2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64 void (*deprecated_show_load_progress) (const char *section,
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
68 unsigned long total_size);
69 void (*deprecated_pre_add_symbol_hook) (const char *);
70 void (*deprecated_post_add_symbol_hook) (void);
71 void (*deprecated_target_new_objfile_hook) (struct objfile *);
72
73 static void clear_symtab_users_cleanup (void *ignore);
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 /* External variables and functions referenced. */
79
80 extern void report_transfer_performance (unsigned long, time_t, time_t);
81
82 /* Functions this file defines */
83
84 #if 0
85 static int simple_read_overlay_region_table (void);
86 static void simple_free_overlay_region_table (void);
87 #endif
88
89 static void set_initial_language (void);
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static void find_sym_fns (struct objfile *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void set_ext_lang_command (char *args, int from_tty);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165
166 /* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
173 library symbols are not loaded, commands like "info fun" will *not*
174 report all the functions that are actually present. */
175
176 int auto_solib_add = 1;
177
178 /* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186 int auto_solib_limit;
187 \f
188
189 /* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
191
192 static int
193 compare_psymbols (const void *s1p, const void *s2p)
194 {
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
200 }
201
202 void
203 sort_pst_symbols (struct partial_symtab *pst)
204 {
205 /* Sort the global list; don't sort the static list */
206
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
209 compare_psymbols);
210 }
211
212 /* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217 char *
218 obsavestring (const char *ptr, int size, struct obstack *obstackp)
219 {
220 char *p = (char *) obstack_alloc (obstackp, size + 1);
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
225 const char *p1 = ptr;
226 char *p2 = p;
227 const char *end = ptr + size;
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233 }
234
235 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238 char *
239 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
241 {
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248 }
249
250 /* True if we are nested inside psymtab_to_symtab. */
251
252 int currently_reading_symtab = 0;
253
254 static void
255 decrement_reading_symtab (void *dummy)
256 {
257 currently_reading_symtab--;
258 }
259
260 /* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265 struct symtab *
266 psymtab_to_symtab (struct partial_symtab *pst)
267 {
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
274 {
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282 }
283
284 /* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293 void
294 find_lowest_section (bfd *abfd, asection *sect, void *obj)
295 {
296 asection **lowest = (asection **) obj;
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308 }
309
310 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312 struct section_addr_info *
313 alloc_section_addr_info (size_t num_sections)
314 {
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325 }
326
327
328 /* Return a freshly allocated copy of ADDRS. The section names, if
329 any, are also freshly allocated copies of those in ADDRS. */
330 struct section_addr_info *
331 copy_section_addr_info (struct section_addr_info *addrs)
332 {
333 struct section_addr_info *copy
334 = alloc_section_addr_info (addrs->num_sections);
335 int i;
336
337 copy->num_sections = addrs->num_sections;
338 for (i = 0; i < addrs->num_sections; i++)
339 {
340 copy->other[i].addr = addrs->other[i].addr;
341 if (addrs->other[i].name)
342 copy->other[i].name = xstrdup (addrs->other[i].name);
343 else
344 copy->other[i].name = NULL;
345 copy->other[i].sectindex = addrs->other[i].sectindex;
346 }
347
348 return copy;
349 }
350
351
352
353 /* Build (allocate and populate) a section_addr_info struct from
354 an existing section table. */
355
356 extern struct section_addr_info *
357 build_section_addr_info_from_section_table (const struct section_table *start,
358 const struct section_table *end)
359 {
360 struct section_addr_info *sap;
361 const struct section_table *stp;
362 int oidx;
363
364 sap = alloc_section_addr_info (end - start);
365
366 for (stp = start, oidx = 0; stp != end; stp++)
367 {
368 if (bfd_get_section_flags (stp->bfd,
369 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
370 && oidx < end - start)
371 {
372 sap->other[oidx].addr = stp->addr;
373 sap->other[oidx].name
374 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
375 sap->other[oidx].sectindex = stp->the_bfd_section->index;
376 oidx++;
377 }
378 }
379
380 return sap;
381 }
382
383
384 /* Free all memory allocated by build_section_addr_info_from_section_table. */
385
386 extern void
387 free_section_addr_info (struct section_addr_info *sap)
388 {
389 int idx;
390
391 for (idx = 0; idx < sap->num_sections; idx++)
392 if (sap->other[idx].name)
393 xfree (sap->other[idx].name);
394 xfree (sap);
395 }
396
397
398 /* Initialize OBJFILE's sect_index_* members. */
399 static void
400 init_objfile_sect_indices (struct objfile *objfile)
401 {
402 asection *sect;
403 int i;
404
405 sect = bfd_get_section_by_name (objfile->obfd, ".text");
406 if (sect)
407 objfile->sect_index_text = sect->index;
408
409 sect = bfd_get_section_by_name (objfile->obfd, ".data");
410 if (sect)
411 objfile->sect_index_data = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
414 if (sect)
415 objfile->sect_index_bss = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
418 if (sect)
419 objfile->sect_index_rodata = sect->index;
420
421 /* This is where things get really weird... We MUST have valid
422 indices for the various sect_index_* members or gdb will abort.
423 So if for example, there is no ".text" section, we have to
424 accomodate that. Except when explicitly adding symbol files at
425 some address, section_offsets contains nothing but zeros, so it
426 doesn't matter which slot in section_offsets the individual
427 sect_index_* members index into. So if they are all zero, it is
428 safe to just point all the currently uninitialized indices to the
429 first slot. */
430
431 for (i = 0; i < objfile->num_sections; i++)
432 {
433 if (ANOFFSET (objfile->section_offsets, i) != 0)
434 {
435 break;
436 }
437 }
438 if (i == objfile->num_sections)
439 {
440 if (objfile->sect_index_text == -1)
441 objfile->sect_index_text = 0;
442 if (objfile->sect_index_data == -1)
443 objfile->sect_index_data = 0;
444 if (objfile->sect_index_bss == -1)
445 objfile->sect_index_bss = 0;
446 if (objfile->sect_index_rodata == -1)
447 objfile->sect_index_rodata = 0;
448 }
449 }
450
451
452 /* Parse the user's idea of an offset for dynamic linking, into our idea
453 of how to represent it for fast symbol reading. This is the default
454 version of the sym_fns.sym_offsets function for symbol readers that
455 don't need to do anything special. It allocates a section_offsets table
456 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
457
458 void
459 default_symfile_offsets (struct objfile *objfile,
460 struct section_addr_info *addrs)
461 {
462 int i;
463
464 objfile->num_sections = bfd_count_sections (objfile->obfd);
465 objfile->section_offsets = (struct section_offsets *)
466 obstack_alloc (&objfile->objfile_obstack,
467 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
468 memset (objfile->section_offsets, 0,
469 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
470
471 /* Now calculate offsets for section that were specified by the
472 caller. */
473 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
474 {
475 struct other_sections *osp ;
476
477 osp = &addrs->other[i] ;
478 if (osp->addr == 0)
479 continue;
480
481 /* Record all sections in offsets */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
485 }
486
487 /* Remember the bfd indexes for the .text, .data, .bss and
488 .rodata sections. */
489 init_objfile_sect_indices (objfile);
490 }
491
492
493 /* Process a symbol file, as either the main file or as a dynamically
494 loaded file.
495
496 OBJFILE is where the symbols are to be read from.
497
498 ADDRS is the list of section load addresses. If the user has given
499 an 'add-symbol-file' command, then this is the list of offsets and
500 addresses he or she provided as arguments to the command; or, if
501 we're handling a shared library, these are the actual addresses the
502 sections are loaded at, according to the inferior's dynamic linker
503 (as gleaned by GDB's shared library code). We convert each address
504 into an offset from the section VMA's as it appears in the object
505 file, and then call the file's sym_offsets function to convert this
506 into a format-specific offset table --- a `struct section_offsets'.
507 If ADDRS is non-zero, OFFSETS must be zero.
508
509 OFFSETS is a table of section offsets already in the right
510 format-specific representation. NUM_OFFSETS is the number of
511 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
512 assume this is the proper table the call to sym_offsets described
513 above would produce. Instead of calling sym_offsets, we just dump
514 it right into objfile->section_offsets. (When we're re-reading
515 symbols from an objfile, we don't have the original load address
516 list any more; all we have is the section offset table.) If
517 OFFSETS is non-zero, ADDRS must be zero.
518
519 MAINLINE is nonzero if this is the main symbol file, or zero if
520 it's an extra symbol file such as dynamically loaded code.
521
522 VERBO is nonzero if the caller has printed a verbose message about
523 the symbol reading (and complaints can be more terse about it). */
524
525 void
526 syms_from_objfile (struct objfile *objfile,
527 struct section_addr_info *addrs,
528 struct section_offsets *offsets,
529 int num_offsets,
530 int mainline,
531 int verbo)
532 {
533 struct section_addr_info *local_addr = NULL;
534 struct cleanup *old_chain;
535
536 gdb_assert (! (addrs && offsets));
537
538 init_entry_point_info (objfile);
539 find_sym_fns (objfile);
540
541 if (objfile->sf == NULL)
542 return; /* No symbols. */
543
544 /* Make sure that partially constructed symbol tables will be cleaned up
545 if an error occurs during symbol reading. */
546 old_chain = make_cleanup_free_objfile (objfile);
547
548 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
549 list. We now establish the convention that an addr of zero means
550 no load address was specified. */
551 if (! addrs && ! offsets)
552 {
553 local_addr
554 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
555 make_cleanup (xfree, local_addr);
556 addrs = local_addr;
557 }
558
559 /* Now either addrs or offsets is non-zero. */
560
561 if (mainline)
562 {
563 /* We will modify the main symbol table, make sure that all its users
564 will be cleaned up if an error occurs during symbol reading. */
565 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
566
567 /* Since no error yet, throw away the old symbol table. */
568
569 if (symfile_objfile != NULL)
570 {
571 free_objfile (symfile_objfile);
572 symfile_objfile = NULL;
573 }
574
575 /* Currently we keep symbols from the add-symbol-file command.
576 If the user wants to get rid of them, they should do "symbol-file"
577 without arguments first. Not sure this is the best behavior
578 (PR 2207). */
579
580 (*objfile->sf->sym_new_init) (objfile);
581 }
582
583 /* Convert addr into an offset rather than an absolute address.
584 We find the lowest address of a loaded segment in the objfile,
585 and assume that <addr> is where that got loaded.
586
587 We no longer warn if the lowest section is not a text segment (as
588 happens for the PA64 port. */
589 if (!mainline && addrs && addrs->other[0].name)
590 {
591 asection *lower_sect;
592 asection *sect;
593 CORE_ADDR lower_offset;
594 int i;
595
596 /* Find lowest loadable section to be used as starting point for
597 continguous sections. FIXME!! won't work without call to find
598 .text first, but this assumes text is lowest section. */
599 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
600 if (lower_sect == NULL)
601 bfd_map_over_sections (objfile->obfd, find_lowest_section,
602 &lower_sect);
603 if (lower_sect == NULL)
604 warning (_("no loadable sections found in added symbol-file %s"),
605 objfile->name);
606 else
607 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
608 warning (_("Lowest section in %s is %s at %s"),
609 objfile->name,
610 bfd_section_name (objfile->obfd, lower_sect),
611 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
612 if (lower_sect != NULL)
613 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
614 else
615 lower_offset = 0;
616
617 /* Calculate offsets for the loadable sections.
618 FIXME! Sections must be in order of increasing loadable section
619 so that contiguous sections can use the lower-offset!!!
620
621 Adjust offsets if the segments are not contiguous.
622 If the section is contiguous, its offset should be set to
623 the offset of the highest loadable section lower than it
624 (the loadable section directly below it in memory).
625 this_offset = lower_offset = lower_addr - lower_orig_addr */
626
627 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
628 {
629 if (addrs->other[i].addr != 0)
630 {
631 sect = bfd_get_section_by_name (objfile->obfd,
632 addrs->other[i].name);
633 if (sect)
634 {
635 addrs->other[i].addr
636 -= bfd_section_vma (objfile->obfd, sect);
637 lower_offset = addrs->other[i].addr;
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->index ;
640 }
641 else
642 {
643 warning (_("section %s not found in %s"),
644 addrs->other[i].name,
645 objfile->name);
646 addrs->other[i].addr = 0;
647 }
648 }
649 else
650 addrs->other[i].addr = lower_offset;
651 }
652 }
653
654 /* Initialize symbol reading routines for this objfile, allow complaints to
655 appear for this new file, and record how verbose to be, then do the
656 initial symbol reading for this file. */
657
658 (*objfile->sf->sym_init) (objfile);
659 clear_complaints (&symfile_complaints, 1, verbo);
660
661 if (addrs)
662 (*objfile->sf->sym_offsets) (objfile, addrs);
663 else
664 {
665 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
666
667 /* Just copy in the offset table directly as given to us. */
668 objfile->num_sections = num_offsets;
669 objfile->section_offsets
670 = ((struct section_offsets *)
671 obstack_alloc (&objfile->objfile_obstack, size));
672 memcpy (objfile->section_offsets, offsets, size);
673
674 init_objfile_sect_indices (objfile);
675 }
676
677 #ifndef DEPRECATED_IBM6000_TARGET
678 /* This is a SVR4/SunOS specific hack, I think. In any event, it
679 screws RS/6000. sym_offsets should be doing this sort of thing,
680 because it knows the mapping between bfd sections and
681 section_offsets. */
682 /* This is a hack. As far as I can tell, section offsets are not
683 target dependent. They are all set to addr with a couple of
684 exceptions. The exceptions are sysvr4 shared libraries, whose
685 offsets are kept in solib structures anyway and rs6000 xcoff
686 which handles shared libraries in a completely unique way.
