots of headers.
2833 Only print at higher debug levels. */
2834 if (symtab_create_debug >= 2)
2835 {
2836 /* Be a bit clever with debugging messages, and don't print objfile
2837 every time, only when it changes. */
2838 static char *last_objfile_name = NULL;
2839
2840 if (last_objfile_name == NULL
2841 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2842 {
2843 xfree (last_objfile_name);
2844 last_objfile_name = xstrdup (objfile_name (objfile));
2845 fprintf_unfiltered (gdb_stdlog,
2846 "Creating one or more symtabs for objfile %s ...\n",
2847 last_objfile_name);
2848 }
2849 fprintf_unfiltered (gdb_stdlog,
2850 "Created symtab %s for module %s.\n",
2851 host_address_to_string (symtab), filename);
2852 }
2853
2854 /* Add it to CUST's list of symtabs. */
2855 if (cust->filetabs == NULL)
2856 {
2857 cust->filetabs = symtab;
2858 cust->last_filetab = symtab;
2859 }
2860 else
2861 {
2862 cust->last_filetab->next = symtab;
2863 cust->last_filetab = symtab;
2864 }
2865
2866 /* Backlink to the containing compunit symtab. */
2867 symtab->compunit_symtab = cust;
2868
2869 return symtab;
2870 }
2871
2872 /* Allocate and initialize a new compunit.
2873 NAME is the name of the main source file, if there is one, or some
2874 descriptive text if there are no source files. */
2875
2876 struct compunit_symtab *
2877 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2878 {
2879 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2880 struct compunit_symtab);
2881 const char *saved_name;
2882
2883 cu->objfile = objfile;
2884
2885 /* The name we record here is only for display/debugging purposes.
2886 Just save the basename to avoid path issues (too long for display,
2887 relative vs absolute, etc.). */
2888 saved_name = lbasename (name);
2889 cu->name
2890 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2891 strlen (saved_name));
2892
2893 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2894
2895 if (symtab_create_debug)
2896 {
2897 fprintf_unfiltered (gdb_stdlog,
2898 "Created compunit symtab %s for %s.\n",
2899 host_address_to_string (cu),
2900 cu->name);
2901 }
2902
2903 return cu;
2904 }
2905
2906 /* Hook CU to the objfile it comes from. */
2907
2908 void
2909 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2910 {
2911 cu->next = cu->objfile->compunit_symtabs;
2912 cu->objfile->compunit_symtabs = cu;
2913 }
2914 \f
2915
2916 /* Reset all data structures in gdb which may contain references to
2917 symbol table data. */
2918
2919 void
2920 clear_symtab_users (symfile_add_flags add_flags)
2921 {
2922 /* Someday, we should do better than this, by only blowing away
2923 the things that really need to be blown. */
2924
2925 /* Clear the "current" symtab first, because it is no longer valid.
2926 breakpoint_re_set may try to access the current symtab. */
2927 clear_current_source_symtab_and_line ();
2928
2929 clear_displays ();
2930 clear_last_displayed_sal ();
2931 clear_pc_function_cache ();
2932 observer_notify_new_objfile (NULL);
2933
2934 /* Clear globals which might have pointed into a removed objfile.
2935 FIXME: It's not clear which of these are supposed to persist
2936 between expressions and which ought to be reset each time. */
2937 expression_context_block = NULL;
2938 innermost_block = NULL;
2939
2940 /* Varobj may refer to old symbols, perform a cleanup. */
2941 varobj_invalidate ();
2942
2943 /* Now that the various caches have been cleared, we can re_set
2944 our breakpoints without risking it using stale data. */
2945 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2946 breakpoint_re_set ();
2947 }
2948
2949 static void
2950 clear_symtab_users_cleanup (void *ignore)
2951 {
2952 clear_symtab_users (0);
2953 }
2954 \f
2955 /* OVERLAYS:
2956 The following code implements an abstraction for debugging overlay sections.
2957
2958 The target model is as follows:
2959 1) The gnu linker will permit multiple sections to be mapped into the
2960 same VMA, each with its own unique LMA (or load address).
2961 2) It is assumed that some runtime mechanism exists for mapping the
2962 sections, one by one, from the load address into the VMA address.
2963 3) This code provides a mechanism for gdb to keep track of which
2964 sections should be considered to be mapped from the VMA to the LMA.
2965 This information is used for symbol lookup, and memory read/write.
2966 For instance, if a section has been mapped then its contents
2967 should be read from the VMA, otherwise from the LMA.
2968
2969 Two levels of debugger support for overlays are available. One is
2970 "manual", in which the debugger relies on the user to tell it which
2971 overlays are currently mapped. This level of support is
2972 implemented entirely in the core debugger, and the information about
2973 whether a section is mapped is kept in the objfile->obj_section table.
