e5ff38462c5e7792b152359fdc8363dc4e863278
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/selftest.h"
61 #include "cli/cli-style.h"
62 #include "common/forward-scope-exit.h"
63
64 #include <sys/types.h>
65 #include <fcntl.h>
66 #include <sys/stat.h>
67 #include <ctype.h>
68 #include <chrono>
69 #include <algorithm>
70
71 #include "psymtab.h"
72
73 int (*deprecated_ui_load_progress_hook) (const char *section,
74 unsigned long num);
75 void (*deprecated_show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
80 void (*deprecated_pre_add_symbol_hook) (const char *);
81 void (*deprecated_post_add_symbol_hook) (void);
82
83 using clear_symtab_users_cleanup
84 = FORWARD_SCOPE_EXIT (clear_symtab_users);
85
86 /* Global variables owned by this file. */
87 int readnow_symbol_files; /* Read full symbols immediately. */
88 int readnever_symbol_files; /* Never read full symbols. */
89
90 /* Functions this file defines. */
91
92 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
93 objfile_flags flags, CORE_ADDR reloff);
94
95 static const struct sym_fns *find_sym_fns (bfd *);
96
97 static void overlay_invalidate_all (void);
98
99 static void simple_free_overlay_table (void);
100
101 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
102 enum bfd_endian);
103
104 static int simple_read_overlay_table (void);
105
106 static int simple_overlay_update_1 (struct obj_section *);
107
108 static void symfile_find_segment_sections (struct objfile *objfile);
109
110 /* List of all available sym_fns. On gdb startup, each object file reader
111 calls add_symtab_fns() to register information on each format it is
112 prepared to read. */
113
114 struct registered_sym_fns
115 {
116 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
117 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
118 {}
119
120 /* BFD flavour that we handle. */
121 enum bfd_flavour sym_flavour;
122
123 /* The "vtable" of symbol functions. */
124 const struct sym_fns *sym_fns;
125 };
126
127 static std::vector<registered_sym_fns> symtab_fns;
128
129 /* Values for "set print symbol-loading". */
130
131 const char print_symbol_loading_off[] = "off";
132 const char print_symbol_loading_brief[] = "brief";
133 const char print_symbol_loading_full[] = "full";
134 static const char *print_symbol_loading_enums[] =
135 {
136 print_symbol_loading_off,
137 print_symbol_loading_brief,
138 print_symbol_loading_full,
139 NULL
140 };
141 static const char *print_symbol_loading = print_symbol_loading_full;
142
143 /* If non-zero, shared library symbols will be added automatically
144 when the inferior is created, new libraries are loaded, or when
145 attaching to the inferior. This is almost always what users will
146 want to have happen; but for very large programs, the startup time
147 will be excessive, and so if this is a problem, the user can clear
148 this flag and then add the shared library symbols as needed. Note
149 that there is a potential for confusion, since if the shared
150 library symbols are not loaded, commands like "info fun" will *not*
151 report all the functions that are actually present. */
152
153 int auto_solib_add = 1;
154 \f
155
156 /* Return non-zero if symbol-loading messages should be printed.
157 FROM_TTY is the standard from_tty argument to gdb commands.
158 If EXEC is non-zero the messages are for the executable.
159 Otherwise, messages are for shared libraries.
160 If FULL is non-zero then the caller is printing a detailed message.
161 E.g., the message includes the shared library name.
162 Otherwise, the caller is printing a brief "summary" message. */
163
164 int
165 print_symbol_loading_p (int from_tty, int exec, int full)
166 {
167 if (!from_tty && !info_verbose)
168 return 0;
169
170 if (exec)
171 {
172 /* We don't check FULL for executables, there are few such
173 messages, therefore brief == full. */
174 return print_symbol_loading != print_symbol_loading_off;
175 }
176 if (full)
177 return print_symbol_loading == print_symbol_loading_full;
178 return print_symbol_loading == print_symbol_loading_brief;
179 }
180
181 /* True if we are reading a symbol table. */
182
183 int currently_reading_symtab = 0;
184
185 /* Increment currently_reading_symtab and return a cleanup that can be
186 used to decrement it. */
187
188 scoped_restore_tmpl<int>
189 increment_reading_symtab (void)
190 {
191 gdb_assert (currently_reading_symtab >= 0);
192 return make_scoped_restore (&currently_reading_symtab,
193 currently_reading_symtab + 1);
194 }
195
196 /* Remember the lowest-addressed loadable section we've seen.
197 This function is called via bfd_map_over_sections.
198
199 In case of equal vmas, the section with the largest size becomes the
200 lowest-addressed loadable section.
201
202 If the vmas and sizes are equal, the last section is considered the
203 lowest-addressed loadable section. */
204
205 void
206 find_lowest_section (bfd *abfd, asection *sect, void *obj)
207 {
208 asection **lowest = (asection **) obj;
209
210 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
211 return;
212 if (!*lowest)
213 *lowest = sect; /* First loadable section */
214 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
215 *lowest = sect; /* A lower loadable section */
216 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
217 && (bfd_section_size (abfd, (*lowest))
218 <= bfd_section_size (abfd, sect)))
219 *lowest = sect;
220 }
221
222 /* Build (allocate and populate) a section_addr_info struct from
223 an existing section table. */
224
225 section_addr_info
226 build_section_addr_info_from_section_table (const struct target_section *start,
227 const struct target_section *end)
228 {
229 const struct target_section *stp;
230
231 section_addr_info sap;
232
233 for (stp = start; stp != end; stp++)
234 {
235 struct bfd_section *asect = stp->the_bfd_section;
236 bfd *abfd = asect->owner;
237
238 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
239 && sap.size () < end - start)
240 sap.emplace_back (stp->addr,
241 bfd_section_name (abfd, asect),
242 gdb_bfd_section_index (abfd, asect));
243 }
244
245 return sap;
246 }
247
248 /* Create a section_addr_info from section offsets in ABFD. */
249
250 static section_addr_info
251 build_section_addr_info_from_bfd (bfd *abfd)
252 {
253 struct bfd_section *sec;
254
255 section_addr_info sap;
256 for (sec = abfd->sections; sec != NULL; sec = sec->next)
257 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
258 sap.emplace_back (bfd_get_section_vma (abfd, sec),
259 bfd_get_section_name (abfd, sec),
260 gdb_bfd_section_index (abfd, sec));
261
262 return sap;
263 }
264
265 /* Create a section_addr_info from section offsets in OBJFILE. */
266
267 section_addr_info
268 build_section_addr_info_from_objfile (const struct objfile *objfile)
269 {
270 int i;
271
272 /* Before reread_symbols gets rewritten it is not safe to call:
273 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
274 */
275 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
276 for (i = 0; i < sap.size (); i++)
277 {
278 int sectindex = sap[i].sectindex;
279
280 sap[i].addr += objfile->section_offsets->offsets[sectindex];
281 }
282 return sap;
283 }
284
285 /* Initialize OBJFILE's sect_index_* members. */
286
287 static void
288 init_objfile_sect_indices (struct objfile *objfile)
289 {
290 asection *sect;
291 int i;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".text");
294 if (sect)
295 objfile->sect_index_text = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".data");
298 if (sect)
299 objfile->sect_index_data = sect->index;
300
301 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
302 if (sect)
303 objfile->sect_index_bss = sect->index;
304
305 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
306 if (sect)
307 objfile->sect_index_rodata = sect->index;
308
309 /* This is where things get really weird... We MUST have valid
310 indices for the various sect_index_* members or gdb will abort.
311 So if for example, there is no ".text" section, we have to
312 accomodate that. First, check for a file with the standard
313 one or two segments. */
314
315 symfile_find_segment_sections (objfile);
316
317 /* Except when explicitly adding symbol files at some address,
318 section_offsets contains nothing but zeros, so it doesn't matter
319 which slot in section_offsets the individual sect_index_* members
320 index into. So if they are all zero, it is safe to just point
321 all the currently uninitialized indices to the first slot. But
322 beware: if this is the main executable, it may be relocated
323 later, e.g. by the remote qOffsets packet, and then this will
324 be wrong! That's why we try segments first. */
325
326 for (i = 0; i < objfile->num_sections; i++)
327 {
328 if (ANOFFSET (objfile->section_offsets, i) != 0)
329 {
330 break;
331 }
332 }
333 if (i == objfile->num_sections)
334 {
335 if (objfile->sect_index_text == -1)
336 objfile->sect_index_text = 0;
337 if (objfile->sect_index_data == -1)
338 objfile->sect_index_data = 0;
339 if (objfile->sect_index_bss == -1)
340 objfile->sect_index_bss = 0;
341 if (objfile->sect_index_rodata == -1)
342 objfile->sect_index_rodata = 0;
343 }
344 }
345
346 /* The arguments to place_section. */
347
348 struct place_section_arg
349 {
350 struct section_offsets *offsets;
351 CORE_ADDR lowest;
352 };
353
354 /* Find a unique offset to use for loadable section SECT if
355 the user did not provide an offset. */
356
357 static void
358 place_section (bfd *abfd, asection *sect, void *obj)
359 {
360 struct place_section_arg *arg = (struct place_section_arg *) obj;
361 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
362 int done;
363 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
364
365 /* We are only interested in allocated sections. */
366 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
367 return;
368
369 /* If the user specified an offset, honor it. */
370 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
371 return;
372
373 /* Otherwise, let's try to find a place for the section. */
374 start_addr = (arg->lowest + align - 1) & -align;
375
376 do {
377 asection *cur_sec;
378
379 done = 1;
380
381 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
382 {
383 int indx = cur_sec->index;
384
385 /* We don't need to compare against ourself. */
386 if (cur_sec == sect)
387 continue;
388
389 /* We can only conflict with allocated sections. */
390 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
391 continue;
392
393 /* If the section offset is 0, either the section has not been placed
394 yet, or it was the lowest section placed (in which case LOWEST
395 will be past its end). */
396 if (offsets[indx] == 0)
397 continue;
398
399 /* If this section would overlap us, then we must move up. */
400 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
401 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
402 {
403 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
404 start_addr = (start_addr + align - 1) & -align;
405 done = 0;
406 break;
407 }
408
409 /* Otherwise, we appear to be OK. So far. */
410 }
411 }
412 while (!done);
413
414 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
415 arg->lowest = start_addr + bfd_get_section_size (sect);
416 }
417
418 /* Store section_addr_info as prepared (made relative and with SECTINDEX
419 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
420 entries. */
421
422 void
423 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
424 int num_sections,
425 const section_addr_info &addrs)
426 {
427 int i;
428
429 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
430
431 /* Now calculate offsets for section that were specified by the caller. */
432 for (i = 0; i < addrs.size (); i++)
433 {
434 const struct other_sections *osp;
435
436 osp = &addrs[i];
437 if (osp->sectindex == -1)
438 continue;
439
440 /* Record all sections in offsets. */
441 /* The section_offsets in the objfile are here filled in using
442 the BFD index. */
443 section_offsets->offsets[osp->sectindex] = osp->addr;
444 }
445 }
446
447 /* Transform section name S for a name comparison. prelink can split section
448 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
449 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
450 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
451 (`.sbss') section has invalid (increased) virtual address. */
452
453 static const char *
454 addr_section_name (const char *s)
455 {
456 if (strcmp (s, ".dynbss") == 0)
457 return ".bss";
458 if (strcmp (s, ".sdynbss") == 0)
459 return ".sbss";
460
461 return s;
462 }
463
464 /* std::sort comparator for addrs_section_sort. Sort entries in
465 ascending order by their (name, sectindex) pair. sectindex makes
466 the sort by name stable. */
467
468 static bool
469 addrs_section_compar (const struct other_sections *a,
470 const struct other_sections *b)
471 {
472 int retval;
473
474 retval = strcmp (addr_section_name (a->name.c_str ()),
475 addr_section_name (b->name.c_str ()));
476 if (retval != 0)
477 return retval < 0;
478
479 return a->sectindex < b->sectindex;
480 }
481
482 /* Provide sorted array of pointers to sections of ADDRS. */
483
484 static std::vector<const struct other_sections *>
485 addrs_section_sort (const section_addr_info &addrs)
486 {
487 int i;
488
489 std::vector<const struct other_sections *> array (addrs.size ());
490 for (i = 0; i < addrs.size (); i++)
491 array[i] = &addrs[i];
492
493 std::sort (array.begin (), array.end (), addrs_section_compar);
494
495 return array;
496 }
497
498 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
499 also SECTINDEXes specific to ABFD there. This function can be used to
500 rebase ADDRS to start referencing different BFD than before. */
501
502 void
503 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
504 {
505 asection *lower_sect;
506 CORE_ADDR lower_offset;
507 int i;
508
509 /* Find lowest loadable section to be used as starting point for
510 continguous sections. */
511 lower_sect = NULL;
512 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
513 if (lower_sect == NULL)
514 {
515 warning (_("no loadable sections found in added symbol-file %s"),
516 bfd_get_filename (abfd));
517 lower_offset = 0;
518 }
519 else
520 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
521
522 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
523 in ABFD. Section names are not unique - there can be multiple sections of
524 the same name. Also the sections of the same name do not have to be
525 adjacent to each other. Some sections may be present only in one of the
526 files. Even sections present in both files do not have to be in the same
527 order.
528
529 Use stable sort by name for the sections in both files. Then linearly
530 scan both lists matching as most of the entries as possible. */
531
532 std::vector<const struct other_sections *> addrs_sorted
533 = addrs_section_sort (*addrs);
534
535 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
536 std::vector<const struct other_sections *> abfd_addrs_sorted
537 = addrs_section_sort (abfd_addrs);
538
539 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
540 ABFD_ADDRS_SORTED. */
541
542 std::vector<const struct other_sections *>
543 addrs_to_abfd_addrs (addrs->size (), nullptr);
544
545 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
546 = abfd_addrs_sorted.begin ();
547 for (const other_sections *sect : addrs_sorted)
548 {
549 const char *sect_name = addr_section_name (sect->name.c_str ());
550
551 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
552 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
553 sect_name) < 0)
554 abfd_sorted_iter++;
555
556 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
557 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
558 sect_name) == 0)
559 {
560 int index_in_addrs;
561
562 /* Make the found item directly addressable from ADDRS. */
563 index_in_addrs = sect - addrs->data ();
564 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
565 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
566
567 /* Never use the same ABFD entry twice. */
568 abfd_sorted_iter++;
569 }
570 }
571
572 /* Calculate offsets for the loadable sections.
573 FIXME! Sections must be in order of increasing loadable section
574 so that contiguous sections can use the lower-offset!!!
575
576 Adjust offsets if the segments are not contiguous.
577 If the section is contiguous, its offset should be set to
578 the offset of the highest loadable section lower than it
579 (the loadable section directly below it in memory).
580 this_offset = lower_offset = lower_addr - lower_orig_addr */
581
582 for (i = 0; i < addrs->size (); i++)
583 {
584 const struct other_sections *sect = addrs_to_abfd_addrs[i];
585
586 if (sect)
587 {
588 /* This is the index used by BFD. */
589 (*addrs)[i].sectindex = sect->sectindex;
590
591 if ((*addrs)[i].addr != 0)
592 {
593 (*addrs)[i].addr -= sect->addr;
594 lower_offset = (*addrs)[i].addr;
595 }
596 else
597 (*addrs)[i].addr = lower_offset;
598 }
599 else
600 {
601 /* addr_section_name transformation is not used for SECT_NAME. */
602 const std::string &sect_name = (*addrs)[i].name;
603
604 /* This section does not exist in ABFD, which is normally
605 unexpected and we want to issue a warning.
