3fd8c6d4a55f7d46b549f881e633400e69ff3e38
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 gdb_assert (symfile_objfile == NULL);
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_symbols (objfile))
1044 {
1045 wrap_here ("");
1046 printf_unfiltered (_("(no debugging symbols found)..."));
1047 wrap_here ("");
1048 }
1049
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
1054 else
1055 printf_unfiltered (_("done.\n"));
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
1070
1071 new_symfile_objfile (objfile, add_flags);
1072
1073 observer_notify_new_objfile (objfile);
1074
1075 bfd_cache_close_all ();
1076 return (objfile);
1077 }
1078
1079
1080 /* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085 struct objfile *
1086 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1087 struct section_addr_info *addrs,
1088 int flags)
1089 {
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
1092 }
1093
1094
1095 /* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098 struct objfile *
1099 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
1104 }
1105
1106
1107 /* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
1114
1115 void
1116 symbol_file_add_main (char *args, int from_tty)
1117 {
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119 }
1120
1121 static void
1122 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 {
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
1126
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1132 }
1133
1134 void
1135 symbol_file_clear (int from_tty)
1136 {
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
1143 error (_("Not confirmed."));
1144
1145 free_all_objfiles ();
1146
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
1152 gdb_assert (symfile_objfile == NULL);
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165 static struct build_id *
1166 build_id_bfd_get (bfd *abfd)
1167 {
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180 }
1181
1182 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184 static int
1185 build_id_verify (const char *filename, struct build_id *check)
1186 {
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
1212
1213 xfree (found);
1214
1215 return retval;
1216 }
1217
1218 static char *
1219 build_id_to_debug_filename (struct build_id *build_id)
1220 {
1221 char *link, *s, *retval = NULL;
1222 gdb_byte *data = build_id->data;
1223 size_t size = build_id->size;
1224
1225 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1226 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1227 + 2 * size + (sizeof ".debug" - 1) + 1);
1228 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1229 if (size > 0)
1230 {
1231 size--;
1232 s += sprintf (s, "%02x", (unsigned) *data++);
1233 }
1234 if (size > 0)
1235 *s++ = '/';
1236 while (size-- > 0)
1237 s += sprintf (s, "%02x", (unsigned) *data++);
1238 strcpy (s, ".debug");
1239
1240 /* lrealpath() is expensive even for the usually non-existent files. */
1241 if (access (link, F_OK) == 0)
1242 retval = lrealpath (link);
1243 xfree (link);
1244
1245 if (retval != NULL && !build_id_verify (retval, build_id))
1246 {
1247 xfree (retval);
1248 retval = NULL;
1249 }
1250
1251 return retval;
1252 }
1253
1254 static char *
1255 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1256 {
1257 asection *sect;
1258 bfd_size_type debuglink_size;
1259 unsigned long crc32;
1260 char *contents;
1261 int crc_offset;
1262 unsigned char *p;
1263
1264 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1265
1266 if (sect == NULL)
1267 return NULL;
1268
1269 debuglink_size = bfd_section_size (objfile->obfd, sect);
1270
1271 contents = xmalloc (debuglink_size);
1272 bfd_get_section_contents (objfile->obfd, sect, contents,
1273 (file_ptr)0, (bfd_size_type)debuglink_size);
1274
1275 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1276 crc_offset = strlen (contents) + 1;
1277 crc_offset = (crc_offset + 3) & ~3;
1278
1279 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1280
1281 *crc32_out = crc32;
1282 return contents;
1283 }
1284
1285 static int
1286 separate_debug_file_exists (const char *name, unsigned long crc)
1287 {
1288 unsigned long file_crc = 0;
1289 bfd *abfd;
1290 gdb_byte buffer[8*1024];
1291 int count;
1292
1293 if (remote_filename_p (name))
1294 abfd = remote_bfd_open (name, gnutarget);
1295 else
1296 abfd = bfd_openr (name, gnutarget);
1297
1298 if (!abfd)
1299 return 0;
1300
1301 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1302 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1303
1304 bfd_close (abfd);
1305
1306 return crc == file_crc;
1307 }
1308
1309 char *debug_file_directory = NULL;
1310 static void
1311 show_debug_file_directory (struct ui_file *file, int from_tty,
1312 struct cmd_list_element *c, const char *value)
1313 {
1314 fprintf_filtered (file, _("\
1315 The directory where separate debug symbols are searched for is \"%s\".\n"),
1316 value);
1317 }
1318
1319 #if ! defined (DEBUG_SUBDIRECTORY)
1320 #define DEBUG_SUBDIRECTORY ".debug"
1321 #endif
1322
1323 static char *
1324 find_separate_debug_file (struct objfile *objfile)
1325 {
1326 asection *sect;
1327 char *basename;
1328 char *dir;
1329 char *debugfile;
1330 char *name_copy;
1331 char *canon_name;
1332 bfd_size_type debuglink_size;
1333 unsigned long crc32;
1334 int i;
1335 struct build_id *build_id;
1336
1337 build_id = build_id_bfd_get (objfile->obfd);
1338 if (build_id != NULL)
1339 {
1340 char *build_id_name;
1341
1342 build_id_name = build_id_to_debug_filename (build_id);
1343 xfree (build_id);
1344 /* Prevent looping on a stripped .debug file. */
1345 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1346 {
1347 warning (_("\"%s\": separate debug info file has no debug info"),
1348 build_id_name);
1349 xfree (build_id_name);
1350 }
1351 else if (build_id_name != NULL)
1352 return build_id_name;
1353 }
1354
1355 basename = get_debug_link_info (objfile, &crc32);
1356
1357 if (basename == NULL)
1358 return NULL;
1359
1360 dir = xstrdup (objfile->name);
1361
1362 /* Strip off the final filename part, leaving the directory name,
1363 followed by a slash. Objfile names should always be absolute and
1364 tilde-expanded, so there should always be a slash in there
1365 somewhere. */
1366 for (i = strlen(dir) - 1; i >= 0; i--)
1367 {
1368 if (IS_DIR_SEPARATOR (dir[i]))
1369 break;
1370 }
1371 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1372 dir[i+1] = '\0';
1373
1374 /* Set I to max (strlen (canon_name), strlen (dir)). */
1375 canon_name = lrealpath (dir);
1376 i = strlen (dir);
1377 if (canon_name && strlen (canon_name) > i)
1378 i = strlen (canon_name);
1379
1380 debugfile = alloca (strlen (debug_file_directory) + 1
1381 + i
1382 + strlen (DEBUG_SUBDIRECTORY)
1383 + strlen ("/")
1384 + strlen (basename)
1385 + 1);
1386
1387 /* First try in the same directory as the original file. */
1388 strcpy (debugfile, dir);
1389 strcat (debugfile, basename);
1390
1391 if (separate_debug_file_exists (debugfile, crc32))
1392 {
1393 xfree (basename);
1394 xfree (dir);
1395 xfree (canon_name);
1396 return xstrdup (debugfile);
1397 }
1398
1399 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, DEBUG_SUBDIRECTORY);
1402 strcat (debugfile, "/");
1403 strcat (debugfile, basename);
1404
1405 if (separate_debug_file_exists (debugfile, crc32))
1406 {
1407 xfree (basename);
1408 xfree (dir);
1409 xfree (canon_name);
1410 return xstrdup (debugfile);
1411 }
1412
1413 /* Then try in the global debugfile directory. */
1414 strcpy (debugfile, debug_file_directory);
1415 strcat (debugfile, "/");
1416 strcat (debugfile, dir);
1417 strcat (debugfile, basename);
1418
1419 if (separate_debug_file_exists (debugfile, crc32))
1420 {
1421 xfree (basename);
1422 xfree (dir);
1423 xfree (canon_name);
1424 return xstrdup (debugfile);
1425 }
1426
1427 /* If the file is in the sysroot, try using its base path in the
1428 global debugfile directory. */
1429 if (canon_name
1430 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1431 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1432 {
1433 strcpy (debugfile, debug_file_directory);
1434 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1435 strcat (debugfile, "/");
1436 strcat (debugfile, basename);
1437
1438 if (separate_debug_file_exists (debugfile, crc32))
1439 {
1440 xfree (canon_name);
1441 xfree (basename);
1442 xfree (dir);
1443 return xstrdup (debugfile);
1444 }
1445 }
1446
1447 if (canon_name)
1448 xfree (canon_name);
1449
1450 xfree (basename);
1451 xfree (dir);
1452 return NULL;
1453 }
1454
1455
1456 /* This is the symbol-file command. Read the file, analyze its
1457 symbols, and add a struct symtab to a symtab list. The syntax of
1458 the command is rather bizarre:
1459
1460 1. The function buildargv implements various quoting conventions
1461 which are undocumented and have little or nothing in common with
1462 the way things are quoted (or not quoted) elsewhere in GDB.
1463
1464 2. Options are used, which are not generally used in GDB (perhaps
1465 "set mapped on", "set readnow on" would be better)
1466
1467 3. The order of options matters, which is contrary to GNU
1468 conventions (because it is confusing and inconvenient). */
1469
1470 void
1471 symbol_file_command (char *args, int from_tty)
1472 {
1473 dont_repeat ();
1474
1475 if (args == NULL)
1476 {
1477 symbol_file_clear (from_tty);
1478 }
1479 else
1480 {
1481 char **argv = gdb_buildargv (args);
1482 int flags = OBJF_USERLOADED;
1483 struct cleanup *cleanups;
1484 char *name = NULL;
1485
1486 cleanups = make_cleanup_freeargv (argv);
1487 while (*argv != NULL)
1488 {
1489 if (strcmp (*argv, "-readnow") == 0)
1490 flags |= OBJF_READNOW;
1491 else if (**argv == '-')
1492 error (_("unknown option `%s'"), *argv);
1493 else
1494 {
1495 symbol_file_add_main_1 (*argv, from_tty, flags);
1496 name = *argv;
1497 }
1498
1499 argv++;
1500 }
1501
1502 if (name == NULL)
1503 error (_("no symbol file name was specified"));
1504
1505 do_cleanups (cleanups);
1506 }
1507 }
1508
1509 /* Set the initial language.