2974
2975 The second level of support is "automatic", and is only available if
2976 the target-specific code provides functionality to read the target's
2977 overlay mapping table, and translate its contents for the debugger
2978 (by updating the mapped state information in the obj_section tables).
2979
2980 The interface is as follows:
2981 User commands:
2982 overlay map <name> -- tell gdb to consider this section mapped
2983 overlay unmap <name> -- tell gdb to consider this section unmapped
2984 overlay list -- list the sections that GDB thinks are mapped
2985 overlay read-target -- get the target's state of what's mapped
2986 overlay off/manual/auto -- set overlay debugging state
2987 Functional interface:
2988 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2989 section, return that section.
2990 find_pc_overlay(pc): find any overlay section that contains
2991 the pc, either in its VMA or its LMA
2992 section_is_mapped(sect): true if overlay is marked as mapped
2993 section_is_overlay(sect): true if section's VMA != LMA
2994 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2995 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2996 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2997 overlay_mapped_address(...): map an address from section's LMA to VMA
2998 overlay_unmapped_address(...): map an address from section's VMA to LMA
2999 symbol_overlayed_address(...): Return a "current" address for symbol:
3000 either in VMA or LMA depending on whether
3001 the symbol's section is currently mapped. */
3002
3003 /* Overlay debugging state: */
3004
3005 enum overlay_debugging_state overlay_debugging = ovly_off;
3006 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3007
3008 /* Function: section_is_overlay (SECTION)
3009 Returns true if SECTION has VMA not equal to LMA, ie.
3010 SECTION is loaded at an address different from where it will "run". */
3011
3012 int
3013 section_is_overlay (struct obj_section *section)
3014 {
3015 if (overlay_debugging && section)
3016 {
3017 bfd *abfd = section->objfile->obfd;
3018 asection *bfd_section = section->the_bfd_section;
3019
3020 if (bfd_section_lma (abfd, bfd_section) != 0
3021 && bfd_section_lma (abfd, bfd_section)
3022 != bfd_section_vma (abfd, bfd_section))
3023 return 1;
3024 }
3025
3026 return 0;
3027 }
3028
3029 /* Function: overlay_invalidate_all (void)
3030 Invalidate the mapped state of all overlay sections (mark it as stale). */
3031
3032 static void
3033 overlay_invalidate_all (void)
3034 {
3035 struct objfile *objfile;
3036 struct obj_section *sect;
3037
3038 ALL_OBJSECTIONS (objfile, sect)
3039 if (section_is_overlay (sect))
3040 sect->ovly_mapped = -1;
3041 }
3042
3043 /* Function: section_is_mapped (SECTION)
3044 Returns true if section is an overlay, and is currently mapped.
3045
3046 Access to the ovly_mapped flag is restricted to this function, so
3047 that we can do automatic update. If the global flag
3048 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3049 overlay_invalidate_all. If the mapped state of the particular
3050 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3051
3052 int
3053 section_is_mapped (struct obj_section *osect)
3054 {
3055 struct gdbarch *gdbarch;
3056
3057 if (osect == 0 || !section_is_overlay (osect))
3058 return 0;
3059
3060 switch (overlay_debugging)
3061 {
3062 default:
3063 case ovly_off:
3064 return 0; /* overlay debugging off */
3065 case ovly_auto: /* overlay debugging automatic */
3066 /* Unles there is a gdbarch_overlay_update function,
3067 there's really nothing useful to do here (can't really go auto). */
3068 gdbarch = get_objfile_arch (osect->objfile);
3069 if (gdbarch_overlay_update_p (gdbarch))
3070 {
3071 if (overlay_cache_invalid)
3072 {
3073 overlay_invalidate_all ();
3074 overlay_cache_invalid = 0;
3075 }
3076 if (osect->ovly_mapped == -1)
3077 gdbarch_overlay_update (gdbarch, osect);
3078 }
3079 /* fall thru to manual case */
3080 case ovly_on: /* overlay debugging manual */
3081 return osect->ovly_mapped == 1;
3082 }
3083 }
3084
3085 /* Function: pc_in_unmapped_range
3086 If PC falls into the lma range of SECTION, return true, else false. */
3087
3088 CORE_ADDR
3089 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3090 {
3091 if (section_is_overlay (section))
3092 {
3093 bfd *abfd = section->objfile->obfd;
3094 asection *bfd_section = section->the_bfd_section;
3095
3096 /* We assume the LMA is relocated by the same offset as the VMA. */
3097 bfd_vma size = bfd_get_section_size (bfd_section);
3098 CORE_ADDR offset = obj_section_offset (section);
3099
3100 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3101 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3102 return 1;
3103 }
3104
3105 return 0;
3106 }
3107
3108 /* Function: pc_in_mapped_range
3109 If PC falls into the vma range of SECTION, return true, else false. */
3110
3111 CORE_ADDR
3112 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3113 {
3114 if (section_is_overlay (section))
3115 {
3116 if (obj_section_addr (section) <= pc
3117 && pc < obj_section_endaddr (section))
3118 return 1;
3119 }
3120
3121 return 0;
3122 }
3123
3124 /* Return true if the mapped ranges of sections A and B overlap, false
3125 otherwise. */
3126
3127 static int
3128 sections_overlap (struct obj_section *a, struct obj_section *b)
3129 {
3130 CORE_ADDR a_start = obj_section_addr (a);
3131 CORE_ADDR a_end = obj_section_endaddr (a);
3132 CORE_ADDR b_start = obj_section_addr (b);
3133 CORE_ADDR b_end = obj_section_endaddr (b);
3134
3135 return (a_start < b_end && b_start < a_end);
3136 }
3137
3138 /* Function: overlay_unmapped_address (PC, SECTION)