606
607 However, the ELF prelinker does create a few sections which are
608 marked in the main executable as loadable (they are loaded in
609 memory from the DYNAMIC segment) and yet are not present in
610 separate debug info files. This is fine, and should not cause
611 a warning. Shared libraries contain just the section
612 ".gnu.liblist" but it is not marked as loadable there. There is
613 no other way to identify them than by their name as the sections
614 created by prelink have no special flags.
615
616 For the sections `.bss' and `.sbss' see addr_section_name. */
617
618 if (!(sect_name == ".gnu.liblist"
619 || sect_name == ".gnu.conflict"
620 || (sect_name == ".bss"
621 && i > 0
622 && (*addrs)[i - 1].name == ".dynbss"
623 && addrs_to_abfd_addrs[i - 1] != NULL)
624 || (sect_name == ".sbss"
625 && i > 0
626 && (*addrs)[i - 1].name == ".sdynbss"
627 && addrs_to_abfd_addrs[i - 1] != NULL)))
628 warning (_("section %s not found in %s"), sect_name.c_str (),
629 bfd_get_filename (abfd));
630
631 (*addrs)[i].addr = 0;
632 (*addrs)[i].sectindex = -1;
633 }
634 }
635 }
636
637 /* Parse the user's idea of an offset for dynamic linking, into our idea
638 of how to represent it for fast symbol reading. This is the default
639 version of the sym_fns.sym_offsets function for symbol readers that
640 don't need to do anything special. It allocates a section_offsets table
641 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
642
643 void
644 default_symfile_offsets (struct objfile *objfile,
645 const section_addr_info &addrs)
646 {
647 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
648 objfile->section_offsets = (struct section_offsets *)
649 obstack_alloc (&objfile->objfile_obstack,
650 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
651 relative_addr_info_to_section_offsets (objfile->section_offsets,
652 objfile->num_sections, addrs);
653
654 /* For relocatable files, all loadable sections will start at zero.
655 The zero is meaningless, so try to pick arbitrary addresses such
656 that no loadable sections overlap. This algorithm is quadratic,
657 but the number of sections in a single object file is generally
658 small. */
659 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
660 {
661 struct place_section_arg arg;
662 bfd *abfd = objfile->obfd;
663 asection *cur_sec;
664
665 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
666 /* We do not expect this to happen; just skip this step if the
667 relocatable file has a section with an assigned VMA. */
668 if (bfd_section_vma (abfd, cur_sec) != 0)
669 break;
670
671 if (cur_sec == NULL)
672 {
673 CORE_ADDR *offsets = objfile->section_offsets->offsets;
674
675 /* Pick non-overlapping offsets for sections the user did not
676 place explicitly. */
677 arg.offsets = objfile->section_offsets;
678 arg.lowest = 0;
679 bfd_map_over_sections (objfile->obfd, place_section, &arg);
680
681 /* Correctly filling in the section offsets is not quite
682 enough. Relocatable files have two properties that
683 (most) shared objects do not:
684
685 - Their debug information will contain relocations. Some
686 shared libraries do also, but many do not, so this can not
687 be assumed.
688
689 - If there are multiple code sections they will be loaded
690 at different relative addresses in memory than they are
691 in the objfile, since all sections in the file will start
692 at address zero.
693
694 Because GDB has very limited ability to map from an
695 address in debug info to the correct code section,
696 it relies on adding SECT_OFF_TEXT to things which might be
697 code. If we clear all the section offsets, and set the
698 section VMAs instead, then symfile_relocate_debug_section
699 will return meaningful debug information pointing at the
700 correct sections.
701
702 GDB has too many different data structures for section
703 addresses - a bfd, objfile, and so_list all have section
704 tables, as does exec_ops. Some of these could probably
705 be eliminated. */
706
707 for (cur_sec = abfd->sections; cur_sec != NULL;
708 cur_sec = cur_sec->next)
709 {
710 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
711 continue;
712
713 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
714 exec_set_section_address (bfd_get_filename (abfd),
715 cur_sec->index,
716 offsets[cur_sec->index]);
717 offsets[cur_sec->index] = 0;
718 }
719 }
720 }
721
722 /* Remember the bfd indexes for the .text, .data, .bss and
723 .rodata sections. */
724 init_objfile_sect_indices (objfile);
725 }
726
727 /* Divide the file into segments, which are individual relocatable units.
728 This is the default version of the sym_fns.sym_segments function for
729 symbol readers that do not have an explicit representation of segments.
730 It assumes that object files do not have segments, and fully linked
731 files have a single segment. */
732
733 struct symfile_segment_data *
734 default_symfile_segments (bfd *abfd)
735 {
736 int num_sections, i;
737 asection *sect;
738 struct symfile_segment_data *data;
739 CORE_ADDR low, high;
740
741 /* Relocatable files contain enough information to position each
742 loadable section independently; they should not be relocated
743 in segments. */
744 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
745 return NULL;
746
747 /* Make sure there is at least one loadable section in the file. */
748 for (sect = abfd->sections; sect != NULL; sect = sect->next)
749 {
750 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
751 continue;
752
753 break;
754 }
755 if (sect == NULL)
756 return NULL;
757
758 low = bfd_get_section_vma (abfd, sect);
759 high = low + bfd_get_section_size (sect);
760
761 data = XCNEW (struct symfile_segment_data);
762 data->num_segments = 1;
763 data->segment_bases = XCNEW (CORE_ADDR);
764 data->segment_sizes = XCNEW (CORE_ADDR);
765
766 num_sections = bfd_count_sections (abfd);
767 data->segment_info = XCNEWVEC (int, num_sections);
768
769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
770 {
771 CORE_ADDR vma;
772
773 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
774 continue;
775
776 vma = bfd_get_section_vma (abfd, sect);
777 if (vma < low)
778 low = vma;
779 if (vma + bfd_get_section_size (sect) > high)
780 high = vma + bfd_get_section_size (sect);
781
782 data->segment_info[i] = 1;
783 }
784
785 data->segment_bases[0] = low;
786 data->segment_sizes[0] = high - low;
787
788 return data;
789 }
790
791 /* This is a convenience function to call sym_read for OBJFILE and
792 possibly force the partial symbols to be read. */
793
794 static void
795 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
796 {
797 (*objfile->sf->sym_read) (objfile, add_flags);
798 objfile->per_bfd->minsyms_read = true;
799
800 /* find_separate_debug_file_in_section should be called only if there is
801 single binary with no existing separate debug info file. */
802 if (!objfile_has_partial_symbols (objfile)
803 && objfile->separate_debug_objfile == NULL
804 && objfile->separate_debug_objfile_backlink == NULL)
805 {
806 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
807
808 if (abfd != NULL)
809 {
810 /* find_separate_debug_file_in_section uses the same filename for the
811 virtual section-as-bfd like the bfd filename containing the
812 section. Therefore use also non-canonical name form for the same
813 file containing the section. */
814 symbol_file_add_separate (abfd.get (),
815 bfd_get_filename (abfd.get ()),
816 add_flags | SYMFILE_NOT_FILENAME, objfile);
817 }
818 }
819 if ((add_flags & SYMFILE_NO_READ) == 0)
820 require_partial_symbols (objfile, 0);
821 }
822
823 /* Initialize entry point information for this objfile. */
824
825 static void
826 init_entry_point_info (struct objfile *objfile)
827 {
828 struct entry_info *ei = &objfile->per_bfd->ei;
829
830 if (ei->initialized)
831 return;
832 ei->initialized = 1;
833
834 /* Save startup file's range of PC addresses to help blockframe.c
835 decide where the bottom of the stack is. */
836
837 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
838 {
839 /* Executable file -- record its entry point so we'll recognize
840 the startup file because it contains the entry point. */
841 ei->entry_point = bfd_get_start_address (objfile->obfd);
842 ei->entry_point_p = 1;
843 }
844 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
845 && bfd_get_start_address (objfile->obfd) != 0)
846 {
847 /* Some shared libraries may have entry points set and be
848 runnable. There's no clear way to indicate this, so just check
849 for values other than zero. */
850 ei->entry_point = bfd_get_start_address (objfile->obfd);
851 ei->entry_point_p = 1;
852 }
853 else
854 {
855 /* Examination of non-executable.o files. Short-circuit this stuff. */
856 ei->entry_point_p = 0;
857 }
858
859 if (ei->entry_point_p)
860 {
861 struct obj_section *osect;
862 CORE_ADDR entry_point = ei->entry_point;
863 int found;
864
865 /* Make certain that the address points at real code, and not a
866 function descriptor. */
867 entry_point
868 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
869 entry_point,
870 current_top_target ());
871
872 /* Remove any ISA markers, so that this matches entries in the
873 symbol table. */
874 ei->entry_point
875 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
876
877 found = 0;
878 ALL_OBJFILE_OSECTIONS (objfile, osect)
879 {
880 struct bfd_section *sect = osect->the_bfd_section;
881
882 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
883 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
884 + bfd_get_section_size (sect)))
885 {
886 ei->the_bfd_section_index
887 = gdb_bfd_section_index (objfile->obfd, sect);
888 found = 1;
889 break;
890 }
891 }
892
893 if (!found)
894 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
895 }
896 }
897
898 /* Process a symbol file, as either the main file or as a dynamically
899 loaded file.
900
901 This function does not set the OBJFILE's entry-point info.
902
903 OBJFILE is where the symbols are to be read from.
904
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 The sectindex field is used to control the ordering of sections
915 with the same name. Upon return, it is updated to contain the
916 correspondig BFD section index, or -1 if the section was not found.
917
918 ADD_FLAGS encodes verbosity level, whether this is main symbol or
919 an extra symbol file such as dynamically loaded code, and wether
920 breakpoint reset should be deferred. */
921
922 static void
923 syms_from_objfile_1 (struct objfile *objfile,
924 section_addr_info *addrs,
925 symfile_add_flags add_flags)
926 {
927 section_addr_info local_addr;
928 const int mainline = add_flags & SYMFILE_MAINLINE;
929
930 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
931
932 if (objfile->sf == NULL)
933 {
934 /* No symbols to load, but we still need to make sure
935 that the section_offsets table is allocated. */
936 int num_sections = gdb_bfd_count_sections (objfile->obfd);
937 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
938
939 objfile->num_sections = num_sections;
940 objfile->section_offsets
941 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
942 size);
943 memset (objfile->section_offsets, 0, size);
944 return;
945 }
946
947 /* Make sure that partially constructed symbol tables will be cleaned up
948 if an error occurs during symbol reading. */
949 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
950
951 std::unique_ptr<struct objfile> objfile_holder (objfile);
952
953 /* If ADDRS is NULL, put together a dummy address list.
954 We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs)
957 addrs = &local_addr;
958
959 if (mainline)
960 {
961 /* We will modify the main symbol table, make sure that all its users
962 will be cleaned up if an error occurs during symbol reading. */
963 defer_clear_users.emplace ((symfile_add_flag) 0);
964
965 /* Since no error yet, throw away the old symbol table. */
966
967 if (symfile_objfile != NULL)
968 {
969 delete symfile_objfile;
970 gdb_assert (symfile_objfile == NULL);
971 }
972
973 /* Currently we keep symbols from the add-symbol-file command.
974 If the user wants to get rid of them, they should do "symbol-file"
975 without arguments first. Not sure this is the best behavior
976 (PR 2207). */
977
978 (*objfile->sf->sym_new_init) (objfile);
979 }
980
981 /* Convert addr into an offset rather than an absolute address.
982 We find the lowest address of a loaded segment in the objfile,
983 and assume that <addr> is where that got loaded.
984
985 We no longer warn if the lowest section is not a text segment (as
986 happens for the PA64 port. */
987 if (addrs->size () > 0)
988 addr_info_make_relative (addrs, objfile->obfd);
989
990 /* Initialize symbol reading routines for this objfile, allow complaints to
991 appear for this new file, and record how verbose to be, then do the
992 initial symbol reading for this file. */
993
994 (*objfile->sf->sym_init) (objfile);
995 clear_complaints ();
996
997 (*objfile->sf->sym_offsets) (objfile, *addrs);
998
999 read_symbols (objfile, add_flags);
1000
1001 /* Discard cleanups as symbol reading was successful. */
1002
1003 objfile_holder.release ();
1004 if (defer_clear_users)
1005 defer_clear_users->release ();
1006 }
1007
1008 /* Same as syms_from_objfile_1, but also initializes the objfile
1009 entry-point info. */
1010
1011 static void
1012 syms_from_objfile (struct objfile *objfile,
1013 section_addr_info *addrs,
1014 symfile_add_flags add_flags)
1015 {
1016 syms_from_objfile_1 (objfile, addrs, add_flags);
1017 init_entry_point_info (objfile);
1018 }
1019
1020 /* Perform required actions after either reading in the initial
1021 symbols for a new objfile, or mapping in the symbols from a reusable
1022 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1023
1024 static void
1025 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1026 {
1027 /* If this is the main symbol file we have to clean up all users of the
1028 old main symbol file. Otherwise it is sufficient to fixup all the
1029 breakpoints that may have been redefined by this symbol file. */
1030 if (add_flags & SYMFILE_MAINLINE)
1031 {
1032 /* OK, make it the "real" symbol file. */
1033 symfile_objfile = objfile;
1034
1035 clear_symtab_users (add_flags);
1036 }
1037 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1038 {
1039 breakpoint_re_set ();
1040 }
1041
1042 /* We're done reading the symbol file; finish off complaints. */
1043 clear_complaints ();
1044 }
1045
1046 /* Process a symbol file, as either the main file or as a dynamically
1047 loaded file.
1048
1049 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1050 A new reference is acquired by this function.
