gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479
480 /* We are only interested in loadable sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
489 do {
490 asection *cur_sec;
491 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
492
493 start_addr = (arg->lowest + align - 1) & -align;
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with loadable sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
507 continue;
508
509 /* We do not expect this to happen; just ignore sections in a
510 relocatable file with an assigned VMA. */
511 if (bfd_section_vma (abfd, cur_sec) != 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 continue;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539 }
540
541 /* Parse the user's idea of an offset for dynamic linking, into our idea
542 of how to represent it for fast symbol reading. This is the default
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547 void
548 default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550 {
551 int i;
552
553 objfile->num_sections = bfd_count_sections (objfile->obfd);
554 objfile->section_offsets = (struct section_offsets *)
555 obstack_alloc (&objfile->objfile_obstack,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557 memset (objfile->section_offsets, 0,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 arg.offsets = objfile->section_offsets;
585 arg.lowest = 0;
586 bfd_map_over_sections (objfile->obfd, place_section, &arg);
587 }
588
589 /* Remember the bfd indexes for the .text, .data, .bss and
590 .rodata sections. */
591 init_objfile_sect_indices (objfile);
592 }
593
594
595 /* Process a symbol file, as either the main file or as a dynamically
596 loaded file.
597
598 OBJFILE is where the symbols are to be read from.
599
600 ADDRS is the list of section load addresses. If the user has given
601 an 'add-symbol-file' command, then this is the list of offsets and
602 addresses he or she provided as arguments to the command; or, if
603 we're handling a shared library, these are the actual addresses the
604 sections are loaded at, according to the inferior's dynamic linker
605 (as gleaned by GDB's shared library code). We convert each address
606 into an offset from the section VMA's as it appears in the object
607 file, and then call the file's sym_offsets function to convert this
608 into a format-specific offset table --- a `struct section_offsets'.
609 If ADDRS is non-zero, OFFSETS must be zero.
610
611 OFFSETS is a table of section offsets already in the right
612 format-specific representation. NUM_OFFSETS is the number of
613 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
614 assume this is the proper table the call to sym_offsets described
615 above would produce. Instead of calling sym_offsets, we just dump
616 it right into objfile->section_offsets. (When we're re-reading
617 symbols from an objfile, we don't have the original load address
618 list any more; all we have is the section offset table.) If
619 OFFSETS is non-zero, ADDRS must be zero.
620
621 MAINLINE is nonzero if this is the main symbol file, or zero if
622 it's an extra symbol file such as dynamically loaded code.
623
624 VERBO is nonzero if the caller has printed a verbose message about
625 the symbol reading (and complaints can be more terse about it). */
626
627 void
628 syms_from_objfile (struct objfile *objfile,
629 struct section_addr_info *addrs,
630 struct section_offsets *offsets,
631 int num_offsets,
632 int mainline,
633 int verbo)
634 {
635 struct section_addr_info *local_addr = NULL;
636 struct cleanup *old_chain;
637
638 gdb_assert (! (addrs && offsets));
639
640 init_entry_point_info (objfile);
641 find_sym_fns (objfile);
642
643 if (objfile->sf == NULL)
644 return; /* No symbols. */
645
646 /* Make sure that partially constructed symbol tables will be cleaned up
647 if an error occurs during symbol reading. */
648 old_chain = make_cleanup_free_objfile (objfile);
649
650 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
651 list. We now establish the convention that an addr of zero means
652 no load address was specified. */
653 if (! addrs && ! offsets)
654 {
655 local_addr
656 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
657 make_cleanup (xfree, local_addr);
658 addrs = local_addr;
659 }
660
661 /* Now either addrs or offsets is non-zero. */
662
663 if (mainline)
664 {
665 /* We will modify the main symbol table, make sure that all its users
666 will be cleaned up if an error occurs during symbol reading. */
667 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
668
669 /* Since no error yet, throw away the old symbol table. */
670
671 if (symfile_objfile != NULL)
672 {
673 free_objfile (symfile_objfile);
674 symfile_objfile = NULL;
675 }
676
677 /* Currently we keep symbols from the add-symbol-file command.
678 If the user wants to get rid of them, they should do "symbol-file"
679 without arguments first. Not sure this is the best behavior
680 (PR 2207). */
681
682 (*objfile->sf->sym_new_init) (objfile);
683 }
684
685 /* Convert addr into an offset rather than an absolute address.
686 We find the lowest address of a loaded segment in the objfile,
687 and assume that <addr> is where that got loaded.
688
689 We no longer warn if the lowest section is not a text segment (as
690 happens for the PA64 port. */
691 if (!mainline && addrs && addrs->other[0].name)
692 {
693 asection *lower_sect;
694 asection *sect;
695 CORE_ADDR lower_offset;
696 int i;
697
698 /* Find lowest loadable section to be used as starting point for
699 continguous sections. FIXME!! won't work without call to find
700 .text first, but this assumes text is lowest section. */
701 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
702 if (lower_sect == NULL)
703 bfd_map_over_sections (objfile->obfd, find_lowest_section,
704 &lower_sect);
705 if (lower_sect == NULL)
706 warning (_("no loadable sections found in added symbol-file %s"),
707 objfile->name);
708 else
709 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
710 warning (_("Lowest section in %s is %s at %s"),
711 objfile->name,
712 bfd_section_name (objfile->obfd, lower_sect),
713 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
714 if (lower_sect != NULL)
715 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
716 else
717 lower_offset = 0;
718
719 /* Calculate offsets for the loadable sections.
720 FIXME! Sections must be in order of increasing loadable section
721 so that contiguous sections can use the lower-offset!!!
722
723 Adjust offsets if the segments are not contiguous.
724 If the section is contiguous, its offset should be set to
725 the offset of the highest loadable section lower than it
726 (the loadable section directly below it in memory).
727 this_offset = lower_offset = lower_addr - lower_orig_addr */
728
729 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
730 {
731 if (addrs->other[i].addr != 0)
732 {
733 sect = bfd_get_section_by_name (objfile->obfd,
734 addrs->other[i].name);
735 if (sect)
736 {
737 addrs->other[i].addr
738 -= bfd_section_vma (objfile->obfd, sect);
739 lower_offset = addrs->other[i].addr;
740 /* This is the index used by BFD. */
741 addrs->other[i].sectindex = sect->index ;
742 }
743 else
744 {
745 warning (_("section %s not found in %s"),
746 addrs->other[i].name,
747 objfile->name);
748 addrs->other[i].addr = 0;
749 }
750 }
751 else
752 addrs->other[i].addr = lower_offset;
753 }
754 }
755
756 /* Initialize symbol reading routines for this objfile, allow complaints to
757 appear for this new file, and record how verbose to be, then do the
758 initial symbol reading for this file. */
759
760 (*objfile->sf->sym_init) (objfile);
761 clear_complaints (&symfile_complaints, 1, verbo);
762
763 if (addrs)
764 (*objfile->sf->sym_offsets) (objfile, addrs);
765 else
766 {
767 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
768
769 /* Just copy in the offset table directly as given to us. */
770 objfile->num_sections = num_offsets;
771 objfile->section_offsets
772 = ((struct section_offsets *)
773 obstack_alloc (&objfile->objfile_obstack, size));
774 memcpy (objfile->section_offsets, offsets, size);
775
776 init_objfile_sect_indices (objfile);
777 }
778
779 #ifndef DEPRECATED_IBM6000_TARGET
780 /* This is a SVR4/SunOS specific hack, I think. In any event, it
781 screws RS/6000. sym_offsets should be doing this sort of thing,
782 because it knows the mapping between bfd sections and
783 section_offsets. */
784 /* This is a hack. As far as I can tell, section offsets are not
785 target dependent. They are all set to addr with a couple of
786 exceptions. The exceptions are sysvr4 shared libraries, whose
787 offsets are kept in solib structures anyway and rs6000 xcoff
788 which handles shared libraries in a completely unique way.
789
790 Section offsets are built similarly, except that they are built
791 by adding addr in all cases because there is no clear mapping
792 from section_offsets into actual sections. Note that solib.c
793 has a different algorithm for finding section offsets.
794
795 These should probably all be collapsed into some target
796 independent form of shared library support. FIXME. */
797
798 if (addrs)
799 {
800 struct obj_section *s;
801
802 /* Map section offsets in "addr" back to the object's
803 sections by comparing the section names with bfd's
804 section names. Then adjust the section address by
805 the offset. */ /* for gdb/13815 */
806
807 ALL_OBJFILE_OSECTIONS (objfile, s)
808 {
809 CORE_ADDR s_addr = 0;
810 int i;
811
812 for (i = 0;
813 !s_addr && i < addrs->num_sections && addrs->other[i].name;
814 i++)
815 if (strcmp (bfd_section_name (s->objfile->obfd,
816 s->the_bfd_section),
817 addrs->other[i].name) == 0)
818 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
819
820 s->addr -= s->offset;
821 s->addr += s_addr;
822 s->endaddr -= s->offset;
823 s->endaddr += s_addr;
824 s->offset += s_addr;
825 }
826 }
827 #endif /* not DEPRECATED_IBM6000_TARGET */
828
829 (*objfile->sf->sym_read) (objfile, mainline);
830
831 /* Don't allow char * to have a typename (else would get caddr_t).
832 Ditto void *. FIXME: Check whether this is now done by all the
833 symbol readers themselves (many of them now do), and if so remove
834 it from here. */
835
836 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
837 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
838
839 /* Mark the objfile has having had initial symbol read attempted. Note
840 that this does not mean we found any symbols... */
841
842 objfile->flags |= OBJF_SYMS;
843
844 /* Discard cleanups as symbol reading was successful. */
845
846 discard_cleanups (old_chain);
847 }
848
849 /* Perform required actions after either reading in the initial
850 symbols for a new objfile, or mapping in the symbols from a reusable
851 objfile. */
852
853 void
854 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
855 {
856
857 /* If this is the main symbol file we have to clean up all users of the
858 old main symbol file. Otherwise it is sufficient to fixup all the
859 breakpoints that may have been redefined by this symbol file. */
860 if (mainline)
861 {
862 /* OK, make it the "real" symbol file. */
863 symfile_objfile = objfile;
864
865 clear_symtab_users ();
866 }
867 else
868 {
869 breakpoint_re_set ();
870 }
871
872 /* We're done reading the symbol file; finish off complaints. */
873 clear_complaints (&symfile_complaints, 0, verbo);
874 }
875
876 /* Process a symbol file, as either the main file or as a dynamically
877 loaded file.
878
879 ABFD is a BFD already open on the file, as from symfile_bfd_open.
880 This BFD will be closed on error, and is always consumed by this function.
881
882 FROM_TTY says how verbose to be.
883
884 MAINLINE specifies whether this is the main symbol file, or whether
885 it's an extra symbol file such as dynamically loaded code.
886
887 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
888 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
889 non-zero.
