Fix breakpoints on file reloads for PIE binaries
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1449
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1454
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1460 std::string drive;
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1462 {
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465 }
1466
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1468 {
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += drive;
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1481 {
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1484 else
1485 base_path = child_path (gdb_sysroot, canon_dir);
1486 }
1487 if (base_path != NULL)
1488 {
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1493 debugfile += "/";
1494 debugfile += base_path;
1495 debugfile += "/";
1496 debugfile += debuglink;
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1506 debugfile += "/";
1507 debugfile += base_path;
1508 debugfile += "/";
1509 debugfile += debuglink;
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 return debugfile;
1513 }
1514
1515 }
1516
1517 return std::string ();
1518 }
1519
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1523
1524 static void
1525 terminate_after_last_dir_separator (char *path)
1526 {
1527 int i;
1528
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1533 break;
1534
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1536 path[i + 1] = '\0';
1537 }
1538
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1541
1542 std::string
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544 {
1545 unsigned long crc32;
1546
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1555 }
1556
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1560
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1564
1565 if (debugfile.empty ())
1566 {
1567 /* For PR gdb/9538, try again with realpath (if different from the
1568 original). */
1569
1570 struct stat st_buf;
1571
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1574 {
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1578 {
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1581 {
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1584 symlink_dir.get (),
1585 debuglink.get (),
1586 crc32,
1587 objfile);
1588 }
1589 }
1590 }
1591 }
1592
1593 return debugfile;
1594 }
1595
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1597 simultaneously. */
1598
1599 static void
1600 validate_readnow_readnever (objfile_flags flags)
1601 {
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1636 int idx;
1637 char *arg;
1638
1639 if (from_tty)
1640 add_flags |= SYMFILE_VERBOSE;
1641
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1644 {
1645 if (stop_processing_options || *arg != '-')
1646 {
1647 if (name == NULL)
1648 name = arg;
1649 else
1650 error (_("Unrecognized argument \"%s\""), arg);
1651 }
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1657 {
1658 arg = built_argv[++idx];
1659 if (arg == NULL)
1660 error (_("Missing argument to -o"));
1661
1662 offset = parse_and_eval_address (arg);
1663 }
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1666 else
1667 error (_("Unrecognized argument \"%s\""), arg);
1668 }
1669
1670 if (name == NULL)
1671 error (_("no symbol file name was specified"));
1672
1673 validate_readnow_readnever (flags);
1674
1675 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1676 (Position Independent Executable) main symbol file will only be
1677 computed by the solib_create_inferior_hook below. Without it,
1678 breakpoint_re_set would fail to insert the breakpoints with the zero
1679 displacement. */
1680 add_flags |= SYMFILE_DEFER_BP_RESET;
1681
1682 symbol_file_add_main_1 (name, add_flags, flags, offset);
1683
1684 solib_create_inferior_hook (from_tty);
1685
1686 /* Now it's safe to re-add the breakpoints. */
1687 breakpoint_re_set ();
1688 }
1689 }
1690
1691 /* Set the initial language.
1692
1693 FIXME: A better solution would be to record the language in the
1694 psymtab when reading partial symbols, and then use it (if known) to
1695 set the language. This would be a win for formats that encode the
1696 language in an easily discoverable place, such as DWARF. For
1697 stabs, we can jump through hoops looking for specially named
1698 symbols or try to intuit the language from the specific type of
1699 stabs we find, but we can't do that until later when we read in
1700 full symbols. */
1701
1702 void
1703 set_initial_language (void)
1704 {
1705 enum language lang = main_language ();
1706
1707 if (lang == language_unknown)
1708 {
1709 char *name = main_name ();
1710 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1711
1712 if (sym != NULL)
1713 lang = SYMBOL_LANGUAGE (sym);
1714 }
1715
1716 if (lang == language_unknown)
1717 {
1718 /* Make C the default language */
1719 lang = language_c;
1720 }
1721
1722 set_language (lang);
1723 expected_language = current_language; /* Don't warn the user. */
1724 }
1725
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1730
1731 gdb_bfd_ref_ptr
1732 symfile_bfd_open (const char *name)
1733 {
1734 int desc = -1;
1735
1736 gdb::unique_xmalloc_ptr<char> absolute_name;
1737 if (!is_target_filename (name))
1738 {
1739 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1740
1741 /* Look down path for it, allocate 2nd new malloc'd copy. */
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1746 if (desc < 0)
1747 {
1748 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1749
1750 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1751 desc = openp (getenv ("PATH"),
1752 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1753 exename, O_RDONLY | O_BINARY, &absolute_name);
1754 }
1755 #endif
1756 if (desc < 0)
1757 perror_with_name (expanded_name.get ());
1758
1759 name = absolute_name.get ();
1760 }
1761
1762 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1763 if (sym_bfd == NULL)
1764 error (_("`%s': can't open to read symbols: %s."), name,
1765 bfd_errmsg (bfd_get_error ()));
1766
1767 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1768 bfd_set_cacheable (sym_bfd.get (), 1);
1769
1770 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773
1774 return sym_bfd;
1775 }
1776
1777 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1778 the section was not found. */
1779
1780 int
1781 get_section_index (struct objfile *objfile, const char *section_name)
1782 {
1783 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1784
1785 if (sect)
1786 return sect->index;
1787 else
1788 return -1;
1789 }
1790
1791 /* Link SF into the global symtab_fns list.
1792 FLAVOUR is the file format that SF handles.
1793 Called on startup by the _initialize routine in each object file format
1794 reader, to register information about each format the reader is prepared
1795 to handle. */
1796
1797 void
1798 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1799 {
1800 symtab_fns.emplace_back (flavour, sf);
1801 }
1802
1803 /* Initialize OBJFILE to read symbols from its associated BFD. It
1804 either returns or calls error(). The result is an initialized
1805 struct sym_fns in the objfile structure, that contains cached
1806 information about the symbol file. */
1807
1808 static const struct sym_fns *
1809 find_sym_fns (bfd *abfd)
1810 {
1811 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1812
1813 if (our_flavour == bfd_target_srec_flavour
1814 || our_flavour == bfd_target_ihex_flavour
1815 || our_flavour == bfd_target_tekhex_flavour)
1816 return NULL; /* No symbols. */
1817
1818 for (const registered_sym_fns &rsf : symtab_fns)
1819 if (our_flavour == rsf.sym_flavour)
1820 return rsf.sym_fns;
1821
1822 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1823 bfd_get_target (abfd));
1824 }
1825 \f
1826
1827 /* This function runs the load command of our current target. */
1828
1829 static void
1830 load_command (const char *arg, int from_tty)
1831 {
1832 dont_repeat ();
1833
1834 /* The user might be reloading because the binary has changed. Take
1835 this opportunity to check. */
1836 reopen_exec_file ();
1837 reread_symbols ();
1838
1839 std::string temp;
1840 if (arg == NULL)
1841 {
1842 const char *parg, *prev;
1843
1844 arg = get_exec_file (1);
1845
1846 /* We may need to quote this string so buildargv can pull it
1847 apart. */
1848 prev = parg = arg;
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1850 {
1851 temp.append (prev, parg - prev);
1852 prev = parg++;
1853 temp.push_back ('\\');
1854 }
1855 /* If we have not copied anything yet, then we didn't see a
1856 character to quote, and we can just leave ARG unchanged. */
1857 if (!temp.empty ())
1858 {
1859 temp.append (prev);
1860 arg = temp.c_str ();
1861 }
1862 }
1863
1864 target_load (arg, from_tty);
1865
1866 /* After re-loading the executable, we don't really know which
1867 overlays are mapped any more. */
1868 overlay_cache_invalid = 1;
1869 }
1870
1871 /* This version of "load" should be usable for any target. Currently
1872 it is just used for remote targets, not inftarg.c or core files,
1873 on the theory that only in that case is it useful.