3139 Returns the address corresponding to PC in the unmapped (load) range.
3140 May be the same as PC. */
3141
3142 CORE_ADDR
3143 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3144 {
3145 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3146 {
3147 bfd *abfd = section->objfile->obfd;
3148 asection *bfd_section = section->the_bfd_section;
3149
3150 return pc + bfd_section_lma (abfd, bfd_section)
3151 - bfd_section_vma (abfd, bfd_section);
3152 }
3153
3154 return pc;
3155 }
3156
3157 /* Function: overlay_mapped_address (PC, SECTION)
3158 Returns the address corresponding to PC in the mapped (runtime) range.
3159 May be the same as PC. */
3160
3161 CORE_ADDR
3162 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3163 {
3164 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3165 {
3166 bfd *abfd = section->objfile->obfd;
3167 asection *bfd_section = section->the_bfd_section;
3168
3169 return pc + bfd_section_vma (abfd, bfd_section)
3170 - bfd_section_lma (abfd, bfd_section);
3171 }
3172
3173 return pc;
3174 }
3175
3176 /* Function: symbol_overlayed_address
3177 Return one of two addresses (relative to the VMA or to the LMA),
3178 depending on whether the section is mapped or not. */
3179
3180 CORE_ADDR
3181 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3182 {
3183 if (overlay_debugging)
3184 {
3185 /* If the symbol has no section, just return its regular address. */
3186 if (section == 0)
3187 return address;
3188 /* If the symbol's section is not an overlay, just return its
3189 address. */
3190 if (!section_is_overlay (section))
3191 return address;
3192 /* If the symbol's section is mapped, just return its address. */
3193 if (section_is_mapped (section))
3194 return address;
3195 /*
3196 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3197 * then return its LOADED address rather than its vma address!!
3198 */
3199 return overlay_unmapped_address (address, section);
3200 }
3201 return address;
3202 }
3203
3204 /* Function: find_pc_overlay (PC)
3205 Return the best-match overlay section for PC:
3206 If PC matches a mapped overlay section's VMA, return that section.
3207 Else if PC matches an unmapped section's VMA, return that section.
3208 Else if PC matches an unmapped section's LMA, return that section. */
3209
3210 struct obj_section *
3211 find_pc_overlay (CORE_ADDR pc)
3212 {
3213 struct objfile *objfile;
3214 struct obj_section *osect, *best_match = NULL;
3215
3216 if (overlay_debugging)
3217 {
3218 ALL_OBJSECTIONS (objfile, osect)
3219 if (section_is_overlay (osect))
3220 {
3221 if (pc_in_mapped_range (pc, osect))
3222 {
3223 if (section_is_mapped (osect))
3224 return osect;
3225 else
3226 best_match = osect;
3227 }
3228 else if (pc_in_unmapped_range (pc, osect))
3229 best_match = osect;
3230 }
3231 }
3232 return best_match;
3233 }
3234
3235 /* Function: find_pc_mapped_section (PC)
3236 If PC falls into the VMA address range of an overlay section that is
3237 currently marked as MAPPED, return that section. Else return NULL. */
3238
3239 struct obj_section *
3240 find_pc_mapped_section (CORE_ADDR pc)
3241 {
3242 struct objfile *objfile;
3243 struct obj_section *osect;
3244
3245 if (overlay_debugging)
3246 {
3247 ALL_OBJSECTIONS (objfile, osect)
3248 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3249 return osect;
3250 }
3251
3252 return NULL;
3253 }
3254
3255 /* Function: list_overlays_command
3256 Print a list of mapped sections and their PC ranges. */
3257
3258 static void
3259 list_overlays_command (char *args, int from_tty)
3260 {
3261 int nmapped = 0;
3262 struct objfile *objfile;
3263 struct obj_section *osect;
3264
3265 if (overlay_debugging)
3266 {
3267 ALL_OBJSECTIONS (objfile, osect)
3268 if (section_is_mapped (osect))
3269 {
3270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3271 const char *name;
3272 bfd_vma lma, vma;