890
891 Upon success, returns a pointer to the objfile that was added.
892 Upon failure, jumps back to command level (never returns). */
893 static struct objfile *
894 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
895 struct section_addr_info *addrs,
896 struct section_offsets *offsets,
897 int num_offsets,
898 int mainline, int flags)
899 {
900 struct objfile *objfile;
901 struct partial_symtab *psymtab;
902 char *debugfile;
903 struct section_addr_info *orig_addrs = NULL;
904 struct cleanup *my_cleanups;
905 const char *name = bfd_get_filename (abfd);
906
907 my_cleanups = make_cleanup_bfd_close (abfd);
908
909 /* Give user a chance to burp if we'd be
910 interactively wiping out any existing symbols. */
911
912 if ((have_full_symbols () || have_partial_symbols ())
913 && mainline
914 && from_tty
915 && !query ("Load new symbol table from \"%s\"? ", name))
916 error (_("Not confirmed."));
917
918 objfile = allocate_objfile (abfd, flags);
919 discard_cleanups (my_cleanups);
920
921 if (addrs)
922 {
923 orig_addrs = copy_section_addr_info (addrs);
924 make_cleanup_free_section_addr_info (orig_addrs);
925 }
926
927 /* We either created a new mapped symbol table, mapped an existing
928 symbol table file which has not had initial symbol reading
929 performed, or need to read an unmapped symbol table. */
930 if (from_tty || info_verbose)
931 {
932 if (deprecated_pre_add_symbol_hook)
933 deprecated_pre_add_symbol_hook (name);
934 else
935 {
936 printf_unfiltered (_("Reading symbols from %s..."), name);
937 wrap_here ("");
938 gdb_flush (gdb_stdout);
939 }
940 }
941 syms_from_objfile (objfile, addrs, offsets, num_offsets,
942 mainline, from_tty);
943
944 /* We now have at least a partial symbol table. Check to see if the
945 user requested that all symbols be read on initial access via either
946 the gdb startup command line or on a per symbol file basis. Expand
947 all partial symbol tables for this objfile if so. */
948
949 if ((flags & OBJF_READNOW) || readnow_symbol_files)
950 {
951 if (from_tty || info_verbose)
952 {
953 printf_unfiltered (_("expanding to full symbols..."));
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956 }
957
958 for (psymtab = objfile->psymtabs;
959 psymtab != NULL;
960 psymtab = psymtab->next)
961 {
962 psymtab_to_symtab (psymtab);
963 }
964 }
965
966 debugfile = find_separate_debug_file (objfile);
967 if (debugfile)
968 {
969 if (addrs != NULL)
970 {
971 objfile->separate_debug_objfile
972 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
973 }
974 else
975 {
976 objfile->separate_debug_objfile
977 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
978 }
979 objfile->separate_debug_objfile->separate_debug_objfile_backlink
980 = objfile;
981
982 /* Put the separate debug object before the normal one, this is so that
983 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
984 put_objfile_before (objfile->separate_debug_objfile, objfile);
985
986 xfree (debugfile);
987 }
988
989 if (!have_partial_symbols () && !have_full_symbols ())
990 {
991 wrap_here ("");
992 printf_filtered (_("(no debugging symbols found)"));
993 if (from_tty || info_verbose)
994 printf_filtered ("...");
995 else
996 printf_filtered ("\n");
997 wrap_here ("");
998 }
999
1000 if (from_tty || info_verbose)
1001 {
1002 if (deprecated_post_add_symbol_hook)
1003 deprecated_post_add_symbol_hook ();
1004 else
1005 {
1006 printf_unfiltered (_("done.\n"));
1007 }
1008 }
1009
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
1015 do_cleanups (my_cleanups);
1016
1017 if (objfile->sf == NULL)
1018 return objfile; /* No symbols. */
1019
1020 new_symfile_objfile (objfile, mainline, from_tty);
1021
1022 if (deprecated_target_new_objfile_hook)
1023 deprecated_target_new_objfile_hook (objfile);
1024
1025 bfd_cache_close_all ();
1026 return (objfile);
1027 }
1028
1029
1030 /* Process the symbol file ABFD, as either the main file or as a
1031 dynamically loaded file.
1032
1033 See symbol_file_add_with_addrs_or_offsets's comments for
1034 details. */
1035 struct objfile *
1036 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1037 struct section_addr_info *addrs,
1038 int mainline, int flags)
1039 {
1040 return symbol_file_add_with_addrs_or_offsets (abfd,
1041 from_tty, addrs, 0, 0,
1042 mainline, flags);
1043 }
1044
1045
1046 /* Process a symbol file, as either the main file or as a dynamically
1047 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1048 for details. */
1049 struct objfile *
1050 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1051 int mainline, int flags)
1052 {
1053 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1054 addrs, mainline, flags);
1055 }
1056
1057
1058 /* Call symbol_file_add() with default values and update whatever is
1059 affected by the loading of a new main().
1060 Used when the file is supplied in the gdb command line
1061 and by some targets with special loading requirements.
1062 The auxiliary function, symbol_file_add_main_1(), has the flags
1063 argument for the switches that can only be specified in the symbol_file
1064 command itself. */
1065
1066 void
1067 symbol_file_add_main (char *args, int from_tty)
1068 {
1069 symbol_file_add_main_1 (args, from_tty, 0);
1070 }
1071
1072 static void
1073 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1074 {
1075 symbol_file_add (args, from_tty, NULL, 1, flags);
1076
1077 /* Getting new symbols may change our opinion about
1078 what is frameless. */
1079 reinit_frame_cache ();
1080
1081 set_initial_language ();
1082 }
1083
1084 void
1085 symbol_file_clear (int from_tty)
1086 {
1087 if ((have_full_symbols () || have_partial_symbols ())
1088 && from_tty
1089 && (symfile_objfile
1090 ? !query (_("Discard symbol table from `%s'? "),
1091 symfile_objfile->name)
1092 : !query (_("Discard symbol table? "))))
1093 error (_("Not confirmed."));
1094 free_all_objfiles ();
1095
1096 /* solib descriptors may have handles to objfiles. Since their
1097 storage has just been released, we'd better wipe the solib
1098 descriptors as well.
1099 */
1100 #if defined(SOLIB_RESTART)
1101 SOLIB_RESTART ();
1102 #endif
1103
1104 symfile_objfile = NULL;
1105 if (from_tty)
1106 printf_unfiltered (_("No symbol file now.\n"));
1107 }
1108
1109 static char *
1110 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1111 {
1112 asection *sect;
1113 bfd_size_type debuglink_size;
1114 unsigned long crc32;
1115 char *contents;
1116 int crc_offset;
1117 unsigned char *p;
1118
1119 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1120
1121 if (sect == NULL)
1122 return NULL;
1123
1124 debuglink_size = bfd_section_size (objfile->obfd, sect);
1125
1126 contents = xmalloc (debuglink_size);
1127 bfd_get_section_contents (objfile->obfd, sect, contents,
1128 (file_ptr)0, (bfd_size_type)debuglink_size);
1129
1130 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1131 crc_offset = strlen (contents) + 1;
1132 crc_offset = (crc_offset + 3) & ~3;
1133
1134 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1135
1136 *crc32_out = crc32;
1137 return contents;
1138 }
1139
1140 static int
1141 separate_debug_file_exists (const char *name, unsigned long crc)
1142 {
1143 unsigned long file_crc = 0;
1144 int fd;
1145 gdb_byte buffer[8*1024];
1146 int count;
1147
1148 fd = open (name, O_RDONLY | O_BINARY);
1149 if (fd < 0)
1150 return 0;
1151
1152 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1153 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1154
1155 close (fd);
1156
1157 return crc == file_crc;
1158 }
1159
1160 static char *debug_file_directory = NULL;
1161 static void
1162 show_debug_file_directory (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164 {
1165 fprintf_filtered (file, _("\
1166 The directory where separate debug symbols are searched for is \"%s\".\n"),
1167 value);
1168 }
1169
1170 #if ! defined (DEBUG_SUBDIRECTORY)
1171 #define DEBUG_SUBDIRECTORY ".debug"
1172 #endif
1173
1174 static char *
1175 find_separate_debug_file (struct objfile *objfile)
1176 {
1177 asection *sect;
1178 char *basename;
1179 char *dir;
1180 char *debugfile;
1181 char *name_copy;
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
1190
1191 dir = xstrdup (objfile->name);
1192
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1203 dir[i+1] = '\0';
1204
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
1209 + strlen (basename)
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
1222
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
1235
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
1248
1249 xfree (basename);
1250 xfree (dir);
1251 return NULL;
1252 }
1253
1254
1255 /* This is the symbol-file command. Read the file, analyze its
1256 symbols, and add a struct symtab to a symtab list. The syntax of
1257 the command is rather bizarre:
1258
1259 1. The function buildargv implements various quoting conventions
1260 which are undocumented and have little or nothing in common with
1261 the way things are quoted (or not quoted) elsewhere in GDB.
1262
1263 2. Options are used, which are not generally used in GDB (perhaps
1264 "set mapped on", "set readnow on" would be better)
1265
1266 3. The order of options matters, which is contrary to GNU
1267 conventions (because it is confusing and inconvenient). */
1268
1269 void
1270 symbol_file_command (char *args, int from_tty)
1271 {
1272 dont_repeat ();
1273
1274 if (args == NULL)
1275 {
1276 symbol_file_clear (from_tty);
1277 }
1278 else
1279 {
1280 char **argv = buildargv (args);
1281 int flags = OBJF_USERLOADED;
1282 struct cleanup *cleanups;
1283 char *name = NULL;
1284
1285 if (argv == NULL)
1286 nomem (0);
1287
1288 cleanups = make_cleanup_freeargv (argv);
1289 while (*argv != NULL)
1290 {
1291 if (strcmp (*argv, "-readnow") == 0)
1292 flags |= OBJF_READNOW;
1293 else if (**argv == '-')
1294 error (_("unknown option `%s'"), *argv);
1295 else
1296 {
1297 symbol_file_add_main_1 (*argv, from_tty, flags);
1298 name = *argv;
1299 }
1300
1301 argv++;
1302 }
1303
1304 if (name == NULL)
1305 error (_("no symbol file name was specified"));
1306
1307 do_cleanups (cleanups);
1308 }
1309 }
1310
1311 /* Set the initial language.
1312
1313 FIXME: A better solution would be to record the language in the
1314 psymtab when reading partial symbols, and then use it (if known) to
1315 set the language. This would be a win for formats that encode the
1316 language in an easily discoverable place, such as DWARF. For
1317 stabs, we can jump through hoops looking for specially named
1318 symbols or try to intuit the language from the specific type of
1319 stabs we find, but we can't do that until later when we read in
1320 full symbols. */
1321
1322 static void
1323 set_initial_language (void)
1324 {
1325 struct partial_symtab *pst;
1326 enum language lang = language_unknown;
1327
1328 pst = find_main_psymtab ();
1329 if (pst != NULL)
1330 {
1331 if (pst->filename != NULL)
1332 lang = deduce_language_from_filename (pst->filename);
1333
1334 if (lang == language_unknown)
1335 {
1336 /* Make C the default language */
1337 lang = language_c;
1338 }
1339
1340 set_language (lang);
1341 expected_language = current_language; /* Don't warn the user. */
1342 }
1343 }
1344
1345 /* Open the file specified by NAME and hand it off to BFD for
1346 preliminary analysis. Return a newly initialized bfd *, which
1347 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1348 absolute). In case of trouble, error() is called. */
1349
1350 bfd *
1351 symfile_bfd_open (char *name)
1352 {
1353 bfd *sym_bfd;
1354 int desc;
1355 char *absolute_name;
1356
1357 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1358
1359 /* Look down path for it, allocate 2nd new malloc'd copy. */
1360 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1361 O_RDONLY | O_BINARY, 0, &absolute_name);
1362 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1363 if (desc < 0)
1364 {
1365 char *exename = alloca (strlen (name) + 5);
1366 strcat (strcpy (exename, name), ".exe");
1367 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1368 O_RDONLY | O_BINARY, 0, &absolute_name);
1369 }
1370 #endif
1371 if (desc < 0)
1372 {
1373 make_cleanup (xfree, name);
1374 perror_with_name (name);
1375 }
1376
1377 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1378 bfd. It'll be freed in free_objfile(). */
1379 xfree (name);
1380 name = absolute_name;
1381
1382 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1383 if (!sym_bfd)
1384 {
1385 close (desc);
1386 make_cleanup (xfree, name);
1387 error (_("\"%s\": can't open to read symbols: %s."), name,
1388 bfd_errmsg (bfd_get_error ()));
1389 }
1390 bfd_set_cacheable (sym_bfd, 1);
1391
1392 if (!bfd_check_format (sym_bfd, bfd_object))
1393 {
1394 /* FIXME: should be checking for errors from bfd_close (for one
1395 thing, on error it does not free all the storage associated
1396 with the bfd). */
1397 bfd_close (sym_bfd); /* This also closes desc. */
1398 make_cleanup (xfree, name);
1399 error (_("\"%s\": can't read symbols: %s."), name,
1400 bfd_errmsg (bfd_get_error ()));
1401 }
1402
1403 return sym_bfd;
1404 }
1405
1406 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1407 the section was not found. */
1408
1409 int
1410 get_section_index (struct objfile *objfile, char *section_name)
1411 {
1412 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1413
1414 if (sect)
1415 return sect->index;
1416 else
1417 return -1;
1418 }
1419
1420 /* Link SF into the global symtab_fns list. Called on startup by the
1421 _initialize routine in each object file format reader, to register
1422 information about each format the the reader is prepared to
1423 handle. */
1424
1425 void
1426 add_symtab_fns (struct sym_fns *sf)
1427 {
1428 sf->next = symtab_fns;
1429 symtab_fns = sf;
1430 }
1431
1432 /* Initialize OBJFILE to read symbols from its associated BFD. It
1433 either returns or calls error(). The result is an initialized
1434 struct sym_fns in the objfile structure, that contains cached
1435 information about the symbol file. */
1436
1437 static void
1438 find_sym_fns (struct objfile *objfile)
1439 {
1440 struct sym_fns *sf;
1441 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1442 char *our_target = bfd_get_target (objfile->obfd);
1443
1444 if (our_flavour == bfd_target_srec_flavour
1445 || our_flavour == bfd_target_ihex_flavour
1446 || our_flavour == bfd_target_tekhex_flavour)
1447 return; /* No symbols. */
1448
1449 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1450 {
1451 if (our_flavour == sf->sym_flavour)
1452 {
1453 objfile->sf = sf;
1454 return;
1455 }
1456 }
1457
1458 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1459 bfd_get_target (objfile->obfd));
1460 }
1461 \f
1462
1463 /* This function runs the load command of our current target. */
1464
1465 static void
1466 load_command (char *arg, int from_tty)
1467 {
1468 if (arg == NULL)
1469 arg = get_exec_file (1);
1470 target_load (arg, from_tty);
1471
1472 /* After re-loading the executable, we don't really know which
1473 overlays are mapped any more. */
1474 overlay_cache_invalid = 1;
1475 }
1476
1477 /* This version of "load" should be usable for any target. Currently
1478 it is just used for remote targets, not inftarg.c or core files,
1479 on the theory that only in that case is it useful.