687
688 Section offsets are built similarly, except that they are built
689 by adding addr in all cases because there is no clear mapping
690 from section_offsets into actual sections. Note that solib.c
691 has a different algorithm for finding section offsets.
692
693 These should probably all be collapsed into some target
694 independent form of shared library support. FIXME. */
695
696 if (addrs)
697 {
698 struct obj_section *s;
699
700 /* Map section offsets in "addr" back to the object's
701 sections by comparing the section names with bfd's
702 section names. Then adjust the section address by
703 the offset. */ /* for gdb/13815 */
704
705 ALL_OBJFILE_OSECTIONS (objfile, s)
706 {
707 CORE_ADDR s_addr = 0;
708 int i;
709
710 for (i = 0;
711 !s_addr && i < addrs->num_sections && addrs->other[i].name;
712 i++)
713 if (strcmp (bfd_section_name (s->objfile->obfd,
714 s->the_bfd_section),
715 addrs->other[i].name) == 0)
716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
717
718 s->addr -= s->offset;
719 s->addr += s_addr;
720 s->endaddr -= s->offset;
721 s->endaddr += s_addr;
722 s->offset += s_addr;
723 }
724 }
725 #endif /* not DEPRECATED_IBM6000_TARGET */
726
727 (*objfile->sf->sym_read) (objfile, mainline);
728
729 /* Don't allow char * to have a typename (else would get caddr_t).
730 Ditto void *. FIXME: Check whether this is now done by all the
731 symbol readers themselves (many of them now do), and if so remove
732 it from here. */
733
734 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
735 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
736
737 /* Mark the objfile has having had initial symbol read attempted. Note
738 that this does not mean we found any symbols... */
739
740 objfile->flags |= OBJF_SYMS;
741
742 /* Discard cleanups as symbol reading was successful. */
743
744 discard_cleanups (old_chain);
745 }
746
747 /* Perform required actions after either reading in the initial
748 symbols for a new objfile, or mapping in the symbols from a reusable
749 objfile. */
750
751 void
752 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
753 {
754
755 /* If this is the main symbol file we have to clean up all users of the
756 old main symbol file. Otherwise it is sufficient to fixup all the
757 breakpoints that may have been redefined by this symbol file. */
758 if (mainline)
759 {
760 /* OK, make it the "real" symbol file. */
761 symfile_objfile = objfile;
762
763 clear_symtab_users ();
764 }
765 else
766 {
767 breakpoint_re_set ();
768 }
769
770 /* We're done reading the symbol file; finish off complaints. */
771 clear_complaints (&symfile_complaints, 0, verbo);
772 }
773
774 /* Process a symbol file, as either the main file or as a dynamically
775 loaded file.
776
777 ABFD is a BFD already open on the file, as from symfile_bfd_open.
778 This BFD will be closed on error, and is always consumed by this function.
779
780 FROM_TTY says how verbose to be.
781
782 MAINLINE specifies whether this is the main symbol file, or whether
783 it's an extra symbol file such as dynamically loaded code.
784
785 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
786 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
787 non-zero.
788
789 Upon success, returns a pointer to the objfile that was added.
790 Upon failure, jumps back to command level (never returns). */
791 static struct objfile *
792 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
793 struct section_addr_info *addrs,
794 struct section_offsets *offsets,
795 int num_offsets,
796 int mainline, int flags)
797 {
798 struct objfile *objfile;
799 struct partial_symtab *psymtab;
800 char *debugfile;
801 struct section_addr_info *orig_addrs = NULL;
802 struct cleanup *my_cleanups;
803 const char *name = bfd_get_filename (abfd);
804
805 my_cleanups = make_cleanup_bfd_close (abfd);
806
807 /* Give user a chance to burp if we'd be
808 interactively wiping out any existing symbols. */
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
814 error (_("Not confirmed."));
815
816 objfile = allocate_objfile (abfd, flags);
817 discard_cleanups (my_cleanups);
818
819 if (addrs)
820 {
821 orig_addrs = copy_section_addr_info (addrs);
822 make_cleanup_free_section_addr_info (orig_addrs);
823 }
824
825 /* We either created a new mapped symbol table, mapped an existing
826 symbol table file which has not had initial symbol reading
827 performed, or need to read an unmapped symbol table. */
828 if (from_tty || info_verbose)
829 {
830 if (deprecated_pre_add_symbol_hook)
831 deprecated_pre_add_symbol_hook (name);
832 else
833 {
834 printf_unfiltered ("Reading symbols from %s...", name);
835 wrap_here ("");
836 gdb_flush (gdb_stdout);
837 }
838 }
839 syms_from_objfile (objfile, addrs, offsets, num_offsets,
840 mainline, from_tty);
841
842 /* We now have at least a partial symbol table. Check to see if the
843 user requested that all symbols be read on initial access via either
844 the gdb startup command line or on a per symbol file basis. Expand
845 all partial symbol tables for this objfile if so. */
846
847 if ((flags & OBJF_READNOW) || readnow_symbol_files)
848 {
849 if (from_tty || info_verbose)
850 {
851 printf_unfiltered ("expanding to full symbols...");
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855
856 for (psymtab = objfile->psymtabs;
857 psymtab != NULL;
858 psymtab = psymtab->next)
859 {
860 psymtab_to_symtab (psymtab);
861 }
862 }
863
864 debugfile = find_separate_debug_file (objfile);
865 if (debugfile)
866 {
867 if (addrs != NULL)
868 {
869 objfile->separate_debug_objfile
870 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
871 }
872 else
873 {
874 objfile->separate_debug_objfile
875 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
876 }
877 objfile->separate_debug_objfile->separate_debug_objfile_backlink
878 = objfile;
879
880 /* Put the separate debug object before the normal one, this is so that
881 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
882 put_objfile_before (objfile->separate_debug_objfile, objfile);
883
884 xfree (debugfile);
885 }
886
887 if (!have_partial_symbols () && !have_full_symbols ())
888 {
889 wrap_here ("");
890 printf_filtered ("(no debugging symbols found)");
891 if (from_tty || info_verbose)
892 printf_filtered ("...");
893 else
894 printf_filtered ("\n");
895 wrap_here ("");
896 }
897
898 if (from_tty || info_verbose)
899 {
900 if (deprecated_post_add_symbol_hook)
901 deprecated_post_add_symbol_hook ();
902 else
903 {
904 printf_unfiltered ("done.\n");
905 }
906 }
907
908 /* We print some messages regardless of whether 'from_tty ||
909 info_verbose' is true, so make sure they go out at the right
910 time. */
911 gdb_flush (gdb_stdout);
912
913 do_cleanups (my_cleanups);
914
915 if (objfile->sf == NULL)
916 return objfile; /* No symbols. */
917
918 new_symfile_objfile (objfile, mainline, from_tty);
919
920 if (deprecated_target_new_objfile_hook)
921 deprecated_target_new_objfile_hook (objfile);
922
923 bfd_cache_close_all ();
924 return (objfile);
925 }
926
927
928 /* Process the symbol file ABFD, as either the main file or as a
929 dynamically loaded file.
930
931 See symbol_file_add_with_addrs_or_offsets's comments for
932 details. */
933 struct objfile *
934 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
935 struct section_addr_info *addrs,
936 int mainline, int flags)
937 {
938 return symbol_file_add_with_addrs_or_offsets (abfd,
939 from_tty, addrs, 0, 0,
940 mainline, flags);
941 }
942
943
944 /* Process a symbol file, as either the main file or as a dynamically
945 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
946 for details. */
947 struct objfile *
948 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
949 int mainline, int flags)
950 {
951 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
952 addrs, mainline, flags);
953 }
954
955
956 /* Call symbol_file_add() with default values and update whatever is
957 affected by the loading of a new main().
958 Used when the file is supplied in the gdb command line
959 and by some targets with special loading requirements.
960 The auxiliary function, symbol_file_add_main_1(), has the flags
961 argument for the switches that can only be specified in the symbol_file
962 command itself. */
963
964 void
965 symbol_file_add_main (char *args, int from_tty)
966 {
967 symbol_file_add_main_1 (args, from_tty, 0);
968 }
969
970 static void
971 symbol_file_add_main_1 (char *args, int from_tty, int flags)
972 {
973 symbol_file_add (args, from_tty, NULL, 1, flags);
974
975 /* Getting new symbols may change our opinion about
976 what is frameless. */
977 reinit_frame_cache ();
978
979 set_initial_language ();
980 }
981
982 void
983 symbol_file_clear (int from_tty)
984 {
985 if ((have_full_symbols () || have_partial_symbols ())
986 && from_tty
987 && !query ("Discard symbol table from `%s'? ",
988 symfile_objfile->name))
989 error (_("Not confirmed."));
990 free_all_objfiles ();
991
992 /* solib descriptors may have handles to objfiles. Since their
993 storage has just been released, we'd better wipe the solib
994 descriptors as well.
995 */
996 #if defined(SOLIB_RESTART)
997 SOLIB_RESTART ();
998 #endif
999
1000 symfile_objfile = NULL;
1001 if (from_tty)
1002 printf_unfiltered ("No symbol file now.\n");
1003 }
1004
1005 static char *
1006 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1007 {
1008 asection *sect;
1009 bfd_size_type debuglink_size;
1010 unsigned long crc32;
1011 char *contents;
1012 int crc_offset;
1013 unsigned char *p;
1014
1015 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1016
1017 if (sect == NULL)
1018 return NULL;
1019
1020 debuglink_size = bfd_section_size (objfile->obfd, sect);
1021
1022 contents = xmalloc (debuglink_size);
1023 bfd_get_section_contents (objfile->obfd, sect, contents,
1024 (file_ptr)0, (bfd_size_type)debuglink_size);
1025
1026 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1027 crc_offset = strlen (contents) + 1;
1028 crc_offset = (crc_offset + 3) & ~3;
1029
1030 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1031
1032 *crc32_out = crc32;
1033 return contents;
1034 }
1035
1036 static int
1037 separate_debug_file_exists (const char *name, unsigned long crc)
1038 {
1039 unsigned long file_crc = 0;
1040 int fd;
1041 char buffer[8*1024];
1042 int count;
1043
1044 fd = open (name, O_RDONLY | O_BINARY);
1045 if (fd < 0)
1046 return 0;
1047
1048 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1049 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1050
1051 close (fd);
1052
1053 return crc == file_crc;
1054 }
1055
1056 static char *debug_file_directory = NULL;
1057
1058 #if ! defined (DEBUG_SUBDIRECTORY)
1059 #define DEBUG_SUBDIRECTORY ".debug"
1060 #endif
1061
1062 static char *
1063 find_separate_debug_file (struct objfile *objfile)
1064 {
1065 asection *sect;
1066 char *basename;
1067 char *dir;
1068 char *debugfile;
1069 char *name_copy;
1070 bfd_size_type debuglink_size;
1071 unsigned long crc32;
1072 int i;
1073
1074 basename = get_debug_link_info (objfile, &crc32);
1075
1076 if (basename == NULL)
1077 return NULL;
1078
1079 dir = xstrdup (objfile->name);
1080
1081 /* Strip off the final filename part, leaving the directory name,
1082 followed by a slash. Objfile names should always be absolute and
1083 tilde-expanded, so there should always be a slash in there
1084 somewhere. */
1085 for (i = strlen(dir) - 1; i >= 0; i--)
1086 {
1087 if (IS_DIR_SEPARATOR (dir[i]))
1088 break;
1089 }
1090 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1091 dir[i+1] = '\0';
1092
1093 debugfile = alloca (strlen (debug_file_directory) + 1
1094 + strlen (dir)
1095 + strlen (DEBUG_SUBDIRECTORY)
1096 + strlen ("/")
1097 + strlen (basename)
1098 + 1);
1099
1100 /* First try in the same directory as the original file. */
1101 strcpy (debugfile, dir);
1102 strcat (debugfile, basename);
1103
1104 if (separate_debug_file_exists (debugfile, crc32))
1105 {
1106 xfree (basename);
1107 xfree (dir);
1108 return xstrdup (debugfile);
1109 }
1110
1111 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1112 strcpy (debugfile, dir);
1113 strcat (debugfile, DEBUG_SUBDIRECTORY);
1114 strcat (debugfile, "/");
1115 strcat (debugfile, basename);
1116
1117 if (separate_debug_file_exists (debugfile, crc32))
1118 {
1119 xfree (basename);
1120 xfree (dir);
1121 return xstrdup (debugfile);
1122 }
1123
1124 /* Then try in the global debugfile directory. */
1125 strcpy (debugfile, debug_file_directory);
1126 strcat (debugfile, "/");
1127 strcat (debugfile, dir);
1128 strcat (debugfile, basename);
1129
1130 if (separate_debug_file_exists (debugfile, crc32))
1131 {
1132 xfree (basename);
1133 xfree (dir);
1134 return xstrdup (debugfile);
1135 }
1136
1137 xfree (basename);
1138 xfree (dir);
1139 return NULL;
1140 }
1141
1142
1143 /* This is the symbol-file command. Read the file, analyze its
1144 symbols, and add a struct symtab to a symtab list. The syntax of
1145 the command is rather bizarre--(1) buildargv implements various
1146 quoting conventions which are undocumented and have little or
1147 nothing in common with the way things are quoted (or not quoted)
1148 elsewhere in GDB, (2) options are used, which are not generally
1149 used in GDB (perhaps "set mapped on", "set readnow on" would be
1150 better), (3) the order of options matters, which is contrary to GNU
1151 conventions (because it is confusing and inconvenient). */
1152 /* Note: ezannoni 2000-04-17. This function used to have support for
1153 rombug (see remote-os9k.c). It consisted of a call to target_link()
1154 (target.c) to get the address of the text segment from the target,
1155 and pass that to symbol_file_add(). This is no longer supported. */
1156
1157 void
1158 symbol_file_command (char *args, int from_tty)
1159 {
1160 char **argv;
1161 char *name = NULL;
1162 struct cleanup *cleanups;
1163 int flags = OBJF_USERLOADED;
1164
1165 dont_repeat ();
1166
1167 if (args == NULL)
1168 {
1169 symbol_file_clear (from_tty);
1170 }
1171 else
1172 {
1173 if ((argv = buildargv (args)) == NULL)
1174 {
1175 nomem (0);
1176 }
1177 cleanups = make_cleanup_freeargv (argv);
1178 while (*argv != NULL)
1179 {
1180 if (strcmp (*argv, "-readnow") == 0)
1181 flags |= OBJF_READNOW;
1182 else if (**argv == '-')
1183 error (_("unknown option `%s'"), *argv);
1184 else
1185 {
1186 name = *argv;
1187
1188 symbol_file_add_main_1 (name, from_tty, flags);
1189 }
1190 argv++;
1191 }
1192
1193 if (name == NULL)
1194 {
1195 error (_("no symbol file name was specified"));
1196 }
1197 do_cleanups (cleanups);
1198 }
1199 }
1200
1201 /* Set the initial language.