3273 int size;
3274
3275 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3276 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3277 size = bfd_get_section_size (osect->the_bfd_section);
3278 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3279
3280 printf_filtered ("Section %s, loaded at ", name);
3281 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3282 puts_filtered (" - ");
3283 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3284 printf_filtered (", mapped at ");
3285 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3286 puts_filtered (" - ");
3287 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3288 puts_filtered ("\n");
3289
3290 nmapped++;
3291 }
3292 }
3293 if (nmapped == 0)
3294 printf_filtered (_("No sections are mapped.\n"));
3295 }
3296
3297 /* Function: map_overlay_command
3298 Mark the named section as mapped (ie. residing at its VMA address). */
3299
3300 static void
3301 map_overlay_command (char *args, int from_tty)
3302 {
3303 struct objfile *objfile, *objfile2;
3304 struct obj_section *sec, *sec2;
3305
3306 if (!overlay_debugging)
3307 error (_("Overlay debugging not enabled. Use "
3308 "either the 'overlay auto' or\n"
3309 "the 'overlay manual' command."));
3310
3311 if (args == 0 || *args == 0)
3312 error (_("Argument required: name of an overlay section"));
3313
3314 /* First, find a section matching the user supplied argument. */
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3317 {
3318 /* Now, check to see if the section is an overlay. */
3319 if (!section_is_overlay (sec))
3320 continue; /* not an overlay section */
3321
3322 /* Mark the overlay as "mapped". */
3323 sec->ovly_mapped = 1;
3324
3325 /* Next, make a pass and unmap any sections that are
3326 overlapped by this new section: */
3327 ALL_OBJSECTIONS (objfile2, sec2)
3328 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3329 {
3330 if (info_verbose)
3331 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3332 bfd_section_name (objfile->obfd,
3333 sec2->the_bfd_section));
3334 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3335 }
3336 return;
3337 }
3338 error (_("No overlay section called %s"), args);
3339 }
3340
3341 /* Function: unmap_overlay_command
3342 Mark the overlay section as unmapped
3343 (ie. resident in its LMA address range, rather than the VMA range). */
3344
3345 static void
3346 unmap_overlay_command (char *args, int from_tty)
3347 {
3348 struct objfile *objfile;
3349 struct obj_section *sec = NULL;
3350
3351 if (!overlay_debugging)
3352 error (_("Overlay debugging not enabled. "
3353 "Use either the 'overlay auto' or\n"
3354 "the 'overlay manual' command."));
3355
3356 if (args == 0 || *args == 0)
3357 error (_("Argument required: name of an overlay section"));
3358
3359 /* First, find a section matching the user supplied argument. */
3360 ALL_OBJSECTIONS (objfile, sec)
3361 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3362 {
3363 if (!sec->ovly_mapped)
3364 error (_("Section %s is not mapped"), args);
3365 sec->ovly_mapped = 0;
3366 return;
3367 }
3368 error (_("No overlay section called %s"), args);
3369 }
3370
3371 /* Function: overlay_auto_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3374
3375 static void
3376 overlay_auto_command (char *args, int from_tty)
3377 {
3378 overlay_debugging = ovly_auto;
3379 enable_overlay_breakpoints ();
3380 if (info_verbose)
3381 printf_unfiltered (_("Automatic overlay debugging enabled."));
3382 }
3383
3384 /* Function: overlay_manual_command
3385 A utility command to turn on overlay debugging.
3386 Possibly this should be done via a set/show command. */
3387
3388 static void
3389 overlay_manual_command (char *args, int from_tty)
3390 {
3391 overlay_debugging = ovly_on;
3392 disable_overlay_breakpoints ();
3393 if (info_verbose)
3394 printf_unfiltered (_("Overlay debugging enabled."));