1480
1481 Avoiding xmodem and the like seems like a win (a) because we don't have
1482 to worry about finding it, and (b) On VMS, fork() is very slow and so
1483 we don't want to run a subprocess. On the other hand, I'm not sure how
1484 performance compares. */
1485
1486 static int download_write_size = 512;
1487 static void
1488 show_download_write_size (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1490 {
1491 fprintf_filtered (file, _("\
1492 The write size used when downloading a program is %s.\n"),
1493 value);
1494 }
1495 static int validate_download = 0;
1496
1497 /* Callback service function for generic_load (bfd_map_over_sections). */
1498
1499 static void
1500 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1501 {
1502 bfd_size_type *sum = data;
1503
1504 *sum += bfd_get_section_size (asec);
1505 }
1506
1507 /* Opaque data for load_section_callback. */
1508 struct load_section_data {
1509 unsigned long load_offset;
1510 unsigned long write_count;
1511 unsigned long data_count;
1512 bfd_size_type total_size;
1513 };
1514
1515 /* Callback service function for generic_load (bfd_map_over_sections). */
1516
1517 static void
1518 load_section_callback (bfd *abfd, asection *asec, void *data)
1519 {
1520 struct load_section_data *args = data;
1521
1522 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1523 {
1524 bfd_size_type size = bfd_get_section_size (asec);
1525 if (size > 0)
1526 {
1527 gdb_byte *buffer;
1528 struct cleanup *old_chain;
1529 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1530 bfd_size_type block_size;
1531 int err;
1532 const char *sect_name = bfd_get_section_name (abfd, asec);
1533 bfd_size_type sent;
1534
1535 if (download_write_size > 0 && size > download_write_size)
1536 block_size = download_write_size;
1537 else
1538 block_size = size;
1539
1540 buffer = xmalloc (size);
1541 old_chain = make_cleanup (xfree, buffer);
1542
1543 /* Is this really necessary? I guess it gives the user something
1544 to look at during a long download. */
1545 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1546 sect_name, paddr_nz (size), paddr_nz (lma));
1547
1548 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1549
1550 sent = 0;
1551 do
1552 {
1553 int len;
1554 bfd_size_type this_transfer = size - sent;
1555
1556 if (this_transfer >= block_size)
1557 this_transfer = block_size;
1558 len = target_write_memory_partial (lma, buffer,
1559 this_transfer, &err);
1560 if (err)
1561 break;
1562 if (validate_download)
1563 {
1564 /* Broken memories and broken monitors manifest
1565 themselves here when bring new computers to
1566 life. This doubles already slow downloads. */
1567 /* NOTE: cagney/1999-10-18: A more efficient
1568 implementation might add a verify_memory()
1569 method to the target vector and then use
1570 that. remote.c could implement that method
1571 using the ``qCRC'' packet. */
1572 gdb_byte *check = xmalloc (len);
1573 struct cleanup *verify_cleanups =
1574 make_cleanup (xfree, check);
1575
1576 if (target_read_memory (lma, check, len) != 0)
1577 error (_("Download verify read failed at 0x%s"),
1578 paddr (lma));
1579 if (memcmp (buffer, check, len) != 0)
1580 error (_("Download verify compare failed at 0x%s"),
1581 paddr (lma));
1582 do_cleanups (verify_cleanups);
1583 }
1584 args->data_count += len;
1585 lma += len;
1586 buffer += len;
1587 args->write_count += 1;
1588 sent += len;
1589 if (quit_flag
1590 || (deprecated_ui_load_progress_hook != NULL
1591 && deprecated_ui_load_progress_hook (sect_name, sent)))
1592 error (_("Canceled the download"));
1593
1594 if (deprecated_show_load_progress != NULL)
1595 deprecated_show_load_progress (sect_name, sent, size,
1596 args->data_count,
1597 args->total_size);
1598 }
1599 while (sent < size);
1600
1601 if (err != 0)
1602 error (_("Memory access error while loading section %s."), sect_name);
1603
1604 do_cleanups (old_chain);
1605 }
1606 }
1607 }
1608
1609 void
1610 generic_load (char *args, int from_tty)
1611 {
1612 asection *s;
1613 bfd *loadfile_bfd;
1614 struct timeval start_time, end_time;
1615 char *filename;
1616 struct cleanup *old_cleanups;
1617 char *offptr;
1618 struct load_section_data cbdata;
1619 CORE_ADDR entry;
1620
1621 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1622 cbdata.write_count = 0; /* Number of writes needed. */
1623 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1624 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1625
1626 /* Parse the input argument - the user can specify a load offset as
1627 a second argument. */
1628 filename = xmalloc (strlen (args) + 1);
1629 old_cleanups = make_cleanup (xfree, filename);
1630 strcpy (filename, args);
1631 offptr = strchr (filename, ' ');
1632 if (offptr != NULL)
1633 {
1634 char *endptr;
1635
1636 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1637 if (offptr == endptr)
1638 error (_("Invalid download offset:%s."), offptr);
1639 *offptr = '\0';
1640 }
1641 else
1642 cbdata.load_offset = 0;
1643
1644 /* Open the file for loading. */
1645 loadfile_bfd = bfd_openr (filename, gnutarget);
1646 if (loadfile_bfd == NULL)
1647 {
1648 perror_with_name (filename);
1649 return;
1650 }
1651
1652 /* FIXME: should be checking for errors from bfd_close (for one thing,
1653 on error it does not free all the storage associated with the
1654 bfd). */
1655 make_cleanup_bfd_close (loadfile_bfd);
1656
1657 if (!bfd_check_format (loadfile_bfd, bfd_object))
1658 {
1659 error (_("\"%s\" is not an object file: %s"), filename,
1660 bfd_errmsg (bfd_get_error ()));
1661 }
1662
1663 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1664 (void *) &cbdata.total_size);
1665
1666 gettimeofday (&start_time, NULL);
1667
1668 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1669
1670 gettimeofday (&end_time, NULL);
1671
1672 entry = bfd_get_start_address (loadfile_bfd);
1673 ui_out_text (uiout, "Start address ");
1674 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1675 ui_out_text (uiout, ", load size ");
1676 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1677 ui_out_text (uiout, "\n");
1678 /* We were doing this in remote-mips.c, I suspect it is right
1679 for other targets too. */
1680 write_pc (entry);
1681
1682 /* FIXME: are we supposed to call symbol_file_add or not? According
1683 to a comment from remote-mips.c (where a call to symbol_file_add
1684 was commented out), making the call confuses GDB if more than one
1685 file is loaded in. Some targets do (e.g., remote-vx.c) but
1686 others don't (or didn't - perhaps they have all been deleted). */
1687
1688 print_transfer_performance (gdb_stdout, cbdata.data_count,
1689 cbdata.write_count, &start_time, &end_time);
1690
1691 do_cleanups (old_cleanups);
1692 }
1693
1694 /* Report how fast the transfer went. */
1695
1696 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1697 replaced by print_transfer_performance (with a very different
1698 function signature). */
1699
1700 void
1701 report_transfer_performance (unsigned long data_count, time_t start_time,
1702 time_t end_time)
1703 {
1704 struct timeval start, end;
1705
1706 start.tv_sec = start_time;
1707 start.tv_usec = 0;
1708 end.tv_sec = end_time;
1709 end.tv_usec = 0;
1710
1711 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1712 }
1713
1714 void
1715 print_transfer_performance (struct ui_file *stream,
1716 unsigned long data_count,
1717 unsigned long write_count,
1718 const struct timeval *start_time,
1719 const struct timeval *end_time)
1720 {
1721 unsigned long time_count;
1722
1723 /* Compute the elapsed time in milliseconds, as a tradeoff between
1724 accuracy and overflow. */
1725 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1726 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1727
1728 ui_out_text (uiout, "Transfer rate: ");
1729 if (time_count > 0)
1730 {
1731 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1732 1000 * (data_count * 8) / time_count);
1733 ui_out_text (uiout, " bits/sec");
1734 }
1735 else
1736 {
1737 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1738 ui_out_text (uiout, " bits in <1 sec");
1739 }
1740 if (write_count > 0)
1741 {
1742 ui_out_text (uiout, ", ");
1743 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1744 ui_out_text (uiout, " bytes/write");
1745 }
1746 ui_out_text (uiout, ".\n");
1747 }
1748
1749 /* This function allows the addition of incrementally linked object files.
1750 It does not modify any state in the target, only in the debugger. */
1751 /* Note: ezannoni 2000-04-13 This function/command used to have a
1752 special case syntax for the rombug target (Rombug is the boot
1753 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1754 rombug case, the user doesn't need to supply a text address,
1755 instead a call to target_link() (in target.c) would supply the
1756 value to use. We are now discontinuing this type of ad hoc syntax. */
1757
1758 static void
1759 add_symbol_file_command (char *args, int from_tty)
1760 {
1761 char *filename = NULL;
1762 int flags = OBJF_USERLOADED;
1763 char *arg;
1764 int expecting_option = 0;
1765 int section_index = 0;
1766 int argcnt = 0;
1767 int sec_num = 0;
1768 int i;
1769 int expecting_sec_name = 0;
1770 int expecting_sec_addr = 0;
1771
1772 struct sect_opt
1773 {
1774 char *name;
1775 char *value;
1776 };
1777
1778 struct section_addr_info *section_addrs;
1779 struct sect_opt *sect_opts = NULL;
1780 size_t num_sect_opts = 0;
1781 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1782
1783 num_sect_opts = 16;
1784 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1785 * sizeof (struct sect_opt));
1786
1787 dont_repeat ();
1788
1789 if (args == NULL)
1790 error (_("add-symbol-file takes a file name and an address"));
1791
1792 /* Make a copy of the string that we can safely write into. */
1793 args = xstrdup (args);
1794
1795 while (*args != '\000')
1796 {
1797 /* Any leading spaces? */
1798 while (isspace (*args))
1799 args++;
1800
1801 /* Point arg to the beginning of the argument. */
1802 arg = args;
1803
1804 /* Move args pointer over the argument. */
1805 while ((*args != '\000') && !isspace (*args))
1806 args++;
1807
1808 /* If there are more arguments, terminate arg and
1809 proceed past it. */
1810 if (*args != '\000')
1811 *args++ = '\000';
1812
1813 /* Now process the argument. */
1814 if (argcnt == 0)
1815 {
1816 /* The first argument is the file name. */
1817 filename = tilde_expand (arg);
1818 make_cleanup (xfree, filename);
1819 }
1820 else
1821 if (argcnt == 1)
1822 {
1823 /* The second argument is always the text address at which
1824 to load the program. */
1825 sect_opts[section_index].name = ".text";
1826 sect_opts[section_index].value = arg;
1827 if (++section_index > num_sect_opts)
1828 {
1829 num_sect_opts *= 2;
1830 sect_opts = ((struct sect_opt *)
1831 xrealloc (sect_opts,
1832 num_sect_opts
1833 * sizeof (struct sect_opt)));
1834 }
1835 }
1836 else
1837 {
1838 /* It's an option (starting with '-') or it's an argument
1839 to an option */
1840
1841 if (*arg == '-')
1842 {
1843 if (strcmp (arg, "-readnow") == 0)
1844 flags |= OBJF_READNOW;
1845 else if (strcmp (arg, "-s") == 0)
1846 {
1847 expecting_sec_name = 1;
1848 expecting_sec_addr = 1;
1849 }
1850 }
1851 else
1852 {
1853 if (expecting_sec_name)
1854 {
1855 sect_opts[section_index].name = arg;
1856 expecting_sec_name = 0;
1857 }
1858 else
1859 if (expecting_sec_addr)
1860 {
1861 sect_opts[section_index].value = arg;
1862 expecting_sec_addr = 0;
1863 if (++section_index > num_sect_opts)
1864 {
1865 num_sect_opts *= 2;
1866 sect_opts = ((struct sect_opt *)
1867 xrealloc (sect_opts,
1868 num_sect_opts
1869 * sizeof (struct sect_opt)));
1870 }
1871 }
1872 else
1873 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1874 }
1875 }
1876 argcnt++;
1877 }
1878
1879 /* Print the prompt for the query below. And save the arguments into
1880 a sect_addr_info structure to be passed around to other
1881 functions. We have to split this up into separate print
1882 statements because hex_string returns a local static
1883 string. */
1884
1885 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1886 section_addrs = alloc_section_addr_info (section_index);
1887 make_cleanup (xfree, section_addrs);
1888 for (i = 0; i < section_index; i++)
1889 {
1890 CORE_ADDR addr;
1891 char *val = sect_opts[i].value;
1892 char *sec = sect_opts[i].name;
1893
1894 addr = parse_and_eval_address (val);
1895
1896 /* Here we store the section offsets in the order they were
1897 entered on the command line. */
1898 section_addrs->other[sec_num].name = sec;
1899 section_addrs->other[sec_num].addr = addr;
1900 printf_unfiltered ("\t%s_addr = %s\n",
1901 sec, hex_string ((unsigned long)addr));
1902 sec_num++;
1903
1904 /* The object's sections are initialized when a
1905 call is made to build_objfile_section_table (objfile).