1051
1052 For NAME description see the objfile constructor.
1053
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
1056
1057 ADDRS is as described for syms_from_objfile_1, above.
1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1059
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
1063 Upon success, returns a pointer to the objfile that was added.
1064 Upon failure, jumps back to command level (never returns). */
1065
1066 static struct objfile *
1067 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1068 symfile_add_flags add_flags,
1069 section_addr_info *addrs,
1070 objfile_flags flags, struct objfile *parent)
1071 {
1072 struct objfile *objfile;
1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
1074 const int mainline = add_flags & SYMFILE_MAINLINE;
1075 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
1078
1079 if (readnow_symbol_files)
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
1084 else if (readnever_symbol_files
1085 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1086 {
1087 flags |= OBJF_READNEVER;
1088 add_flags |= SYMFILE_NO_READ;
1089 }
1090 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1091 flags |= OBJF_NOT_FILENAME;
1092
1093 /* Give user a chance to burp if we'd be
1094 interactively wiping out any existing symbols. */
1095
1096 if ((have_full_symbols () || have_partial_symbols ())
1097 && mainline
1098 && from_tty
1099 && !query (_("Load new symbol table from \"%s\"? "), name))
1100 error (_("Not confirmed."));
1101
1102 if (mainline)
1103 flags |= OBJF_MAINLINE;
1104 objfile = new struct objfile (abfd, name, flags);
1105
1106 if (parent)
1107 add_separate_debug_objfile (objfile, parent);
1108
1109 /* We either created a new mapped symbol table, mapped an existing
1110 symbol table file which has not had initial symbol reading
1111 performed, or need to read an unmapped symbol table. */
1112 if (should_print)
1113 {
1114 if (deprecated_pre_add_symbol_hook)
1115 deprecated_pre_add_symbol_hook (name);
1116 else
1117 {
1118 puts_filtered (_("Reading symbols from "));
1119 fputs_styled (name, file_name_style.style (), gdb_stdout);
1120 puts_filtered ("...\n");
1121 }
1122 }
1123 syms_from_objfile (objfile, addrs, add_flags);
1124
1125 /* We now have at least a partial symbol table. Check to see if the
1126 user requested that all symbols be read on initial access via either
1127 the gdb startup command line or on a per symbol file basis. Expand
1128 all partial symbol tables for this objfile if so. */
1129
1130 if ((flags & OBJF_READNOW))
1131 {
1132 if (should_print)
1133 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1134
1135 if (objfile->sf)
1136 objfile->sf->qf->expand_all_symtabs (objfile);
1137 }
1138
1139 /* Note that we only print a message if we have no symbols and have
1140 no separate debug file. If there is a separate debug file which
1141 does not have symbols, we'll have emitted this message for that
1142 file, and so printing it twice is just redundant. */
1143 if (should_print && !objfile_has_symbols (objfile)
1144 && objfile->separate_debug_objfile == nullptr)
1145 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1146
1147 if (should_print)
1148 {
1149 if (deprecated_post_add_symbol_hook)
1150 deprecated_post_add_symbol_hook ();
1151 }
1152
1153 /* We print some messages regardless of whether 'from_tty ||
1154 info_verbose' is true, so make sure they go out at the right
1155 time. */
1156 gdb_flush (gdb_stdout);
1157
1158 if (objfile->sf == NULL)
1159 {
1160 gdb::observers::new_objfile.notify (objfile);
1161 return objfile; /* No symbols. */
1162 }
1163
1164 finish_new_objfile (objfile, add_flags);
1165
1166 gdb::observers::new_objfile.notify (objfile);
1167
1168 bfd_cache_close_all ();
1169 return (objfile);
1170 }
1171
1172 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1173 see the objfile constructor. */
1174
1175 void
1176 symbol_file_add_separate (bfd *bfd, const char *name,
1177 symfile_add_flags symfile_flags,
1178 struct objfile *objfile)
1179 {
1180 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1181 because sections of BFD may not match sections of OBJFILE and because
1182 vma may have been modified by tools such as prelink. */
1183 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1184
1185 symbol_file_add_with_addrs
1186 (bfd, name, symfile_flags, &sap,
1187 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1188 | OBJF_USERLOADED),
1189 objfile);
1190 }
1191
1192 /* Process the symbol file ABFD, as either the main file or as a
1193 dynamically loaded file.
1194 See symbol_file_add_with_addrs's comments for details. */
1195
1196 struct objfile *
1197 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1198 symfile_add_flags add_flags,
1199 section_addr_info *addrs,
1200 objfile_flags flags, struct objfile *parent)
1201 {
1202 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1203 parent);
1204 }
1205
1206 /* Process a symbol file, as either the main file or as a dynamically
1207 loaded file. See symbol_file_add_with_addrs's comments for details. */
1208
1209 struct objfile *
1210 symbol_file_add (const char *name, symfile_add_flags add_flags,
1211 section_addr_info *addrs, objfile_flags flags)
1212 {
1213 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1214
1215 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1216 flags, NULL);
1217 }
1218
1219 /* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
1226
1227 void
1228 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1229 {
1230 symbol_file_add_main_1 (args, add_flags, 0, 0);
1231 }
1232
1233 static void
1234 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1235 objfile_flags flags, CORE_ADDR reloff)
1236 {
1237 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1238
1239 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1240 if (reloff != 0)
1241 objfile_rebase (objfile, reloff);
1242
1243 /* Getting new symbols may change our opinion about
1244 what is frameless. */
1245 reinit_frame_cache ();
1246
1247 if ((add_flags & SYMFILE_NO_READ) == 0)
1248 set_initial_language ();
1249 }
1250
1251 void
1252 symbol_file_clear (int from_tty)
1253 {
1254 if ((have_full_symbols () || have_partial_symbols ())
1255 && from_tty
1256 && (symfile_objfile
1257 ? !query (_("Discard symbol table from `%s'? "),
1258 objfile_name (symfile_objfile))
1259 : !query (_("Discard symbol table? "))))
1260 error (_("Not confirmed."));
1261
1262 /* solib descriptors may have handles to objfiles. Wipe them before their
1263 objfiles get stale by free_all_objfiles. */
1264 no_shared_libraries (NULL, from_tty);
1265
1266 free_all_objfiles ();
1267
1268 gdb_assert (symfile_objfile == NULL);
1269 if (from_tty)
1270 printf_filtered (_("No symbol file now.\n"));
1271 }
1272
1273 /* See symfile.h. */
1274
1275 int separate_debug_file_debug = 0;
1276
1277 static int
1278 separate_debug_file_exists (const std::string &name, unsigned long crc,
1279 struct objfile *parent_objfile)
1280 {
1281 unsigned long file_crc;
1282 int file_crc_p;
1283 struct stat parent_stat, abfd_stat;
1284 int verified_as_different;
1285
1286 /* Find a separate debug info file as if symbols would be present in
1287 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1288 section can contain just the basename of PARENT_OBJFILE without any
1289 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1290 the separate debug infos with the same basename can exist. */
1291
1292 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1293 return 0;
1294
1295 if (separate_debug_file_debug)
1296 {
1297 printf_filtered (_(" Trying %s..."), name.c_str ());
1298 gdb_flush (gdb_stdout);
1299 }
1300
1301 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1302
1303 if (abfd == NULL)
1304 {
1305 if (separate_debug_file_debug)
1306 printf_filtered (_(" no, unable to open.\n"));
1307
1308 return 0;
1309 }
1310
1311 /* Verify symlinks were not the cause of filename_cmp name difference above.
1312
1313 Some operating systems, e.g. Windows, do not provide a meaningful
1314 st_ino; they always set it to zero. (Windows does provide a
1315 meaningful st_dev.) Files accessed from gdbservers that do not
1316 support the vFile:fstat packet will also have st_ino set to zero.
1317 Do not indicate a duplicate library in either case. While there
1318 is no guarantee that a system that provides meaningful inode
1319 numbers will never set st_ino to zero, this is merely an
1320 optimization, so we do not need to worry about false negatives. */
1321
1322 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1323 && abfd_stat.st_ino != 0
1324 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1325 {
1326 if (abfd_stat.st_dev == parent_stat.st_dev
1327 && abfd_stat.st_ino == parent_stat.st_ino)
1328 {
1329 if (separate_debug_file_debug)
1330 printf_filtered (_(" no, same file as the objfile.\n"));
1331
1332 return 0;
1333 }
1334 verified_as_different = 1;
1335 }
1336 else
1337 verified_as_different = 0;
1338
1339 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1340
1341 if (!file_crc_p)
1342 {
1343 if (separate_debug_file_debug)
1344 printf_filtered (_(" no, error computing CRC.\n"));
1345
1346 return 0;
1347 }
1348
1349 if (crc != file_crc)
1350 {
1351 unsigned long parent_crc;
1352
1353 /* If the files could not be verified as different with
1354 bfd_stat then we need to calculate the parent's CRC
1355 to verify whether the files are different or not. */
1356
1357 if (!verified_as_different)
1358 {
1359 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1360 {
1361 if (separate_debug_file_debug)
1362 printf_filtered (_(" no, error computing CRC.\n"));
1363
1364 return 0;
1365 }
1366 }
1367
1368 if (verified_as_different || parent_crc != file_crc)
1369 warning (_("the debug information found in \"%s\""
1370 " does not match \"%s\" (CRC mismatch).\n"),
1371 name.c_str (), objfile_name (parent_objfile));
1372
1373 if (separate_debug_file_debug)
1374 printf_filtered (_(" no, CRC doesn't match.\n"));
1375
1376 return 0;
1377 }
1378
1379 if (separate_debug_file_debug)
1380 printf_filtered (_(" yes!\n"));
1381
1382 return 1;
1383 }
1384
1385 char *debug_file_directory = NULL;
1386 static void
1387 show_debug_file_directory (struct ui_file *file, int from_tty,
1388 struct cmd_list_element *c, const char *value)
1389 {
1390 fprintf_filtered (file,
1391 _("The directory where separate debug "
1392 "symbols are searched for is \"%s\".\n"),
1393 value);
1394 }
1395
1396 #if ! defined (DEBUG_SUBDIRECTORY)
1397 #define DEBUG_SUBDIRECTORY ".debug"
1398 #endif
1399
1400 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1401 where the original file resides (may not be the same as
1402 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1403 looking for. CANON_DIR is the "realpath" form of DIR.
1404 DIR must contain a trailing '/'.
1405 Returns the path of the file with separate debug info, or an empty
1406 string. */
1407
1408 static std::string
1409 find_separate_debug_file (const char *dir,
1410 const char *canon_dir,
1411 const char *debuglink,
1412 unsigned long crc32, struct objfile *objfile)
1413 {
1414 if (separate_debug_file_debug)
1415 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1416 "%s\n"), objfile_name (objfile));
1417
1418 /* First try in the same directory as the original file. */
1419 std::string debugfile = dir;
1420 debugfile += debuglink;
1421
1422 if (separate_debug_file_exists (debugfile, crc32, objfile))
1423 return debugfile;
1424
1425 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1426 debugfile = dir;
1427 debugfile += DEBUG_SUBDIRECTORY;
1428 debugfile += "/";
1429 debugfile += debuglink;
1430
1431 if (separate_debug_file_exists (debugfile, crc32, objfile))
1432 return debugfile;
1433
1434 /* Then try in the global debugfile directories.
1435
1436 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1437 cause "/..." lookups. */
1438
1439 bool target_prefix = startswith (dir, "target:");
1440 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1441 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1442 = dirnames_to_char_ptr_vec (debug_file_directory);
1443
1444 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1445 {
1446 debugfile = target_prefix ? "target:" : "";
1447 debugfile += debugdir.get ();
1448 debugfile += "/";
1449 debugfile += dir_notarget;
1450 debugfile += debuglink;
1451
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 return debugfile;
1454
1455 /* If the file is in the sysroot, try using its base path in the
1456 global debugfile directory. */
1457 if (canon_dir != NULL
1458 && filename_ncmp (canon_dir, gdb_sysroot,
1459 strlen (gdb_sysroot)) == 0
1460 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1461 {
1462 debugfile = target_prefix ? "target:" : "";
1463 debugfile += debugdir.get ();
1464 debugfile += (canon_dir + strlen (gdb_sysroot));
1465 debugfile += "/";
1466 debugfile += debuglink;
1467
1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
1469 return debugfile;
1470 }
1471 }
1472
1473 return std::string ();
1474 }
1475
1476 /* Modify PATH to contain only "[/]directory/" part of PATH.
1477 If there were no directory separators in PATH, PATH will be empty
1478 string on return. */
1479
1480 static void
1481 terminate_after_last_dir_separator (char *path)
1482 {
1483 int i;
1484
1485 /* Strip off the final filename part, leaving the directory name,
1486 followed by a slash. The directory can be relative or absolute. */
1487 for (i = strlen(path) - 1; i >= 0; i--)
1488 if (IS_DIR_SEPARATOR (path[i]))
1489 break;
1490
1491 /* If I is -1 then no directory is present there and DIR will be "". */
1492 path[i + 1] = '\0';
1493 }
1494
1495 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1496 Returns pathname, or an empty string. */
1497
1498 std::string
1499 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1500 {
1501 unsigned long crc32;
1502
1503 gdb::unique_xmalloc_ptr<char> debuglink
1504 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1505
1506 if (debuglink == NULL)
1507 {
1508 /* There's no separate debug info, hence there's no way we could
1509 load it => no warning. */
1510 return std::string ();
1511 }
1512
1513 std::string dir = objfile_name (objfile);
1514 terminate_after_last_dir_separator (&dir[0]);
1515 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1516
1517 std::string debugfile
1518 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1519 debuglink.get (), crc32, objfile);
1520
1521 if (debugfile.empty ())
1522 {
1523 /* For PR gdb/9538, try again with realpath (if different from the
1524 original). */
1525
1526 struct stat st_buf;
1527
1528 if (lstat (objfile_name (objfile), &st_buf) == 0
1529 && S_ISLNK (st_buf.st_mode))
1530 {
1531 gdb::unique_xmalloc_ptr<char> symlink_dir
1532 (lrealpath (objfile_name (objfile)));
1533 if (symlink_dir != NULL)
1534 {
1535 terminate_after_last_dir_separator (symlink_dir.get ());
1536 if (dir != symlink_dir.get ())
1537 {
1538 /* Different directory, so try using it. */
1539 debugfile = find_separate_debug_file (symlink_dir.get (),
1540 symlink_dir.get (),
1541 debuglink.get (),
1542 crc32,
1543 objfile);
1544 }
1545 }
1546 }
1547 }
1548
1549 return debugfile;
1550 }
1551
1552 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1553 simultaneously. */
1554
1555 static void
1556 validate_readnow_readnever (objfile_flags flags)
1557 {
1558 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1559 error (_("-readnow and -readnever cannot be used simultaneously"));
1560 }
1561
1562 /* This is the symbol-file command. Read the file, analyze its
1563 symbols, and add a struct symtab to a symtab list. The syntax of
1564 the command is rather bizarre:
1565
1566 1. The function buildargv implements various quoting conventions
1567 which are undocumented and have little or nothing in common with
1568 the way things are quoted (or not quoted) elsewhere in GDB.
1569
1570 2. Options are used, which are not generally used in GDB (perhaps
1571 "set mapped on", "set readnow on" would be better)
1572
1573 3. The order of options matters, which is contrary to GNU
1574 conventions (because it is confusing and inconvenient). */
1575
1576 void
1577 symbol_file_command (const char *args, int from_tty)
1578 {
1579 dont_repeat ();
1580
1581 if (args == NULL)
1582 {
1583 symbol_file_clear (from_tty);
1584 }
1585 else
1586 {
1587 objfile_flags flags = OBJF_USERLOADED;
1588 symfile_add_flags add_flags = 0;
1589 char *name = NULL;
1590 bool stop_processing_options = false;
1591 CORE_ADDR offset = 0;
1592 int idx;
1593 char *arg;
1594
1595 if (from_tty)
1596 add_flags |= SYMFILE_VERBOSE;
1597
1598 gdb_argv built_argv (args);
1599 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1600 {
1601 if (stop_processing_options || *arg != '-')
1602 {
1603 if (name == NULL)
1604 name = arg;
1605 else
1606 error (_("Unrecognized argument \"%s\""), arg);
1607 }
1608 else if (strcmp (arg, "-readnow") == 0)
1609 flags |= OBJF_READNOW;
1610 else if (strcmp (arg, "-readnever") == 0)
1611 flags |= OBJF_READNEVER;
1612 else if (strcmp (arg, "-o") == 0)
1613 {
1614 arg = built_argv[++idx];
1615 if (arg == NULL)
1616 error (_("Missing argument to -o"));
1617
1618 offset = parse_and_eval_address (arg);
1619 }
1620 else if (strcmp (arg, "--") == 0)
1621 stop_processing_options = true;
1622 else
1623 error (_("Unrecognized argument \"%s\""), arg);
1624 }
1625
1626 if (name == NULL)
1627 error (_("no symbol file name was specified"));
1628
1629 validate_readnow_readnever (flags);
1630
1631 symbol_file_add_main_1 (name, add_flags, flags, offset);
1632 }
1633 }
1634
1635 /* Set the initial language.