1202
1203 A better solution would be to record the language in the psymtab when reading
1204 partial symbols, and then use it (if known) to set the language. This would
1205 be a win for formats that encode the language in an easily discoverable place,
1206 such as DWARF. For stabs, we can jump through hoops looking for specially
1207 named symbols or try to intuit the language from the specific type of stabs
1208 we find, but we can't do that until later when we read in full symbols.
1209 FIXME. */
1210
1211 static void
1212 set_initial_language (void)
1213 {
1214 struct partial_symtab *pst;
1215 enum language lang = language_unknown;
1216
1217 pst = find_main_psymtab ();
1218 if (pst != NULL)
1219 {
1220 if (pst->filename != NULL)
1221 {
1222 lang = deduce_language_from_filename (pst->filename);
1223 }
1224 if (lang == language_unknown)
1225 {
1226 /* Make C the default language */
1227 lang = language_c;
1228 }
1229 set_language (lang);
1230 expected_language = current_language; /* Don't warn the user */
1231 }
1232 }
1233
1234 /* Open file specified by NAME and hand it off to BFD for preliminary
1235 analysis. Result is a newly initialized bfd *, which includes a newly
1236 malloc'd` copy of NAME (tilde-expanded and made absolute).
1237 In case of trouble, error() is called. */
1238
1239 bfd *
1240 symfile_bfd_open (char *name)
1241 {
1242 bfd *sym_bfd;
1243 int desc;
1244 char *absolute_name;
1245
1246
1247
1248 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1249
1250 /* Look down path for it, allocate 2nd new malloc'd copy. */
1251 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1252 0, &absolute_name);
1253 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1254 if (desc < 0)
1255 {
1256 char *exename = alloca (strlen (name) + 5);
1257 strcat (strcpy (exename, name), ".exe");
1258 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1259 O_RDONLY | O_BINARY, 0, &absolute_name);
1260 }
1261 #endif
1262 if (desc < 0)
1263 {
1264 make_cleanup (xfree, name);
1265 perror_with_name (name);
1266 }
1267 xfree (name); /* Free 1st new malloc'd copy */
1268 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1269 /* It'll be freed in free_objfile(). */
1270
1271 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1272 if (!sym_bfd)
1273 {
1274 close (desc);
1275 make_cleanup (xfree, name);
1276 error (_("\"%s\": can't open to read symbols: %s."), name,
1277 bfd_errmsg (bfd_get_error ()));
1278 }
1279 bfd_set_cacheable (sym_bfd, 1);
1280
1281 if (!bfd_check_format (sym_bfd, bfd_object))
1282 {
1283 /* FIXME: should be checking for errors from bfd_close (for one thing,
1284 on error it does not free all the storage associated with the
1285 bfd). */
1286 bfd_close (sym_bfd); /* This also closes desc */
1287 make_cleanup (xfree, name);
1288 error (_("\"%s\": can't read symbols: %s."), name,
1289 bfd_errmsg (bfd_get_error ()));
1290 }
1291 return (sym_bfd);
1292 }
1293
1294 /* Return the section index for the given section name. Return -1 if
1295 the section was not found. */
1296 int
1297 get_section_index (struct objfile *objfile, char *section_name)
1298 {
1299 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1300 if (sect)
1301 return sect->index;
1302 else
1303 return -1;
1304 }
1305
1306 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1307 startup by the _initialize routine in each object file format reader,
1308 to register information about each format the the reader is prepared
1309 to handle. */
1310
1311 void
1312 add_symtab_fns (struct sym_fns *sf)
1313 {
1314 sf->next = symtab_fns;
1315 symtab_fns = sf;
1316 }
1317
1318
1319 /* Initialize to read symbols from the symbol file sym_bfd. It either
1320 returns or calls error(). The result is an initialized struct sym_fns
1321 in the objfile structure, that contains cached information about the
1322 symbol file. */
1323
1324 static void
1325 find_sym_fns (struct objfile *objfile)
1326 {
1327 struct sym_fns *sf;
1328 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1329 char *our_target = bfd_get_target (objfile->obfd);
1330
1331 if (our_flavour == bfd_target_srec_flavour
1332 || our_flavour == bfd_target_ihex_flavour
1333 || our_flavour == bfd_target_tekhex_flavour)
1334 return; /* No symbols. */
1335
1336 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1337 {
1338 if (our_flavour == sf->sym_flavour)
1339 {
1340 objfile->sf = sf;
1341 return;
1342 }
1343 }
1344 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1345 bfd_get_target (objfile->obfd));
1346 }
1347 \f
1348 /* This function runs the load command of our current target. */
1349
1350 static void
1351 load_command (char *arg, int from_tty)
1352 {
1353 if (arg == NULL)
1354 arg = get_exec_file (1);
1355 target_load (arg, from_tty);
1356
1357 /* After re-loading the executable, we don't really know which
1358 overlays are mapped any more. */
1359 overlay_cache_invalid = 1;
1360 }
1361
1362 /* This version of "load" should be usable for any target. Currently
1363 it is just used for remote targets, not inftarg.c or core files,
1364 on the theory that only in that case is it useful.
1365
1366 Avoiding xmodem and the like seems like a win (a) because we don't have
1367 to worry about finding it, and (b) On VMS, fork() is very slow and so
1368 we don't want to run a subprocess. On the other hand, I'm not sure how
1369 performance compares. */
1370
1371 static int download_write_size = 512;
1372 static int validate_download = 0;
1373
1374 /* Callback service function for generic_load (bfd_map_over_sections). */
1375
1376 static void
1377 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1378 {
1379 bfd_size_type *sum = data;
1380
1381 *sum += bfd_get_section_size (asec);
1382 }
1383
1384 /* Opaque data for load_section_callback. */
1385 struct load_section_data {
1386 unsigned long load_offset;
1387 unsigned long write_count;
1388 unsigned long data_count;
1389 bfd_size_type total_size;
1390 };
1391
1392 /* Callback service function for generic_load (bfd_map_over_sections). */
1393
1394 static void
1395 load_section_callback (bfd *abfd, asection *asec, void *data)
1396 {
1397 struct load_section_data *args = data;
1398
1399 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1400 {
1401 bfd_size_type size = bfd_get_section_size (asec);
1402 if (size > 0)
1403 {
1404 char *buffer;
1405 struct cleanup *old_chain;
1406 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1407 bfd_size_type block_size;
1408 int err;
1409 const char *sect_name = bfd_get_section_name (abfd, asec);
1410 bfd_size_type sent;
1411
1412 if (download_write_size > 0 && size > download_write_size)
1413 block_size = download_write_size;
1414 else
1415 block_size = size;
1416
1417 buffer = xmalloc (size);
1418 old_chain = make_cleanup (xfree, buffer);
1419
1420 /* Is this really necessary? I guess it gives the user something
1421 to look at during a long download. */
1422 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1423 sect_name, paddr_nz (size), paddr_nz (lma));
1424
1425 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1426
1427 sent = 0;
1428 do
1429 {
1430 int len;
1431 bfd_size_type this_transfer = size - sent;
1432
1433 if (this_transfer >= block_size)
1434 this_transfer = block_size;
1435 len = target_write_memory_partial (lma, buffer,
1436 this_transfer, &err);
1437 if (err)
1438 break;
1439 if (validate_download)
1440 {
1441 /* Broken memories and broken monitors manifest
1442 themselves here when bring new computers to
1443 life. This doubles already slow downloads. */
1444 /* NOTE: cagney/1999-10-18: A more efficient
1445 implementation might add a verify_memory()
1446 method to the target vector and then use
1447 that. remote.c could implement that method
1448 using the ``qCRC'' packet. */
1449 char *check = xmalloc (len);
1450 struct cleanup *verify_cleanups =
1451 make_cleanup (xfree, check);
1452
1453 if (target_read_memory (lma, check, len) != 0)
1454 error (_("Download verify read failed at 0x%s"),
1455 paddr (lma));
1456 if (memcmp (buffer, check, len) != 0)
1457 error (_("Download verify compare failed at 0x%s"),
1458 paddr (lma));
1459 do_cleanups (verify_cleanups);
1460 }
1461 args->data_count += len;
1462 lma += len;
1463 buffer += len;
1464 args->write_count += 1;
1465 sent += len;
1466 if (quit_flag
1467 || (deprecated_ui_load_progress_hook != NULL
1468 && deprecated_ui_load_progress_hook (sect_name, sent)))
1469 error (_("Canceled the download"));
1470
1471 if (deprecated_show_load_progress != NULL)
1472 deprecated_show_load_progress (sect_name, sent, size,
1473 args->data_count,
1474 args->total_size);
1475 }
1476 while (sent < size);
1477
1478 if (err != 0)
1479 error (_("Memory access error while loading section %s."), sect_name);
1480
1481 do_cleanups (old_chain);
1482 }
1483 }
1484 }
1485
1486 void
1487 generic_load (char *args, int from_tty)
1488 {
1489 asection *s;
1490 bfd *loadfile_bfd;
1491 time_t start_time, end_time; /* Start and end times of download */
1492 char *filename;
1493 struct cleanup *old_cleanups;
1494 char *offptr;
1495 struct load_section_data cbdata;
1496 CORE_ADDR entry;
1497
1498 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1499 cbdata.write_count = 0; /* Number of writes needed. */
1500 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1501 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1502
1503 /* Parse the input argument - the user can specify a load offset as
1504 a second argument. */
1505 filename = xmalloc (strlen (args) + 1);
1506 old_cleanups = make_cleanup (xfree, filename);
1507 strcpy (filename, args);
1508 offptr = strchr (filename, ' ');
1509 if (offptr != NULL)
1510 {
1511 char *endptr;
1512
1513 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1514 if (offptr == endptr)
1515 error (_("Invalid download offset:%s."), offptr);
1516 *offptr = '\0';
1517 }
1518 else
1519 cbdata.load_offset = 0;
1520
1521 /* Open the file for loading. */
1522 loadfile_bfd = bfd_openr (filename, gnutarget);
1523 if (loadfile_bfd == NULL)
1524 {
1525 perror_with_name (filename);
1526 return;
1527 }
1528
1529 /* FIXME: should be checking for errors from bfd_close (for one thing,
1530 on error it does not free all the storage associated with the
1531 bfd). */
1532 make_cleanup_bfd_close (loadfile_bfd);
1533
1534 if (!bfd_check_format (loadfile_bfd, bfd_object))
1535 {
1536 error (_("\"%s\" is not an object file: %s"), filename,
1537 bfd_errmsg (bfd_get_error ()));
1538 }
1539
1540 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1541 (void *) &cbdata.total_size);
1542
1543 start_time = time (NULL);
1544
1545 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1546
1547 end_time = time (NULL);
1548
1549 entry = bfd_get_start_address (loadfile_bfd);
1550 ui_out_text (uiout, "Start address ");
1551 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1552 ui_out_text (uiout, ", load size ");
1553 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1554 ui_out_text (uiout, "\n");
1555 /* We were doing this in remote-mips.c, I suspect it is right
1556 for other targets too. */
1557 write_pc (entry);
1558
1559 /* FIXME: are we supposed to call symbol_file_add or not? According
1560 to a comment from remote-mips.c (where a call to symbol_file_add
1561 was commented out), making the call confuses GDB if more than one
1562 file is loaded in. Some targets do (e.g., remote-vx.c) but
1563 others don't (or didn't - perhaps they have all been deleted). */
1564
1565 print_transfer_performance (gdb_stdout, cbdata.data_count,
1566 cbdata.write_count, end_time - start_time);
1567
1568 do_cleanups (old_cleanups);
1569 }
1570
1571 /* Report how fast the transfer went. */
1572
1573 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1574 replaced by print_transfer_performance (with a very different
1575 function signature). */
1576
1577 void
1578 report_transfer_performance (unsigned long data_count, time_t start_time,
1579 time_t end_time)
1580 {
1581 print_transfer_performance (gdb_stdout, data_count,
1582 end_time - start_time, 0);
1583 }
1584
1585 void
1586 print_transfer_performance (struct ui_file *stream,
1587 unsigned long data_count,
1588 unsigned long write_count,
1589 unsigned long time_count)
1590 {
1591 ui_out_text (uiout, "Transfer rate: ");
1592 if (time_count > 0)
1593 {
1594 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1595 (data_count * 8) / time_count);
1596 ui_out_text (uiout, " bits/sec");
1597 }
1598 else
1599 {
1600 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1601 ui_out_text (uiout, " bits in <1 sec");
1602 }
1603 if (write_count > 0)
1604 {
1605 ui_out_text (uiout, ", ");
1606 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1607 ui_out_text (uiout, " bytes/write");
1608 }
1609 ui_out_text (uiout, ".\n");
1610 }
1611
1612 /* This function allows the addition of incrementally linked object files.