1874
1875 Avoiding xmodem and the like seems like a win (a) because we don't have
1876 to worry about finding it, and (b) On VMS, fork() is very slow and so
1877 we don't want to run a subprocess. On the other hand, I'm not sure how
1878 performance compares. */
1879
1880 static int validate_download = 0;
1881
1882 /* Callback service function for generic_load (bfd_map_over_sections). */
1883
1884 static void
1885 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1886 {
1887 bfd_size_type *sum = (bfd_size_type *) data;
1888
1889 *sum += bfd_get_section_size (asec);
1890 }
1891
1892 /* Opaque data for load_progress. */
1893 struct load_progress_data
1894 {
1895 /* Cumulative data. */
1896 unsigned long write_count = 0;
1897 unsigned long data_count = 0;
1898 bfd_size_type total_size = 0;
1899 };
1900
1901 /* Opaque data for load_progress for a single section. */
1902 struct load_progress_section_data
1903 {
1904 load_progress_section_data (load_progress_data *cumulative_,
1905 const char *section_name_, ULONGEST section_size_,
1906 CORE_ADDR lma_, gdb_byte *buffer_)
1907 : cumulative (cumulative_), section_name (section_name_),
1908 section_size (section_size_), lma (lma_), buffer (buffer_)
1909 {}
1910
1911 struct load_progress_data *cumulative;
1912
1913 /* Per-section data. */
1914 const char *section_name;
1915 ULONGEST section_sent = 0;
1916 ULONGEST section_size;
1917 CORE_ADDR lma;
1918 gdb_byte *buffer;
1919 };
1920
1921 /* Opaque data for load_section_callback. */
1922 struct load_section_data
1923 {
1924 load_section_data (load_progress_data *progress_data_)
1925 : progress_data (progress_data_)
1926 {}
1927
1928 ~load_section_data ()
1929 {
1930 for (auto &&request : requests)
1931 {
1932 xfree (request.data);
1933 delete ((load_progress_section_data *) request.baton);
1934 }
1935 }
1936
1937 CORE_ADDR load_offset = 0;
1938 struct load_progress_data *progress_data;
1939 std::vector<struct memory_write_request> requests;
1940 };
1941
1942 /* Target write callback routine for progress reporting. */
1943
1944 static void
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1946 {
1947 struct load_progress_section_data *args
1948 = (struct load_progress_section_data *) untyped_arg;
1949 struct load_progress_data *totals;
1950
1951 if (args == NULL)
1952 /* Writing padding data. No easy way to get at the cumulative
1953 stats, so just ignore this. */
1954 return;
1955
1956 totals = args->cumulative;
1957
1958 if (bytes == 0 && args->section_sent == 0)
1959 {
1960 /* The write is just starting. Let the user know we've started
1961 this section. */
1962 current_uiout->message ("Loading section %s, size %s lma %s\n",
1963 args->section_name,
1964 hex_string (args->section_size),
1965 paddress (target_gdbarch (), args->lma));
1966 return;
1967 }
1968
1969 if (validate_download)
1970 {
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1973 downloads. */
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb::byte_vector check (bytes);
1979
1980 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1981 error (_("Download verify read failed at %s"),
1982 paddress (target_gdbarch (), args->lma));
1983 if (memcmp (args->buffer, check.data (), bytes) != 0)
1984 error (_("Download verify compare failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1986 }
1987 totals->data_count += bytes;
1988 args->lma += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
2002 totals->data_count,
2003 totals->total_size);
2004 }
2005
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008 static void
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 {
2011 struct load_section_data *args = (struct load_section_data *) data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2014
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2016 return;
2017
2018 if (size == 0)
2019 return;
2020
2021 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2022 ULONGEST end = begin + size;
2023 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2025
2026 load_progress_section_data *section_data
2027 = new load_progress_section_data (args->progress_data, sect_name, size,
2028 begin, buffer);
2029
2030 args->requests.emplace_back (begin, end, buffer, section_data);
2031 }
2032
2033 static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2037
2038 /* See symfile.h. */
2039
2040 void
2041 generic_load (const char *args, int from_tty)
2042 {
2043 struct load_progress_data total_progress;
2044 struct load_section_data cbdata (&total_progress);
2045 struct ui_out *uiout = current_uiout;
2046
2047 if (args == NULL)
2048 error_no_arg (_("file to load"));
2049
2050 gdb_argv argv (args);
2051
2052 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2053
2054 if (argv[1] != NULL)
2055 {
2056 const char *endptr;
2057
2058 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2059
2060 /* If the last word was not a valid number then
2061 treat it as a file name with spaces in. */
2062 if (argv[1] == endptr)
2063 error (_("Invalid download offset:%s."), argv[1]);
2064
2065 if (argv[2] != NULL)
2066 error (_("Too many parameters."));
2067 }
2068
2069 /* Open the file for loading. */
2070 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2071 if (loadfile_bfd == NULL)
2072 perror_with_name (filename.get ());
2073
2074 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2075 {
2076 error (_("\"%s\" is not an object file: %s"), filename.get (),
2077 bfd_errmsg (bfd_get_error ()));
2078 }
2079
2080 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2081 (void *) &total_progress.total_size);
2082
2083 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2084
2085 using namespace std::chrono;
2086
2087 steady_clock::time_point start_time = steady_clock::now ();
2088
2089 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2090 load_progress) != 0)
2091 error (_("Load failed"));
2092
2093 steady_clock::time_point end_time = steady_clock::now ();
2094
2095 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2096 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2097 uiout->text ("Start address ");
2098 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2099 uiout->text (", load size ");
2100 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2101 uiout->text ("\n");
2102 regcache_write_pc (get_current_regcache (), entry);
2103
2104 /* Reset breakpoints, now that we have changed the load image. For
2105 instance, breakpoints may have been set (or reset, by
2106 post_create_inferior) while connected to the target but before we
2107 loaded the program. In that case, the prologue analyzer could
2108 have read instructions from the target to find the right
2109 breakpoint locations. Loading has changed the contents of that
2110 memory. */
2111
2112 breakpoint_re_set ();
2113
2114 print_transfer_performance (gdb_stdout, total_progress.data_count,
2115 total_progress.write_count,
2116 end_time - start_time);
2117 }
2118
2119 /* Report on STREAM the performance of a memory transfer operation,
2120 such as 'load'. DATA_COUNT is the number of bytes transferred.
2121 WRITE_COUNT is the number of separate write operations, or 0, if
2122 that information is not available. TIME is how long the operation
2123 lasted. */
2124
2125 static void
2126 print_transfer_performance (struct ui_file *stream,
2127 unsigned long data_count,
2128 unsigned long write_count,
2129 std::chrono::steady_clock::duration time)
2130 {
2131 using namespace std::chrono;
2132 struct ui_out *uiout = current_uiout;
2133
2134 milliseconds ms = duration_cast<milliseconds> (time);
2135
2136 uiout->text ("Transfer rate: ");
2137 if (ms.count () > 0)
2138 {
2139 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2140
2141 if (uiout->is_mi_like_p ())
2142 {
2143 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2144 uiout->text (" bits/sec");
2145 }
2146 else if (rate < 1024)
2147 {
2148 uiout->field_fmt ("transfer-rate", "%lu", rate);
2149 uiout->text (" bytes/sec");
2150 }
2151 else
2152 {
2153 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2154 uiout->text (" KB/sec");
2155 }
2156 }
2157 else
2158 {
2159 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2160 uiout->text (" bits in <1 sec");
2161 }
2162 if (write_count > 0)
2163 {
2164 uiout->text (", ");
2165 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2166 uiout->text (" bytes/write");
2167 }
2168 uiout->text (".\n");
2169 }
2170
2171 /* Add an OFFSET to the start address of each section in OBJF, except
2172 sections that were specified in ADDRS. */
2173
2174 static void
2175 set_objfile_default_section_offset (struct objfile *objf,
2176 const section_addr_info &addrs,
2177 CORE_ADDR offset)
2178 {
2179 /* Add OFFSET to all sections by default. */
2180 std::vector<struct section_offsets> offsets (objf->num_sections,
2181 { { offset } });
2182
2183 /* Create sorted lists of all sections in ADDRS as well as all
2184 sections in OBJF. */
2185
2186 std::vector<const struct other_sections *> addrs_sorted
2187 = addrs_section_sort (addrs);
2188
2189 section_addr_info objf_addrs
2190 = build_section_addr_info_from_objfile (objf);
2191 std::vector<const struct other_sections *> objf_addrs_sorted
2192 = addrs_section_sort (objf_addrs);
2193
2194 /* Walk the BFD section list, and if a matching section is found in
2195 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2196 unchanged.
2197
2198 Note that both lists may contain multiple sections with the same
2199 name, and then the sections from ADDRS are matched in BFD order
2200 (thanks to sectindex). */
2201
2202 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2203 = addrs_sorted.begin ();
2204 for (const other_sections *objf_sect : objf_addrs_sorted)
2205 {
2206 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2207 int cmp = -1;
2208
2209 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2210 {
2211 const struct other_sections *sect = *addrs_sorted_iter;
2212 const char *sect_name = addr_section_name (sect->name.c_str ());
2213 cmp = strcmp (sect_name, objf_name);
2214 if (cmp <= 0)
2215 ++addrs_sorted_iter;
2216 }
2217
2218 if (cmp == 0)
2219 offsets[objf_sect->sectindex].offsets[0] = 0;
2220 }
2221
2222 /* Apply the new section offsets. */
2223 objfile_relocate (objf, offsets.data ());
2224 }
2225
2226 /* This function allows the addition of incrementally linked object files.