1510
1511 FIXME: A better solution would be to record the language in the
1512 psymtab when reading partial symbols, and then use it (if known) to
1513 set the language. This would be a win for formats that encode the
1514 language in an easily discoverable place, such as DWARF. For
1515 stabs, we can jump through hoops looking for specially named
1516 symbols or try to intuit the language from the specific type of
1517 stabs we find, but we can't do that until later when we read in
1518 full symbols. */
1519
1520 void
1521 set_initial_language (void)
1522 {
1523 struct partial_symtab *pst;
1524 enum language lang = language_unknown;
1525
1526 pst = find_main_psymtab ();
1527 if (pst != NULL)
1528 {
1529 if (pst->filename != NULL)
1530 lang = deduce_language_from_filename (pst->filename);
1531
1532 if (lang == language_unknown)
1533 {
1534 /* Make C the default language */
1535 lang = language_c;
1536 }
1537
1538 set_language (lang);
1539 expected_language = current_language; /* Don't warn the user. */
1540 }
1541 }
1542
1543 /* Open the file specified by NAME and hand it off to BFD for
1544 preliminary analysis. Return a newly initialized bfd *, which
1545 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1546 absolute). In case of trouble, error() is called. */
1547
1548 bfd *
1549 symfile_bfd_open (char *name)
1550 {
1551 bfd *sym_bfd;
1552 int desc;
1553 char *absolute_name;
1554
1555 if (remote_filename_p (name))
1556 {
1557 name = xstrdup (name);
1558 sym_bfd = remote_bfd_open (name, gnutarget);
1559 if (!sym_bfd)
1560 {
1561 make_cleanup (xfree, name);
1562 error (_("`%s': can't open to read symbols: %s."), name,
1563 bfd_errmsg (bfd_get_error ()));
1564 }
1565
1566 if (!bfd_check_format (sym_bfd, bfd_object))
1567 {
1568 bfd_close (sym_bfd);
1569 make_cleanup (xfree, name);
1570 error (_("`%s': can't read symbols: %s."), name,
1571 bfd_errmsg (bfd_get_error ()));
1572 }
1573
1574 return sym_bfd;
1575 }
1576
1577 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1578
1579 /* Look down path for it, allocate 2nd new malloc'd copy. */
1580 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1581 O_RDONLY | O_BINARY, &absolute_name);
1582 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1583 if (desc < 0)
1584 {
1585 char *exename = alloca (strlen (name) + 5);
1586 strcat (strcpy (exename, name), ".exe");
1587 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1588 O_RDONLY | O_BINARY, &absolute_name);
1589 }
1590 #endif
1591 if (desc < 0)
1592 {
1593 make_cleanup (xfree, name);
1594 perror_with_name (name);
1595 }
1596
1597 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1598 bfd. It'll be freed in free_objfile(). */
1599 xfree (name);
1600 name = absolute_name;
1601
1602 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1603 if (!sym_bfd)
1604 {
1605 close (desc);
1606 make_cleanup (xfree, name);
1607 error (_("`%s': can't open to read symbols: %s."), name,
1608 bfd_errmsg (bfd_get_error ()));
1609 }
1610 bfd_set_cacheable (sym_bfd, 1);
1611
1612 if (!bfd_check_format (sym_bfd, bfd_object))
1613 {
1614 /* FIXME: should be checking for errors from bfd_close (for one
1615 thing, on error it does not free all the storage associated
1616 with the bfd). */
1617 bfd_close (sym_bfd); /* This also closes desc. */
1618 make_cleanup (xfree, name);
1619 error (_("`%s': can't read symbols: %s."), name,
1620 bfd_errmsg (bfd_get_error ()));
1621 }
1622
1623 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1624 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1625
1626 return sym_bfd;
1627 }
1628
1629 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1630 the section was not found. */
1631
1632 int
1633 get_section_index (struct objfile *objfile, char *section_name)
1634 {
1635 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1636
1637 if (sect)
1638 return sect->index;
1639 else
1640 return -1;
1641 }
1642
1643 /* Link SF into the global symtab_fns list. Called on startup by the
1644 _initialize routine in each object file format reader, to register
1645 information about each format the the reader is prepared to
1646 handle. */
1647
1648 void
1649 add_symtab_fns (struct sym_fns *sf)
1650 {
1651 sf->next = symtab_fns;
1652 symtab_fns = sf;
1653 }
1654
1655 /* Initialize OBJFILE to read symbols from its associated BFD. It
1656 either returns or calls error(). The result is an initialized
1657 struct sym_fns in the objfile structure, that contains cached
1658 information about the symbol file. */
1659
1660 static struct sym_fns *
1661 find_sym_fns (bfd *abfd)
1662 {
1663 struct sym_fns *sf;
1664 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1665
1666 if (our_flavour == bfd_target_srec_flavour
1667 || our_flavour == bfd_target_ihex_flavour
1668 || our_flavour == bfd_target_tekhex_flavour)
1669 return NULL; /* No symbols. */
1670
1671 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1672 if (our_flavour == sf->sym_flavour)
1673 return sf;
1674
1675 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1676 bfd_get_target (abfd));
1677 }
1678 \f
1679
1680 /* This function runs the load command of our current target. */
1681
1682 static void
1683 load_command (char *arg, int from_tty)
1684 {
1685 /* The user might be reloading because the binary has changed. Take
1686 this opportunity to check. */
1687 reopen_exec_file ();
1688 reread_symbols ();
1689
1690 if (arg == NULL)
1691 {
1692 char *parg;
1693 int count = 0;
1694
1695 parg = arg = get_exec_file (1);
1696
1697 /* Count how many \ " ' tab space there are in the name. */
1698 while ((parg = strpbrk (parg, "\\\"'\t ")))
1699 {
1700 parg++;
1701 count++;
1702 }
1703
1704 if (count)
1705 {
1706 /* We need to quote this string so buildargv can pull it apart. */
1707 char *temp = xmalloc (strlen (arg) + count + 1 );
1708 char *ptemp = temp;
1709 char *prev;
1710
1711 make_cleanup (xfree, temp);
1712
1713 prev = parg = arg;
1714 while ((parg = strpbrk (parg, "\\\"'\t ")))
1715 {
1716 strncpy (ptemp, prev, parg - prev);
1717 ptemp += parg - prev;
1718 prev = parg++;
1719 *ptemp++ = '\\';
1720 }
1721 strcpy (ptemp, prev);
1722
1723 arg = temp;
1724 }
1725 }
1726
1727 target_load (arg, from_tty);
1728
1729 /* After re-loading the executable, we don't really know which
1730 overlays are mapped any more. */
1731 overlay_cache_invalid = 1;
1732 }
1733
1734 /* This version of "load" should be usable for any target. Currently
1735 it is just used for remote targets, not inftarg.c or core files,
1736 on the theory that only in that case is it useful.
1737
1738 Avoiding xmodem and the like seems like a win (a) because we don't have
1739 to worry about finding it, and (b) On VMS, fork() is very slow and so
1740 we don't want to run a subprocess. On the other hand, I'm not sure how
1741 performance compares. */
1742
1743 static int validate_download = 0;
1744
1745 /* Callback service function for generic_load (bfd_map_over_sections). */
1746
1747 static void
1748 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1749 {
1750 bfd_size_type *sum = data;
1751
1752 *sum += bfd_get_section_size (asec);
1753 }
1754
1755 /* Opaque data for load_section_callback. */
1756 struct load_section_data {
1757 unsigned long load_offset;
1758 struct load_progress_data *progress_data;
1759 VEC(memory_write_request_s) *requests;
1760 };
1761
1762 /* Opaque data for load_progress. */
1763 struct load_progress_data {
1764 /* Cumulative data. */
1765 unsigned long write_count;
1766 unsigned long data_count;
1767 bfd_size_type total_size;
1768 };
1769
1770 /* Opaque data for load_progress for a single section. */
1771 struct load_progress_section_data {
1772 struct load_progress_data *cumulative;
1773
1774 /* Per-section data. */
1775 const char *section_name;
1776 ULONGEST section_sent;
1777 ULONGEST section_size;
1778 CORE_ADDR lma;
1779 gdb_byte *buffer;
1780 };
1781
1782 /* Target write callback routine for progress reporting. */
1783
1784 static void
1785 load_progress (ULONGEST bytes, void *untyped_arg)
1786 {
1787 struct load_progress_section_data *args = untyped_arg;
1788 struct load_progress_data *totals;
1789
1790 if (args == NULL)
1791 /* Writing padding data. No easy way to get at the cumulative
1792 stats, so just ignore this. */
1793 return;
1794
1795 totals = args->cumulative;
1796
1797 if (bytes == 0 && args->section_sent == 0)
1798 {
1799 /* The write is just starting. Let the user know we've started
1800 this section. */
1801 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1802 args->section_name, hex_string (args->section_size),
1803 paddress (target_gdbarch, args->lma));
1804 return;
1805 }
1806
1807 if (validate_download)
1808 {
1809 /* Broken memories and broken monitors manifest themselves here
1810 when bring new computers to life. This doubles already slow
1811 downloads. */
1812 /* NOTE: cagney/1999-10-18: A more efficient implementation
1813 might add a verify_memory() method to the target vector and
1814 then use that. remote.c could implement that method using
1815 the ``qCRC'' packet. */
1816 gdb_byte *check = xmalloc (bytes);
1817 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1818
1819 if (target_read_memory (args->lma, check, bytes) != 0)
1820 error (_("Download verify read failed at %s"),
1821 paddress (target_gdbarch, args->lma));
1822 if (memcmp (args->buffer, check, bytes) != 0)
1823 error (_("Download verify compare failed at %s"),
1824 paddress (target_gdbarch, args->lma));
1825 do_cleanups (verify_cleanups);
1826 }
1827 totals->data_count += bytes;
1828 args->lma += bytes;
1829 args->buffer += bytes;
1830 totals->write_count += 1;
1831 args->section_sent += bytes;
1832 if (quit_flag
1833 || (deprecated_ui_load_progress_hook != NULL
1834 && deprecated_ui_load_progress_hook (args->section_name,
1835 args->section_sent)))
1836 error (_("Canceled the download"));
1837
1838 if (deprecated_show_load_progress != NULL)
1839 deprecated_show_load_progress (args->section_name,
1840 args->section_sent,
1841 args->section_size,
1842 totals->data_count,
1843 totals->total_size);
1844 }
1845
1846 /* Callback service function for generic_load (bfd_map_over_sections). */
1847
1848 static void
1849 load_section_callback (bfd *abfd, asection *asec, void *data)
1850 {
1851 struct memory_write_request *new_request;
1852 struct load_section_data *args = data;
1853 struct load_progress_section_data *section_data;
1854 bfd_size_type size = bfd_get_section_size (asec);
1855 gdb_byte *buffer;
1856 const char *sect_name = bfd_get_section_name (abfd, asec);
1857
1858 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1859 return;
1860
1861 if (size == 0)
1862 return;
1863
1864 new_request = VEC_safe_push (memory_write_request_s,
1865 args->requests, NULL);
1866 memset (new_request, 0, sizeof (struct memory_write_request));
1867 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1868 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1869 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1870 new_request->data = xmalloc (size);
1871 new_request->baton = section_data;
1872
1873 buffer = new_request->data;
1874
1875 section_data->cumulative = args->progress_data;
1876 section_data->section_name = sect_name;
1877 section_data->section_size = size;
1878 section_data->lma = new_request->begin;
1879 section_data->buffer = buffer;
1880
1881 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1882 }
1883
1884 /* Clean up an entire memory request vector, including load
1885 data and progress records. */
1886
1887 static void
1888 clear_memory_write_data (void *arg)
1889 {
1890 VEC(memory_write_request_s) **vec_p = arg;
1891 VEC(memory_write_request_s) *vec = *vec_p;
1892 int i;
1893 struct memory_write_request *mr;
1894
1895 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1896 {
1897 xfree (mr->data);
1898 xfree (mr->baton);
1899 }
1900 VEC_free (memory_write_request_s, vec);
1901 }
1902
1903 void
1904 generic_load (char *args, int from_tty)
1905 {
1906 bfd *loadfile_bfd;
1907 struct timeval start_time, end_time;
1908 char *filename;
1909 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1910 struct load_section_data cbdata;
1911 struct load_progress_data total_progress;
1912
1913 CORE_ADDR entry;
1914 char **argv;
1915
1916 memset (&cbdata, 0, sizeof (cbdata));
1917 memset (&total_progress, 0, sizeof (total_progress));
1918 cbdata.progress_data = &total_progress;
1919
1920 make_cleanup (clear_memory_write_data, &cbdata.requests);
1921
1922 if (args == NULL)
1923 error_no_arg (_("file to load"));
1924
1925 argv = gdb_buildargv (args);
1926 make_cleanup_freeargv (argv);
1927
1928 filename = tilde_expand (argv[0]);
1929 make_cleanup (xfree, filename);
1930
1931 if (argv[1] != NULL)
1932 {
1933 char *endptr;
1934
1935 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1936
1937 /* If the last word was not a valid number then
1938 treat it as a file name with spaces in. */
1939 if (argv[1] == endptr)
1940 error (_("Invalid download offset:%s."), argv[1]);
1941
1942 if (argv[2] != NULL)
1943 error (_("Too many parameters."));
1944 }
1945
1946 /* Open the file for loading. */
1947 loadfile_bfd = bfd_openr (filename, gnutarget);
1948 if (loadfile_bfd == NULL)
1949 {
1950 perror_with_name (filename);
1951 return;
1952 }
1953
1954 /* FIXME: should be checking for errors from bfd_close (for one thing,
1955 on error it does not free all the storage associated with the
1956 bfd). */
1957 make_cleanup_bfd_close (loadfile_bfd);
1958
1959 if (!bfd_check_format (loadfile_bfd, bfd_object))
1960 {
1961 error (_("\"%s\" is not an object file: %s"), filename,
1962 bfd_errmsg (bfd_get_error ()));
1963 }
1964
1965 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1966 (void *) &total_progress.total_size);
1967
1968 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1969
1970 gettimeofday (&start_time, NULL);
1971
1972 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1973 load_progress) != 0)
1974 error (_("Load failed"));
1975
1976 gettimeofday (&end_time, NULL);
1977
1978 entry = bfd_get_start_address (loadfile_bfd);
1979 ui_out_text (uiout, "Start address ");
1980 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1981 ui_out_text (uiout, ", load size ");
1982 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1983 ui_out_text (uiout, "\n");
1984 /* We were doing this in remote-mips.c, I suspect it is right
1985 for other targets too. */
1986 regcache_write_pc (get_current_regcache (), entry);
1987
1988 /* FIXME: are we supposed to call symbol_file_add or not? According
1989 to a comment from remote-mips.c (where a call to symbol_file_add
1990 was commented out), making the call confuses GDB if more than one
1991 file is loaded in. Some targets do (e.g., remote-vx.c) but
1992 others don't (or didn't - perhaps they have all been deleted). */
1993
1994 print_transfer_performance (gdb_stdout, total_progress.data_count,
1995 total_progress.write_count,
1996 &start_time, &end_time);
1997
1998 do_cleanups (old_cleanups);
1999 }
2000
2001 /* Report how fast the transfer went. */
2002
2003 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2004 replaced by print_transfer_performance (with a very different
2005 function signature). */
2006
2007 void
2008 report_transfer_performance (unsigned long data_count, time_t start_time,
2009 time_t end_time)
2010 {
2011 struct timeval start, end;
2012
2013 start.tv_sec = start_time;
2014 start.tv_usec = 0;
2015 end.tv_sec = end_time;
2016 end.tv_usec = 0;
2017
2018 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2019 }
2020
2021 void
2022 print_transfer_performance (struct ui_file *stream,
2023 unsigned long data_count,
2024 unsigned long write_count,
2025 const struct timeval *start_time,
2026 const struct timeval *end_time)
2027 {
2028 ULONGEST time_count;
2029
2030 /* Compute the elapsed time in milliseconds, as a tradeoff between
2031 accuracy and overflow. */
2032 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2033 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2034
2035 ui_out_text (uiout, "Transfer rate: ");
2036 if (time_count > 0)
2037 {
2038 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2039
2040 if (ui_out_is_mi_like_p (uiout))
2041 {
2042 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2043 ui_out_text (uiout, " bits/sec");
2044 }
2045 else if (rate < 1024)
2046 {
2047 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2048 ui_out_text (uiout, " bytes/sec");
2049 }
2050 else
2051 {
2052 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2053 ui_out_text (uiout, " KB/sec");
2054 }
2055 }
2056 else
2057 {
2058 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2059 ui_out_text (uiout, " bits in <1 sec");
2060 }
2061 if (write_count > 0)
2062 {
2063 ui_out_text (uiout, ", ");
2064 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2065 ui_out_text (uiout, " bytes/write");
2066 }
2067 ui_out_text (uiout, ".\n");
2068 }
2069
2070 /* This function allows the addition of incrementally linked object files.