1613 It does not modify any state in the target, only in the debugger. */
1614 /* Note: ezannoni 2000-04-13 This function/command used to have a
1615 special case syntax for the rombug target (Rombug is the boot
1616 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1617 rombug case, the user doesn't need to supply a text address,
1618 instead a call to target_link() (in target.c) would supply the
1619 value to use. We are now discontinuing this type of ad hoc syntax. */
1620
1621 static void
1622 add_symbol_file_command (char *args, int from_tty)
1623 {
1624 char *filename = NULL;
1625 int flags = OBJF_USERLOADED;
1626 char *arg;
1627 int expecting_option = 0;
1628 int section_index = 0;
1629 int argcnt = 0;
1630 int sec_num = 0;
1631 int i;
1632 int expecting_sec_name = 0;
1633 int expecting_sec_addr = 0;
1634
1635 struct sect_opt
1636 {
1637 char *name;
1638 char *value;
1639 };
1640
1641 struct section_addr_info *section_addrs;
1642 struct sect_opt *sect_opts = NULL;
1643 size_t num_sect_opts = 0;
1644 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1645
1646 num_sect_opts = 16;
1647 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1648 * sizeof (struct sect_opt));
1649
1650 dont_repeat ();
1651
1652 if (args == NULL)
1653 error (_("add-symbol-file takes a file name and an address"));
1654
1655 /* Make a copy of the string that we can safely write into. */
1656 args = xstrdup (args);
1657
1658 while (*args != '\000')
1659 {
1660 /* Any leading spaces? */
1661 while (isspace (*args))
1662 args++;
1663
1664 /* Point arg to the beginning of the argument. */
1665 arg = args;
1666
1667 /* Move args pointer over the argument. */
1668 while ((*args != '\000') && !isspace (*args))
1669 args++;
1670
1671 /* If there are more arguments, terminate arg and
1672 proceed past it. */
1673 if (*args != '\000')
1674 *args++ = '\000';
1675
1676 /* Now process the argument. */
1677 if (argcnt == 0)
1678 {
1679 /* The first argument is the file name. */
1680 filename = tilde_expand (arg);
1681 make_cleanup (xfree, filename);
1682 }
1683 else
1684 if (argcnt == 1)
1685 {
1686 /* The second argument is always the text address at which
1687 to load the program. */
1688 sect_opts[section_index].name = ".text";
1689 sect_opts[section_index].value = arg;
1690 if (++section_index > num_sect_opts)
1691 {
1692 num_sect_opts *= 2;
1693 sect_opts = ((struct sect_opt *)
1694 xrealloc (sect_opts,
1695 num_sect_opts
1696 * sizeof (struct sect_opt)));
1697 }
1698 }
1699 else
1700 {
1701 /* It's an option (starting with '-') or it's an argument
1702 to an option */
1703
1704 if (*arg == '-')
1705 {
1706 if (strcmp (arg, "-readnow") == 0)
1707 flags |= OBJF_READNOW;
1708 else if (strcmp (arg, "-s") == 0)
1709 {
1710 expecting_sec_name = 1;
1711 expecting_sec_addr = 1;
1712 }
1713 }
1714 else
1715 {
1716 if (expecting_sec_name)
1717 {
1718 sect_opts[section_index].name = arg;
1719 expecting_sec_name = 0;
1720 }
1721 else
1722 if (expecting_sec_addr)
1723 {
1724 sect_opts[section_index].value = arg;
1725 expecting_sec_addr = 0;
1726 if (++section_index > num_sect_opts)
1727 {
1728 num_sect_opts *= 2;
1729 sect_opts = ((struct sect_opt *)
1730 xrealloc (sect_opts,
1731 num_sect_opts
1732 * sizeof (struct sect_opt)));
1733 }
1734 }
1735 else
1736 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1737 }
1738 }
1739 argcnt++;
1740 }
1741
1742 /* Print the prompt for the query below. And save the arguments into
1743 a sect_addr_info structure to be passed around to other
1744 functions. We have to split this up into separate print
1745 statements because hex_string returns a local static
1746 string. */
1747
1748 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1749 section_addrs = alloc_section_addr_info (section_index);
1750 make_cleanup (xfree, section_addrs);
1751 for (i = 0; i < section_index; i++)
1752 {
1753 CORE_ADDR addr;
1754 char *val = sect_opts[i].value;
1755 char *sec = sect_opts[i].name;
1756
1757 addr = parse_and_eval_address (val);
1758
1759 /* Here we store the section offsets in the order they were
1760 entered on the command line. */
1761 section_addrs->other[sec_num].name = sec;
1762 section_addrs->other[sec_num].addr = addr;
1763 printf_unfiltered ("\t%s_addr = %s\n",
1764 sec, hex_string ((unsigned long)addr));
1765 sec_num++;
1766
1767 /* The object's sections are initialized when a
1768 call is made to build_objfile_section_table (objfile).
1769 This happens in reread_symbols.
1770 At this point, we don't know what file type this is,
1771 so we can't determine what section names are valid. */
1772 }
1773
1774 if (from_tty && (!query ("%s", "")))
1775 error (_("Not confirmed."));
1776
1777 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1778
1779 /* Getting new symbols may change our opinion about what is
1780 frameless. */
1781 reinit_frame_cache ();
1782 do_cleanups (my_cleanups);
1783 }
1784 \f
1785 static void
1786 add_shared_symbol_files_command (char *args, int from_tty)
1787 {
1788 #ifdef ADD_SHARED_SYMBOL_FILES
1789 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1790 #else
1791 error (_("This command is not available in this configuration of GDB."));
1792 #endif
1793 }
1794 \f
1795 /* Re-read symbols if a symbol-file has changed. */
1796 void
1797 reread_symbols (void)
1798 {
1799 struct objfile *objfile;
1800 long new_modtime;
1801 int reread_one = 0;
1802 struct stat new_statbuf;
1803 int res;
1804
1805 /* With the addition of shared libraries, this should be modified,
1806 the load time should be saved in the partial symbol tables, since
1807 different tables may come from different source files. FIXME.
1808 This routine should then walk down each partial symbol table
1809 and see if the symbol table that it originates from has been changed */
1810
1811 for (objfile = object_files; objfile; objfile = objfile->next)
1812 {
1813 if (objfile->obfd)
1814 {
1815 #ifdef DEPRECATED_IBM6000_TARGET
1816 /* If this object is from a shared library, then you should
1817 stat on the library name, not member name. */
1818
1819 if (objfile->obfd->my_archive)
1820 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1821 else
1822 #endif
1823 res = stat (objfile->name, &new_statbuf);
1824 if (res != 0)
1825 {
1826 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1827 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1828 objfile->name);
1829 continue;
1830 }
1831 new_modtime = new_statbuf.st_mtime;
1832 if (new_modtime != objfile->mtime)
1833 {
1834 struct cleanup *old_cleanups;
1835 struct section_offsets *offsets;
1836 int num_offsets;
1837 char *obfd_filename;
1838
1839 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1840 objfile->name);
1841
1842 /* There are various functions like symbol_file_add,
1843 symfile_bfd_open, syms_from_objfile, etc., which might
1844 appear to do what we want. But they have various other
1845 effects which we *don't* want. So we just do stuff
1846 ourselves. We don't worry about mapped files (for one thing,
1847 any mapped file will be out of date). */
1848
1849 /* If we get an error, blow away this objfile (not sure if
1850 that is the correct response for things like shared
1851 libraries). */
1852 old_cleanups = make_cleanup_free_objfile (objfile);
1853 /* We need to do this whenever any symbols go away. */
1854 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1855
1856 /* Clean up any state BFD has sitting around. We don't need
1857 to close the descriptor but BFD lacks a way of closing the
1858 BFD without closing the descriptor. */
1859 obfd_filename = bfd_get_filename (objfile->obfd);
1860 if (!bfd_close (objfile->obfd))
1861 error (_("Can't close BFD for %s: %s"), objfile->name,
1862 bfd_errmsg (bfd_get_error ()));
1863 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1864 if (objfile->obfd == NULL)
1865 error (_("Can't open %s to read symbols."), objfile->name);
1866 /* bfd_openr sets cacheable to true, which is what we want. */
1867 if (!bfd_check_format (objfile->obfd, bfd_object))
1868 error (_("Can't read symbols from %s: %s."), objfile->name,
1869 bfd_errmsg (bfd_get_error ()));
1870
1871 /* Save the offsets, we will nuke them with the rest of the
1872 objfile_obstack. */
1873 num_offsets = objfile->num_sections;
1874 offsets = ((struct section_offsets *)
1875 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1876 memcpy (offsets, objfile->section_offsets,
1877 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1878
1879 /* Nuke all the state that we will re-read. Much of the following
1880 code which sets things to NULL really is necessary to tell
1881 other parts of GDB that there is nothing currently there. */
1882
1883 /* FIXME: Do we have to free a whole linked list, or is this
1884 enough? */
1885 if (objfile->global_psymbols.list)
1886 xfree (objfile->global_psymbols.list);
1887 memset (&objfile->global_psymbols, 0,
1888 sizeof (objfile->global_psymbols));
1889 if (objfile->static_psymbols.list)
1890 xfree (objfile->static_psymbols.list);
1891 memset (&objfile->static_psymbols, 0,
1892 sizeof (objfile->static_psymbols));
1893
1894 /* Free the obstacks for non-reusable objfiles */
1895 bcache_xfree (objfile->psymbol_cache);
1896 objfile->psymbol_cache = bcache_xmalloc ();
1897 bcache_xfree (objfile->macro_cache);
1898 objfile->macro_cache = bcache_xmalloc ();
1899 if (objfile->demangled_names_hash != NULL)
1900 {
1901 htab_delete (objfile->demangled_names_hash);
1902 objfile->demangled_names_hash = NULL;
1903 }
1904 obstack_free (&objfile->objfile_obstack, 0);
1905 objfile->sections = NULL;
1906 objfile->symtabs = NULL;
1907 objfile->psymtabs = NULL;
1908 objfile->free_psymtabs = NULL;
1909 objfile->cp_namespace_symtab = NULL;
1910 objfile->msymbols = NULL;
1911 objfile->deprecated_sym_private = NULL;
1912 objfile->minimal_symbol_count = 0;
1913 memset (&objfile->msymbol_hash, 0,
1914 sizeof (objfile->msymbol_hash));
1915 memset (&objfile->msymbol_demangled_hash, 0,
1916 sizeof (objfile->msymbol_demangled_hash));
1917 objfile->fundamental_types = NULL;
1918 clear_objfile_data (objfile);
1919 if (objfile->sf != NULL)
1920 {
1921 (*objfile->sf->sym_finish) (objfile);
1922 }
1923
1924 /* We never make this a mapped file. */
1925 objfile->md = NULL;
1926 objfile->psymbol_cache = bcache_xmalloc ();
1927 objfile->macro_cache = bcache_xmalloc ();
1928 /* obstack_init also initializes the obstack so it is
1929 empty. We could use obstack_specify_allocation but
1930 gdb_obstack.h specifies the alloc/dealloc
1931 functions. */
1932 obstack_init (&objfile->objfile_obstack);
1933 if (build_objfile_section_table (objfile))
1934 {
1935 error (_("Can't find the file sections in `%s': %s"),
1936 objfile->name, bfd_errmsg (bfd_get_error ()));
1937 }
1938 terminate_minimal_symbol_table (objfile);
1939
1940 /* We use the same section offsets as from last time. I'm not
1941 sure whether that is always correct for shared libraries. */
1942 objfile->section_offsets = (struct section_offsets *)
1943 obstack_alloc (&objfile->objfile_obstack,
1944 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1945 memcpy (objfile->section_offsets, offsets,
1946 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1947 objfile->num_sections = num_offsets;
1948
1949 /* What the hell is sym_new_init for, anyway? The concept of
1950 distinguishing between the main file and additional files
1951 in this way seems rather dubious. */
1952 if (objfile == symfile_objfile)
1953 {
1954 (*objfile->sf->sym_new_init) (objfile);
1955 }
1956
1957 (*objfile->sf->sym_init) (objfile);
1958 clear_complaints (&symfile_complaints, 1, 1);
1959 /* The "mainline" parameter is a hideous hack; I think leaving it
1960 zero is OK since dbxread.c also does what it needs to do if
1961 objfile->global_psymbols.size is 0. */
1962 (*objfile->sf->sym_read) (objfile, 0);
1963 if (!have_partial_symbols () && !have_full_symbols ())
1964 {
1965 wrap_here ("");
1966 printf_unfiltered ("(no debugging symbols found)\n");
1967 wrap_here ("");
1968 }
1969 objfile->flags |= OBJF_SYMS;
1970
1971 /* We're done reading the symbol file; finish off complaints. */
1972 clear_complaints (&symfile_complaints, 0, 1);
1973
1974 /* Getting new symbols may change our opinion about what is
1975 frameless. */
1976
1977 reinit_frame_cache ();
1978
1979 /* Discard cleanups as symbol reading was successful. */
1980 discard_cleanups (old_cleanups);
1981
1982 /* If the mtime has changed between the time we set new_modtime
1983 and now, we *want* this to be out of date, so don't call stat
1984 again now. */
1985 objfile->mtime = new_modtime;
1986 reread_one = 1;
1987 reread_separate_symbols (objfile);
1988 }
1989 }
1990 }
1991
1992 if (reread_one)
1993 clear_symtab_users ();
1994 }
1995
1996
1997 /* Handle separate debug info for OBJFILE, which has just been
1998 re-read:
1999 - If we had separate debug info before, but now we don't, get rid
2000 of the separated objfile.