2227 It does not modify any state in the target, only in the debugger. */
2228
2229 static void
2230 add_symbol_file_command (const char *args, int from_tty)
2231 {
2232 struct gdbarch *gdbarch = get_current_arch ();
2233 gdb::unique_xmalloc_ptr<char> filename;
2234 char *arg;
2235 int argcnt = 0;
2236 struct objfile *objf;
2237 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2238 symfile_add_flags add_flags = 0;
2239
2240 if (from_tty)
2241 add_flags |= SYMFILE_VERBOSE;
2242
2243 struct sect_opt
2244 {
2245 const char *name;
2246 const char *value;
2247 };
2248
2249 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2250 bool stop_processing_options = false;
2251 CORE_ADDR offset = 0;
2252
2253 dont_repeat ();
2254
2255 if (args == NULL)
2256 error (_("add-symbol-file takes a file name and an address"));
2257
2258 bool seen_addr = false;
2259 bool seen_offset = false;
2260 gdb_argv argv (args);
2261
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2263 {
2264 if (stop_processing_options || *arg != '-')
2265 {
2266 if (filename == NULL)
2267 {
2268 /* First non-option argument is always the filename. */
2269 filename.reset (tilde_expand (arg));
2270 }
2271 else if (!seen_addr)
2272 {
2273 /* The second non-option argument is always the text
2274 address at which to load the program. */
2275 sect_opts[0].value = arg;
2276 seen_addr = true;
2277 }
2278 else
2279 error (_("Unrecognized argument \"%s\""), arg);
2280 }
2281 else if (strcmp (arg, "-readnow") == 0)
2282 flags |= OBJF_READNOW;
2283 else if (strcmp (arg, "-readnever") == 0)
2284 flags |= OBJF_READNEVER;
2285 else if (strcmp (arg, "-s") == 0)
2286 {
2287 if (argv[argcnt + 1] == NULL)
2288 error (_("Missing section name after \"-s\""));
2289 else if (argv[argcnt + 2] == NULL)
2290 error (_("Missing section address after \"-s\""));
2291
2292 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2293
2294 sect_opts.push_back (sect);
2295 argcnt += 2;
2296 }
2297 else if (strcmp (arg, "-o") == 0)
2298 {
2299 arg = argv[++argcnt];
2300 if (arg == NULL)
2301 error (_("Missing argument to -o"));
2302
2303 offset = parse_and_eval_address (arg);
2304 seen_offset = true;
2305 }
2306 else if (strcmp (arg, "--") == 0)
2307 stop_processing_options = true;
2308 else
2309 error (_("Unrecognized argument \"%s\""), arg);
2310 }
2311
2312 if (filename == NULL)
2313 error (_("You must provide a filename to be loaded."));
2314
2315 validate_readnow_readnever (flags);
2316
2317 /* Print the prompt for the query below. And save the arguments into
2318 a sect_addr_info structure to be passed around to other
2319 functions. We have to split this up into separate print
2320 statements because hex_string returns a local static
2321 string. */
2322
2323 printf_unfiltered (_("add symbol table from file \"%s\""),
2324 filename.get ());
2325 section_addr_info section_addrs;
2326 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2327 if (!seen_addr)
2328 ++it;
2329 for (; it != sect_opts.end (); ++it)
2330 {
2331 CORE_ADDR addr;
2332 const char *val = it->value;
2333 const char *sec = it->name;
2334
2335 if (section_addrs.empty ())
2336 printf_unfiltered (_(" at\n"));
2337 addr = parse_and_eval_address (val);
2338
2339 /* Here we store the section offsets in the order they were
2340 entered on the command line. Every array element is
2341 assigned an ascending section index to preserve the above
2342 order over an unstable sorting algorithm. This dummy
2343 index is not used for any other purpose.
2344 */
2345 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2346 printf_filtered ("\t%s_addr = %s\n", sec,
2347 paddress (gdbarch, addr));
2348
2349 /* The object's sections are initialized when a
2350 call is made to build_objfile_section_table (objfile).
2351 This happens in reread_symbols.
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2354 }
2355 if (seen_offset)
2356 printf_unfiltered (_("%s offset by %s\n"),
2357 (section_addrs.empty ()
2358 ? _(" with all sections")
2359 : _("with other sections")),
2360 paddress (gdbarch, offset));
2361 else if (section_addrs.empty ())
2362 printf_unfiltered ("\n");
2363
2364 if (from_tty && (!query ("%s", "")))
2365 error (_("Not confirmed."));
2366
2367 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2368 flags);
2369 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2370 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2371 filename.get ());
2372
2373 if (seen_offset)
2374 set_objfile_default_section_offset (objf, section_addrs, offset);
2375
2376 add_target_sections_of_objfile (objf);
2377
2378 /* Getting new symbols may change our opinion about what is
2379 frameless. */
2380 reinit_frame_cache ();
2381 }
2382 \f
2383
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2385
2386 static void
2387 remove_symbol_file_command (const char *args, int from_tty)
2388 {
2389 struct objfile *objf = NULL;
2390 struct program_space *pspace = current_program_space;
2391
2392 dont_repeat ();
2393
2394 if (args == NULL)
2395 error (_("remove-symbol-file: no symbol file provided"));
2396
2397 gdb_argv argv (args);
2398
2399 if (strcmp (argv[0], "-a") == 0)
2400 {
2401 /* Interpret the next argument as an address. */
2402 CORE_ADDR addr;
2403
2404 if (argv[1] == NULL)
2405 error (_("Missing address argument"));
2406
2407 if (argv[2] != NULL)
2408 error (_("Junk after %s"), argv[1]);
2409
2410 addr = parse_and_eval_address (argv[1]);
2411
2412 for (objfile *objfile : current_program_space->objfiles ())
2413 {
2414 if ((objfile->flags & OBJF_USERLOADED) != 0
2415 && (objfile->flags & OBJF_SHARED) != 0
2416 && objfile->pspace == pspace
2417 && is_addr_in_objfile (addr, objfile))
2418 {
2419 objf = objfile;
2420 break;
2421 }
2422 }
2423 }
2424 else if (argv[0] != NULL)
2425 {
2426 /* Interpret the current argument as a file name. */
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2432
2433 for (objfile *objfile : current_program_space->objfiles ())
2434 {
2435 if ((objfile->flags & OBJF_USERLOADED) != 0
2436 && (objfile->flags & OBJF_SHARED) != 0
2437 && objfile->pspace == pspace
2438 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2439 {
2440 objf = objfile;
2441 break;
2442 }
2443 }
2444 }
2445
2446 if (objf == NULL)
2447 error (_("No symbol file found"));
2448
2449 if (from_tty
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2453
2454 delete objf;
2455 clear_symtab_users (0);
2456 }
2457
2458 /* Re-read symbols if a symbol-file has changed. */
2459
2460 void
2461 reread_symbols (void)
2462 {
2463 long new_modtime;
2464 struct stat new_statbuf;
2465 int res;
2466 std::vector<struct objfile *> new_objfiles;
2467
2468 for (objfile *objfile : current_program_space->objfiles ())
2469 {
2470 if (objfile->obfd == NULL)
2471 continue;
2472
2473 /* Separate debug objfiles are handled in the main objfile. */
2474 if (objfile->separate_debug_objfile_backlink)
2475 continue;
2476
2477 /* If this object is from an archive (what you usually create with
2478 `ar', often called a `static library' on most systems, though
2479 a `shared library' on AIX is also an archive), then you should
2480 stat on the archive name, not member name. */
2481 if (objfile->obfd->my_archive)
2482 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2483 else
2484 res = stat (objfile_name (objfile), &new_statbuf);
2485 if (res != 0)
2486 {
2487 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2488 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2489 objfile_name (objfile));
2490 continue;
2491 }
2492 new_modtime = new_statbuf.st_mtime;
2493 if (new_modtime != objfile->mtime)
2494 {
2495 struct section_offsets *offsets;
2496 int num_offsets;
2497
2498 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2499 objfile_name (objfile));
2500
2501 /* There are various functions like symbol_file_add,
2502 symfile_bfd_open, syms_from_objfile, etc., which might
2503 appear to do what we want. But they have various other
2504 effects which we *don't* want. So we just do stuff
2505 ourselves. We don't worry about mapped files (for one thing,
2506 any mapped file will be out of date). */
2507
2508 /* If we get an error, blow away this objfile (not sure if
2509 that is the correct response for things like shared
2510 libraries). */
2511 std::unique_ptr<struct objfile> objfile_holder (objfile);
2512
2513 /* We need to do this whenever any symbols go away. */
2514 clear_symtab_users_cleanup defer_clear_users (0);
2515
2516 if (exec_bfd != NULL
2517 && filename_cmp (bfd_get_filename (objfile->obfd),
2518 bfd_get_filename (exec_bfd)) == 0)
2519 {
2520 /* Reload EXEC_BFD without asking anything. */
2521
2522 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2523 }
2524
2525 /* Keep the calls order approx. the same as in free_objfile. */
2526
2527 /* Free the separate debug objfiles. It will be
2528 automatically recreated by sym_read. */
2529 free_objfile_separate_debug (objfile);
2530
2531 /* Remove any references to this objfile in the global
2532 value lists. */
2533 preserve_values (objfile);
2534
2535 /* Nuke all the state that we will re-read. Much of the following
2536 code which sets things to NULL really is necessary to tell
2537 other parts of GDB that there is nothing currently there.
