* symfile.c (syms_from_objfile_1): Delete args offsets, num_offsets.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 gdb_assert (currently_reading_symtab >= 0);
164 }
165
166 /* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
168
169 struct cleanup *
170 increment_reading_symtab (void)
171 {
172 ++currently_reading_symtab;
173 gdb_assert (currently_reading_symtab > 0);
174 return make_cleanup (decrement_reading_symtab, NULL);
175 }
176
177 /* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186 void
187 find_lowest_section (bfd *abfd, asection *sect, void *obj)
188 {
189 asection **lowest = (asection **) obj;
190
191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201 }
202
203 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
206
207 struct section_addr_info *
208 alloc_section_addr_info (size_t num_sections)
209 {
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
217
218 return sap;
219 }
220
221 /* Build (allocate and populate) a section_addr_info struct from
222 an existing section table. */
223
224 extern struct section_addr_info *
225 build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
227 {
228 struct section_addr_info *sap;
229 const struct target_section *stp;
230 int oidx;
231
232 sap = alloc_section_addr_info (end - start);
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
236 if (bfd_get_section_flags (stp->bfd,
237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
238 && oidx < end - start)
239 {
240 sap->other[oidx].addr = stp->addr;
241 sap->other[oidx].name
242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
245 oidx++;
246 }
247 }
248
249 sap->num_sections = oidx;
250
251 return sap;
252 }
253
254 /* Create a section_addr_info from section offsets in ABFD. */
255
256 static struct section_addr_info *
257 build_section_addr_info_from_bfd (bfd *abfd)
258 {
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
266 {
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
270 i++;
271 }
272
273 sap->num_sections = i;
274
275 return sap;
276 }
277
278 /* Create a section_addr_info from section offsets in OBJFILE. */
279
280 struct section_addr_info *
281 build_section_addr_info_from_objfile (const struct objfile *objfile)
282 {
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
290 for (i = 0; i < sap->num_sections; i++)
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297 }
298
299 /* Free all memory allocated by build_section_addr_info_from_section_table. */
300
301 extern void
302 free_section_addr_info (struct section_addr_info *sap)
303 {
304 int idx;
305
306 for (idx = 0; idx < sap->num_sections; idx++)
307 xfree (sap->other[idx].name);
308 xfree (sap);
309 }
310
311 /* Initialize OBJFILE's sect_index_* members. */
312
313 static void
314 init_objfile_sect_indices (struct objfile *objfile)
315 {
316 asection *sect;
317 int i;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
320 if (sect)
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
324 if (sect)
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
328 if (sect)
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
332 if (sect)
333 objfile->sect_index_rodata = sect->index;
334
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
370 }
371
372 /* The arguments to place_section. */
373
374 struct place_section_arg
375 {
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378 };
379
380 /* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
383 static void
384 place_section (bfd *abfd, asection *sect, void *obj)
385 {
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
390
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
393 return;
394
395 /* If the user specified an offset, honor it. */
396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
400 start_addr = (arg->lowest + align - 1) & -align;
401
402 do {
403 asection *cur_sec;
404
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
432 break;
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
441 arg->lowest = start_addr + bfd_get_section_size (sect);
442 }
443
444 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
447
448 void
449 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
451 const struct section_addr_info *addrs)
452 {
453 int i;
454
455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
456
457 /* Now calculate offsets for section that were specified by the caller. */
458 for (i = 0; i < addrs->num_sections; i++)
459 {
460 const struct other_sections *osp;
461
462 osp = &addrs->other[i];
463 if (osp->sectindex == -1)
464 continue;
465
466 /* Record all sections in offsets. */
467 /* The section_offsets in the objfile are here filled in using
468 the BFD index. */
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471 }
472
473 /* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479 static const char *
480 addr_section_name (const char *s)
481 {
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488 }
489
490 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493 static int
494 addrs_section_compar (const void *ap, const void *bp)
495 {
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
498 int retval;
499
500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
501 if (retval)
502 return retval;
503
504 return a->sectindex - b->sectindex;
505 }
506
507 /* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510 static struct other_sections **
511 addrs_section_sort (struct section_addr_info *addrs)
512 {
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
518 for (i = 0; i < addrs->num_sections; i++)
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525 }
526
527 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
530
531 void
532 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533 {
534 asection *lower_sect;
535 CORE_ADDR lower_offset;
536 int i;
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
541
542 /* Find lowest loadable section to be used as starting point for
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
551 }
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
583
584 while (*abfd_addrs_sorted
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
617 for (i = 0; i < addrs->num_sections; i++)
618 {
619 struct other_sections *sect = addrs_to_abfd_addrs[i];
620
621 if (sect)
622 {
623 /* This is the index used by BFD. */
624 addrs->other[i].sectindex = sect->sectindex;
625
626 if (addrs->other[i].addr != 0)
627 {
628 addrs->other[i].addr -= sect->addr;
629 lower_offset = addrs->other[i].addr;
630 }
631 else
632 addrs->other[i].addr = lower_offset;
633 }
634 else
635 {
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
654 || strcmp (sect_name, ".gnu.conflict") == 0
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
666 addrs->other[i].addr = 0;
667 addrs->other[i].sectindex = -1;
668 }
669 }
670
671 do_cleanups (my_cleanup);
672 }
673
674 /* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680 void
681 default_symfile_offsets (struct objfile *objfile,
682 const struct section_addr_info *addrs)
683 {
684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
690
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
753 offsets[cur_sec->index]);
754 offsets[cur_sec->index] = 0;
755 }
756 }
757 }
758
759 /* Remember the bfd indexes for the .text, .data, .bss and
760 .rodata sections. */
761 init_objfile_sect_indices (objfile);
762 }
763
764 /* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770 struct symfile_segment_data *
771 default_symfile_segments (bfd *abfd)
772 {
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826 }
827
828 /* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831 static void
832 read_symbols (struct objfile *objfile, int add_flags)
833 {
834 (*objfile->sf->sym_read) (objfile, add_flags);
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852 }
853
854 /* Initialize entry point information for this objfile. */
855
856 static void
857 init_entry_point_info (struct objfile *objfile)
858 {
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900 }
901
902 /* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
905 This function does not set the OBJFILE's entry-point info.
906
907 OBJFILE is where the symbols are to be read from.
908
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 struct section_addr_info *addrs,
926 int add_flags)
927 {
928 struct section_addr_info *local_addr = NULL;
929 struct cleanup *old_chain;
930 const int mainline = add_flags & SYMFILE_MAINLINE;
931
932 objfile->sf = find_sym_fns (objfile->obfd);
933
934 if (objfile->sf == NULL)
935 {
936 /* No symbols to load, but we still need to make sure
937 that the section_offsets table is allocated. */
938 int num_sections = gdb_bfd_count_sections (objfile->obfd);
939 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940
941 objfile->num_sections = num_sections;
942 objfile->section_offsets
943 = obstack_alloc (&objfile->objfile_obstack, size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 old_chain = make_cleanup_free_objfile (objfile);
951
952 /* If ADDRS is NULL, put together a dummy address list.
953 We now establish the convention that an addr of zero means
954 no load address was specified. */
955 if (! addrs)
956 {
957 local_addr = alloc_section_addr_info (1);
958 make_cleanup (xfree, local_addr);
959 addrs = local_addr;
960 }
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs->num_sections > 0)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 (*objfile->sf->sym_offsets) (objfile, addrs);
1001
1002 read_symbols (objfile, add_flags);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Same as syms_from_objfile_1, but also initializes the objfile
1011 entry-point info. */
1012
1013 static void
1014 syms_from_objfile (struct objfile *objfile,
1015 struct section_addr_info *addrs,
1016 int add_flags)
1017 {
1018 syms_from_objfile_1 (objfile, addrs, add_flags);
1019 init_entry_point_info (objfile);
1020 }
1021
1022 /* Perform required actions after either reading in the initial
1023 symbols for a new objfile, or mapping in the symbols from a reusable
1024 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1025
1026 void
1027 new_symfile_objfile (struct objfile *objfile, int add_flags)
1028 {
1029 /* If this is the main symbol file we have to clean up all users of the
1030 old main symbol file. Otherwise it is sufficient to fixup all the
1031 breakpoints that may have been redefined by this symbol file. */
1032 if (add_flags & SYMFILE_MAINLINE)
1033 {
1034 /* OK, make it the "real" symbol file. */
1035 symfile_objfile = objfile;
1036
1037 clear_symtab_users (add_flags);
1038 }
1039 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 {
1041 breakpoint_re_set ();
1042 }
1043
1044 /* We're done reading the symbol file; finish off complaints. */
1045 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1046 }
1047
1048 /* Process a symbol file, as either the main file or as a dynamically
1049 loaded file.
1050
1051 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1052 A new reference is acquired by this function.
