Replace psymbol_allocation_list with std::vector
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <sys/stat.h>
64 #include <ctype.h>
65 #include <chrono>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void info_ext_lang_command (char *args, int from_tty);
105
106 static void symfile_find_segment_sections (struct objfile *objfile);
107
108 /* List of all available sym_fns. On gdb startup, each object file reader
109 calls add_symtab_fns() to register information on each format it is
110 prepared to read. */
111
112 struct registered_sym_fns
113 {
114 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
115 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
116 {}
117
118 /* BFD flavour that we handle. */
119 enum bfd_flavour sym_flavour;
120
121 /* The "vtable" of symbol functions. */
122 const struct sym_fns *sym_fns;
123 };
124
125 static std::vector<registered_sym_fns> symtab_fns;
126
127 /* Values for "set print symbol-loading". */
128
129 const char print_symbol_loading_off[] = "off";
130 const char print_symbol_loading_brief[] = "brief";
131 const char print_symbol_loading_full[] = "full";
132 static const char *print_symbol_loading_enums[] =
133 {
134 print_symbol_loading_off,
135 print_symbol_loading_brief,
136 print_symbol_loading_full,
137 NULL
138 };
139 static const char *print_symbol_loading = print_symbol_loading_full;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162 int
163 print_symbol_loading_p (int from_tty, int exec, int full)
164 {
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177 }
178
179 /* True if we are reading a symbol table. */
180
181 int currently_reading_symtab = 0;
182
183 /* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
185
186 scoped_restore_tmpl<int>
187 increment_reading_symtab (void)
188 {
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
192 }
193
194 /* Remember the lowest-addressed loadable section we've seen.
195 This function is called via bfd_map_over_sections.
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203 void
204 find_lowest_section (bfd *abfd, asection *sect, void *obj)
205 {
206 asection **lowest = (asection **) obj;
207
208 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
209 return;
210 if (!*lowest)
211 *lowest = sect; /* First loadable section */
212 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
213 *lowest = sect; /* A lower loadable section */
214 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
215 && (bfd_section_size (abfd, (*lowest))
216 <= bfd_section_size (abfd, sect)))
217 *lowest = sect;
218 }
219
220 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
221 new object's 'num_sections' field is set to 0; it must be updated
222 by the caller. */
223
224 struct section_addr_info *
225 alloc_section_addr_info (size_t num_sections)
226 {
227 struct section_addr_info *sap;
228 size_t size;
229
230 size = (sizeof (struct section_addr_info)
231 + sizeof (struct other_sections) * (num_sections - 1));
232 sap = (struct section_addr_info *) xmalloc (size);
233 memset (sap, 0, size);
234
235 return sap;
236 }
237
238 /* Build (allocate and populate) a section_addr_info struct from
239 an existing section table. */
240
241 extern struct section_addr_info *
242 build_section_addr_info_from_section_table (const struct target_section *start,
243 const struct target_section *end)
244 {
245 struct section_addr_info *sap;
246 const struct target_section *stp;
247 int oidx;
248
249 sap = alloc_section_addr_info (end - start);
250
251 for (stp = start, oidx = 0; stp != end; stp++)
252 {
253 struct bfd_section *asect = stp->the_bfd_section;
254 bfd *abfd = asect->owner;
255
256 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
257 && oidx < end - start)
258 {
259 sap->other[oidx].addr = stp->addr;
260 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
261 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
262 oidx++;
263 }
264 }
265
266 sap->num_sections = oidx;
267
268 return sap;
269 }
270
271 /* Create a section_addr_info from section offsets in ABFD. */
272
273 static struct section_addr_info *
274 build_section_addr_info_from_bfd (bfd *abfd)
275 {
276 struct section_addr_info *sap;
277 int i;
278 struct bfd_section *sec;
279
280 sap = alloc_section_addr_info (bfd_count_sections (abfd));
281 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
282 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
283 {
284 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
285 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
286 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
287 i++;
288 }
289
290 sap->num_sections = i;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in OBJFILE. */
296
297 struct section_addr_info *
298 build_section_addr_info_from_objfile (const struct objfile *objfile)
299 {
300 struct section_addr_info *sap;
301 int i;
302
303 /* Before reread_symbols gets rewritten it is not safe to call:
304 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
305 */
306 sap = build_section_addr_info_from_bfd (objfile->obfd);
307 for (i = 0; i < sap->num_sections; i++)
308 {
309 int sectindex = sap->other[i].sectindex;
310
311 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
312 }
313 return sap;
314 }
315
316 /* Free all memory allocated by build_section_addr_info_from_section_table. */
317
318 extern void
319 free_section_addr_info (struct section_addr_info *sap)
320 {
321 int idx;
322
323 for (idx = 0; idx < sap->num_sections; idx++)
324 xfree (sap->other[idx].name);
325 xfree (sap);
326 }
327
328 /* Initialize OBJFILE's sect_index_* members. */
329
330 static void
331 init_objfile_sect_indices (struct objfile *objfile)
332 {
333 asection *sect;
334 int i;
335
336 sect = bfd_get_section_by_name (objfile->obfd, ".text");
337 if (sect)
338 objfile->sect_index_text = sect->index;
339
340 sect = bfd_get_section_by_name (objfile->obfd, ".data");
341 if (sect)
342 objfile->sect_index_data = sect->index;
343
344 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
345 if (sect)
346 objfile->sect_index_bss = sect->index;
347
348 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
349 if (sect)
350 objfile->sect_index_rodata = sect->index;
351
352 /* This is where things get really weird... We MUST have valid
353 indices for the various sect_index_* members or gdb will abort.
354 So if for example, there is no ".text" section, we have to
355 accomodate that. First, check for a file with the standard
356 one or two segments. */
357
358 symfile_find_segment_sections (objfile);
359
360 /* Except when explicitly adding symbol files at some address,
361 section_offsets contains nothing but zeros, so it doesn't matter
362 which slot in section_offsets the individual sect_index_* members
363 index into. So if they are all zero, it is safe to just point
364 all the currently uninitialized indices to the first slot. But
365 beware: if this is the main executable, it may be relocated
366 later, e.g. by the remote qOffsets packet, and then this will
367 be wrong! That's why we try segments first. */
368
369 for (i = 0; i < objfile->num_sections; i++)
370 {
371 if (ANOFFSET (objfile->section_offsets, i) != 0)
372 {
373 break;
374 }
375 }
376 if (i == objfile->num_sections)
377 {
378 if (objfile->sect_index_text == -1)
379 objfile->sect_index_text = 0;
380 if (objfile->sect_index_data == -1)
381 objfile->sect_index_data = 0;
382 if (objfile->sect_index_bss == -1)
383 objfile->sect_index_bss = 0;
384 if (objfile->sect_index_rodata == -1)
385 objfile->sect_index_rodata = 0;
386 }
387 }
388
389 /* The arguments to place_section. */
390
391 struct place_section_arg
392 {
393 struct section_offsets *offsets;
394 CORE_ADDR lowest;
395 };
396
397 /* Find a unique offset to use for loadable section SECT if
398 the user did not provide an offset. */
399
400 static void
401 place_section (bfd *abfd, asection *sect, void *obj)
402 {
403 struct place_section_arg *arg = (struct place_section_arg *) obj;
404 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
405 int done;
406 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
407
408 /* We are only interested in allocated sections. */
409 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
410 return;
411
412 /* If the user specified an offset, honor it. */
413 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
414 return;
415
416 /* Otherwise, let's try to find a place for the section. */
417 start_addr = (arg->lowest + align - 1) & -align;
418
419 do {
420 asection *cur_sec;
421
422 done = 1;
423
424 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
425 {
426 int indx = cur_sec->index;
427
428 /* We don't need to compare against ourself. */
429 if (cur_sec == sect)
430 continue;
431
432 /* We can only conflict with allocated sections. */
433 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
434 continue;
435
436 /* If the section offset is 0, either the section has not been placed
437 yet, or it was the lowest section placed (in which case LOWEST
438 will be past its end). */
439 if (offsets[indx] == 0)
440 continue;
441
442 /* If this section would overlap us, then we must move up. */
443 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
444 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
445 {
446 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
447 start_addr = (start_addr + align - 1) & -align;
448 done = 0;
449 break;
450 }
451
452 /* Otherwise, we appear to be OK. So far. */
453 }
454 }
455 while (!done);
456
457 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
458 arg->lowest = start_addr + bfd_get_section_size (sect);
459 }
460
461 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
462 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
463 entries. */
464
465 void
466 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
467 int num_sections,
468 const struct section_addr_info *addrs)
469 {
470 int i;
471
472 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
473
474 /* Now calculate offsets for section that were specified by the caller. */
475 for (i = 0; i < addrs->num_sections; i++)
476 {
477 const struct other_sections *osp;
478
479 osp = &addrs->other[i];
480 if (osp->sectindex == -1)
481 continue;
482
483 /* Record all sections in offsets. */
484 /* The section_offsets in the objfile are here filled in using
485 the BFD index. */
486 section_offsets->offsets[osp->sectindex] = osp->addr;
487 }
488 }
489
490 /* Transform section name S for a name comparison. prelink can split section
491 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
492 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
493 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
494 (`.sbss') section has invalid (increased) virtual address. */
495
496 static const char *
497 addr_section_name (const char *s)
498 {
499 if (strcmp (s, ".dynbss") == 0)
500 return ".bss";
501 if (strcmp (s, ".sdynbss") == 0)
502 return ".sbss";
503
504 return s;
505 }
506
507 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
508 their (name, sectindex) pair. sectindex makes the sort by name stable. */
509
510 static int
511 addrs_section_compar (const void *ap, const void *bp)
512 {
513 const struct other_sections *a = *((struct other_sections **) ap);
514 const struct other_sections *b = *((struct other_sections **) bp);
515 int retval;
516
517 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
518 if (retval)
519 return retval;
520
521 return a->sectindex - b->sectindex;
522 }
523
524 /* Provide sorted array of pointers to sections of ADDRS. The array is
525 terminated by NULL. Caller is responsible to call xfree for it. */
526
527 static struct other_sections **
528 addrs_section_sort (struct section_addr_info *addrs)
529 {
530 struct other_sections **array;
531 int i;
532
533 /* `+ 1' for the NULL terminator. */
534 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
535 for (i = 0; i < addrs->num_sections; i++)
536 array[i] = &addrs->other[i];
537 array[i] = NULL;
538
539 qsort (array, i, sizeof (*array), addrs_section_compar);
540
541 return array;
542 }
543
544 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
545 also SECTINDEXes specific to ABFD there. This function can be used to
546 rebase ADDRS to start referencing different BFD than before. */
547
548 void
549 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
550 {
551 asection *lower_sect;
552 CORE_ADDR lower_offset;
553 int i;
554 struct cleanup *my_cleanup;
555 struct section_addr_info *abfd_addrs;
556 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
557 struct other_sections **addrs_to_abfd_addrs;
558
559 /* Find lowest loadable section to be used as starting point for
560 continguous sections. */
561 lower_sect = NULL;
562 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
563 if (lower_sect == NULL)
564 {
565 warning (_("no loadable sections found in added symbol-file %s"),
566 bfd_get_filename (abfd));
567 lower_offset = 0;
568 }
569 else
570 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
571
572 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
573 in ABFD. Section names are not unique - there can be multiple sections of
574 the same name. Also the sections of the same name do not have to be
575 adjacent to each other. Some sections may be present only in one of the
576 files. Even sections present in both files do not have to be in the same
577 order.
578
579 Use stable sort by name for the sections in both files. Then linearly
580 scan both lists matching as most of the entries as possible. */
581
582 addrs_sorted = addrs_section_sort (addrs);
583 my_cleanup = make_cleanup (xfree, addrs_sorted);
584
585 abfd_addrs = build_section_addr_info_from_bfd (abfd);
586 make_cleanup_free_section_addr_info (abfd_addrs);
587 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
588 make_cleanup (xfree, abfd_addrs_sorted);
589
590 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
591 ABFD_ADDRS_SORTED. */
592
593 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
594 make_cleanup (xfree, addrs_to_abfd_addrs);
595
596 while (*addrs_sorted)
597 {
598 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
599
600 while (*abfd_addrs_sorted
601 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
602 sect_name) < 0)
603 abfd_addrs_sorted++;
604
605 if (*abfd_addrs_sorted
606 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
607 sect_name) == 0)
608 {
609 int index_in_addrs;
610
611 /* Make the found item directly addressable from ADDRS. */
612 index_in_addrs = *addrs_sorted - addrs->other;
613 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
614 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
615
616 /* Never use the same ABFD entry twice. */
617 abfd_addrs_sorted++;
618 }
619
620 addrs_sorted++;
621 }
622
623 /* Calculate offsets for the loadable sections.
624 FIXME! Sections must be in order of increasing loadable section
625 so that contiguous sections can use the lower-offset!!!
626
627 Adjust offsets if the segments are not contiguous.
628 If the section is contiguous, its offset should be set to
629 the offset of the highest loadable section lower than it
630 (the loadable section directly below it in memory).
631 this_offset = lower_offset = lower_addr - lower_orig_addr */
632
633 for (i = 0; i < addrs->num_sections; i++)
634 {
635 struct other_sections *sect = addrs_to_abfd_addrs[i];
636
637 if (sect)
638 {
639 /* This is the index used by BFD. */
640 addrs->other[i].sectindex = sect->sectindex;
641
642 if (addrs->other[i].addr != 0)
643 {
644 addrs->other[i].addr -= sect->addr;
645 lower_offset = addrs->other[i].addr;
646 }
647 else
648 addrs->other[i].addr = lower_offset;
649 }
650 else
651 {
652 /* addr_section_name transformation is not used for SECT_NAME. */
653 const char *sect_name = addrs->other[i].name;
654
655 /* This section does not exist in ABFD, which is normally
656 unexpected and we want to issue a warning.