1636
1637 FIXME: A better solution would be to record the language in the
1638 psymtab when reading partial symbols, and then use it (if known) to
1639 set the language. This would be a win for formats that encode the
1640 language in an easily discoverable place, such as DWARF. For
1641 stabs, we can jump through hoops looking for specially named
1642 symbols or try to intuit the language from the specific type of
1643 stabs we find, but we can't do that until later when we read in
1644 full symbols. */
1645
1646 void
1647 set_initial_language (void)
1648 {
1649 enum language lang = main_language ();
1650
1651 if (lang == language_unknown)
1652 {
1653 char *name = main_name ();
1654 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1655
1656 if (sym != NULL)
1657 lang = SYMBOL_LANGUAGE (sym);
1658 }
1659
1660 if (lang == language_unknown)
1661 {
1662 /* Make C the default language */
1663 lang = language_c;
1664 }
1665
1666 set_language (lang);
1667 expected_language = current_language; /* Don't warn the user. */
1668 }
1669
1670 /* Open the file specified by NAME and hand it off to BFD for
1671 preliminary analysis. Return a newly initialized bfd *, which
1672 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1673 absolute). In case of trouble, error() is called. */
1674
1675 gdb_bfd_ref_ptr
1676 symfile_bfd_open (const char *name)
1677 {
1678 int desc = -1;
1679
1680 gdb::unique_xmalloc_ptr<char> absolute_name;
1681 if (!is_target_filename (name))
1682 {
1683 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1684
1685 /* Look down path for it, allocate 2nd new malloc'd copy. */
1686 desc = openp (getenv ("PATH"),
1687 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1688 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1689 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1690 if (desc < 0)
1691 {
1692 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1693
1694 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1695 desc = openp (getenv ("PATH"),
1696 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1697 exename, O_RDONLY | O_BINARY, &absolute_name);
1698 }
1699 #endif
1700 if (desc < 0)
1701 perror_with_name (expanded_name.get ());
1702
1703 name = absolute_name.get ();
1704 }
1705
1706 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1707 if (sym_bfd == NULL)
1708 error (_("`%s': can't open to read symbols: %s."), name,
1709 bfd_errmsg (bfd_get_error ()));
1710
1711 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1712 bfd_set_cacheable (sym_bfd.get (), 1);
1713
1714 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1715 error (_("`%s': can't read symbols: %s."), name,
1716 bfd_errmsg (bfd_get_error ()));
1717
1718 return sym_bfd;
1719 }
1720
1721 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1722 the section was not found. */
1723
1724 int
1725 get_section_index (struct objfile *objfile, const char *section_name)
1726 {
1727 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1728
1729 if (sect)
1730 return sect->index;
1731 else
1732 return -1;
1733 }
1734
1735 /* Link SF into the global symtab_fns list.
1736 FLAVOUR is the file format that SF handles.
1737 Called on startup by the _initialize routine in each object file format
1738 reader, to register information about each format the reader is prepared
1739 to handle. */
1740
1741 void
1742 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1743 {
1744 symtab_fns.emplace_back (flavour, sf);
1745 }
1746
1747 /* Initialize OBJFILE to read symbols from its associated BFD. It
1748 either returns or calls error(). The result is an initialized
1749 struct sym_fns in the objfile structure, that contains cached
1750 information about the symbol file. */
1751
1752 static const struct sym_fns *
1753 find_sym_fns (bfd *abfd)
1754 {
1755 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1756
1757 if (our_flavour == bfd_target_srec_flavour
1758 || our_flavour == bfd_target_ihex_flavour
1759 || our_flavour == bfd_target_tekhex_flavour)
1760 return NULL; /* No symbols. */
1761
1762 for (const registered_sym_fns &rsf : symtab_fns)
1763 if (our_flavour == rsf.sym_flavour)
1764 return rsf.sym_fns;
1765
1766 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1767 bfd_get_target (abfd));
1768 }
1769 \f
1770
1771 /* This function runs the load command of our current target. */
1772
1773 static void
1774 load_command (const char *arg, int from_tty)
1775 {
1776 dont_repeat ();
1777
1778 /* The user might be reloading because the binary has changed. Take
1779 this opportunity to check. */
1780 reopen_exec_file ();
1781 reread_symbols ();
1782
1783 std::string temp;
1784 if (arg == NULL)
1785 {
1786 const char *parg, *prev;
1787
1788 arg = get_exec_file (1);
1789
1790 /* We may need to quote this string so buildargv can pull it
1791 apart. */
1792 prev = parg = arg;
1793 while ((parg = strpbrk (parg, "\\\"'\t ")))
1794 {
1795 temp.append (prev, parg - prev);
1796 prev = parg++;
1797 temp.push_back ('\\');
1798 }
1799 /* If we have not copied anything yet, then we didn't see a
1800 character to quote, and we can just leave ARG unchanged. */
1801 if (!temp.empty ())
1802 {
1803 temp.append (prev);
1804 arg = temp.c_str ();
1805 }
1806 }
1807
1808 target_load (arg, from_tty);
1809
1810 /* After re-loading the executable, we don't really know which
1811 overlays are mapped any more. */
1812 overlay_cache_invalid = 1;
1813 }
1814
1815 /* This version of "load" should be usable for any target. Currently
1816 it is just used for remote targets, not inftarg.c or core files,
1817 on the theory that only in that case is it useful.
1818
1819 Avoiding xmodem and the like seems like a win (a) because we don't have
1820 to worry about finding it, and (b) On VMS, fork() is very slow and so
1821 we don't want to run a subprocess. On the other hand, I'm not sure how
1822 performance compares. */
1823
1824 static int validate_download = 0;
1825
1826 /* Callback service function for generic_load (bfd_map_over_sections). */
1827
1828 static void
1829 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1830 {
1831 bfd_size_type *sum = (bfd_size_type *) data;
1832
1833 *sum += bfd_get_section_size (asec);
1834 }
1835
1836 /* Opaque data for load_progress. */
1837 struct load_progress_data
1838 {
1839 /* Cumulative data. */
1840 unsigned long write_count = 0;
1841 unsigned long data_count = 0;
1842 bfd_size_type total_size = 0;
1843 };
1844
1845 /* Opaque data for load_progress for a single section. */
1846 struct load_progress_section_data
1847 {
1848 load_progress_section_data (load_progress_data *cumulative_,
1849 const char *section_name_, ULONGEST section_size_,
1850 CORE_ADDR lma_, gdb_byte *buffer_)
1851 : cumulative (cumulative_), section_name (section_name_),
1852 section_size (section_size_), lma (lma_), buffer (buffer_)
1853 {}
1854
1855 struct load_progress_data *cumulative;
1856
1857 /* Per-section data. */
1858 const char *section_name;
1859 ULONGEST section_sent = 0;
1860 ULONGEST section_size;
1861 CORE_ADDR lma;
1862 gdb_byte *buffer;
1863 };
1864
1865 /* Opaque data for load_section_callback. */
1866 struct load_section_data
1867 {
1868 load_section_data (load_progress_data *progress_data_)
1869 : progress_data (progress_data_)
1870 {}
1871
1872 ~load_section_data ()
1873 {
1874 for (auto &&request : requests)
1875 {
1876 xfree (request.data);
1877 delete ((load_progress_section_data *) request.baton);
1878 }
1879 }
1880
1881 CORE_ADDR load_offset = 0;
1882 struct load_progress_data *progress_data;
1883 std::vector<struct memory_write_request> requests;
1884 };
1885
1886 /* Target write callback routine for progress reporting. */
1887
1888 static void
1889 load_progress (ULONGEST bytes, void *untyped_arg)
1890 {
1891 struct load_progress_section_data *args
1892 = (struct load_progress_section_data *) untyped_arg;
1893 struct load_progress_data *totals;
1894
1895 if (args == NULL)
1896 /* Writing padding data. No easy way to get at the cumulative
1897 stats, so just ignore this. */
1898 return;
1899
1900 totals = args->cumulative;
1901
1902 if (bytes == 0 && args->section_sent == 0)
1903 {
1904 /* The write is just starting. Let the user know we've started
1905 this section. */
1906 current_uiout->message ("Loading section %s, size %s lma %s\n",
1907 args->section_name,
1908 hex_string (args->section_size),
1909 paddress (target_gdbarch (), args->lma));
1910 return;
1911 }
1912
1913 if (validate_download)
1914 {
1915 /* Broken memories and broken monitors manifest themselves here
1916 when bring new computers to life. This doubles already slow
1917 downloads. */
1918 /* NOTE: cagney/1999-10-18: A more efficient implementation
1919 might add a verify_memory() method to the target vector and
1920 then use that. remote.c could implement that method using
1921 the ``qCRC'' packet. */
1922 gdb::byte_vector check (bytes);
1923
1924 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1925 error (_("Download verify read failed at %s"),
1926 paddress (target_gdbarch (), args->lma));
1927 if (memcmp (args->buffer, check.data (), bytes) != 0)
1928 error (_("Download verify compare failed at %s"),
1929 paddress (target_gdbarch (), args->lma));
1930 }
1931 totals->data_count += bytes;
1932 args->lma += bytes;
1933 args->buffer += bytes;
1934 totals->write_count += 1;
1935 args->section_sent += bytes;
1936 if (check_quit_flag ()
1937 || (deprecated_ui_load_progress_hook != NULL
1938 && deprecated_ui_load_progress_hook (args->section_name,
1939 args->section_sent)))
1940 error (_("Canceled the download"));
1941
1942 if (deprecated_show_load_progress != NULL)
1943 deprecated_show_load_progress (args->section_name,
1944 args->section_sent,
1945 args->section_size,
1946 totals->data_count,
1947 totals->total_size);
1948 }
1949
1950 /* Callback service function for generic_load (bfd_map_over_sections). */
1951
1952 static void
1953 load_section_callback (bfd *abfd, asection *asec, void *data)
1954 {
1955 struct load_section_data *args = (struct load_section_data *) data;
1956 bfd_size_type size = bfd_get_section_size (asec);
1957 const char *sect_name = bfd_get_section_name (abfd, asec);
1958
1959 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1960 return;
1961
1962 if (size == 0)
1963 return;
1964
1965 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1966 ULONGEST end = begin + size;
1967 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1968 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1969
1970 load_progress_section_data *section_data
1971 = new load_progress_section_data (args->progress_data, sect_name, size,
1972 begin, buffer);
1973
1974 args->requests.emplace_back (begin, end, buffer, section_data);
1975 }
1976
1977 static void print_transfer_performance (struct ui_file *stream,
1978 unsigned long data_count,
1979 unsigned long write_count,
1980 std::chrono::steady_clock::duration d);
1981
1982 void
1983 generic_load (const char *args, int from_tty)
1984 {
1985 struct load_progress_data total_progress;
1986 struct load_section_data cbdata (&total_progress);
1987 struct ui_out *uiout = current_uiout;
1988
1989 if (args == NULL)
1990 error_no_arg (_("file to load"));
1991
1992 gdb_argv argv (args);
1993
1994 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1995
1996 if (argv[1] != NULL)
1997 {
1998 const char *endptr;
1999
2000 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2001
2002 /* If the last word was not a valid number then
2003 treat it as a file name with spaces in. */
2004 if (argv[1] == endptr)
2005 error (_("Invalid download offset:%s."), argv[1]);
2006
2007 if (argv[2] != NULL)
2008 error (_("Too many parameters."));
2009 }
2010
2011 /* Open the file for loading. */
2012 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2013 if (loadfile_bfd == NULL)
2014 perror_with_name (filename.get ());
2015
2016 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2017 {
2018 error (_("\"%s\" is not an object file: %s"), filename.get (),
2019 bfd_errmsg (bfd_get_error ()));
2020 }
2021
2022 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2023 (void *) &total_progress.total_size);
2024
2025 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2026
2027 using namespace std::chrono;
2028
2029 steady_clock::time_point start_time = steady_clock::now ();
2030
2031 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2032 load_progress) != 0)
2033 error (_("Load failed"));
2034
2035 steady_clock::time_point end_time = steady_clock::now ();
2036
2037 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2038 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2039 uiout->text ("Start address ");
2040 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2041 uiout->text (", load size ");
2042 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2043 uiout->text ("\n");
2044 regcache_write_pc (get_current_regcache (), entry);
2045
2046 /* Reset breakpoints, now that we have changed the load image. For
2047 instance, breakpoints may have been set (or reset, by
2048 post_create_inferior) while connected to the target but before we
2049 loaded the program. In that case, the prologue analyzer could
2050 have read instructions from the target to find the right
2051 breakpoint locations. Loading has changed the contents of that
2052 memory. */
2053
2054 breakpoint_re_set ();
2055
2056 print_transfer_performance (gdb_stdout, total_progress.data_count,
2057 total_progress.write_count,
2058 end_time - start_time);
2059 }
2060
2061 /* Report on STREAM the performance of a memory transfer operation,
2062 such as 'load'. DATA_COUNT is the number of bytes transferred.
2063 WRITE_COUNT is the number of separate write operations, or 0, if
2064 that information is not available. TIME is how long the operation
2065 lasted. */
2066
2067 static void
2068 print_transfer_performance (struct ui_file *stream,
2069 unsigned long data_count,
2070 unsigned long write_count,
2071 std::chrono::steady_clock::duration time)
2072 {
2073 using namespace std::chrono;
2074 struct ui_out *uiout = current_uiout;
2075
2076 milliseconds ms = duration_cast<milliseconds> (time);
2077
2078 uiout->text ("Transfer rate: ");
2079 if (ms.count () > 0)
2080 {
2081 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2082
2083 if (uiout->is_mi_like_p ())
2084 {
2085 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2086 uiout->text (" bits/sec");
2087 }
2088 else if (rate < 1024)
2089 {
2090 uiout->field_fmt ("transfer-rate", "%lu", rate);
2091 uiout->text (" bytes/sec");
2092 }
2093 else
2094 {
2095 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2096 uiout->text (" KB/sec");
2097 }
2098 }
2099 else
2100 {
2101 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2102 uiout->text (" bits in <1 sec");
2103 }
2104 if (write_count > 0)
2105 {
2106 uiout->text (", ");
2107 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2108 uiout->text (" bytes/write");
2109 }
2110 uiout->text (".\n");
2111 }
2112
2113 /* Add an OFFSET to the start address of each section in OBJF, except
2114 sections that were specified in ADDRS. */
2115
2116 static void
2117 set_objfile_default_section_offset (struct objfile *objf,
2118 const section_addr_info &addrs,
2119 CORE_ADDR offset)
2120 {
2121 /* Add OFFSET to all sections by default. */
2122 std::vector<struct section_offsets> offsets (objf->num_sections,
2123 { { offset } });
2124
2125 /* Create sorted lists of all sections in ADDRS as well as all
2126 sections in OBJF. */
2127
2128 std::vector<const struct other_sections *> addrs_sorted
2129 = addrs_section_sort (addrs);
2130
2131 section_addr_info objf_addrs
2132 = build_section_addr_info_from_objfile (objf);
2133 std::vector<const struct other_sections *> objf_addrs_sorted
2134 = addrs_section_sort (objf_addrs);
2135
2136 /* Walk the BFD section list, and if a matching section is found in
2137 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2138 unchanged.