1053
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
1056
1057 ADDRS is as described for syms_from_objfile_1, above.
1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1059
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
1063 Upon success, returns a pointer to the objfile that was added.
1064 Upon failure, jumps back to command level (never returns). */
1065
1066 static struct objfile *
1067 symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1068 struct section_addr_info *addrs,
1069 int flags, struct objfile *parent)
1070 {
1071 struct objfile *objfile;
1072 const char *name = bfd_get_filename (abfd);
1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
1074 const int mainline = add_flags & SYMFILE_MAINLINE;
1075 const int should_print = ((from_tty || info_verbose)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
1078
1079 if (readnow_symbol_files)
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
1084
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && mainline
1090 && from_tty
1091 && !query (_("Load new symbol table from \"%s\"? "), name))
1092 error (_("Not confirmed."));
1093
1094 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1095
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
1101 performed, or need to read an unmapped symbol table. */
1102 if (should_print)
1103 {
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
1106 else
1107 {
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
1111 }
1112 }
1113 syms_from_objfile (objfile, addrs, add_flags);
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
1118 all partial symbol tables for this objfile if so. */
1119
1120 if ((flags & OBJF_READNOW))
1121 {
1122 if (should_print)
1123 {
1124 printf_unfiltered (_("expanding to full symbols..."));
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
1131 }
1132
1133 if (should_print && !objfile_has_symbols (objfile))
1134 {
1135 wrap_here ("");
1136 printf_unfiltered (_("(no debugging symbols found)..."));
1137 wrap_here ("");
1138 }
1139
1140 if (should_print)
1141 {
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
1144 else
1145 printf_unfiltered (_("done.\n"));
1146 }
1147
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
1153 if (objfile->sf == NULL)
1154 {
1155 observer_notify_new_objfile (objfile);
1156 return objfile; /* No symbols. */
1157 }
1158
1159 new_symfile_objfile (objfile, add_flags);
1160
1161 observer_notify_new_objfile (objfile);
1162
1163 bfd_cache_close_all ();
1164 return (objfile);
1165 }
1166
1167 /* Add BFD as a separate debug file for OBJFILE. */
1168
1169 void
1170 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1171 {
1172 struct objfile *new_objfile;
1173 struct section_addr_info *sap;
1174 struct cleanup *my_cleanup;
1175
1176 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1177 because sections of BFD may not match sections of OBJFILE and because
1178 vma may have been modified by tools such as prelink. */
1179 sap = build_section_addr_info_from_objfile (objfile);
1180 my_cleanup = make_cleanup_free_section_addr_info (sap);
1181
1182 new_objfile = symbol_file_add_with_addrs
1183 (bfd, symfile_flags, sap,
1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1185 | OBJF_USERLOADED),
1186 objfile);
1187
1188 do_cleanups (my_cleanup);
1189 }
1190
1191 /* Process the symbol file ABFD, as either the main file or as a
1192 dynamically loaded file.
1193 See symbol_file_add_with_addrs's comments for details. */
1194
1195 struct objfile *
1196 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1197 struct section_addr_info *addrs,
1198 int flags, struct objfile *parent)
1199 {
1200 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
1201 }
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
1205
1206 struct objfile *
1207 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
1209 {
1210 bfd *bfd = symfile_bfd_open (name);
1211 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1212 struct objfile *objf;
1213
1214 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1215 do_cleanups (cleanup);
1216 return objf;
1217 }
1218
1219 /* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
1226
1227 void
1228 symbol_file_add_main (char *args, int from_tty)
1229 {
1230 symbol_file_add_main_1 (args, from_tty, 0);
1231 }
1232
1233 static void
1234 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1235 {
1236 const int add_flags = (current_inferior ()->symfile_flags
1237 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1238
1239 symbol_file_add (args, add_flags, NULL, flags);
1240
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
1245 if ((flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1247 }
1248
1249 void
1250 symbol_file_clear (int from_tty)
1251 {
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 symfile_objfile->name)
1257 : !query (_("Discard symbol table? "))))
1258 error (_("Not confirmed."));
1259
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
1262 no_shared_libraries (NULL, from_tty);
1263
1264 free_all_objfiles ();
1265
1266 gdb_assert (symfile_objfile == NULL);
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1269 }
1270
1271 static int
1272 separate_debug_file_exists (const char *name, unsigned long crc,
1273 struct objfile *parent_objfile)
1274 {
1275 unsigned long file_crc;
1276 int file_crc_p;
1277 bfd *abfd;
1278 struct stat parent_stat, abfd_stat;
1279 int verified_as_different;
1280
1281 /* Find a separate debug info file as if symbols would be present in
1282 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1283 section can contain just the basename of PARENT_OBJFILE without any
1284 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1285 the separate debug infos with the same basename can exist. */
1286
1287 if (filename_cmp (name, parent_objfile->name) == 0)
1288 return 0;
1289
1290 abfd = gdb_bfd_open_maybe_remote (name);
1291
1292 if (!abfd)
1293 return 0;
1294
1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Do not indicate a duplicate library in that
1300 case. While there is no guarantee that a system that provides
1301 meaningful inode numbers will never set st_ino to zero, this is
1302 merely an optimization, so we do not need to worry about false
1303 negatives. */
1304
1305 if (bfd_stat (abfd, &abfd_stat) == 0
1306 && abfd_stat.st_ino != 0
1307 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1308 {
1309 if (abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino)
1311 {
1312 gdb_bfd_unref (abfd);
1313 return 0;
1314 }
1315 verified_as_different = 1;
1316 }
1317 else
1318 verified_as_different = 0;
1319
1320 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1321
1322 gdb_bfd_unref (abfd);
1323
1324 if (!file_crc_p)
1325 return 0;
1326
1327 if (crc != file_crc)
1328 {
1329 unsigned long parent_crc;
1330
1331 /* If one (or both) the files are accessed for example the via "remote:"
1332 gdbserver way it does not support the bfd_stat operation. Verify
1333 whether those two files are not the same manually. */
1334
1335 if (!verified_as_different)
1336 {
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1338 return 0;
1339 }
1340
1341 if (verified_as_different || parent_crc != file_crc)
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name, parent_objfile->name);
1345
1346 return 0;
1347 }
1348
1349 return 1;
1350 }
1351
1352 char *debug_file_directory = NULL;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, of NULL. */
1373
1374 static char *
1375 find_separate_debug_file (const char *dir,
1376 const char *canon_dir,
1377 const char *debuglink,
1378 unsigned long crc32, struct objfile *objfile)
1379 {
1380 char *debugdir;
1381 char *debugfile;
1382 int i;
1383 VEC (char_ptr) *debugdir_vec;
1384 struct cleanup *back_to;
1385 int ix;
1386
1387 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1388 i = strlen (dir);
1389 if (canon_dir != NULL && strlen (canon_dir) > i)
1390 i = strlen (canon_dir);
1391
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (debuglink)
1397 + 1);
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, debuglink);
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 return debugfile;
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, debuglink);
1411
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1413 return debugfile;
1414
1415 /* Then try in the global debugfile directories.
1416
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
1419
1420 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1421 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1422
1423 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1424 {
1425 strcpy (debugfile, debugdir);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, dir);
1428 strcat (debugfile, debuglink);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 return debugfile;
1432
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 if (canon_dir != NULL
1436 && filename_ncmp (canon_dir, gdb_sysroot,
1437 strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1439 {
1440 strcpy (debugfile, debugdir);
1441 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, debuglink);
1444
1445 if (separate_debug_file_exists (debugfile, crc32, objfile))
1446 return debugfile;
1447 }
1448 }
1449
1450 do_cleanups (back_to);
1451 xfree (debugfile);
1452 return NULL;
1453 }
1454
1455 /* Modify PATH to contain only "[/]directory/" part of PATH.
1456 If there were no directory separators in PATH, PATH will be empty
1457 string on return. */
1458
1459 static void
1460 terminate_after_last_dir_separator (char *path)
1461 {
1462 int i;
1463
1464 /* Strip off the final filename part, leaving the directory name,
1465 followed by a slash. The directory can be relative or absolute. */
1466 for (i = strlen(path) - 1; i >= 0; i--)
1467 if (IS_DIR_SEPARATOR (path[i]))
1468 break;
1469
1470 /* If I is -1 then no directory is present there and DIR will be "". */
1471 path[i + 1] = '\0';
1472 }
1473
1474 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1475 Returns pathname, or NULL. */
1476
1477 char *
1478 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1479 {
1480 char *debuglink;
1481 char *dir, *canon_dir;
1482 char *debugfile;
1483 unsigned long crc32;
1484 struct cleanup *cleanups;
1485
1486 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1487
1488 if (debuglink == NULL)
1489 {
1490 /* There's no separate debug info, hence there's no way we could
1491 load it => no warning. */
1492 return NULL;
1493 }
1494
1495 cleanups = make_cleanup (xfree, debuglink);
1496 dir = xstrdup (objfile->name);
1497 make_cleanup (xfree, dir);
1498 terminate_after_last_dir_separator (dir);
1499 canon_dir = lrealpath (dir);
1500
1501 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1502 crc32, objfile);
1503 xfree (canon_dir);
1504
1505 if (debugfile == NULL)
1506 {
1507 #ifdef HAVE_LSTAT
1508 /* For PR gdb/9538, try again with realpath (if different from the
1509 original). */
1510
1511 struct stat st_buf;
1512
1513 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1514 {
1515 char *symlink_dir;
1516
1517 symlink_dir = lrealpath (objfile->name);
1518 if (symlink_dir != NULL)
1519 {
1520 make_cleanup (xfree, symlink_dir);
1521 terminate_after_last_dir_separator (symlink_dir);
1522 if (strcmp (dir, symlink_dir) != 0)
1523 {
1524 /* Different directory, so try using it. */
1525 debugfile = find_separate_debug_file (symlink_dir,
1526 symlink_dir,
1527 debuglink,
1528 crc32,
1529 objfile);
1530 }
1531 }
1532 }
1533 #endif /* HAVE_LSTAT */
1534 }
1535
1536 do_cleanups (cleanups);
1537 return debugfile;
1538 }
1539
1540 /* This is the symbol-file command. Read the file, analyze its
1541 symbols, and add a struct symtab to a symtab list. The syntax of
1542 the command is rather bizarre:
1543
1544 1. The function buildargv implements various quoting conventions
1545 which are undocumented and have little or nothing in common with
1546 the way things are quoted (or not quoted) elsewhere in GDB.
1547
1548 2. Options are used, which are not generally used in GDB (perhaps
1549 "set mapped on", "set readnow on" would be better)
1550
1551 3. The order of options matters, which is contrary to GNU
1552 conventions (because it is confusing and inconvenient). */
1553
1554 void
1555 symbol_file_command (char *args, int from_tty)
1556 {
1557 dont_repeat ();
1558
1559 if (args == NULL)
1560 {
1561 symbol_file_clear (from_tty);
1562 }
1563 else
1564 {
1565 char **argv = gdb_buildargv (args);
1566 int flags = OBJF_USERLOADED;
1567 struct cleanup *cleanups;
1568 char *name = NULL;
1569
1570 cleanups = make_cleanup_freeargv (argv);
1571 while (*argv != NULL)
1572 {
1573 if (strcmp (*argv, "-readnow") == 0)
1574 flags |= OBJF_READNOW;
1575 else if (**argv == '-')
1576 error (_("unknown option `%s'"), *argv);
1577 else
1578 {
1579 symbol_file_add_main_1 (*argv, from_tty, flags);
1580 name = *argv;
1581 }
1582
1583 argv++;
1584 }
1585
1586 if (name == NULL)
1587 error (_("no symbol file name was specified"));
1588
1589 do_cleanups (cleanups);
1590 }
1591 }
1592
1593 /* Set the initial language.