657
658 However, the ELF prelinker does create a few sections which are
659 marked in the main executable as loadable (they are loaded in
660 memory from the DYNAMIC segment) and yet are not present in
661 separate debug info files. This is fine, and should not cause
662 a warning. Shared libraries contain just the section
663 ".gnu.liblist" but it is not marked as loadable there. There is
664 no other way to identify them than by their name as the sections
665 created by prelink have no special flags.
666
667 For the sections `.bss' and `.sbss' see addr_section_name. */
668
669 if (!(strcmp (sect_name, ".gnu.liblist") == 0
670 || strcmp (sect_name, ".gnu.conflict") == 0
671 || (strcmp (sect_name, ".bss") == 0
672 && i > 0
673 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
674 && addrs_to_abfd_addrs[i - 1] != NULL)
675 || (strcmp (sect_name, ".sbss") == 0
676 && i > 0
677 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
678 && addrs_to_abfd_addrs[i - 1] != NULL)))
679 warning (_("section %s not found in %s"), sect_name,
680 bfd_get_filename (abfd));
681
682 addrs->other[i].addr = 0;
683 addrs->other[i].sectindex = -1;
684 }
685 }
686
687 do_cleanups (my_cleanup);
688 }
689
690 /* Parse the user's idea of an offset for dynamic linking, into our idea
691 of how to represent it for fast symbol reading. This is the default
692 version of the sym_fns.sym_offsets function for symbol readers that
693 don't need to do anything special. It allocates a section_offsets table
694 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
695
696 void
697 default_symfile_offsets (struct objfile *objfile,
698 const struct section_addr_info *addrs)
699 {
700 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
701 objfile->section_offsets = (struct section_offsets *)
702 obstack_alloc (&objfile->objfile_obstack,
703 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
704 relative_addr_info_to_section_offsets (objfile->section_offsets,
705 objfile->num_sections, addrs);
706
707 /* For relocatable files, all loadable sections will start at zero.
708 The zero is meaningless, so try to pick arbitrary addresses such
709 that no loadable sections overlap. This algorithm is quadratic,
710 but the number of sections in a single object file is generally
711 small. */
712 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
713 {
714 struct place_section_arg arg;
715 bfd *abfd = objfile->obfd;
716 asection *cur_sec;
717
718 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
719 /* We do not expect this to happen; just skip this step if the
720 relocatable file has a section with an assigned VMA. */
721 if (bfd_section_vma (abfd, cur_sec) != 0)
722 break;
723
724 if (cur_sec == NULL)
725 {
726 CORE_ADDR *offsets = objfile->section_offsets->offsets;
727
728 /* Pick non-overlapping offsets for sections the user did not
729 place explicitly. */
730 arg.offsets = objfile->section_offsets;
731 arg.lowest = 0;
732 bfd_map_over_sections (objfile->obfd, place_section, &arg);
733
734 /* Correctly filling in the section offsets is not quite
735 enough. Relocatable files have two properties that
736 (most) shared objects do not:
737
738 - Their debug information will contain relocations. Some
739 shared libraries do also, but many do not, so this can not
740 be assumed.
741
742 - If there are multiple code sections they will be loaded
743 at different relative addresses in memory than they are
744 in the objfile, since all sections in the file will start
745 at address zero.
746
747 Because GDB has very limited ability to map from an
748 address in debug info to the correct code section,
749 it relies on adding SECT_OFF_TEXT to things which might be
750 code. If we clear all the section offsets, and set the
751 section VMAs instead, then symfile_relocate_debug_section
752 will return meaningful debug information pointing at the
753 correct sections.
754
755 GDB has too many different data structures for section
756 addresses - a bfd, objfile, and so_list all have section
757 tables, as does exec_ops. Some of these could probably
758 be eliminated. */
759
760 for (cur_sec = abfd->sections; cur_sec != NULL;
761 cur_sec = cur_sec->next)
762 {
763 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
764 continue;
765
766 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
767 exec_set_section_address (bfd_get_filename (abfd),
768 cur_sec->index,
769 offsets[cur_sec->index]);
770 offsets[cur_sec->index] = 0;
771 }
772 }
773 }
774
775 /* Remember the bfd indexes for the .text, .data, .bss and
776 .rodata sections. */
777 init_objfile_sect_indices (objfile);
778 }
779
780 /* Divide the file into segments, which are individual relocatable units.
781 This is the default version of the sym_fns.sym_segments function for
782 symbol readers that do not have an explicit representation of segments.
783 It assumes that object files do not have segments, and fully linked
784 files have a single segment. */
785
786 struct symfile_segment_data *
787 default_symfile_segments (bfd *abfd)
788 {
789 int num_sections, i;
790 asection *sect;
791 struct symfile_segment_data *data;
792 CORE_ADDR low, high;
793
794 /* Relocatable files contain enough information to position each
795 loadable section independently; they should not be relocated
796 in segments. */
797 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
798 return NULL;
799
800 /* Make sure there is at least one loadable section in the file. */
801 for (sect = abfd->sections; sect != NULL; sect = sect->next)
802 {
803 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
804 continue;
805
806 break;
807 }
808 if (sect == NULL)
809 return NULL;
810
811 low = bfd_get_section_vma (abfd, sect);
812 high = low + bfd_get_section_size (sect);
813
814 data = XCNEW (struct symfile_segment_data);
815 data->num_segments = 1;
816 data->segment_bases = XCNEW (CORE_ADDR);
817 data->segment_sizes = XCNEW (CORE_ADDR);
818
819 num_sections = bfd_count_sections (abfd);
820 data->segment_info = XCNEWVEC (int, num_sections);
821
822 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
823 {
824 CORE_ADDR vma;
825
826 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
827 continue;
828
829 vma = bfd_get_section_vma (abfd, sect);
830 if (vma < low)
831 low = vma;
832 if (vma + bfd_get_section_size (sect) > high)
833 high = vma + bfd_get_section_size (sect);
834
835 data->segment_info[i] = 1;
836 }
837
838 data->segment_bases[0] = low;
839 data->segment_sizes[0] = high - low;
840
841 return data;
842 }
843
844 /* This is a convenience function to call sym_read for OBJFILE and
845 possibly force the partial symbols to be read. */
846
847 static void
848 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
849 {
850 (*objfile->sf->sym_read) (objfile, add_flags);
851 objfile->per_bfd->minsyms_read = true;
852
853 /* find_separate_debug_file_in_section should be called only if there is
854 single binary with no existing separate debug info file. */
855 if (!objfile_has_partial_symbols (objfile)
856 && objfile->separate_debug_objfile == NULL
857 && objfile->separate_debug_objfile_backlink == NULL)
858 {
859 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
860
861 if (abfd != NULL)
862 {
863 /* find_separate_debug_file_in_section uses the same filename for the
864 virtual section-as-bfd like the bfd filename containing the
865 section. Therefore use also non-canonical name form for the same
866 file containing the section. */
867 symbol_file_add_separate (abfd.get (), objfile->original_name,
868 add_flags, objfile);
869 }
870 }
871 if ((add_flags & SYMFILE_NO_READ) == 0)
872 require_partial_symbols (objfile, 0);
873 }
874
875 /* Initialize entry point information for this objfile. */
876
877 static void
878 init_entry_point_info (struct objfile *objfile)
879 {
880 struct entry_info *ei = &objfile->per_bfd->ei;
881
882 if (ei->initialized)
883 return;
884 ei->initialized = 1;
885
886 /* Save startup file's range of PC addresses to help blockframe.c
887 decide where the bottom of the stack is. */
888
889 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
890 {
891 /* Executable file -- record its entry point so we'll recognize
892 the startup file because it contains the entry point. */
893 ei->entry_point = bfd_get_start_address (objfile->obfd);
894 ei->entry_point_p = 1;
895 }
896 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
897 && bfd_get_start_address (objfile->obfd) != 0)
898 {
899 /* Some shared libraries may have entry points set and be
900 runnable. There's no clear way to indicate this, so just check
901 for values other than zero. */
902 ei->entry_point = bfd_get_start_address (objfile->obfd);
903 ei->entry_point_p = 1;
904 }
905 else
906 {
907 /* Examination of non-executable.o files. Short-circuit this stuff. */
908 ei->entry_point_p = 0;
909 }
910
911 if (ei->entry_point_p)
912 {
913 struct obj_section *osect;
914 CORE_ADDR entry_point = ei->entry_point;
915 int found;
916
917 /* Make certain that the address points at real code, and not a
918 function descriptor. */
919 entry_point
920 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
921 entry_point,
922 &current_target);
923
924 /* Remove any ISA markers, so that this matches entries in the
925 symbol table. */
926 ei->entry_point
927 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
928
929 found = 0;
930 ALL_OBJFILE_OSECTIONS (objfile, osect)
931 {
932 struct bfd_section *sect = osect->the_bfd_section;
933
934 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
935 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
936 + bfd_get_section_size (sect)))
937 {
938 ei->the_bfd_section_index
939 = gdb_bfd_section_index (objfile->obfd, sect);
940 found = 1;
941 break;
942 }
943 }
944
945 if (!found)
946 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
947 }
948 }
949
950 /* Process a symbol file, as either the main file or as a dynamically
951 loaded file.
952
953 This function does not set the OBJFILE's entry-point info.
954
955 OBJFILE is where the symbols are to be read from.
956
957 ADDRS is the list of section load addresses. If the user has given
958 an 'add-symbol-file' command, then this is the list of offsets and
959 addresses he or she provided as arguments to the command; or, if
960 we're handling a shared library, these are the actual addresses the
961 sections are loaded at, according to the inferior's dynamic linker
962 (as gleaned by GDB's shared library code). We convert each address
963 into an offset from the section VMA's as it appears in the object
964 file, and then call the file's sym_offsets function to convert this
965 into a format-specific offset table --- a `struct section_offsets'.
966
967 ADD_FLAGS encodes verbosity level, whether this is main symbol or
968 an extra symbol file such as dynamically loaded code, and wether
969 breakpoint reset should be deferred. */
970
971 static void
972 syms_from_objfile_1 (struct objfile *objfile,
973 struct section_addr_info *addrs,
974 symfile_add_flags add_flags)
975 {
976 struct section_addr_info *local_addr = NULL;
977 struct cleanup *old_chain;
978 const int mainline = add_flags & SYMFILE_MAINLINE;
979
980 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
981
982 if (objfile->sf == NULL)
983 {
984 /* No symbols to load, but we still need to make sure
985 that the section_offsets table is allocated. */
986 int num_sections = gdb_bfd_count_sections (objfile->obfd);
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
988
989 objfile->num_sections = num_sections;
990 objfile->section_offsets
991 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
992 size);
993 memset (objfile->section_offsets, 0, size);
994 return;
995 }
996
997 /* Make sure that partially constructed symbol tables will be cleaned up
998 if an error occurs during symbol reading. */
999 old_chain = make_cleanup_free_objfile (objfile);
1000
1001 /* If ADDRS is NULL, put together a dummy address list.
1002 We now establish the convention that an addr of zero means
1003 no load address was specified. */
1004 if (! addrs)
1005 {
1006 local_addr = alloc_section_addr_info (1);
1007 make_cleanup (xfree, local_addr);
1008 addrs = local_addr;
1009 }
1010
1011 if (mainline)
1012 {
1013 /* We will modify the main symbol table, make sure that all its users
1014 will be cleaned up if an error occurs during symbol reading. */
1015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1016
1017 /* Since no error yet, throw away the old symbol table. */
1018
1019 if (symfile_objfile != NULL)
1020 {
1021 delete symfile_objfile;
1022 gdb_assert (symfile_objfile == NULL);
1023 }
1024
1025 /* Currently we keep symbols from the add-symbol-file command.
1026 If the user wants to get rid of them, they should do "symbol-file"
1027 without arguments first. Not sure this is the best behavior
1028 (PR 2207). */
1029
1030 (*objfile->sf->sym_new_init) (objfile);
1031 }
1032
1033 /* Convert addr into an offset rather than an absolute address.
1034 We find the lowest address of a loaded segment in the objfile,
1035 and assume that <addr> is where that got loaded.