2139
2140 Note that both lists may contain multiple sections with the same
2141 name, and then the sections from ADDRS are matched in BFD order
2142 (thanks to sectindex). */
2143
2144 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2145 = addrs_sorted.begin ();
2146 for (const other_sections *objf_sect : objf_addrs_sorted)
2147 {
2148 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2149 int cmp = -1;
2150
2151 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2152 {
2153 const struct other_sections *sect = *addrs_sorted_iter;
2154 const char *sect_name = addr_section_name (sect->name.c_str ());
2155 cmp = strcmp (sect_name, objf_name);
2156 if (cmp <= 0)
2157 ++addrs_sorted_iter;
2158 }
2159
2160 if (cmp == 0)
2161 offsets[objf_sect->sectindex].offsets[0] = 0;
2162 }
2163
2164 /* Apply the new section offsets. */
2165 objfile_relocate (objf, offsets.data ());
2166 }
2167
2168 /* This function allows the addition of incrementally linked object files.
2169 It does not modify any state in the target, only in the debugger. */
2170 /* Note: ezannoni 2000-04-13 This function/command used to have a
2171 special case syntax for the rombug target (Rombug is the boot
2172 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2173 rombug case, the user doesn't need to supply a text address,
2174 instead a call to target_link() (in target.c) would supply the
2175 value to use. We are now discontinuing this type of ad hoc syntax. */
2176
2177 static void
2178 add_symbol_file_command (const char *args, int from_tty)
2179 {
2180 struct gdbarch *gdbarch = get_current_arch ();
2181 gdb::unique_xmalloc_ptr<char> filename;
2182 char *arg;
2183 int argcnt = 0;
2184 struct objfile *objf;
2185 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2186 symfile_add_flags add_flags = 0;
2187
2188 if (from_tty)
2189 add_flags |= SYMFILE_VERBOSE;
2190
2191 struct sect_opt
2192 {
2193 const char *name;
2194 const char *value;
2195 };
2196
2197 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2198 bool stop_processing_options = false;
2199 CORE_ADDR offset = 0;
2200
2201 dont_repeat ();
2202
2203 if (args == NULL)
2204 error (_("add-symbol-file takes a file name and an address"));
2205
2206 bool seen_addr = false;
2207 bool seen_offset = false;
2208 gdb_argv argv (args);
2209
2210 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2211 {
2212 if (stop_processing_options || *arg != '-')
2213 {
2214 if (filename == NULL)
2215 {
2216 /* First non-option argument is always the filename. */
2217 filename.reset (tilde_expand (arg));
2218 }
2219 else if (!seen_addr)
2220 {
2221 /* The second non-option argument is always the text
2222 address at which to load the program. */
2223 sect_opts[0].value = arg;
2224 seen_addr = true;
2225 }
2226 else
2227 error (_("Unrecognized argument \"%s\""), arg);
2228 }
2229 else if (strcmp (arg, "-readnow") == 0)
2230 flags |= OBJF_READNOW;
2231 else if (strcmp (arg, "-readnever") == 0)
2232 flags |= OBJF_READNEVER;
2233 else if (strcmp (arg, "-s") == 0)
2234 {
2235 if (argv[argcnt + 1] == NULL)
2236 error (_("Missing section name after \"-s\""));
2237 else if (argv[argcnt + 2] == NULL)
2238 error (_("Missing section address after \"-s\""));
2239
2240 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2241
2242 sect_opts.push_back (sect);
2243 argcnt += 2;
2244 }
2245 else if (strcmp (arg, "-o") == 0)
2246 {
2247 arg = argv[++argcnt];
2248 if (arg == NULL)
2249 error (_("Missing argument to -o"));
2250
2251 offset = parse_and_eval_address (arg);
2252 seen_offset = true;
2253 }
2254 else if (strcmp (arg, "--") == 0)
2255 stop_processing_options = true;
2256 else
2257 error (_("Unrecognized argument \"%s\""), arg);
2258 }
2259
2260 if (filename == NULL)
2261 error (_("You must provide a filename to be loaded."));
2262
2263 validate_readnow_readnever (flags);
2264
2265 /* Print the prompt for the query below. And save the arguments into
2266 a sect_addr_info structure to be passed around to other
2267 functions. We have to split this up into separate print
2268 statements because hex_string returns a local static
2269 string. */
2270
2271 printf_unfiltered (_("add symbol table from file \"%s\""),
2272 filename.get ());
2273 section_addr_info section_addrs;
2274 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2275 if (!seen_addr)
2276 ++it;
2277 for (; it != sect_opts.end (); ++it)
2278 {
2279 CORE_ADDR addr;
2280 const char *val = it->value;
2281 const char *sec = it->name;
2282
2283 if (section_addrs.empty ())
2284 printf_unfiltered (_(" at\n"));
2285 addr = parse_and_eval_address (val);
2286
2287 /* Here we store the section offsets in the order they were
2288 entered on the command line. Every array element is
2289 assigned an ascending section index to preserve the above
2290 order over an unstable sorting algorithm. This dummy
2291 index is not used for any other purpose.
2292 */
2293 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2294 printf_filtered ("\t%s_addr = %s\n", sec,
2295 paddress (gdbarch, addr));
2296
2297 /* The object's sections are initialized when a
2298 call is made to build_objfile_section_table (objfile).
2299 This happens in reread_symbols.
2300 At this point, we don't know what file type this is,
2301 so we can't determine what section names are valid. */
2302 }
2303 if (seen_offset)
2304 printf_unfiltered (_("%s offset by %s\n"),
2305 (section_addrs.empty ()
2306 ? _(" with all sections")
2307 : _("with other sections")),
2308 paddress (gdbarch, offset));
2309 else if (section_addrs.empty ())
2310 printf_unfiltered ("\n");
2311
2312 if (from_tty && (!query ("%s", "")))
2313 error (_("Not confirmed."));
2314
2315 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2316 flags);
2317
2318 if (seen_offset)
2319 set_objfile_default_section_offset (objf, section_addrs, offset);
2320
2321 add_target_sections_of_objfile (objf);
2322
2323 /* Getting new symbols may change our opinion about what is
2324 frameless. */
2325 reinit_frame_cache ();
2326 }
2327 \f
2328
2329 /* This function removes a symbol file that was added via add-symbol-file. */
2330
2331 static void
2332 remove_symbol_file_command (const char *args, int from_tty)
2333 {
2334 struct objfile *objf = NULL;
2335 struct program_space *pspace = current_program_space;
2336
2337 dont_repeat ();
2338
2339 if (args == NULL)
2340 error (_("remove-symbol-file: no symbol file provided"));
2341
2342 gdb_argv argv (args);
2343
2344 if (strcmp (argv[0], "-a") == 0)
2345 {
2346 /* Interpret the next argument as an address. */
2347 CORE_ADDR addr;
2348
2349 if (argv[1] == NULL)
2350 error (_("Missing address argument"));
2351
2352 if (argv[2] != NULL)
2353 error (_("Junk after %s"), argv[1]);
2354
2355 addr = parse_and_eval_address (argv[1]);
2356
2357 for (objfile *objfile : current_program_space->objfiles ())
2358 {
2359 if ((objfile->flags & OBJF_USERLOADED) != 0
2360 && (objfile->flags & OBJF_SHARED) != 0
2361 && objfile->pspace == pspace
2362 && is_addr_in_objfile (addr, objfile))
2363 {
2364 objf = objfile;
2365 break;
2366 }
2367 }
2368 }
2369 else if (argv[0] != NULL)
2370 {
2371 /* Interpret the current argument as a file name. */
2372
2373 if (argv[1] != NULL)
2374 error (_("Junk after %s"), argv[0]);
2375
2376 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2377
2378 for (objfile *objfile : current_program_space->objfiles ())
2379 {
2380 if ((objfile->flags & OBJF_USERLOADED) != 0
2381 && (objfile->flags & OBJF_SHARED) != 0
2382 && objfile->pspace == pspace
2383 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2384 {
2385 objf = objfile;
2386 break;
2387 }
2388 }
2389 }
2390
2391 if (objf == NULL)
2392 error (_("No symbol file found"));
2393
2394 if (from_tty
2395 && !query (_("Remove symbol table from file \"%s\"? "),
2396 objfile_name (objf)))
2397 error (_("Not confirmed."));
2398
2399 delete objf;
2400 clear_symtab_users (0);
2401 }
2402
2403 /* Re-read symbols if a symbol-file has changed. */
2404
2405 void
2406 reread_symbols (void)
2407 {
2408 struct objfile *objfile;
2409 long new_modtime;
2410 struct stat new_statbuf;
2411 int res;
2412 std::vector<struct objfile *> new_objfiles;
2413
2414 /* With the addition of shared libraries, this should be modified,
2415 the load time should be saved in the partial symbol tables, since
2416 different tables may come from different source files. FIXME.
2417 This routine should then walk down each partial symbol table
2418 and see if the symbol table that it originates from has been changed. */
2419
2420 for (objfile = object_files; objfile; objfile = objfile->next)
2421 {
2422 if (objfile->obfd == NULL)
2423 continue;
2424
2425 /* Separate debug objfiles are handled in the main objfile. */
2426 if (objfile->separate_debug_objfile_backlink)
2427 continue;
2428
2429 /* If this object is from an archive (what you usually create with
2430 `ar', often called a `static library' on most systems, though
2431 a `shared library' on AIX is also an archive), then you should
2432 stat on the archive name, not member name. */
2433 if (objfile->obfd->my_archive)
2434 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2435 else
2436 res = stat (objfile_name (objfile), &new_statbuf);
2437 if (res != 0)
2438 {
2439 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2440 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2441 objfile_name (objfile));
2442 continue;
2443 }
2444 new_modtime = new_statbuf.st_mtime;
2445 if (new_modtime != objfile->mtime)
2446 {
2447 struct section_offsets *offsets;
2448 int num_offsets;
2449
2450 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2451 objfile_name (objfile));
2452
2453 /* There are various functions like symbol_file_add,
2454 symfile_bfd_open, syms_from_objfile, etc., which might
2455 appear to do what we want. But they have various other
2456 effects which we *don't* want. So we just do stuff
2457 ourselves. We don't worry about mapped files (for one thing,
2458 any mapped file will be out of date). */
2459
2460 /* If we get an error, blow away this objfile (not sure if
2461 that is the correct response for things like shared
2462 libraries). */
2463 std::unique_ptr<struct objfile> objfile_holder (objfile);
2464
2465 /* We need to do this whenever any symbols go away. */
2466 clear_symtab_users_cleanup defer_clear_users (0);
2467
2468 if (exec_bfd != NULL
2469 && filename_cmp (bfd_get_filename (objfile->obfd),
2470 bfd_get_filename (exec_bfd)) == 0)
2471 {
2472 /* Reload EXEC_BFD without asking anything. */
2473
2474 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2475 }
2476
2477 /* Keep the calls order approx. the same as in free_objfile. */
2478
2479 /* Free the separate debug objfiles. It will be
2480 automatically recreated by sym_read. */
2481 free_objfile_separate_debug (objfile);
2482
2483 /* Remove any references to this objfile in the global
2484 value lists. */
2485 preserve_values (objfile);
2486
2487 /* Nuke all the state that we will re-read. Much of the following
2488 code which sets things to NULL really is necessary to tell
2489 other parts of GDB that there is nothing currently there.
2490
2491 Try to keep the freeing order compatible with free_objfile. */
2492
2493 if (objfile->sf != NULL)
2494 {
2495 (*objfile->sf->sym_finish) (objfile);
2496 }
2497
2498 clear_objfile_data (objfile);
2499
2500 /* Clean up any state BFD has sitting around. */
2501 {
2502 gdb_bfd_ref_ptr obfd (objfile->obfd);
2503 char *obfd_filename;
2504
2505 obfd_filename = bfd_get_filename (objfile->obfd);
2506 /* Open the new BFD before freeing the old one, so that
2507 the filename remains live. */
2508 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2509 objfile->obfd = temp.release ();
2510 if (objfile->obfd == NULL)
2511 error (_("Can't open %s to read symbols."), obfd_filename);
2512 }
2513
2514 std::string original_name = objfile->original_name;
2515
2516 /* bfd_openr sets cacheable to true, which is what we want. */
2517 if (!bfd_check_format (objfile->obfd, bfd_object))
2518 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2519 bfd_errmsg (bfd_get_error ()));
2520
2521 /* Save the offsets, we will nuke them with the rest of the
2522 objfile_obstack. */
2523 num_offsets = objfile->num_sections;
2524 offsets = ((struct section_offsets *)
2525 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2526 memcpy (offsets, objfile->section_offsets,
2527 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2528
2529 objfile->reset_psymtabs ();
2530
2531 /* NB: after this call to obstack_free, objfiles_changed
2532 will need to be called (see discussion below). */
2533 obstack_free (&objfile->objfile_obstack, 0);
2534 objfile->sections = NULL;
2535 objfile->compunit_symtabs = NULL;
2536 objfile->template_symbols = NULL;
2537 objfile->static_links = NULL;
2538
2539 /* obstack_init also initializes the obstack so it is
2540 empty. We could use obstack_specify_allocation but
2541 gdb_obstack.h specifies the alloc/dealloc functions. */
2542 obstack_init (&objfile->objfile_obstack);
2543
2544 /* set_objfile_per_bfd potentially allocates the per-bfd
2545 data on the objfile's obstack (if sharing data across
2546 multiple users is not possible), so it's important to
2547 do it *after* the obstack has been initialized. */
2548 set_objfile_per_bfd (objfile);
2549
2550 objfile->original_name
2551 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2552 original_name.c_str (),
2553 original_name.size ());
2554
2555 /* Reset the sym_fns pointer. The ELF reader can change it
2556 based on whether .gdb_index is present, and we need it to
2557 start over. PR symtab/15885 */
2558 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2559
2560 build_objfile_section_table (objfile);
2561 terminate_minimal_symbol_table (objfile);
2562
2563 /* We use the same section offsets as from last time. I'm not
2564 sure whether that is always correct for shared libraries. */
2565 objfile->section_offsets = (struct section_offsets *)
2566 obstack_alloc (&objfile->objfile_obstack,
2567 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2568 memcpy (objfile->section_offsets, offsets,
2569 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2570 objfile->num_sections = num_offsets;
2571
2572 /* What the hell is sym_new_init for, anyway? The concept of
2573 distinguishing between the main file and additional files
2574 in this way seems rather dubious. */
2575 if (objfile == symfile_objfile)
2576 {
2577 (*objfile->sf->sym_new_init) (objfile);
2578 }
2579
2580 (*objfile->sf->sym_init) (objfile);
2581 clear_complaints ();
2582
2583 objfile->flags &= ~OBJF_PSYMTABS_READ;
2584
2585 /* We are about to read new symbols and potentially also
2586 DWARF information. Some targets may want to pass addresses
2587 read from DWARF DIE's through an adjustment function before
2588 saving them, like MIPS, which may call into
2589 "find_pc_section". When called, that function will make
2590 use of per-objfile program space data.