1594
1595 FIXME: A better solution would be to record the language in the
1596 psymtab when reading partial symbols, and then use it (if known) to
1597 set the language. This would be a win for formats that encode the
1598 language in an easily discoverable place, such as DWARF. For
1599 stabs, we can jump through hoops looking for specially named
1600 symbols or try to intuit the language from the specific type of
1601 stabs we find, but we can't do that until later when we read in
1602 full symbols. */
1603
1604 void
1605 set_initial_language (void)
1606 {
1607 enum language lang = language_unknown;
1608
1609 if (language_of_main != language_unknown)
1610 lang = language_of_main;
1611 else
1612 {
1613 const char *filename;
1614
1615 filename = find_main_filename ();
1616 if (filename != NULL)
1617 lang = deduce_language_from_filename (filename);
1618 }
1619
1620 if (lang == language_unknown)
1621 {
1622 /* Make C the default language */
1623 lang = language_c;
1624 }
1625
1626 set_language (lang);
1627 expected_language = current_language; /* Don't warn the user. */
1628 }
1629
1630 /* If NAME is a remote name open the file using remote protocol, otherwise
1631 open it normally. Returns a new reference to the BFD. On error,
1632 returns NULL with the BFD error set. */
1633
1634 bfd *
1635 gdb_bfd_open_maybe_remote (const char *name)
1636 {
1637 bfd *result;
1638
1639 if (remote_filename_p (name))
1640 result = remote_bfd_open (name, gnutarget);
1641 else
1642 result = gdb_bfd_open (name, gnutarget, -1);
1643
1644 return result;
1645 }
1646
1647 /* Open the file specified by NAME and hand it off to BFD for
1648 preliminary analysis. Return a newly initialized bfd *, which
1649 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1650 absolute). In case of trouble, error() is called. */
1651
1652 bfd *
1653 symfile_bfd_open (char *name)
1654 {
1655 bfd *sym_bfd;
1656 int desc;
1657 char *absolute_name;
1658 struct cleanup *back_to;
1659
1660 if (remote_filename_p (name))
1661 {
1662 sym_bfd = remote_bfd_open (name, gnutarget);
1663 if (!sym_bfd)
1664 error (_("`%s': can't open to read symbols: %s."), name,
1665 bfd_errmsg (bfd_get_error ()));
1666
1667 if (!bfd_check_format (sym_bfd, bfd_object))
1668 {
1669 make_cleanup_bfd_unref (sym_bfd);
1670 error (_("`%s': can't read symbols: %s."), name,
1671 bfd_errmsg (bfd_get_error ()));
1672 }
1673
1674 return sym_bfd;
1675 }
1676
1677 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1678
1679 /* Look down path for it, allocate 2nd new malloc'd copy. */
1680 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1681 O_RDONLY | O_BINARY, &absolute_name);
1682 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1683 if (desc < 0)
1684 {
1685 char *exename = alloca (strlen (name) + 5);
1686
1687 strcat (strcpy (exename, name), ".exe");
1688 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1689 O_RDONLY | O_BINARY, &absolute_name);
1690 }
1691 #endif
1692 if (desc < 0)
1693 {
1694 make_cleanup (xfree, name);
1695 perror_with_name (name);
1696 }
1697
1698 xfree (name);
1699 name = absolute_name;
1700 back_to = make_cleanup (xfree, name);
1701
1702 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1703 if (!sym_bfd)
1704 error (_("`%s': can't open to read symbols: %s."), name,
1705 bfd_errmsg (bfd_get_error ()));
1706 bfd_set_cacheable (sym_bfd, 1);
1707
1708 if (!bfd_check_format (sym_bfd, bfd_object))
1709 {
1710 make_cleanup_bfd_unref (sym_bfd);
1711 error (_("`%s': can't read symbols: %s."), name,
1712 bfd_errmsg (bfd_get_error ()));
1713 }
1714
1715 do_cleanups (back_to);
1716
1717 return sym_bfd;
1718 }
1719
1720 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1721 the section was not found. */
1722
1723 int
1724 get_section_index (struct objfile *objfile, char *section_name)
1725 {
1726 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1727
1728 if (sect)
1729 return sect->index;
1730 else
1731 return -1;
1732 }
1733
1734 /* Link SF into the global symtab_fns list. Called on startup by the
1735 _initialize routine in each object file format reader, to register
1736 information about each format the reader is prepared to handle. */
1737
1738 void
1739 add_symtab_fns (const struct sym_fns *sf)
1740 {
1741 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1742 }
1743
1744 /* Initialize OBJFILE to read symbols from its associated BFD. It
1745 either returns or calls error(). The result is an initialized
1746 struct sym_fns in the objfile structure, that contains cached
1747 information about the symbol file. */
1748
1749 static const struct sym_fns *
1750 find_sym_fns (bfd *abfd)
1751 {
1752 const struct sym_fns *sf;
1753 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1754 int i;
1755
1756 if (our_flavour == bfd_target_srec_flavour
1757 || our_flavour == bfd_target_ihex_flavour
1758 || our_flavour == bfd_target_tekhex_flavour)
1759 return NULL; /* No symbols. */
1760
1761 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1762 if (our_flavour == sf->sym_flavour)
1763 return sf;
1764
1765 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1766 bfd_get_target (abfd));
1767 }
1768 \f
1769
1770 /* This function runs the load command of our current target. */
1771
1772 static void
1773 load_command (char *arg, int from_tty)
1774 {
1775 dont_repeat ();
1776
1777 /* The user might be reloading because the binary has changed. Take
1778 this opportunity to check. */
1779 reopen_exec_file ();
1780 reread_symbols ();
1781
1782 if (arg == NULL)
1783 {
1784 char *parg;
1785 int count = 0;
1786
1787 parg = arg = get_exec_file (1);
1788
1789 /* Count how many \ " ' tab space there are in the name. */
1790 while ((parg = strpbrk (parg, "\\\"'\t ")))
1791 {
1792 parg++;
1793 count++;
1794 }
1795
1796 if (count)
1797 {
1798 /* We need to quote this string so buildargv can pull it apart. */
1799 char *temp = xmalloc (strlen (arg) + count + 1 );
1800 char *ptemp = temp;
1801 char *prev;
1802
1803 make_cleanup (xfree, temp);
1804
1805 prev = parg = arg;
1806 while ((parg = strpbrk (parg, "\\\"'\t ")))
1807 {
1808 strncpy (ptemp, prev, parg - prev);
1809 ptemp += parg - prev;
1810 prev = parg++;
1811 *ptemp++ = '\\';
1812 }
1813 strcpy (ptemp, prev);
1814
1815 arg = temp;
1816 }
1817 }
1818
1819 target_load (arg, from_tty);
1820
1821 /* After re-loading the executable, we don't really know which
1822 overlays are mapped any more. */
1823 overlay_cache_invalid = 1;
1824 }
1825
1826 /* This version of "load" should be usable for any target. Currently
1827 it is just used for remote targets, not inftarg.c or core files,
1828 on the theory that only in that case is it useful.