2071 It does not modify any state in the target, only in the debugger. */
2072 /* Note: ezannoni 2000-04-13 This function/command used to have a
2073 special case syntax for the rombug target (Rombug is the boot
2074 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2075 rombug case, the user doesn't need to supply a text address,
2076 instead a call to target_link() (in target.c) would supply the
2077 value to use. We are now discontinuing this type of ad hoc syntax. */
2078
2079 static void
2080 add_symbol_file_command (char *args, int from_tty)
2081 {
2082 struct gdbarch *gdbarch = get_current_arch ();
2083 char *filename = NULL;
2084 int flags = OBJF_USERLOADED;
2085 char *arg;
2086 int expecting_option = 0;
2087 int section_index = 0;
2088 int argcnt = 0;
2089 int sec_num = 0;
2090 int i;
2091 int expecting_sec_name = 0;
2092 int expecting_sec_addr = 0;
2093 char **argv;
2094
2095 struct sect_opt
2096 {
2097 char *name;
2098 char *value;
2099 };
2100
2101 struct section_addr_info *section_addrs;
2102 struct sect_opt *sect_opts = NULL;
2103 size_t num_sect_opts = 0;
2104 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2105
2106 num_sect_opts = 16;
2107 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2108 * sizeof (struct sect_opt));
2109
2110 dont_repeat ();
2111
2112 if (args == NULL)
2113 error (_("add-symbol-file takes a file name and an address"));
2114
2115 argv = gdb_buildargv (args);
2116 make_cleanup_freeargv (argv);
2117
2118 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2119 {
2120 /* Process the argument. */
2121 if (argcnt == 0)
2122 {
2123 /* The first argument is the file name. */
2124 filename = tilde_expand (arg);
2125 make_cleanup (xfree, filename);
2126 }
2127 else
2128 if (argcnt == 1)
2129 {
2130 /* The second argument is always the text address at which
2131 to load the program. */
2132 sect_opts[section_index].name = ".text";
2133 sect_opts[section_index].value = arg;
2134 if (++section_index >= num_sect_opts)
2135 {
2136 num_sect_opts *= 2;
2137 sect_opts = ((struct sect_opt *)
2138 xrealloc (sect_opts,
2139 num_sect_opts
2140 * sizeof (struct sect_opt)));
2141 }
2142 }
2143 else
2144 {
2145 /* It's an option (starting with '-') or it's an argument
2146 to an option */
2147
2148 if (*arg == '-')
2149 {
2150 if (strcmp (arg, "-readnow") == 0)
2151 flags |= OBJF_READNOW;
2152 else if (strcmp (arg, "-s") == 0)
2153 {
2154 expecting_sec_name = 1;
2155 expecting_sec_addr = 1;
2156 }
2157 }
2158 else
2159 {
2160 if (expecting_sec_name)
2161 {
2162 sect_opts[section_index].name = arg;
2163 expecting_sec_name = 0;
2164 }
2165 else
2166 if (expecting_sec_addr)
2167 {
2168 sect_opts[section_index].value = arg;
2169 expecting_sec_addr = 0;
2170 if (++section_index >= num_sect_opts)
2171 {
2172 num_sect_opts *= 2;
2173 sect_opts = ((struct sect_opt *)
2174 xrealloc (sect_opts,
2175 num_sect_opts
2176 * sizeof (struct sect_opt)));
2177 }
2178 }
2179 else
2180 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2181 }
2182 }
2183 }
2184
2185 /* This command takes at least two arguments. The first one is a
2186 filename, and the second is the address where this file has been
2187 loaded. Abort now if this address hasn't been provided by the
2188 user. */
2189 if (section_index < 1)
2190 error (_("The address where %s has been loaded is missing"), filename);
2191
2192 /* Print the prompt for the query below. And save the arguments into
2193 a sect_addr_info structure to be passed around to other
2194 functions. We have to split this up into separate print
2195 statements because hex_string returns a local static
2196 string. */
2197
2198 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2199 section_addrs = alloc_section_addr_info (section_index);
2200 make_cleanup (xfree, section_addrs);
2201 for (i = 0; i < section_index; i++)
2202 {
2203 CORE_ADDR addr;
2204 char *val = sect_opts[i].value;
2205 char *sec = sect_opts[i].name;
2206
2207 addr = parse_and_eval_address (val);
2208
2209 /* Here we store the section offsets in the order they were
2210 entered on the command line. */
2211 section_addrs->other[sec_num].name = sec;
2212 section_addrs->other[sec_num].addr = addr;
2213 printf_unfiltered ("\t%s_addr = %s\n", sec,
2214 paddress (gdbarch, addr));
2215 sec_num++;
2216
2217 /* The object's sections are initialized when a
2218 call is made to build_objfile_section_table (objfile).
2219 This happens in reread_symbols.
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2222 }
2223
2224 if (from_tty && (!query ("%s", "")))
2225 error (_("Not confirmed."));
2226
2227 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2228 section_addrs, flags);
2229
2230 /* Getting new symbols may change our opinion about what is
2231 frameless. */
2232 reinit_frame_cache ();
2233 do_cleanups (my_cleanups);
2234 }
2235 \f
2236
2237 /* Re-read symbols if a symbol-file has changed. */
2238 void
2239 reread_symbols (void)
2240 {
2241 struct objfile *objfile;
2242 long new_modtime;
2243 int reread_one = 0;
2244 struct stat new_statbuf;
2245 int res;
2246
2247 /* With the addition of shared libraries, this should be modified,
2248 the load time should be saved in the partial symbol tables, since
2249 different tables may come from different source files. FIXME.
2250 This routine should then walk down each partial symbol table
2251 and see if the symbol table that it originates from has been changed */
2252
2253 for (objfile = object_files; objfile; objfile = objfile->next)
2254 {
2255 if (objfile->obfd)
2256 {
2257 #ifdef DEPRECATED_IBM6000_TARGET
2258 /* If this object is from a shared library, then you should
2259 stat on the library name, not member name. */
2260
2261 if (objfile->obfd->my_archive)
2262 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2263 else
2264 #endif
2265 res = stat (objfile->name, &new_statbuf);
2266 if (res != 0)
2267 {
2268 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2269 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2270 objfile->name);
2271 continue;
2272 }
2273 new_modtime = new_statbuf.st_mtime;
2274 if (new_modtime != objfile->mtime)
2275 {
2276 struct cleanup *old_cleanups;
2277 struct section_offsets *offsets;
2278 int num_offsets;
2279 char *obfd_filename;
2280
2281 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2282 objfile->name);
2283
2284 /* There are various functions like symbol_file_add,
2285 symfile_bfd_open, syms_from_objfile, etc., which might
2286 appear to do what we want. But they have various other
2287 effects which we *don't* want. So we just do stuff
2288 ourselves. We don't worry about mapped files (for one thing,
2289 any mapped file will be out of date). */
2290
2291 /* If we get an error, blow away this objfile (not sure if
2292 that is the correct response for things like shared
2293 libraries). */
2294 old_cleanups = make_cleanup_free_objfile (objfile);
2295 /* We need to do this whenever any symbols go away. */
2296 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2297
2298 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2299 bfd_get_filename (exec_bfd)) == 0)
2300 {
2301 /* Reload EXEC_BFD without asking anything. */
2302
2303 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2304 }
2305
2306 /* Clean up any state BFD has sitting around. We don't need
2307 to close the descriptor but BFD lacks a way of closing the
2308 BFD without closing the descriptor. */
2309 obfd_filename = bfd_get_filename (objfile->obfd);
2310 if (!bfd_close (objfile->obfd))
2311 error (_("Can't close BFD for %s: %s"), objfile->name,
2312 bfd_errmsg (bfd_get_error ()));
2313 if (remote_filename_p (obfd_filename))
2314 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2315 else
2316 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2317 if (objfile->obfd == NULL)
2318 error (_("Can't open %s to read symbols."), objfile->name);
2319 else
2320 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2321 /* bfd_openr sets cacheable to true, which is what we want. */
2322 if (!bfd_check_format (objfile->obfd, bfd_object))
2323 error (_("Can't read symbols from %s: %s."), objfile->name,
2324 bfd_errmsg (bfd_get_error ()));
2325
2326 /* Save the offsets, we will nuke them with the rest of the
2327 objfile_obstack. */
2328 num_offsets = objfile->num_sections;
2329 offsets = ((struct section_offsets *)
2330 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2331 memcpy (offsets, objfile->section_offsets,
2332 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2333
2334 /* Remove any references to this objfile in the global
2335 value lists. */
2336 preserve_values (objfile);
2337
2338 /* Nuke all the state that we will re-read. Much of the following
2339 code which sets things to NULL really is necessary to tell
2340 other parts of GDB that there is nothing currently there.