2591
2592 Since we discarded our section information above, we have
2593 dangling pointers in the per-objfile program space data
2594 structure. Force GDB to update the section mapping
2595 information by letting it know the objfile has changed,
2596 making the dangling pointers point to correct data
2597 again. */
2598
2599 objfiles_changed ();
2600
2601 read_symbols (objfile, 0);
2602
2603 if (!objfile_has_symbols (objfile))
2604 {
2605 wrap_here ("");
2606 printf_filtered (_("(no debugging symbols found)\n"));
2607 wrap_here ("");
2608 }
2609
2610 /* We're done reading the symbol file; finish off complaints. */
2611 clear_complaints ();
2612
2613 /* Getting new symbols may change our opinion about what is
2614 frameless. */
2615
2616 reinit_frame_cache ();
2617
2618 /* Discard cleanups as symbol reading was successful. */
2619 objfile_holder.release ();
2620 defer_clear_users.release ();
2621
2622 /* If the mtime has changed between the time we set new_modtime
2623 and now, we *want* this to be out of date, so don't call stat
2624 again now. */
2625 objfile->mtime = new_modtime;
2626 init_entry_point_info (objfile);
2627
2628 new_objfiles.push_back (objfile);
2629 }
2630 }
2631
2632 if (!new_objfiles.empty ())
2633 {
2634 clear_symtab_users (0);
2635
2636 /* clear_objfile_data for each objfile was called before freeing it and
2637 gdb::observers::new_objfile.notify (NULL) has been called by
2638 clear_symtab_users above. Notify the new files now. */
2639 for (auto iter : new_objfiles)
2640 gdb::observers::new_objfile.notify (iter);
2641
2642 /* At least one objfile has changed, so we can consider that
2643 the executable we're debugging has changed too. */
2644 gdb::observers::executable_changed.notify ();
2645 }
2646 }
2647 \f
2648
2649 struct filename_language
2650 {
2651 filename_language (const std::string &ext_, enum language lang_)
2652 : ext (ext_), lang (lang_)
2653 {}
2654
2655 std::string ext;
2656 enum language lang;
2657 };
2658
2659 static std::vector<filename_language> filename_language_table;
2660
2661 /* See symfile.h. */
2662
2663 void
2664 add_filename_language (const char *ext, enum language lang)
2665 {
2666 filename_language_table.emplace_back (ext, lang);
2667 }
2668
2669 static char *ext_args;
2670 static void
2671 show_ext_args (struct ui_file *file, int from_tty,
2672 struct cmd_list_element *c, const char *value)
2673 {
2674 fprintf_filtered (file,
2675 _("Mapping between filename extension "
2676 "and source language is \"%s\".\n"),
2677 value);
2678 }
2679
2680 static void
2681 set_ext_lang_command (const char *args,
2682 int from_tty, struct cmd_list_element *e)
2683 {
2684 char *cp = ext_args;
2685 enum language lang;
2686
2687 /* First arg is filename extension, starting with '.' */
2688 if (*cp != '.')
2689 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2690
2691 /* Find end of first arg. */
2692 while (*cp && !isspace (*cp))
2693 cp++;
2694
2695 if (*cp == '\0')
2696 error (_("'%s': two arguments required -- "
2697 "filename extension and language"),
2698 ext_args);
2699
2700 /* Null-terminate first arg. */
2701 *cp++ = '\0';
2702
2703 /* Find beginning of second arg, which should be a source language. */
2704 cp = skip_spaces (cp);
2705
2706 if (*cp == '\0')
2707 error (_("'%s': two arguments required -- "
2708 "filename extension and language"),
2709 ext_args);
2710
2711 /* Lookup the language from among those we know. */
2712 lang = language_enum (cp);
2713
2714 auto it = filename_language_table.begin ();
2715 /* Now lookup the filename extension: do we already know it? */
2716 for (; it != filename_language_table.end (); it++)
2717 {
2718 if (it->ext == ext_args)
2719 break;
2720 }
2721
2722 if (it == filename_language_table.end ())
2723 {
2724 /* New file extension. */
2725 add_filename_language (ext_args, lang);
2726 }
2727 else
2728 {
2729 /* Redefining a previously known filename extension. */
2730
2731 /* if (from_tty) */
2732 /* query ("Really make files of type %s '%s'?", */
2733 /* ext_args, language_str (lang)); */
2734
2735 it->lang = lang;
2736 }
2737 }
2738
2739 static void
2740 info_ext_lang_command (const char *args, int from_tty)
2741 {
2742 printf_filtered (_("Filename extensions and the languages they represent:"));
2743 printf_filtered ("\n\n");
2744 for (const filename_language &entry : filename_language_table)
2745 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2746 language_str (entry.lang));
2747 }
2748
2749 enum language
2750 deduce_language_from_filename (const char *filename)
2751 {
2752 const char *cp;
2753
2754 if (filename != NULL)
2755 if ((cp = strrchr (filename, '.')) != NULL)
2756 {
2757 for (const filename_language &entry : filename_language_table)
2758 if (entry.ext == cp)
2759 return entry.lang;
2760 }
2761
2762 return language_unknown;
2763 }
2764 \f
2765 /* Allocate and initialize a new symbol table.
2766 CUST is from the result of allocate_compunit_symtab. */
2767
2768 struct symtab *
2769 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2770 {
2771 struct objfile *objfile = cust->objfile;
2772 struct symtab *symtab
2773 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2774
2775 symtab->filename
2776 = (const char *) bcache (filename, strlen (filename) + 1,
2777 objfile->per_bfd->filename_cache);
2778 symtab->fullname = NULL;
2779 symtab->language = deduce_language_from_filename (filename);
2780
2781 /* This can be very verbose with lots of headers.
2782 Only print at higher debug levels. */
2783 if (symtab_create_debug >= 2)
2784 {
2785 /* Be a bit clever with debugging messages, and don't print objfile
2786 every time, only when it changes. */
2787 static char *last_objfile_name = NULL;
2788
2789 if (last_objfile_name == NULL
2790 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2791 {
2792 xfree (last_objfile_name);
2793 last_objfile_name = xstrdup (objfile_name (objfile));
2794 fprintf_filtered (gdb_stdlog,
2795 "Creating one or more symtabs for objfile %s ...\n",
2796 last_objfile_name);
2797 }
2798 fprintf_filtered (gdb_stdlog,
2799 "Created symtab %s for module %s.\n",
2800 host_address_to_string (symtab), filename);
2801 }
2802
2803 /* Add it to CUST's list of symtabs. */
2804 if (cust->filetabs == NULL)
2805 {
2806 cust->filetabs = symtab;
2807 cust->last_filetab = symtab;
2808 }
2809 else
2810 {
2811 cust->last_filetab->next = symtab;
2812 cust->last_filetab = symtab;
2813 }
2814
2815 /* Backlink to the containing compunit symtab. */
2816 symtab->compunit_symtab = cust;
2817
2818 return symtab;
2819 }
2820
2821 /* Allocate and initialize a new compunit.
2822 NAME is the name of the main source file, if there is one, or some
2823 descriptive text if there are no source files. */
2824
2825 struct compunit_symtab *
2826 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2827 {
2828 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2829 struct compunit_symtab);
2830 const char *saved_name;
2831
2832 cu->objfile = objfile;
2833
2834 /* The name we record here is only for display/debugging purposes.
2835 Just save the basename to avoid path issues (too long for display,
2836 relative vs absolute, etc.). */
2837 saved_name = lbasename (name);
2838 cu->name
2839 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2840 strlen (saved_name));
2841
2842 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2843
2844 if (symtab_create_debug)
2845 {
2846 fprintf_filtered (gdb_stdlog,
2847 "Created compunit symtab %s for %s.\n",
2848 host_address_to_string (cu),
2849 cu->name);
2850 }
2851
2852 return cu;
2853 }
2854
2855 /* Hook CU to the objfile it comes from. */
2856
2857 void
2858 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2859 {
2860 cu->next = cu->objfile->compunit_symtabs;
2861 cu->objfile->compunit_symtabs = cu;
2862 }
2863 \f
2864
2865 /* Reset all data structures in gdb which may contain references to
2866 symbol table data. */
2867
2868 void
2869 clear_symtab_users (symfile_add_flags add_flags)
2870 {
2871 /* Someday, we should do better than this, by only blowing away
2872 the things that really need to be blown. */
2873
2874 /* Clear the "current" symtab first, because it is no longer valid.
2875 breakpoint_re_set may try to access the current symtab. */
2876 clear_current_source_symtab_and_line ();
2877
2878 clear_displays ();
2879 clear_last_displayed_sal ();
2880 clear_pc_function_cache ();
2881 gdb::observers::new_objfile.notify (NULL);
2882
2883 /* Clear globals which might have pointed into a removed objfile.
2884 FIXME: It's not clear which of these are supposed to persist
2885 between expressions and which ought to be reset each time. */
2886 expression_context_block = NULL;
2887 innermost_block.reset ();
2888
2889 /* Varobj may refer to old symbols, perform a cleanup. */
2890 varobj_invalidate ();
2891
2892 /* Now that the various caches have been cleared, we can re_set
2893 our breakpoints without risking it using stale data. */
2894 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2895 breakpoint_re_set ();
2896 }
2897 \f
2898 /* OVERLAYS:
2899 The following code implements an abstraction for debugging overlay sections.
2900
2901 The target model is as follows:
2902 1) The gnu linker will permit multiple sections to be mapped into the
2903 same VMA, each with its own unique LMA (or load address).
2904 2) It is assumed that some runtime mechanism exists for mapping the
2905 sections, one by one, from the load address into the VMA address.
2906 3) This code provides a mechanism for gdb to keep track of which
2907 sections should be considered to be mapped from the VMA to the LMA.
2908 This information is used for symbol lookup, and memory read/write.
2909 For instance, if a section has been mapped then its contents
2910 should be read from the VMA, otherwise from the LMA.
2911
2912 Two levels of debugger support for overlays are available. One is
2913 "manual", in which the debugger relies on the user to tell it which
2914 overlays are currently mapped. This level of support is
2915 implemented entirely in the core debugger, and the information about
2916 whether a section is mapped is kept in the objfile->obj_section table.
2917
2918 The second level of support is "automatic", and is only available if
2919 the target-specific code provides functionality to read the target's
2920 overlay mapping table, and translate its contents for the debugger
2921 (by updating the mapped state information in the obj_section tables).
2922
2923 The interface is as follows:
2924 User commands:
2925 overlay map <name> -- tell gdb to consider this section mapped
2926 overlay unmap <name> -- tell gdb to consider this section unmapped
2927 overlay list -- list the sections that GDB thinks are mapped
2928 overlay read-target -- get the target's state of what's mapped
2929 overlay off/manual/auto -- set overlay debugging state
2930 Functional interface:
2931 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2932 section, return that section.
2933 find_pc_overlay(pc): find any overlay section that contains
2934 the pc, either in its VMA or its LMA
2935 section_is_mapped(sect): true if overlay is marked as mapped
2936 section_is_overlay(sect): true if section's VMA != LMA
2937 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2938 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2939 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2940 overlay_mapped_address(...): map an address from section's LMA to VMA
2941 overlay_unmapped_address(...): map an address from section's VMA to LMA
2942 symbol_overlayed_address(...): Return a "current" address for symbol:
2943 either in VMA or LMA depending on whether
2944 the symbol's section is currently mapped. */
2945
2946 /* Overlay debugging state: */
2947
2948 enum overlay_debugging_state overlay_debugging = ovly_off;
2949 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2950
2951 /* Function: section_is_overlay (SECTION)
2952 Returns true if SECTION has VMA not equal to LMA, ie.
2953 SECTION is loaded at an address different from where it will "run". */
2954
2955 int
2956 section_is_overlay (struct obj_section *section)
2957 {
2958 if (overlay_debugging && section)
2959 {
2960 asection *bfd_section = section->the_bfd_section;
2961
2962 if (bfd_section_lma (abfd, bfd_section) != 0
2963 && bfd_section_lma (abfd, bfd_section)
2964 != bfd_section_vma (abfd, bfd_section))
2965 return 1;
2966 }
2967
2968 return 0;
2969 }
2970
2971 /* Function: overlay_invalidate_all (void)
2972 Invalidate the mapped state of all overlay sections (mark it as stale). */
2973
2974 static void
2975 overlay_invalidate_all (void)
2976 {
2977 struct obj_section *sect;
2978
2979 for (objfile *objfile : current_program_space->objfiles ())
2980 ALL_OBJFILE_OSECTIONS (objfile, sect)
2981 if (section_is_overlay (sect))
2982 sect->ovly_mapped = -1;
2983 }
2984
2985 /* Function: section_is_mapped (SECTION)
2986 Returns true if section is an overlay, and is currently mapped.
2987
2988 Access to the ovly_mapped flag is restricted to this function, so
2989 that we can do automatic update. If the global flag
2990 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2991 overlay_invalidate_all. If the mapped state of the particular
2992 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2993
2994 int
2995 section_is_mapped (struct obj_section *osect)
2996 {
2997 struct gdbarch *gdbarch;
2998
2999 if (osect == 0 || !section_is_overlay (osect))
3000 return 0;
3001
3002 switch (overlay_debugging)
3003 {
3004 default:
3005 case ovly_off:
3006 return 0; /* overlay debugging off */
3007 case ovly_auto: /* overlay debugging automatic */
3008 /* Unles there is a gdbarch_overlay_update function,
3009 there's really nothing useful to do here (can't really go auto). */
3010 gdbarch = get_objfile_arch (osect->objfile);
3011 if (gdbarch_overlay_update_p (gdbarch))
3012 {
3013 if (overlay_cache_invalid)
3014 {
3015 overlay_invalidate_all ();
3016 overlay_cache_invalid = 0;
3017 }
3018 if (osect->ovly_mapped == -1)
3019 gdbarch_overlay_update (gdbarch, osect);
3020 }
3021 /* fall thru */
3022 case ovly_on: /* overlay debugging manual */
3023 return osect->ovly_mapped == 1;
3024 }
3025 }
3026
3027 /* Function: pc_in_unmapped_range
3028 If PC falls into the lma range of SECTION, return true, else false. */
3029
3030 CORE_ADDR
3031 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3032 {
3033 if (section_is_overlay (section))
3034 {
3035 bfd *abfd = section->objfile->obfd;
3036 asection *bfd_section = section->the_bfd_section;
3037
3038 /* We assume the LMA is relocated by the same offset as the VMA. */
3039 bfd_vma size = bfd_get_section_size (bfd_section);
3040 CORE_ADDR offset = obj_section_offset (section);
3041
3042 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3043 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3044 return 1;
3045 }
3046
3047 return 0;
3048 }
3049
3050 /* Function: pc_in_mapped_range
3051 If PC falls into the vma range of SECTION, return true, else false. */
3052
3053 CORE_ADDR
3054 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3055 {
3056 if (section_is_overlay (section))
3057 {
3058 if (obj_section_addr (section) <= pc
3059 && pc < obj_section_endaddr (section))
3060 return 1;
3061 }
3062
3063 return 0;
3064 }
3065
3066 /* Return true if the mapped ranges of sections A and B overlap, false
3067 otherwise. */
3068
3069 static int
3070 sections_overlap (struct obj_section *a, struct obj_section *b)
3071 {
3072 CORE_ADDR a_start = obj_section_addr (a);
3073 CORE_ADDR a_end = obj_section_endaddr (a);
3074 CORE_ADDR b_start = obj_section_addr (b);
3075 CORE_ADDR b_end = obj_section_endaddr (b);
3076
3077 return (a_start < b_end && b_start < a_end);
3078 }
3079
3080 /* Function: overlay_unmapped_address (PC, SECTION)
3081 Returns the address corresponding to PC in the unmapped (load) range.
3082 May be the same as PC. */
3083
3084 CORE_ADDR
3085 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3086 {
3087 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3088 {
3089 asection *bfd_section = section->the_bfd_section;
3090
3091 return pc + bfd_section_lma (abfd, bfd_section)
3092 - bfd_section_vma (abfd, bfd_section);
3093 }
3094
3095 return pc;
3096 }
3097
3098 /* Function: overlay_mapped_address (PC, SECTION)
3099 Returns the address corresponding to PC in the mapped (runtime) range.
3100 May be the same as PC. */
3101
3102 CORE_ADDR
3103 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3104 {
3105 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3106 {
3107 asection *bfd_section = section->the_bfd_section;
3108
3109 return pc + bfd_section_vma (abfd, bfd_section)
3110 - bfd_section_lma (abfd, bfd_section);
3111 }
3112
3113 return pc;
3114 }
3115
3116 /* Function: symbol_overlayed_address
3117 Return one of two addresses (relative to the VMA or to the LMA),
3118 depending on whether the section is mapped or not. */
3119
3120 CORE_ADDR
3121 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3122 {
3123 if (overlay_debugging)
3124 {
3125 /* If the symbol has no section, just return its regular address. */
3126 if (section == 0)
3127 return address;
3128 /* If the symbol's section is not an overlay, just return its
3129 address. */
3130 if (!section_is_overlay (section))
3131 return address;
3132 /* If the symbol's section is mapped, just return its address. */
3133 if (section_is_mapped (section))
3134 return address;
3135 /*
3136 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3137 * then return its LOADED address rather than its vma address!!