2001 - If we didn't have separated debug info before, but now we do,
2002 read in the new separated debug info file.
2003 - If the debug link points to a different file, toss the old one
2004 and read the new one.
2005 This function does *not* handle the case where objfile is still
2006 using the same separate debug info file, but that file's timestamp
2007 has changed. That case should be handled by the loop in
2008 reread_symbols already. */
2009 static void
2010 reread_separate_symbols (struct objfile *objfile)
2011 {
2012 char *debug_file;
2013 unsigned long crc32;
2014
2015 /* Does the updated objfile's debug info live in a
2016 separate file? */
2017 debug_file = find_separate_debug_file (objfile);
2018
2019 if (objfile->separate_debug_objfile)
2020 {
2021 /* There are two cases where we need to get rid of
2022 the old separated debug info objfile:
2023 - if the new primary objfile doesn't have
2024 separated debug info, or
2025 - if the new primary objfile has separate debug
2026 info, but it's under a different filename.
2027
2028 If the old and new objfiles both have separate
2029 debug info, under the same filename, then we're
2030 okay --- if the separated file's contents have
2031 changed, we will have caught that when we
2032 visited it in this function's outermost
2033 loop. */
2034 if (! debug_file
2035 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2036 free_objfile (objfile->separate_debug_objfile);
2037 }
2038
2039 /* If the new objfile has separate debug info, and we
2040 haven't loaded it already, do so now. */
2041 if (debug_file
2042 && ! objfile->separate_debug_objfile)
2043 {
2044 /* Use the same section offset table as objfile itself.
2045 Preserve the flags from objfile that make sense. */
2046 objfile->separate_debug_objfile
2047 = (symbol_file_add_with_addrs_or_offsets
2048 (symfile_bfd_open (debug_file),
2049 info_verbose, /* from_tty: Don't override the default. */
2050 0, /* No addr table. */
2051 objfile->section_offsets, objfile->num_sections,
2052 0, /* Not mainline. See comments about this above. */
2053 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2054 | OBJF_USERLOADED)));
2055 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2056 = objfile;
2057 }
2058 }
2059
2060
2061 \f
2062
2063
2064 typedef struct
2065 {
2066 char *ext;
2067 enum language lang;
2068 }
2069 filename_language;
2070
2071 static filename_language *filename_language_table;
2072 static int fl_table_size, fl_table_next;
2073
2074 static void
2075 add_filename_language (char *ext, enum language lang)
2076 {
2077 if (fl_table_next >= fl_table_size)
2078 {
2079 fl_table_size += 10;
2080 filename_language_table =
2081 xrealloc (filename_language_table,
2082 fl_table_size * sizeof (*filename_language_table));
2083 }
2084
2085 filename_language_table[fl_table_next].ext = xstrdup (ext);
2086 filename_language_table[fl_table_next].lang = lang;
2087 fl_table_next++;
2088 }
2089
2090 static char *ext_args;
2091
2092 static void
2093 set_ext_lang_command (char *args, int from_tty)
2094 {
2095 int i;
2096 char *cp = ext_args;
2097 enum language lang;
2098
2099 /* First arg is filename extension, starting with '.' */
2100 if (*cp != '.')
2101 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2102
2103 /* Find end of first arg. */
2104 while (*cp && !isspace (*cp))
2105 cp++;
2106
2107 if (*cp == '\0')
2108 error (_("'%s': two arguments required -- filename extension and language"),
2109 ext_args);
2110
2111 /* Null-terminate first arg */
2112 *cp++ = '\0';
2113
2114 /* Find beginning of second arg, which should be a source language. */
2115 while (*cp && isspace (*cp))
2116 cp++;
2117
2118 if (*cp == '\0')
2119 error (_("'%s': two arguments required -- filename extension and language"),
2120 ext_args);
2121
2122 /* Lookup the language from among those we know. */
2123 lang = language_enum (cp);
2124
2125 /* Now lookup the filename extension: do we already know it? */
2126 for (i = 0; i < fl_table_next; i++)
2127 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2128 break;
2129
2130 if (i >= fl_table_next)
2131 {
2132 /* new file extension */
2133 add_filename_language (ext_args, lang);
2134 }
2135 else
2136 {
2137 /* redefining a previously known filename extension */
2138
2139 /* if (from_tty) */
2140 /* query ("Really make files of type %s '%s'?", */
2141 /* ext_args, language_str (lang)); */
2142
2143 xfree (filename_language_table[i].ext);
2144 filename_language_table[i].ext = xstrdup (ext_args);
2145 filename_language_table[i].lang = lang;
2146 }
2147 }
2148
2149 static void
2150 info_ext_lang_command (char *args, int from_tty)
2151 {
2152 int i;
2153
2154 printf_filtered ("Filename extensions and the languages they represent:");
2155 printf_filtered ("\n\n");
2156 for (i = 0; i < fl_table_next; i++)
2157 printf_filtered ("\t%s\t- %s\n",
2158 filename_language_table[i].ext,
2159 language_str (filename_language_table[i].lang));
2160 }
2161
2162 static void
2163 init_filename_language_table (void)
2164 {
2165 if (fl_table_size == 0) /* protect against repetition */
2166 {
2167 fl_table_size = 20;
2168 fl_table_next = 0;
2169 filename_language_table =
2170 xmalloc (fl_table_size * sizeof (*filename_language_table));
2171 add_filename_language (".c", language_c);
2172 add_filename_language (".C", language_cplus);
2173 add_filename_language (".cc", language_cplus);
2174 add_filename_language (".cp", language_cplus);
2175 add_filename_language (".cpp", language_cplus);
2176 add_filename_language (".cxx", language_cplus);
2177 add_filename_language (".c++", language_cplus);
2178 add_filename_language (".java", language_java);
2179 add_filename_language (".class", language_java);
2180 add_filename_language (".m", language_objc);
2181 add_filename_language (".f", language_fortran);
2182 add_filename_language (".F", language_fortran);
2183 add_filename_language (".s", language_asm);
2184 add_filename_language (".S", language_asm);
2185 add_filename_language (".pas", language_pascal);
2186 add_filename_language (".p", language_pascal);
2187 add_filename_language (".pp", language_pascal);
2188 add_filename_language (".adb", language_ada);
2189 add_filename_language (".ads", language_ada);
2190 add_filename_language (".a", language_ada);
2191 add_filename_language (".ada", language_ada);
2192 }
2193 }
2194
2195 enum language
2196 deduce_language_from_filename (char *filename)
2197 {
2198 int i;
2199 char *cp;
2200
2201 if (filename != NULL)
2202 if ((cp = strrchr (filename, '.')) != NULL)
2203 for (i = 0; i < fl_table_next; i++)
2204 if (strcmp (cp, filename_language_table[i].ext) == 0)
2205 return filename_language_table[i].lang;
2206
2207 return language_unknown;
2208 }
2209 \f
2210 /* allocate_symtab:
2211
2212 Allocate and partly initialize a new symbol table. Return a pointer
2213 to it. error() if no space.
2214
2215 Caller must set these fields:
2216 LINETABLE(symtab)
2217 symtab->blockvector
2218 symtab->dirname
2219 symtab->free_code
2220 symtab->free_ptr
2221 possibly free_named_symtabs (symtab->filename);
2222 */
2223
2224 struct symtab *
2225 allocate_symtab (char *filename, struct objfile *objfile)
2226 {
2227 struct symtab *symtab;
2228
2229 symtab = (struct symtab *)
2230 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2231 memset (symtab, 0, sizeof (*symtab));
2232 symtab->filename = obsavestring (filename, strlen (filename),
2233 &objfile->objfile_obstack);
2234 symtab->fullname = NULL;
2235 symtab->language = deduce_language_from_filename (filename);
2236 symtab->debugformat = obsavestring ("unknown", 7,
2237 &objfile->objfile_obstack);
2238
2239 /* Hook it to the objfile it comes from */
2240
2241 symtab->objfile = objfile;
2242 symtab->next = objfile->symtabs;
2243 objfile->symtabs = symtab;
2244
2245 /* FIXME: This should go away. It is only defined for the Z8000,
2246 and the Z8000 definition of this macro doesn't have anything to
2247 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2248 here for convenience. */
2249 #ifdef INIT_EXTRA_SYMTAB_INFO
2250 INIT_EXTRA_SYMTAB_INFO (symtab);
2251 #endif
2252
2253 return (symtab);
2254 }
2255
2256 struct partial_symtab *
2257 allocate_psymtab (char *filename, struct objfile *objfile)
2258 {
2259 struct partial_symtab *psymtab;
2260
2261 if (objfile->free_psymtabs)
2262 {
2263 psymtab = objfile->free_psymtabs;
2264 objfile->free_psymtabs = psymtab->next;
2265 }
2266 else
2267 psymtab = (struct partial_symtab *)
2268 obstack_alloc (&objfile->objfile_obstack,
2269 sizeof (struct partial_symtab));
2270
2271 memset (psymtab, 0, sizeof (struct partial_symtab));
2272 psymtab->filename = obsavestring (filename, strlen (filename),
2273 &objfile->objfile_obstack);
2274 psymtab->symtab = NULL;
2275
2276 /* Prepend it to the psymtab list for the objfile it belongs to.
2277 Psymtabs are searched in most recent inserted -> least recent
2278 inserted order. */
2279
2280 psymtab->objfile = objfile;
2281 psymtab->next = objfile->psymtabs;
2282 objfile->psymtabs = psymtab;
2283 #if 0
2284 {
2285 struct partial_symtab **prev_pst;
2286 psymtab->objfile = objfile;
2287 psymtab->next = NULL;
2288 prev_pst = &(objfile->psymtabs);
2289 while ((*prev_pst) != NULL)
2290 prev_pst = &((*prev_pst)->next);
2291 (*prev_pst) = psymtab;
2292 }
2293 #endif
2294
2295 return (psymtab);
2296 }
2297
2298 void
2299 discard_psymtab (struct partial_symtab *pst)
2300 {
2301 struct partial_symtab **prev_pst;
2302
2303 /* From dbxread.c:
2304 Empty psymtabs happen as a result of header files which don't
2305 have any symbols in them. There can be a lot of them. But this
2306 check is wrong, in that a psymtab with N_SLINE entries but
2307 nothing else is not empty, but we don't realize that. Fixing
2308 that without slowing things down might be tricky. */
2309
2310 /* First, snip it out of the psymtab chain */
2311
2312 prev_pst = &(pst->objfile->psymtabs);
2313 while ((*prev_pst) != pst)
2314 prev_pst = &((*prev_pst)->next);
2315 (*prev_pst) = pst->next;
2316
2317 /* Next, put it on a free list for recycling */
2318
2319 pst->next = pst->objfile->free_psymtabs;
2320 pst->objfile->free_psymtabs = pst;
2321 }
2322 \f
2323
2324 /* Reset all data structures in gdb which may contain references to symbol
2325 table data. */
2326
2327 void
2328 clear_symtab_users (void)
2329 {
2330 /* Someday, we should do better than this, by only blowing away
2331 the things that really need to be blown. */
2332 clear_value_history ();
2333 clear_displays ();
2334 clear_internalvars ();
2335 breakpoint_re_set ();
2336 set_default_breakpoint (0, 0, 0, 0);
2337 clear_current_source_symtab_and_line ();
2338 clear_pc_function_cache ();
2339 if (deprecated_target_new_objfile_hook)
2340 deprecated_target_new_objfile_hook (NULL);
2341 }
2342
2343 static void
2344 clear_symtab_users_cleanup (void *ignore)
2345 {
2346 clear_symtab_users ();
2347 }
2348
2349 /* clear_symtab_users_once:
2350
2351 This function is run after symbol reading, or from a cleanup.
2352 If an old symbol table was obsoleted, the old symbol table
2353 has been blown away, but the other GDB data structures that may
2354 reference it have not yet been cleared or re-directed. (The old
2355 symtab was zapped, and the cleanup queued, in free_named_symtab()
2356 below.)
2357
2358 This function can be queued N times as a cleanup, or called
2359 directly; it will do all the work the first time, and then will be a
2360 no-op until the next time it is queued. This works by bumping a
2361 counter at queueing time. Much later when the cleanup is run, or at
2362 the end of symbol processing (in case the cleanup is discarded), if
2363 the queued count is greater than the "done-count", we do the work
2364 and set the done-count to the queued count. If the queued count is
2365 less than or equal to the done-count, we just ignore the call. This
2366 is needed because reading a single .o file will often replace many
2367 symtabs (one per .h file, for example), and we don't want to reset
2368 the breakpoints N times in the user's face.