2341
2342 Try to keep the freeing order compatible with free_objfile. */
2343
2344 if (objfile->sf != NULL)
2345 {
2346 (*objfile->sf->sym_finish) (objfile);
2347 }
2348
2349 clear_objfile_data (objfile);
2350
2351 /* FIXME: Do we have to free a whole linked list, or is this
2352 enough? */
2353 if (objfile->global_psymbols.list)
2354 xfree (objfile->global_psymbols.list);
2355 memset (&objfile->global_psymbols, 0,
2356 sizeof (objfile->global_psymbols));
2357 if (objfile->static_psymbols.list)
2358 xfree (objfile->static_psymbols.list);
2359 memset (&objfile->static_psymbols, 0,
2360 sizeof (objfile->static_psymbols));
2361
2362 /* Free the obstacks for non-reusable objfiles */
2363 bcache_xfree (objfile->psymbol_cache);
2364 objfile->psymbol_cache = bcache_xmalloc ();
2365 bcache_xfree (objfile->macro_cache);
2366 objfile->macro_cache = bcache_xmalloc ();
2367 if (objfile->demangled_names_hash != NULL)
2368 {
2369 htab_delete (objfile->demangled_names_hash);
2370 objfile->demangled_names_hash = NULL;
2371 }
2372 obstack_free (&objfile->objfile_obstack, 0);
2373 objfile->sections = NULL;
2374 objfile->symtabs = NULL;
2375 objfile->psymtabs = NULL;
2376 objfile->psymtabs_addrmap = NULL;
2377 objfile->free_psymtabs = NULL;
2378 objfile->cp_namespace_symtab = NULL;
2379 objfile->msymbols = NULL;
2380 objfile->deprecated_sym_private = NULL;
2381 objfile->minimal_symbol_count = 0;
2382 memset (&objfile->msymbol_hash, 0,
2383 sizeof (objfile->msymbol_hash));
2384 memset (&objfile->msymbol_demangled_hash, 0,
2385 sizeof (objfile->msymbol_demangled_hash));
2386
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 objfile->macro_cache = bcache_xmalloc ();
2389 /* obstack_init also initializes the obstack so it is
2390 empty. We could use obstack_specify_allocation but
2391 gdb_obstack.h specifies the alloc/dealloc
2392 functions. */
2393 obstack_init (&objfile->objfile_obstack);
2394 if (build_objfile_section_table (objfile))
2395 {
2396 error (_("Can't find the file sections in `%s': %s"),
2397 objfile->name, bfd_errmsg (bfd_get_error ()));
2398 }
2399 terminate_minimal_symbol_table (objfile);
2400
2401 /* We use the same section offsets as from last time. I'm not
2402 sure whether that is always correct for shared libraries. */
2403 objfile->section_offsets = (struct section_offsets *)
2404 obstack_alloc (&objfile->objfile_obstack,
2405 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2406 memcpy (objfile->section_offsets, offsets,
2407 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2408 objfile->num_sections = num_offsets;
2409
2410 /* What the hell is sym_new_init for, anyway? The concept of
2411 distinguishing between the main file and additional files
2412 in this way seems rather dubious. */
2413 if (objfile == symfile_objfile)
2414 {
2415 (*objfile->sf->sym_new_init) (objfile);
2416 }
2417
2418 (*objfile->sf->sym_init) (objfile);
2419 clear_complaints (&symfile_complaints, 1, 1);
2420 /* The "mainline" parameter is a hideous hack; I think leaving it
2421 zero is OK since dbxread.c also does what it needs to do if
2422 objfile->global_psymbols.size is 0. */
2423 (*objfile->sf->sym_read) (objfile, 0);
2424 if (!objfile_has_symbols (objfile))
2425 {
2426 wrap_here ("");
2427 printf_unfiltered (_("(no debugging symbols found)\n"));
2428 wrap_here ("");
2429 }
2430
2431 /* We're done reading the symbol file; finish off complaints. */
2432 clear_complaints (&symfile_complaints, 0, 1);
2433
2434 /* Getting new symbols may change our opinion about what is
2435 frameless. */
2436
2437 reinit_frame_cache ();
2438
2439 /* Discard cleanups as symbol reading was successful. */
2440 discard_cleanups (old_cleanups);
2441
2442 /* If the mtime has changed between the time we set new_modtime
2443 and now, we *want* this to be out of date, so don't call stat
2444 again now. */
2445 objfile->mtime = new_modtime;
2446 reread_one = 1;
2447 reread_separate_symbols (objfile);
2448 init_entry_point_info (objfile);
2449 }
2450 }
2451 }
2452
2453 if (reread_one)
2454 {
2455 /* Notify objfiles that we've modified objfile sections. */
2456 objfiles_changed ();
2457
2458 clear_symtab_users ();
2459 /* At least one objfile has changed, so we can consider that
2460 the executable we're debugging has changed too. */
2461 observer_notify_executable_changed ();
2462 }
2463 }
2464
2465
2466 /* Handle separate debug info for OBJFILE, which has just been
2467 re-read:
2468 - If we had separate debug info before, but now we don't, get rid
2469 of the separated objfile.
2470 - If we didn't have separated debug info before, but now we do,
2471 read in the new separated debug info file.
2472 - If the debug link points to a different file, toss the old one
2473 and read the new one.
2474 This function does *not* handle the case where objfile is still
2475 using the same separate debug info file, but that file's timestamp
2476 has changed. That case should be handled by the loop in
2477 reread_symbols already. */
2478 static void
2479 reread_separate_symbols (struct objfile *objfile)
2480 {
2481 char *debug_file;
2482 unsigned long crc32;
2483
2484 /* Does the updated objfile's debug info live in a
2485 separate file? */
2486 debug_file = find_separate_debug_file (objfile);
2487
2488 if (objfile->separate_debug_objfile)
2489 {
2490 /* There are two cases where we need to get rid of
2491 the old separated debug info objfile:
2492 - if the new primary objfile doesn't have
2493 separated debug info, or
2494 - if the new primary objfile has separate debug
2495 info, but it's under a different filename.
2496
2497 If the old and new objfiles both have separate
2498 debug info, under the same filename, then we're
2499 okay --- if the separated file's contents have
2500 changed, we will have caught that when we
2501 visited it in this function's outermost
2502 loop. */
2503 if (! debug_file
2504 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2505 free_objfile (objfile->separate_debug_objfile);
2506 }
2507
2508 /* If the new objfile has separate debug info, and we
2509 haven't loaded it already, do so now. */
2510 if (debug_file
2511 && ! objfile->separate_debug_objfile)
2512 {
2513 /* Use the same section offset table as objfile itself.
2514 Preserve the flags from objfile that make sense. */
2515 objfile->separate_debug_objfile
2516 = (symbol_file_add_with_addrs_or_offsets
2517 (symfile_bfd_open (debug_file),
2518 info_verbose ? SYMFILE_VERBOSE : 0,
2519 0, /* No addr table. */
2520 objfile->section_offsets, objfile->num_sections,
2521 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2522 | OBJF_USERLOADED)));
2523 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2524 = objfile;
2525 }
2526 if (debug_file)
2527 xfree (debug_file);
2528 }
2529
2530
2531 \f
2532
2533
2534 typedef struct
2535 {
2536 char *ext;
2537 enum language lang;
2538 }
2539 filename_language;
2540
2541 static filename_language *filename_language_table;
2542 static int fl_table_size, fl_table_next;
2543
2544 static void
2545 add_filename_language (char *ext, enum language lang)
2546 {
2547 if (fl_table_next >= fl_table_size)
2548 {
2549 fl_table_size += 10;
2550 filename_language_table =
2551 xrealloc (filename_language_table,
2552 fl_table_size * sizeof (*filename_language_table));
2553 }
2554
2555 filename_language_table[fl_table_next].ext = xstrdup (ext);
2556 filename_language_table[fl_table_next].lang = lang;
2557 fl_table_next++;
2558 }
2559
2560 static char *ext_args;
2561 static void
2562 show_ext_args (struct ui_file *file, int from_tty,
2563 struct cmd_list_element *c, const char *value)
2564 {
2565 fprintf_filtered (file, _("\
2566 Mapping between filename extension and source language is \"%s\".\n"),
2567 value);
2568 }
2569
2570 static void
2571 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2572 {
2573 int i;
2574 char *cp = ext_args;
2575 enum language lang;
2576
2577 /* First arg is filename extension, starting with '.' */
2578 if (*cp != '.')
2579 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2580
2581 /* Find end of first arg. */
2582 while (*cp && !isspace (*cp))
2583 cp++;
2584
2585 if (*cp == '\0')
2586 error (_("'%s': two arguments required -- filename extension and language"),
2587 ext_args);
2588
2589 /* Null-terminate first arg */
2590 *cp++ = '\0';
2591
2592 /* Find beginning of second arg, which should be a source language. */
2593 while (*cp && isspace (*cp))
2594 cp++;
2595
2596 if (*cp == '\0')
2597 error (_("'%s': two arguments required -- filename extension and language"),
2598 ext_args);
2599
2600 /* Lookup the language from among those we know. */
2601 lang = language_enum (cp);
2602
2603 /* Now lookup the filename extension: do we already know it? */
2604 for (i = 0; i < fl_table_next; i++)
2605 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2606 break;
2607
2608 if (i >= fl_table_next)
2609 {
2610 /* new file extension */
2611 add_filename_language (ext_args, lang);
2612 }
2613 else
2614 {
2615 /* redefining a previously known filename extension */
2616
2617 /* if (from_tty) */
2618 /* query ("Really make files of type %s '%s'?", */
2619 /* ext_args, language_str (lang)); */
2620
2621 xfree (filename_language_table[i].ext);
2622 filename_language_table[i].ext = xstrdup (ext_args);
2623 filename_language_table[i].lang = lang;
2624 }
2625 }
2626
2627 static void
2628 info_ext_lang_command (char *args, int from_tty)
2629 {
2630 int i;
2631
2632 printf_filtered (_("Filename extensions and the languages they represent:"));
2633 printf_filtered ("\n\n");
2634 for (i = 0; i < fl_table_next; i++)
2635 printf_filtered ("\t%s\t- %s\n",
2636 filename_language_table[i].ext,
2637 language_str (filename_language_table[i].lang));
2638 }
2639
2640 static void
2641 init_filename_language_table (void)
2642 {
2643 if (fl_table_size == 0) /* protect against repetition */
2644 {
2645 fl_table_size = 20;
2646 fl_table_next = 0;
2647 filename_language_table =
2648 xmalloc (fl_table_size * sizeof (*filename_language_table));
2649 add_filename_language (".c", language_c);
2650 add_filename_language (".C", language_cplus);
2651 add_filename_language (".cc", language_cplus);
2652 add_filename_language (".cp", language_cplus);
2653 add_filename_language (".cpp", language_cplus);
2654 add_filename_language (".cxx", language_cplus);
2655 add_filename_language (".c++", language_cplus);
2656 add_filename_language (".java", language_java);
2657 add_filename_language (".class", language_java);
2658 add_filename_language (".m", language_objc);
2659 add_filename_language (".f", language_fortran);
2660 add_filename_language (".F", language_fortran);
2661 add_filename_language (".s", language_asm);
2662 add_filename_language (".sx", language_asm);
2663 add_filename_language (".S", language_asm);
2664 add_filename_language (".pas", language_pascal);
2665 add_filename_language (".p", language_pascal);
2666 add_filename_language (".pp", language_pascal);
2667 add_filename_language (".adb", language_ada);
2668 add_filename_language (".ads", language_ada);
2669 add_filename_language (".a", language_ada);
2670 add_filename_language (".ada", language_ada);
2671 }
2672 }
2673
2674 enum language
2675 deduce_language_from_filename (char *filename)
2676 {
2677 int i;
2678 char *cp;
2679
2680 if (filename != NULL)
2681 if ((cp = strrchr (filename, '.')) != NULL)
2682 for (i = 0; i < fl_table_next; i++)
2683 if (strcmp (cp, filename_language_table[i].ext) == 0)
2684 return filename_language_table[i].lang;
2685
2686 return language_unknown;
2687 }
2688 \f
2689 /* allocate_symtab:
2690
2691 Allocate and partly initialize a new symbol table. Return a pointer
2692 to it. error() if no space.