3138 */
3139 return overlay_unmapped_address (address, section);
3140 }
3141 return address;
3142 }
3143
3144 /* Function: find_pc_overlay (PC)
3145 Return the best-match overlay section for PC:
3146 If PC matches a mapped overlay section's VMA, return that section.
3147 Else if PC matches an unmapped section's VMA, return that section.
3148 Else if PC matches an unmapped section's LMA, return that section. */
3149
3150 struct obj_section *
3151 find_pc_overlay (CORE_ADDR pc)
3152 {
3153 struct obj_section *osect, *best_match = NULL;
3154
3155 if (overlay_debugging)
3156 {
3157 for (objfile *objfile : current_program_space->objfiles ())
3158 ALL_OBJFILE_OSECTIONS (objfile, osect)
3159 if (section_is_overlay (osect))
3160 {
3161 if (pc_in_mapped_range (pc, osect))
3162 {
3163 if (section_is_mapped (osect))
3164 return osect;
3165 else
3166 best_match = osect;
3167 }
3168 else if (pc_in_unmapped_range (pc, osect))
3169 best_match = osect;
3170 }
3171 }
3172 return best_match;
3173 }
3174
3175 /* Function: find_pc_mapped_section (PC)
3176 If PC falls into the VMA address range of an overlay section that is
3177 currently marked as MAPPED, return that section. Else return NULL. */
3178
3179 struct obj_section *
3180 find_pc_mapped_section (CORE_ADDR pc)
3181 {
3182 struct obj_section *osect;
3183
3184 if (overlay_debugging)
3185 {
3186 for (objfile *objfile : current_program_space->objfiles ())
3187 ALL_OBJFILE_OSECTIONS (objfile, osect)
3188 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3189 return osect;
3190 }
3191
3192 return NULL;
3193 }
3194
3195 /* Function: list_overlays_command
3196 Print a list of mapped sections and their PC ranges. */
3197
3198 static void
3199 list_overlays_command (const char *args, int from_tty)
3200 {
3201 int nmapped = 0;
3202 struct obj_section *osect;
3203
3204 if (overlay_debugging)
3205 {
3206 for (objfile *objfile : current_program_space->objfiles ())
3207 ALL_OBJFILE_OSECTIONS (objfile, osect)
3208 if (section_is_mapped (osect))
3209 {
3210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3211 const char *name;
3212 bfd_vma lma, vma;
3213 int size;
3214
3215 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3216 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3217 size = bfd_get_section_size (osect->the_bfd_section);
3218 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3219
3220 printf_filtered ("Section %s, loaded at ", name);
3221 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3222 puts_filtered (" - ");
3223 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3224 printf_filtered (", mapped at ");
3225 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3226 puts_filtered (" - ");
3227 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3228 puts_filtered ("\n");
3229
3230 nmapped++;
3231 }
3232 }
3233 if (nmapped == 0)
3234 printf_filtered (_("No sections are mapped.\n"));
3235 }
3236
3237 /* Function: map_overlay_command
3238 Mark the named section as mapped (ie. residing at its VMA address). */
3239
3240 static void
3241 map_overlay_command (const char *args, int from_tty)
3242 {
3243 struct obj_section *sec, *sec2;
3244
3245 if (!overlay_debugging)
3246 error (_("Overlay debugging not enabled. Use "
3247 "either the 'overlay auto' or\n"
3248 "the 'overlay manual' command."));
3249
3250 if (args == 0 || *args == 0)
3251 error (_("Argument required: name of an overlay section"));
3252
3253 /* First, find a section matching the user supplied argument. */
3254 for (objfile *obj_file : current_program_space->objfiles ())
3255 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3256 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3257 args))
3258 {
3259 /* Now, check to see if the section is an overlay. */
3260 if (!section_is_overlay (sec))
3261 continue; /* not an overlay section */
3262
3263 /* Mark the overlay as "mapped". */
3264 sec->ovly_mapped = 1;
3265
3266 /* Next, make a pass and unmap any sections that are
3267 overlapped by this new section: */
3268 for (objfile *objfile2 : current_program_space->objfiles ())
3269 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3270 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3271 sec2))
3272 {
3273 if (info_verbose)
3274 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3275 bfd_section_name (obj_file->obfd,
3276 sec2->the_bfd_section));
3277 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3278 }
3279 return;
3280 }
3281 error (_("No overlay section called %s"), args);
3282 }
3283
3284 /* Function: unmap_overlay_command
3285 Mark the overlay section as unmapped
3286 (ie. resident in its LMA address range, rather than the VMA range). */
3287
3288 static void
3289 unmap_overlay_command (const char *args, int from_tty)
3290 {
3291 struct obj_section *sec = NULL;
3292
3293 if (!overlay_debugging)
3294 error (_("Overlay debugging not enabled. "
3295 "Use either the 'overlay auto' or\n"
3296 "the 'overlay manual' command."));
3297
3298 if (args == 0 || *args == 0)
3299 error (_("Argument required: name of an overlay section"));
3300
3301 /* First, find a section matching the user supplied argument. */
3302 for (objfile *objfile : current_program_space->objfiles ())
3303 ALL_OBJFILE_OSECTIONS (objfile, sec)
3304 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3305 {
3306 if (!sec->ovly_mapped)
3307 error (_("Section %s is not mapped"), args);
3308 sec->ovly_mapped = 0;
3309 return;
3310 }
3311 error (_("No overlay section called %s"), args);
3312 }
3313
3314 /* Function: overlay_auto_command
3315 A utility command to turn on overlay debugging.
3316 Possibly this should be done via a set/show command. */
3317
3318 static void
3319 overlay_auto_command (const char *args, int from_tty)
3320 {
3321 overlay_debugging = ovly_auto;
3322 enable_overlay_breakpoints ();
3323 if (info_verbose)
3324 printf_unfiltered (_("Automatic overlay debugging enabled."));
3325 }
3326
3327 /* Function: overlay_manual_command
3328 A utility command to turn on overlay debugging.
3329 Possibly this should be done via a set/show command. */
3330
3331 static void
3332 overlay_manual_command (const char *args, int from_tty)
3333 {
3334 overlay_debugging = ovly_on;
3335 disable_overlay_breakpoints ();
3336 if (info_verbose)
3337 printf_unfiltered (_("Overlay debugging enabled."));
3338 }
3339
3340 /* Function: overlay_off_command
3341 A utility command to turn on overlay debugging.
3342 Possibly this should be done via a set/show command. */
3343
3344 static void
3345 overlay_off_command (const char *args, int from_tty)
3346 {
3347 overlay_debugging = ovly_off;
3348 disable_overlay_breakpoints ();
3349 if (info_verbose)
3350 printf_unfiltered (_("Overlay debugging disabled."));
3351 }
3352
3353 static void
3354 overlay_load_command (const char *args, int from_tty)
3355 {
3356 struct gdbarch *gdbarch = get_current_arch ();
3357
3358 if (gdbarch_overlay_update_p (gdbarch))
3359 gdbarch_overlay_update (gdbarch, NULL);
3360 else
3361 error (_("This target does not know how to read its overlay state."));
3362 }
3363
3364 /* Function: overlay_command
3365 A place-holder for a mis-typed command. */
3366
3367 /* Command list chain containing all defined "overlay" subcommands. */
3368 static struct cmd_list_element *overlaylist;
3369
3370 static void
3371 overlay_command (const char *args, int from_tty)
3372 {
3373 printf_unfiltered
3374 ("\"overlay\" must be followed by the name of an overlay command.\n");
3375 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3376 }
3377
3378 /* Target Overlays for the "Simplest" overlay manager:
3379
3380 This is GDB's default target overlay layer. It works with the
3381 minimal overlay manager supplied as an example by Cygnus. The
3382 entry point is via a function pointer "gdbarch_overlay_update",
3383 so targets that use a different runtime overlay manager can
3384 substitute their own overlay_update function and take over the
3385 function pointer.
3386
3387 The overlay_update function pokes around in the target's data structures
3388 to see what overlays are mapped, and updates GDB's overlay mapping with
3389 this information.
3390
3391 In this simple implementation, the target data structures are as follows:
3392 unsigned _novlys; /# number of overlay sections #/
3393 unsigned _ovly_table[_novlys][4] = {
3394 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3395 {..., ..., ..., ...},
3396 }
3397 unsigned _novly_regions; /# number of overlay regions #/
3398 unsigned _ovly_region_table[_novly_regions][3] = {
3399 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3400 {..., ..., ...},
3401 }
3402 These functions will attempt to update GDB's mappedness state in the
3403 symbol section table, based on the target's mappedness state.
3404
3405 To do this, we keep a cached copy of the target's _ovly_table, and
3406 attempt to detect when the cached copy is invalidated. The main
3407 entry point is "simple_overlay_update(SECT), which looks up SECT in
3408 the cached table and re-reads only the entry for that section from
3409 the target (whenever possible). */
3410
3411 /* Cached, dynamically allocated copies of the target data structures: */
3412 static unsigned (*cache_ovly_table)[4] = 0;
3413 static unsigned cache_novlys = 0;
3414 static CORE_ADDR cache_ovly_table_base = 0;
3415 enum ovly_index
3416 {
3417 VMA, OSIZE, LMA, MAPPED
3418 };
3419
3420 /* Throw away the cached copy of _ovly_table. */
3421
3422 static void
3423 simple_free_overlay_table (void)
3424 {
3425 if (cache_ovly_table)
3426 xfree (cache_ovly_table);
3427 cache_novlys = 0;
3428 cache_ovly_table = NULL;
3429 cache_ovly_table_base = 0;
3430 }
3431
3432 /* Read an array of ints of size SIZE from the target into a local buffer.
3433 Convert to host order. int LEN is number of ints. */
3434
3435 static void
3436 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3437 int len, int size, enum bfd_endian byte_order)
3438 {
3439 /* FIXME (alloca): Not safe if array is very large. */
3440 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3441 int i;
3442
3443 read_memory (memaddr, buf, len * size);
3444 for (i = 0; i < len; i++)
3445 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3446 }
3447
3448 /* Find and grab a copy of the target _ovly_table
3449 (and _novlys, which is needed for the table's size). */
3450
3451 static int
3452 simple_read_overlay_table (void)
3453 {
3454 struct bound_minimal_symbol novlys_msym;
3455 struct bound_minimal_symbol ovly_table_msym;
3456 struct gdbarch *gdbarch;
3457 int word_size;
3458 enum bfd_endian byte_order;
3459
3460 simple_free_overlay_table ();
3461 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3462 if (! novlys_msym.minsym)
3463 {
3464 error (_("Error reading inferior's overlay table: "
3465 "couldn't find `_novlys' variable\n"
3466 "in inferior. Use `overlay manual' mode."));
3467 return 0;
3468 }
3469
3470 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3471 if (! ovly_table_msym.minsym)
3472 {
3473 error (_("Error reading inferior's overlay table: couldn't find "
3474 "`_ovly_table' array\n"
3475 "in inferior. Use `overlay manual' mode."));
3476 return 0;
3477 }
3478
3479 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3480 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3481 byte_order = gdbarch_byte_order (gdbarch);
3482
3483 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3484 4, byte_order);
3485 cache_ovly_table
3486 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3487 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3488 read_target_long_array (cache_ovly_table_base,
3489 (unsigned int *) cache_ovly_table,
3490 cache_novlys * 4, word_size, byte_order);
3491
3492 return 1; /* SUCCESS */
3493 }
3494
3495 /* Function: simple_overlay_update_1
3496 A helper function for simple_overlay_update. Assuming a cached copy
3497 of _ovly_table exists, look through it to find an entry whose vma,
3498 lma and size match those of OSECT. Re-read the entry and make sure
3499 it still matches OSECT (else the table may no longer be valid).
3500 Set OSECT's mapped state to match the entry. Return: 1 for
3501 success, 0 for failure. */
3502
3503 static int
3504 simple_overlay_update_1 (struct obj_section *osect)
3505 {
3506 int i;
3507 asection *bsect = osect->the_bfd_section;
3508 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3509 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3511
3512 for (i = 0; i < cache_novlys; i++)
3513 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3514 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3515 {
3516 read_target_long_array (cache_ovly_table_base + i * word_size,
3517 (unsigned int *) cache_ovly_table[i],
3518 4, word_size, byte_order);
3519 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3520 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3521 {
3522 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3523 return 1;
3524 }
3525 else /* Warning! Warning! Target's ovly table has changed! */
3526 return 0;
3527 }
3528 return 0;
3529 }
3530
3531 /* Function: simple_overlay_update
3532 If OSECT is NULL, then update all sections' mapped state
3533 (after re-reading the entire target _ovly_table).
3534 If OSECT is non-NULL, then try to find a matching entry in the
3535 cached ovly_table and update only OSECT's mapped state.