2369
2370 The reason we both queue a cleanup, and call it directly after symbol
2371 reading, is because the cleanup protects us in case of errors, but is
2372 discarded if symbol reading is successful. */
2373
2374 #if 0
2375 /* FIXME: As free_named_symtabs is currently a big noop this function
2376 is no longer needed. */
2377 static void clear_symtab_users_once (void);
2378
2379 static int clear_symtab_users_queued;
2380 static int clear_symtab_users_done;
2381
2382 static void
2383 clear_symtab_users_once (void)
2384 {
2385 /* Enforce once-per-`do_cleanups'-semantics */
2386 if (clear_symtab_users_queued <= clear_symtab_users_done)
2387 return;
2388 clear_symtab_users_done = clear_symtab_users_queued;
2389
2390 clear_symtab_users ();
2391 }
2392 #endif
2393
2394 /* Delete the specified psymtab, and any others that reference it. */
2395
2396 static void
2397 cashier_psymtab (struct partial_symtab *pst)
2398 {
2399 struct partial_symtab *ps, *pprev = NULL;
2400 int i;
2401
2402 /* Find its previous psymtab in the chain */
2403 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2404 {
2405 if (ps == pst)
2406 break;
2407 pprev = ps;
2408 }
2409
2410 if (ps)
2411 {
2412 /* Unhook it from the chain. */
2413 if (ps == pst->objfile->psymtabs)
2414 pst->objfile->psymtabs = ps->next;
2415 else
2416 pprev->next = ps->next;
2417
2418 /* FIXME, we can't conveniently deallocate the entries in the
2419 partial_symbol lists (global_psymbols/static_psymbols) that
2420 this psymtab points to. These just take up space until all
2421 the psymtabs are reclaimed. Ditto the dependencies list and
2422 filename, which are all in the objfile_obstack. */
2423
2424 /* We need to cashier any psymtab that has this one as a dependency... */
2425 again:
2426 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2427 {
2428 for (i = 0; i < ps->number_of_dependencies; i++)
2429 {
2430 if (ps->dependencies[i] == pst)
2431 {
2432 cashier_psymtab (ps);
2433 goto again; /* Must restart, chain has been munged. */
2434 }
2435 }
2436 }
2437 }
2438 }
2439
2440 /* If a symtab or psymtab for filename NAME is found, free it along
2441 with any dependent breakpoints, displays, etc.
2442 Used when loading new versions of object modules with the "add-file"
2443 command. This is only called on the top-level symtab or psymtab's name;
2444 it is not called for subsidiary files such as .h files.
2445
2446 Return value is 1 if we blew away the environment, 0 if not.
2447 FIXME. The return value appears to never be used.
2448
2449 FIXME. I think this is not the best way to do this. We should
2450 work on being gentler to the environment while still cleaning up
2451 all stray pointers into the freed symtab. */
2452
2453 int
2454 free_named_symtabs (char *name)
2455 {
2456 #if 0
2457 /* FIXME: With the new method of each objfile having it's own
2458 psymtab list, this function needs serious rethinking. In particular,
2459 why was it ever necessary to toss psymtabs with specific compilation
2460 unit filenames, as opposed to all psymtabs from a particular symbol
2461 file? -- fnf
2462 Well, the answer is that some systems permit reloading of particular
2463 compilation units. We want to blow away any old info about these
2464 compilation units, regardless of which objfiles they arrived in. --gnu. */
2465
2466 struct symtab *s;
2467 struct symtab *prev;
2468 struct partial_symtab *ps;
2469 struct blockvector *bv;
2470 int blewit = 0;
2471
2472 /* We only wack things if the symbol-reload switch is set. */
2473 if (!symbol_reloading)
2474 return 0;
2475
2476 /* Some symbol formats have trouble providing file names... */
2477 if (name == 0 || *name == '\0')
2478 return 0;
2479
2480 /* Look for a psymtab with the specified name. */
2481
2482 again2:
2483 for (ps = partial_symtab_list; ps; ps = ps->next)
2484 {
2485 if (strcmp (name, ps->filename) == 0)
2486 {
2487 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2488 goto again2; /* Must restart, chain has been munged */
2489 }
2490 }
2491
2492 /* Look for a symtab with the specified name. */
2493
2494 for (s = symtab_list; s; s = s->next)
2495 {
2496 if (strcmp (name, s->filename) == 0)
2497 break;
2498 prev = s;
2499 }
2500
2501 if (s)
2502 {
2503 if (s == symtab_list)
2504 symtab_list = s->next;
2505 else
2506 prev->next = s->next;
2507
2508 /* For now, queue a delete for all breakpoints, displays, etc., whether
2509 or not they depend on the symtab being freed. This should be
2510 changed so that only those data structures affected are deleted. */
2511
2512 /* But don't delete anything if the symtab is empty.
2513 This test is necessary due to a bug in "dbxread.c" that
2514 causes empty symtabs to be created for N_SO symbols that
2515 contain the pathname of the object file. (This problem
2516 has been fixed in GDB 3.9x). */
2517
2518 bv = BLOCKVECTOR (s);
2519 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2520 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2521 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2522 {
2523 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2524 name);
2525 clear_symtab_users_queued++;
2526 make_cleanup (clear_symtab_users_once, 0);
2527 blewit = 1;
2528 }
2529 else
2530 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2531 name);
2532
2533 free_symtab (s);
2534 }
2535 else
2536 {
2537 /* It is still possible that some breakpoints will be affected
2538 even though no symtab was found, since the file might have
2539 been compiled without debugging, and hence not be associated
2540 with a symtab. In order to handle this correctly, we would need
2541 to keep a list of text address ranges for undebuggable files.
2542 For now, we do nothing, since this is a fairly obscure case. */
2543 ;
2544 }
2545
2546 /* FIXME, what about the minimal symbol table? */
2547 return blewit;
2548 #else
2549 return (0);
2550 #endif
2551 }
2552 \f
2553 /* Allocate and partially fill a partial symtab. It will be
2554 completely filled at the end of the symbol list.
2555
2556 FILENAME is the name of the symbol-file we are reading from. */
2557
2558 struct partial_symtab *
2559 start_psymtab_common (struct objfile *objfile,
2560 struct section_offsets *section_offsets, char *filename,
2561 CORE_ADDR textlow, struct partial_symbol **global_syms,
2562 struct partial_symbol **static_syms)
2563 {
2564 struct partial_symtab *psymtab;
2565
2566 psymtab = allocate_psymtab (filename, objfile);
2567 psymtab->section_offsets = section_offsets;
2568 psymtab->textlow = textlow;
2569 psymtab->texthigh = psymtab->textlow; /* default */
2570 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2571 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2572 return (psymtab);
2573 }
2574 \f
2575 /* Add a symbol with a long value to a psymtab.
2576 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2577 Return the partial symbol that has been added. */
2578
2579 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2580 symbol is so that callers can get access to the symbol's demangled
2581 name, which they don't have any cheap way to determine otherwise.
2582 (Currenly, dwarf2read.c is the only file who uses that information,
2583 though it's possible that other readers might in the future.)
2584 Elena wasn't thrilled about that, and I don't blame her, but we
2585 couldn't come up with a better way to get that information. If
2586 it's needed in other situations, we could consider breaking up
2587 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2588 cache. */
2589
2590 const struct partial_symbol *
2591 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2592 enum address_class class,
2593 struct psymbol_allocation_list *list, long val, /* Value as a long */
2594 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2595 enum language language, struct objfile *objfile)
2596 {
2597 struct partial_symbol *psym;
2598 char *buf = alloca (namelength + 1);
2599 /* psymbol is static so that there will be no uninitialized gaps in the
2600 structure which might contain random data, causing cache misses in
2601 bcache. */
2602 static struct partial_symbol psymbol;
2603
2604 /* Create local copy of the partial symbol */
2605 memcpy (buf, name, namelength);
2606 buf[namelength] = '\0';
2607 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2608 if (val != 0)
2609 {
2610 SYMBOL_VALUE (&psymbol) = val;
2611 }
2612 else
2613 {
2614 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2615 }
2616 SYMBOL_SECTION (&psymbol) = 0;
2617 SYMBOL_LANGUAGE (&psymbol) = language;
2618 PSYMBOL_DOMAIN (&psymbol) = domain;
2619 PSYMBOL_CLASS (&psymbol) = class;
2620
2621 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2622
2623 /* Stash the partial symbol away in the cache */
2624 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2625 objfile->psymbol_cache);
2626
2627 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2628 if (list->next >= list->list + list->size)
2629 {
2630 extend_psymbol_list (list, objfile);
2631 }
2632 *list->next++ = psym;
2633 OBJSTAT (objfile, n_psyms++);
2634
2635 return psym;
2636 }
2637
2638 /* Add a symbol with a long value to a psymtab. This differs from
2639 * add_psymbol_to_list above in taking both a mangled and a demangled
2640 * name. */
2641
2642 void
2643 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2644 int dem_namelength, domain_enum domain,
2645 enum address_class class,
2646 struct psymbol_allocation_list *list, long val, /* Value as a long */
2647 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2648 enum language language,
2649 struct objfile *objfile)
2650 {
2651 struct partial_symbol *psym;
2652 char *buf = alloca (namelength + 1);
2653 /* psymbol is static so that there will be no uninitialized gaps in the
2654 structure which might contain random data, causing cache misses in
2655 bcache. */
2656 static struct partial_symbol psymbol;
2657
2658 /* Create local copy of the partial symbol */
2659
2660 memcpy (buf, name, namelength);
2661 buf[namelength] = '\0';
2662 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2663 objfile->psymbol_cache);
2664
2665 buf = alloca (dem_namelength + 1);
2666 memcpy (buf, dem_name, dem_namelength);
2667 buf[dem_namelength] = '\0';
2668
2669 switch (language)
2670 {
2671 case language_c:
2672 case language_cplus:
2673 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2674 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2675 break;
2676 /* FIXME What should be done for the default case? Ignoring for now. */
2677 }
2678
2679 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2680 if (val != 0)
2681 {
2682 SYMBOL_VALUE (&psymbol) = val;
2683 }
2684 else
2685 {
2686 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2687 }
2688 SYMBOL_SECTION (&psymbol) = 0;
2689 SYMBOL_LANGUAGE (&psymbol) = language;
2690 PSYMBOL_DOMAIN (&psymbol) = domain;
2691 PSYMBOL_CLASS (&psymbol) = class;
2692 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2693
2694 /* Stash the partial symbol away in the cache */
2695 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2696 objfile->psymbol_cache);
2697
2698 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2699 if (list->next >= list->list + list->size)
2700 {
2701 extend_psymbol_list (list, objfile);
2702 }
2703 *list->next++ = psym;
2704 OBJSTAT (objfile, n_psyms++);
2705 }
2706
2707 /* Initialize storage for partial symbols. */
2708
2709 void
2710 init_psymbol_list (struct objfile *objfile, int total_symbols)
2711 {
2712 /* Free any previously allocated psymbol lists. */
2713
2714 if (objfile->global_psymbols.list)
2715 {
2716 xfree (objfile->global_psymbols.list);
2717 }
2718 if (objfile->static_psymbols.list)
2719 {
2720 xfree (objfile->static_psymbols.list);
2721 }
2722
2723 /* Current best guess is that approximately a twentieth
2724 of the total symbols (in a debugging file) are global or static
2725 oriented symbols */
2726
2727 objfile->global_psymbols.size = total_symbols / 10;
2728 objfile->static_psymbols.size = total_symbols / 10;
2729
2730 if (objfile->global_psymbols.size > 0)
2731 {
2732 objfile->global_psymbols.next =
2733 objfile->global_psymbols.list = (struct partial_symbol **)
2734 xmalloc ((objfile->global_psymbols.size
2735 * sizeof (struct partial_symbol *)));
2736 }
2737 if (objfile->static_psymbols.size > 0)
2738 {
2739 objfile->static_psymbols.next =
2740 objfile->static_psymbols.list = (struct partial_symbol **)
2741 xmalloc ((objfile->static_psymbols.size
2742 * sizeof (struct partial_symbol *)));
2743 }
2744 }
2745
2746 /* OVERLAYS:
2747 The following code implements an abstraction for debugging overlay sections.
2748
2749 The target model is as follows:
2750 1) The gnu linker will permit multiple sections to be mapped into the
2751 same VMA, each with its own unique LMA (or load address).
2752 2) It is assumed that some runtime mechanism exists for mapping the
2753 sections, one by one, from the load address into the VMA address.
2754 3) This code provides a mechanism for gdb to keep track of which
2755 sections should be considered to be mapped from the VMA to the LMA.
2756 This information is used for symbol lookup, and memory read/write.
2757 For instance, if a section has been mapped then its contents
2758 should be read from the VMA, otherwise from the LMA.
2759
2760 Two levels of debugger support for overlays are available. One is
2761 "manual", in which the debugger relies on the user to tell it which
2762 overlays are currently mapped. This level of support is
2763 implemented entirely in the core debugger, and the information about
2764 whether a section is mapped is kept in the objfile->obj_section table.
2765
2766 The second level of support is "automatic", and is only available if
2767 the target-specific code provides functionality to read the target's
2768 overlay mapping table, and translate its contents for the debugger
2769 (by updating the mapped state information in the obj_section tables).
2770
2771 The interface is as follows:
2772 User commands:
2773 overlay map <name> -- tell gdb to consider this section mapped
2774 overlay unmap <name> -- tell gdb to consider this section unmapped
2775 overlay list -- list the sections that GDB thinks are mapped
2776 overlay read-target -- get the target's state of what's mapped
2777 overlay off/manual/auto -- set overlay debugging state
2778 Functional interface:
2779 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2780 section, return that section.