3395 }
3396
3397 /* Function: overlay_off_command
3398 A utility command to turn on overlay debugging.
3399 Possibly this should be done via a set/show command. */
3400
3401 static void
3402 overlay_off_command (char *args, int from_tty)
3403 {
3404 overlay_debugging = ovly_off;
3405 disable_overlay_breakpoints ();
3406 if (info_verbose)
3407 printf_unfiltered (_("Overlay debugging disabled."));
3408 }
3409
3410 static void
3411 overlay_load_command (char *args, int from_tty)
3412 {
3413 struct gdbarch *gdbarch = get_current_arch ();
3414
3415 if (gdbarch_overlay_update_p (gdbarch))
3416 gdbarch_overlay_update (gdbarch, NULL);
3417 else
3418 error (_("This target does not know how to read its overlay state."));
3419 }
3420
3421 /* Function: overlay_command
3422 A place-holder for a mis-typed command. */
3423
3424 /* Command list chain containing all defined "overlay" subcommands. */
3425 static struct cmd_list_element *overlaylist;
3426
3427 static void
3428 overlay_command (char *args, int from_tty)
3429 {
3430 printf_unfiltered
3431 ("\"overlay\" must be followed by the name of an overlay command.\n");
3432 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3433 }
3434
3435 /* Target Overlays for the "Simplest" overlay manager:
3436
3437 This is GDB's default target overlay layer. It works with the
3438 minimal overlay manager supplied as an example by Cygnus. The
3439 entry point is via a function pointer "gdbarch_overlay_update",
3440 so targets that use a different runtime overlay manager can
3441 substitute their own overlay_update function and take over the
3442 function pointer.
3443
3444 The overlay_update function pokes around in the target's data structures
3445 to see what overlays are mapped, and updates GDB's overlay mapping with
3446 this information.
3447
3448 In this simple implementation, the target data structures are as follows:
3449 unsigned _novlys; /# number of overlay sections #/
3450 unsigned _ovly_table[_novlys][4] = {
3451 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3452 {..., ..., ..., ...},
3453 }
3454 unsigned _novly_regions; /# number of overlay regions #/
3455 unsigned _ovly_region_table[_novly_regions][3] = {
3456 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3457 {..., ..., ...},
3458 }
3459 These functions will attempt to update GDB's mappedness state in the
3460 symbol section table, based on the target's mappedness state.
3461
3462 To do this, we keep a cached copy of the target's _ovly_table, and
3463 attempt to detect when the cached copy is invalidated. The main
3464 entry point is "simple_overlay_update(SECT), which looks up SECT in
3465 the cached table and re-reads only the entry for that section from
3466 the target (whenever possible). */
3467
3468 /* Cached, dynamically allocated copies of the target data structures: */
3469 static unsigned (*cache_ovly_table)[4] = 0;
3470 static unsigned cache_novlys = 0;
3471 static CORE_ADDR cache_ovly_table_base = 0;
3472 enum ovly_index
3473 {
3474 VMA, OSIZE, LMA, MAPPED
3475 };
3476
3477 /* Throw away the cached copy of _ovly_table. */
3478
3479 static void
3480 simple_free_overlay_table (void)
3481 {
3482 if (cache_ovly_table)
3483 xfree (cache_ovly_table);
3484 cache_novlys = 0;
3485 cache_ovly_table = NULL;
3486 cache_ovly_table_base = 0;
3487 }
3488
3489 /* Read an array of ints of size SIZE from the target into a local buffer.
3490 Convert to host order. int LEN is number of ints. */
3491
3492 static void
3493 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3494 int len, int size, enum bfd_endian byte_order)
3495 {
3496 /* FIXME (alloca): Not safe if array is very large. */
3497 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3498 int i;
3499
3500 read_memory (memaddr, buf, len * size);
3501 for (i = 0; i < len; i++)
3502 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3503 }
3504
3505 /* Find and grab a copy of the target _ovly_table
3506 (and _novlys, which is needed for the table's size). */
3507
3508 static int
3509 simple_read_overlay_table (void)
3510 {
3511 struct bound_minimal_symbol novlys_msym;
3512 struct bound_minimal_symbol ovly_table_msym;
3513 struct gdbarch *gdbarch;
3514 int word_size;
3515 enum bfd_endian byte_order;
3516
3517 simple_free_overlay_table ();
3518 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3519 if (! novlys_msym.minsym)
3520 {
3521 error (_("Error reading inferior's overlay table: "
3522 "couldn't find `_novlys' variable\n"
3523 "in inferior. Use `overlay manual' mode."));
3524 return 0;
3525 }
3526
3527 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3528 if (! ovly_table_msym.minsym)
3529 {
3530 error (_("Error reading inferior's overlay table: couldn't find "
3531 "`_ovly_table' array\n"
3532 "in inferior. Use `overlay manual' mode."));
3533 return 0;
3534 }
3535
3536 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3537 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3538 byte_order = gdbarch_byte_order (gdbarch);
3539
3540 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3541 4, byte_order);
3542 cache_ovly_table
3543 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3544 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3545 read_target_long_array (cache_ovly_table_base,
3546 (unsigned int *) cache_ovly_table,
3547 cache_novlys * 4, word_size, byte_order);
3548
3549 return 1; /* SUCCESS */
3550 }
3551
3552 /* Function: simple_overlay_update_1
3553 A helper function for simple_overlay_update. Assuming a cached copy
3554 of _ovly_table exists, look through it to find an entry whose vma,
3555 lma and size match those of OSECT. Re-read the entry and make sure
3556 it still matches OSECT (else the table may no longer be valid).