1036
1037 We no longer warn if the lowest section is not a text segment (as
1038 happens for the PA64 port. */
1039 if (addrs->num_sections > 0)
1040 addr_info_make_relative (addrs, objfile->obfd);
1041
1042 /* Initialize symbol reading routines for this objfile, allow complaints to
1043 appear for this new file, and record how verbose to be, then do the
1044 initial symbol reading for this file. */
1045
1046 (*objfile->sf->sym_init) (objfile);
1047 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1048
1049 (*objfile->sf->sym_offsets) (objfile, addrs);
1050
1051 read_symbols (objfile, add_flags);
1052
1053 /* Discard cleanups as symbol reading was successful. */
1054
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135
1136 /* Give user a chance to burp if we'd be
1137 interactively wiping out any existing symbols. */
1138
1139 if ((have_full_symbols () || have_partial_symbols ())
1140 && mainline
1141 && from_tty
1142 && !query (_("Load new symbol table from \"%s\"? "), name))
1143 error (_("Not confirmed."));
1144
1145 if (mainline)
1146 flags |= OBJF_MAINLINE;
1147 objfile = new struct objfile (abfd, name, flags);
1148
1149 if (parent)
1150 add_separate_debug_objfile (objfile, parent);
1151
1152 /* We either created a new mapped symbol table, mapped an existing
1153 symbol table file which has not had initial symbol reading
1154 performed, or need to read an unmapped symbol table. */
1155 if (should_print)
1156 {
1157 if (deprecated_pre_add_symbol_hook)
1158 deprecated_pre_add_symbol_hook (name);
1159 else
1160 {
1161 printf_unfiltered (_("Reading symbols from %s..."), name);
1162 wrap_here ("");
1163 gdb_flush (gdb_stdout);
1164 }
1165 }
1166 syms_from_objfile (objfile, addrs, add_flags);
1167
1168 /* We now have at least a partial symbol table. Check to see if the
1169 user requested that all symbols be read on initial access via either
1170 the gdb startup command line or on a per symbol file basis. Expand
1171 all partial symbol tables for this objfile if so. */
1172
1173 if ((flags & OBJF_READNOW))
1174 {
1175 if (should_print)
1176 {
1177 printf_unfiltered (_("expanding to full symbols..."));
1178 wrap_here ("");
1179 gdb_flush (gdb_stdout);
1180 }
1181
1182 if (objfile->sf)
1183 objfile->sf->qf->expand_all_symtabs (objfile);
1184 }
1185
1186 if (should_print && !objfile_has_symbols (objfile))
1187 {
1188 wrap_here ("");
1189 printf_unfiltered (_("(no debugging symbols found)..."));
1190 wrap_here ("");
1191 }
1192
1193 if (should_print)
1194 {
1195 if (deprecated_post_add_symbol_hook)
1196 deprecated_post_add_symbol_hook ();
1197 else
1198 printf_unfiltered (_("done.\n"));
1199 }
1200
1201 /* We print some messages regardless of whether 'from_tty ||
1202 info_verbose' is true, so make sure they go out at the right
1203 time. */
1204 gdb_flush (gdb_stdout);
1205
1206 if (objfile->sf == NULL)
1207 {
1208 observer_notify_new_objfile (objfile);
1209 return objfile; /* No symbols. */
1210 }
1211
1212 finish_new_objfile (objfile, add_flags);
1213
1214 observer_notify_new_objfile (objfile);
1215
1216 bfd_cache_close_all ();
1217 return (objfile);
1218 }
1219
1220 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1221 see the objfile constructor. */
1222
1223 void
1224 symbol_file_add_separate (bfd *bfd, const char *name,
1225 symfile_add_flags symfile_flags,
1226 struct objfile *objfile)
1227 {
1228 struct section_addr_info *sap;
1229 struct cleanup *my_cleanup;
1230
1231 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1232 because sections of BFD may not match sections of OBJFILE and because
1233 vma may have been modified by tools such as prelink. */
1234 sap = build_section_addr_info_from_objfile (objfile);
1235 my_cleanup = make_cleanup_free_section_addr_info (sap);
1236
1237 symbol_file_add_with_addrs
1238 (bfd, name, symfile_flags, sap,
1239 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1240 | OBJF_USERLOADED),
1241 objfile);
1242
1243 do_cleanups (my_cleanup);
1244 }
1245
1246 /* Process the symbol file ABFD, as either the main file or as a
1247 dynamically loaded file.
1248 See symbol_file_add_with_addrs's comments for details. */
1249
1250 struct objfile *
1251 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1252 symfile_add_flags add_flags,
1253 struct section_addr_info *addrs,
1254 objfile_flags flags, struct objfile *parent)
1255 {
1256 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1257 parent);
1258 }
1259
1260 /* Process a symbol file, as either the main file or as a dynamically
1261 loaded file. See symbol_file_add_with_addrs's comments for details. */
1262
1263 struct objfile *
1264 symbol_file_add (const char *name, symfile_add_flags add_flags,
1265 struct section_addr_info *addrs, objfile_flags flags)
1266 {
1267 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1268
1269 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1270 flags, NULL);
1271 }
1272
1273 /* Call symbol_file_add() with default values and update whatever is
1274 affected by the loading of a new main().
1275 Used when the file is supplied in the gdb command line
1276 and by some targets with special loading requirements.
1277 The auxiliary function, symbol_file_add_main_1(), has the flags
1278 argument for the switches that can only be specified in the symbol_file
1279 command itself. */
1280
1281 void
1282 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1283 {
1284 symbol_file_add_main_1 (args, add_flags, 0);
1285 }
1286
1287 static void
1288 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1289 objfile_flags flags)
1290 {
1291 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1292
1293 symbol_file_add (args, add_flags, NULL, flags);
1294
1295 /* Getting new symbols may change our opinion about
1296 what is frameless. */
1297 reinit_frame_cache ();
1298
1299 if ((add_flags & SYMFILE_NO_READ) == 0)
1300 set_initial_language ();
1301 }
1302
1303 void
1304 symbol_file_clear (int from_tty)
1305 {
1306 if ((have_full_symbols () || have_partial_symbols ())
1307 && from_tty
1308 && (symfile_objfile
1309 ? !query (_("Discard symbol table from `%s'? "),
1310 objfile_name (symfile_objfile))
1311 : !query (_("Discard symbol table? "))))
1312 error (_("Not confirmed."));
1313
1314 /* solib descriptors may have handles to objfiles. Wipe them before their
1315 objfiles get stale by free_all_objfiles. */
1316 no_shared_libraries (NULL, from_tty);
1317
1318 free_all_objfiles ();
1319
1320 gdb_assert (symfile_objfile == NULL);
1321 if (from_tty)
1322 printf_unfiltered (_("No symbol file now.\n"));
1323 }
1324
1325 /* See symfile.h. */
1326
1327 int separate_debug_file_debug = 0;
1328
1329 static int
1330 separate_debug_file_exists (const char *name, unsigned long crc,
1331 struct objfile *parent_objfile)
1332 {
1333 unsigned long file_crc;
1334 int file_crc_p;
1335 struct stat parent_stat, abfd_stat;
1336 int verified_as_different;
1337
1338 /* Find a separate debug info file as if symbols would be present in
1339 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1340 section can contain just the basename of PARENT_OBJFILE without any
1341 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1342 the separate debug infos with the same basename can exist. */
1343
1344 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1345 return 0;
1346
1347 if (separate_debug_file_debug)
1348 printf_unfiltered (_(" Trying %s\n"), name);
1349
1350 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1351
1352 if (abfd == NULL)
1353 return 0;
1354
1355 /* Verify symlinks were not the cause of filename_cmp name difference above.
1356
1357 Some operating systems, e.g. Windows, do not provide a meaningful
1358 st_ino; they always set it to zero. (Windows does provide a
1359 meaningful st_dev.) Files accessed from gdbservers that do not
1360 support the vFile:fstat packet will also have st_ino set to zero.
1361 Do not indicate a duplicate library in either case. While there
1362 is no guarantee that a system that provides meaningful inode
1363 numbers will never set st_ino to zero, this is merely an
1364 optimization, so we do not need to worry about false negatives. */
1365
1366 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1367 && abfd_stat.st_ino != 0
1368 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1369 {
1370 if (abfd_stat.st_dev == parent_stat.st_dev
1371 && abfd_stat.st_ino == parent_stat.st_ino)
1372 return 0;
1373 verified_as_different = 1;
1374 }
1375 else
1376 verified_as_different = 0;
1377
1378 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1379
1380 if (!file_crc_p)
1381 return 0;
1382
1383 if (crc != file_crc)
1384 {
1385 unsigned long parent_crc;
1386
1387 /* If the files could not be verified as different with
1388 bfd_stat then we need to calculate the parent's CRC
1389 to verify whether the files are different or not. */
1390
1391 if (!verified_as_different)
1392 {
1393 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1394 return 0;
1395 }
1396
1397 if (verified_as_different || parent_crc != file_crc)
1398 warning (_("the debug information found in \"%s\""
1399 " does not match \"%s\" (CRC mismatch).\n"),
1400 name, objfile_name (parent_objfile));
1401
1402 return 0;
1403 }
1404
1405 return 1;
1406 }
1407
1408 char *debug_file_directory = NULL;
1409 static void
1410 show_debug_file_directory (struct ui_file *file, int from_tty,
1411 struct cmd_list_element *c, const char *value)
1412 {
1413 fprintf_filtered (file,
1414 _("The directory where separate debug "
1415 "symbols are searched for is \"%s\".\n"),
1416 value);
1417 }
1418
1419 #if ! defined (DEBUG_SUBDIRECTORY)
1420 #define DEBUG_SUBDIRECTORY ".debug"
1421 #endif
1422
1423 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1424 where the original file resides (may not be the same as
1425 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1426 looking for. CANON_DIR is the "realpath" form of DIR.
1427 DIR must contain a trailing '/'.
1428 Returns the path of the file with separate debug info, of NULL. */
1429
1430 static char *
1431 find_separate_debug_file (const char *dir,
1432 const char *canon_dir,
1433 const char *debuglink,
1434 unsigned long crc32, struct objfile *objfile)
1435 {
1436 char *debugdir;
1437 char *debugfile;
1438 int i;
1439 VEC (char_ptr) *debugdir_vec;
1440 struct cleanup *back_to;
1441 int ix;
1442
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
1447 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1448 i = strlen (dir);
1449 if (canon_dir != NULL && strlen (canon_dir) > i)
1450 i = strlen (canon_dir);
1451
1452 debugfile
1453 = (char *) xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the global debugfile directories.
1477
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
1480
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1483
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, "/");
1488 strcat (debugfile, dir);
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
1501 strlen (gdb_sysroot)) == 0
1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1503 {
1504 strcpy (debugfile, debugdir);
1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1506 strcat (debugfile, "/");
1507 strcat (debugfile, debuglink);
1508
1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
1510 {
1511 do_cleanups (back_to);
1512 return debugfile;
1513 }
1514 }
1515 }
1516
1517 do_cleanups (back_to);
1518 xfree (debugfile);
1519 return NULL;
1520 }
1521
1522 /* Modify PATH to contain only "[/]directory/" part of PATH.
1523 If there were no directory separators in PATH, PATH will be empty
1524 string on return. */
1525
1526 static void
1527 terminate_after_last_dir_separator (char *path)
1528 {
1529 int i;
1530
1531 /* Strip off the final filename part, leaving the directory name,
1532 followed by a slash. The directory can be relative or absolute. */
1533 for (i = strlen(path) - 1; i >= 0; i--)
1534 if (IS_DIR_SEPARATOR (path[i]))
1535 break;
1536
1537 /* If I is -1 then no directory is present there and DIR will be "". */
1538 path[i + 1] = '\0';
1539 }
1540
1541 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1542 Returns pathname, or NULL. */
1543
1544 char *
1545 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1546 {
1547 char *debuglink;
1548 char *dir, *canon_dir;
1549 char *debugfile;
1550 unsigned long crc32;
1551 struct cleanup *cleanups;
1552
1553 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1554
1555 if (debuglink == NULL)
1556 {
1557 /* There's no separate debug info, hence there's no way we could
1558 load it => no warning. */
1559 return NULL;
1560 }
1561
1562 cleanups = make_cleanup (xfree, debuglink);
1563 dir = xstrdup (objfile_name (objfile));
1564 make_cleanup (xfree, dir);
1565 terminate_after_last_dir_separator (dir);
1566 canon_dir = lrealpath (dir);
1567
1568 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1569 crc32, objfile);
1570 xfree (canon_dir);
1571
1572 if (debugfile == NULL)
1573 {
1574 /* For PR gdb/9538, try again with realpath (if different from the
1575 original). */
1576
1577 struct stat st_buf;
1578
1579 if (lstat (objfile_name (objfile), &st_buf) == 0
1580 && S_ISLNK (st_buf.st_mode))
1581 {
1582 char *symlink_dir;
1583
1584 symlink_dir = lrealpath (objfile_name (objfile));
1585 if (symlink_dir != NULL)
1586 {
1587 make_cleanup (xfree, symlink_dir);
1588 terminate_after_last_dir_separator (symlink_dir);
1589 if (strcmp (dir, symlink_dir) != 0)
1590 {
1591 /* Different directory, so try using it. */
1592 debugfile = find_separate_debug_file (symlink_dir,
1593 symlink_dir,
1594 debuglink,
1595 crc32,
1596 objfile);
1597 }
1598 }
1599 }
1600 }
1601
1602 do_cleanups (cleanups);
1603 return debugfile;
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
1638 gdb_argv built_argv (args);
1639 for (char *arg : built_argv)
1640 {
1641 if (strcmp (arg, "-readnow") == 0)
1642 flags |= OBJF_READNOW;
1643 else if (*arg == '-')
1644 error (_("unknown option `%s'"), arg);
1645 else
1646 {
1647 symbol_file_add_main_1 (arg, add_flags, flags);
1648 name = arg;
1649 }
1650 }
1651
1652 if (name == NULL)
1653 error (_("no symbol file name was specified"));
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = main_language ();
1672
1673 if (lang == language_unknown)
1674 {
1675 char *name = main_name ();
1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1677
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
1680 }
1681
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1702
1703 if (!is_target_filename (name))
1704 {
1705 char *absolute_name;
1706
1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1708
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1713 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1714 if (desc < 0)
1715 {
1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1717
1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
1723 #endif
1724 if (desc < 0)
1725 perror_with_name (expanded_name.get ());
1726
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
1730
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
1738
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742
1743 do_cleanups (back_to);
1744
1745 return sym_bfd;
1746 }
1747
1748 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
1751 int
1752 get_section_index (struct objfile *objfile, const char *section_name)
1753 {
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1755
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760 }
1761
1762 /* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
1767
1768 void
1769 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1770 {
1771 symtab_fns.emplace_back (flavour, sf);
1772 }
1773
1774 /* Initialize OBJFILE to read symbols from its associated BFD. It
1775 either returns or calls error(). The result is an initialized
1776 struct sym_fns in the objfile structure, that contains cached
1777 information about the symbol file. */
1778
1779 static const struct sym_fns *
1780 find_sym_fns (bfd *abfd)
1781 {
1782 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1783
1784 if (our_flavour == bfd_target_srec_flavour
1785 || our_flavour == bfd_target_ihex_flavour
1786 || our_flavour == bfd_target_tekhex_flavour)
1787 return NULL; /* No symbols. */
1788
1789 for (const registered_sym_fns &rsf : symtab_fns)
1790 if (our_flavour == rsf.sym_flavour)
1791 return rsf.sym_fns;
1792
1793 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1794 bfd_get_target (abfd));
1795 }
1796 \f
1797
1798 /* This function runs the load command of our current target. */
1799
1800 static void
1801 load_command (char *arg, int from_tty)
1802 {
1803 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1804
1805 dont_repeat ();
1806
1807 /* The user might be reloading because the binary has changed. Take
1808 this opportunity to check. */
1809 reopen_exec_file ();
1810 reread_symbols ();
1811
1812 if (arg == NULL)
1813 {
1814 char *parg;
1815 int count = 0;
1816
1817 parg = arg = get_exec_file (1);
1818
1819 /* Count how many \ " ' tab space there are in the name. */
1820 while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 {
1822 parg++;
1823 count++;
1824 }
1825
1826 if (count)
1827 {
1828 /* We need to quote this string so buildargv can pull it apart. */
1829 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1830 char *ptemp = temp;
1831 char *prev;
1832
1833 make_cleanup (xfree, temp);
1834
1835 prev = parg = arg;
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 strncpy (ptemp, prev, parg - prev);
1839 ptemp += parg - prev;
1840 prev = parg++;
1841 *ptemp++ = '\\';
1842 }
1843 strcpy (ptemp, prev);
1844
1845 arg = temp;
1846 }
1847 }
1848
1849 target_load (arg, from_tty);
1850
1851 /* After re-loading the executable, we don't really know which
1852 overlays are mapped any more. */
1853 overlay_cache_invalid = 1;
1854
1855 do_cleanups (cleanup);
1856 }
1857
1858 /* This version of "load" should be usable for any target. Currently
1859 it is just used for remote targets, not inftarg.c or core files,
1860 on the theory that only in that case is it useful.