3536 If a cached entry can't be found or the cache isn't valid, then
3537 re-read the entire cache, and go ahead and update all sections. */
3538
3539 void
3540 simple_overlay_update (struct obj_section *osect)
3541 {
3542 /* Were we given an osect to look up? NULL means do all of them. */
3543 if (osect)
3544 /* Have we got a cached copy of the target's overlay table? */
3545 if (cache_ovly_table != NULL)
3546 {
3547 /* Does its cached location match what's currently in the
3548 symtab? */
3549 struct bound_minimal_symbol minsym
3550 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3551
3552 if (minsym.minsym == NULL)
3553 error (_("Error reading inferior's overlay table: couldn't "
3554 "find `_ovly_table' array\n"
3555 "in inferior. Use `overlay manual' mode."));
3556
3557 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3558 /* Then go ahead and try to look up this single section in
3559 the cache. */
3560 if (simple_overlay_update_1 (osect))
3561 /* Found it! We're done. */
3562 return;
3563 }
3564
3565 /* Cached table no good: need to read the entire table anew.
3566 Or else we want all the sections, in which case it's actually
3567 more efficient to read the whole table in one block anyway. */
3568
3569 if (! simple_read_overlay_table ())
3570 return;
3571
3572 /* Now may as well update all sections, even if only one was requested. */
3573 for (objfile *objfile : current_program_space->objfiles ())
3574 ALL_OBJFILE_OSECTIONS (objfile, osect)
3575 if (section_is_overlay (osect))
3576 {
3577 int i;
3578 asection *bsect = osect->the_bfd_section;
3579
3580 for (i = 0; i < cache_novlys; i++)
3581 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3582 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3583 { /* obj_section matches i'th entry in ovly_table. */
3584 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3585 break; /* finished with inner for loop: break out. */
3586 }
3587 }
3588 }
3589
3590 /* Set the output sections and output offsets for section SECTP in
3591 ABFD. The relocation code in BFD will read these offsets, so we
3592 need to be sure they're initialized. We map each section to itself,
3593 with no offset; this means that SECTP->vma will be honored. */
3594
3595 static void
3596 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3597 {
3598 sectp->output_section = sectp;
3599 sectp->output_offset = 0;
3600 }
3601
3602 /* Default implementation for sym_relocate. */
3603
3604 bfd_byte *
3605 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3606 bfd_byte *buf)
3607 {
3608 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3609 DWO file. */
3610 bfd *abfd = sectp->owner;
3611
3612 /* We're only interested in sections with relocation
3613 information. */
3614 if ((sectp->flags & SEC_RELOC) == 0)
3615 return NULL;
3616
3617 /* We will handle section offsets properly elsewhere, so relocate as if
3618 all sections begin at 0. */
3619 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3620
3621 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3622 }
3623
3624 /* Relocate the contents of a debug section SECTP in ABFD. The
3625 contents are stored in BUF if it is non-NULL, or returned in a
3626 malloc'd buffer otherwise.
3627
3628 For some platforms and debug info formats, shared libraries contain
3629 relocations against the debug sections (particularly for DWARF-2;
3630 one affected platform is PowerPC GNU/Linux, although it depends on
3631 the version of the linker in use). Also, ELF object files naturally
3632 have unresolved relocations for their debug sections. We need to apply
3633 the relocations in order to get the locations of symbols correct.
3634 Another example that may require relocation processing, is the
3635 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3636 debug section. */
3637
3638 bfd_byte *
3639 symfile_relocate_debug_section (struct objfile *objfile,
3640 asection *sectp, bfd_byte *buf)
3641 {
3642 gdb_assert (objfile->sf->sym_relocate);
3643
3644 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3645 }
3646
3647 struct symfile_segment_data *
3648 get_symfile_segment_data (bfd *abfd)
3649 {
3650 const struct sym_fns *sf = find_sym_fns (abfd);
3651
3652 if (sf == NULL)
3653 return NULL;
3654
3655 return sf->sym_segments (abfd);
3656 }
3657
3658 void
3659 free_symfile_segment_data (struct symfile_segment_data *data)
3660 {
3661 xfree (data->segment_bases);
3662 xfree (data->segment_sizes);
3663 xfree (data->segment_info);
3664 xfree (data);
3665 }
3666
3667 /* Given:
3668 - DATA, containing segment addresses from the object file ABFD, and
3669 the mapping from ABFD's sections onto the segments that own them,
3670 and
3671 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3672 segment addresses reported by the target,
3673 store the appropriate offsets for each section in OFFSETS.
3674
3675 If there are fewer entries in SEGMENT_BASES than there are segments
3676 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3677
3678 If there are more entries, then ignore the extra. The target may
3679 not be able to distinguish between an empty data segment and a
3680 missing data segment; a missing text segment is less plausible. */
3681
3682 int
3683 symfile_map_offsets_to_segments (bfd *abfd,
3684 const struct symfile_segment_data *data,
3685 struct section_offsets *offsets,
3686 int num_segment_bases,
3687 const CORE_ADDR *segment_bases)
3688 {
3689 int i;
3690 asection *sect;
3691
3692 /* It doesn't make sense to call this function unless you have some
3693 segment base addresses. */
3694 gdb_assert (num_segment_bases > 0);
3695
3696 /* If we do not have segment mappings for the object file, we
3697 can not relocate it by segments. */
3698 gdb_assert (data != NULL);
3699 gdb_assert (data->num_segments > 0);
3700
3701 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3702 {
3703 int which = data->segment_info[i];
3704
3705 gdb_assert (0 <= which && which <= data->num_segments);
3706
3707 /* Don't bother computing offsets for sections that aren't
3708 loaded as part of any segment. */
3709 if (! which)
3710 continue;
3711
3712 /* Use the last SEGMENT_BASES entry as the address of any extra
3713 segments mentioned in DATA->segment_info. */
3714 if (which > num_segment_bases)
3715 which = num_segment_bases;
3716
3717 offsets->offsets[i] = (segment_bases[which - 1]
3718 - data->segment_bases[which - 1]);
3719 }
3720
3721 return 1;
3722 }
3723
3724 static void
3725 symfile_find_segment_sections (struct objfile *objfile)
3726 {
3727 bfd *abfd = objfile->obfd;
3728 int i;
3729 asection *sect;
3730 struct symfile_segment_data *data;
3731
3732 data = get_symfile_segment_data (objfile->obfd);
3733 if (data == NULL)
3734 return;
3735
3736 if (data->num_segments != 1 && data->num_segments != 2)
3737 {
3738 free_symfile_segment_data (data);
3739 return;
3740 }
3741
3742 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3743 {
3744 int which = data->segment_info[i];
3745
3746 if (which == 1)
3747 {
3748 if (objfile->sect_index_text == -1)
3749 objfile->sect_index_text = sect->index;
3750
3751 if (objfile->sect_index_rodata == -1)
3752 objfile->sect_index_rodata = sect->index;
3753 }
3754 else if (which == 2)
3755 {
3756 if (objfile->sect_index_data == -1)
3757 objfile->sect_index_data = sect->index;
3758
3759 if (objfile->sect_index_bss == -1)
3760 objfile->sect_index_bss = sect->index;
3761 }
3762 }
3763
3764 free_symfile_segment_data (data);
3765 }
3766
3767 /* Listen for free_objfile events. */
3768
3769 static void
3770 symfile_free_objfile (struct objfile *objfile)
3771 {
3772 /* Remove the target sections owned by this objfile. */
3773 if (objfile != NULL)
3774 remove_target_sections ((void *) objfile);
3775 }
3776
3777 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3778 Expand all symtabs that match the specified criteria.
3779 See quick_symbol_functions.expand_symtabs_matching for details. */
3780
3781 void
3782 expand_symtabs_matching
3783 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3784 const lookup_name_info &lookup_name,
3785 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3786 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3787 enum search_domain kind)
3788 {
3789 for (objfile *objfile : current_program_space->objfiles ())
3790 {
3791 if (objfile->sf)
3792 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3793 lookup_name,
3794 symbol_matcher,
3795 expansion_notify, kind);
3796 }
3797 }
3798
3799 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3800 Map function FUN over every file.
3801 See quick_symbol_functions.map_symbol_filenames for details. */
3802
3803 void
3804 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3805 int need_fullname)
3806 {
3807 for (objfile *objfile : current_program_space->objfiles ())
3808 {
3809 if (objfile->sf)
3810 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3811 need_fullname);
3812 }
3813 }
3814
3815 #if GDB_SELF_TEST
3816
3817 namespace selftests {
3818 namespace filename_language {
3819
3820 static void test_filename_language ()
3821 {
3822 /* This test messes up the filename_language_table global. */
3823 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3824
3825 /* Test deducing an unknown extension. */
3826 language lang = deduce_language_from_filename ("myfile.blah");
3827 SELF_CHECK (lang == language_unknown);
3828
3829 /* Test deducing a known extension. */
3830 lang = deduce_language_from_filename ("myfile.c");
3831 SELF_CHECK (lang == language_c);
3832
3833 /* Test adding a new extension using the internal API. */
3834 add_filename_language (".blah", language_pascal);
3835 lang = deduce_language_from_filename ("myfile.blah");
3836 SELF_CHECK (lang == language_pascal);
3837 }
3838
3839 static void
3840 test_set_ext_lang_command ()
3841 {
3842 /* This test messes up the filename_language_table global. */
3843 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3844
3845 /* Confirm that the .hello extension is not known. */
3846 language lang = deduce_language_from_filename ("cake.hello");
3847 SELF_CHECK (lang == language_unknown);
3848
3849 /* Test adding a new extension using the CLI command. */
3850 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3851 ext_args = args_holder.get ();
3852 set_ext_lang_command (NULL, 1, NULL);
3853
3854 lang = deduce_language_from_filename ("cake.hello");
3855 SELF_CHECK (lang == language_rust);
3856
3857 /* Test overriding an existing extension using the CLI command. */
3858 int size_before = filename_language_table.size ();
3859 args_holder.reset (xstrdup (".hello pascal"));
3860 ext_args = args_holder.get ();
3861 set_ext_lang_command (NULL, 1, NULL);
3862 int size_after = filename_language_table.size ();
3863
3864 lang = deduce_language_from_filename ("cake.hello");
3865 SELF_CHECK (lang == language_pascal);
3866 SELF_CHECK (size_before == size_after);
3867 }
3868
3869 } /* namespace filename_language */
3870 } /* namespace selftests */
3871
3872 #endif /* GDB_SELF_TEST */
3873
3874 void
3875 _initialize_symfile (void)
3876 {
3877 struct cmd_list_element *c;
3878
3879 gdb::observers::free_objfile.attach (symfile_free_objfile);
3880
3881 #define READNOW_READNEVER_HELP \
3882 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3883 immediately. This makes the command slower, but may make future operations\n\
3884 faster.\n\
3885 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3886 symbolic debug information."
3887
3888 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3889 Load symbol table from executable file FILE.\n\
3890 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3891 OFF is an optional offset which is added to each section address.\n\
3892 The `file' command can also load symbol tables, as well as setting the file\n\
3893 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3894 set_cmd_completer (c, filename_completer);
3895
3896 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3897 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3898 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3899 [-s SECT-NAME SECT-ADDR]...\n\
3900 ADDR is the starting address of the file's text.\n\
3901 Each '-s' argument provides a section name and address, and\n\
3902 should be specified if the data and bss segments are not contiguous\n\
3903 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3904 OFF is an optional offset which is added to the default load addresses\n\
3905 of all sections for which no other address was specified.\n"
3906 READNOW_READNEVER_HELP),
3907 &cmdlist);
3908 set_cmd_completer (c, filename_completer);
3909
3910 c = add_cmd ("remove-symbol-file", class_files,
3911 remove_symbol_file_command, _("\
3912 Remove a symbol file added via the add-symbol-file command.\n\
3913 Usage: remove-symbol-file FILENAME\n\
3914 remove-symbol-file -a ADDRESS\n\
3915 The file to remove can be identified by its filename or by an address\n\
3916 that lies within the boundaries of this symbol file in memory."),
3917 &cmdlist);
3918
3919 c = add_cmd ("load", class_files, load_command, _("\
3920 Dynamically load FILE into the running program, and record its symbols\n\
3921 for access from GDB.\n\
3922 Usage: load [FILE] [OFFSET]\n\
3923 An optional load OFFSET may also be given as a literal address.\n\
3924 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3925 on its own."), &cmdlist);
3926 set_cmd_completer (c, filename_completer);
3927
3928 add_prefix_cmd ("overlay", class_support, overlay_command,
3929 _("Commands for debugging overlays."), &overlaylist,
3930 "overlay ", 0, &cmdlist);
3931
3932 add_com_alias ("ovly", "overlay", class_alias, 1);
3933 add_com_alias ("ov", "overlay", class_alias, 1);
3934
3935 add_cmd ("map-overlay", class_support, map_overlay_command,
3936 _("Assert that an overlay section is mapped."), &overlaylist);
3937
3938 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3939 _("Assert that an overlay section is unmapped."), &overlaylist);
3940
3941 add_cmd ("list-overlays", class_support, list_overlays_command,
3942 _("List mappings of overlay sections."), &overlaylist);
3943
3944 add_cmd ("manual", class_support, overlay_manual_command,
3945 _("Enable overlay debugging."), &overlaylist);
3946 add_cmd ("off", class_support, overlay_off_command,
3947 _("Disable overlay debugging."), &overlaylist);
3948 add_cmd ("auto", class_support, overlay_auto_command,
3949 _("Enable automatic overlay debugging."), &overlaylist);
3950 add_cmd ("load-target", class_support, overlay_load_command,
3951 _("Read the overlay mapping state from the target."), &overlaylist);
3952
3953 /* Filename extension to source language lookup table: */
3954 add_setshow_string_noescape_cmd ("extension-language", class_files,
3955 &ext_args, _("\
3956 Set mapping between filename extension and source language."), _("\
3957 Show mapping between filename extension and source language."), _("\
3958 Usage: set extension-language .foo bar"),
3959 set_ext_lang_command,
3960 show_ext_args,
3961 &setlist, &showlist);
3962
3963 add_info ("extensions", info_ext_lang_command,
3964 _("All filename extensions associated with a source language."));
3965
3966 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3967 &debug_file_directory, _("\
3968 Set the directories where separate debug symbols are searched for."), _("\
3969 Show the directories where separate debug symbols are searched for."), _("\
3970 Separate debug symbols are first searched for in the same\n\
3971 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3972 and lastly at the path of the directory of the binary with\n\
3973 each global debug-file-directory component prepended."),
3974 NULL,
3975 show_debug_file_directory,
3976 &setlist, &showlist);
3977
3978 add_setshow_enum_cmd ("symbol-loading", no_class,
3979 print_symbol_loading_enums, &print_symbol_loading,
3980 _("\
3981 Set printing of symbol loading messages."), _("\
3982 Show printing of symbol loading messages."), _("\
3983 off == turn all messages off\n\
3984 brief == print messages for the executable,\n\
3985 and brief messages for shared libraries\n\
3986 full == print messages for the executable,\n\
3987 and messages for each shared library."),
3988 NULL,
3989 NULL,
3990 &setprintlist, &showprintlist);
3991
3992 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3993 &separate_debug_file_debug, _("\
3994 Set printing of separate debug info file search debug."), _("\
3995 Show printing of separate debug info file search debug."), _("\
3996 When on, GDB prints the searched locations while looking for separate debug \
3997 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3998
3999 #if GDB_SELF_TEST
4000 selftests::register_test
4001 ("filename_language", selftests::filename_language::test_filename_language);
4002 selftests::register_test
4003 ("set_ext_lang_command",
4004 selftests::filename_language::test_set_ext_lang_command);
4005 #endif
4006 }
This page took 0.126379 seconds and 4 git commands to generate.