2781 find_pc_overlay(pc): find any overlay section that contains
2782 the pc, either in its VMA or its LMA
2783 overlay_is_mapped(sect): true if overlay is marked as mapped
2784 section_is_overlay(sect): true if section's VMA != LMA
2785 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2786 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2787 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2788 overlay_mapped_address(...): map an address from section's LMA to VMA
2789 overlay_unmapped_address(...): map an address from section's VMA to LMA
2790 symbol_overlayed_address(...): Return a "current" address for symbol:
2791 either in VMA or LMA depending on whether
2792 the symbol's section is currently mapped
2793 */
2794
2795 /* Overlay debugging state: */
2796
2797 enum overlay_debugging_state overlay_debugging = ovly_off;
2798 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2799
2800 /* Target vector for refreshing overlay mapped state */
2801 static void simple_overlay_update (struct obj_section *);
2802 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2803
2804 /* Function: section_is_overlay (SECTION)
2805 Returns true if SECTION has VMA not equal to LMA, ie.
2806 SECTION is loaded at an address different from where it will "run". */
2807
2808 int
2809 section_is_overlay (asection *section)
2810 {
2811 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2812
2813 if (overlay_debugging)
2814 if (section && section->lma != 0 &&
2815 section->vma != section->lma)
2816 return 1;
2817
2818 return 0;
2819 }
2820
2821 /* Function: overlay_invalidate_all (void)
2822 Invalidate the mapped state of all overlay sections (mark it as stale). */
2823
2824 static void
2825 overlay_invalidate_all (void)
2826 {
2827 struct objfile *objfile;
2828 struct obj_section *sect;
2829
2830 ALL_OBJSECTIONS (objfile, sect)
2831 if (section_is_overlay (sect->the_bfd_section))
2832 sect->ovly_mapped = -1;
2833 }
2834
2835 /* Function: overlay_is_mapped (SECTION)
2836 Returns true if section is an overlay, and is currently mapped.
2837 Private: public access is thru function section_is_mapped.
2838
2839 Access to the ovly_mapped flag is restricted to this function, so
2840 that we can do automatic update. If the global flag
2841 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2842 overlay_invalidate_all. If the mapped state of the particular
2843 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2844
2845 static int
2846 overlay_is_mapped (struct obj_section *osect)
2847 {
2848 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2849 return 0;
2850
2851 switch (overlay_debugging)
2852 {
2853 default:
2854 case ovly_off:
2855 return 0; /* overlay debugging off */
2856 case ovly_auto: /* overlay debugging automatic */
2857 /* Unles there is a target_overlay_update function,
2858 there's really nothing useful to do here (can't really go auto) */
2859 if (target_overlay_update)
2860 {
2861 if (overlay_cache_invalid)
2862 {
2863 overlay_invalidate_all ();
2864 overlay_cache_invalid = 0;
2865 }
2866 if (osect->ovly_mapped == -1)
2867 (*target_overlay_update) (osect);
2868 }
2869 /* fall thru to manual case */
2870 case ovly_on: /* overlay debugging manual */
2871 return osect->ovly_mapped == 1;
2872 }
2873 }
2874
2875 /* Function: section_is_mapped
2876 Returns true if section is an overlay, and is currently mapped. */
2877
2878 int
2879 section_is_mapped (asection *section)
2880 {
2881 struct objfile *objfile;
2882 struct obj_section *osect;
2883
2884 if (overlay_debugging)
2885 if (section && section_is_overlay (section))
2886 ALL_OBJSECTIONS (objfile, osect)
2887 if (osect->the_bfd_section == section)
2888 return overlay_is_mapped (osect);
2889
2890 return 0;
2891 }
2892
2893 /* Function: pc_in_unmapped_range
2894 If PC falls into the lma range of SECTION, return true, else false. */
2895
2896 CORE_ADDR
2897 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2898 {
2899 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2900
2901 int size;
2902
2903 if (overlay_debugging)
2904 if (section && section_is_overlay (section))
2905 {
2906 size = bfd_get_section_size (section);
2907 if (section->lma <= pc && pc < section->lma + size)
2908 return 1;
2909 }
2910 return 0;
2911 }
2912
2913 /* Function: pc_in_mapped_range
2914 If PC falls into the vma range of SECTION, return true, else false. */
2915
2916 CORE_ADDR
2917 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2918 {
2919 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2920
2921 int size;
2922
2923 if (overlay_debugging)
2924 if (section && section_is_overlay (section))
2925 {
2926 size = bfd_get_section_size (section);
2927 if (section->vma <= pc && pc < section->vma + size)
2928 return 1;
2929 }
2930 return 0;
2931 }
2932
2933
2934 /* Return true if the mapped ranges of sections A and B overlap, false
2935 otherwise. */
2936 static int
2937 sections_overlap (asection *a, asection *b)
2938 {
2939 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2940
2941 CORE_ADDR a_start = a->vma;
2942 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2943 CORE_ADDR b_start = b->vma;
2944 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2945
2946 return (a_start < b_end && b_start < a_end);
2947 }
2948
2949 /* Function: overlay_unmapped_address (PC, SECTION)
2950 Returns the address corresponding to PC in the unmapped (load) range.
2951 May be the same as PC. */
2952
2953 CORE_ADDR
2954 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2955 {
2956 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2957
2958 if (overlay_debugging)
2959 if (section && section_is_overlay (section) &&
2960 pc_in_mapped_range (pc, section))
2961 return pc + section->lma - section->vma;
2962
2963 return pc;
2964 }
2965
2966 /* Function: overlay_mapped_address (PC, SECTION)
2967 Returns the address corresponding to PC in the mapped (runtime) range.
2968 May be the same as PC. */
2969
2970 CORE_ADDR
2971 overlay_mapped_address (CORE_ADDR pc, asection *section)
2972 {
2973 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2974
2975 if (overlay_debugging)
2976 if (section && section_is_overlay (section) &&
2977 pc_in_unmapped_range (pc, section))
2978 return pc + section->vma - section->lma;
2979
2980 return pc;
2981 }
2982
2983
2984 /* Function: symbol_overlayed_address
2985 Return one of two addresses (relative to the VMA or to the LMA),
2986 depending on whether the section is mapped or not. */
2987
2988 CORE_ADDR
2989 symbol_overlayed_address (CORE_ADDR address, asection *section)
2990 {
2991 if (overlay_debugging)
2992 {
2993 /* If the symbol has no section, just return its regular address. */
2994 if (section == 0)
2995 return address;
2996 /* If the symbol's section is not an overlay, just return its address */
2997 if (!section_is_overlay (section))
2998 return address;
2999 /* If the symbol's section is mapped, just return its address */
3000 if (section_is_mapped (section))
3001 return address;
3002 /*
3003 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3004 * then return its LOADED address rather than its vma address!!
3005 */
3006 return overlay_unmapped_address (address, section);
3007 }
3008 return address;
3009 }
3010
3011 /* Function: find_pc_overlay (PC)
3012 Return the best-match overlay section for PC:
3013 If PC matches a mapped overlay section's VMA, return that section.
3014 Else if PC matches an unmapped section's VMA, return that section.
3015 Else if PC matches an unmapped section's LMA, return that section. */
3016
3017 asection *
3018 find_pc_overlay (CORE_ADDR pc)
3019 {
3020 struct objfile *objfile;
3021 struct obj_section *osect, *best_match = NULL;
3022
3023 if (overlay_debugging)
3024 ALL_OBJSECTIONS (objfile, osect)
3025 if (section_is_overlay (osect->the_bfd_section))
3026 {
3027 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3028 {
3029 if (overlay_is_mapped (osect))
3030 return osect->the_bfd_section;
3031 else
3032 best_match = osect;
3033 }
3034 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3035 best_match = osect;
3036 }
3037 return best_match ? best_match->the_bfd_section : NULL;
3038 }
3039
3040 /* Function: find_pc_mapped_section (PC)
3041 If PC falls into the VMA address range of an overlay section that is
3042 currently marked as MAPPED, return that section. Else return NULL. */
3043
3044 asection *
3045 find_pc_mapped_section (CORE_ADDR pc)
3046 {
3047 struct objfile *objfile;
3048 struct obj_section *osect;
3049
3050 if (overlay_debugging)
3051 ALL_OBJSECTIONS (objfile, osect)
3052 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3053 overlay_is_mapped (osect))
3054 return osect->the_bfd_section;
3055
3056 return NULL;
3057 }
3058
3059 /* Function: list_overlays_command
3060 Print a list of mapped sections and their PC ranges */
3061
3062 void
3063 list_overlays_command (char *args, int from_tty)
3064 {
3065 int nmapped = 0;
3066 struct objfile *objfile;
3067 struct obj_section *osect;
3068
3069 if (overlay_debugging)
3070 ALL_OBJSECTIONS (objfile, osect)
3071 if (overlay_is_mapped (osect))
3072 {
3073 const char *name;
3074 bfd_vma lma, vma;
3075 int size;
3076
3077 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3078 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3079 size = bfd_get_section_size (osect->the_bfd_section);
3080 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3081
3082 printf_filtered ("Section %s, loaded at ", name);
3083 print_address_numeric (lma, 1, gdb_stdout);
3084 puts_filtered (" - ");
3085 print_address_numeric (lma + size, 1, gdb_stdout);
3086 printf_filtered (", mapped at ");
3087 print_address_numeric (vma, 1, gdb_stdout);
3088 puts_filtered (" - ");
3089 print_address_numeric (vma + size, 1, gdb_stdout);
3090 puts_filtered ("\n");
3091
3092 nmapped++;
3093 }
3094 if (nmapped == 0)
3095 printf_filtered ("No sections are mapped.\n");
3096 }
3097
3098 /* Function: map_overlay_command
3099 Mark the named section as mapped (ie. residing at its VMA address). */
3100
3101 void
3102 map_overlay_command (char *args, int from_tty)
3103 {
3104 struct objfile *objfile, *objfile2;
3105 struct obj_section *sec, *sec2;
3106 asection *bfdsec;
3107
3108 if (!overlay_debugging)
3109 error (_("\
3110 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3111 the 'overlay manual' command."));
3112
3113 if (args == 0 || *args == 0)
3114 error (_("Argument required: name of an overlay section"));
3115
3116 /* First, find a section matching the user supplied argument */
3117 ALL_OBJSECTIONS (objfile, sec)
3118 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3119 {
3120 /* Now, check to see if the section is an overlay. */
3121 bfdsec = sec->the_bfd_section;
3122 if (!section_is_overlay (bfdsec))
3123 continue; /* not an overlay section */
3124
3125 /* Mark the overlay as "mapped" */
3126 sec->ovly_mapped = 1;
3127
3128 /* Next, make a pass and unmap any sections that are
3129 overlapped by this new section: */
3130 ALL_OBJSECTIONS (objfile2, sec2)
3131 if (sec2->ovly_mapped
3132 && sec != sec2
3133 && sec->the_bfd_section != sec2->the_bfd_section
3134 && sections_overlap (sec->the_bfd_section,
3135 sec2->the_bfd_section))
3136 {
3137 if (info_verbose)
3138 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3139 bfd_section_name (objfile->obfd,
3140 sec2->the_bfd_section));
3141 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3142 }
3143 return;
3144 }
3145 error (_("No overlay section called %s"), args);
3146 }
3147
3148 /* Function: unmap_overlay_command
3149 Mark the overlay section as unmapped
3150 (ie. resident in its LMA address range, rather than the VMA range). */
3151
3152 void
3153 unmap_overlay_command (char *args, int from_tty)
3154 {
3155 struct objfile *objfile;
3156 struct obj_section *sec;
3157
3158 if (!overlay_debugging)
3159 error (_("\
3160 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3161 the 'overlay manual' command."));
3162
3163 if (args == 0 || *args == 0)
3164 error (_("Argument required: name of an overlay section"));
3165
3166 /* First, find a section matching the user supplied argument */
3167 ALL_OBJSECTIONS (objfile, sec)
3168 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3169 {
3170 if (!sec->ovly_mapped)
3171 error (_("Section %s is not mapped"), args);
3172 sec->ovly_mapped = 0;
3173 return;
3174 }
3175 error (_("No overlay section called %s"), args);
3176 }
3177
3178 /* Function: overlay_auto_command
3179 A utility command to turn on overlay debugging.
3180 Possibly this should be done via a set/show command. */
3181
3182 static void
3183 overlay_auto_command (char *args, int from_tty)
3184 {
3185 overlay_debugging = ovly_auto;
3186 enable_overlay_breakpoints ();
3187 if (info_verbose)
3188 printf_unfiltered ("Automatic overlay debugging enabled.");
3189 }
3190
3191 /* Function: overlay_manual_command
3192 A utility command to turn on overlay debugging.
3193 Possibly this should be done via a set/show command. */
3194
3195 static void
3196 overlay_manual_command (char *args, int from_tty)
3197 {
3198 overlay_debugging = ovly_on;
3199 disable_overlay_breakpoints ();
3200 if (info_verbose)
3201 printf_unfiltered ("Overlay debugging enabled.");
3202 }
3203
3204 /* Function: overlay_off_command
3205 A utility command to turn on overlay debugging.
3206 Possibly this should be done via a set/show command. */
3207
3208 static void
3209 overlay_off_command (char *args, int from_tty)
3210 {
3211 overlay_debugging = ovly_off;
3212 disable_overlay_breakpoints ();
3213 if (info_verbose)
3214 printf_unfiltered ("Overlay debugging disabled.");
3215 }
3216
3217 static void
3218 overlay_load_command (char *args, int from_tty)
3219 {
3220 if (target_overlay_update)
3221 (*target_overlay_update) (NULL);
3222 else
3223 error (_("This target does not know how to read its overlay state."));
3224 }
3225
3226 /* Function: overlay_command
3227 A place-holder for a mis-typed command */
3228
3229 /* Command list chain containing all defined "overlay" subcommands. */
3230 struct cmd_list_element *overlaylist;
3231
3232 static void
3233 overlay_command (char *args, int from_tty)
3234 {
3235 printf_unfiltered
3236 ("\"overlay\" must be followed by the name of an overlay command.\n");
3237 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3238 }
3239
3240
3241 /* Target Overlays for the "Simplest" overlay manager:
3242
3243 This is GDB's default target overlay layer. It works with the
3244 minimal overlay manager supplied as an example by Cygnus. The
3245 entry point is via a function pointer "target_overlay_update",
3246 so targets that use a different runtime overlay manager can
3247 substitute their own overlay_update function and take over the
3248 function pointer.