1861
1862 Avoiding xmodem and the like seems like a win (a) because we don't have
1863 to worry about finding it, and (b) On VMS, fork() is very slow and so
1864 we don't want to run a subprocess. On the other hand, I'm not sure how
1865 performance compares. */
1866
1867 static int validate_download = 0;
1868
1869 /* Callback service function for generic_load (bfd_map_over_sections). */
1870
1871 static void
1872 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1873 {
1874 bfd_size_type *sum = (bfd_size_type *) data;
1875
1876 *sum += bfd_get_section_size (asec);
1877 }
1878
1879 /* Opaque data for load_section_callback. */
1880 struct load_section_data {
1881 CORE_ADDR load_offset;
1882 struct load_progress_data *progress_data;
1883 VEC(memory_write_request_s) *requests;
1884 };
1885
1886 /* Opaque data for load_progress. */
1887 struct load_progress_data {
1888 /* Cumulative data. */
1889 unsigned long write_count;
1890 unsigned long data_count;
1891 bfd_size_type total_size;
1892 };
1893
1894 /* Opaque data for load_progress for a single section. */
1895 struct load_progress_section_data {
1896 struct load_progress_data *cumulative;
1897
1898 /* Per-section data. */
1899 const char *section_name;
1900 ULONGEST section_sent;
1901 ULONGEST section_size;
1902 CORE_ADDR lma;
1903 gdb_byte *buffer;
1904 };
1905
1906 /* Target write callback routine for progress reporting. */
1907
1908 static void
1909 load_progress (ULONGEST bytes, void *untyped_arg)
1910 {
1911 struct load_progress_section_data *args
1912 = (struct load_progress_section_data *) untyped_arg;
1913 struct load_progress_data *totals;
1914
1915 if (args == NULL)
1916 /* Writing padding data. No easy way to get at the cumulative
1917 stats, so just ignore this. */
1918 return;
1919
1920 totals = args->cumulative;
1921
1922 if (bytes == 0 && args->section_sent == 0)
1923 {
1924 /* The write is just starting. Let the user know we've started
1925 this section. */
1926 current_uiout->message ("Loading section %s, size %s lma %s\n",
1927 args->section_name,
1928 hex_string (args->section_size),
1929 paddress (target_gdbarch (), args->lma));
1930 return;
1931 }
1932
1933 if (validate_download)
1934 {
1935 /* Broken memories and broken monitors manifest themselves here
1936 when bring new computers to life. This doubles already slow
1937 downloads. */
1938 /* NOTE: cagney/1999-10-18: A more efficient implementation
1939 might add a verify_memory() method to the target vector and
1940 then use that. remote.c could implement that method using
1941 the ``qCRC'' packet. */
1942 gdb::byte_vector check (bytes);
1943
1944 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1945 error (_("Download verify read failed at %s"),
1946 paddress (target_gdbarch (), args->lma));
1947 if (memcmp (args->buffer, check.data (), bytes) != 0)
1948 error (_("Download verify compare failed at %s"),
1949 paddress (target_gdbarch (), args->lma));
1950 }
1951 totals->data_count += bytes;
1952 args->lma += bytes;
1953 args->buffer += bytes;
1954 totals->write_count += 1;
1955 args->section_sent += bytes;
1956 if (check_quit_flag ()
1957 || (deprecated_ui_load_progress_hook != NULL
1958 && deprecated_ui_load_progress_hook (args->section_name,
1959 args->section_sent)))
1960 error (_("Canceled the download"));
1961
1962 if (deprecated_show_load_progress != NULL)
1963 deprecated_show_load_progress (args->section_name,
1964 args->section_sent,
1965 args->section_size,
1966 totals->data_count,
1967 totals->total_size);
1968 }
1969
1970 /* Callback service function for generic_load (bfd_map_over_sections). */
1971
1972 static void
1973 load_section_callback (bfd *abfd, asection *asec, void *data)
1974 {
1975 struct memory_write_request *new_request;
1976 struct load_section_data *args = (struct load_section_data *) data;
1977 struct load_progress_section_data *section_data;
1978 bfd_size_type size = bfd_get_section_size (asec);
1979 gdb_byte *buffer;
1980 const char *sect_name = bfd_get_section_name (abfd, asec);
1981
1982 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1983 return;
1984
1985 if (size == 0)
1986 return;
1987
1988 new_request = VEC_safe_push (memory_write_request_s,
1989 args->requests, NULL);
1990 memset (new_request, 0, sizeof (struct memory_write_request));
1991 section_data = XCNEW (struct load_progress_section_data);
1992 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1993 new_request->end = new_request->begin + size; /* FIXME Should size
1994 be in instead? */
1995 new_request->data = (gdb_byte *) xmalloc (size);
1996 new_request->baton = section_data;
1997
1998 buffer = new_request->data;
1999
2000 section_data->cumulative = args->progress_data;
2001 section_data->section_name = sect_name;
2002 section_data->section_size = size;
2003 section_data->lma = new_request->begin;
2004 section_data->buffer = buffer;
2005
2006 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2007 }
2008
2009 /* Clean up an entire memory request vector, including load
2010 data and progress records. */
2011
2012 static void
2013 clear_memory_write_data (void *arg)
2014 {
2015 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2016 VEC(memory_write_request_s) *vec = *vec_p;
2017 int i;
2018 struct memory_write_request *mr;
2019
2020 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2021 {
2022 xfree (mr->data);
2023 xfree (mr->baton);
2024 }
2025 VEC_free (memory_write_request_s, vec);
2026 }
2027
2028 static void print_transfer_performance (struct ui_file *stream,
2029 unsigned long data_count,
2030 unsigned long write_count,
2031 std::chrono::steady_clock::duration d);
2032
2033 void
2034 generic_load (const char *args, int from_tty)
2035 {
2036 struct cleanup *old_cleanups;
2037 struct load_section_data cbdata;
2038 struct load_progress_data total_progress;
2039 struct ui_out *uiout = current_uiout;
2040
2041 CORE_ADDR entry;
2042
2043 memset (&cbdata, 0, sizeof (cbdata));
2044 memset (&total_progress, 0, sizeof (total_progress));
2045 cbdata.progress_data = &total_progress;
2046
2047 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2048
2049 if (args == NULL)
2050 error_no_arg (_("file to load"));
2051
2052 gdb_argv argv (args);
2053
2054 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2055
2056 if (argv[1] != NULL)
2057 {
2058 const char *endptr;
2059
2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
2069 }
2070
2071 /* Open the file for loading. */
2072 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2073 if (loadfile_bfd == NULL)
2074 perror_with_name (filename.get ());
2075
2076 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2077 {
2078 error (_("\"%s\" is not an object file: %s"), filename.get (),
2079 bfd_errmsg (bfd_get_error ()));
2080 }
2081
2082 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2083 (void *) &total_progress.total_size);
2084
2085 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2086
2087 using namespace std::chrono;
2088
2089 steady_clock::time_point start_time = steady_clock::now ();
2090
2091 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2092 load_progress) != 0)
2093 error (_("Load failed"));
2094
2095 steady_clock::time_point end_time = steady_clock::now ();
2096
2097 entry = bfd_get_start_address (loadfile_bfd.get ());
2098 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2099 uiout->text ("Start address ");
2100 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2101 uiout->text (", load size ");
2102 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2103 uiout->text ("\n");
2104 regcache_write_pc (get_current_regcache (), entry);
2105
2106 /* Reset breakpoints, now that we have changed the load image. For
2107 instance, breakpoints may have been set (or reset, by
2108 post_create_inferior) while connected to the target but before we
2109 loaded the program. In that case, the prologue analyzer could
2110 have read instructions from the target to find the right
2111 breakpoint locations. Loading has changed the contents of that
2112 memory. */
2113
2114 breakpoint_re_set ();
2115
2116 print_transfer_performance (gdb_stdout, total_progress.data_count,
2117 total_progress.write_count,
2118 end_time - start_time);
2119
2120 do_cleanups (old_cleanups);
2121 }
2122
2123 /* Report on STREAM the performance of a memory transfer operation,
2124 such as 'load'. DATA_COUNT is the number of bytes transferred.
2125 WRITE_COUNT is the number of separate write operations, or 0, if
2126 that information is not available. TIME is how long the operation
2127 lasted. */
2128
2129 static void
2130 print_transfer_performance (struct ui_file *stream,
2131 unsigned long data_count,
2132 unsigned long write_count,
2133 std::chrono::steady_clock::duration time)
2134 {
2135 using namespace std::chrono;
2136 struct ui_out *uiout = current_uiout;
2137
2138 milliseconds ms = duration_cast<milliseconds> (time);
2139
2140 uiout->text ("Transfer rate: ");
2141 if (ms.count () > 0)
2142 {
2143 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2144
2145 if (uiout->is_mi_like_p ())
2146 {
2147 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2148 uiout->text (" bits/sec");
2149 }
2150 else if (rate < 1024)
2151 {
2152 uiout->field_fmt ("transfer-rate", "%lu", rate);
2153 uiout->text (" bytes/sec");
2154 }
2155 else
2156 {
2157 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2158 uiout->text (" KB/sec");
2159 }
2160 }
2161 else
2162 {
2163 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2164 uiout->text (" bits in <1 sec");
2165 }
2166 if (write_count > 0)
2167 {
2168 uiout->text (", ");
2169 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2170 uiout->text (" bytes/write");
2171 }
2172 uiout->text (".\n");
2173 }
2174
2175 /* This function allows the addition of incrementally linked object files.
2176 It does not modify any state in the target, only in the debugger. */
2177 /* Note: ezannoni 2000-04-13 This function/command used to have a
2178 special case syntax for the rombug target (Rombug is the boot
2179 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2180 rombug case, the user doesn't need to supply a text address,
2181 instead a call to target_link() (in target.c) would supply the
2182 value to use. We are now discontinuing this type of ad hoc syntax. */
2183
2184 static void
2185 add_symbol_file_command (const char *args, int from_tty)
2186 {
2187 struct gdbarch *gdbarch = get_current_arch ();
2188 gdb::unique_xmalloc_ptr<char> filename;
2189 char *arg;
2190 int argcnt = 0;
2191 int sec_num = 0;
2192 int expecting_sec_name = 0;
2193 int expecting_sec_addr = 0;
2194 struct objfile *objf;
2195 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2196 symfile_add_flags add_flags = 0;
2197
2198 if (from_tty)
2199 add_flags |= SYMFILE_VERBOSE;
2200
2201 struct sect_opt
2202 {
2203 const char *name;
2204 const char *value;
2205 };
2206
2207 struct section_addr_info *section_addrs;
2208 std::vector<sect_opt> sect_opts;
2209 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2210
2211 dont_repeat ();
2212
2213 if (args == NULL)
2214 error (_("add-symbol-file takes a file name and an address"));
2215
2216 gdb_argv argv (args);
2217
2218 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2219 {
2220 /* Process the argument. */
2221 if (argcnt == 0)
2222 {
2223 /* The first argument is the file name. */
2224 filename.reset (tilde_expand (arg));
2225 }
2226 else if (argcnt == 1)
2227 {
2228 /* The second argument is always the text address at which
2229 to load the program. */
2230 sect_opt sect = { ".text", arg };
2231 sect_opts.push_back (sect);
2232 }
2233 else
2234 {
2235 /* It's an option (starting with '-') or it's an argument
2236 to an option. */
2237 if (expecting_sec_name)
2238 {
2239 sect_opt sect = { arg, NULL };
2240 sect_opts.push_back (sect);
2241 expecting_sec_name = 0;
2242 }
2243 else if (expecting_sec_addr)
2244 {
2245 sect_opts.back ().value = arg;
2246 expecting_sec_addr = 0;
2247 }
2248 else if (strcmp (arg, "-readnow") == 0)
2249 flags |= OBJF_READNOW;
2250 else if (strcmp (arg, "-s") == 0)
2251 {
2252 expecting_sec_name = 1;
2253 expecting_sec_addr = 1;
2254 }
2255 else
2256 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2257 " [-readnow] [-s <secname> <addr>]*"));
2258 }
2259 }
2260
2261 /* This command takes at least two arguments. The first one is a
2262 filename, and the second is the address where this file has been
2263 loaded. Abort now if this address hasn't been provided by the
2264 user. */
2265 if (sect_opts.empty ())
2266 error (_("The address where %s has been loaded is missing"),
2267 filename.get ());
2268
2269 /* Print the prompt for the query below. And save the arguments into
2270 a sect_addr_info structure to be passed around to other
2271 functions. We have to split this up into separate print
2272 statements because hex_string returns a local static
2273 string. */
2274
2275 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2276 filename.get ());
2277 section_addrs = alloc_section_addr_info (sect_opts.size ());
2278 make_cleanup (xfree, section_addrs);
2279 for (sect_opt &sect : sect_opts)
2280 {
2281 CORE_ADDR addr;
2282 const char *val = sect.value;
2283 const char *sec = sect.name;
2284
2285 addr = parse_and_eval_address (val);
2286
2287 /* Here we store the section offsets in the order they were
2288 entered on the command line. */
2289 section_addrs->other[sec_num].name = (char *) sec;
2290 section_addrs->other[sec_num].addr = addr;
2291 printf_unfiltered ("\t%s_addr = %s\n", sec,
2292 paddress (gdbarch, addr));
2293 sec_num++;
2294
2295 /* The object's sections are initialized when a
2296 call is made to build_objfile_section_table (objfile).