2538
2539 Try to keep the freeing order compatible with free_objfile. */
2540
2541 if (objfile->sf != NULL)
2542 {
2543 (*objfile->sf->sym_finish) (objfile);
2544 }
2545
2546 clear_objfile_data (objfile);
2547
2548 /* Clean up any state BFD has sitting around. */
2549 {
2550 gdb_bfd_ref_ptr obfd (objfile->obfd);
2551 char *obfd_filename;
2552
2553 obfd_filename = bfd_get_filename (objfile->obfd);
2554 /* Open the new BFD before freeing the old one, so that
2555 the filename remains live. */
2556 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2557 objfile->obfd = temp.release ();
2558 if (objfile->obfd == NULL)
2559 error (_("Can't open %s to read symbols."), obfd_filename);
2560 }
2561
2562 std::string original_name = objfile->original_name;
2563
2564 /* bfd_openr sets cacheable to true, which is what we want. */
2565 if (!bfd_check_format (objfile->obfd, bfd_object))
2566 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2567 bfd_errmsg (bfd_get_error ()));
2568
2569 /* Save the offsets, we will nuke them with the rest of the
2570 objfile_obstack. */
2571 num_offsets = objfile->num_sections;
2572 offsets = ((struct section_offsets *)
2573 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2574 memcpy (offsets, objfile->section_offsets,
2575 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2576
2577 objfile->reset_psymtabs ();
2578
2579 /* NB: after this call to obstack_free, objfiles_changed
2580 will need to be called (see discussion below). */
2581 obstack_free (&objfile->objfile_obstack, 0);
2582 objfile->sections = NULL;
2583 objfile->compunit_symtabs = NULL;
2584 objfile->template_symbols = NULL;
2585 objfile->static_links.reset (nullptr);
2586
2587 /* obstack_init also initializes the obstack so it is
2588 empty. We could use obstack_specify_allocation but
2589 gdb_obstack.h specifies the alloc/dealloc functions. */
2590 obstack_init (&objfile->objfile_obstack);
2591
2592 /* set_objfile_per_bfd potentially allocates the per-bfd
2593 data on the objfile's obstack (if sharing data across
2594 multiple users is not possible), so it's important to
2595 do it *after* the obstack has been initialized. */
2596 set_objfile_per_bfd (objfile);
2597
2598 objfile->original_name
2599 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2600 original_name.c_str (),
2601 original_name.size ());
2602
2603 /* Reset the sym_fns pointer. The ELF reader can change it
2604 based on whether .gdb_index is present, and we need it to
2605 start over. PR symtab/15885 */
2606 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2607
2608 build_objfile_section_table (objfile);
2609
2610 /* We use the same section offsets as from last time. I'm not
2611 sure whether that is always correct for shared libraries. */
2612 objfile->section_offsets = (struct section_offsets *)
2613 obstack_alloc (&objfile->objfile_obstack,
2614 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2615 memcpy (objfile->section_offsets, offsets,
2616 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2617 objfile->num_sections = num_offsets;
2618
2619 /* What the hell is sym_new_init for, anyway? The concept of
2620 distinguishing between the main file and additional files
2621 in this way seems rather dubious. */
2622 if (objfile == symfile_objfile)
2623 {
2624 (*objfile->sf->sym_new_init) (objfile);
2625 }
2626
2627 (*objfile->sf->sym_init) (objfile);
2628 clear_complaints ();
2629
2630 objfile->flags &= ~OBJF_PSYMTABS_READ;
2631
2632 /* We are about to read new symbols and potentially also
2633 DWARF information. Some targets may want to pass addresses
2634 read from DWARF DIE's through an adjustment function before
2635 saving them, like MIPS, which may call into
2636 "find_pc_section". When called, that function will make
2637 use of per-objfile program space data.
2638
2639 Since we discarded our section information above, we have
2640 dangling pointers in the per-objfile program space data
2641 structure. Force GDB to update the section mapping
2642 information by letting it know the objfile has changed,
2643 making the dangling pointers point to correct data
2644 again. */
2645
2646 objfiles_changed ();
2647
2648 read_symbols (objfile, 0);
2649
2650 if (!objfile_has_symbols (objfile))
2651 {
2652 wrap_here ("");
2653 printf_filtered (_("(no debugging symbols found)\n"));
2654 wrap_here ("");
2655 }
2656
2657 /* We're done reading the symbol file; finish off complaints. */
2658 clear_complaints ();
2659
2660 /* Getting new symbols may change our opinion about what is
2661 frameless. */
2662
2663 reinit_frame_cache ();
2664
2665 /* Discard cleanups as symbol reading was successful. */
2666 objfile_holder.release ();
2667 defer_clear_users.release ();
2668
2669 /* If the mtime has changed between the time we set new_modtime
2670 and now, we *want* this to be out of date, so don't call stat
2671 again now. */
2672 objfile->mtime = new_modtime;
2673 init_entry_point_info (objfile);
2674
2675 new_objfiles.push_back (objfile);
2676 }
2677 }
2678
2679 if (!new_objfiles.empty ())
2680 {
2681 clear_symtab_users (0);
2682
2683 /* clear_objfile_data for each objfile was called before freeing it and
2684 gdb::observers::new_objfile.notify (NULL) has been called by
2685 clear_symtab_users above. Notify the new files now. */
2686 for (auto iter : new_objfiles)
2687 gdb::observers::new_objfile.notify (iter);
2688
2689 /* At least one objfile has changed, so we can consider that
2690 the executable we're debugging has changed too. */
2691 gdb::observers::executable_changed.notify ();
2692 }
2693 }
2694 \f
2695
2696 struct filename_language
2697 {
2698 filename_language (const std::string &ext_, enum language lang_)
2699 : ext (ext_), lang (lang_)
2700 {}
2701
2702 std::string ext;
2703 enum language lang;
2704 };
2705
2706 static std::vector<filename_language> filename_language_table;
2707
2708 /* See symfile.h. */
2709
2710 void
2711 add_filename_language (const char *ext, enum language lang)
2712 {
2713 filename_language_table.emplace_back (ext, lang);
2714 }
2715
2716 static char *ext_args;
2717 static void
2718 show_ext_args (struct ui_file *file, int from_tty,
2719 struct cmd_list_element *c, const char *value)
2720 {
2721 fprintf_filtered (file,
2722 _("Mapping between filename extension "
2723 "and source language is \"%s\".\n"),
2724 value);
2725 }
2726
2727 static void
2728 set_ext_lang_command (const char *args,
2729 int from_tty, struct cmd_list_element *e)
2730 {
2731 char *cp = ext_args;
2732 enum language lang;
2733
2734 /* First arg is filename extension, starting with '.' */
2735 if (*cp != '.')
2736 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2737
2738 /* Find end of first arg. */
2739 while (*cp && !isspace (*cp))
2740 cp++;
2741
2742 if (*cp == '\0')
2743 error (_("'%s': two arguments required -- "
2744 "filename extension and language"),
2745 ext_args);
2746
2747 /* Null-terminate first arg. */
2748 *cp++ = '\0';
2749
2750 /* Find beginning of second arg, which should be a source language. */
2751 cp = skip_spaces (cp);
2752
2753 if (*cp == '\0')
2754 error (_("'%s': two arguments required -- "
2755 "filename extension and language"),
2756 ext_args);
2757
2758 /* Lookup the language from among those we know. */
2759 lang = language_enum (cp);
2760
2761 auto it = filename_language_table.begin ();
2762 /* Now lookup the filename extension: do we already know it? */
2763 for (; it != filename_language_table.end (); it++)
2764 {
2765 if (it->ext == ext_args)
2766 break;
2767 }
2768
2769 if (it == filename_language_table.end ())
2770 {
2771 /* New file extension. */
2772 add_filename_language (ext_args, lang);
2773 }
2774 else
2775 {
2776 /* Redefining a previously known filename extension. */
2777
2778 /* if (from_tty) */
2779 /* query ("Really make files of type %s '%s'?", */
2780 /* ext_args, language_str (lang)); */
2781
2782 it->lang = lang;
2783 }
2784 }
2785
2786 static void
2787 info_ext_lang_command (const char *args, int from_tty)
2788 {
2789 printf_filtered (_("Filename extensions and the languages they represent:"));
2790 printf_filtered ("\n\n");
2791 for (const filename_language &entry : filename_language_table)
2792 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2793 language_str (entry.lang));
2794 }
2795
2796 enum language
2797 deduce_language_from_filename (const char *filename)
2798 {
2799 const char *cp;
2800
2801 if (filename != NULL)
2802 if ((cp = strrchr (filename, '.')) != NULL)
2803 {
2804 for (const filename_language &entry : filename_language_table)
2805 if (entry.ext == cp)
2806 return entry.lang;
2807 }
2808
2809 return language_unknown;
2810 }
2811 \f
2812 /* Allocate and initialize a new symbol table.
2813 CUST is from the result of allocate_compunit_symtab. */
2814
2815 struct symtab *
2816 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2817 {
2818 struct objfile *objfile = cust->objfile;
2819 struct symtab *symtab
2820 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2821
2822 symtab->filename
2823 = ((const char *) objfile->per_bfd->filename_cache.insert
2824 (filename, strlen (filename) + 1));
2825 symtab->fullname = NULL;
2826 symtab->language = deduce_language_from_filename (filename);
2827
2828 /* This can be very verbose with lots of headers.
2829 Only print at higher debug levels. */
2830 if (symtab_create_debug >= 2)
2831 {
2832 /* Be a bit clever with debugging messages, and don't print objfile
2833 every time, only when it changes. */
2834 static char *last_objfile_name = NULL;
2835
2836 if (last_objfile_name == NULL
2837 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2838 {
2839 xfree (last_objfile_name);
2840 last_objfile_name = xstrdup (objfile_name (objfile));
2841 fprintf_filtered (gdb_stdlog,
2842 "Creating one or more symtabs for objfile %s ...\n",
2843 last_objfile_name);
2844 }
2845 fprintf_filtered (gdb_stdlog,
2846 "Created symtab %s for module %s.\n",
2847 host_address_to_string (symtab), filename);
2848 }
2849
2850 /* Add it to CUST's list of symtabs. */
2851 if (cust->filetabs == NULL)
2852 {
2853 cust->filetabs = symtab;
2854 cust->last_filetab = symtab;
2855 }
2856 else
2857 {
2858 cust->last_filetab->next = symtab;
2859 cust->last_filetab = symtab;
2860 }
2861
2862 /* Backlink to the containing compunit symtab. */
2863 symtab->compunit_symtab = cust;
2864
2865 return symtab;
2866 }
2867
2868 /* Allocate and initialize a new compunit.
2869 NAME is the name of the main source file, if there is one, or some
2870 descriptive text if there are no source files. */
2871
2872 struct compunit_symtab *
2873 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2874 {
2875 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2876 struct compunit_symtab);
2877 const char *saved_name;
2878
2879 cu->objfile = objfile;
2880
2881 /* The name we record here is only for display/debugging purposes.