3249
3250 The overlay_update function pokes around in the target's data structures
3251 to see what overlays are mapped, and updates GDB's overlay mapping with
3252 this information.
3253
3254 In this simple implementation, the target data structures are as follows:
3255 unsigned _novlys; /# number of overlay sections #/
3256 unsigned _ovly_table[_novlys][4] = {
3257 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3258 {..., ..., ..., ...},
3259 }
3260 unsigned _novly_regions; /# number of overlay regions #/
3261 unsigned _ovly_region_table[_novly_regions][3] = {
3262 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3263 {..., ..., ...},
3264 }
3265 These functions will attempt to update GDB's mappedness state in the
3266 symbol section table, based on the target's mappedness state.
3267
3268 To do this, we keep a cached copy of the target's _ovly_table, and
3269 attempt to detect when the cached copy is invalidated. The main
3270 entry point is "simple_overlay_update(SECT), which looks up SECT in
3271 the cached table and re-reads only the entry for that section from
3272 the target (whenever possible).
3273 */
3274
3275 /* Cached, dynamically allocated copies of the target data structures: */
3276 static unsigned (*cache_ovly_table)[4] = 0;
3277 #if 0
3278 static unsigned (*cache_ovly_region_table)[3] = 0;
3279 #endif
3280 static unsigned cache_novlys = 0;
3281 #if 0
3282 static unsigned cache_novly_regions = 0;
3283 #endif
3284 static CORE_ADDR cache_ovly_table_base = 0;
3285 #if 0
3286 static CORE_ADDR cache_ovly_region_table_base = 0;
3287 #endif
3288 enum ovly_index
3289 {
3290 VMA, SIZE, LMA, MAPPED
3291 };
3292 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3293
3294 /* Throw away the cached copy of _ovly_table */
3295 static void
3296 simple_free_overlay_table (void)
3297 {
3298 if (cache_ovly_table)
3299 xfree (cache_ovly_table);
3300 cache_novlys = 0;
3301 cache_ovly_table = NULL;
3302 cache_ovly_table_base = 0;
3303 }
3304
3305 #if 0
3306 /* Throw away the cached copy of _ovly_region_table */
3307 static void
3308 simple_free_overlay_region_table (void)
3309 {
3310 if (cache_ovly_region_table)
3311 xfree (cache_ovly_region_table);
3312 cache_novly_regions = 0;
3313 cache_ovly_region_table = NULL;
3314 cache_ovly_region_table_base = 0;
3315 }
3316 #endif
3317
3318 /* Read an array of ints from the target into a local buffer.
3319 Convert to host order. int LEN is number of ints */
3320 static void
3321 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3322 {
3323 /* FIXME (alloca): Not safe if array is very large. */
3324 char *buf = alloca (len * TARGET_LONG_BYTES);
3325 int i;
3326
3327 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3328 for (i = 0; i < len; i++)
3329 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3330 TARGET_LONG_BYTES);
3331 }
3332
3333 /* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size) */
3335 static int
3336 simple_read_overlay_table (void)
3337 {
3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3339
3340 simple_free_overlay_table ();
3341 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3342 if (! novlys_msym)
3343 {
3344 error (_("Error reading inferior's overlay table: "
3345 "couldn't find `_novlys' variable\n"
3346 "in inferior. Use `overlay manual' mode."));
3347 return 0;
3348 }
3349
3350 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3351 if (! ovly_table_msym)
3352 {
3353 error (_("Error reading inferior's overlay table: couldn't find "
3354 "`_ovly_table' array\n"
3355 "in inferior. Use `overlay manual' mode."));
3356 return 0;
3357 }
3358
3359 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3360 cache_ovly_table
3361 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3362 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3363 read_target_long_array (cache_ovly_table_base,
3364 (int *) cache_ovly_table,
3365 cache_novlys * 4);
3366
3367 return 1; /* SUCCESS */
3368 }
3369
3370 #if 0
3371 /* Find and grab a copy of the target _ovly_region_table
3372 (and _novly_regions, which is needed for the table's size) */
3373 static int
3374 simple_read_overlay_region_table (void)
3375 {
3376 struct minimal_symbol *msym;
3377
3378 simple_free_overlay_region_table ();
3379 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3380 if (msym != NULL)
3381 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3382 else
3383 return 0; /* failure */
3384 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3385 if (cache_ovly_region_table != NULL)
3386 {
3387 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3388 if (msym != NULL)
3389 {
3390 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3391 read_target_long_array (cache_ovly_region_table_base,
3392 (int *) cache_ovly_region_table,
3393 cache_novly_regions * 3);
3394 }
3395 else
3396 return 0; /* failure */
3397 }
3398 else
3399 return 0; /* failure */
3400 return 1; /* SUCCESS */
3401 }
3402 #endif
3403
3404 /* Function: simple_overlay_update_1
3405 A helper function for simple_overlay_update. Assuming a cached copy
3406 of _ovly_table exists, look through it to find an entry whose vma,
3407 lma and size match those of OSECT. Re-read the entry and make sure
3408 it still matches OSECT (else the table may no longer be valid).
3409 Set OSECT's mapped state to match the entry. Return: 1 for
3410 success, 0 for failure. */
3411
3412 static int
3413 simple_overlay_update_1 (struct obj_section *osect)
3414 {
3415 int i, size;
3416 bfd *obfd = osect->objfile->obfd;
3417 asection *bsect = osect->the_bfd_section;
3418
3419 size = bfd_get_section_size (osect->the_bfd_section);
3420 for (i = 0; i < cache_novlys; i++)
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
3424 {
3425 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3426 (int *) cache_ovly_table[i], 4);
3427 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3428 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3429 /* && cache_ovly_table[i][SIZE] == size */ )
3430 {
3431 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3432 return 1;
3433 }
3434 else /* Warning! Warning! Target's ovly table has changed! */
3435 return 0;
3436 }
3437 return 0;
3438 }
3439
3440 /* Function: simple_overlay_update
3441 If OSECT is NULL, then update all sections' mapped state
3442 (after re-reading the entire target _ovly_table).
3443 If OSECT is non-NULL, then try to find a matching entry in the
3444 cached ovly_table and update only OSECT's mapped state.
3445 If a cached entry can't be found or the cache isn't valid, then
3446 re-read the entire cache, and go ahead and update all sections. */
3447
3448 static void
3449 simple_overlay_update (struct obj_section *osect)
3450 {
3451 struct objfile *objfile;
3452
3453 /* Were we given an osect to look up? NULL means do all of them. */
3454 if (osect)
3455 /* Have we got a cached copy of the target's overlay table? */
3456 if (cache_ovly_table != NULL)
3457 /* Does its cached location match what's currently in the symtab? */
3458 if (cache_ovly_table_base ==
3459 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3460 /* Then go ahead and try to look up this single section in the cache */
3461 if (simple_overlay_update_1 (osect))
3462 /* Found it! We're done. */
3463 return;
3464
3465 /* Cached table no good: need to read the entire table anew.
3466 Or else we want all the sections, in which case it's actually
3467 more efficient to read the whole table in one block anyway. */
3468
3469 if (! simple_read_overlay_table ())
3470 return;
3471
3472 /* Now may as well update all sections, even if only one was requested. */
3473 ALL_OBJSECTIONS (objfile, osect)
3474 if (section_is_overlay (osect->the_bfd_section))
3475 {
3476 int i, size;
3477 bfd *obfd = osect->objfile->obfd;
3478 asection *bsect = osect->the_bfd_section;
3479
3480 size = bfd_get_section_size (bsect);
3481 for (i = 0; i < cache_novlys; i++)
3482 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3483 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3484 /* && cache_ovly_table[i][SIZE] == size */ )
3485 { /* obj_section matches i'th entry in ovly_table */
3486 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3487 break; /* finished with inner for loop: break out */
3488 }
3489 }
3490 }
3491
3492 /* Set the output sections and output offsets for section SECTP in
3493 ABFD. The relocation code in BFD will read these offsets, so we
3494 need to be sure they're initialized. We map each section to itself,
3495 with no offset; this means that SECTP->vma will be honored. */
3496
3497 static void
3498 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3499 {
3500 sectp->output_section = sectp;
3501 sectp->output_offset = 0;
3502 }
3503
3504 /* Relocate the contents of a debug section SECTP in ABFD. The
3505 contents are stored in BUF if it is non-NULL, or returned in a
3506 malloc'd buffer otherwise.
3507
3508 For some platforms and debug info formats, shared libraries contain
3509 relocations against the debug sections (particularly for DWARF-2;
3510 one affected platform is PowerPC GNU/Linux, although it depends on
3511 the version of the linker in use). Also, ELF object files naturally
3512 have unresolved relocations for their debug sections. We need to apply
3513 the relocations in order to get the locations of symbols correct. */
3514
3515 bfd_byte *
3516 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3517 {
3518 /* We're only interested in debugging sections with relocation
3519 information. */
3520 if ((sectp->flags & SEC_RELOC) == 0)
3521 return NULL;
3522 if ((sectp->flags & SEC_DEBUGGING) == 0)
3523 return NULL;
3524
3525 /* We will handle section offsets properly elsewhere, so relocate as if
3526 all sections begin at 0. */
3527 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3528
3529 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3530 }
3531
3532 void
3533 _initialize_symfile (void)
3534 {
3535 struct cmd_list_element *c;
3536
3537 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3538 "Load symbol table from executable file FILE.\n\
3539 The `file' command can also load symbol tables, as well as setting the file\n\
3540 to execute.", &cmdlist);
3541 set_cmd_completer (c, filename_completer);
3542
3543 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3544 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3545 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3546 ADDR is the starting address of the file's text.\n\
3547 The optional arguments are section-name section-address pairs and\n\
3548 should be specified if the data and bss segments are not contiguous\n\
3549 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3550 &cmdlist);
3551 set_cmd_completer (c, filename_completer);
3552
3553 c = add_cmd ("add-shared-symbol-files", class_files,
3554 add_shared_symbol_files_command,
3555 "Load the symbols from shared objects in the dynamic linker's link map.",
3556 &cmdlist);
3557 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3558 &cmdlist);
3559
3560 c = add_cmd ("load", class_files, load_command,
3561 "Dynamically load FILE into the running program, and record its symbols\n\
3562 for access from GDB.", &cmdlist);
3563 set_cmd_completer (c, filename_completer);
3564
3565 deprecated_add_show_from_set
3566 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3567 (char *) &symbol_reloading,
3568 "Set dynamic symbol table reloading multiple times in one run.",
3569 &setlist),
3570 &showlist);
3571
3572 add_prefix_cmd ("overlay", class_support, overlay_command,
3573 "Commands for debugging overlays.", &overlaylist,
3574 "overlay ", 0, &cmdlist);
3575
3576 add_com_alias ("ovly", "overlay", class_alias, 1);
3577 add_com_alias ("ov", "overlay", class_alias, 1);
3578
3579 add_cmd ("map-overlay", class_support, map_overlay_command,
3580 "Assert that an overlay section is mapped.", &overlaylist);
3581
3582 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3583 "Assert that an overlay section is unmapped.", &overlaylist);
3584
3585 add_cmd ("list-overlays", class_support, list_overlays_command,
3586 "List mappings of overlay sections.", &overlaylist);
3587
3588 add_cmd ("manual", class_support, overlay_manual_command,
3589 "Enable overlay debugging.", &overlaylist);
3590 add_cmd ("off", class_support, overlay_off_command,
3591 "Disable overlay debugging.", &overlaylist);
3592 add_cmd ("auto", class_support, overlay_auto_command,
3593 "Enable automatic overlay debugging.", &overlaylist);
3594 add_cmd ("load-target", class_support, overlay_load_command,
3595 "Read the overlay mapping state from the target.", &overlaylist);
3596
3597 /* Filename extension to source language lookup table: */
3598 init_filename_language_table ();
3599 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3600 (char *) &ext_args,
3601 "Set mapping between filename extension and source language.\n\
3602 Usage: set extension-language .foo bar",
3603 &setlist);
3604 set_cmd_cfunc (c, set_ext_lang_command);
3605
3606 add_info ("extensions", info_ext_lang_command,
3607 "All filename extensions associated with a source language.");
3608
3609 deprecated_add_show_from_set
3610 (add_set_cmd ("download-write-size", class_obscure,
3611 var_integer, (char *) &download_write_size,
3612 "Set the write size used when downloading a program.\n"
3613 "Only used when downloading a program onto a remote\n"
3614 "target. Specify zero, or a negative value, to disable\n"
3615 "blocked writes. The actual size of each transfer is also\n"
3616 "limited by the size of the target packet and the memory\n"
3617 "cache.\n",
3618 &setlist),
3619 &showlist);
3620
3621 debug_file_directory = xstrdup (DEBUGDIR);
3622 c = (add_set_cmd
3623 ("debug-file-directory", class_support, var_string,
3624 (char *) &debug_file_directory,
3625 "Set the directory where separate debug symbols are searched for.\n"
3626 "Separate debug symbols are first searched for in the same\n"
3627 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3628 "' subdirectory,\n"
3629 "and lastly at the path of the directory of the binary with\n"
3630 "the global debug-file directory prepended\n",
3631 &setlist));
3632 deprecated_add_show_from_set (c, &showlist);
3633 set_cmd_completer (c, filename_completer);
3634 }
This page took 0.152115 seconds and 4 git commands to generate.