2297 This happens in reread_symbols.
2298 At this point, we don't know what file type this is,
2299 so we can't determine what section names are valid. */
2300 }
2301 section_addrs->num_sections = sec_num;
2302
2303 if (from_tty && (!query ("%s", "")))
2304 error (_("Not confirmed."));
2305
2306 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2307
2308 add_target_sections_of_objfile (objf);
2309
2310 /* Getting new symbols may change our opinion about what is
2311 frameless. */
2312 reinit_frame_cache ();
2313 do_cleanups (my_cleanups);
2314 }
2315 \f
2316
2317 /* This function removes a symbol file that was added via add-symbol-file. */
2318
2319 static void
2320 remove_symbol_file_command (const char *args, int from_tty)
2321 {
2322 struct objfile *objf = NULL;
2323 struct program_space *pspace = current_program_space;
2324
2325 dont_repeat ();
2326
2327 if (args == NULL)
2328 error (_("remove-symbol-file: no symbol file provided"));
2329
2330 gdb_argv argv (args);
2331
2332 if (strcmp (argv[0], "-a") == 0)
2333 {
2334 /* Interpret the next argument as an address. */
2335 CORE_ADDR addr;
2336
2337 if (argv[1] == NULL)
2338 error (_("Missing address argument"));
2339
2340 if (argv[2] != NULL)
2341 error (_("Junk after %s"), argv[1]);
2342
2343 addr = parse_and_eval_address (argv[1]);
2344
2345 ALL_OBJFILES (objf)
2346 {
2347 if ((objf->flags & OBJF_USERLOADED) != 0
2348 && (objf->flags & OBJF_SHARED) != 0
2349 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2350 break;
2351 }
2352 }
2353 else if (argv[0] != NULL)
2354 {
2355 /* Interpret the current argument as a file name. */
2356
2357 if (argv[1] != NULL)
2358 error (_("Junk after %s"), argv[0]);
2359
2360 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2361
2362 ALL_OBJFILES (objf)
2363 {
2364 if ((objf->flags & OBJF_USERLOADED) != 0
2365 && (objf->flags & OBJF_SHARED) != 0
2366 && objf->pspace == pspace
2367 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2368 break;
2369 }
2370 }
2371
2372 if (objf == NULL)
2373 error (_("No symbol file found"));
2374
2375 if (from_tty
2376 && !query (_("Remove symbol table from file \"%s\"? "),
2377 objfile_name (objf)))
2378 error (_("Not confirmed."));
2379
2380 delete objf;
2381 clear_symtab_users (0);
2382 }
2383
2384 /* Re-read symbols if a symbol-file has changed. */
2385
2386 void
2387 reread_symbols (void)
2388 {
2389 struct objfile *objfile;
2390 long new_modtime;
2391 struct stat new_statbuf;
2392 int res;
2393 std::vector<struct objfile *> new_objfiles;
2394
2395 /* With the addition of shared libraries, this should be modified,
2396 the load time should be saved in the partial symbol tables, since
2397 different tables may come from different source files. FIXME.
2398 This routine should then walk down each partial symbol table
2399 and see if the symbol table that it originates from has been changed. */
2400
2401 for (objfile = object_files; objfile; objfile = objfile->next)
2402 {
2403 if (objfile->obfd == NULL)
2404 continue;
2405
2406 /* Separate debug objfiles are handled in the main objfile. */
2407 if (objfile->separate_debug_objfile_backlink)
2408 continue;
2409
2410 /* If this object is from an archive (what you usually create with
2411 `ar', often called a `static library' on most systems, though
2412 a `shared library' on AIX is also an archive), then you should
2413 stat on the archive name, not member name. */
2414 if (objfile->obfd->my_archive)
2415 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2416 else
2417 res = stat (objfile_name (objfile), &new_statbuf);
2418 if (res != 0)
2419 {
2420 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2421 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2422 objfile_name (objfile));
2423 continue;
2424 }
2425 new_modtime = new_statbuf.st_mtime;
2426 if (new_modtime != objfile->mtime)
2427 {
2428 struct cleanup *old_cleanups;
2429 struct section_offsets *offsets;
2430 int num_offsets;
2431 char *original_name;
2432
2433 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2434 objfile_name (objfile));
2435
2436 /* There are various functions like symbol_file_add,
2437 symfile_bfd_open, syms_from_objfile, etc., which might
2438 appear to do what we want. But they have various other
2439 effects which we *don't* want. So we just do stuff
2440 ourselves. We don't worry about mapped files (for one thing,
2441 any mapped file will be out of date). */
2442
2443 /* If we get an error, blow away this objfile (not sure if
2444 that is the correct response for things like shared
2445 libraries). */
2446 old_cleanups = make_cleanup_free_objfile (objfile);
2447 /* We need to do this whenever any symbols go away. */
2448 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2449
2450 if (exec_bfd != NULL
2451 && filename_cmp (bfd_get_filename (objfile->obfd),
2452 bfd_get_filename (exec_bfd)) == 0)
2453 {
2454 /* Reload EXEC_BFD without asking anything. */
2455
2456 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2457 }
2458
2459 /* Keep the calls order approx. the same as in free_objfile. */
2460
2461 /* Free the separate debug objfiles. It will be
2462 automatically recreated by sym_read. */
2463 free_objfile_separate_debug (objfile);
2464
2465 /* Remove any references to this objfile in the global
2466 value lists. */
2467 preserve_values (objfile);
2468
2469 /* Nuke all the state that we will re-read. Much of the following
2470 code which sets things to NULL really is necessary to tell
2471 other parts of GDB that there is nothing currently there.
2472
2473 Try to keep the freeing order compatible with free_objfile. */
2474
2475 if (objfile->sf != NULL)
2476 {
2477 (*objfile->sf->sym_finish) (objfile);
2478 }
2479
2480 clear_objfile_data (objfile);
2481
2482 /* Clean up any state BFD has sitting around. */
2483 {
2484 gdb_bfd_ref_ptr obfd (objfile->obfd);
2485 char *obfd_filename;
2486
2487 obfd_filename = bfd_get_filename (objfile->obfd);
2488 /* Open the new BFD before freeing the old one, so that
2489 the filename remains live. */
2490 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2491 objfile->obfd = temp.release ();
2492 if (objfile->obfd == NULL)
2493 error (_("Can't open %s to read symbols."), obfd_filename);
2494 }
2495
2496 original_name = xstrdup (objfile->original_name);
2497 make_cleanup (xfree, original_name);
2498
2499 /* bfd_openr sets cacheable to true, which is what we want. */
2500 if (!bfd_check_format (objfile->obfd, bfd_object))
2501 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2502 bfd_errmsg (bfd_get_error ()));
2503
2504 /* Save the offsets, we will nuke them with the rest of the
2505 objfile_obstack. */
2506 num_offsets = objfile->num_sections;
2507 offsets = ((struct section_offsets *)
2508 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2509 memcpy (offsets, objfile->section_offsets,
2510 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2511
2512 /* FIXME: Do we have to free a whole linked list, or is this
2513 enough? */
2514 objfile->global_psymbols.clear ();
2515 objfile->static_psymbols.clear ();
2516
2517 /* Free the obstacks for non-reusable objfiles. */
2518 psymbol_bcache_free (objfile->psymbol_cache);
2519 objfile->psymbol_cache = psymbol_bcache_init ();
2520
2521 /* NB: after this call to obstack_free, objfiles_changed
2522 will need to be called (see discussion below). */
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->compunit_symtabs = NULL;
2526 objfile->psymtabs = NULL;
2527 objfile->psymtabs_addrmap = NULL;
2528 objfile->free_psymtabs = NULL;
2529 objfile->template_symbols = NULL;
2530
2531 /* obstack_init also initializes the obstack so it is
2532 empty. We could use obstack_specify_allocation but
2533 gdb_obstack.h specifies the alloc/dealloc functions. */
2534 obstack_init (&objfile->objfile_obstack);
2535
2536 /* set_objfile_per_bfd potentially allocates the per-bfd
2537 data on the objfile's obstack (if sharing data across
2538 multiple users is not possible), so it's important to
2539 do it *after* the obstack has been initialized. */
2540 set_objfile_per_bfd (objfile);
2541
2542 objfile->original_name
2543 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2544 strlen (original_name));
2545
2546 /* Reset the sym_fns pointer. The ELF reader can change it
2547 based on whether .gdb_index is present, and we need it to
2548 start over. PR symtab/15885 */
2549 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2550
2551 build_objfile_section_table (objfile);
2552 terminate_minimal_symbol_table (objfile);
2553
2554 /* We use the same section offsets as from last time. I'm not
2555 sure whether that is always correct for shared libraries. */
2556 objfile->section_offsets = (struct section_offsets *)
2557 obstack_alloc (&objfile->objfile_obstack,
2558 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2559 memcpy (objfile->section_offsets, offsets,
2560 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2561 objfile->num_sections = num_offsets;
2562
2563 /* What the hell is sym_new_init for, anyway? The concept of
2564 distinguishing between the main file and additional files
2565 in this way seems rather dubious. */
2566 if (objfile == symfile_objfile)
2567 {
2568 (*objfile->sf->sym_new_init) (objfile);
2569 }
2570
2571 (*objfile->sf->sym_init) (objfile);
2572 clear_complaints (&symfile_complaints, 1, 1);
2573
2574 objfile->flags &= ~OBJF_PSYMTABS_READ;
2575
2576 /* We are about to read new symbols and potentially also
2577 DWARF information. Some targets may want to pass addresses
2578 read from DWARF DIE's through an adjustment function before
2579 saving them, like MIPS, which may call into
2580 "find_pc_section". When called, that function will make
2581 use of per-objfile program space data.
2582
2583 Since we discarded our section information above, we have
2584 dangling pointers in the per-objfile program space data
2585 structure. Force GDB to update the section mapping
2586 information by letting it know the objfile has changed,
2587 making the dangling pointers point to correct data
2588 again. */
2589
2590 objfiles_changed ();
2591
2592 read_symbols (objfile, 0);
2593
2594 if (!objfile_has_symbols (objfile))
2595 {
2596 wrap_here ("");
2597 printf_unfiltered (_("(no debugging symbols found)\n"));
2598 wrap_here ("");
2599 }
2600
2601 /* We're done reading the symbol file; finish off complaints. */
2602 clear_complaints (&symfile_complaints, 0, 1);
2603
2604 /* Getting new symbols may change our opinion about what is
2605 frameless. */
2606
2607 reinit_frame_cache ();
2608
2609 /* Discard cleanups as symbol reading was successful. */
2610 discard_cleanups (old_cleanups);
2611
2612 /* If the mtime has changed between the time we set new_modtime
2613 and now, we *want* this to be out of date, so don't call stat
2614 again now. */
2615 objfile->mtime = new_modtime;
2616 init_entry_point_info (objfile);
2617
2618 new_objfiles.push_back (objfile);
2619 }
2620 }
2621
2622 if (!new_objfiles.empty ())
2623 {
2624 clear_symtab_users (0);
2625
2626 /* clear_objfile_data for each objfile was called before freeing it and
2627 observer_notify_new_objfile (NULL) has been called by
2628 clear_symtab_users above. Notify the new files now. */
2629 for (auto iter : new_objfiles)
2630 observer_notify_new_objfile (iter);
2631
2632 /* At least one objfile has changed, so we can consider that
2633 the executable we're debugging has changed too. */
2634 observer_notify_executable_changed ();
2635 }
2636 }
2637 \f
2638
2639 typedef struct
2640 {
2641 char *ext;
2642 enum language lang;
2643 } filename_language;
2644
2645 DEF_VEC_O (filename_language);
2646
2647 static VEC (filename_language) *filename_language_table;
2648
2649 /* See symfile.h. */
2650
2651 void
2652 add_filename_language (const char *ext, enum language lang)
2653 {
2654 filename_language entry;
2655
2656 entry.ext = xstrdup (ext);
2657 entry.lang = lang;
2658
2659 VEC_safe_push (filename_language, filename_language_table, &entry);
2660 }
2661
2662 static char *ext_args;
2663 static void
2664 show_ext_args (struct ui_file *file, int from_tty,
2665 struct cmd_list_element *c, const char *value)
2666 {
2667 fprintf_filtered (file,
2668 _("Mapping between filename extension "
2669 "and source language is \"%s\".\n"),
2670 value);
2671 }
2672
2673 static void
2674 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2675 {
2676 int i;
2677 char *cp = ext_args;
2678 enum language lang;
2679 filename_language *entry;
2680
2681 /* First arg is filename extension, starting with '.' */
2682 if (*cp != '.')