2693
2694 Caller must set these fields:
2695 LINETABLE(symtab)
2696 symtab->blockvector
2697 symtab->dirname
2698 symtab->free_code
2699 symtab->free_ptr
2700 possibly free_named_symtabs (symtab->filename);
2701 */
2702
2703 struct symtab *
2704 allocate_symtab (char *filename, struct objfile *objfile)
2705 {
2706 struct symtab *symtab;
2707
2708 symtab = (struct symtab *)
2709 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2710 memset (symtab, 0, sizeof (*symtab));
2711 symtab->filename = obsavestring (filename, strlen (filename),
2712 &objfile->objfile_obstack);
2713 symtab->fullname = NULL;
2714 symtab->language = deduce_language_from_filename (filename);
2715 symtab->debugformat = obsavestring ("unknown", 7,
2716 &objfile->objfile_obstack);
2717
2718 /* Hook it to the objfile it comes from */
2719
2720 symtab->objfile = objfile;
2721 symtab->next = objfile->symtabs;
2722 objfile->symtabs = symtab;
2723
2724 return (symtab);
2725 }
2726
2727 struct partial_symtab *
2728 allocate_psymtab (char *filename, struct objfile *objfile)
2729 {
2730 struct partial_symtab *psymtab;
2731
2732 if (objfile->free_psymtabs)
2733 {
2734 psymtab = objfile->free_psymtabs;
2735 objfile->free_psymtabs = psymtab->next;
2736 }
2737 else
2738 psymtab = (struct partial_symtab *)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab));
2741
2742 memset (psymtab, 0, sizeof (struct partial_symtab));
2743 psymtab->filename = obsavestring (filename, strlen (filename),
2744 &objfile->objfile_obstack);
2745 psymtab->symtab = NULL;
2746
2747 /* Prepend it to the psymtab list for the objfile it belongs to.
2748 Psymtabs are searched in most recent inserted -> least recent
2749 inserted order. */
2750
2751 psymtab->objfile = objfile;
2752 psymtab->next = objfile->psymtabs;
2753 objfile->psymtabs = psymtab;
2754 #if 0
2755 {
2756 struct partial_symtab **prev_pst;
2757 psymtab->objfile = objfile;
2758 psymtab->next = NULL;
2759 prev_pst = &(objfile->psymtabs);
2760 while ((*prev_pst) != NULL)
2761 prev_pst = &((*prev_pst)->next);
2762 (*prev_pst) = psymtab;
2763 }
2764 #endif
2765
2766 return (psymtab);
2767 }
2768
2769 void
2770 discard_psymtab (struct partial_symtab *pst)
2771 {
2772 struct partial_symtab **prev_pst;
2773
2774 /* From dbxread.c:
2775 Empty psymtabs happen as a result of header files which don't
2776 have any symbols in them. There can be a lot of them. But this
2777 check is wrong, in that a psymtab with N_SLINE entries but
2778 nothing else is not empty, but we don't realize that. Fixing
2779 that without slowing things down might be tricky. */
2780
2781 /* First, snip it out of the psymtab chain */
2782
2783 prev_pst = &(pst->objfile->psymtabs);
2784 while ((*prev_pst) != pst)
2785 prev_pst = &((*prev_pst)->next);
2786 (*prev_pst) = pst->next;
2787
2788 /* Next, put it on a free list for recycling */
2789
2790 pst->next = pst->objfile->free_psymtabs;
2791 pst->objfile->free_psymtabs = pst;
2792 }
2793 \f
2794
2795 /* Reset all data structures in gdb which may contain references to symbol
2796 table data. */
2797
2798 void
2799 clear_symtab_users (void)
2800 {
2801 /* Someday, we should do better than this, by only blowing away
2802 the things that really need to be blown. */
2803
2804 /* Clear the "current" symtab first, because it is no longer valid.
2805 breakpoint_re_set may try to access the current symtab. */
2806 clear_current_source_symtab_and_line ();
2807
2808 clear_displays ();
2809 breakpoint_re_set ();
2810 set_default_breakpoint (0, 0, 0, 0);
2811 clear_pc_function_cache ();
2812 observer_notify_new_objfile (NULL);
2813
2814 /* Clear globals which might have pointed into a removed objfile.
2815 FIXME: It's not clear which of these are supposed to persist
2816 between expressions and which ought to be reset each time. */
2817 expression_context_block = NULL;
2818 innermost_block = NULL;
2819
2820 /* Varobj may refer to old symbols, perform a cleanup. */
2821 varobj_invalidate ();
2822
2823 }
2824
2825 static void
2826 clear_symtab_users_cleanup (void *ignore)
2827 {
2828 clear_symtab_users ();
2829 }
2830
2831 /* clear_symtab_users_once:
2832
2833 This function is run after symbol reading, or from a cleanup.
2834 If an old symbol table was obsoleted, the old symbol table
2835 has been blown away, but the other GDB data structures that may
2836 reference it have not yet been cleared or re-directed. (The old
2837 symtab was zapped, and the cleanup queued, in free_named_symtab()
2838 below.)
2839
2840 This function can be queued N times as a cleanup, or called
2841 directly; it will do all the work the first time, and then will be a
2842 no-op until the next time it is queued. This works by bumping a
2843 counter at queueing time. Much later when the cleanup is run, or at
2844 the end of symbol processing (in case the cleanup is discarded), if
2845 the queued count is greater than the "done-count", we do the work
2846 and set the done-count to the queued count. If the queued count is
2847 less than or equal to the done-count, we just ignore the call. This
2848 is needed because reading a single .o file will often replace many
2849 symtabs (one per .h file, for example), and we don't want to reset
2850 the breakpoints N times in the user's face.
2851
2852 The reason we both queue a cleanup, and call it directly after symbol
2853 reading, is because the cleanup protects us in case of errors, but is
2854 discarded if symbol reading is successful. */
2855
2856 #if 0
2857 /* FIXME: As free_named_symtabs is currently a big noop this function
2858 is no longer needed. */
2859 static void clear_symtab_users_once (void);
2860
2861 static int clear_symtab_users_queued;
2862 static int clear_symtab_users_done;
2863
2864 static void
2865 clear_symtab_users_once (void)
2866 {
2867 /* Enforce once-per-`do_cleanups'-semantics */
2868 if (clear_symtab_users_queued <= clear_symtab_users_done)
2869 return;
2870 clear_symtab_users_done = clear_symtab_users_queued;
2871
2872 clear_symtab_users ();
2873 }
2874 #endif
2875
2876 /* Delete the specified psymtab, and any others that reference it. */
2877
2878 static void
2879 cashier_psymtab (struct partial_symtab *pst)
2880 {
2881 struct partial_symtab *ps, *pprev = NULL;
2882 int i;
2883
2884 /* Find its previous psymtab in the chain */
2885 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2886 {
2887 if (ps == pst)
2888 break;
2889 pprev = ps;
2890 }
2891
2892 if (ps)
2893 {
2894 /* Unhook it from the chain. */
2895 if (ps == pst->objfile->psymtabs)
2896 pst->objfile->psymtabs = ps->next;
2897 else
2898 pprev->next = ps->next;
2899
2900 /* FIXME, we can't conveniently deallocate the entries in the
2901 partial_symbol lists (global_psymbols/static_psymbols) that
2902 this psymtab points to. These just take up space until all
2903 the psymtabs are reclaimed. Ditto the dependencies list and
2904 filename, which are all in the objfile_obstack. */
2905
2906 /* We need to cashier any psymtab that has this one as a dependency... */
2907 again:
2908 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2909 {
2910 for (i = 0; i < ps->number_of_dependencies; i++)
2911 {
2912 if (ps->dependencies[i] == pst)
2913 {
2914 cashier_psymtab (ps);
2915 goto again; /* Must restart, chain has been munged. */
2916 }
2917 }
2918 }
2919 }
2920 }
2921
2922 /* If a symtab or psymtab for filename NAME is found, free it along
2923 with any dependent breakpoints, displays, etc.
2924 Used when loading new versions of object modules with the "add-file"
2925 command. This is only called on the top-level symtab or psymtab's name;
2926 it is not called for subsidiary files such as .h files.
2927
2928 Return value is 1 if we blew away the environment, 0 if not.
2929 FIXME. The return value appears to never be used.
2930
2931 FIXME. I think this is not the best way to do this. We should
2932 work on being gentler to the environment while still cleaning up
2933 all stray pointers into the freed symtab. */
2934
2935 int
2936 free_named_symtabs (char *name)
2937 {
2938 #if 0
2939 /* FIXME: With the new method of each objfile having it's own
2940 psymtab list, this function needs serious rethinking. In particular,
2941 why was it ever necessary to toss psymtabs with specific compilation
2942 unit filenames, as opposed to all psymtabs from a particular symbol
2943 file? -- fnf
2944 Well, the answer is that some systems permit reloading of particular
2945 compilation units. We want to blow away any old info about these
2946 compilation units, regardless of which objfiles they arrived in. --gnu. */
2947
2948 struct symtab *s;
2949 struct symtab *prev;
2950 struct partial_symtab *ps;
2951 struct blockvector *bv;
2952 int blewit = 0;
2953
2954 /* We only wack things if the symbol-reload switch is set. */
2955 if (!symbol_reloading)
2956 return 0;
2957
2958 /* Some symbol formats have trouble providing file names... */
2959 if (name == 0 || *name == '\0')
2960 return 0;
2961
2962 /* Look for a psymtab with the specified name. */
2963
2964 again2:
2965 for (ps = partial_symtab_list; ps; ps = ps->next)
2966 {
2967 if (strcmp (name, ps->filename) == 0)
2968 {
2969 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2970 goto again2; /* Must restart, chain has been munged */
2971 }
2972 }
2973
2974 /* Look for a symtab with the specified name. */
2975
2976 for (s = symtab_list; s; s = s->next)
2977 {
2978 if (strcmp (name, s->filename) == 0)
2979 break;
2980 prev = s;
2981 }
2982
2983 if (s)
2984 {
2985 if (s == symtab_list)
2986 symtab_list = s->next;
2987 else
2988 prev->next = s->next;
2989
2990 /* For now, queue a delete for all breakpoints, displays, etc., whether
2991 or not they depend on the symtab being freed. This should be
2992 changed so that only those data structures affected are deleted. */
2993
2994 /* But don't delete anything if the symtab is empty.
2995 This test is necessary due to a bug in "dbxread.c" that
2996 causes empty symtabs to be created for N_SO symbols that
2997 contain the pathname of the object file. (This problem
2998 has been fixed in GDB 3.9x). */
2999
3000 bv = BLOCKVECTOR (s);
3001 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3003 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3004 {
3005 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3006 name);
3007 clear_symtab_users_queued++;
3008 make_cleanup (clear_symtab_users_once, 0);
3009 blewit = 1;
3010 }
3011 else
3012 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3013 name);
3014
3015 free_symtab (s);
3016 }
3017 else
3018 {
3019 /* It is still possible that some breakpoints will be affected
3020 even though no symtab was found, since the file might have
3021 been compiled without debugging, and hence not be associated
3022 with a symtab. In order to handle this correctly, we would need
3023 to keep a list of text address ranges for undebuggable files.
3024 For now, we do nothing, since this is a fairly obscure case. */
3025 ;
3026 }
3027
3028 /* FIXME, what about the minimal symbol table? */
3029 return blewit;
3030 #else
3031 return (0);
3032 #endif
3033 }
3034 \f
3035 /* Allocate and partially fill a partial symtab. It will be
3036 completely filled at the end of the symbol list.