3557 Set OSECT's mapped state to match the entry. Return: 1 for
3558 success, 0 for failure. */
3559
3560 static int
3561 simple_overlay_update_1 (struct obj_section *osect)
3562 {
3563 int i;
3564 bfd *obfd = osect->objfile->obfd;
3565 asection *bsect = osect->the_bfd_section;
3566 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3567 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3569
3570 for (i = 0; i < cache_novlys; i++)
3571 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3572 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3573 {
3574 read_target_long_array (cache_ovly_table_base + i * word_size,
3575 (unsigned int *) cache_ovly_table[i],
3576 4, word_size, byte_order);
3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3578 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3579 {
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 return 1;
3582 }
3583 else /* Warning! Warning! Target's ovly table has changed! */
3584 return 0;
3585 }
3586 return 0;
3587 }
3588
3589 /* Function: simple_overlay_update
3590 If OSECT is NULL, then update all sections' mapped state
3591 (after re-reading the entire target _ovly_table).
3592 If OSECT is non-NULL, then try to find a matching entry in the
3593 cached ovly_table and update only OSECT's mapped state.
3594 If a cached entry can't be found or the cache isn't valid, then
3595 re-read the entire cache, and go ahead and update all sections. */
3596
3597 void
3598 simple_overlay_update (struct obj_section *osect)
3599 {
3600 struct objfile *objfile;
3601
3602 /* Were we given an osect to look up? NULL means do all of them. */
3603 if (osect)
3604 /* Have we got a cached copy of the target's overlay table? */
3605 if (cache_ovly_table != NULL)
3606 {
3607 /* Does its cached location match what's currently in the
3608 symtab? */
3609 struct bound_minimal_symbol minsym
3610 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3611
3612 if (minsym.minsym == NULL)
3613 error (_("Error reading inferior's overlay table: couldn't "
3614 "find `_ovly_table' array\n"
3615 "in inferior. Use `overlay manual' mode."));
3616
3617 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3618 /* Then go ahead and try to look up this single section in
3619 the cache. */
3620 if (simple_overlay_update_1 (osect))
3621 /* Found it! We're done. */
3622 return;
3623 }
3624
3625 /* Cached table no good: need to read the entire table anew.
3626 Or else we want all the sections, in which case it's actually
3627 more efficient to read the whole table in one block anyway. */
3628
3629 if (! simple_read_overlay_table ())
3630 return;
3631
3632 /* Now may as well update all sections, even if only one was requested. */
3633 ALL_OBJSECTIONS (objfile, osect)
3634 if (section_is_overlay (osect))
3635 {
3636 int i;
3637 bfd *obfd = osect->objfile->obfd;
3638 asection *bsect = osect->the_bfd_section;
3639
3640 for (i = 0; i < cache_novlys; i++)
3641 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3642 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3643 { /* obj_section matches i'th entry in ovly_table. */
3644 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3645 break; /* finished with inner for loop: break out. */
3646 }
3647 }
3648 }
3649
3650 /* Set the output sections and output offsets for section SECTP in
3651 ABFD. The relocation code in BFD will read these offsets, so we
3652 need to be sure they're initialized. We map each section to itself,
3653 with no offset; this means that SECTP->vma will be honored. */
3654
3655 static void
3656 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3657 {
3658 sectp->output_section = sectp;
3659 sectp->output_offset = 0;
3660 }
3661
3662 /* Default implementation for sym_relocate. */
3663
3664 bfd_byte *
3665 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3666 bfd_byte *buf)
3667 {
3668 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3669 DWO file. */
3670 bfd *abfd = sectp->owner;
3671
3672 /* We're only interested in sections with relocation
3673 information. */
3674 if ((sectp->flags & SEC_RELOC) == 0)
3675 return NULL;
3676
3677 /* We will handle section offsets properly elsewhere, so relocate as if
3678 all sections begin at 0. */
3679 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3680
3681 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3682 }
3683
3684 /* Relocate the contents of a debug section SECTP in ABFD. The
3685 contents are stored in BUF if it is non-NULL, or returned in a
3686 malloc'd buffer otherwise.
3687
3688 For some platforms and debug info formats, shared libraries contain
3689 relocations against the debug sections (particularly for DWARF-2;
3690 one affected platform is PowerPC GNU/Linux, although it depends on
3691 the version of the linker in use). Also, ELF object files naturally
3692 have unresolved relocations for their debug sections. We need to apply
3693 the relocations in order to get the locations of symbols correct.