1906 This happens in reread_symbols.
1907 At this point, we don't know what file type this is,
1908 so we can't determine what section names are valid. */
1909 }
1910
1911 if (from_tty && (!query ("%s", "")))
1912 error (_("Not confirmed."));
1913
1914 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1915
1916 /* Getting new symbols may change our opinion about what is
1917 frameless. */
1918 reinit_frame_cache ();
1919 do_cleanups (my_cleanups);
1920 }
1921 \f
1922 static void
1923 add_shared_symbol_files_command (char *args, int from_tty)
1924 {
1925 #ifdef ADD_SHARED_SYMBOL_FILES
1926 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1927 #else
1928 error (_("This command is not available in this configuration of GDB."));
1929 #endif
1930 }
1931 \f
1932 /* Re-read symbols if a symbol-file has changed. */
1933 void
1934 reread_symbols (void)
1935 {
1936 struct objfile *objfile;
1937 long new_modtime;
1938 int reread_one = 0;
1939 struct stat new_statbuf;
1940 int res;
1941
1942 /* With the addition of shared libraries, this should be modified,
1943 the load time should be saved in the partial symbol tables, since
1944 different tables may come from different source files. FIXME.
1945 This routine should then walk down each partial symbol table
1946 and see if the symbol table that it originates from has been changed */
1947
1948 for (objfile = object_files; objfile; objfile = objfile->next)
1949 {
1950 if (objfile->obfd)
1951 {
1952 #ifdef DEPRECATED_IBM6000_TARGET
1953 /* If this object is from a shared library, then you should
1954 stat on the library name, not member name. */
1955
1956 if (objfile->obfd->my_archive)
1957 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1958 else
1959 #endif
1960 res = stat (objfile->name, &new_statbuf);
1961 if (res != 0)
1962 {
1963 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1964 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1965 objfile->name);
1966 continue;
1967 }
1968 new_modtime = new_statbuf.st_mtime;
1969 if (new_modtime != objfile->mtime)
1970 {
1971 struct cleanup *old_cleanups;
1972 struct section_offsets *offsets;
1973 int num_offsets;
1974 char *obfd_filename;
1975
1976 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1977 objfile->name);
1978
1979 /* There are various functions like symbol_file_add,
1980 symfile_bfd_open, syms_from_objfile, etc., which might
1981 appear to do what we want. But they have various other
1982 effects which we *don't* want. So we just do stuff
1983 ourselves. We don't worry about mapped files (for one thing,
1984 any mapped file will be out of date). */
1985
1986 /* If we get an error, blow away this objfile (not sure if
1987 that is the correct response for things like shared
1988 libraries). */
1989 old_cleanups = make_cleanup_free_objfile (objfile);
1990 /* We need to do this whenever any symbols go away. */
1991 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1992
1993 /* Clean up any state BFD has sitting around. We don't need
1994 to close the descriptor but BFD lacks a way of closing the
1995 BFD without closing the descriptor. */
1996 obfd_filename = bfd_get_filename (objfile->obfd);
1997 if (!bfd_close (objfile->obfd))
1998 error (_("Can't close BFD for %s: %s"), objfile->name,
1999 bfd_errmsg (bfd_get_error ()));
2000 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2001 if (objfile->obfd == NULL)
2002 error (_("Can't open %s to read symbols."), objfile->name);
2003 /* bfd_openr sets cacheable to true, which is what we want. */
2004 if (!bfd_check_format (objfile->obfd, bfd_object))
2005 error (_("Can't read symbols from %s: %s."), objfile->name,
2006 bfd_errmsg (bfd_get_error ()));
2007
2008 /* Save the offsets, we will nuke them with the rest of the
2009 objfile_obstack. */
2010 num_offsets = objfile->num_sections;
2011 offsets = ((struct section_offsets *)
2012 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2013 memcpy (offsets, objfile->section_offsets,
2014 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2015
2016 /* Remove any references to this objfile in the global
2017 value lists. */
2018 preserve_values (objfile);
2019
2020 /* Nuke all the state that we will re-read. Much of the following
2021 code which sets things to NULL really is necessary to tell
2022 other parts of GDB that there is nothing currently there. */
2023
2024 /* FIXME: Do we have to free a whole linked list, or is this
2025 enough? */
2026 if (objfile->global_psymbols.list)
2027 xfree (objfile->global_psymbols.list);
2028 memset (&objfile->global_psymbols, 0,
2029 sizeof (objfile->global_psymbols));
2030 if (objfile->static_psymbols.list)
2031 xfree (objfile->static_psymbols.list);
2032 memset (&objfile->static_psymbols, 0,
2033 sizeof (objfile->static_psymbols));
2034
2035 /* Free the obstacks for non-reusable objfiles */
2036 bcache_xfree (objfile->psymbol_cache);
2037 objfile->psymbol_cache = bcache_xmalloc ();
2038 bcache_xfree (objfile->macro_cache);
2039 objfile->macro_cache = bcache_xmalloc ();
2040 if (objfile->demangled_names_hash != NULL)
2041 {
2042 htab_delete (objfile->demangled_names_hash);
2043 objfile->demangled_names_hash = NULL;
2044 }
2045 obstack_free (&objfile->objfile_obstack, 0);
2046 objfile->sections = NULL;
2047 objfile->symtabs = NULL;
2048 objfile->psymtabs = NULL;
2049 objfile->free_psymtabs = NULL;
2050 objfile->cp_namespace_symtab = NULL;
2051 objfile->msymbols = NULL;
2052 objfile->deprecated_sym_private = NULL;
2053 objfile->minimal_symbol_count = 0;
2054 memset (&objfile->msymbol_hash, 0,
2055 sizeof (objfile->msymbol_hash));
2056 memset (&objfile->msymbol_demangled_hash, 0,
2057 sizeof (objfile->msymbol_demangled_hash));
2058 objfile->fundamental_types = NULL;
2059 clear_objfile_data (objfile);
2060 if (objfile->sf != NULL)
2061 {
2062 (*objfile->sf->sym_finish) (objfile);
2063 }
2064
2065 /* We never make this a mapped file. */
2066 objfile->md = NULL;
2067 objfile->psymbol_cache = bcache_xmalloc ();
2068 objfile->macro_cache = bcache_xmalloc ();
2069 /* obstack_init also initializes the obstack so it is
2070 empty. We could use obstack_specify_allocation but
2071 gdb_obstack.h specifies the alloc/dealloc
2072 functions. */
2073 obstack_init (&objfile->objfile_obstack);
2074 if (build_objfile_section_table (objfile))
2075 {
2076 error (_("Can't find the file sections in `%s': %s"),
2077 objfile->name, bfd_errmsg (bfd_get_error ()));
2078 }
2079 terminate_minimal_symbol_table (objfile);
2080
2081 /* We use the same section offsets as from last time. I'm not
2082 sure whether that is always correct for shared libraries. */
2083 objfile->section_offsets = (struct section_offsets *)
2084 obstack_alloc (&objfile->objfile_obstack,
2085 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2086 memcpy (objfile->section_offsets, offsets,
2087 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2088 objfile->num_sections = num_offsets;
2089
2090 /* What the hell is sym_new_init for, anyway? The concept of
2091 distinguishing between the main file and additional files
2092 in this way seems rather dubious. */
2093 if (objfile == symfile_objfile)
2094 {
2095 (*objfile->sf->sym_new_init) (objfile);
2096 }
2097
2098 (*objfile->sf->sym_init) (objfile);
2099 clear_complaints (&symfile_complaints, 1, 1);
2100 /* The "mainline" parameter is a hideous hack; I think leaving it
2101 zero is OK since dbxread.c also does what it needs to do if
2102 objfile->global_psymbols.size is 0. */
2103 (*objfile->sf->sym_read) (objfile, 0);
2104 if (!have_partial_symbols () && !have_full_symbols ())
2105 {
2106 wrap_here ("");
2107 printf_unfiltered (_("(no debugging symbols found)\n"));
2108 wrap_here ("");
2109 }
2110 objfile->flags |= OBJF_SYMS;
2111
2112 /* We're done reading the symbol file; finish off complaints. */
2113 clear_complaints (&symfile_complaints, 0, 1);
2114
2115 /* Getting new symbols may change our opinion about what is
2116 frameless. */
2117
2118 reinit_frame_cache ();
2119
2120 /* Discard cleanups as symbol reading was successful. */
2121 discard_cleanups (old_cleanups);
2122
2123 /* If the mtime has changed between the time we set new_modtime
2124 and now, we *want* this to be out of date, so don't call stat
2125 again now. */
2126 objfile->mtime = new_modtime;
2127 reread_one = 1;
2128 reread_separate_symbols (objfile);
2129 }
2130 }
2131 }
2132
2133 if (reread_one)
2134 {
2135 clear_symtab_users ();
2136 /* At least one objfile has changed, so we can consider that
2137 the executable we're debugging has changed too. */
2138 observer_notify_executable_changed (NULL);
2139 }
2140
2141 }
2142
2143
2144 /* Handle separate debug info for OBJFILE, which has just been
2145 re-read:
2146 - If we had separate debug info before, but now we don't, get rid
2147 of the separated objfile.
2148 - If we didn't have separated debug info before, but now we do,
2149 read in the new separated debug info file.
2150 - If the debug link points to a different file, toss the old one
2151 and read the new one.
2152 This function does *not* handle the case where objfile is still
2153 using the same separate debug info file, but that file's timestamp
2154 has changed. That case should be handled by the loop in
2155 reread_symbols already. */
2156 static void
2157 reread_separate_symbols (struct objfile *objfile)
2158 {
2159 char *debug_file;
2160 unsigned long crc32;
2161
2162 /* Does the updated objfile's debug info live in a
2163 separate file? */
2164 debug_file = find_separate_debug_file (objfile);
2165
2166 if (objfile->separate_debug_objfile)
2167 {
2168 /* There are two cases where we need to get rid of
2169 the old separated debug info objfile:
2170 - if the new primary objfile doesn't have
2171 separated debug info, or
2172 - if the new primary objfile has separate debug
2173 info, but it's under a different filename.
2174
2175 If the old and new objfiles both have separate
2176 debug info, under the same filename, then we're
2177 okay --- if the separated file's contents have
2178 changed, we will have caught that when we
2179 visited it in this function's outermost
2180 loop. */
2181 if (! debug_file
2182 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2183 free_objfile (objfile->separate_debug_objfile);
2184 }
2185
2186 /* If the new objfile has separate debug info, and we
2187 haven't loaded it already, do so now. */
2188 if (debug_file
2189 && ! objfile->separate_debug_objfile)
2190 {
2191 /* Use the same section offset table as objfile itself.
2192 Preserve the flags from objfile that make sense. */
2193 objfile->separate_debug_objfile
2194 = (symbol_file_add_with_addrs_or_offsets
2195 (symfile_bfd_open (debug_file),
2196 info_verbose, /* from_tty: Don't override the default. */
2197 0, /* No addr table. */
2198 objfile->section_offsets, objfile->num_sections,
2199 0, /* Not mainline. See comments about this above. */
2200 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2201 | OBJF_USERLOADED)));
2202 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2203 = objfile;
2204 }
2205 }
2206
2207
2208 \f
2209
2210
2211 typedef struct
2212 {
2213 char *ext;
2214 enum language lang;
2215 }
2216 filename_language;
2217
2218 static filename_language *filename_language_table;
2219 static int fl_table_size, fl_table_next;
2220
2221 static void
2222 add_filename_language (char *ext, enum language lang)
2223 {
2224 if (fl_table_next >= fl_table_size)
2225 {
2226 fl_table_size += 10;
2227 filename_language_table =
2228 xrealloc (filename_language_table,
2229 fl_table_size * sizeof (*filename_language_table));
2230 }
2231
2232 filename_language_table[fl_table_next].ext = xstrdup (ext);
2233 filename_language_table[fl_table_next].lang = lang;
2234 fl_table_next++;
2235 }
2236
2237 static char *ext_args;
2238 static void
2239 show_ext_args (struct ui_file *file, int from_tty,
2240 struct cmd_list_element *c, const char *value)
2241 {
2242 fprintf_filtered (file, _("\
2243 Mapping between filename extension and source language is \"%s\".\n"),
2244 value);
2245 }
2246
2247 static void
2248 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2249 {
2250 int i;
2251 char *cp = ext_args;
2252 enum language lang;
2253
2254 /* First arg is filename extension, starting with '.' */
2255 if (*cp != '.')