2683 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2684
2685 /* Find end of first arg. */
2686 while (*cp && !isspace (*cp))
2687 cp++;
2688
2689 if (*cp == '\0')
2690 error (_("'%s': two arguments required -- "
2691 "filename extension and language"),
2692 ext_args);
2693
2694 /* Null-terminate first arg. */
2695 *cp++ = '\0';
2696
2697 /* Find beginning of second arg, which should be a source language. */
2698 cp = skip_spaces (cp);
2699
2700 if (*cp == '\0')
2701 error (_("'%s': two arguments required -- "
2702 "filename extension and language"),
2703 ext_args);
2704
2705 /* Lookup the language from among those we know. */
2706 lang = language_enum (cp);
2707
2708 /* Now lookup the filename extension: do we already know it? */
2709 for (i = 0;
2710 VEC_iterate (filename_language, filename_language_table, i, entry);
2711 ++i)
2712 {
2713 if (0 == strcmp (ext_args, entry->ext))
2714 break;
2715 }
2716
2717 if (entry == NULL)
2718 {
2719 /* New file extension. */
2720 add_filename_language (ext_args, lang);
2721 }
2722 else
2723 {
2724 /* Redefining a previously known filename extension. */
2725
2726 /* if (from_tty) */
2727 /* query ("Really make files of type %s '%s'?", */
2728 /* ext_args, language_str (lang)); */
2729
2730 xfree (entry->ext);
2731 entry->ext = xstrdup (ext_args);
2732 entry->lang = lang;
2733 }
2734 }
2735
2736 static void
2737 info_ext_lang_command (char *args, int from_tty)
2738 {
2739 int i;
2740 filename_language *entry;
2741
2742 printf_filtered (_("Filename extensions and the languages they represent:"));
2743 printf_filtered ("\n\n");
2744 for (i = 0;
2745 VEC_iterate (filename_language, filename_language_table, i, entry);
2746 ++i)
2747 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2748 }
2749
2750 enum language
2751 deduce_language_from_filename (const char *filename)
2752 {
2753 int i;
2754 const char *cp;
2755
2756 if (filename != NULL)
2757 if ((cp = strrchr (filename, '.')) != NULL)
2758 {
2759 filename_language *entry;
2760
2761 for (i = 0;
2762 VEC_iterate (filename_language, filename_language_table, i, entry);
2763 ++i)
2764 if (strcmp (cp, entry->ext) == 0)
2765 return entry->lang;
2766 }
2767
2768 return language_unknown;
2769 }
2770 \f
2771 /* Allocate and initialize a new symbol table.
2772 CUST is from the result of allocate_compunit_symtab. */
2773
2774 struct symtab *
2775 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2776 {
2777 struct objfile *objfile = cust->objfile;
2778 struct symtab *symtab
2779 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2780
2781 symtab->filename
2782 = (const char *) bcache (filename, strlen (filename) + 1,
2783 objfile->per_bfd->filename_cache);
2784 symtab->fullname = NULL;
2785 symtab->language = deduce_language_from_filename (filename);
2786
2787 /* This can be very verbose with lots of headers.
2788 Only print at higher debug levels. */
2789 if (symtab_create_debug >= 2)
2790 {
2791 /* Be a bit clever with debugging messages, and don't print objfile
2792 every time, only when it changes. */
2793 static char *last_objfile_name = NULL;
2794
2795 if (last_objfile_name == NULL
2796 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2797 {
2798 xfree (last_objfile_name);
2799 last_objfile_name = xstrdup (objfile_name (objfile));
2800 fprintf_unfiltered (gdb_stdlog,
2801 "Creating one or more symtabs for objfile %s ...\n",
2802 last_objfile_name);
2803 }
2804 fprintf_unfiltered (gdb_stdlog,
2805 "Created symtab %s for module %s.\n",
2806 host_address_to_string (symtab), filename);
2807 }
2808
2809 /* Add it to CUST's list of symtabs. */
2810 if (cust->filetabs == NULL)
2811 {
2812 cust->filetabs = symtab;
2813 cust->last_filetab = symtab;
2814 }
2815 else
2816 {
2817 cust->last_filetab->next = symtab;
2818 cust->last_filetab = symtab;
2819 }
2820
2821 /* Backlink to the containing compunit symtab. */
2822 symtab->compunit_symtab = cust;
2823
2824 return symtab;
2825 }
2826
2827 /* Allocate and initialize a new compunit.
2828 NAME is the name of the main source file, if there is one, or some
2829 descriptive text if there are no source files. */
2830
2831 struct compunit_symtab *
2832 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2833 {
2834 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2835 struct compunit_symtab);
2836 const char *saved_name;
2837
2838 cu->objfile = objfile;
2839
2840 /* The name we record here is only for display/debugging purposes.
2841 Just save the basename to avoid path issues (too long for display,
2842 relative vs absolute, etc.). */
2843 saved_name = lbasename (name);
2844 cu->name
2845 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2846 strlen (saved_name));
2847
2848 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2849
2850 if (symtab_create_debug)
2851 {
2852 fprintf_unfiltered (gdb_stdlog,
2853 "Created compunit symtab %s for %s.\n",
2854 host_address_to_string (cu),
2855 cu->name);
2856 }
2857
2858 return cu;
2859 }
2860
2861 /* Hook CU to the objfile it comes from. */
2862
2863 void
2864 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2865 {
2866 cu->next = cu->objfile->compunit_symtabs;
2867 cu->objfile->compunit_symtabs = cu;
2868 }
2869 \f
2870
2871 /* Reset all data structures in gdb which may contain references to
2872 symbol table data. */
2873
2874 void
2875 clear_symtab_users (symfile_add_flags add_flags)
2876 {
2877 /* Someday, we should do better than this, by only blowing away
2878 the things that really need to be blown. */
2879
2880 /* Clear the "current" symtab first, because it is no longer valid.
2881 breakpoint_re_set may try to access the current symtab. */
2882 clear_current_source_symtab_and_line ();
2883
2884 clear_displays ();
2885 clear_last_displayed_sal ();
2886 clear_pc_function_cache ();
2887 observer_notify_new_objfile (NULL);
2888
2889 /* Clear globals which might have pointed into a removed objfile.
2890 FIXME: It's not clear which of these are supposed to persist
2891 between expressions and which ought to be reset each time. */
2892 expression_context_block = NULL;
2893 innermost_block = NULL;
2894
2895 /* Varobj may refer to old symbols, perform a cleanup. */
2896 varobj_invalidate ();
2897
2898 /* Now that the various caches have been cleared, we can re_set
2899 our breakpoints without risking it using stale data. */
2900 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2901 breakpoint_re_set ();
2902 }
2903
2904 static void
2905 clear_symtab_users_cleanup (void *ignore)
2906 {
2907 clear_symtab_users (0);
2908 }
2909 \f
2910 /* OVERLAYS:
2911 The following code implements an abstraction for debugging overlay sections.
2912
2913 The target model is as follows:
2914 1) The gnu linker will permit multiple sections to be mapped into the
2915 same VMA, each with its own unique LMA (or load address).
2916 2) It is assumed that some runtime mechanism exists for mapping the
2917 sections, one by one, from the load address into the VMA address.
2918 3) This code provides a mechanism for gdb to keep track of which
2919 sections should be considered to be mapped from the VMA to the LMA.
2920 This information is used for symbol lookup, and memory read/write.
2921 For instance, if a section has been mapped then its contents
2922 should be read from the VMA, otherwise from the LMA.
2923
2924 Two levels of debugger support for overlays are available. One is
2925 "manual", in which the debugger relies on the user to tell it which
2926 overlays are currently mapped. This level of support is
2927 implemented entirely in the core debugger, and the information about
2928 whether a section is mapped is kept in the objfile->obj_section table.
2929
2930 The second level of support is "automatic", and is only available if
2931 the target-specific code provides functionality to read the target's
2932 overlay mapping table, and translate its contents for the debugger
2933 (by updating the mapped state information in the obj_section tables).
2934
2935 The interface is as follows:
2936 User commands:
2937 overlay map <name> -- tell gdb to consider this section mapped
2938 overlay unmap <name> -- tell gdb to consider this section unmapped
2939 overlay list -- list the sections that GDB thinks are mapped
2940 overlay read-target -- get the target's state of what's mapped
2941 overlay off/manual/auto -- set overlay debugging state
2942 Functional interface:
2943 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2944 section, return that section.
2945 find_pc_overlay(pc): find any overlay section that contains
2946 the pc, either in its VMA or its LMA
2947 section_is_mapped(sect): true if overlay is marked as mapped
2948 section_is_overlay(sect): true if section's VMA != LMA
2949 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2950 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2951 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2952 overlay_mapped_address(...): map an address from section's LMA to VMA
2953 overlay_unmapped_address(...): map an address from section's VMA to LMA
2954 symbol_overlayed_address(...): Return a "current" address for symbol:
2955 either in VMA or LMA depending on whether
2956 the symbol's section is currently mapped. */
2957
2958 /* Overlay debugging state: */
2959
2960 enum overlay_debugging_state overlay_debugging = ovly_off;
2961 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2962
2963 /* Function: section_is_overlay (SECTION)
2964 Returns true if SECTION has VMA not equal to LMA, ie.
2965 SECTION is loaded at an address different from where it will "run". */
2966
2967 int
2968 section_is_overlay (struct obj_section *section)
2969 {
2970 if (overlay_debugging && section)
2971 {
2972 bfd *abfd = section->objfile->obfd;
2973 asection *bfd_section = section->the_bfd_section;
2974
2975 if (bfd_section_lma (abfd, bfd_section) != 0
2976 && bfd_section_lma (abfd, bfd_section)
2977 != bfd_section_vma (abfd, bfd_section))
2978 return 1;
2979 }
2980
2981 return 0;
2982 }
2983
2984 /* Function: overlay_invalidate_all (void)
2985 Invalidate the mapped state of all overlay sections (mark it as stale). */
2986
2987 static void
2988 overlay_invalidate_all (void)
2989 {
2990 struct objfile *objfile;
2991 struct obj_section *sect;
2992
2993 ALL_OBJSECTIONS (objfile, sect)
2994 if (section_is_overlay (sect))
2995 sect->ovly_mapped = -1;
2996 }
2997
2998 /* Function: section_is_mapped (SECTION)
2999 Returns true if section is an overlay, and is currently mapped.
3000
3001 Access to the ovly_mapped flag is restricted to this function, so
3002 that we can do automatic update. If the global flag
3003 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3004 overlay_invalidate_all. If the mapped state of the particular
3005 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3006
3007 int
3008 section_is_mapped (struct obj_section *osect)
3009 {
3010 struct gdbarch *gdbarch;
3011
3012 if (osect == 0 || !section_is_overlay (osect))
3013 return 0;
3014
3015 switch (overlay_debugging)
3016 {
3017 default:
3018 case ovly_off:
3019 return 0; /* overlay debugging off */
3020 case ovly_auto: /* overlay debugging automatic */
3021 /* Unles there is a gdbarch_overlay_update function,
3022 there's really nothing useful to do here (can't really go auto). */
3023 gdbarch = get_objfile_arch (osect->objfile);
3024 if (gdbarch_overlay_update_p (gdbarch))
3025 {
3026 if (overlay_cache_invalid)
3027 {
3028 overlay_invalidate_all ();
3029 overlay_cache_invalid = 0;
3030 }
3031 if (osect->ovly_mapped == -1)
3032 gdbarch_overlay_update (gdbarch, osect);
3033 }
3034 /* fall thru to manual case */
3035 case ovly_on: /* overlay debugging manual */
3036 return osect->ovly_mapped == 1;
3037 }
3038 }
3039
3040 /* Function: pc_in_unmapped_range
3041 If PC falls into the lma range of SECTION, return true, else false. */
3042
3043 CORE_ADDR
3044 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3045 {
3046 if (section_is_overlay (section))
3047 {
3048 bfd *abfd = section->objfile->obfd;
3049 asection *bfd_section = section->the_bfd_section;
3050
3051 /* We assume the LMA is relocated by the same offset as the VMA. */
3052 bfd_vma size = bfd_get_section_size (bfd_section);
3053 CORE_ADDR offset = obj_section_offset (section);
3054
3055 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3056 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3057 return 1;
3058 }
3059
3060 return 0;
3061 }
3062
3063 /* Function: pc_in_mapped_range
3064 If PC falls into the vma range of SECTION, return true, else false. */
3065
3066 CORE_ADDR
3067 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3068 {
3069 if (section_is_overlay (section))
3070 {
3071 if (obj_section_addr (section) <= pc
3072 && pc < obj_section_endaddr (section))
3073 return 1;
3074 }
3075
3076 return 0;
3077 }
3078
3079 /* Return true if the mapped ranges of sections A and B overlap, false
3080 otherwise. */
3081
3082 static int
3083 sections_overlap (struct obj_section *a, struct obj_section *b)
3084 {
3085 CORE_ADDR a_start = obj_section_addr (a);
3086 CORE_ADDR a_end = obj_section_endaddr (a);
3087 CORE_ADDR b_start = obj_section_addr (b);
3088 CORE_ADDR b_end = obj_section_endaddr (b);
3089
3090 return (a_start < b_end && b_start < a_end);
3091 }
3092
3093 /* Function: overlay_unmapped_address (PC, SECTION)
3094 Returns the address corresponding to PC in the unmapped (load) range.
3095 May be the same as PC. */
3096
3097 CORE_ADDR
3098 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3099 {
3100 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3101 {
3102 bfd *abfd = section->objfile->obfd;
3103 asection *bfd_section = section->the_bfd_section;
3104
3105 return pc + bfd_section_lma (abfd, bfd_section)
3106 - bfd_section_vma (abfd, bfd_section);
3107 }
3108
3109 return pc;
3110 }
3111
3112 /* Function: overlay_mapped_address (PC, SECTION)
3113 Returns the address corresponding to PC in the mapped (runtime) range.
3114 May be the same as PC. */
3115
3116 CORE_ADDR
3117 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3118 {
3119 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3120 {
3121 bfd *abfd = section->objfile->obfd;
3122 asection *bfd_section = section->the_bfd_section;
3123
3124 return pc + bfd_section_vma (abfd, bfd_section)
3125 - bfd_section_lma (abfd, bfd_section);
3126 }
3127
3128 return pc;
3129 }
3130
3131 /* Function: symbol_overlayed_address
3132 Return one of two addresses (relative to the VMA or to the LMA),
3133 depending on whether the section is mapped or not. */
3134
3135 CORE_ADDR
3136 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3137 {
3138 if (overlay_debugging)
3139 {
3140 /* If the symbol has no section, just return its regular address. */
3141 if (section == 0)
3142 return address;
3143 /* If the symbol's section is not an overlay, just return its
3144 address. */
3145 if (!section_is_overlay (section))
3146 return address;
3147 /* If the symbol's section is mapped, just return its address. */
3148 if (section_is_mapped (section))
3149 return address;
3150 /*
3151 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3152 * then return its LOADED address rather than its vma address!!