2882 Just save the basename to avoid path issues (too long for display,
2883 relative vs absolute, etc.). */
2884 saved_name = lbasename (name);
2885 cu->name
2886 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2887 strlen (saved_name));
2888
2889 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2890
2891 if (symtab_create_debug)
2892 {
2893 fprintf_filtered (gdb_stdlog,
2894 "Created compunit symtab %s for %s.\n",
2895 host_address_to_string (cu),
2896 cu->name);
2897 }
2898
2899 return cu;
2900 }
2901
2902 /* Hook CU to the objfile it comes from. */
2903
2904 void
2905 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2906 {
2907 cu->next = cu->objfile->compunit_symtabs;
2908 cu->objfile->compunit_symtabs = cu;
2909 }
2910 \f
2911
2912 /* Reset all data structures in gdb which may contain references to
2913 symbol table data. */
2914
2915 void
2916 clear_symtab_users (symfile_add_flags add_flags)
2917 {
2918 /* Someday, we should do better than this, by only blowing away
2919 the things that really need to be blown. */
2920
2921 /* Clear the "current" symtab first, because it is no longer valid.
2922 breakpoint_re_set may try to access the current symtab. */
2923 clear_current_source_symtab_and_line ();
2924
2925 clear_displays ();
2926 clear_last_displayed_sal ();
2927 clear_pc_function_cache ();
2928 gdb::observers::new_objfile.notify (NULL);
2929
2930 /* Varobj may refer to old symbols, perform a cleanup. */
2931 varobj_invalidate ();
2932
2933 /* Now that the various caches have been cleared, we can re_set
2934 our breakpoints without risking it using stale data. */
2935 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2936 breakpoint_re_set ();
2937 }
2938 \f
2939 /* OVERLAYS:
2940 The following code implements an abstraction for debugging overlay sections.
2941
2942 The target model is as follows:
2943 1) The gnu linker will permit multiple sections to be mapped into the
2944 same VMA, each with its own unique LMA (or load address).
2945 2) It is assumed that some runtime mechanism exists for mapping the
2946 sections, one by one, from the load address into the VMA address.
2947 3) This code provides a mechanism for gdb to keep track of which
2948 sections should be considered to be mapped from the VMA to the LMA.
2949 This information is used for symbol lookup, and memory read/write.
2950 For instance, if a section has been mapped then its contents
2951 should be read from the VMA, otherwise from the LMA.
2952
2953 Two levels of debugger support for overlays are available. One is
2954 "manual", in which the debugger relies on the user to tell it which
2955 overlays are currently mapped. This level of support is
2956 implemented entirely in the core debugger, and the information about
2957 whether a section is mapped is kept in the objfile->obj_section table.
2958
2959 The second level of support is "automatic", and is only available if
2960 the target-specific code provides functionality to read the target's
2961 overlay mapping table, and translate its contents for the debugger
2962 (by updating the mapped state information in the obj_section tables).
2963
2964 The interface is as follows:
2965 User commands:
2966 overlay map <name> -- tell gdb to consider this section mapped
2967 overlay unmap <name> -- tell gdb to consider this section unmapped
2968 overlay list -- list the sections that GDB thinks are mapped
2969 overlay read-target -- get the target's state of what's mapped
2970 overlay off/manual/auto -- set overlay debugging state
2971 Functional interface:
2972 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2973 section, return that section.
2974 find_pc_overlay(pc): find any overlay section that contains
2975 the pc, either in its VMA or its LMA
2976 section_is_mapped(sect): true if overlay is marked as mapped
2977 section_is_overlay(sect): true if section's VMA != LMA
2978 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2979 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2980 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2981 overlay_mapped_address(...): map an address from section's LMA to VMA
2982 overlay_unmapped_address(...): map an address from section's VMA to LMA
2983 symbol_overlayed_address(...): Return a "current" address for symbol:
2984 either in VMA or LMA depending on whether
2985 the symbol's section is currently mapped. */
2986
2987 /* Overlay debugging state: */
2988
2989 enum overlay_debugging_state overlay_debugging = ovly_off;
2990 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2991
2992 /* Function: section_is_overlay (SECTION)
2993 Returns true if SECTION has VMA not equal to LMA, ie.
2994 SECTION is loaded at an address different from where it will "run". */
2995
2996 int
2997 section_is_overlay (struct obj_section *section)
2998 {
2999 if (overlay_debugging && section)
3000 {
3001 asection *bfd_section = section->the_bfd_section;
3002
3003 if (bfd_section_lma (abfd, bfd_section) != 0
3004 && bfd_section_lma (abfd, bfd_section)
3005 != bfd_section_vma (abfd, bfd_section))
3006 return 1;
3007 }
3008
3009 return 0;
3010 }
3011
3012 /* Function: overlay_invalidate_all (void)
3013 Invalidate the mapped state of all overlay sections (mark it as stale). */
3014
3015 static void
3016 overlay_invalidate_all (void)
3017 {
3018 struct obj_section *sect;
3019
3020 for (objfile *objfile : current_program_space->objfiles ())
3021 ALL_OBJFILE_OSECTIONS (objfile, sect)
3022 if (section_is_overlay (sect))
3023 sect->ovly_mapped = -1;
3024 }
3025
3026 /* Function: section_is_mapped (SECTION)
3027 Returns true if section is an overlay, and is currently mapped.
3028
3029 Access to the ovly_mapped flag is restricted to this function, so
3030 that we can do automatic update. If the global flag
3031 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3032 overlay_invalidate_all. If the mapped state of the particular
3033 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3034
3035 int
3036 section_is_mapped (struct obj_section *osect)
3037 {
3038 struct gdbarch *gdbarch;
3039
3040 if (osect == 0 || !section_is_overlay (osect))
3041 return 0;
3042
3043 switch (overlay_debugging)
3044 {
3045 default:
3046 case ovly_off:
3047 return 0; /* overlay debugging off */
3048 case ovly_auto: /* overlay debugging automatic */
3049 /* Unles there is a gdbarch_overlay_update function,
3050 there's really nothing useful to do here (can't really go auto). */
3051 gdbarch = get_objfile_arch (osect->objfile);
3052 if (gdbarch_overlay_update_p (gdbarch))
3053 {
3054 if (overlay_cache_invalid)
3055 {
3056 overlay_invalidate_all ();
3057 overlay_cache_invalid = 0;
3058 }
3059 if (osect->ovly_mapped == -1)
3060 gdbarch_overlay_update (gdbarch, osect);
3061 }
3062 /* fall thru */
3063 case ovly_on: /* overlay debugging manual */
3064 return osect->ovly_mapped == 1;
3065 }
3066 }
3067
3068 /* Function: pc_in_unmapped_range
3069 If PC falls into the lma range of SECTION, return true, else false. */
3070
3071 CORE_ADDR
3072 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3073 {
3074 if (section_is_overlay (section))
3075 {
3076 bfd *abfd = section->objfile->obfd;
3077 asection *bfd_section = section->the_bfd_section;
3078
3079 /* We assume the LMA is relocated by the same offset as the VMA. */
3080 bfd_vma size = bfd_get_section_size (bfd_section);
3081 CORE_ADDR offset = obj_section_offset (section);
3082
3083 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3084 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3085 return 1;
3086 }
3087
3088 return 0;
3089 }
3090
3091 /* Function: pc_in_mapped_range
3092 If PC falls into the vma range of SECTION, return true, else false. */
3093
3094 CORE_ADDR
3095 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3096 {
3097 if (section_is_overlay (section))
3098 {
3099 if (obj_section_addr (section) <= pc
3100 && pc < obj_section_endaddr (section))
3101 return 1;
3102 }
3103
3104 return 0;
3105 }
3106
3107 /* Return true if the mapped ranges of sections A and B overlap, false
3108 otherwise. */
3109
3110 static int
3111 sections_overlap (struct obj_section *a, struct obj_section *b)
3112 {
3113 CORE_ADDR a_start = obj_section_addr (a);
3114 CORE_ADDR a_end = obj_section_endaddr (a);
3115 CORE_ADDR b_start = obj_section_addr (b);
3116 CORE_ADDR b_end = obj_section_endaddr (b);
3117
3118 return (a_start < b_end && b_start < a_end);
3119 }
3120
3121 /* Function: overlay_unmapped_address (PC, SECTION)
3122 Returns the address corresponding to PC in the unmapped (load) range.
3123 May be the same as PC. */
3124
3125 CORE_ADDR
3126 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3127 {
3128 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3129 {
3130 asection *bfd_section = section->the_bfd_section;
3131
3132 return pc + bfd_section_lma (abfd, bfd_section)
3133 - bfd_section_vma (abfd, bfd_section);
3134 }
3135
3136 return pc;
3137 }
3138
3139 /* Function: overlay_mapped_address (PC, SECTION)
3140 Returns the address corresponding to PC in the mapped (runtime) range.
3141 May be the same as PC. */
3142
3143 CORE_ADDR
3144 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3145 {
3146 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3147 {
3148 asection *bfd_section = section->the_bfd_section;
3149
3150 return pc + bfd_section_vma (abfd, bfd_section)
3151 - bfd_section_lma (abfd, bfd_section);
3152 }
3153
3154 return pc;
3155 }
3156
3157 /* Function: symbol_overlayed_address
3158 Return one of two addresses (relative to the VMA or to the LMA),
3159 depending on whether the section is mapped or not. */
3160
3161 CORE_ADDR
3162 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3163 {
3164 if (overlay_debugging)
3165 {
3166 /* If the symbol has no section, just return its regular address. */
3167 if (section == 0)
3168 return address;
3169 /* If the symbol's section is not an overlay, just return its
3170 address. */
3171 if (!section_is_overlay (section))
3172 return address;
3173 /* If the symbol's section is mapped, just return its address. */
3174 if (section_is_mapped (section))
3175 return address;
3176 /*
3177 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3178 * then return its LOADED address rather than its vma address!!