1829
1830 Avoiding xmodem and the like seems like a win (a) because we don't have
1831 to worry about finding it, and (b) On VMS, fork() is very slow and so
1832 we don't want to run a subprocess. On the other hand, I'm not sure how
1833 performance compares. */
1834
1835 static int validate_download = 0;
1836
1837 /* Callback service function for generic_load (bfd_map_over_sections). */
1838
1839 static void
1840 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1841 {
1842 bfd_size_type *sum = data;
1843
1844 *sum += bfd_get_section_size (asec);
1845 }
1846
1847 /* Opaque data for load_section_callback. */
1848 struct load_section_data {
1849 CORE_ADDR load_offset;
1850 struct load_progress_data *progress_data;
1851 VEC(memory_write_request_s) *requests;
1852 };
1853
1854 /* Opaque data for load_progress. */
1855 struct load_progress_data {
1856 /* Cumulative data. */
1857 unsigned long write_count;
1858 unsigned long data_count;
1859 bfd_size_type total_size;
1860 };
1861
1862 /* Opaque data for load_progress for a single section. */
1863 struct load_progress_section_data {
1864 struct load_progress_data *cumulative;
1865
1866 /* Per-section data. */
1867 const char *section_name;
1868 ULONGEST section_sent;
1869 ULONGEST section_size;
1870 CORE_ADDR lma;
1871 gdb_byte *buffer;
1872 };
1873
1874 /* Target write callback routine for progress reporting. */
1875
1876 static void
1877 load_progress (ULONGEST bytes, void *untyped_arg)
1878 {
1879 struct load_progress_section_data *args = untyped_arg;
1880 struct load_progress_data *totals;
1881
1882 if (args == NULL)
1883 /* Writing padding data. No easy way to get at the cumulative
1884 stats, so just ignore this. */
1885 return;
1886
1887 totals = args->cumulative;
1888
1889 if (bytes == 0 && args->section_sent == 0)
1890 {
1891 /* The write is just starting. Let the user know we've started
1892 this section. */
1893 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1894 args->section_name, hex_string (args->section_size),
1895 paddress (target_gdbarch (), args->lma));
1896 return;
1897 }
1898
1899 if (validate_download)
1900 {
1901 /* Broken memories and broken monitors manifest themselves here
1902 when bring new computers to life. This doubles already slow
1903 downloads. */
1904 /* NOTE: cagney/1999-10-18: A more efficient implementation
1905 might add a verify_memory() method to the target vector and
1906 then use that. remote.c could implement that method using
1907 the ``qCRC'' packet. */
1908 gdb_byte *check = xmalloc (bytes);
1909 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1910
1911 if (target_read_memory (args->lma, check, bytes) != 0)
1912 error (_("Download verify read failed at %s"),
1913 paddress (target_gdbarch (), args->lma));
1914 if (memcmp (args->buffer, check, bytes) != 0)
1915 error (_("Download verify compare failed at %s"),
1916 paddress (target_gdbarch (), args->lma));
1917 do_cleanups (verify_cleanups);
1918 }
1919 totals->data_count += bytes;
1920 args->lma += bytes;
1921 args->buffer += bytes;
1922 totals->write_count += 1;
1923 args->section_sent += bytes;
1924 if (check_quit_flag ()
1925 || (deprecated_ui_load_progress_hook != NULL
1926 && deprecated_ui_load_progress_hook (args->section_name,
1927 args->section_sent)))
1928 error (_("Canceled the download"));
1929
1930 if (deprecated_show_load_progress != NULL)
1931 deprecated_show_load_progress (args->section_name,
1932 args->section_sent,
1933 args->section_size,
1934 totals->data_count,
1935 totals->total_size);
1936 }
1937
1938 /* Callback service function for generic_load (bfd_map_over_sections). */
1939
1940 static void
1941 load_section_callback (bfd *abfd, asection *asec, void *data)
1942 {
1943 struct memory_write_request *new_request;
1944 struct load_section_data *args = data;
1945 struct load_progress_section_data *section_data;
1946 bfd_size_type size = bfd_get_section_size (asec);
1947 gdb_byte *buffer;
1948 const char *sect_name = bfd_get_section_name (abfd, asec);
1949
1950 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1951 return;
1952
1953 if (size == 0)
1954 return;
1955
1956 new_request = VEC_safe_push (memory_write_request_s,
1957 args->requests, NULL);
1958 memset (new_request, 0, sizeof (struct memory_write_request));
1959 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1960 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1961 new_request->end = new_request->begin + size; /* FIXME Should size
1962 be in instead? */
1963 new_request->data = xmalloc (size);
1964 new_request->baton = section_data;
1965
1966 buffer = new_request->data;
1967
1968 section_data->cumulative = args->progress_data;
1969 section_data->section_name = sect_name;
1970 section_data->section_size = size;
1971 section_data->lma = new_request->begin;
1972 section_data->buffer = buffer;
1973
1974 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1975 }
1976
1977 /* Clean up an entire memory request vector, including load
1978 data and progress records. */
1979
1980 static void
1981 clear_memory_write_data (void *arg)
1982 {
1983 VEC(memory_write_request_s) **vec_p = arg;
1984 VEC(memory_write_request_s) *vec = *vec_p;
1985 int i;
1986 struct memory_write_request *mr;
1987
1988 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1989 {
1990 xfree (mr->data);
1991 xfree (mr->baton);
1992 }
1993 VEC_free (memory_write_request_s, vec);
1994 }
1995
1996 void
1997 generic_load (char *args, int from_tty)
1998 {
1999 bfd *loadfile_bfd;
2000 struct timeval start_time, end_time;
2001 char *filename;
2002 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2003 struct load_section_data cbdata;
2004 struct load_progress_data total_progress;
2005 struct ui_out *uiout = current_uiout;
2006
2007 CORE_ADDR entry;
2008 char **argv;
2009
2010 memset (&cbdata, 0, sizeof (cbdata));
2011 memset (&total_progress, 0, sizeof (total_progress));
2012 cbdata.progress_data = &total_progress;
2013
2014 make_cleanup (clear_memory_write_data, &cbdata.requests);
2015
2016 if (args == NULL)
2017 error_no_arg (_("file to load"));
2018
2019 argv = gdb_buildargv (args);
2020 make_cleanup_freeargv (argv);
2021
2022 filename = tilde_expand (argv[0]);
2023 make_cleanup (xfree, filename);
2024
2025 if (argv[1] != NULL)
2026 {
2027 const char *endptr;
2028
2029 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2030
2031 /* If the last word was not a valid number then
2032 treat it as a file name with spaces in. */
2033 if (argv[1] == endptr)
2034 error (_("Invalid download offset:%s."), argv[1]);
2035
2036 if (argv[2] != NULL)
2037 error (_("Too many parameters."));
2038 }
2039
2040 /* Open the file for loading. */
2041 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2042 if (loadfile_bfd == NULL)
2043 {
2044 perror_with_name (filename);
2045 return;
2046 }
2047
2048 make_cleanup_bfd_unref (loadfile_bfd);
2049
2050 if (!bfd_check_format (loadfile_bfd, bfd_object))
2051 {
2052 error (_("\"%s\" is not an object file: %s"), filename,
2053 bfd_errmsg (bfd_get_error ()));
2054 }
2055
2056 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2057 (void *) &total_progress.total_size);
2058
2059 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2060
2061 gettimeofday (&start_time, NULL);
2062
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
2066
2067 gettimeofday (&end_time, NULL);
2068
2069 entry = bfd_get_start_address (loadfile_bfd);
2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2071 ui_out_text (uiout, "Start address ");
2072 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2073 ui_out_text (uiout, ", load size ");
2074 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2075 ui_out_text (uiout, "\n");
2076 /* We were doing this in remote-mips.c, I suspect it is right
2077 for other targets too. */
2078 regcache_write_pc (get_current_regcache (), entry);
2079
2080 /* Reset breakpoints, now that we have changed the load image. For
2081 instance, breakpoints may have been set (or reset, by
2082 post_create_inferior) while connected to the target but before we
2083 loaded the program. In that case, the prologue analyzer could
2084 have read instructions from the target to find the right
2085 breakpoint locations. Loading has changed the contents of that
2086 memory. */
2087
2088 breakpoint_re_set ();
2089
2090 /* FIXME: are we supposed to call symbol_file_add or not? According
2091 to a comment from remote-mips.c (where a call to symbol_file_add
2092 was commented out), making the call confuses GDB if more than one
2093 file is loaded in. Some targets do (e.g., remote-vx.c) but
2094 others don't (or didn't - perhaps they have all been deleted). */
2095
2096 print_transfer_performance (gdb_stdout, total_progress.data_count,
2097 total_progress.write_count,
2098 &start_time, &end_time);
2099
2100 do_cleanups (old_cleanups);
2101 }
2102
2103 /* Report how fast the transfer went. */
2104
2105 void
2106 print_transfer_performance (struct ui_file *stream,
2107 unsigned long data_count,
2108 unsigned long write_count,
2109 const struct timeval *start_time,
2110 const struct timeval *end_time)
2111 {
2112 ULONGEST time_count;
2113 struct ui_out *uiout = current_uiout;
2114
2115 /* Compute the elapsed time in milliseconds, as a tradeoff between
2116 accuracy and overflow. */
2117 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2118 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2119
2120 ui_out_text (uiout, "Transfer rate: ");
2121 if (time_count > 0)
2122 {
2123 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2124
2125 if (ui_out_is_mi_like_p (uiout))
2126 {
2127 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2128 ui_out_text (uiout, " bits/sec");
2129 }
2130 else if (rate < 1024)
2131 {
2132 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2133 ui_out_text (uiout, " bytes/sec");
2134 }
2135 else
2136 {
2137 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2138 ui_out_text (uiout, " KB/sec");
2139 }
2140 }
2141 else
2142 {
2143 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2144 ui_out_text (uiout, " bits in <1 sec");
2145 }
2146 if (write_count > 0)
2147 {
2148 ui_out_text (uiout, ", ");
2149 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2150 ui_out_text (uiout, " bytes/write");
2151 }
2152 ui_out_text (uiout, ".\n");
2153 }
2154
2155 /* This function allows the addition of incrementally linked object files.
2156 It does not modify any state in the target, only in the debugger. */
2157 /* Note: ezannoni 2000-04-13 This function/command used to have a
2158 special case syntax for the rombug target (Rombug is the boot
2159 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2160 rombug case, the user doesn't need to supply a text address,
2161 instead a call to target_link() (in target.c) would supply the
2162 value to use. We are now discontinuing this type of ad hoc syntax. */
2163
2164 static void
2165 add_symbol_file_command (char *args, int from_tty)
2166 {
2167 struct gdbarch *gdbarch = get_current_arch ();
2168 char *filename = NULL;
2169 int flags = OBJF_USERLOADED;
2170 char *arg;
2171 int section_index = 0;
2172 int argcnt = 0;
2173 int sec_num = 0;
2174 int i;
2175 int expecting_sec_name = 0;
2176 int expecting_sec_addr = 0;
2177 char **argv;
2178
2179 struct sect_opt
2180 {
2181 char *name;
2182 char *value;
2183 };
2184
2185 struct section_addr_info *section_addrs;
2186 struct sect_opt *sect_opts = NULL;
2187 size_t num_sect_opts = 0;
2188 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2189
2190 num_sect_opts = 16;
2191 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2192 * sizeof (struct sect_opt));
2193
2194 dont_repeat ();
2195
2196 if (args == NULL)
2197 error (_("add-symbol-file takes a file name and an address"));
2198
2199 argv = gdb_buildargv (args);
2200 make_cleanup_freeargv (argv);
2201
2202 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2203 {
2204 /* Process the argument. */
2205 if (argcnt == 0)
2206 {
2207 /* The first argument is the file name. */
2208 filename = tilde_expand (arg);
2209 make_cleanup (xfree, filename);
2210 }
2211 else
2212 if (argcnt == 1)
2213 {
2214 /* The second argument is always the text address at which
2215 to load the program. */
2216 sect_opts[section_index].name = ".text";
2217 sect_opts[section_index].value = arg;
2218 if (++section_index >= num_sect_opts)
2219 {
2220 num_sect_opts *= 2;
2221 sect_opts = ((struct sect_opt *)
2222 xrealloc (sect_opts,
2223 num_sect_opts
2224 * sizeof (struct sect_opt)));
2225 }
2226 }
2227 else
2228 {
2229 /* It's an option (starting with '-') or it's an argument
2230 to an option. */
2231
2232 if (*arg == '-')
2233 {
2234 if (strcmp (arg, "-readnow") == 0)
2235 flags |= OBJF_READNOW;
2236 else if (strcmp (arg, "-s") == 0)
2237 {
2238 expecting_sec_name = 1;
2239 expecting_sec_addr = 1;
2240 }
2241 }
2242 else
2243 {
2244 if (expecting_sec_name)
2245 {
2246 sect_opts[section_index].name = arg;
2247 expecting_sec_name = 0;
2248 }
2249 else
2250 if (expecting_sec_addr)
2251 {
2252 sect_opts[section_index].value = arg;
2253 expecting_sec_addr = 0;
2254 if (++section_index >= num_sect_opts)
2255 {
2256 num_sect_opts *= 2;
2257 sect_opts = ((struct sect_opt *)
2258 xrealloc (sect_opts,
2259 num_sect_opts
2260 * sizeof (struct sect_opt)));
2261 }
2262 }
2263 else
2264 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2265 " [-readnow] [-s <secname> <addr>]*"));
2266 }
2267 }
2268 }
2269
2270 /* This command takes at least two arguments. The first one is a
2271 filename, and the second is the address where this file has been
2272 loaded. Abort now if this address hasn't been provided by the
2273 user. */
2274 if (section_index < 1)
2275 error (_("The address where %s has been loaded is missing"), filename);
2276
2277 /* Print the prompt for the query below. And save the arguments into
2278 a sect_addr_info structure to be passed around to other
2279 functions. We have to split this up into separate print
2280 statements because hex_string returns a local static
2281 string. */
2282
2283 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2284 section_addrs = alloc_section_addr_info (section_index);
2285 make_cleanup (xfree, section_addrs);
2286 for (i = 0; i < section_index; i++)
2287 {
2288 CORE_ADDR addr;
2289 char *val = sect_opts[i].value;
2290 char *sec = sect_opts[i].name;
2291
2292 addr = parse_and_eval_address (val);
2293
2294 /* Here we store the section offsets in the order they were
2295 entered on the command line. */
2296 section_addrs->other[sec_num].name = sec;
2297 section_addrs->other[sec_num].addr = addr;
2298 printf_unfiltered ("\t%s_addr = %s\n", sec,
2299 paddress (gdbarch, addr));
2300 sec_num++;
2301
2302 /* The object's sections are initialized when a
2303 call is made to build_objfile_section_table (objfile).