3037
3038 FILENAME is the name of the symbol-file we are reading from. */
3039
3040 struct partial_symtab *
3041 start_psymtab_common (struct objfile *objfile,
3042 struct section_offsets *section_offsets, char *filename,
3043 CORE_ADDR textlow, struct partial_symbol **global_syms,
3044 struct partial_symbol **static_syms)
3045 {
3046 struct partial_symtab *psymtab;
3047
3048 psymtab = allocate_psymtab (filename, objfile);
3049 psymtab->section_offsets = section_offsets;
3050 psymtab->textlow = textlow;
3051 psymtab->texthigh = psymtab->textlow; /* default */
3052 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3053 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3054 return (psymtab);
3055 }
3056 \f
3057 /* Helper function, initialises partial symbol structure and stashes
3058 it into objfile's bcache. Note that our caching mechanism will
3059 use all fields of struct partial_symbol to determine hash value of the
3060 structure. In other words, having two symbols with the same name but
3061 different domain (or address) is possible and correct. */
3062
3063 static const struct partial_symbol *
3064 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3065 enum address_class class,
3066 long val, /* Value as a long */
3067 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3068 enum language language, struct objfile *objfile,
3069 int *added)
3070 {
3071 char *buf = name;
3072 /* psymbol is static so that there will be no uninitialized gaps in the
3073 structure which might contain random data, causing cache misses in
3074 bcache. */
3075 static struct partial_symbol psymbol;
3076
3077 if (name[namelength] != '\0')
3078 {
3079 buf = alloca (namelength + 1);
3080 /* Create local copy of the partial symbol */
3081 memcpy (buf, name, namelength);
3082 buf[namelength] = '\0';
3083 }
3084 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3085 if (val != 0)
3086 {
3087 SYMBOL_VALUE (&psymbol) = val;
3088 }
3089 else
3090 {
3091 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3092 }
3093 SYMBOL_SECTION (&psymbol) = 0;
3094 SYMBOL_LANGUAGE (&psymbol) = language;
3095 PSYMBOL_DOMAIN (&psymbol) = domain;
3096 PSYMBOL_CLASS (&psymbol) = class;
3097
3098 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3099
3100 /* Stash the partial symbol away in the cache */
3101 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3102 objfile->psymbol_cache, added);
3103 }
3104
3105 /* Helper function, adds partial symbol to the given partial symbol
3106 list. */
3107
3108 static void
3109 append_psymbol_to_list (struct psymbol_allocation_list *list,
3110 const struct partial_symbol *psym,
3111 struct objfile *objfile)
3112 {
3113 if (list->next >= list->list + list->size)
3114 extend_psymbol_list (list, objfile);
3115 *list->next++ = (struct partial_symbol *) psym;
3116 OBJSTAT (objfile, n_psyms++);
3117 }
3118
3119 /* Add a symbol with a long value to a psymtab.
3120 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3121 Return the partial symbol that has been added. */
3122
3123 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3124 symbol is so that callers can get access to the symbol's demangled
3125 name, which they don't have any cheap way to determine otherwise.
3126 (Currenly, dwarf2read.c is the only file who uses that information,
3127 though it's possible that other readers might in the future.)
3128 Elena wasn't thrilled about that, and I don't blame her, but we
3129 couldn't come up with a better way to get that information. If
3130 it's needed in other situations, we could consider breaking up
3131 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3132 cache. */
3133
3134 const struct partial_symbol *
3135 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3136 enum address_class class,
3137 struct psymbol_allocation_list *list,
3138 long val, /* Value as a long */
3139 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3140 enum language language, struct objfile *objfile)
3141 {
3142 const struct partial_symbol *psym;
3143
3144 int added;
3145
3146 /* Stash the partial symbol away in the cache */
3147 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3148 val, coreaddr, language, objfile, &added);
3149
3150 /* Do not duplicate global partial symbols. */
3151 if (list == &objfile->global_psymbols
3152 && !added)
3153 return psym;
3154
3155 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3156 append_psymbol_to_list (list, psym, objfile);
3157 return psym;
3158 }
3159
3160 /* Initialize storage for partial symbols. */
3161
3162 void
3163 init_psymbol_list (struct objfile *objfile, int total_symbols)
3164 {
3165 /* Free any previously allocated psymbol lists. */
3166
3167 if (objfile->global_psymbols.list)
3168 {
3169 xfree (objfile->global_psymbols.list);
3170 }
3171 if (objfile->static_psymbols.list)
3172 {
3173 xfree (objfile->static_psymbols.list);
3174 }
3175
3176 /* Current best guess is that approximately a twentieth
3177 of the total symbols (in a debugging file) are global or static
3178 oriented symbols */
3179
3180 objfile->global_psymbols.size = total_symbols / 10;
3181 objfile->static_psymbols.size = total_symbols / 10;
3182
3183 if (objfile->global_psymbols.size > 0)
3184 {
3185 objfile->global_psymbols.next =
3186 objfile->global_psymbols.list = (struct partial_symbol **)
3187 xmalloc ((objfile->global_psymbols.size
3188 * sizeof (struct partial_symbol *)));
3189 }
3190 if (objfile->static_psymbols.size > 0)
3191 {
3192 objfile->static_psymbols.next =
3193 objfile->static_psymbols.list = (struct partial_symbol **)
3194 xmalloc ((objfile->static_psymbols.size
3195 * sizeof (struct partial_symbol *)));
3196 }
3197 }
3198
3199 /* OVERLAYS:
3200 The following code implements an abstraction for debugging overlay sections.
3201
3202 The target model is as follows:
3203 1) The gnu linker will permit multiple sections to be mapped into the
3204 same VMA, each with its own unique LMA (or load address).
3205 2) It is assumed that some runtime mechanism exists for mapping the
3206 sections, one by one, from the load address into the VMA address.
3207 3) This code provides a mechanism for gdb to keep track of which
3208 sections should be considered to be mapped from the VMA to the LMA.
3209 This information is used for symbol lookup, and memory read/write.
3210 For instance, if a section has been mapped then its contents
3211 should be read from the VMA, otherwise from the LMA.
3212
3213 Two levels of debugger support for overlays are available. One is
3214 "manual", in which the debugger relies on the user to tell it which
3215 overlays are currently mapped. This level of support is
3216 implemented entirely in the core debugger, and the information about
3217 whether a section is mapped is kept in the objfile->obj_section table.
3218
3219 The second level of support is "automatic", and is only available if
3220 the target-specific code provides functionality to read the target's
3221 overlay mapping table, and translate its contents for the debugger
3222 (by updating the mapped state information in the obj_section tables).
3223
3224 The interface is as follows:
3225 User commands:
3226 overlay map <name> -- tell gdb to consider this section mapped
3227 overlay unmap <name> -- tell gdb to consider this section unmapped
3228 overlay list -- list the sections that GDB thinks are mapped
3229 overlay read-target -- get the target's state of what's mapped
3230 overlay off/manual/auto -- set overlay debugging state
3231 Functional interface:
3232 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3233 section, return that section.
3234 find_pc_overlay(pc): find any overlay section that contains
3235 the pc, either in its VMA or its LMA
3236 section_is_mapped(sect): true if overlay is marked as mapped
3237 section_is_overlay(sect): true if section's VMA != LMA
3238 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3239 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3240 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3241 overlay_mapped_address(...): map an address from section's LMA to VMA
3242 overlay_unmapped_address(...): map an address from section's VMA to LMA
3243 symbol_overlayed_address(...): Return a "current" address for symbol:
3244 either in VMA or LMA depending on whether
3245 the symbol's section is currently mapped
3246 */
3247
3248 /* Overlay debugging state: */
3249
3250 enum overlay_debugging_state overlay_debugging = ovly_off;
3251 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3252
3253 /* Function: section_is_overlay (SECTION)
3254 Returns true if SECTION has VMA not equal to LMA, ie.
3255 SECTION is loaded at an address different from where it will "run". */
3256
3257 int
3258 section_is_overlay (struct obj_section *section)
3259 {
3260 if (overlay_debugging && section)
3261 {
3262 bfd *abfd = section->objfile->obfd;
3263 asection *bfd_section = section->the_bfd_section;
3264
3265 if (bfd_section_lma (abfd, bfd_section) != 0
3266 && bfd_section_lma (abfd, bfd_section)
3267 != bfd_section_vma (abfd, bfd_section))
3268 return 1;
3269 }
3270
3271 return 0;
3272 }
3273
3274 /* Function: overlay_invalidate_all (void)
3275 Invalidate the mapped state of all overlay sections (mark it as stale). */
3276
3277 static void
3278 overlay_invalidate_all (void)
3279 {
3280 struct objfile *objfile;
3281 struct obj_section *sect;
3282
3283 ALL_OBJSECTIONS (objfile, sect)
3284 if (section_is_overlay (sect))
3285 sect->ovly_mapped = -1;
3286 }
3287
3288 /* Function: section_is_mapped (SECTION)
3289 Returns true if section is an overlay, and is currently mapped.
3290
3291 Access to the ovly_mapped flag is restricted to this function, so
3292 that we can do automatic update. If the global flag
3293 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3294 overlay_invalidate_all. If the mapped state of the particular
3295 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3296
3297 int
3298 section_is_mapped (struct obj_section *osect)
3299 {
3300 struct gdbarch *gdbarch;
3301
3302 if (osect == 0 || !section_is_overlay (osect))
3303 return 0;
3304
3305 switch (overlay_debugging)
3306 {
3307 default:
3308 case ovly_off:
3309 return 0; /* overlay debugging off */
3310 case ovly_auto: /* overlay debugging automatic */
3311 /* Unles there is a gdbarch_overlay_update function,
3312 there's really nothing useful to do here (can't really go auto) */
3313 gdbarch = get_objfile_arch (osect->objfile);
3314 if (gdbarch_overlay_update_p (gdbarch))
3315 {
3316 if (overlay_cache_invalid)
3317 {
3318 overlay_invalidate_all ();
3319 overlay_cache_invalid = 0;
3320 }
3321 if (osect->ovly_mapped == -1)
3322 gdbarch_overlay_update (gdbarch, osect);
3323 }
3324 /* fall thru to manual case */
3325 case ovly_on: /* overlay debugging manual */
3326 return osect->ovly_mapped == 1;
3327 }
3328 }
3329
3330 /* Function: pc_in_unmapped_range
3331 If PC falls into the lma range of SECTION, return true, else false. */
3332
3333 CORE_ADDR
3334 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3335 {
3336 if (section_is_overlay (section))
3337 {
3338 bfd *abfd = section->objfile->obfd;
3339 asection *bfd_section = section->the_bfd_section;
3340
3341 /* We assume the LMA is relocated by the same offset as the VMA. */
3342 bfd_vma size = bfd_get_section_size (bfd_section);
3343 CORE_ADDR offset = obj_section_offset (section);
3344
3345 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3346 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3347 return 1;
3348 }
3349
3350 return 0;
3351 }
3352
3353 /* Function: pc_in_mapped_range
3354 If PC falls into the vma range of SECTION, return true, else false. */
3355
3356 CORE_ADDR
3357 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3358 {
3359 if (section_is_overlay (section))
3360 {
3361 if (obj_section_addr (section) <= pc
3362 && pc < obj_section_endaddr (section))
3363 return 1;
3364 }
3365
3366 return 0;
3367 }
3368
3369
3370 /* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
3372 static int
3373 sections_overlap (struct obj_section *a, struct obj_section *b)
3374 {
3375 CORE_ADDR a_start = obj_section_addr (a);
3376 CORE_ADDR a_end = obj_section_endaddr (a);
3377 CORE_ADDR b_start = obj_section_addr (b);
3378 CORE_ADDR b_end = obj_section_endaddr (b);
3379
3380 return (a_start < b_end && b_start < a_end);
3381 }
3382
3383 /* Function: overlay_unmapped_address (PC, SECTION)
3384 Returns the address corresponding to PC in the unmapped (load) range.
3385 May be the same as PC. */
3386
3387 CORE_ADDR
3388 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3389 {
3390 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3391 {
3392 bfd *abfd = section->objfile->obfd;
3393 asection *bfd_section = section->the_bfd_section;
3394
3395 return pc + bfd_section_lma (abfd, bfd_section)
3396 - bfd_section_vma (abfd, bfd_section);
3397 }
3398
3399 return pc;
3400 }
3401
3402 /* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406 CORE_ADDR
3407 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3408 {
3409 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3410 {
3411 bfd *abfd = section->objfile->obfd;
3412 asection *bfd_section = section->the_bfd_section;
3413
3414 return pc + bfd_section_vma (abfd, bfd_section)
3415 - bfd_section_lma (abfd, bfd_section);
3416 }
3417
3418 return pc;
3419 }
3420
3421
3422 /* Function: symbol_overlayed_address
3423 Return one of two addresses (relative to the VMA or to the LMA),
3424 depending on whether the section is mapped or not. */
3425
3426 CORE_ADDR
3427 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3428 {
3429 if (overlay_debugging)
3430 {
3431 /* If the symbol has no section, just return its regular address. */
3432 if (section == 0)
3433 return address;
3434 /* If the symbol's section is not an overlay, just return its address */
3435 if (!section_is_overlay (section))
3436 return address;
3437 /* If the symbol's section is mapped, just return its address */
3438 if (section_is_mapped (section))
3439 return address;
3440 /*
3441 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3442 * then return its LOADED address rather than its vma address!!