3179 */
3180 return overlay_unmapped_address (address, section);
3181 }
3182 return address;
3183 }
3184
3185 /* Function: find_pc_overlay (PC)
3186 Return the best-match overlay section for PC:
3187 If PC matches a mapped overlay section's VMA, return that section.
3188 Else if PC matches an unmapped section's VMA, return that section.
3189 Else if PC matches an unmapped section's LMA, return that section. */
3190
3191 struct obj_section *
3192 find_pc_overlay (CORE_ADDR pc)
3193 {
3194 struct obj_section *osect, *best_match = NULL;
3195
3196 if (overlay_debugging)
3197 {
3198 for (objfile *objfile : current_program_space->objfiles ())
3199 ALL_OBJFILE_OSECTIONS (objfile, osect)
3200 if (section_is_overlay (osect))
3201 {
3202 if (pc_in_mapped_range (pc, osect))
3203 {
3204 if (section_is_mapped (osect))
3205 return osect;
3206 else
3207 best_match = osect;
3208 }
3209 else if (pc_in_unmapped_range (pc, osect))
3210 best_match = osect;
3211 }
3212 }
3213 return best_match;
3214 }
3215
3216 /* Function: find_pc_mapped_section (PC)
3217 If PC falls into the VMA address range of an overlay section that is
3218 currently marked as MAPPED, return that section. Else return NULL. */
3219
3220 struct obj_section *
3221 find_pc_mapped_section (CORE_ADDR pc)
3222 {
3223 struct obj_section *osect;
3224
3225 if (overlay_debugging)
3226 {
3227 for (objfile *objfile : current_program_space->objfiles ())
3228 ALL_OBJFILE_OSECTIONS (objfile, osect)
3229 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3230 return osect;
3231 }
3232
3233 return NULL;
3234 }
3235
3236 /* Function: list_overlays_command
3237 Print a list of mapped sections and their PC ranges. */
3238
3239 static void
3240 list_overlays_command (const char *args, int from_tty)
3241 {
3242 int nmapped = 0;
3243 struct obj_section *osect;
3244
3245 if (overlay_debugging)
3246 {
3247 for (objfile *objfile : current_program_space->objfiles ())
3248 ALL_OBJFILE_OSECTIONS (objfile, osect)
3249 if (section_is_mapped (osect))
3250 {
3251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3252 const char *name;
3253 bfd_vma lma, vma;
3254 int size;
3255
3256 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3257 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3258 size = bfd_get_section_size (osect->the_bfd_section);
3259 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3260
3261 printf_filtered ("Section %s, loaded at ", name);
3262 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3265 printf_filtered (", mapped at ");
3266 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3267 puts_filtered (" - ");
3268 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3269 puts_filtered ("\n");
3270
3271 nmapped++;
3272 }
3273 }
3274 if (nmapped == 0)
3275 printf_filtered (_("No sections are mapped.\n"));
3276 }
3277
3278 /* Function: map_overlay_command
3279 Mark the named section as mapped (ie. residing at its VMA address). */
3280
3281 static void
3282 map_overlay_command (const char *args, int from_tty)
3283 {
3284 struct obj_section *sec, *sec2;
3285
3286 if (!overlay_debugging)
3287 error (_("Overlay debugging not enabled. Use "
3288 "either the 'overlay auto' or\n"
3289 "the 'overlay manual' command."));
3290
3291 if (args == 0 || *args == 0)
3292 error (_("Argument required: name of an overlay section"));
3293
3294 /* First, find a section matching the user supplied argument. */
3295 for (objfile *obj_file : current_program_space->objfiles ())
3296 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3297 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3298 args))
3299 {
3300 /* Now, check to see if the section is an overlay. */
3301 if (!section_is_overlay (sec))
3302 continue; /* not an overlay section */
3303
3304 /* Mark the overlay as "mapped". */
3305 sec->ovly_mapped = 1;
3306
3307 /* Next, make a pass and unmap any sections that are
3308 overlapped by this new section: */
3309 for (objfile *objfile2 : current_program_space->objfiles ())
3310 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3311 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3312 sec2))
3313 {
3314 if (info_verbose)
3315 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3316 bfd_section_name (obj_file->obfd,
3317 sec2->the_bfd_section));
3318 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3319 }
3320 return;
3321 }
3322 error (_("No overlay section called %s"), args);
3323 }
3324
3325 /* Function: unmap_overlay_command
3326 Mark the overlay section as unmapped
3327 (ie. resident in its LMA address range, rather than the VMA range). */
3328
3329 static void
3330 unmap_overlay_command (const char *args, int from_tty)
3331 {
3332 struct obj_section *sec = NULL;
3333
3334 if (!overlay_debugging)
3335 error (_("Overlay debugging not enabled. "
3336 "Use either the 'overlay auto' or\n"
3337 "the 'overlay manual' command."));
3338
3339 if (args == 0 || *args == 0)
3340 error (_("Argument required: name of an overlay section"));
3341
3342 /* First, find a section matching the user supplied argument. */
3343 for (objfile *objfile : current_program_space->objfiles ())
3344 ALL_OBJFILE_OSECTIONS (objfile, sec)
3345 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3346 {
3347 if (!sec->ovly_mapped)
3348 error (_("Section %s is not mapped"), args);
3349 sec->ovly_mapped = 0;
3350 return;
3351 }
3352 error (_("No overlay section called %s"), args);
3353 }
3354
3355 /* Function: overlay_auto_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359 static void
3360 overlay_auto_command (const char *args, int from_tty)
3361 {
3362 overlay_debugging = ovly_auto;
3363 enable_overlay_breakpoints ();
3364 if (info_verbose)
3365 printf_unfiltered (_("Automatic overlay debugging enabled."));
3366 }
3367
3368 /* Function: overlay_manual_command
3369 A utility command to turn on overlay debugging.
3370 Possibly this should be done via a set/show command. */
3371
3372 static void
3373 overlay_manual_command (const char *args, int from_tty)
3374 {
3375 overlay_debugging = ovly_on;
3376 disable_overlay_breakpoints ();
3377 if (info_verbose)
3378 printf_unfiltered (_("Overlay debugging enabled."));
3379 }
3380
3381 /* Function: overlay_off_command
3382 A utility command to turn on overlay debugging.
3383 Possibly this should be done via a set/show command. */
3384
3385 static void
3386 overlay_off_command (const char *args, int from_tty)
3387 {
3388 overlay_debugging = ovly_off;
3389 disable_overlay_breakpoints ();
3390 if (info_verbose)
3391 printf_unfiltered (_("Overlay debugging disabled."));
3392 }
3393
3394 static void
3395 overlay_load_command (const char *args, int from_tty)
3396 {
3397 struct gdbarch *gdbarch = get_current_arch ();
3398
3399 if (gdbarch_overlay_update_p (gdbarch))
3400 gdbarch_overlay_update (gdbarch, NULL);
3401 else
3402 error (_("This target does not know how to read its overlay state."));
3403 }
3404
3405 /* Function: overlay_command
3406 A place-holder for a mis-typed command. */
3407
3408 /* Command list chain containing all defined "overlay" subcommands. */
3409 static struct cmd_list_element *overlaylist;
3410
3411 static void
3412 overlay_command (const char *args, int from_tty)
3413 {
3414 printf_unfiltered
3415 ("\"overlay\" must be followed by the name of an overlay command.\n");
3416 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3417 }
3418
3419 /* Target Overlays for the "Simplest" overlay manager:
3420
3421 This is GDB's default target overlay layer. It works with the
3422 minimal overlay manager supplied as an example by Cygnus. The
3423 entry point is via a function pointer "gdbarch_overlay_update",
3424 so targets that use a different runtime overlay manager can
3425 substitute their own overlay_update function and take over the
3426 function pointer.
3427
3428 The overlay_update function pokes around in the target's data structures
3429 to see what overlays are mapped, and updates GDB's overlay mapping with
3430 this information.
3431
3432 In this simple implementation, the target data structures are as follows:
3433 unsigned _novlys; /# number of overlay sections #/
3434 unsigned _ovly_table[_novlys][4] = {
3435 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3436 {..., ..., ..., ...},
3437 }
3438 unsigned _novly_regions; /# number of overlay regions #/
3439 unsigned _ovly_region_table[_novly_regions][3] = {
3440 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3441 {..., ..., ...},
3442 }
3443 These functions will attempt to update GDB's mappedness state in the
3444 symbol section table, based on the target's mappedness state.
3445
3446 To do this, we keep a cached copy of the target's _ovly_table, and
3447 attempt to detect when the cached copy is invalidated. The main
3448 entry point is "simple_overlay_update(SECT), which looks up SECT in
3449 the cached table and re-reads only the entry for that section from
3450 the target (whenever possible). */
3451
3452 /* Cached, dynamically allocated copies of the target data structures: */
3453 static unsigned (*cache_ovly_table)[4] = 0;
3454 static unsigned cache_novlys = 0;
3455 static CORE_ADDR cache_ovly_table_base = 0;
3456 enum ovly_index
3457 {
3458 VMA, OSIZE, LMA, MAPPED
3459 };
3460
3461 /* Throw away the cached copy of _ovly_table. */
3462
3463 static void
3464 simple_free_overlay_table (void)
3465 {
3466 if (cache_ovly_table)
3467 xfree (cache_ovly_table);
3468 cache_novlys = 0;
3469 cache_ovly_table = NULL;
3470 cache_ovly_table_base = 0;
3471 }
3472
3473 /* Read an array of ints of size SIZE from the target into a local buffer.