2304 This happens in reread_symbols.
2305 At this point, we don't know what file type this is,
2306 so we can't determine what section names are valid. */
2307 }
2308 section_addrs->num_sections = sec_num;
2309
2310 if (from_tty && (!query ("%s", "")))
2311 error (_("Not confirmed."));
2312
2313 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2314 section_addrs, flags);
2315
2316 /* Getting new symbols may change our opinion about what is
2317 frameless. */
2318 reinit_frame_cache ();
2319 do_cleanups (my_cleanups);
2320 }
2321 \f
2322
2323 typedef struct objfile *objfilep;
2324
2325 DEF_VEC_P (objfilep);
2326
2327 /* Re-read symbols if a symbol-file has changed. */
2328
2329 void
2330 reread_symbols (void)
2331 {
2332 struct objfile *objfile;
2333 long new_modtime;
2334 struct stat new_statbuf;
2335 int res;
2336 VEC (objfilep) *new_objfiles = NULL;
2337 struct cleanup *all_cleanups;
2338
2339 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2340
2341 /* With the addition of shared libraries, this should be modified,
2342 the load time should be saved in the partial symbol tables, since
2343 different tables may come from different source files. FIXME.
2344 This routine should then walk down each partial symbol table
2345 and see if the symbol table that it originates from has been changed. */
2346
2347 for (objfile = object_files; objfile; objfile = objfile->next)
2348 {
2349 /* solib-sunos.c creates one objfile with obfd. */
2350 if (objfile->obfd == NULL)
2351 continue;
2352
2353 /* Separate debug objfiles are handled in the main objfile. */
2354 if (objfile->separate_debug_objfile_backlink)
2355 continue;
2356
2357 /* If this object is from an archive (what you usually create with
2358 `ar', often called a `static library' on most systems, though
2359 a `shared library' on AIX is also an archive), then you should
2360 stat on the archive name, not member name. */
2361 if (objfile->obfd->my_archive)
2362 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2363 else
2364 res = stat (objfile->name, &new_statbuf);
2365 if (res != 0)
2366 {
2367 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2368 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2369 objfile->name);
2370 continue;
2371 }
2372 new_modtime = new_statbuf.st_mtime;
2373 if (new_modtime != objfile->mtime)
2374 {
2375 struct cleanup *old_cleanups;
2376 struct section_offsets *offsets;
2377 int num_offsets;
2378 char *obfd_filename;
2379
2380 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2381 objfile->name);
2382
2383 /* There are various functions like symbol_file_add,
2384 symfile_bfd_open, syms_from_objfile, etc., which might
2385 appear to do what we want. But they have various other
2386 effects which we *don't* want. So we just do stuff
2387 ourselves. We don't worry about mapped files (for one thing,
2388 any mapped file will be out of date). */
2389
2390 /* If we get an error, blow away this objfile (not sure if
2391 that is the correct response for things like shared
2392 libraries). */
2393 old_cleanups = make_cleanup_free_objfile (objfile);
2394 /* We need to do this whenever any symbols go away. */
2395 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2396
2397 if (exec_bfd != NULL
2398 && filename_cmp (bfd_get_filename (objfile->obfd),
2399 bfd_get_filename (exec_bfd)) == 0)
2400 {
2401 /* Reload EXEC_BFD without asking anything. */
2402
2403 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2404 }
2405
2406 /* Keep the calls order approx. the same as in free_objfile. */
2407
2408 /* Free the separate debug objfiles. It will be
2409 automatically recreated by sym_read. */
2410 free_objfile_separate_debug (objfile);
2411
2412 /* Remove any references to this objfile in the global
2413 value lists. */
2414 preserve_values (objfile);
2415
2416 /* Nuke all the state that we will re-read. Much of the following
2417 code which sets things to NULL really is necessary to tell
2418 other parts of GDB that there is nothing currently there.
2419
2420 Try to keep the freeing order compatible with free_objfile. */
2421
2422 if (objfile->sf != NULL)
2423 {
2424 (*objfile->sf->sym_finish) (objfile);
2425 }
2426
2427 clear_objfile_data (objfile);
2428
2429 /* Clean up any state BFD has sitting around. */
2430 {
2431 struct bfd *obfd = objfile->obfd;
2432
2433 obfd_filename = bfd_get_filename (objfile->obfd);
2434 /* Open the new BFD before freeing the old one, so that
2435 the filename remains live. */
2436 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2437 if (objfile->obfd == NULL)
2438 {
2439 /* We have to make a cleanup and error here, rather
2440 than erroring later, because once we unref OBFD,
2441 OBFD_FILENAME will be freed. */
2442 make_cleanup_bfd_unref (obfd);
2443 error (_("Can't open %s to read symbols."), obfd_filename);
2444 }
2445 gdb_bfd_unref (obfd);
2446 }
2447
2448 objfile->name = bfd_get_filename (objfile->obfd);
2449 /* bfd_openr sets cacheable to true, which is what we want. */
2450 if (!bfd_check_format (objfile->obfd, bfd_object))
2451 error (_("Can't read symbols from %s: %s."), objfile->name,
2452 bfd_errmsg (bfd_get_error ()));
2453
2454 /* Save the offsets, we will nuke them with the rest of the
2455 objfile_obstack. */
2456 num_offsets = objfile->num_sections;
2457 offsets = ((struct section_offsets *)
2458 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2459 memcpy (offsets, objfile->section_offsets,
2460 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2461
2462 /* FIXME: Do we have to free a whole linked list, or is this
2463 enough? */
2464 if (objfile->global_psymbols.list)
2465 xfree (objfile->global_psymbols.list);
2466 memset (&objfile->global_psymbols, 0,
2467 sizeof (objfile->global_psymbols));
2468 if (objfile->static_psymbols.list)
2469 xfree (objfile->static_psymbols.list);
2470 memset (&objfile->static_psymbols, 0,
2471 sizeof (objfile->static_psymbols));
2472
2473 /* Free the obstacks for non-reusable objfiles. */
2474 psymbol_bcache_free (objfile->psymbol_cache);
2475 objfile->psymbol_cache = psymbol_bcache_init ();
2476 if (objfile->demangled_names_hash != NULL)
2477 {
2478 htab_delete (objfile->demangled_names_hash);
2479 objfile->demangled_names_hash = NULL;
2480 }
2481 obstack_free (&objfile->objfile_obstack, 0);
2482 objfile->sections = NULL;
2483 objfile->symtabs = NULL;
2484 objfile->psymtabs = NULL;
2485 objfile->psymtabs_addrmap = NULL;
2486 objfile->free_psymtabs = NULL;
2487 objfile->template_symbols = NULL;
2488 objfile->msymbols = NULL;
2489 objfile->minimal_symbol_count = 0;
2490 memset (&objfile->msymbol_hash, 0,
2491 sizeof (objfile->msymbol_hash));
2492 memset (&objfile->msymbol_demangled_hash, 0,
2493 sizeof (objfile->msymbol_demangled_hash));
2494
2495 set_objfile_per_bfd (objfile);
2496
2497 /* obstack_init also initializes the obstack so it is
2498 empty. We could use obstack_specify_allocation but
2499 gdb_obstack.h specifies the alloc/dealloc functions. */
2500 obstack_init (&objfile->objfile_obstack);
2501 build_objfile_section_table (objfile);
2502 terminate_minimal_symbol_table (objfile);
2503
2504 /* We use the same section offsets as from last time. I'm not
2505 sure whether that is always correct for shared libraries. */
2506 objfile->section_offsets = (struct section_offsets *)
2507 obstack_alloc (&objfile->objfile_obstack,
2508 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2509 memcpy (objfile->section_offsets, offsets,
2510 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2511 objfile->num_sections = num_offsets;
2512
2513 /* What the hell is sym_new_init for, anyway? The concept of
2514 distinguishing between the main file and additional files
2515 in this way seems rather dubious. */
2516 if (objfile == symfile_objfile)
2517 {
2518 (*objfile->sf->sym_new_init) (objfile);
2519 }
2520
2521 (*objfile->sf->sym_init) (objfile);
2522 clear_complaints (&symfile_complaints, 1, 1);
2523
2524 objfile->flags &= ~OBJF_PSYMTABS_READ;
2525 read_symbols (objfile, 0);
2526
2527 if (!objfile_has_symbols (objfile))
2528 {
2529 wrap_here ("");
2530 printf_unfiltered (_("(no debugging symbols found)\n"));
2531 wrap_here ("");
2532 }
2533
2534 /* We're done reading the symbol file; finish off complaints. */
2535 clear_complaints (&symfile_complaints, 0, 1);
2536
2537 /* Getting new symbols may change our opinion about what is
2538 frameless. */
2539
2540 reinit_frame_cache ();
2541
2542 /* Discard cleanups as symbol reading was successful. */
2543 discard_cleanups (old_cleanups);
2544
2545 /* If the mtime has changed between the time we set new_modtime
2546 and now, we *want* this to be out of date, so don't call stat
2547 again now. */
2548 objfile->mtime = new_modtime;
2549 init_entry_point_info (objfile);
2550
2551 VEC_safe_push (objfilep, new_objfiles, objfile);
2552 }