2256 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2257
2258 /* Find end of first arg. */
2259 while (*cp && !isspace (*cp))
2260 cp++;
2261
2262 if (*cp == '\0')
2263 error (_("'%s': two arguments required -- filename extension and language"),
2264 ext_args);
2265
2266 /* Null-terminate first arg */
2267 *cp++ = '\0';
2268
2269 /* Find beginning of second arg, which should be a source language. */
2270 while (*cp && isspace (*cp))
2271 cp++;
2272
2273 if (*cp == '\0')
2274 error (_("'%s': two arguments required -- filename extension and language"),
2275 ext_args);
2276
2277 /* Lookup the language from among those we know. */
2278 lang = language_enum (cp);
2279
2280 /* Now lookup the filename extension: do we already know it? */
2281 for (i = 0; i < fl_table_next; i++)
2282 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2283 break;
2284
2285 if (i >= fl_table_next)
2286 {
2287 /* new file extension */
2288 add_filename_language (ext_args, lang);
2289 }
2290 else
2291 {
2292 /* redefining a previously known filename extension */
2293
2294 /* if (from_tty) */
2295 /* query ("Really make files of type %s '%s'?", */
2296 /* ext_args, language_str (lang)); */
2297
2298 xfree (filename_language_table[i].ext);
2299 filename_language_table[i].ext = xstrdup (ext_args);
2300 filename_language_table[i].lang = lang;
2301 }
2302 }
2303
2304 static void
2305 info_ext_lang_command (char *args, int from_tty)
2306 {
2307 int i;
2308
2309 printf_filtered (_("Filename extensions and the languages they represent:"));
2310 printf_filtered ("\n\n");
2311 for (i = 0; i < fl_table_next; i++)
2312 printf_filtered ("\t%s\t- %s\n",
2313 filename_language_table[i].ext,
2314 language_str (filename_language_table[i].lang));
2315 }
2316
2317 static void
2318 init_filename_language_table (void)
2319 {
2320 if (fl_table_size == 0) /* protect against repetition */
2321 {
2322 fl_table_size = 20;
2323 fl_table_next = 0;
2324 filename_language_table =
2325 xmalloc (fl_table_size * sizeof (*filename_language_table));
2326 add_filename_language (".c", language_c);
2327 add_filename_language (".C", language_cplus);
2328 add_filename_language (".cc", language_cplus);
2329 add_filename_language (".cp", language_cplus);
2330 add_filename_language (".cpp", language_cplus);
2331 add_filename_language (".cxx", language_cplus);
2332 add_filename_language (".c++", language_cplus);
2333 add_filename_language (".java", language_java);
2334 add_filename_language (".class", language_java);
2335 add_filename_language (".m", language_objc);
2336 add_filename_language (".f", language_fortran);
2337 add_filename_language (".F", language_fortran);
2338 add_filename_language (".s", language_asm);
2339 add_filename_language (".S", language_asm);
2340 add_filename_language (".pas", language_pascal);
2341 add_filename_language (".p", language_pascal);
2342 add_filename_language (".pp", language_pascal);
2343 add_filename_language (".adb", language_ada);
2344 add_filename_language (".ads", language_ada);
2345 add_filename_language (".a", language_ada);
2346 add_filename_language (".ada", language_ada);
2347 }
2348 }
2349
2350 enum language
2351 deduce_language_from_filename (char *filename)
2352 {
2353 int i;
2354 char *cp;
2355
2356 if (filename != NULL)
2357 if ((cp = strrchr (filename, '.')) != NULL)
2358 for (i = 0; i < fl_table_next; i++)
2359 if (strcmp (cp, filename_language_table[i].ext) == 0)
2360 return filename_language_table[i].lang;
2361
2362 return language_unknown;
2363 }
2364 \f
2365 /* allocate_symtab:
2366
2367 Allocate and partly initialize a new symbol table. Return a pointer
2368 to it. error() if no space.
2369
2370 Caller must set these fields:
2371 LINETABLE(symtab)
2372 symtab->blockvector
2373 symtab->dirname
2374 symtab->free_code
2375 symtab->free_ptr
2376 possibly free_named_symtabs (symtab->filename);
2377 */
2378
2379 struct symtab *
2380 allocate_symtab (char *filename, struct objfile *objfile)
2381 {
2382 struct symtab *symtab;
2383
2384 symtab = (struct symtab *)
2385 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2386 memset (symtab, 0, sizeof (*symtab));
2387 symtab->filename = obsavestring (filename, strlen (filename),
2388 &objfile->objfile_obstack);
2389 symtab->fullname = NULL;
2390 symtab->language = deduce_language_from_filename (filename);
2391 symtab->debugformat = obsavestring ("unknown", 7,
2392 &objfile->objfile_obstack);
2393
2394 /* Hook it to the objfile it comes from */
2395
2396 symtab->objfile = objfile;
2397 symtab->next = objfile->symtabs;
2398 objfile->symtabs = symtab;
2399
2400 /* FIXME: This should go away. It is only defined for the Z8000,
2401 and the Z8000 definition of this macro doesn't have anything to
2402 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2403 here for convenience. */
2404 #ifdef INIT_EXTRA_SYMTAB_INFO
2405 INIT_EXTRA_SYMTAB_INFO (symtab);
2406 #endif
2407
2408 return (symtab);
2409 }
2410
2411 struct partial_symtab *
2412 allocate_psymtab (char *filename, struct objfile *objfile)
2413 {
2414 struct partial_symtab *psymtab;
2415
2416 if (objfile->free_psymtabs)
2417 {
2418 psymtab = objfile->free_psymtabs;
2419 objfile->free_psymtabs = psymtab->next;
2420 }
2421 else
2422 psymtab = (struct partial_symtab *)
2423 obstack_alloc (&objfile->objfile_obstack,
2424 sizeof (struct partial_symtab));
2425
2426 memset (psymtab, 0, sizeof (struct partial_symtab));
2427 psymtab->filename = obsavestring (filename, strlen (filename),
2428 &objfile->objfile_obstack);
2429 psymtab->symtab = NULL;
2430
2431 /* Prepend it to the psymtab list for the objfile it belongs to.
2432 Psymtabs are searched in most recent inserted -> least recent
2433 inserted order. */
2434
2435 psymtab->objfile = objfile;
2436 psymtab->next = objfile->psymtabs;
2437 objfile->psymtabs = psymtab;
2438 #if 0
2439 {
2440 struct partial_symtab **prev_pst;
2441 psymtab->objfile = objfile;
2442 psymtab->next = NULL;
2443 prev_pst = &(objfile->psymtabs);
2444 while ((*prev_pst) != NULL)
2445 prev_pst = &((*prev_pst)->next);
2446 (*prev_pst) = psymtab;
2447 }
2448 #endif
2449
2450 return (psymtab);
2451 }
2452
2453 void
2454 discard_psymtab (struct partial_symtab *pst)
2455 {
2456 struct partial_symtab **prev_pst;
2457
2458 /* From dbxread.c:
2459 Empty psymtabs happen as a result of header files which don't
2460 have any symbols in them. There can be a lot of them. But this
2461 check is wrong, in that a psymtab with N_SLINE entries but
2462 nothing else is not empty, but we don't realize that. Fixing
2463 that without slowing things down might be tricky. */
2464
2465 /* First, snip it out of the psymtab chain */
2466
2467 prev_pst = &(pst->objfile->psymtabs);
2468 while ((*prev_pst) != pst)
2469 prev_pst = &((*prev_pst)->next);
2470 (*prev_pst) = pst->next;
2471
2472 /* Next, put it on a free list for recycling */
2473
2474 pst->next = pst->objfile->free_psymtabs;
2475 pst->objfile->free_psymtabs = pst;
2476 }
2477 \f
2478
2479 /* Reset all data structures in gdb which may contain references to symbol
2480 table data. */
2481
2482 void
2483 clear_symtab_users (void)
2484 {
2485 /* Someday, we should do better than this, by only blowing away
2486 the things that really need to be blown. */
2487
2488 /* Clear the "current" symtab first, because it is no longer valid.
2489 breakpoint_re_set may try to access the current symtab. */
2490 clear_current_source_symtab_and_line ();
2491
2492 clear_displays ();
2493 breakpoint_re_set ();
2494 set_default_breakpoint (0, 0, 0, 0);
2495 clear_pc_function_cache ();
2496 if (deprecated_target_new_objfile_hook)
2497 deprecated_target_new_objfile_hook (NULL);
2498 }
2499
2500 static void
2501 clear_symtab_users_cleanup (void *ignore)
2502 {
2503 clear_symtab_users ();
2504 }
2505
2506 /* clear_symtab_users_once:
2507
2508 This function is run after symbol reading, or from a cleanup.
2509 If an old symbol table was obsoleted, the old symbol table
2510 has been blown away, but the other GDB data structures that may
2511 reference it have not yet been cleared or re-directed. (The old
2512 symtab was zapped, and the cleanup queued, in free_named_symtab()
2513 below.)
2514
2515 This function can be queued N times as a cleanup, or called
2516 directly; it will do all the work the first time, and then will be a
2517 no-op until the next time it is queued. This works by bumping a
2518 counter at queueing time. Much later when the cleanup is run, or at
2519 the end of symbol processing (in case the cleanup is discarded), if
2520 the queued count is greater than the "done-count", we do the work
2521 and set the done-count to the queued count. If the queued count is
2522 less than or equal to the done-count, we just ignore the call. This
2523 is needed because reading a single .o file will often replace many
2524 symtabs (one per .h file, for example), and we don't want to reset
2525 the breakpoints N times in the user's face.
2526
2527 The reason we both queue a cleanup, and call it directly after symbol
2528 reading, is because the cleanup protects us in case of errors, but is
2529 discarded if symbol reading is successful. */
2530
2531 #if 0
2532 /* FIXME: As free_named_symtabs is currently a big noop this function
2533 is no longer needed. */
2534 static void clear_symtab_users_once (void);
2535
2536 static int clear_symtab_users_queued;
2537 static int clear_symtab_users_done;
2538
2539 static void
2540 clear_symtab_users_once (void)
2541 {
2542 /* Enforce once-per-`do_cleanups'-semantics */
2543 if (clear_symtab_users_queued <= clear_symtab_users_done)
2544 return;
2545 clear_symtab_users_done = clear_symtab_users_queued;
2546
2547 clear_symtab_users ();
2548 }
2549 #endif
2550
2551 /* Delete the specified psymtab, and any others that reference it. */
2552
2553 static void
2554 cashier_psymtab (struct partial_symtab *pst)
2555 {
2556 struct partial_symtab *ps, *pprev = NULL;
2557 int i;
2558
2559 /* Find its previous psymtab in the chain */
2560 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2561 {
2562 if (ps == pst)
2563 break;
2564 pprev = ps;
2565 }
2566
2567 if (ps)
2568 {
2569 /* Unhook it from the chain. */
2570 if (ps == pst->objfile->psymtabs)
2571 pst->objfile->psymtabs = ps->next;
2572 else
2573 pprev->next = ps->next;
2574
2575 /* FIXME, we can't conveniently deallocate the entries in the
2576 partial_symbol lists (global_psymbols/static_psymbols) that
2577 this psymtab points to. These just take up space until all
2578 the psymtabs are reclaimed. Ditto the dependencies list and
2579 filename, which are all in the objfile_obstack. */
2580
2581 /* We need to cashier any psymtab that has this one as a dependency... */
2582 again:
2583 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2584 {
2585 for (i = 0; i < ps->number_of_dependencies; i++)
2586 {
2587 if (ps->dependencies[i] == pst)
2588 {
2589 cashier_psymtab (ps);
2590 goto again; /* Must restart, chain has been munged. */
2591 }
2592 }
2593 }
2594 }
2595 }
2596
2597 /* If a symtab or psymtab for filename NAME is found, free it along
2598 with any dependent breakpoints, displays, etc.
2599 Used when loading new versions of object modules with the "add-file"
2600 command. This is only called on the top-level symtab or psymtab's name;
2601 it is not called for subsidiary files such as .h files.