3474 Convert to host order. int LEN is number of ints. */
3475
3476 static void
3477 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3478 int len, int size, enum bfd_endian byte_order)
3479 {
3480 /* FIXME (alloca): Not safe if array is very large. */
3481 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3482 int i;
3483
3484 read_memory (memaddr, buf, len * size);
3485 for (i = 0; i < len; i++)
3486 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3487 }
3488
3489 /* Find and grab a copy of the target _ovly_table
3490 (and _novlys, which is needed for the table's size). */
3491
3492 static int
3493 simple_read_overlay_table (void)
3494 {
3495 struct bound_minimal_symbol novlys_msym;
3496 struct bound_minimal_symbol ovly_table_msym;
3497 struct gdbarch *gdbarch;
3498 int word_size;
3499 enum bfd_endian byte_order;
3500
3501 simple_free_overlay_table ();
3502 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3503 if (! novlys_msym.minsym)
3504 {
3505 error (_("Error reading inferior's overlay table: "
3506 "couldn't find `_novlys' variable\n"
3507 "in inferior. Use `overlay manual' mode."));
3508 return 0;
3509 }
3510
3511 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3512 if (! ovly_table_msym.minsym)
3513 {
3514 error (_("Error reading inferior's overlay table: couldn't find "
3515 "`_ovly_table' array\n"
3516 "in inferior. Use `overlay manual' mode."));
3517 return 0;
3518 }
3519
3520 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3521 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3522 byte_order = gdbarch_byte_order (gdbarch);
3523
3524 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3525 4, byte_order);
3526 cache_ovly_table
3527 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3528 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3529 read_target_long_array (cache_ovly_table_base,
3530 (unsigned int *) cache_ovly_table,
3531 cache_novlys * 4, word_size, byte_order);
3532
3533 return 1; /* SUCCESS */
3534 }
3535
3536 /* Function: simple_overlay_update_1
3537 A helper function for simple_overlay_update. Assuming a cached copy
3538 of _ovly_table exists, look through it to find an entry whose vma,
3539 lma and size match those of OSECT. Re-read the entry and make sure
3540 it still matches OSECT (else the table may no longer be valid).
3541 Set OSECT's mapped state to match the entry. Return: 1 for
3542 success, 0 for failure. */
3543
3544 static int
3545 simple_overlay_update_1 (struct obj_section *osect)
3546 {
3547 int i;
3548 asection *bsect = osect->the_bfd_section;
3549 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3550 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3552
3553 for (i = 0; i < cache_novlys; i++)
3554 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3555 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3556 {
3557 read_target_long_array (cache_ovly_table_base + i * word_size,
3558 (unsigned int *) cache_ovly_table[i],
3559 4, word_size, byte_order);
3560 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3561 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3562 {
3563 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3564 return 1;
3565 }
3566 else /* Warning! Warning! Target's ovly table has changed! */
3567 return 0;
3568 }
3569 return 0;
3570 }
3571
3572 /* Function: simple_overlay_update
3573 If OSECT is NULL, then update all sections' mapped state
3574 (after re-reading the entire target _ovly_table).
3575 If OSECT is non-NULL, then try to find a matching entry in the
3576 cached ovly_table and update only OSECT's mapped state.
3577 If a cached entry can't be found or the cache isn't valid, then
3578 re-read the entire cache, and go ahead and update all sections. */
3579
3580 void
3581 simple_overlay_update (struct obj_section *osect)
3582 {
3583 /* Were we given an osect to look up? NULL means do all of them. */
3584 if (osect)
3585 /* Have we got a cached copy of the target's overlay table? */
3586 if (cache_ovly_table != NULL)
3587 {
3588 /* Does its cached location match what's currently in the
3589 symtab? */
3590 struct bound_minimal_symbol minsym
3591 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3592
3593 if (minsym.minsym == NULL)
3594 error (_("Error reading inferior's overlay table: couldn't "
3595 "find `_ovly_table' array\n"
3596 "in inferior. Use `overlay manual' mode."));
3597
3598 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3599 /* Then go ahead and try to look up this single section in
3600 the cache. */
3601 if (simple_overlay_update_1 (osect))
3602 /* Found it! We're done. */
3603 return;
3604 }
3605
3606 /* Cached table no good: need to read the entire table anew.
3607 Or else we want all the sections, in which case it's actually
3608 more efficient to read the whole table in one block anyway. */
3609
3610 if (! simple_read_overlay_table ())
3611 return;
3612
3613 /* Now may as well update all sections, even if only one was requested. */
3614 for (objfile *objfile : current_program_space->objfiles ())
3615 ALL_OBJFILE_OSECTIONS (objfile, osect)
3616 if (section_is_overlay (osect))
3617 {
3618 int i;
3619 asection *bsect = osect->the_bfd_section;
3620
3621 for (i = 0; i < cache_novlys; i++)
3622 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3623 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3624 { /* obj_section matches i'th entry in ovly_table. */
3625 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3626 break; /* finished with inner for loop: break out. */
3627 }
3628 }
3629 }
3630
3631 /* Set the output sections and output offsets for section SECTP in
3632 ABFD. The relocation code in BFD will read these offsets, so we
3633 need to be sure they're initialized. We map each section to itself,
3634 with no offset; this means that SECTP->vma will be honored. */
3635
3636 static void
3637 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3638 {
3639 sectp->output_section = sectp;
3640 sectp->output_offset = 0;
3641 }
3642
3643 /* Default implementation for sym_relocate. */
3644
3645 bfd_byte *
3646 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3647 bfd_byte *buf)
3648 {
3649 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3650 DWO file. */
3651 bfd *abfd = sectp->owner;
3652
3653 /* We're only interested in sections with relocation
3654 information. */
3655 if ((sectp->flags & SEC_RELOC) == 0)
3656 return NULL;
3657
3658 /* We will handle section offsets properly elsewhere, so relocate as if
3659 all sections begin at 0. */
3660 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3661
3662 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3663 }
3664
3665 /* Relocate the contents of a debug section SECTP in ABFD. The
3666 contents are stored in BUF if it is non-NULL, or returned in a
3667 malloc'd buffer otherwise.
3668
3669 For some platforms and debug info formats, shared libraries contain
3670 relocations against the debug sections (particularly for DWARF-2;
3671 one affected platform is PowerPC GNU/Linux, although it depends on
3672 the version of the linker in use). Also, ELF object files naturally
3673 have unresolved relocations for their debug sections. We need to apply
3674 the relocations in order to get the locations of symbols correct.
3675 Another example that may require relocation processing, is the
3676 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3677 debug section. */
3678
3679 bfd_byte *
3680 symfile_relocate_debug_section (struct objfile *objfile,
3681 asection *sectp, bfd_byte *buf)
3682 {
3683 gdb_assert (objfile->sf->sym_relocate);
3684
3685 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3686 }
3687
3688 struct symfile_segment_data *
3689 get_symfile_segment_data (bfd *abfd)
3690 {
3691 const struct sym_fns *sf = find_sym_fns (abfd);
3692
3693 if (sf == NULL)
3694 return NULL;
3695
3696 return sf->sym_segments (abfd);
3697 }
3698
3699 void
3700 free_symfile_segment_data (struct symfile_segment_data *data)
3701 {
3702 xfree (data->segment_bases);
3703 xfree (data->segment_sizes);
3704 xfree (data->segment_info);
3705 xfree (data);
3706 }
3707
3708 /* Given:
3709 - DATA, containing segment addresses from the object file ABFD, and
3710 the mapping from ABFD's sections onto the segments that own them,
3711 and
3712 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3713 segment addresses reported by the target,
3714 store the appropriate offsets for each section in OFFSETS.
3715
3716 If there are fewer entries in SEGMENT_BASES than there are segments
3717 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3718
3719 If there are more entries, then ignore the extra. The target may
3720 not be able to distinguish between an empty data segment and a
3721 missing data segment; a missing text segment is less plausible. */
3722
3723 int
3724 symfile_map_offsets_to_segments (bfd *abfd,
3725 const struct symfile_segment_data *data,
3726 struct section_offsets *offsets,
3727 int num_segment_bases,
3728 const CORE_ADDR *segment_bases)
3729 {
3730 int i;
3731 asection *sect;
3732
3733 /* It doesn't make sense to call this function unless you have some
3734 segment base addresses. */
3735 gdb_assert (num_segment_bases > 0);
3736
3737 /* If we do not have segment mappings for the object file, we
3738 can not relocate it by segments. */
3739 gdb_assert (data != NULL);
3740 gdb_assert (data->num_segments > 0);
3741
3742 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3743 {
3744 int which = data->segment_info[i];
3745
3746 gdb_assert (0 <= which && which <= data->num_segments);
3747
3748 /* Don't bother computing offsets for sections that aren't
3749 loaded as part of any segment. */
3750 if (! which)
3751 continue;
3752
3753 /* Use the last SEGMENT_BASES entry as the address of any extra
3754 segments mentioned in DATA->segment_info. */
3755 if (which > num_segment_bases)
3756 which = num_segment_bases;
3757
3758 offsets->offsets[i] = (segment_bases[which - 1]
3759 - data->segment_bases[which - 1]);
3760 }
3761
3762 return 1;
3763 }
3764
3765 static void
3766 symfile_find_segment_sections (struct objfile *objfile)
3767 {
3768 bfd *abfd = objfile->obfd;
3769 int i;
3770 asection *sect;
3771 struct symfile_segment_data *data;
3772
3773 data = get_symfile_segment_data (objfile->obfd);
3774 if (data == NULL)
3775 return;
3776
3777 if (data->num_segments != 1 && data->num_segments != 2)
3778 {
3779 free_symfile_segment_data (data);
3780 return;
3781 }
3782
3783 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3784 {
3785 int which = data->segment_info[i];
3786
3787 if (which == 1)
3788 {
3789 if (objfile->sect_index_text == -1)
3790 objfile->sect_index_text = sect->index;
3791
3792 if (objfile->sect_index_rodata == -1)
3793 objfile->sect_index_rodata = sect->index;
3794 }
3795 else if (which == 2)
3796 {
3797 if (objfile->sect_index_data == -1)
3798 objfile->sect_index_data = sect->index;
3799
3800 if (objfile->sect_index_bss == -1)
3801 objfile->sect_index_bss = sect->index;
3802 }
3803 }
3804
3805 free_symfile_segment_data (data);
3806 }
3807
3808 /* Listen for free_objfile events. */
3809
3810 static void
3811 symfile_free_objfile (struct objfile *objfile)
3812 {
3813 /* Remove the target sections owned by this objfile. */
3814 if (objfile != NULL)
3815 remove_target_sections ((void *) objfile);
3816 }
3817
3818 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3819 Expand all symtabs that match the specified criteria.