3153 */
3154 return overlay_unmapped_address (address, section);
3155 }
3156 return address;
3157 }
3158
3159 /* Function: find_pc_overlay (PC)
3160 Return the best-match overlay section for PC:
3161 If PC matches a mapped overlay section's VMA, return that section.
3162 Else if PC matches an unmapped section's VMA, return that section.
3163 Else if PC matches an unmapped section's LMA, return that section. */
3164
3165 struct obj_section *
3166 find_pc_overlay (CORE_ADDR pc)
3167 {
3168 struct objfile *objfile;
3169 struct obj_section *osect, *best_match = NULL;
3170
3171 if (overlay_debugging)
3172 {
3173 ALL_OBJSECTIONS (objfile, osect)
3174 if (section_is_overlay (osect))
3175 {
3176 if (pc_in_mapped_range (pc, osect))
3177 {
3178 if (section_is_mapped (osect))
3179 return osect;
3180 else
3181 best_match = osect;
3182 }
3183 else if (pc_in_unmapped_range (pc, osect))
3184 best_match = osect;
3185 }
3186 }
3187 return best_match;
3188 }
3189
3190 /* Function: find_pc_mapped_section (PC)
3191 If PC falls into the VMA address range of an overlay section that is
3192 currently marked as MAPPED, return that section. Else return NULL. */
3193
3194 struct obj_section *
3195 find_pc_mapped_section (CORE_ADDR pc)
3196 {
3197 struct objfile *objfile;
3198 struct obj_section *osect;
3199
3200 if (overlay_debugging)
3201 {
3202 ALL_OBJSECTIONS (objfile, osect)
3203 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3204 return osect;
3205 }
3206
3207 return NULL;
3208 }
3209
3210 /* Function: list_overlays_command
3211 Print a list of mapped sections and their PC ranges. */
3212
3213 static void
3214 list_overlays_command (const char *args, int from_tty)
3215 {
3216 int nmapped = 0;
3217 struct objfile *objfile;
3218 struct obj_section *osect;
3219
3220 if (overlay_debugging)
3221 {
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (section_is_mapped (osect))
3224 {
3225 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3226 const char *name;
3227 bfd_vma lma, vma;
3228 int size;
3229
3230 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3231 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3232 size = bfd_get_section_size (osect->the_bfd_section);
3233 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3234
3235 printf_filtered ("Section %s, loaded at ", name);
3236 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3237 puts_filtered (" - ");
3238 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3239 printf_filtered (", mapped at ");
3240 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3241 puts_filtered (" - ");
3242 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3243 puts_filtered ("\n");
3244
3245 nmapped++;
3246 }
3247 }
3248 if (nmapped == 0)
3249 printf_filtered (_("No sections are mapped.\n"));
3250 }
3251
3252 /* Function: map_overlay_command
3253 Mark the named section as mapped (ie. residing at its VMA address). */
3254
3255 static void
3256 map_overlay_command (const char *args, int from_tty)
3257 {
3258 struct objfile *objfile, *objfile2;
3259 struct obj_section *sec, *sec2;
3260
3261 if (!overlay_debugging)
3262 error (_("Overlay debugging not enabled. Use "
3263 "either the 'overlay auto' or\n"
3264 "the 'overlay manual' command."));
3265
3266 if (args == 0 || *args == 0)
3267 error (_("Argument required: name of an overlay section"));
3268
3269 /* First, find a section matching the user supplied argument. */
3270 ALL_OBJSECTIONS (objfile, sec)
3271 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3272 {
3273 /* Now, check to see if the section is an overlay. */
3274 if (!section_is_overlay (sec))
3275 continue; /* not an overlay section */
3276
3277 /* Mark the overlay as "mapped". */
3278 sec->ovly_mapped = 1;
3279
3280 /* Next, make a pass and unmap any sections that are
3281 overlapped by this new section: */
3282 ALL_OBJSECTIONS (objfile2, sec2)
3283 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3284 {
3285 if (info_verbose)
3286 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3287 bfd_section_name (objfile->obfd,
3288 sec2->the_bfd_section));
3289 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3290 }
3291 return;
3292 }
3293 error (_("No overlay section called %s"), args);
3294 }
3295
3296 /* Function: unmap_overlay_command
3297 Mark the overlay section as unmapped
3298 (ie. resident in its LMA address range, rather than the VMA range). */
3299
3300 static void
3301 unmap_overlay_command (const char *args, int from_tty)
3302 {
3303 struct objfile *objfile;
3304 struct obj_section *sec = NULL;
3305
3306 if (!overlay_debugging)
3307 error (_("Overlay debugging not enabled. "
3308 "Use either the 'overlay auto' or\n"
3309 "the 'overlay manual' command."));
3310
3311 if (args == 0 || *args == 0)
3312 error (_("Argument required: name of an overlay section"));
3313
3314 /* First, find a section matching the user supplied argument. */
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3317 {
3318 if (!sec->ovly_mapped)
3319 error (_("Section %s is not mapped"), args);
3320 sec->ovly_mapped = 0;
3321 return;
3322 }
3323 error (_("No overlay section called %s"), args);
3324 }
3325
3326 /* Function: overlay_auto_command
3327 A utility command to turn on overlay debugging.
3328 Possibly this should be done via a set/show command. */
3329
3330 static void
3331 overlay_auto_command (const char *args, int from_tty)
3332 {
3333 overlay_debugging = ovly_auto;
3334 enable_overlay_breakpoints ();
3335 if (info_verbose)
3336 printf_unfiltered (_("Automatic overlay debugging enabled."));
3337 }
3338
3339 /* Function: overlay_manual_command
3340 A utility command to turn on overlay debugging.
3341 Possibly this should be done via a set/show command. */
3342
3343 static void
3344 overlay_manual_command (const char *args, int from_tty)
3345 {
3346 overlay_debugging = ovly_on;
3347 disable_overlay_breakpoints ();
3348 if (info_verbose)
3349 printf_unfiltered (_("Overlay debugging enabled."));
3350 }
3351
3352 /* Function: overlay_off_command
3353 A utility command to turn on overlay debugging.
3354 Possibly this should be done via a set/show command. */
3355
3356 static void
3357 overlay_off_command (const char *args, int from_tty)
3358 {
3359 overlay_debugging = ovly_off;
3360 disable_overlay_breakpoints ();
3361 if (info_verbose)
3362 printf_unfiltered (_("Overlay debugging disabled."));
3363 }
3364
3365 static void
3366 overlay_load_command (const char *args, int from_tty)
3367 {
3368 struct gdbarch *gdbarch = get_current_arch ();
3369
3370 if (gdbarch_overlay_update_p (gdbarch))
3371 gdbarch_overlay_update (gdbarch, NULL);
3372 else
3373 error (_("This target does not know how to read its overlay state."));
3374 }
3375
3376 /* Function: overlay_command
3377 A place-holder for a mis-typed command. */
3378
3379 /* Command list chain containing all defined "overlay" subcommands. */
3380 static struct cmd_list_element *overlaylist;
3381
3382 static void
3383 overlay_command (const char *args, int from_tty)
3384 {
3385 printf_unfiltered
3386 ("\"overlay\" must be followed by the name of an overlay command.\n");
3387 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3388 }
3389
3390 /* Target Overlays for the "Simplest" overlay manager:
3391
3392 This is GDB's default target overlay layer. It works with the
3393 minimal overlay manager supplied as an example by Cygnus. The
3394 entry point is via a function pointer "gdbarch_overlay_update",
3395 so targets that use a different runtime overlay manager can
3396 substitute their own overlay_update function and take over the
3397 function pointer.
3398
3399 The overlay_update function pokes around in the target's data structures
3400 to see what overlays are mapped, and updates GDB's overlay mapping with
3401 this information.
3402
3403 In this simple implementation, the target data structures are as follows:
3404 unsigned _novlys; /# number of overlay sections #/
3405 unsigned _ovly_table[_novlys][4] = {
3406 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3407 {..., ..., ..., ...},
3408 }
3409 unsigned _novly_regions; /# number of overlay regions #/
3410 unsigned _ovly_region_table[_novly_regions][3] = {
3411 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3412 {..., ..., ...},
3413 }
3414 These functions will attempt to update GDB's mappedness state in the
3415 symbol section table, based on the target's mappedness state.
3416
3417 To do this, we keep a cached copy of the target's _ovly_table, and
3418 attempt to detect when the cached copy is invalidated. The main
3419 entry point is "simple_overlay_update(SECT), which looks up SECT in
3420 the cached table and re-reads only the entry for that section from
3421 the target (whenever possible). */
3422
3423 /* Cached, dynamically allocated copies of the target data structures: */
3424 static unsigned (*cache_ovly_table)[4] = 0;
3425 static unsigned cache_novlys = 0;
3426 static CORE_ADDR cache_ovly_table_base = 0;
3427 enum ovly_index
3428 {
3429 VMA, OSIZE, LMA, MAPPED
3430 };
3431
3432 /* Throw away the cached copy of _ovly_table. */
3433
3434 static void
3435 simple_free_overlay_table (void)
3436 {
3437 if (cache_ovly_table)
3438 xfree (cache_ovly_table);
3439 cache_novlys = 0;
3440 cache_ovly_table = NULL;
3441 cache_ovly_table_base = 0;
3442 }
3443
3444 /* Read an array of ints of size SIZE from the target into a local buffer.
3445 Convert to host order. int LEN is number of ints. */
3446
3447 static void
3448 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3449 int len, int size, enum bfd_endian byte_order)
3450 {
3451 /* FIXME (alloca): Not safe if array is very large. */
3452 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3453 int i;
3454
3455 read_memory (memaddr, buf, len * size);
3456 for (i = 0; i < len; i++)
3457 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3458 }
3459
3460 /* Find and grab a copy of the target _ovly_table
3461 (and _novlys, which is needed for the table's size). */
3462
3463 static int
3464 simple_read_overlay_table (void)
3465 {
3466 struct bound_minimal_symbol novlys_msym;
3467 struct bound_minimal_symbol ovly_table_msym;
3468 struct gdbarch *gdbarch;
3469 int word_size;
3470 enum bfd_endian byte_order;
3471
3472 simple_free_overlay_table ();
3473 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3474 if (! novlys_msym.minsym)
3475 {
3476 error (_("Error reading inferior's overlay table: "
3477 "couldn't find `_novlys' variable\n"
3478 "in inferior. Use `overlay manual' mode."));
3479 return 0;
3480 }
3481
3482 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3483 if (! ovly_table_msym.minsym)
3484 {
3485 error (_("Error reading inferior's overlay table: couldn't find "
3486 "`_ovly_table' array\n"
3487 "in inferior. Use `overlay manual' mode."));
3488 return 0;
3489 }
3490
3491 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3492 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3493 byte_order = gdbarch_byte_order (gdbarch);
3494
3495 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3496 4, byte_order);
3497 cache_ovly_table
3498 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3499 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3500 read_target_long_array (cache_ovly_table_base,
3501 (unsigned int *) cache_ovly_table,
3502 cache_novlys * 4, word_size, byte_order);
3503
3504 return 1; /* SUCCESS */
3505 }
3506
3507 /* Function: simple_overlay_update_1
3508 A helper function for simple_overlay_update. Assuming a cached copy
3509 of _ovly_table exists, look through it to find an entry whose vma,
3510 lma and size match those of OSECT. Re-read the entry and make sure
3511 it still matches OSECT (else the table may no longer be valid).