2602
2603 Return value is 1 if we blew away the environment, 0 if not.
2604 FIXME. The return value appears to never be used.
2605
2606 FIXME. I think this is not the best way to do this. We should
2607 work on being gentler to the environment while still cleaning up
2608 all stray pointers into the freed symtab. */
2609
2610 int
2611 free_named_symtabs (char *name)
2612 {
2613 #if 0
2614 /* FIXME: With the new method of each objfile having it's own
2615 psymtab list, this function needs serious rethinking. In particular,
2616 why was it ever necessary to toss psymtabs with specific compilation
2617 unit filenames, as opposed to all psymtabs from a particular symbol
2618 file? -- fnf
2619 Well, the answer is that some systems permit reloading of particular
2620 compilation units. We want to blow away any old info about these
2621 compilation units, regardless of which objfiles they arrived in. --gnu. */
2622
2623 struct symtab *s;
2624 struct symtab *prev;
2625 struct partial_symtab *ps;
2626 struct blockvector *bv;
2627 int blewit = 0;
2628
2629 /* We only wack things if the symbol-reload switch is set. */
2630 if (!symbol_reloading)
2631 return 0;
2632
2633 /* Some symbol formats have trouble providing file names... */
2634 if (name == 0 || *name == '\0')
2635 return 0;
2636
2637 /* Look for a psymtab with the specified name. */
2638
2639 again2:
2640 for (ps = partial_symtab_list; ps; ps = ps->next)
2641 {
2642 if (strcmp (name, ps->filename) == 0)
2643 {
2644 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2645 goto again2; /* Must restart, chain has been munged */
2646 }
2647 }
2648
2649 /* Look for a symtab with the specified name. */
2650
2651 for (s = symtab_list; s; s = s->next)
2652 {
2653 if (strcmp (name, s->filename) == 0)
2654 break;
2655 prev = s;
2656 }
2657
2658 if (s)
2659 {
2660 if (s == symtab_list)
2661 symtab_list = s->next;
2662 else
2663 prev->next = s->next;
2664
2665 /* For now, queue a delete for all breakpoints, displays, etc., whether
2666 or not they depend on the symtab being freed. This should be
2667 changed so that only those data structures affected are deleted. */
2668
2669 /* But don't delete anything if the symtab is empty.
2670 This test is necessary due to a bug in "dbxread.c" that
2671 causes empty symtabs to be created for N_SO symbols that
2672 contain the pathname of the object file. (This problem
2673 has been fixed in GDB 3.9x). */
2674
2675 bv = BLOCKVECTOR (s);
2676 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2677 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2678 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2679 {
2680 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2681 name);
2682 clear_symtab_users_queued++;
2683 make_cleanup (clear_symtab_users_once, 0);
2684 blewit = 1;
2685 }
2686 else
2687 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2688 name);
2689
2690 free_symtab (s);
2691 }
2692 else
2693 {
2694 /* It is still possible that some breakpoints will be affected
2695 even though no symtab was found, since the file might have
2696 been compiled without debugging, and hence not be associated
2697 with a symtab. In order to handle this correctly, we would need
2698 to keep a list of text address ranges for undebuggable files.
2699 For now, we do nothing, since this is a fairly obscure case. */
2700 ;
2701 }
2702
2703 /* FIXME, what about the minimal symbol table? */
2704 return blewit;
2705 #else
2706 return (0);
2707 #endif
2708 }
2709 \f
2710 /* Allocate and partially fill a partial symtab. It will be
2711 completely filled at the end of the symbol list.
2712
2713 FILENAME is the name of the symbol-file we are reading from. */
2714
2715 struct partial_symtab *
2716 start_psymtab_common (struct objfile *objfile,
2717 struct section_offsets *section_offsets, char *filename,
2718 CORE_ADDR textlow, struct partial_symbol **global_syms,
2719 struct partial_symbol **static_syms)
2720 {
2721 struct partial_symtab *psymtab;
2722
2723 psymtab = allocate_psymtab (filename, objfile);
2724 psymtab->section_offsets = section_offsets;
2725 psymtab->textlow = textlow;
2726 psymtab->texthigh = psymtab->textlow; /* default */
2727 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2728 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2729 return (psymtab);
2730 }
2731 \f
2732 /* Add a symbol with a long value to a psymtab.
2733 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2734 Return the partial symbol that has been added. */
2735
2736 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2737 symbol is so that callers can get access to the symbol's demangled
2738 name, which they don't have any cheap way to determine otherwise.
2739 (Currenly, dwarf2read.c is the only file who uses that information,
2740 though it's possible that other readers might in the future.)
2741 Elena wasn't thrilled about that, and I don't blame her, but we
2742 couldn't come up with a better way to get that information. If
2743 it's needed in other situations, we could consider breaking up
2744 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2745 cache. */
2746
2747 const struct partial_symbol *
2748 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2749 enum address_class class,
2750 struct psymbol_allocation_list *list, long val, /* Value as a long */
2751 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2752 enum language language, struct objfile *objfile)
2753 {
2754 struct partial_symbol *psym;
2755 char *buf = alloca (namelength + 1);
2756 /* psymbol is static so that there will be no uninitialized gaps in the
2757 structure which might contain random data, causing cache misses in
2758 bcache. */
2759 static struct partial_symbol psymbol;
2760
2761 /* Create local copy of the partial symbol */
2762 memcpy (buf, name, namelength);
2763 buf[namelength] = '\0';
2764 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2765 if (val != 0)
2766 {
2767 SYMBOL_VALUE (&psymbol) = val;
2768 }
2769 else
2770 {
2771 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2772 }
2773 SYMBOL_SECTION (&psymbol) = 0;
2774 SYMBOL_LANGUAGE (&psymbol) = language;
2775 PSYMBOL_DOMAIN (&psymbol) = domain;
2776 PSYMBOL_CLASS (&psymbol) = class;
2777
2778 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2779
2780 /* Stash the partial symbol away in the cache */
2781 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2782 objfile->psymbol_cache);
2783
2784 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2785 if (list->next >= list->list + list->size)
2786 {
2787 extend_psymbol_list (list, objfile);
2788 }
2789 *list->next++ = psym;
2790 OBJSTAT (objfile, n_psyms++);
2791
2792 return psym;
2793 }
2794
2795 /* Add a symbol with a long value to a psymtab. This differs from
2796 * add_psymbol_to_list above in taking both a mangled and a demangled
2797 * name. */
2798
2799 void
2800 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2801 int dem_namelength, domain_enum domain,
2802 enum address_class class,
2803 struct psymbol_allocation_list *list, long val, /* Value as a long */
2804 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2805 enum language language,
2806 struct objfile *objfile)
2807 {
2808 struct partial_symbol *psym;
2809 char *buf = alloca (namelength + 1);
2810 /* psymbol is static so that there will be no uninitialized gaps in the
2811 structure which might contain random data, causing cache misses in
2812 bcache. */
2813 static struct partial_symbol psymbol;
2814
2815 /* Create local copy of the partial symbol */
2816
2817 memcpy (buf, name, namelength);
2818 buf[namelength] = '\0';
2819 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2820 objfile->psymbol_cache);
2821
2822 buf = alloca (dem_namelength + 1);
2823 memcpy (buf, dem_name, dem_namelength);
2824 buf[dem_namelength] = '\0';
2825
2826 switch (language)
2827 {
2828 case language_c:
2829 case language_cplus:
2830 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2831 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2832 break;
2833 /* FIXME What should be done for the default case? Ignoring for now. */
2834 }
2835
2836 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2837 if (val != 0)
2838 {
2839 SYMBOL_VALUE (&psymbol) = val;
2840 }
2841 else
2842 {
2843 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2844 }
2845 SYMBOL_SECTION (&psymbol) = 0;
2846 SYMBOL_LANGUAGE (&psymbol) = language;
2847 PSYMBOL_DOMAIN (&psymbol) = domain;
2848 PSYMBOL_CLASS (&psymbol) = class;
2849 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2850
2851 /* Stash the partial symbol away in the cache */
2852 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2853 objfile->psymbol_cache);
2854
2855 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2856 if (list->next >= list->list + list->size)
2857 {
2858 extend_psymbol_list (list, objfile);
2859 }
2860 *list->next++ = psym;
2861 OBJSTAT (objfile, n_psyms++);
2862 }
2863
2864 /* Initialize storage for partial symbols. */
2865
2866 void
2867 init_psymbol_list (struct objfile *objfile, int total_symbols)
2868 {
2869 /* Free any previously allocated psymbol lists. */
2870
2871 if (objfile->global_psymbols.list)
2872 {
2873 xfree (objfile->global_psymbols.list);
2874 }
2875 if (objfile->static_psymbols.list)
2876 {
2877 xfree (objfile->static_psymbols.list);
2878 }
2879
2880 /* Current best guess is that approximately a twentieth
2881 of the total symbols (in a debugging file) are global or static
2882 oriented symbols */
2883
2884 objfile->global_psymbols.size = total_symbols / 10;
2885 objfile->static_psymbols.size = total_symbols / 10;
2886
2887 if (objfile->global_psymbols.size > 0)
2888 {
2889 objfile->global_psymbols.next =
2890 objfile->global_psymbols.list = (struct partial_symbol **)
2891 xmalloc ((objfile->global_psymbols.size
2892 * sizeof (struct partial_symbol *)));
2893 }
2894 if (objfile->static_psymbols.size > 0)
2895 {
2896 objfile->static_psymbols.next =
2897 objfile->static_psymbols.list = (struct partial_symbol **)
2898 xmalloc ((objfile->static_psymbols.size
2899 * sizeof (struct partial_symbol *)));
2900 }
2901 }
2902
2903 /* OVERLAYS:
2904 The following code implements an abstraction for debugging overlay sections.
2905
2906 The target model is as follows:
2907 1) The gnu linker will permit multiple sections to be mapped into the
2908 same VMA, each with its own unique LMA (or load address).
2909 2) It is assumed that some runtime mechanism exists for mapping the
2910 sections, one by one, from the load address into the VMA address.
2911 3) This code provides a mechanism for gdb to keep track of which
2912 sections should be considered to be mapped from the VMA to the LMA.
2913 This information is used for symbol lookup, and memory read/write.
2914 For instance, if a section has been mapped then its contents
2915 should be read from the VMA, otherwise from the LMA.
2916
2917 Two levels of debugger support for overlays are available. One is
2918 "manual", in which the debugger relies on the user to tell it which
2919 overlays are currently mapped. This level of support is
2920 implemented entirely in the core debugger, and the information about
2921 whether a section is mapped is kept in the objfile->obj_section table.
2922
2923 The second level of support is "automatic", and is only available if
2924 the target-specific code provides functionality to read the target's
2925 overlay mapping table, and translate its contents for the debugger
2926 (by updating the mapped state information in the obj_section tables).
2927
2928 The interface is as follows:
2929 User commands:
2930 overlay map <name> -- tell gdb to consider this section mapped
2931 overlay unmap <name> -- tell gdb to consider this section unmapped
2932 overlay list -- list the sections that GDB thinks are mapped
2933 overlay read-target -- get the target's state of what's mapped
2934 overlay off/manual/auto -- set overlay debugging state
2935 Functional interface:
2936 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2937 section, return that section.