3443 */
3444 return overlay_unmapped_address (address, section);
3445 }
3446 return address;
3447 }
3448
3449 /* Function: find_pc_overlay (PC)
3450 Return the best-match overlay section for PC:
3451 If PC matches a mapped overlay section's VMA, return that section.
3452 Else if PC matches an unmapped section's VMA, return that section.
3453 Else if PC matches an unmapped section's LMA, return that section. */
3454
3455 struct obj_section *
3456 find_pc_overlay (CORE_ADDR pc)
3457 {
3458 struct objfile *objfile;
3459 struct obj_section *osect, *best_match = NULL;
3460
3461 if (overlay_debugging)
3462 ALL_OBJSECTIONS (objfile, osect)
3463 if (section_is_overlay (osect))
3464 {
3465 if (pc_in_mapped_range (pc, osect))
3466 {
3467 if (section_is_mapped (osect))
3468 return osect;
3469 else
3470 best_match = osect;
3471 }
3472 else if (pc_in_unmapped_range (pc, osect))
3473 best_match = osect;
3474 }
3475 return best_match;
3476 }
3477
3478 /* Function: find_pc_mapped_section (PC)
3479 If PC falls into the VMA address range of an overlay section that is
3480 currently marked as MAPPED, return that section. Else return NULL. */
3481
3482 struct obj_section *
3483 find_pc_mapped_section (CORE_ADDR pc)
3484 {
3485 struct objfile *objfile;
3486 struct obj_section *osect;
3487
3488 if (overlay_debugging)
3489 ALL_OBJSECTIONS (objfile, osect)
3490 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3491 return osect;
3492
3493 return NULL;
3494 }
3495
3496 /* Function: list_overlays_command
3497 Print a list of mapped sections and their PC ranges */
3498
3499 void
3500 list_overlays_command (char *args, int from_tty)
3501 {
3502 int nmapped = 0;
3503 struct objfile *objfile;
3504 struct obj_section *osect;
3505
3506 if (overlay_debugging)
3507 ALL_OBJSECTIONS (objfile, osect)
3508 if (section_is_mapped (osect))
3509 {
3510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3511 const char *name;
3512 bfd_vma lma, vma;
3513 int size;
3514
3515 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3516 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3517 size = bfd_get_section_size (osect->the_bfd_section);
3518 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3519
3520 printf_filtered ("Section %s, loaded at ", name);
3521 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3522 puts_filtered (" - ");
3523 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3524 printf_filtered (", mapped at ");
3525 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3526 puts_filtered (" - ");
3527 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3528 puts_filtered ("\n");
3529
3530 nmapped++;
3531 }
3532 if (nmapped == 0)
3533 printf_filtered (_("No sections are mapped.\n"));
3534 }
3535
3536 /* Function: map_overlay_command
3537 Mark the named section as mapped (ie. residing at its VMA address). */
3538
3539 void
3540 map_overlay_command (char *args, int from_tty)
3541 {
3542 struct objfile *objfile, *objfile2;
3543 struct obj_section *sec, *sec2;
3544
3545 if (!overlay_debugging)
3546 error (_("\
3547 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3548 the 'overlay manual' command."));
3549
3550 if (args == 0 || *args == 0)
3551 error (_("Argument required: name of an overlay section"));
3552
3553 /* First, find a section matching the user supplied argument */
3554 ALL_OBJSECTIONS (objfile, sec)
3555 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3556 {
3557 /* Now, check to see if the section is an overlay. */
3558 if (!section_is_overlay (sec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
3567 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3568 {
3569 if (info_verbose)
3570 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3571 bfd_section_name (objfile->obfd,
3572 sec2->the_bfd_section));
3573 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3574 }
3575 return;
3576 }
3577 error (_("No overlay section called %s"), args);
3578 }
3579
3580 /* Function: unmap_overlay_command
3581 Mark the overlay section as unmapped
3582 (ie. resident in its LMA address range, rather than the VMA range). */
3583
3584 void
3585 unmap_overlay_command (char *args, int from_tty)
3586 {
3587 struct objfile *objfile;
3588 struct obj_section *sec;
3589
3590 if (!overlay_debugging)
3591 error (_("\
3592 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3593 the 'overlay manual' command."));
3594
3595 if (args == 0 || *args == 0)
3596 error (_("Argument required: name of an overlay section"));
3597
3598 /* First, find a section matching the user supplied argument */
3599 ALL_OBJSECTIONS (objfile, sec)
3600 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3601 {
3602 if (!sec->ovly_mapped)
3603 error (_("Section %s is not mapped"), args);
3604 sec->ovly_mapped = 0;
3605 return;
3606 }
3607 error (_("No overlay section called %s"), args);
3608 }
3609
3610 /* Function: overlay_auto_command
3611 A utility command to turn on overlay debugging.
3612 Possibly this should be done via a set/show command. */
3613
3614 static void
3615 overlay_auto_command (char *args, int from_tty)
3616 {
3617 overlay_debugging = ovly_auto;
3618 enable_overlay_breakpoints ();
3619 if (info_verbose)
3620 printf_unfiltered (_("Automatic overlay debugging enabled."));
3621 }
3622
3623 /* Function: overlay_manual_command
3624 A utility command to turn on overlay debugging.
3625 Possibly this should be done via a set/show command. */
3626
3627 static void
3628 overlay_manual_command (char *args, int from_tty)
3629 {
3630 overlay_debugging = ovly_on;
3631 disable_overlay_breakpoints ();
3632 if (info_verbose)
3633 printf_unfiltered (_("Overlay debugging enabled."));
3634 }
3635
3636 /* Function: overlay_off_command
3637 A utility command to turn on overlay debugging.
3638 Possibly this should be done via a set/show command. */
3639
3640 static void
3641 overlay_off_command (char *args, int from_tty)
3642 {
3643 overlay_debugging = ovly_off;
3644 disable_overlay_breakpoints ();
3645 if (info_verbose)
3646 printf_unfiltered (_("Overlay debugging disabled."));
3647 }
3648
3649 static void
3650 overlay_load_command (char *args, int from_tty)
3651 {
3652 struct gdbarch *gdbarch = get_current_arch ();
3653
3654 if (gdbarch_overlay_update_p (gdbarch))
3655 gdbarch_overlay_update (gdbarch, NULL);
3656 else
3657 error (_("This target does not know how to read its overlay state."));
3658 }
3659
3660 /* Function: overlay_command
3661 A place-holder for a mis-typed command */
3662
3663 /* Command list chain containing all defined "overlay" subcommands. */
3664 struct cmd_list_element *overlaylist;
3665
3666 static void
3667 overlay_command (char *args, int from_tty)
3668 {
3669 printf_unfiltered
3670 ("\"overlay\" must be followed by the name of an overlay command.\n");
3671 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3672 }
3673
3674
3675 /* Target Overlays for the "Simplest" overlay manager:
3676
3677 This is GDB's default target overlay layer. It works with the
3678 minimal overlay manager supplied as an example by Cygnus. The
3679 entry point is via a function pointer "gdbarch_overlay_update",
3680 so targets that use a different runtime overlay manager can
3681 substitute their own overlay_update function and take over the
3682 function pointer.
3683
3684 The overlay_update function pokes around in the target's data structures
3685 to see what overlays are mapped, and updates GDB's overlay mapping with
3686 this information.
3687
3688 In this simple implementation, the target data structures are as follows:
3689 unsigned _novlys; /# number of overlay sections #/
3690 unsigned _ovly_table[_novlys][4] = {
3691 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3692 {..., ..., ..., ...},
3693 }
3694 unsigned _novly_regions; /# number of overlay regions #/
3695 unsigned _ovly_region_table[_novly_regions][3] = {
3696 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3697 {..., ..., ...},
3698 }
3699 These functions will attempt to update GDB's mappedness state in the
3700 symbol section table, based on the target's mappedness state.
3701
3702 To do this, we keep a cached copy of the target's _ovly_table, and
3703 attempt to detect when the cached copy is invalidated. The main
3704 entry point is "simple_overlay_update(SECT), which looks up SECT in
3705 the cached table and re-reads only the entry for that section from
3706 the target (whenever possible).
3707 */
3708
3709 /* Cached, dynamically allocated copies of the target data structures: */
3710 static unsigned (*cache_ovly_table)[4] = 0;
3711 #if 0
3712 static unsigned (*cache_ovly_region_table)[3] = 0;
3713 #endif
3714 static unsigned cache_novlys = 0;
3715 #if 0
3716 static unsigned cache_novly_regions = 0;
3717 #endif
3718 static CORE_ADDR cache_ovly_table_base = 0;
3719 #if 0
3720 static CORE_ADDR cache_ovly_region_table_base = 0;
3721 #endif
3722 enum ovly_index
3723 {
3724 VMA, SIZE, LMA, MAPPED
3725 };
3726
3727 /* Throw away the cached copy of _ovly_table */
3728 static void
3729 simple_free_overlay_table (void)
3730 {
3731 if (cache_ovly_table)
3732 xfree (cache_ovly_table);
3733 cache_novlys = 0;
3734 cache_ovly_table = NULL;
3735 cache_ovly_table_base = 0;
3736 }
3737
3738 #if 0
3739 /* Throw away the cached copy of _ovly_region_table */
3740 static void
3741 simple_free_overlay_region_table (void)
3742 {
3743 if (cache_ovly_region_table)
3744 xfree (cache_ovly_region_table);
3745 cache_novly_regions = 0;
3746 cache_ovly_region_table = NULL;
3747 cache_ovly_region_table_base = 0;
3748 }
3749 #endif
3750
3751 /* Read an array of ints of size SIZE from the target into a local buffer.
3752 Convert to host order. int LEN is number of ints */
3753 static void
3754 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3755 int len, int size, enum bfd_endian byte_order)
3756 {
3757 /* FIXME (alloca): Not safe if array is very large. */
3758 gdb_byte *buf = alloca (len * size);
3759 int i;
3760
3761 read_memory (memaddr, buf, len * size);
3762 for (i = 0; i < len; i++)
3763 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3764 }
3765
3766 /* Find and grab a copy of the target _ovly_table
3767 (and _novlys, which is needed for the table's size) */
3768 static int
3769 simple_read_overlay_table (void)
3770 {
3771 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3772 struct gdbarch *gdbarch;
3773 int word_size;
3774 enum bfd_endian byte_order;
3775
3776 simple_free_overlay_table ();
3777 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3778 if (! novlys_msym)
3779 {
3780 error (_("Error reading inferior's overlay table: "
3781 "couldn't find `_novlys' variable\n"
3782 "in inferior. Use `overlay manual' mode."));
3783 return 0;
3784 }
3785
3786 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3787 if (! ovly_table_msym)
3788 {
3789 error (_("Error reading inferior's overlay table: couldn't find "
3790 "`_ovly_table' array\n"
3791 "in inferior. Use `overlay manual' mode."));
3792 return 0;
3793 }
3794
3795 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3796 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3797 byte_order = gdbarch_byte_order (gdbarch);
3798
3799 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3800 4, byte_order);
3801 cache_ovly_table
3802 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3803 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3804 read_target_long_array (cache_ovly_table_base,
3805 (unsigned int *) cache_ovly_table,
3806 cache_novlys * 4, word_size, byte_order);
3807
3808 return 1; /* SUCCESS */
3809 }
3810
3811 #if 0
3812 /* Find and grab a copy of the target _ovly_region_table
3813 (and _novly_regions, which is needed for the table's size) */
3814 static int
3815 simple_read_overlay_region_table (void)
3816 {
3817 struct minimal_symbol *msym;
3818 struct gdbarch *gdbarch;
3819 int word_size;
3820 enum bfd_endian byte_order;
3821
3822 simple_free_overlay_region_table ();
3823 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3824 if (msym == NULL)
3825 return 0; /* failure */
3826
3827 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3828 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3829 byte_order = gdbarch_byte_order (gdbarch);
3830
3831 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3832 4, byte_order);
3833
3834 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3835 if (cache_ovly_region_table != NULL)
3836 {
3837 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3838 if (msym != NULL)
3839 {
3840 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3841 read_target_long_array (cache_ovly_region_table_base,
3842 (unsigned int *) cache_ovly_region_table,
3843 cache_novly_regions * 3,
3844 word_size, byte_order);
3845 }
3846 else
3847 return 0; /* failure */
3848 }
3849 else
3850 return 0; /* failure */
3851 return 1; /* SUCCESS */
3852 }
3853 #endif
3854
3855 /* Function: simple_overlay_update_1
3856 A helper function for simple_overlay_update. Assuming a cached copy
3857 of _ovly_table exists, look through it to find an entry whose vma,
3858 lma and size match those of OSECT. Re-read the entry and make sure
3859 it still matches OSECT (else the table may no longer be valid).