3820 See quick_symbol_functions.expand_symtabs_matching for details. */
3821
3822 void
3823 expand_symtabs_matching
3824 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3825 const lookup_name_info &lookup_name,
3826 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3827 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3828 enum search_domain kind)
3829 {
3830 for (objfile *objfile : current_program_space->objfiles ())
3831 {
3832 if (objfile->sf)
3833 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3834 lookup_name,
3835 symbol_matcher,
3836 expansion_notify, kind);
3837 }
3838 }
3839
3840 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3841 Map function FUN over every file.
3842 See quick_symbol_functions.map_symbol_filenames for details. */
3843
3844 void
3845 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3846 int need_fullname)
3847 {
3848 for (objfile *objfile : current_program_space->objfiles ())
3849 {
3850 if (objfile->sf)
3851 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3852 need_fullname);
3853 }
3854 }
3855
3856 #if GDB_SELF_TEST
3857
3858 namespace selftests {
3859 namespace filename_language {
3860
3861 static void test_filename_language ()
3862 {
3863 /* This test messes up the filename_language_table global. */
3864 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3865
3866 /* Test deducing an unknown extension. */
3867 language lang = deduce_language_from_filename ("myfile.blah");
3868 SELF_CHECK (lang == language_unknown);
3869
3870 /* Test deducing a known extension. */
3871 lang = deduce_language_from_filename ("myfile.c");
3872 SELF_CHECK (lang == language_c);
3873
3874 /* Test adding a new extension using the internal API. */
3875 add_filename_language (".blah", language_pascal);
3876 lang = deduce_language_from_filename ("myfile.blah");
3877 SELF_CHECK (lang == language_pascal);
3878 }
3879
3880 static void
3881 test_set_ext_lang_command ()
3882 {
3883 /* This test messes up the filename_language_table global. */
3884 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3885
3886 /* Confirm that the .hello extension is not known. */
3887 language lang = deduce_language_from_filename ("cake.hello");
3888 SELF_CHECK (lang == language_unknown);
3889
3890 /* Test adding a new extension using the CLI command. */
3891 auto args_holder = make_unique_xstrdup (".hello rust");
3892 ext_args = args_holder.get ();
3893 set_ext_lang_command (NULL, 1, NULL);
3894
3895 lang = deduce_language_from_filename ("cake.hello");
3896 SELF_CHECK (lang == language_rust);
3897
3898 /* Test overriding an existing extension using the CLI command. */
3899 int size_before = filename_language_table.size ();
3900 args_holder.reset (xstrdup (".hello pascal"));
3901 ext_args = args_holder.get ();
3902 set_ext_lang_command (NULL, 1, NULL);
3903 int size_after = filename_language_table.size ();
3904
3905 lang = deduce_language_from_filename ("cake.hello");
3906 SELF_CHECK (lang == language_pascal);
3907 SELF_CHECK (size_before == size_after);
3908 }
3909
3910 } /* namespace filename_language */
3911 } /* namespace selftests */
3912
3913 #endif /* GDB_SELF_TEST */
3914
3915 void
3916 _initialize_symfile (void)
3917 {
3918 struct cmd_list_element *c;
3919
3920 gdb::observers::free_objfile.attach (symfile_free_objfile);
3921
3922 #define READNOW_READNEVER_HELP \
3923 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3924 immediately. This makes the command slower, but may make future operations\n\
3925 faster.\n\
3926 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3927 symbolic debug information."
3928
3929 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3930 Load symbol table from executable file FILE.\n\
3931 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3932 OFF is an optional offset which is added to each section address.\n\
3933 The `file' command can also load symbol tables, as well as setting the file\n\
3934 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3935 set_cmd_completer (c, filename_completer);
3936
3937 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3938 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3939 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3940 [-s SECT-NAME SECT-ADDR]...\n\
3941 ADDR is the starting address of the file's text.\n\
3942 Each '-s' argument provides a section name and address, and\n\
3943 should be specified if the data and bss segments are not contiguous\n\
3944 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3945 OFF is an optional offset which is added to the default load addresses\n\
3946 of all sections for which no other address was specified.\n"
3947 READNOW_READNEVER_HELP),
3948 &cmdlist);
3949 set_cmd_completer (c, filename_completer);
3950
3951 c = add_cmd ("remove-symbol-file", class_files,
3952 remove_symbol_file_command, _("\
3953 Remove a symbol file added via the add-symbol-file command.\n\
3954 Usage: remove-symbol-file FILENAME\n\
3955 remove-symbol-file -a ADDRESS\n\
3956 The file to remove can be identified by its filename or by an address\n\
3957 that lies within the boundaries of this symbol file in memory."),
3958 &cmdlist);
3959
3960 c = add_cmd ("load", class_files, load_command, _("\
3961 Dynamically load FILE into the running program, and record its symbols\n\
3962 for access from GDB.\n\
3963 Usage: load [FILE] [OFFSET]\n\
3964 An optional load OFFSET may also be given as a literal address.\n\
3965 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3966 on its own."), &cmdlist);
3967 set_cmd_completer (c, filename_completer);
3968
3969 add_prefix_cmd ("overlay", class_support, overlay_command,
3970 _("Commands for debugging overlays."), &overlaylist,
3971 "overlay ", 0, &cmdlist);
3972
3973 add_com_alias ("ovly", "overlay", class_alias, 1);
3974 add_com_alias ("ov", "overlay", class_alias, 1);
3975
3976 add_cmd ("map-overlay", class_support, map_overlay_command,
3977 _("Assert that an overlay section is mapped."), &overlaylist);
3978
3979 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3980 _("Assert that an overlay section is unmapped."), &overlaylist);
3981
3982 add_cmd ("list-overlays", class_support, list_overlays_command,
3983 _("List mappings of overlay sections."), &overlaylist);
3984
3985 add_cmd ("manual", class_support, overlay_manual_command,
3986 _("Enable overlay debugging."), &overlaylist);
3987 add_cmd ("off", class_support, overlay_off_command,
3988 _("Disable overlay debugging."), &overlaylist);
3989 add_cmd ("auto", class_support, overlay_auto_command,
3990 _("Enable automatic overlay debugging."), &overlaylist);
3991 add_cmd ("load-target", class_support, overlay_load_command,
3992 _("Read the overlay mapping state from the target."), &overlaylist);
3993
3994 /* Filename extension to source language lookup table: */
3995 add_setshow_string_noescape_cmd ("extension-language", class_files,
3996 &ext_args, _("\
3997 Set mapping between filename extension and source language."), _("\
3998 Show mapping between filename extension and source language."), _("\
3999 Usage: set extension-language .foo bar"),
4000 set_ext_lang_command,
4001 show_ext_args,
4002 &setlist, &showlist);
4003
4004 add_info ("extensions", info_ext_lang_command,
4005 _("All filename extensions associated with a source language."));
4006
4007 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4008 &debug_file_directory, _("\
4009 Set the directories where separate debug symbols are searched for."), _("\
4010 Show the directories where separate debug symbols are searched for."), _("\
4011 Separate debug symbols are first searched for in the same\n\
4012 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4013 and lastly at the path of the directory of the binary with\n\
4014 each global debug-file-directory component prepended."),
4015 NULL,
4016 show_debug_file_directory,
4017 &setlist, &showlist);
4018
4019 add_setshow_enum_cmd ("symbol-loading", no_class,
4020 print_symbol_loading_enums, &print_symbol_loading,
4021 _("\
4022 Set printing of symbol loading messages."), _("\
4023 Show printing of symbol loading messages."), _("\
4024 off == turn all messages off\n\
4025 brief == print messages for the executable,\n\
4026 and brief messages for shared libraries\n\
4027 full == print messages for the executable,\n\
4028 and messages for each shared library."),
4029 NULL,
4030 NULL,
4031 &setprintlist, &showprintlist);
4032
4033 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4034 &separate_debug_file_debug, _("\
4035 Set printing of separate debug info file search debug."), _("\
4036 Show printing of separate debug info file search debug."), _("\
4037 When on, GDB prints the searched locations while looking for separate debug \
4038 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4039
4040 #if GDB_SELF_TEST
4041 selftests::register_test
4042 ("filename_language", selftests::filename_language::test_filename_language);
4043 selftests::register_test
4044 ("set_ext_lang_command",
4045 selftests::filename_language::test_set_ext_lang_command);
4046 #endif
4047 }
This page took 0.10872 seconds and 4 git commands to generate.