2938 find_pc_overlay(pc): find any overlay section that contains
2939 the pc, either in its VMA or its LMA
2940 overlay_is_mapped(sect): true if overlay is marked as mapped
2941 section_is_overlay(sect): true if section's VMA != LMA
2942 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2943 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2944 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2945 overlay_mapped_address(...): map an address from section's LMA to VMA
2946 overlay_unmapped_address(...): map an address from section's VMA to LMA
2947 symbol_overlayed_address(...): Return a "current" address for symbol:
2948 either in VMA or LMA depending on whether
2949 the symbol's section is currently mapped
2950 */
2951
2952 /* Overlay debugging state: */
2953
2954 enum overlay_debugging_state overlay_debugging = ovly_off;
2955 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2956
2957 /* Target vector for refreshing overlay mapped state */
2958 static void simple_overlay_update (struct obj_section *);
2959 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2960
2961 /* Function: section_is_overlay (SECTION)
2962 Returns true if SECTION has VMA not equal to LMA, ie.
2963 SECTION is loaded at an address different from where it will "run". */
2964
2965 int
2966 section_is_overlay (asection *section)
2967 {
2968 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2969
2970 if (overlay_debugging)
2971 if (section && section->lma != 0 &&
2972 section->vma != section->lma)
2973 return 1;
2974
2975 return 0;
2976 }
2977
2978 /* Function: overlay_invalidate_all (void)
2979 Invalidate the mapped state of all overlay sections (mark it as stale). */
2980
2981 static void
2982 overlay_invalidate_all (void)
2983 {
2984 struct objfile *objfile;
2985 struct obj_section *sect;
2986
2987 ALL_OBJSECTIONS (objfile, sect)
2988 if (section_is_overlay (sect->the_bfd_section))
2989 sect->ovly_mapped = -1;
2990 }
2991
2992 /* Function: overlay_is_mapped (SECTION)
2993 Returns true if section is an overlay, and is currently mapped.
2994 Private: public access is thru function section_is_mapped.
2995
2996 Access to the ovly_mapped flag is restricted to this function, so
2997 that we can do automatic update. If the global flag
2998 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2999 overlay_invalidate_all. If the mapped state of the particular
3000 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3001
3002 static int
3003 overlay_is_mapped (struct obj_section *osect)
3004 {
3005 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3006 return 0;
3007
3008 switch (overlay_debugging)
3009 {
3010 default:
3011 case ovly_off:
3012 return 0; /* overlay debugging off */
3013 case ovly_auto: /* overlay debugging automatic */
3014 /* Unles there is a target_overlay_update function,
3015 there's really nothing useful to do here (can't really go auto) */
3016 if (target_overlay_update)
3017 {
3018 if (overlay_cache_invalid)
3019 {
3020 overlay_invalidate_all ();
3021 overlay_cache_invalid = 0;
3022 }
3023 if (osect->ovly_mapped == -1)
3024 (*target_overlay_update) (osect);
3025 }
3026 /* fall thru to manual case */
3027 case ovly_on: /* overlay debugging manual */
3028 return osect->ovly_mapped == 1;
3029 }
3030 }
3031
3032 /* Function: section_is_mapped
3033 Returns true if section is an overlay, and is currently mapped. */
3034
3035 int
3036 section_is_mapped (asection *section)
3037 {
3038 struct objfile *objfile;
3039 struct obj_section *osect;
3040
3041 if (overlay_debugging)
3042 if (section && section_is_overlay (section))
3043 ALL_OBJSECTIONS (objfile, osect)
3044 if (osect->the_bfd_section == section)
3045 return overlay_is_mapped (osect);
3046
3047 return 0;
3048 }
3049
3050 /* Function: pc_in_unmapped_range
3051 If PC falls into the lma range of SECTION, return true, else false. */
3052
3053 CORE_ADDR
3054 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3055 {
3056 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3057
3058 int size;
3059
3060 if (overlay_debugging)
3061 if (section && section_is_overlay (section))
3062 {
3063 size = bfd_get_section_size (section);
3064 if (section->lma <= pc && pc < section->lma + size)
3065 return 1;
3066 }
3067 return 0;
3068 }
3069
3070 /* Function: pc_in_mapped_range
3071 If PC falls into the vma range of SECTION, return true, else false. */
3072
3073 CORE_ADDR
3074 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3075 {
3076 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3077
3078 int size;
3079
3080 if (overlay_debugging)
3081 if (section && section_is_overlay (section))
3082 {
3083 size = bfd_get_section_size (section);
3084 if (section->vma <= pc && pc < section->vma + size)
3085 return 1;
3086 }
3087 return 0;
3088 }
3089
3090
3091 /* Return true if the mapped ranges of sections A and B overlap, false
3092 otherwise. */
3093 static int
3094 sections_overlap (asection *a, asection *b)
3095 {
3096 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3097
3098 CORE_ADDR a_start = a->vma;
3099 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3100 CORE_ADDR b_start = b->vma;
3101 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3102
3103 return (a_start < b_end && b_start < a_end);
3104 }
3105
3106 /* Function: overlay_unmapped_address (PC, SECTION)
3107 Returns the address corresponding to PC in the unmapped (load) range.
3108 May be the same as PC. */
3109
3110 CORE_ADDR
3111 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3112 {
3113 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3114
3115 if (overlay_debugging)
3116 if (section && section_is_overlay (section) &&
3117 pc_in_mapped_range (pc, section))
3118 return pc + section->lma - section->vma;
3119
3120 return pc;
3121 }
3122
3123 /* Function: overlay_mapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the mapped (runtime) range.
3125 May be the same as PC. */
3126
3127 CORE_ADDR
3128 overlay_mapped_address (CORE_ADDR pc, asection *section)
3129 {
3130 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3131
3132 if (overlay_debugging)
3133 if (section && section_is_overlay (section) &&
3134 pc_in_unmapped_range (pc, section))
3135 return pc + section->vma - section->lma;
3136
3137 return pc;
3138 }
3139
3140
3141 /* Function: symbol_overlayed_address
3142 Return one of two addresses (relative to the VMA or to the LMA),
3143 depending on whether the section is mapped or not. */
3144
3145 CORE_ADDR
3146 symbol_overlayed_address (CORE_ADDR address, asection *section)
3147 {
3148 if (overlay_debugging)
3149 {
3150 /* If the symbol has no section, just return its regular address. */
3151 if (section == 0)
3152 return address;
3153 /* If the symbol's section is not an overlay, just return its address */
3154 if (!section_is_overlay (section))
3155 return address;
3156 /* If the symbol's section is mapped, just return its address */
3157 if (section_is_mapped (section))
3158 return address;
3159 /*
3160 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3161 * then return its LOADED address rather than its vma address!!
3162 */
3163 return overlay_unmapped_address (address, section);
3164 }
3165 return address;
3166 }
3167
3168 /* Function: find_pc_overlay (PC)
3169 Return the best-match overlay section for PC:
3170 If PC matches a mapped overlay section's VMA, return that section.
3171 Else if PC matches an unmapped section's VMA, return that section.
3172 Else if PC matches an unmapped section's LMA, return that section. */
3173
3174 asection *
3175 find_pc_overlay (CORE_ADDR pc)
3176 {
3177 struct objfile *objfile;
3178 struct obj_section *osect, *best_match = NULL;
3179
3180 if (overlay_debugging)
3181 ALL_OBJSECTIONS (objfile, osect)
3182 if (section_is_overlay (osect->the_bfd_section))
3183 {
3184 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3185 {
3186 if (overlay_is_mapped (osect))
3187 return osect->the_bfd_section;
3188 else
3189 best_match = osect;
3190 }
3191 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3192 best_match = osect;
3193 }
3194 return best_match ? best_match->the_bfd_section : NULL;
3195 }
3196
3197 /* Function: find_pc_mapped_section (PC)
3198 If PC falls into the VMA address range of an overlay section that is
3199 currently marked as MAPPED, return that section. Else return NULL. */
3200
3201 asection *
3202 find_pc_mapped_section (CORE_ADDR pc)
3203 {
3204 struct objfile *objfile;
3205 struct obj_section *osect;
3206
3207 if (overlay_debugging)
3208 ALL_OBJSECTIONS (objfile, osect)
3209 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3210 overlay_is_mapped (osect))
3211 return osect->the_bfd_section;
3212
3213 return NULL;
3214 }
3215
3216 /* Function: list_overlays_command
3217 Print a list of mapped sections and their PC ranges */
3218
3219 void
3220 list_overlays_command (char *args, int from_tty)
3221 {
3222 int nmapped = 0;
3223 struct objfile *objfile;
3224 struct obj_section *osect;
3225
3226 if (overlay_debugging)
3227 ALL_OBJSECTIONS (objfile, osect)
3228 if (overlay_is_mapped (osect))
3229 {
3230 const char *name;
3231 bfd_vma lma, vma;
3232 int size;
3233
3234 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3235 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3236 size = bfd_get_section_size (osect->the_bfd_section);
3237 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3238
3239 printf_filtered ("Section %s, loaded at ", name);
3240 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3241 puts_filtered (" - ");
3242 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3243 printf_filtered (", mapped at ");
3244 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3245 puts_filtered (" - ");
3246 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3247 puts_filtered ("\n");
3248
3249 nmapped++;
3250 }
3251 if (nmapped == 0)
3252 printf_filtered (_("No sections are mapped.\n"));
3253 }
3254
3255 /* Function: map_overlay_command
3256 Mark the named section as mapped (ie. residing at its VMA address). */
3257
3258 void
3259 map_overlay_command (char *args, int from_tty)
3260 {
3261 struct objfile *objfile, *objfile2;
3262 struct obj_section *sec, *sec2;
3263 asection *bfdsec;
3264
3265 if (!overlay_debugging)
3266 error (_("\
3267 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3268 the 'overlay manual' command."));
3269
3270 if (args == 0 || *args == 0)
3271 error (_("Argument required: name of an overlay section"));
3272
3273 /* First, find a section matching the user supplied argument */
3274 ALL_OBJSECTIONS (objfile, sec)
3275 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3276 {
3277 /* Now, check to see if the section is an overlay. */
3278 bfdsec = sec->the_bfd_section;
3279 if (!section_is_overlay (bfdsec))
3280 continue; /* not an overlay section */
3281
3282 /* Mark the overlay as "mapped" */
3283 sec->ovly_mapped = 1;
3284
3285 /* Next, make a pass and unmap any sections that are
3286 overlapped by this new section: */
3287 ALL_OBJSECTIONS (objfile2, sec2)
3288 if (sec2->ovly_mapped
3289 && sec != sec2
3290 && sec->the_bfd_section != sec2->the_bfd_section
3291 && sections_overlap (sec->the_bfd_section,
3292 sec2->the_bfd_section))
3293 {
3294 if (info_verbose)
3295 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3296 bfd_section_name (objfile->obfd,
3297 sec2->the_bfd_section));
3298 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3299 }
3300 return;
3301 }
3302 error (_("No overlay section called %s"), args);
3303 }
3304
3305 /* Function: unmap_overlay_command
3306 Mark the overlay section as unmapped
3307 (ie. resident in its LMA address range, rather than the VMA range). */
3308
3309 void
3310 unmap_overlay_command (char *args, int from_tty)
3311 {
3312 struct objfile *objfile;
3313 struct obj_section *sec;
3314
3315 if (!overlay_debugging)
3316 error (_("\
3317 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3318 the 'overlay manual' command."));
3319
3320 if (args == 0 || *args == 0)
3321 error (_("Argument required: name of an overlay section"));
3322
3323 /* First, find a section matching the user supplied argument */
3324 ALL_OBJSECTIONS (objfile, sec)
3325 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3326 {
3327 if (!sec->ovly_mapped)
3328 error (_("Section %s is not mapped"), args);
3329 sec->ovly_mapped = 0;
3330 return;
3331 }
3332 error (_("No overlay section called %s"), args);
3333 }
3334
3335 /* Function: overlay_auto_command
3336 A utility command to turn on overlay debugging.
3337 Possibly this should be done via a set/show command. */
3338
3339 static void
3340 overlay_auto_command (char *args, int from_tty)
3341 {
3342 overlay_debugging = ovly_auto;
3343 enable_overlay_breakpoints ();
3344 if (info_verbose)
3345 printf_unfiltered (_("Automatic overlay debugging enabled."));
3346 }
3347
3348 /* Function: overlay_manual_command
3349 A utility command to turn on overlay debugging.
3350 Possibly this should be done via a set/show command. */
3351
3352 static void
3353 overlay_manual_command (char *args, int from_tty)
3354 {
3355 overlay_debugging = ovly_on;
3356 disable_overlay_breakpoints ();
3357 if (info_verbose)
3358 printf_unfiltered (_("Overlay debugging enabled."));
3359 }
3360
3361 /* Function: overlay_off_command
3362 A utility command to turn on overlay debugging.
3363 Possibly this should be done via a set/show command. */
3364
3365 static void
3366 overlay_off_command (char *args, int from_tty)
3367 {
3368 overlay_debugging = ovly_off;
3369 disable_overlay_breakpoints ();
3370 if (info_verbose)
3371 printf_unfiltered (_("Overlay debugging disabled."));
3372 }
3373
3374 static void
3375 overlay_load_command (char *args, int from_tty)
3376 {
3377 if (target_overlay_update)
3378 (*target_overlay_update) (NULL);
3379 else
3380 error (_("This target does not know how to read its overlay state."));
3381 }
3382
3383 /* Function: overlay_command
3384 A place-holder for a mis-typed command */
3385
3386 /* Command list chain containing all defined "overlay" subcommands. */
3387 struct cmd_list_element *overlaylist;
3388
3389 static void
3390 overlay_command (char *args, int from_tty)
3391 {
3392 printf_unfiltered
3393 ("\"overlay\" must be followed by the name of an overlay command.\n");
3394 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3395 }
3396
3397
3398 /* Target Overlays for the "Simplest" overlay manager:
3399
3400 This is GDB's default target overlay layer. It works with the
3401 minimal overlay manager supplied as an example by Cygnus. The
3402 entry point is via a function pointer "target_overlay_update",
3403 so targets that use a different runtime overlay manager can
3404 substitute their own overlay_update function and take over the
3405 function pointer.
3406
3407 The overlay_update function pokes around in the target's data structures
3408 to see what overlays are mapped, and updates GDB's overlay mapping with
3409 this information.