2553 }
2554
2555 if (new_objfiles)
2556 {
2557 int ix;
2558
2559 /* Notify objfiles that we've modified objfile sections. */
2560 objfiles_changed ();
2561
2562 clear_symtab_users (0);
2563
2564 /* clear_objfile_data for each objfile was called before freeing it and
2565 observer_notify_new_objfile (NULL) has been called by
2566 clear_symtab_users above. Notify the new files now. */
2567 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2568 observer_notify_new_objfile (objfile);
2569
2570 /* At least one objfile has changed, so we can consider that
2571 the executable we're debugging has changed too. */
2572 observer_notify_executable_changed ();
2573 }
2574
2575 do_cleanups (all_cleanups);
2576 }
2577 \f
2578
2579 typedef struct
2580 {
2581 char *ext;
2582 enum language lang;
2583 }
2584 filename_language;
2585
2586 static filename_language *filename_language_table;
2587 static int fl_table_size, fl_table_next;
2588
2589 static void
2590 add_filename_language (char *ext, enum language lang)
2591 {
2592 if (fl_table_next >= fl_table_size)
2593 {
2594 fl_table_size += 10;
2595 filename_language_table =
2596 xrealloc (filename_language_table,
2597 fl_table_size * sizeof (*filename_language_table));
2598 }
2599
2600 filename_language_table[fl_table_next].ext = xstrdup (ext);
2601 filename_language_table[fl_table_next].lang = lang;
2602 fl_table_next++;
2603 }
2604
2605 static char *ext_args;
2606 static void
2607 show_ext_args (struct ui_file *file, int from_tty,
2608 struct cmd_list_element *c, const char *value)
2609 {
2610 fprintf_filtered (file,
2611 _("Mapping between filename extension "
2612 "and source language is \"%s\".\n"),
2613 value);
2614 }
2615
2616 static void
2617 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2618 {
2619 int i;
2620 char *cp = ext_args;
2621 enum language lang;
2622
2623 /* First arg is filename extension, starting with '.' */
2624 if (*cp != '.')
2625 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2626
2627 /* Find end of first arg. */
2628 while (*cp && !isspace (*cp))
2629 cp++;
2630
2631 if (*cp == '\0')
2632 error (_("'%s': two arguments required -- "
2633 "filename extension and language"),
2634 ext_args);
2635
2636 /* Null-terminate first arg. */
2637 *cp++ = '\0';
2638
2639 /* Find beginning of second arg, which should be a source language. */
2640 cp = skip_spaces (cp);
2641
2642 if (*cp == '\0')
2643 error (_("'%s': two arguments required -- "
2644 "filename extension and language"),
2645 ext_args);
2646
2647 /* Lookup the language from among those we know. */
2648 lang = language_enum (cp);
2649
2650 /* Now lookup the filename extension: do we already know it? */
2651 for (i = 0; i < fl_table_next; i++)
2652 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2653 break;
2654
2655 if (i >= fl_table_next)
2656 {
2657 /* New file extension. */
2658 add_filename_language (ext_args, lang);
2659 }
2660 else
2661 {
2662 /* Redefining a previously known filename extension. */
2663
2664 /* if (from_tty) */
2665 /* query ("Really make files of type %s '%s'?", */
2666 /* ext_args, language_str (lang)); */
2667
2668 xfree (filename_language_table[i].ext);
2669 filename_language_table[i].ext = xstrdup (ext_args);
2670 filename_language_table[i].lang = lang;
2671 }
2672 }
2673
2674 static void
2675 info_ext_lang_command (char *args, int from_tty)
2676 {
2677 int i;
2678
2679 printf_filtered (_("Filename extensions and the languages they represent:"));
2680 printf_filtered ("\n\n");
2681 for (i = 0; i < fl_table_next; i++)
2682 printf_filtered ("\t%s\t- %s\n",
2683 filename_language_table[i].ext,
2684 language_str (filename_language_table[i].lang));
2685 }
2686
2687 static void
2688 init_filename_language_table (void)
2689 {
2690 if (fl_table_size == 0) /* Protect against repetition. */
2691 {
2692 fl_table_size = 20;
2693 fl_table_next = 0;
2694 filename_language_table =
2695 xmalloc (fl_table_size * sizeof (*filename_language_table));
2696 add_filename_language (".c", language_c);
2697 add_filename_language (".d", language_d);
2698 add_filename_language (".C", language_cplus);
2699 add_filename_language (".cc", language_cplus);
2700 add_filename_language (".cp", language_cplus);
2701 add_filename_language (".cpp", language_cplus);
2702 add_filename_language (".cxx", language_cplus);
2703 add_filename_language (".c++", language_cplus);
2704 add_filename_language (".java", language_java);
2705 add_filename_language (".class", language_java);
2706 add_filename_language (".m", language_objc);
2707 add_filename_language (".f", language_fortran);
2708 add_filename_language (".F", language_fortran);
2709 add_filename_language (".for", language_fortran);
2710 add_filename_language (".FOR", language_fortran);
2711 add_filename_language (".ftn", language_fortran);
2712 add_filename_language (".FTN", language_fortran);
2713 add_filename_language (".fpp", language_fortran);
2714 add_filename_language (".FPP", language_fortran);
2715 add_filename_language (".f90", language_fortran);
2716 add_filename_language (".F90", language_fortran);
2717 add_filename_language (".f95", language_fortran);
2718 add_filename_language (".F95", language_fortran);
2719 add_filename_language (".f03", language_fortran);
2720 add_filename_language (".F03", language_fortran);
2721 add_filename_language (".f08", language_fortran);
2722 add_filename_language (".F08", language_fortran);
2723 add_filename_language (".s", language_asm);
2724 add_filename_language (".sx", language_asm);
2725 add_filename_language (".S", language_asm);
2726 add_filename_language (".pas", language_pascal);
2727 add_filename_language (".p", language_pascal);
2728 add_filename_language (".pp", language_pascal);
2729 add_filename_language (".adb", language_ada);
2730 add_filename_language (".ads", language_ada);
2731 add_filename_language (".a", language_ada);
2732 add_filename_language (".ada", language_ada);
2733 add_filename_language (".dg", language_ada);
2734 }
2735 }
2736
2737 enum language
2738 deduce_language_from_filename (const char *filename)
2739 {
2740 int i;
2741 char *cp;
2742
2743 if (filename != NULL)
2744 if ((cp = strrchr (filename, '.')) != NULL)
2745 for (i = 0; i < fl_table_next; i++)
2746 if (strcmp (cp, filename_language_table[i].ext) == 0)
2747 return filename_language_table[i].lang;
2748
2749 return language_unknown;
2750 }
2751 \f
2752 /* allocate_symtab:
2753
2754 Allocate and partly initialize a new symbol table. Return a pointer
2755 to it. error() if no space.
2756
2757 Caller must set these fields:
2758 LINETABLE(symtab)
2759 symtab->blockvector
2760 symtab->dirname
2761 symtab->free_code
2762 symtab->free_ptr
2763 */
2764
2765 struct symtab *
2766 allocate_symtab (const char *filename, struct objfile *objfile)
2767 {
2768 struct symtab *symtab;
2769
2770 symtab = (struct symtab *)
2771 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2772 memset (symtab, 0, sizeof (*symtab));
2773 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2774 objfile->per_bfd->filename_cache);
2775 symtab->fullname = NULL;
2776 symtab->language = deduce_language_from_filename (filename);
2777 symtab->debugformat = "unknown";
2778
2779 /* Hook it to the objfile it comes from. */
2780
2781 symtab->objfile = objfile;
2782 symtab->next = objfile->symtabs;
2783 objfile->symtabs = symtab;
2784
2785 if (symtab_create_debug)
2786 {
2787 /* Be a bit clever with debugging messages, and don't print objfile
2788 every time, only when it changes. */
2789 static char *last_objfile_name = NULL;
2790
2791 if (last_objfile_name == NULL
2792 || strcmp (last_objfile_name, objfile->name) != 0)
2793 {
2794 xfree (last_objfile_name);
2795 last_objfile_name = xstrdup (objfile->name);
2796 fprintf_unfiltered (gdb_stdlog,
2797 "Creating one or more symtabs for objfile %s ...\n",
2798 last_objfile_name);
2799 }
2800 fprintf_unfiltered (gdb_stdlog,
2801 "Created symtab %s for module %s.\n",
2802 host_address_to_string (symtab), filename);
2803 }
2804
2805 return (symtab);
2806 }
2807 \f
2808
2809 /* Reset all data structures in gdb which may contain references to symbol
2810 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2811
2812 void
2813 clear_symtab_users (int add_flags)
2814 {
2815 /* Someday, we should do better than this, by only blowing away
2816 the things that really need to be blown. */
2817
2818 /* Clear the "current" symtab first, because it is no longer valid.
2819 breakpoint_re_set may try to access the current symtab. */
2820 clear_current_source_symtab_and_line ();
2821
2822 clear_displays ();
2823 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2824 breakpoint_re_set ();
2825 clear_last_displayed_sal ();
2826 clear_pc_function_cache ();
2827 observer_notify_new_objfile (NULL);
2828
2829 /* Clear globals which might have pointed into a removed objfile.