3694 Another example that may require relocation processing, is the
3695 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3696 debug section. */
3697
3698 bfd_byte *
3699 symfile_relocate_debug_section (struct objfile *objfile,
3700 asection *sectp, bfd_byte *buf)
3701 {
3702 gdb_assert (objfile->sf->sym_relocate);
3703
3704 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3705 }
3706
3707 struct symfile_segment_data *
3708 get_symfile_segment_data (bfd *abfd)
3709 {
3710 const struct sym_fns *sf = find_sym_fns (abfd);
3711
3712 if (sf == NULL)
3713 return NULL;
3714
3715 return sf->sym_segments (abfd);
3716 }
3717
3718 void
3719 free_symfile_segment_data (struct symfile_segment_data *data)
3720 {
3721 xfree (data->segment_bases);
3722 xfree (data->segment_sizes);
3723 xfree (data->segment_info);
3724 xfree (data);
3725 }
3726
3727 /* Given:
3728 - DATA, containing segment addresses from the object file ABFD, and
3729 the mapping from ABFD's sections onto the segments that own them,
3730 and
3731 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3732 segment addresses reported by the target,
3733 store the appropriate offsets for each section in OFFSETS.
3734
3735 If there are fewer entries in SEGMENT_BASES than there are segments
3736 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3737
3738 If there are more entries, then ignore the extra. The target may
3739 not be able to distinguish between an empty data segment and a
3740 missing data segment; a missing text segment is less plausible. */
3741
3742 int
3743 symfile_map_offsets_to_segments (bfd *abfd,
3744 const struct symfile_segment_data *data,
3745 struct section_offsets *offsets,
3746 int num_segment_bases,
3747 const CORE_ADDR *segment_bases)
3748 {
3749 int i;
3750 asection *sect;
3751
3752 /* It doesn't make sense to call this function unless you have some
3753 segment base addresses. */
3754 gdb_assert (num_segment_bases > 0);
3755
3756 /* If we do not have segment mappings for the object file, we
3757 can not relocate it by segments. */
3758 gdb_assert (data != NULL);
3759 gdb_assert (data->num_segments > 0);
3760
3761 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3762 {
3763 int which = data->segment_info[i];
3764
3765 gdb_assert (0 <= which && which <= data->num_segments);
3766
3767 /* Don't bother computing offsets for sections that aren't
3768 loaded as part of any segment. */
3769 if (! which)
3770 continue;
3771
3772 /* Use the last SEGMENT_BASES entry as the address of any extra
3773 segments mentioned in DATA->segment_info. */
3774 if (which > num_segment_bases)
3775 which = num_segment_bases;
3776
3777 offsets->offsets[i] = (segment_bases[which - 1]
3778 - data->segment_bases[which - 1]);
3779 }
3780
3781 return 1;
3782 }
3783
3784 static void
3785 symfile_find_segment_sections (struct objfile *objfile)
3786 {
3787 bfd *abfd = objfile->obfd;
3788 int i;
3789 asection *sect;
3790 struct symfile_segment_data *data;
3791
3792 data = get_symfile_segment_data (objfile->obfd);
3793 if (data == NULL)
3794 return;
3795
3796 if (data->num_segments != 1 && data->num_segments != 2)
3797 {
3798 free_symfile_segment_data (data);
3799 return;
3800 }
3801
3802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3803 {
3804 int which = data->segment_info[i];
3805
3806 if (which == 1)
3807 {
3808 if (objfile->sect_index_text == -1)
3809 objfile->sect_index_text = sect->index;
3810
3811 if (objfile->sect_index_rodata == -1)
3812 objfile->sect_index_rodata = sect->index;
3813 }
3814 else if (which == 2)
3815 {
3816 if (objfile->sect_index_data == -1)
3817 objfile->sect_index_data = sect->index;
3818
3819 if (objfile->sect_index_bss == -1)
3820 objfile->sect_index_bss = sect->index;
3821 }
3822 }
3823
3824 free_symfile_segment_data (data);
3825 }
3826
3827 /* Listen for free_objfile events. */
3828
3829 static void
3830 symfile_free_objfile (struct objfile *objfile)
3831 {
3832 /* Remove the target sections owned by this objfile. */
3833 if (objfile != NULL)
3834 remove_target_sections ((void *) objfile);
3835 }
3836
3837 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3838 Expand all symtabs that match the specified criteria.
3839 See quick_symbol_functions.expand_symtabs_matching for details. */
3840
3841 void
3842 expand_symtabs_matching
3843 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3844 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3845 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3846 enum search_domain kind)
3847 {
3848 struct objfile *objfile;
3849
3850 ALL_OBJFILES (objfile)
3851 {
3852 if (objfile->sf)
3853 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3854 symbol_matcher,
3855 expansion_notify, kind);
3856 }
3857 }
3858
3859 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3860 Map function FUN over every file.