3410
3411 In this simple implementation, the target data structures are as follows:
3412 unsigned _novlys; /# number of overlay sections #/
3413 unsigned _ovly_table[_novlys][4] = {
3414 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3415 {..., ..., ..., ...},
3416 }
3417 unsigned _novly_regions; /# number of overlay regions #/
3418 unsigned _ovly_region_table[_novly_regions][3] = {
3419 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3420 {..., ..., ...},
3421 }
3422 These functions will attempt to update GDB's mappedness state in the
3423 symbol section table, based on the target's mappedness state.
3424
3425 To do this, we keep a cached copy of the target's _ovly_table, and
3426 attempt to detect when the cached copy is invalidated. The main
3427 entry point is "simple_overlay_update(SECT), which looks up SECT in
3428 the cached table and re-reads only the entry for that section from
3429 the target (whenever possible).
3430 */
3431
3432 /* Cached, dynamically allocated copies of the target data structures: */
3433 static unsigned (*cache_ovly_table)[4] = 0;
3434 #if 0
3435 static unsigned (*cache_ovly_region_table)[3] = 0;
3436 #endif
3437 static unsigned cache_novlys = 0;
3438 #if 0
3439 static unsigned cache_novly_regions = 0;
3440 #endif
3441 static CORE_ADDR cache_ovly_table_base = 0;
3442 #if 0
3443 static CORE_ADDR cache_ovly_region_table_base = 0;
3444 #endif
3445 enum ovly_index
3446 {
3447 VMA, SIZE, LMA, MAPPED
3448 };
3449 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3450
3451 /* Throw away the cached copy of _ovly_table */
3452 static void
3453 simple_free_overlay_table (void)
3454 {
3455 if (cache_ovly_table)
3456 xfree (cache_ovly_table);
3457 cache_novlys = 0;
3458 cache_ovly_table = NULL;
3459 cache_ovly_table_base = 0;
3460 }
3461
3462 #if 0
3463 /* Throw away the cached copy of _ovly_region_table */
3464 static void
3465 simple_free_overlay_region_table (void)
3466 {
3467 if (cache_ovly_region_table)
3468 xfree (cache_ovly_region_table);
3469 cache_novly_regions = 0;
3470 cache_ovly_region_table = NULL;
3471 cache_ovly_region_table_base = 0;
3472 }
3473 #endif
3474
3475 /* Read an array of ints from the target into a local buffer.
3476 Convert to host order. int LEN is number of ints */
3477 static void
3478 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3479 {
3480 /* FIXME (alloca): Not safe if array is very large. */
3481 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3482 int i;
3483
3484 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3485 for (i = 0; i < len; i++)
3486 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3487 TARGET_LONG_BYTES);
3488 }
3489
3490 /* Find and grab a copy of the target _ovly_table
3491 (and _novlys, which is needed for the table's size) */
3492 static int
3493 simple_read_overlay_table (void)
3494 {
3495 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3496
3497 simple_free_overlay_table ();
3498 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3499 if (! novlys_msym)
3500 {
3501 error (_("Error reading inferior's overlay table: "
3502 "couldn't find `_novlys' variable\n"
3503 "in inferior. Use `overlay manual' mode."));
3504 return 0;
3505 }
3506
3507 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3508 if (! ovly_table_msym)
3509 {
3510 error (_("Error reading inferior's overlay table: couldn't find "
3511 "`_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3513 return 0;
3514 }
3515
3516 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3517 cache_ovly_table
3518 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3519 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3520 read_target_long_array (cache_ovly_table_base,
3521 (unsigned int *) cache_ovly_table,
3522 cache_novlys * 4);
3523
3524 return 1; /* SUCCESS */
3525 }
3526
3527 #if 0
3528 /* Find and grab a copy of the target _ovly_region_table
3529 (and _novly_regions, which is needed for the table's size) */
3530 static int
3531 simple_read_overlay_region_table (void)
3532 {
3533 struct minimal_symbol *msym;
3534
3535 simple_free_overlay_region_table ();
3536 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3537 if (msym != NULL)
3538 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3539 else
3540 return 0; /* failure */
3541 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3542 if (cache_ovly_region_table != NULL)
3543 {
3544 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3545 if (msym != NULL)
3546 {
3547 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3548 read_target_long_array (cache_ovly_region_table_base,
3549 (unsigned int *) cache_ovly_region_table,
3550 cache_novly_regions * 3);
3551 }
3552 else
3553 return 0; /* failure */
3554 }
3555 else
3556 return 0; /* failure */
3557 return 1; /* SUCCESS */
3558 }
3559 #endif
3560
3561 /* Function: simple_overlay_update_1
3562 A helper function for simple_overlay_update. Assuming a cached copy
3563 of _ovly_table exists, look through it to find an entry whose vma,
3564 lma and size match those of OSECT. Re-read the entry and make sure
3565 it still matches OSECT (else the table may no longer be valid).
3566 Set OSECT's mapped state to match the entry. Return: 1 for
3567 success, 0 for failure. */
3568
3569 static int
3570 simple_overlay_update_1 (struct obj_section *osect)
3571 {
3572 int i, size;
3573 bfd *obfd = osect->objfile->obfd;
3574 asection *bsect = osect->the_bfd_section;
3575
3576 size = bfd_get_section_size (osect->the_bfd_section);
3577 for (i = 0; i < cache_novlys; i++)
3578 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3579 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3580 /* && cache_ovly_table[i][SIZE] == size */ )
3581 {
3582 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3583 (unsigned int *) cache_ovly_table[i], 4);
3584 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3585 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3586 /* && cache_ovly_table[i][SIZE] == size */ )
3587 {
3588 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3589 return 1;
3590 }
3591 else /* Warning! Warning! Target's ovly table has changed! */
3592 return 0;
3593 }
3594 return 0;
3595 }
3596
3597 /* Function: simple_overlay_update
3598 If OSECT is NULL, then update all sections' mapped state
3599 (after re-reading the entire target _ovly_table).
3600 If OSECT is non-NULL, then try to find a matching entry in the
3601 cached ovly_table and update only OSECT's mapped state.
3602 If a cached entry can't be found or the cache isn't valid, then
3603 re-read the entire cache, and go ahead and update all sections. */
3604
3605 static void
3606 simple_overlay_update (struct obj_section *osect)
3607 {
3608 struct objfile *objfile;
3609
3610 /* Were we given an osect to look up? NULL means do all of them. */
3611 if (osect)
3612 /* Have we got a cached copy of the target's overlay table? */
3613 if (cache_ovly_table != NULL)
3614 /* Does its cached location match what's currently in the symtab? */
3615 if (cache_ovly_table_base ==
3616 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3617 /* Then go ahead and try to look up this single section in the cache */
3618 if (simple_overlay_update_1 (osect))
3619 /* Found it! We're done. */
3620 return;
3621
3622 /* Cached table no good: need to read the entire table anew.
3623 Or else we want all the sections, in which case it's actually
3624 more efficient to read the whole table in one block anyway. */
3625
3626 if (! simple_read_overlay_table ())
3627 return;
3628
3629 /* Now may as well update all sections, even if only one was requested. */
3630 ALL_OBJSECTIONS (objfile, osect)
3631 if (section_is_overlay (osect->the_bfd_section))
3632 {
3633 int i, size;
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
3636
3637 size = bfd_get_section_size (bsect);
3638 for (i = 0; i < cache_novlys; i++)
3639 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3640 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3641 /* && cache_ovly_table[i][SIZE] == size */ )
3642 { /* obj_section matches i'th entry in ovly_table */
3643 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3644 break; /* finished with inner for loop: break out */
3645 }
3646 }
3647 }
3648
3649 /* Set the output sections and output offsets for section SECTP in
3650 ABFD. The relocation code in BFD will read these offsets, so we
3651 need to be sure they're initialized. We map each section to itself,
3652 with no offset; this means that SECTP->vma will be honored. */
3653
3654 static void
3655 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3656 {
3657 sectp->output_section = sectp;
3658 sectp->output_offset = 0;
3659 }
3660
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct. */
3671
3672 bfd_byte *
3673 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3674 {
3675 /* We're only interested in debugging sections with relocation
3676 information. */
3677 if ((sectp->flags & SEC_RELOC) == 0)
3678 return NULL;
3679 if ((sectp->flags & SEC_DEBUGGING) == 0)
3680 return NULL;
3681
3682 /* We will handle section offsets properly elsewhere, so relocate as if
3683 all sections begin at 0. */
3684 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3685
3686 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3687 }
3688
3689 void
3690 _initialize_symfile (void)
3691 {
3692 struct cmd_list_element *c;
3693
3694 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3695 Load symbol table from executable file FILE.\n\
3696 The `file' command can also load symbol tables, as well as setting the file\n\
3697 to execute."), &cmdlist);
3698 set_cmd_completer (c, filename_completer);
3699
3700 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3701 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3702 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3703 ADDR is the starting address of the file's text.\n\
3704 The optional arguments are section-name section-address pairs and\n\
3705 should be specified if the data and bss segments are not contiguous\n\
3706 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3707 &cmdlist);
3708 set_cmd_completer (c, filename_completer);
3709
3710 c = add_cmd ("add-shared-symbol-files", class_files,
3711 add_shared_symbol_files_command, _("\
3712 Load the symbols from shared objects in the dynamic linker's link map."),
3713 &cmdlist);
3714 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3715 &cmdlist);
3716
3717 c = add_cmd ("load", class_files, load_command, _("\
3718 Dynamically load FILE into the running program, and record its symbols\n\
3719 for access from GDB."), &cmdlist);
3720 set_cmd_completer (c, filename_completer);
3721
3722 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3723 &symbol_reloading, _("\
3724 Set dynamic symbol table reloading multiple times in one run."), _("\
3725 Show dynamic symbol table reloading multiple times in one run."), NULL,
3726 NULL,
3727 show_symbol_reloading,
3728 &setlist, &showlist);
3729
3730 add_prefix_cmd ("overlay", class_support, overlay_command,
3731 _("Commands for debugging overlays."), &overlaylist,
3732 "overlay ", 0, &cmdlist);
3733
3734 add_com_alias ("ovly", "overlay", class_alias, 1);
3735 add_com_alias ("ov", "overlay", class_alias, 1);
3736
3737 add_cmd ("map-overlay", class_support, map_overlay_command,
3738 _("Assert that an overlay section is mapped."), &overlaylist);
3739
3740 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3741 _("Assert that an overlay section is unmapped."), &overlaylist);
3742
3743 add_cmd ("list-overlays", class_support, list_overlays_command,
3744 _("List mappings of overlay sections."), &overlaylist);
3745
3746 add_cmd ("manual", class_support, overlay_manual_command,
3747 _("Enable overlay debugging."), &overlaylist);
3748 add_cmd ("off", class_support, overlay_off_command,
3749 _("Disable overlay debugging."), &overlaylist);
3750 add_cmd ("auto", class_support, overlay_auto_command,
3751 _("Enable automatic overlay debugging."), &overlaylist);
3752 add_cmd ("load-target", class_support, overlay_load_command,
3753 _("Read the overlay mapping state from the target."), &overlaylist);
3754
3755 /* Filename extension to source language lookup table: */
3756 init_filename_language_table ();
3757 add_setshow_string_noescape_cmd ("extension-language", class_files,
3758 &ext_args, _("\
3759 Set mapping between filename extension and source language."), _("\
3760 Show mapping between filename extension and source language."), _("\
3761 Usage: set extension-language .foo bar"),
3762 set_ext_lang_command,
3763 show_ext_args,
3764 &setlist, &showlist);
3765
3766 add_info ("extensions", info_ext_lang_command,
3767 _("All filename extensions associated with a source language."));
3768
3769 add_setshow_integer_cmd ("download-write-size", class_obscure,
3770 &download_write_size, _("\
3771 Set the write size used when downloading a program."), _("\
3772 Show the write size used when downloading a program."), _("\
3773 Only used when downloading a program onto a remote\n\
3774 target. Specify zero, or a negative value, to disable\n\
3775 blocked writes. The actual size of each transfer is also\n\
3776 limited by the size of the target packet and the memory\n\
3777 cache."),
3778 NULL,
3779 show_download_write_size,
3780 &setlist, &showlist);
3781
3782 debug_file_directory = xstrdup (DEBUGDIR);
3783 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3784 &debug_file_directory, _("\
3785 Set the directory where separate debug symbols are searched for."), _("\
3786 Show the directory where separate debug symbols are searched for."), _("\
3787 Separate debug symbols are first searched for in the same\n\
3788 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3789 and lastly at the path of the directory of the binary with\n\
3790 the global debug-file directory prepended."),
3791 NULL,
3792 show_debug_file_directory,
3793 &setlist, &showlist);
3794 }
This page took 0.111286 seconds and 4 git commands to generate.