2830 FIXME: It's not clear which of these are supposed to persist
2831 between expressions and which ought to be reset each time. */
2832 expression_context_block = NULL;
2833 innermost_block = NULL;
2834
2835 /* Varobj may refer to old symbols, perform a cleanup. */
2836 varobj_invalidate ();
2837
2838 }
2839
2840 static void
2841 clear_symtab_users_cleanup (void *ignore)
2842 {
2843 clear_symtab_users (0);
2844 }
2845 \f
2846 /* OVERLAYS:
2847 The following code implements an abstraction for debugging overlay sections.
2848
2849 The target model is as follows:
2850 1) The gnu linker will permit multiple sections to be mapped into the
2851 same VMA, each with its own unique LMA (or load address).
2852 2) It is assumed that some runtime mechanism exists for mapping the
2853 sections, one by one, from the load address into the VMA address.
2854 3) This code provides a mechanism for gdb to keep track of which
2855 sections should be considered to be mapped from the VMA to the LMA.
2856 This information is used for symbol lookup, and memory read/write.
2857 For instance, if a section has been mapped then its contents
2858 should be read from the VMA, otherwise from the LMA.
2859
2860 Two levels of debugger support for overlays are available. One is
2861 "manual", in which the debugger relies on the user to tell it which
2862 overlays are currently mapped. This level of support is
2863 implemented entirely in the core debugger, and the information about
2864 whether a section is mapped is kept in the objfile->obj_section table.
2865
2866 The second level of support is "automatic", and is only available if
2867 the target-specific code provides functionality to read the target's
2868 overlay mapping table, and translate its contents for the debugger
2869 (by updating the mapped state information in the obj_section tables).
2870
2871 The interface is as follows:
2872 User commands:
2873 overlay map <name> -- tell gdb to consider this section mapped
2874 overlay unmap <name> -- tell gdb to consider this section unmapped
2875 overlay list -- list the sections that GDB thinks are mapped
2876 overlay read-target -- get the target's state of what's mapped
2877 overlay off/manual/auto -- set overlay debugging state
2878 Functional interface:
2879 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2880 section, return that section.
2881 find_pc_overlay(pc): find any overlay section that contains
2882 the pc, either in its VMA or its LMA
2883 section_is_mapped(sect): true if overlay is marked as mapped
2884 section_is_overlay(sect): true if section's VMA != LMA
2885 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2886 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2887 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2888 overlay_mapped_address(...): map an address from section's LMA to VMA
2889 overlay_unmapped_address(...): map an address from section's VMA to LMA
2890 symbol_overlayed_address(...): Return a "current" address for symbol:
2891 either in VMA or LMA depending on whether
2892 the symbol's section is currently mapped. */
2893
2894 /* Overlay debugging state: */
2895
2896 enum overlay_debugging_state overlay_debugging = ovly_off;
2897 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2898
2899 /* Function: section_is_overlay (SECTION)
2900 Returns true if SECTION has VMA not equal to LMA, ie.
2901 SECTION is loaded at an address different from where it will "run". */
2902
2903 int
2904 section_is_overlay (struct obj_section *section)
2905 {
2906 if (overlay_debugging && section)
2907 {
2908 bfd *abfd = section->objfile->obfd;
2909 asection *bfd_section = section->the_bfd_section;
2910
2911 if (bfd_section_lma (abfd, bfd_section) != 0
2912 && bfd_section_lma (abfd, bfd_section)
2913 != bfd_section_vma (abfd, bfd_section))
2914 return 1;
2915 }
2916
2917 return 0;
2918 }
2919
2920 /* Function: overlay_invalidate_all (void)
2921 Invalidate the mapped state of all overlay sections (mark it as stale). */
2922
2923 static void
2924 overlay_invalidate_all (void)
2925 {
2926 struct objfile *objfile;
2927 struct obj_section *sect;
2928
2929 ALL_OBJSECTIONS (objfile, sect)
2930 if (section_is_overlay (sect))
2931 sect->ovly_mapped = -1;
2932 }
2933
2934 /* Function: section_is_mapped (SECTION)
2935 Returns true if section is an overlay, and is currently mapped.
2936
2937 Access to the ovly_mapped flag is restricted to this function, so
2938 that we can do automatic update. If the global flag
2939 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2940 overlay_invalidate_all. If the mapped state of the particular
2941 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2942
2943 int
2944 section_is_mapped (struct obj_section *osect)
2945 {
2946 struct gdbarch *gdbarch;
2947
2948 if (osect == 0 || !section_is_overlay (osect))
2949 return 0;
2950
2951 switch (overlay_debugging)
2952 {
2953 default:
2954 case ovly_off:
2955 return 0; /* overlay debugging off */
2956 case ovly_auto: /* overlay debugging automatic */
2957 /* Unles there is a gdbarch_overlay_update function,
2958 there's really nothing useful to do here (can't really go auto). */
2959 gdbarch = get_objfile_arch (osect->objfile);
2960 if (gdbarch_overlay_update_p (gdbarch))
2961 {
2962 if (overlay_cache_invalid)
2963 {
2964 overlay_invalidate_all ();
2965 overlay_cache_invalid = 0;
2966 }
2967 if (osect->ovly_mapped == -1)
2968 gdbarch_overlay_update (gdbarch, osect);
2969 }
2970 /* fall thru to manual case */
2971 case ovly_on: /* overlay debugging manual */
2972 return osect->ovly_mapped == 1;
2973 }
2974 }
2975
2976 /* Function: pc_in_unmapped_range
2977 If PC falls into the lma range of SECTION, return true, else false. */
2978
2979 CORE_ADDR
2980 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2981 {
2982 if (section_is_overlay (section))
2983 {
2984 bfd *abfd = section->objfile->obfd;
2985 asection *bfd_section = section->the_bfd_section;
2986
2987 /* We assume the LMA is relocated by the same offset as the VMA. */
2988 bfd_vma size = bfd_get_section_size (bfd_section);
2989 CORE_ADDR offset = obj_section_offset (section);
2990
2991 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2992 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2993 return 1;
2994 }
2995
2996 return 0;
2997 }
2998
2999 /* Function: pc_in_mapped_range
3000 If PC falls into the vma range of SECTION, return true, else false. */
3001
3002 CORE_ADDR
3003 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3004 {
3005 if (section_is_overlay (section))
3006 {
3007 if (obj_section_addr (section) <= pc
3008 && pc < obj_section_endaddr (section))
3009 return 1;
3010 }
3011
3012 return 0;
3013 }
3014
3015 /* Return true if the mapped ranges of sections A and B overlap, false
3016 otherwise. */
3017
3018 static int
3019 sections_overlap (struct obj_section *a, struct obj_section *b)
3020 {
3021 CORE_ADDR a_start = obj_section_addr (a);
3022 CORE_ADDR a_end = obj_section_endaddr (a);
3023 CORE_ADDR b_start = obj_section_addr (b);
3024 CORE_ADDR b_end = obj_section_endaddr (b);
3025
3026 return (a_start < b_end && b_start < a_end);
3027 }
3028
3029 /* Function: overlay_unmapped_address (PC, SECTION)
3030 Returns the address corresponding to PC in the unmapped (load) range.
3031 May be the same as PC. */
3032
3033 CORE_ADDR
3034 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3035 {
3036 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3037 {
3038 bfd *abfd = section->objfile->obfd;
3039 asection *bfd_section = section->the_bfd_section;
3040
3041 return pc + bfd_section_lma (abfd, bfd_section)
3042 - bfd_section_vma (abfd, bfd_section);
3043 }
3044
3045 return pc;
3046 }
3047
3048 /* Function: overlay_mapped_address (PC, SECTION)
3049 Returns the address corresponding to PC in the mapped (runtime) range.
3050 May be the same as PC. */
3051
3052 CORE_ADDR
3053 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3054 {
3055 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3056 {
3057 bfd *abfd = section->objfile->obfd;
3058 asection *bfd_section = section->the_bfd_section;
3059
3060 return pc + bfd_section_vma (abfd, bfd_section)
3061 - bfd_section_lma (abfd, bfd_section);
3062 }
3063
3064 return pc;
3065 }
3066
3067 /* Function: symbol_overlayed_address
3068 Return one of two addresses (relative to the VMA or to the LMA),
3069 depending on whether the section is mapped or not. */
3070
3071 CORE_ADDR
3072 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3073 {
3074 if (overlay_debugging)
3075 {
3076 /* If the symbol has no section, just return its regular address. */
3077 if (section == 0)
3078 return address;
3079 /* If the symbol's section is not an overlay, just return its
3080 address. */
3081 if (!section_is_overlay (section))
3082 return address;
3083 /* If the symbol's section is mapped, just return its address. */
3084 if (section_is_mapped (section))
3085 return address;
3086 /*
3087 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3088 * then return its LOADED address rather than its vma address!!