3512 Set OSECT's mapped state to match the entry. Return: 1 for
3513 success, 0 for failure. */
3514
3515 static int
3516 simple_overlay_update_1 (struct obj_section *osect)
3517 {
3518 int i;
3519 bfd *obfd = osect->objfile->obfd;
3520 asection *bsect = osect->the_bfd_section;
3521 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3522 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3524
3525 for (i = 0; i < cache_novlys; i++)
3526 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3527 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3528 {
3529 read_target_long_array (cache_ovly_table_base + i * word_size,
3530 (unsigned int *) cache_ovly_table[i],
3531 4, word_size, byte_order);
3532 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3533 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3534 {
3535 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3536 return 1;
3537 }
3538 else /* Warning! Warning! Target's ovly table has changed! */
3539 return 0;
3540 }
3541 return 0;
3542 }
3543
3544 /* Function: simple_overlay_update
3545 If OSECT is NULL, then update all sections' mapped state
3546 (after re-reading the entire target _ovly_table).
3547 If OSECT is non-NULL, then try to find a matching entry in the
3548 cached ovly_table and update only OSECT's mapped state.
3549 If a cached entry can't be found or the cache isn't valid, then
3550 re-read the entire cache, and go ahead and update all sections. */
3551
3552 void
3553 simple_overlay_update (struct obj_section *osect)
3554 {
3555 struct objfile *objfile;
3556
3557 /* Were we given an osect to look up? NULL means do all of them. */
3558 if (osect)
3559 /* Have we got a cached copy of the target's overlay table? */
3560 if (cache_ovly_table != NULL)
3561 {
3562 /* Does its cached location match what's currently in the
3563 symtab? */
3564 struct bound_minimal_symbol minsym
3565 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3566
3567 if (minsym.minsym == NULL)
3568 error (_("Error reading inferior's overlay table: couldn't "
3569 "find `_ovly_table' array\n"
3570 "in inferior. Use `overlay manual' mode."));
3571
3572 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3573 /* Then go ahead and try to look up this single section in
3574 the cache. */
3575 if (simple_overlay_update_1 (osect))
3576 /* Found it! We're done. */
3577 return;
3578 }
3579
3580 /* Cached table no good: need to read the entire table anew.
3581 Or else we want all the sections, in which case it's actually
3582 more efficient to read the whole table in one block anyway. */
3583
3584 if (! simple_read_overlay_table ())
3585 return;
3586
3587 /* Now may as well update all sections, even if only one was requested. */
3588 ALL_OBJSECTIONS (objfile, osect)
3589 if (section_is_overlay (osect))
3590 {
3591 int i;
3592 bfd *obfd = osect->objfile->obfd;
3593 asection *bsect = osect->the_bfd_section;
3594
3595 for (i = 0; i < cache_novlys; i++)
3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3598 { /* obj_section matches i'th entry in ovly_table. */
3599 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3600 break; /* finished with inner for loop: break out. */
3601 }
3602 }
3603 }
3604
3605 /* Set the output sections and output offsets for section SECTP in
3606 ABFD. The relocation code in BFD will read these offsets, so we
3607 need to be sure they're initialized. We map each section to itself,
3608 with no offset; this means that SECTP->vma will be honored. */
3609
3610 static void
3611 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3612 {
3613 sectp->output_section = sectp;
3614 sectp->output_offset = 0;
3615 }
3616
3617 /* Default implementation for sym_relocate. */
3618
3619 bfd_byte *
3620 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3621 bfd_byte *buf)
3622 {
3623 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3624 DWO file. */
3625 bfd *abfd = sectp->owner;
3626
3627 /* We're only interested in sections with relocation
3628 information. */
3629 if ((sectp->flags & SEC_RELOC) == 0)
3630 return NULL;
3631
3632 /* We will handle section offsets properly elsewhere, so relocate as if
3633 all sections begin at 0. */
3634 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3635
3636 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3637 }
3638
3639 /* Relocate the contents of a debug section SECTP in ABFD. The
3640 contents are stored in BUF if it is non-NULL, or returned in a
3641 malloc'd buffer otherwise.
3642
3643 For some platforms and debug info formats, shared libraries contain
3644 relocations against the debug sections (particularly for DWARF-2;
3645 one affected platform is PowerPC GNU/Linux, although it depends on
3646 the version of the linker in use). Also, ELF object files naturally
3647 have unresolved relocations for their debug sections. We need to apply
3648 the relocations in order to get the locations of symbols correct.
3649 Another example that may require relocation processing, is the
3650 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3651 debug section. */
3652
3653 bfd_byte *
3654 symfile_relocate_debug_section (struct objfile *objfile,
3655 asection *sectp, bfd_byte *buf)
3656 {
3657 gdb_assert (objfile->sf->sym_relocate);
3658
3659 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3660 }
3661
3662 struct symfile_segment_data *
3663 get_symfile_segment_data (bfd *abfd)
3664 {
3665 const struct sym_fns *sf = find_sym_fns (abfd);
3666
3667 if (sf == NULL)
3668 return NULL;
3669
3670 return sf->sym_segments (abfd);
3671 }
3672
3673 void
3674 free_symfile_segment_data (struct symfile_segment_data *data)
3675 {
3676 xfree (data->segment_bases);
3677 xfree (data->segment_sizes);
3678 xfree (data->segment_info);
3679 xfree (data);
3680 }
3681
3682 /* Given:
3683 - DATA, containing segment addresses from the object file ABFD, and
3684 the mapping from ABFD's sections onto the segments that own them,
3685 and
3686 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3687 segment addresses reported by the target,
3688 store the appropriate offsets for each section in OFFSETS.
3689
3690 If there are fewer entries in SEGMENT_BASES than there are segments
3691 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3692
3693 If there are more entries, then ignore the extra. The target may
3694 not be able to distinguish between an empty data segment and a
3695 missing data segment; a missing text segment is less plausible. */
3696
3697 int
3698 symfile_map_offsets_to_segments (bfd *abfd,
3699 const struct symfile_segment_data *data,
3700 struct section_offsets *offsets,
3701 int num_segment_bases,
3702 const CORE_ADDR *segment_bases)
3703 {
3704 int i;
3705 asection *sect;
3706
3707 /* It doesn't make sense to call this function unless you have some
3708 segment base addresses. */
3709 gdb_assert (num_segment_bases > 0);
3710
3711 /* If we do not have segment mappings for the object file, we
3712 can not relocate it by segments. */
3713 gdb_assert (data != NULL);
3714 gdb_assert (data->num_segments > 0);
3715
3716 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3717 {
3718 int which = data->segment_info[i];
3719
3720 gdb_assert (0 <= which && which <= data->num_segments);
3721
3722 /* Don't bother computing offsets for sections that aren't
3723 loaded as part of any segment. */
3724 if (! which)
3725 continue;
3726
3727 /* Use the last SEGMENT_BASES entry as the address of any extra
3728 segments mentioned in DATA->segment_info. */
3729 if (which > num_segment_bases)
3730 which = num_segment_bases;
3731
3732 offsets->offsets[i] = (segment_bases[which - 1]
3733 - data->segment_bases[which - 1]);
3734 }
3735
3736 return 1;
3737 }
3738
3739 static void
3740 symfile_find_segment_sections (struct objfile *objfile)
3741 {
3742 bfd *abfd = objfile->obfd;
3743 int i;
3744 asection *sect;
3745 struct symfile_segment_data *data;
3746
3747 data = get_symfile_segment_data (objfile->obfd);
3748 if (data == NULL)
3749 return;
3750
3751 if (data->num_segments != 1 && data->num_segments != 2)
3752 {
3753 free_symfile_segment_data (data);
3754 return;
3755 }
3756
3757 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3758 {
3759 int which = data->segment_info[i];
3760
3761 if (which == 1)
3762 {
3763 if (objfile->sect_index_text == -1)
3764 objfile->sect_index_text = sect->index;
3765
3766 if (objfile->sect_index_rodata == -1)
3767 objfile->sect_index_rodata = sect->index;
3768 }
3769 else if (which == 2)
3770 {
3771 if (objfile->sect_index_data == -1)
3772 objfile->sect_index_data = sect->index;
3773
3774 if (objfile->sect_index_bss == -1)
3775 objfile->sect_index_bss = sect->index;
3776 }
3777 }
3778
3779 free_symfile_segment_data (data);
3780 }
3781
3782 /* Listen for free_objfile events. */
3783
3784 static void
3785 symfile_free_objfile (struct objfile *objfile)
3786 {
3787 /* Remove the target sections owned by this objfile. */
3788 if (objfile != NULL)
3789 remove_target_sections ((void *) objfile);
3790 }
3791
3792 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3793 Expand all symtabs that match the specified criteria.
3794 See quick_symbol_functions.expand_symtabs_matching for details. */
3795
3796 void
3797 expand_symtabs_matching
3798 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3799 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3800 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3801 enum search_domain kind)
3802 {
3803 struct objfile *objfile;
3804
3805 ALL_OBJFILES (objfile)
3806 {
3807 if (objfile->sf)
3808 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3809 symbol_matcher,
3810 expansion_notify, kind);
3811 }
3812 }
3813
3814 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3815 Map function FUN over every file.
3816 See quick_symbol_functions.map_symbol_filenames for details. */
3817
3818 void
3819 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3820 int need_fullname)
3821 {
3822 struct objfile *objfile;
3823
3824 ALL_OBJFILES (objfile)
3825 {
3826 if (objfile->sf)
3827 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3828 need_fullname);
3829 }
3830 }
3831
3832 void
3833 _initialize_symfile (void)
3834 {
3835 struct cmd_list_element *c;
3836
3837 observer_attach_free_objfile (symfile_free_objfile);
3838
3839 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3840 Load symbol table from executable file FILE.\n\
3841 The `file' command can also load symbol tables, as well as setting the file\n\
3842 to execute."), &cmdlist);
3843 set_cmd_completer (c, filename_completer);
3844
3845 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3846 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3847 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3848 ...]\nADDR is the starting address of the file's text.\n\
3849 The optional arguments are section-name section-address pairs and\n\
3850 should be specified if the data and bss segments are not contiguous\n\
3851 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3852 &cmdlist);
3853 set_cmd_completer (c, filename_completer);
3854
3855 c = add_cmd ("remove-symbol-file", class_files,
3856 remove_symbol_file_command, _("\
3857 Remove a symbol file added via the add-symbol-file command.\n\
3858 Usage: remove-symbol-file FILENAME\n\
3859 remove-symbol-file -a ADDRESS\n\
3860 The file to remove can be identified by its filename or by an address\n\
3861 that lies within the boundaries of this symbol file in memory."),
3862 &cmdlist);
3863
3864 c = add_cmd ("load", class_files, load_command, _("\
3865 Dynamically load FILE into the running program, and record its symbols\n\
3866 for access from GDB.\n\
3867 An optional load OFFSET may also be given as a literal address.\n\
3868 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3869 on its own.\n\
3870 Usage: load [FILE] [OFFSET]"), &cmdlist);
3871 set_cmd_completer (c, filename_completer);
3872
3873 add_prefix_cmd ("overlay", class_support, overlay_command,
3874 _("Commands for debugging overlays."), &overlaylist,
3875 "overlay ", 0, &cmdlist);
3876
3877 add_com_alias ("ovly", "overlay", class_alias, 1);
3878 add_com_alias ("ov", "overlay", class_alias, 1);
3879
3880 add_cmd ("map-overlay", class_support, map_overlay_command,
3881 _("Assert that an overlay section is mapped."), &overlaylist);
3882
3883 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3884 _("Assert that an overlay section is unmapped."), &overlaylist);
3885
3886 add_cmd ("list-overlays", class_support, list_overlays_command,
3887 _("List mappings of overlay sections."), &overlaylist);
3888
3889 add_cmd ("manual", class_support, overlay_manual_command,
3890 _("Enable overlay debugging."), &overlaylist);
3891 add_cmd ("off", class_support, overlay_off_command,
3892 _("Disable overlay debugging."), &overlaylist);
3893 add_cmd ("auto", class_support, overlay_auto_command,
3894 _("Enable automatic overlay debugging."), &overlaylist);
3895 add_cmd ("load-target", class_support, overlay_load_command,
3896 _("Read the overlay mapping state from the target."), &overlaylist);
3897
3898 /* Filename extension to source language lookup table: */
3899 add_setshow_string_noescape_cmd ("extension-language", class_files,
3900 &ext_args, _("\
3901 Set mapping between filename extension and source language."), _("\
3902 Show mapping between filename extension and source language."), _("\
3903 Usage: set extension-language .foo bar"),
3904 set_ext_lang_command,
3905 show_ext_args,
3906 &setlist, &showlist);
3907
3908 add_info ("extensions", info_ext_lang_command,
3909 _("All filename extensions associated with a source language."));
3910
3911 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3912 &debug_file_directory, _("\
3913 Set the directories where separate debug symbols are searched for."), _("\
3914 Show the directories where separate debug symbols are searched for."), _("\
3915 Separate debug symbols are first searched for in the same\n\
3916 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3917 and lastly at the path of the directory of the binary with\n\
3918 each global debug-file-directory component prepended."),
3919 NULL,
3920 show_debug_file_directory,
3921 &setlist, &showlist);
3922
3923 add_setshow_enum_cmd ("symbol-loading", no_class,
3924 print_symbol_loading_enums, &print_symbol_loading,
3925 _("\
3926 Set printing of symbol loading messages."), _("\
3927 Show printing of symbol loading messages."), _("\
3928 off == turn all messages off\n\
3929 brief == print messages for the executable,\n\
3930 and brief messages for shared libraries\n\
3931 full == print messages for the executable,\n\
3932 and messages for each shared library."),
3933 NULL,
3934 NULL,
3935 &setprintlist, &showprintlist);
3936
3937 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3938 &separate_debug_file_debug, _("\
3939 Set printing of separate debug info file search debug."), _("\
3940 Show printing of separate debug info file search debug."), _("\
3941 When on, GDB prints the searched locations while looking for separate debug \
3942 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3943 }
This page took 0.164935 seconds and 4 git commands to generate.