3861 See quick_symbol_functions.map_symbol_filenames for details. */
3862
3863 void
3864 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3865 int need_fullname)
3866 {
3867 struct objfile *objfile;
3868
3869 ALL_OBJFILES (objfile)
3870 {
3871 if (objfile->sf)
3872 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3873 need_fullname);
3874 }
3875 }
3876
3877 void
3878 _initialize_symfile (void)
3879 {
3880 struct cmd_list_element *c;
3881
3882 observer_attach_free_objfile (symfile_free_objfile);
3883
3884 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3885 Load symbol table from executable file FILE.\n\
3886 The `file' command can also load symbol tables, as well as setting the file\n\
3887 to execute."), &cmdlist);
3888 set_cmd_completer (c, filename_completer);
3889
3890 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3891 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3892 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3893 ...]\nADDR is the starting address of the file's text.\n\
3894 The optional arguments are section-name section-address pairs and\n\
3895 should be specified if the data and bss segments are not contiguous\n\
3896 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3897 &cmdlist);
3898 set_cmd_completer (c, filename_completer);
3899
3900 c = add_cmd ("remove-symbol-file", class_files,
3901 remove_symbol_file_command, _("\
3902 Remove a symbol file added via the add-symbol-file command.\n\
3903 Usage: remove-symbol-file FILENAME\n\
3904 remove-symbol-file -a ADDRESS\n\
3905 The file to remove can be identified by its filename or by an address\n\
3906 that lies within the boundaries of this symbol file in memory."),
3907 &cmdlist);
3908
3909 c = add_cmd ("load", class_files, load_command, _("\
3910 Dynamically load FILE into the running program, and record its symbols\n\
3911 for access from GDB.\n\
3912 An optional load OFFSET may also be given as a literal address.\n\
3913 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3914 on its own.\n\
3915 Usage: load [FILE] [OFFSET]"), &cmdlist);
3916 set_cmd_completer (c, filename_completer);
3917
3918 add_prefix_cmd ("overlay", class_support, overlay_command,
3919 _("Commands for debugging overlays."), &overlaylist,
3920 "overlay ", 0, &cmdlist);
3921
3922 add_com_alias ("ovly", "overlay", class_alias, 1);
3923 add_com_alias ("ov", "overlay", class_alias, 1);
3924
3925 add_cmd ("map-overlay", class_support, map_overlay_command,
3926 _("Assert that an overlay section is mapped."), &overlaylist);
3927
3928 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3929 _("Assert that an overlay section is unmapped."), &overlaylist);
3930
3931 add_cmd ("list-overlays", class_support, list_overlays_command,
3932 _("List mappings of overlay sections."), &overlaylist);
3933
3934 add_cmd ("manual", class_support, overlay_manual_command,
3935 _("Enable overlay debugging."), &overlaylist);
3936 add_cmd ("off", class_support, overlay_off_command,
3937 _("Disable overlay debugging."), &overlaylist);
3938 add_cmd ("auto", class_support, overlay_auto_command,
3939 _("Enable automatic overlay debugging."), &overlaylist);
3940 add_cmd ("load-target", class_support, overlay_load_command,
3941 _("Read the overlay mapping state from the target."), &overlaylist);
3942
3943 /* Filename extension to source language lookup table: */
3944 add_setshow_string_noescape_cmd ("extension-language", class_files,
3945 &ext_args, _("\
3946 Set mapping between filename extension and source language."), _("\
3947 Show mapping between filename extension and source language."), _("\
3948 Usage: set extension-language .foo bar"),
3949 set_ext_lang_command,
3950 show_ext_args,
3951 &setlist, &showlist);
3952
3953 add_info ("extensions", info_ext_lang_command,
3954 _("All filename extensions associated with a source language."));
3955
3956 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3957 &debug_file_directory, _("\
3958 Set the directories where separate debug symbols are searched for."), _("\
3959 Show the directories where separate debug symbols are searched for."), _("\
3960 Separate debug symbols are first searched for in the same\n\
3961 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3962 and lastly at the path of the directory of the binary with\n\
3963 each global debug-file-directory component prepended."),
3964 NULL,
3965 show_debug_file_directory,
3966 &setlist, &showlist);
3967
3968 add_setshow_enum_cmd ("symbol-loading", no_class,
3969 print_symbol_loading_enums, &print_symbol_loading,
3970 _("\
3971 Set printing of symbol loading messages."), _("\
3972 Show printing of symbol loading messages."), _("\
3973 off == turn all messages off\n\
3974 brief == print messages for the executable,\n\
3975 and brief messages for shared libraries\n\
3976 full == print messages for the executable,\n\
3977 and messages for each shared library."),
3978 NULL,
3979 NULL,
3980 &setprintlist, &showprintlist);
3981
3982 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3983 &separate_debug_file_debug, _("\
3984 Set printing of separate debug info file search debug."), _("\
3985 Show printing of separate debug info file search debug."), _("\
3986 When on, GDB prints the searched locations while looking for separate debug \
3987 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3988 }
This page took 0.116288 seconds and 4 git commands to generate.