3860 Set OSECT's mapped state to match the entry. Return: 1 for
3861 success, 0 for failure. */
3862
3863 static int
3864 simple_overlay_update_1 (struct obj_section *osect)
3865 {
3866 int i, size;
3867 bfd *obfd = osect->objfile->obfd;
3868 asection *bsect = osect->the_bfd_section;
3869 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3870 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3872
3873 size = bfd_get_section_size (osect->the_bfd_section);
3874 for (i = 0; i < cache_novlys; i++)
3875 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3876 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3877 /* && cache_ovly_table[i][SIZE] == size */ )
3878 {
3879 read_target_long_array (cache_ovly_table_base + i * word_size,
3880 (unsigned int *) cache_ovly_table[i],
3881 4, word_size, byte_order);
3882 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3883 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3884 /* && cache_ovly_table[i][SIZE] == size */ )
3885 {
3886 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3887 return 1;
3888 }
3889 else /* Warning! Warning! Target's ovly table has changed! */
3890 return 0;
3891 }
3892 return 0;
3893 }
3894
3895 /* Function: simple_overlay_update
3896 If OSECT is NULL, then update all sections' mapped state
3897 (after re-reading the entire target _ovly_table).
3898 If OSECT is non-NULL, then try to find a matching entry in the
3899 cached ovly_table and update only OSECT's mapped state.
3900 If a cached entry can't be found or the cache isn't valid, then
3901 re-read the entire cache, and go ahead and update all sections. */
3902
3903 void
3904 simple_overlay_update (struct obj_section *osect)
3905 {
3906 struct objfile *objfile;
3907
3908 /* Were we given an osect to look up? NULL means do all of them. */
3909 if (osect)
3910 /* Have we got a cached copy of the target's overlay table? */
3911 if (cache_ovly_table != NULL)
3912 /* Does its cached location match what's currently in the symtab? */
3913 if (cache_ovly_table_base ==
3914 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3915 /* Then go ahead and try to look up this single section in the cache */
3916 if (simple_overlay_update_1 (osect))
3917 /* Found it! We're done. */
3918 return;
3919
3920 /* Cached table no good: need to read the entire table anew.
3921 Or else we want all the sections, in which case it's actually
3922 more efficient to read the whole table in one block anyway. */
3923
3924 if (! simple_read_overlay_table ())
3925 return;
3926
3927 /* Now may as well update all sections, even if only one was requested. */
3928 ALL_OBJSECTIONS (objfile, osect)
3929 if (section_is_overlay (osect))
3930 {
3931 int i, size;
3932 bfd *obfd = osect->objfile->obfd;
3933 asection *bsect = osect->the_bfd_section;
3934
3935 size = bfd_get_section_size (bsect);
3936 for (i = 0; i < cache_novlys; i++)
3937 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3938 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3939 /* && cache_ovly_table[i][SIZE] == size */ )
3940 { /* obj_section matches i'th entry in ovly_table */
3941 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3942 break; /* finished with inner for loop: break out */
3943 }
3944 }
3945 }
3946
3947 /* Set the output sections and output offsets for section SECTP in
3948 ABFD. The relocation code in BFD will read these offsets, so we
3949 need to be sure they're initialized. We map each section to itself,
3950 with no offset; this means that SECTP->vma will be honored. */
3951
3952 static void
3953 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3954 {
3955 sectp->output_section = sectp;
3956 sectp->output_offset = 0;
3957 }
3958
3959 /* Relocate the contents of a debug section SECTP in ABFD. The
3960 contents are stored in BUF if it is non-NULL, or returned in a
3961 malloc'd buffer otherwise.
3962
3963 For some platforms and debug info formats, shared libraries contain
3964 relocations against the debug sections (particularly for DWARF-2;
3965 one affected platform is PowerPC GNU/Linux, although it depends on
3966 the version of the linker in use). Also, ELF object files naturally
3967 have unresolved relocations for their debug sections. We need to apply
3968 the relocations in order to get the locations of symbols correct.
3969 Another example that may require relocation processing, is the
3970 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3971 debug section. */
3972
3973 bfd_byte *
3974 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3975 {
3976 /* We're only interested in sections with relocation
3977 information. */
3978 if ((sectp->flags & SEC_RELOC) == 0)
3979 return NULL;
3980
3981 /* We will handle section offsets properly elsewhere, so relocate as if
3982 all sections begin at 0. */
3983 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3984
3985 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3986 }
3987
3988 struct symfile_segment_data *
3989 get_symfile_segment_data (bfd *abfd)
3990 {
3991 struct sym_fns *sf = find_sym_fns (abfd);
3992
3993 if (sf == NULL)
3994 return NULL;
3995
3996 return sf->sym_segments (abfd);
3997 }
3998
3999 void
4000 free_symfile_segment_data (struct symfile_segment_data *data)
4001 {
4002 xfree (data->segment_bases);
4003 xfree (data->segment_sizes);
4004 xfree (data->segment_info);
4005 xfree (data);
4006 }
4007
4008
4009 /* Given:
4010 - DATA, containing segment addresses from the object file ABFD, and
4011 the mapping from ABFD's sections onto the segments that own them,
4012 and
4013 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4014 segment addresses reported by the target,
4015 store the appropriate offsets for each section in OFFSETS.
4016
4017 If there are fewer entries in SEGMENT_BASES than there are segments
4018 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4019
4020 If there are more entries, then ignore the extra. The target may
4021 not be able to distinguish between an empty data segment and a
4022 missing data segment; a missing text segment is less plausible. */
4023 int
4024 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4025 struct section_offsets *offsets,
4026 int num_segment_bases,
4027 const CORE_ADDR *segment_bases)
4028 {
4029 int i;
4030 asection *sect;
4031
4032 /* It doesn't make sense to call this function unless you have some
4033 segment base addresses. */
4034 gdb_assert (segment_bases > 0);
4035
4036 /* If we do not have segment mappings for the object file, we
4037 can not relocate it by segments. */
4038 gdb_assert (data != NULL);
4039 gdb_assert (data->num_segments > 0);
4040
4041 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4042 {
4043 int which = data->segment_info[i];
4044
4045 gdb_assert (0 <= which && which <= data->num_segments);
4046
4047 /* Don't bother computing offsets for sections that aren't
4048 loaded as part of any segment. */
4049 if (! which)
4050 continue;
4051
4052 /* Use the last SEGMENT_BASES entry as the address of any extra
4053 segments mentioned in DATA->segment_info. */
4054 if (which > num_segment_bases)
4055 which = num_segment_bases;
4056
4057 offsets->offsets[i] = (segment_bases[which - 1]
4058 - data->segment_bases[which - 1]);
4059 }
4060
4061 return 1;
4062 }
4063
4064 static void
4065 symfile_find_segment_sections (struct objfile *objfile)
4066 {
4067 bfd *abfd = objfile->obfd;
4068 int i;
4069 asection *sect;
4070 struct symfile_segment_data *data;
4071
4072 data = get_symfile_segment_data (objfile->obfd);
4073 if (data == NULL)
4074 return;
4075
4076 if (data->num_segments != 1 && data->num_segments != 2)
4077 {
4078 free_symfile_segment_data (data);
4079 return;
4080 }
4081
4082 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4083 {
4084 CORE_ADDR vma;
4085 int which = data->segment_info[i];
4086
4087 if (which == 1)
4088 {
4089 if (objfile->sect_index_text == -1)
4090 objfile->sect_index_text = sect->index;
4091
4092 if (objfile->sect_index_rodata == -1)
4093 objfile->sect_index_rodata = sect->index;
4094 }
4095 else if (which == 2)
4096 {
4097 if (objfile->sect_index_data == -1)
4098 objfile->sect_index_data = sect->index;
4099
4100 if (objfile->sect_index_bss == -1)
4101 objfile->sect_index_bss = sect->index;
4102 }
4103 }
4104
4105 free_symfile_segment_data (data);
4106 }
4107
4108 void
4109 _initialize_symfile (void)
4110 {
4111 struct cmd_list_element *c;
4112
4113 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4114 Load symbol table from executable file FILE.\n\
4115 The `file' command can also load symbol tables, as well as setting the file\n\
4116 to execute."), &cmdlist);
4117 set_cmd_completer (c, filename_completer);
4118
4119 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4120 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4121 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4122 ADDR is the starting address of the file's text.\n\
4123 The optional arguments are section-name section-address pairs and\n\
4124 should be specified if the data and bss segments are not contiguous\n\
4125 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4126 &cmdlist);
4127 set_cmd_completer (c, filename_completer);
4128
4129 c = add_cmd ("load", class_files, load_command, _("\
4130 Dynamically load FILE into the running program, and record its symbols\n\
4131 for access from GDB.\n\
4132 A load OFFSET may also be given."), &cmdlist);
4133 set_cmd_completer (c, filename_completer);
4134
4135 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4136 &symbol_reloading, _("\
4137 Set dynamic symbol table reloading multiple times in one run."), _("\
4138 Show dynamic symbol table reloading multiple times in one run."), NULL,
4139 NULL,
4140 show_symbol_reloading,
4141 &setlist, &showlist);
4142
4143 add_prefix_cmd ("overlay", class_support, overlay_command,
4144 _("Commands for debugging overlays."), &overlaylist,
4145 "overlay ", 0, &cmdlist);
4146
4147 add_com_alias ("ovly", "overlay", class_alias, 1);
4148 add_com_alias ("ov", "overlay", class_alias, 1);
4149
4150 add_cmd ("map-overlay", class_support, map_overlay_command,
4151 _("Assert that an overlay section is mapped."), &overlaylist);
4152
4153 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4154 _("Assert that an overlay section is unmapped."), &overlaylist);
4155
4156 add_cmd ("list-overlays", class_support, list_overlays_command,
4157 _("List mappings of overlay sections."), &overlaylist);
4158
4159 add_cmd ("manual", class_support, overlay_manual_command,
4160 _("Enable overlay debugging."), &overlaylist);
4161 add_cmd ("off", class_support, overlay_off_command,
4162 _("Disable overlay debugging."), &overlaylist);
4163 add_cmd ("auto", class_support, overlay_auto_command,
4164 _("Enable automatic overlay debugging."), &overlaylist);
4165 add_cmd ("load-target", class_support, overlay_load_command,
4166 _("Read the overlay mapping state from the target."), &overlaylist);
4167
4168 /* Filename extension to source language lookup table: */
4169 init_filename_language_table ();
4170 add_setshow_string_noescape_cmd ("extension-language", class_files,
4171 &ext_args, _("\
4172 Set mapping between filename extension and source language."), _("\
4173 Show mapping between filename extension and source language."), _("\
4174 Usage: set extension-language .foo bar"),
4175 set_ext_lang_command,
4176 show_ext_args,
4177 &setlist, &showlist);
4178
4179 add_info ("extensions", info_ext_lang_command,
4180 _("All filename extensions associated with a source language."));
4181
4182 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4183 &debug_file_directory, _("\
4184 Set the directory where separate debug symbols are searched for."), _("\
4185 Show the directory where separate debug symbols are searched for."), _("\
4186 Separate debug symbols are first searched for in the same\n\
4187 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4188 and lastly at the path of the directory of the binary with\n\
4189 the global debug-file directory prepended."),
4190 NULL,
4191 show_debug_file_directory,
4192 &setlist, &showlist);
4193 }
This page took 0.158896 seconds and 3 git commands to generate.