3089 */
3090 return overlay_unmapped_address (address, section);
3091 }
3092 return address;
3093 }
3094
3095 /* Function: find_pc_overlay (PC)
3096 Return the best-match overlay section for PC:
3097 If PC matches a mapped overlay section's VMA, return that section.
3098 Else if PC matches an unmapped section's VMA, return that section.
3099 Else if PC matches an unmapped section's LMA, return that section. */
3100
3101 struct obj_section *
3102 find_pc_overlay (CORE_ADDR pc)
3103 {
3104 struct objfile *objfile;
3105 struct obj_section *osect, *best_match = NULL;
3106
3107 if (overlay_debugging)
3108 ALL_OBJSECTIONS (objfile, osect)
3109 if (section_is_overlay (osect))
3110 {
3111 if (pc_in_mapped_range (pc, osect))
3112 {
3113 if (section_is_mapped (osect))
3114 return osect;
3115 else
3116 best_match = osect;
3117 }
3118 else if (pc_in_unmapped_range (pc, osect))
3119 best_match = osect;
3120 }
3121 return best_match;
3122 }
3123
3124 /* Function: find_pc_mapped_section (PC)
3125 If PC falls into the VMA address range of an overlay section that is
3126 currently marked as MAPPED, return that section. Else return NULL. */
3127
3128 struct obj_section *
3129 find_pc_mapped_section (CORE_ADDR pc)
3130 {
3131 struct objfile *objfile;
3132 struct obj_section *osect;
3133
3134 if (overlay_debugging)
3135 ALL_OBJSECTIONS (objfile, osect)
3136 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3137 return osect;
3138
3139 return NULL;
3140 }
3141
3142 /* Function: list_overlays_command
3143 Print a list of mapped sections and their PC ranges. */
3144
3145 static void
3146 list_overlays_command (char *args, int from_tty)
3147 {
3148 int nmapped = 0;
3149 struct objfile *objfile;
3150 struct obj_section *osect;
3151
3152 if (overlay_debugging)
3153 ALL_OBJSECTIONS (objfile, osect)
3154 if (section_is_mapped (osect))
3155 {
3156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3157 const char *name;
3158 bfd_vma lma, vma;
3159 int size;
3160
3161 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3162 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3163 size = bfd_get_section_size (osect->the_bfd_section);
3164 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3165
3166 printf_filtered ("Section %s, loaded at ", name);
3167 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3168 puts_filtered (" - ");
3169 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3170 printf_filtered (", mapped at ");
3171 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3172 puts_filtered (" - ");
3173 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3174 puts_filtered ("\n");
3175
3176 nmapped++;
3177 }
3178 if (nmapped == 0)
3179 printf_filtered (_("No sections are mapped.\n"));
3180 }
3181
3182 /* Function: map_overlay_command
3183 Mark the named section as mapped (ie. residing at its VMA address). */
3184
3185 static void
3186 map_overlay_command (char *args, int from_tty)
3187 {
3188 struct objfile *objfile, *objfile2;
3189 struct obj_section *sec, *sec2;
3190
3191 if (!overlay_debugging)
3192 error (_("Overlay debugging not enabled. Use "
3193 "either the 'overlay auto' or\n"
3194 "the 'overlay manual' command."));
3195
3196 if (args == 0 || *args == 0)
3197 error (_("Argument required: name of an overlay section"));
3198
3199 /* First, find a section matching the user supplied argument. */
3200 ALL_OBJSECTIONS (objfile, sec)
3201 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3202 {
3203 /* Now, check to see if the section is an overlay. */
3204 if (!section_is_overlay (sec))
3205 continue; /* not an overlay section */
3206
3207 /* Mark the overlay as "mapped". */
3208 sec->ovly_mapped = 1;
3209
3210 /* Next, make a pass and unmap any sections that are
3211 overlapped by this new section: */
3212 ALL_OBJSECTIONS (objfile2, sec2)
3213 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3214 {
3215 if (info_verbose)
3216 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3217 bfd_section_name (objfile->obfd,
3218 sec2->the_bfd_section));
3219 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3220 }
3221 return;
3222 }
3223 error (_("No overlay section called %s"), args);
3224 }
3225
3226 /* Function: unmap_overlay_command
3227 Mark the overlay section as unmapped
3228 (ie. resident in its LMA address range, rather than the VMA range). */
3229
3230 static void
3231 unmap_overlay_command (char *args, int from_tty)
3232 {
3233 struct objfile *objfile;
3234 struct obj_section *sec;
3235
3236 if (!overlay_debugging)
3237 error (_("Overlay debugging not enabled. "
3238 "Use either the 'overlay auto' or\n"
3239 "the 'overlay manual' command."));
3240
3241 if (args == 0 || *args == 0)
3242 error (_("Argument required: name of an overlay section"));
3243
3244 /* First, find a section matching the user supplied argument. */
3245 ALL_OBJSECTIONS (objfile, sec)
3246 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3247 {
3248 if (!sec->ovly_mapped)
3249 error (_("Section %s is not mapped"), args);
3250 sec->ovly_mapped = 0;
3251 return;
3252 }
3253 error (_("No overlay section called %s"), args);
3254 }
3255
3256 /* Function: overlay_auto_command
3257 A utility command to turn on overlay debugging.
3258 Possibly this should be done via a set/show command. */
3259
3260 static void
3261 overlay_auto_command (char *args, int from_tty)
3262 {
3263 overlay_debugging = ovly_auto;
3264 enable_overlay_breakpoints ();
3265 if (info_verbose)
3266 printf_unfiltered (_("Automatic overlay debugging enabled."));
3267 }
3268
3269 /* Function: overlay_manual_command
3270 A utility command to turn on overlay debugging.
3271 Possibly this should be done via a set/show command. */
3272
3273 static void
3274 overlay_manual_command (char *args, int from_tty)
3275 {
3276 overlay_debugging = ovly_on;
3277 disable_overlay_breakpoints ();
3278 if (info_verbose)
3279 printf_unfiltered (_("Overlay debugging enabled."));
3280 }
3281
3282 /* Function: overlay_off_command
3283 A utility command to turn on overlay debugging.
3284 Possibly this should be done via a set/show command. */
3285
3286 static void
3287 overlay_off_command (char *args, int from_tty)
3288 {
3289 overlay_debugging = ovly_off;
3290 disable_overlay_breakpoints ();
3291 if (info_verbose)
3292 printf_unfiltered (_("Overlay debugging disabled."));
3293 }
3294
3295 static void
3296 overlay_load_command (char *args, int from_tty)
3297 {
3298 struct gdbarch *gdbarch = get_current_arch ();
3299
3300 if (gdbarch_overlay_update_p (gdbarch))
3301 gdbarch_overlay_update (gdbarch, NULL);
3302 else
3303 error (_("This target does not know how to read its overlay state."));
3304 }
3305
3306 /* Function: overlay_command
3307 A place-holder for a mis-typed command. */
3308
3309 /* Command list chain containing all defined "overlay" subcommands. */
3310 static struct cmd_list_element *overlaylist;
3311
3312 static void
3313 overlay_command (char *args, int from_tty)
3314 {
3315 printf_unfiltered
3316 ("\"overlay\" must be followed by the name of an overlay command.\n");
3317 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3318 }
3319
3320 /* Target Overlays for the "Simplest" overlay manager:
3321
3322 This is GDB's default target overlay layer. It works with the
3323 minimal overlay manager supplied as an example by Cygnus. The
3324 entry point is via a function pointer "gdbarch_overlay_update",
3325 so targets that use a different runtime overlay manager can
3326 substitute their own overlay_update function and take over the
3327 function pointer.
3328
3329 The overlay_update function pokes around in the target's data structures
3330 to see what overlays are mapped, and updates GDB's overlay mapping with
3331 this information.
3332
3333 In this simple implementation, the target data structures are as follows:
3334 unsigned _novlys; /# number of overlay sections #/
3335 unsigned _ovly_table[_novlys][4] = {
3336 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3337 {..., ..., ..., ...},
3338 }
3339 unsigned _novly_regions; /# number of overlay regions #/
3340 unsigned _ovly_region_table[_novly_regions][3] = {
3341 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3342 {..., ..., ...},
3343 }
3344 These functions will attempt to update GDB's mappedness state in the
3345 symbol section table, based on the target's mappedness state.
3346
3347 To do this, we keep a cached copy of the target's _ovly_table, and
3348 attempt to detect when the cached copy is invalidated. The main
3349 entry point is "simple_overlay_update(SECT), which looks up SECT in
3350 the cached table and re-reads only the entry for that section from
3351 the target (whenever possible). */
3352
3353 /* Cached, dynamically allocated copies of the target data structures: */
3354 static unsigned (*cache_ovly_table)[4] = 0;
3355 static unsigned cache_novlys = 0;
3356 static CORE_ADDR cache_ovly_table_base = 0;
3357 enum ovly_index
3358 {
3359 VMA, SIZE, LMA, MAPPED
3360 };
3361
3362 /* Throw away the cached copy of _ovly_table. */
3363
3364 static void
3365 simple_free_overlay_table (void)
3366 {
3367 if (cache_ovly_table)
3368 xfree (cache_ovly_table);
3369 cache_novlys = 0;
3370 cache_ovly_table = NULL;
3371 cache_ovly_table_base = 0;
3372 }
3373
3374 /* Read an array of ints of size SIZE from the target into a local buffer.
3375 Convert to host order. int LEN is number of ints. */
3376
3377 static void
3378 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3379 int len, int size, enum bfd_endian byte_order)
3380 {
3381 /* FIXME (alloca): Not safe if array is very large. */
3382 gdb_byte *buf = alloca (len * size);
3383 int i;
3384
3385 read_memory (memaddr, buf, len * size);
3386 for (i = 0; i < len; i++)
3387 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3388 }
3389
3390 /* Find and grab a copy of the target _ovly_table
3391 (and _novlys, which is needed for the table's size). */
3392
3393 static int
3394 simple_read_overlay_table (void)
3395 {
3396 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3397 struct gdbarch *gdbarch;
3398 int word_size;
3399 enum bfd_endian byte_order;
3400
3401 simple_free_overlay_table ();
3402 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3403 if (! novlys_msym)
3404 {
3405 error (_("Error reading inferior's overlay table: "
3406 "couldn't find `_novlys' variable\n"
3407 "in inferior. Use `overlay manual' mode."));
3408 return 0;
3409 }
3410
3411 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3412 if (! ovly_table_msym)
3413 {
3414 error (_("Error reading inferior's overlay table: couldn't find "
3415 "`_ovly_table' array\n"
3416 "in inferior. Use `overlay manual' mode."));
3417 return 0;
3418 }
3419
3420 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3421 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3422 byte_order = gdbarch_byte_order (gdbarch);
3423
3424 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3425 4, byte_order);
3426 cache_ovly_table
3427 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3428 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3429 read_target_long_array (cache_ovly_table_base,
3430 (unsigned int *) cache_ovly_table,
3431 cache_novlys * 4, word_size, byte_order);
3432
3433 return 1; /* SUCCESS */
3434 }
3435
3436 /* Function: simple_overlay_update_1
3437 A helper function for simple_overlay_update. Assuming a cached copy
3438 of _ovly_table exists, look through it to find an entry whose vma,
3439 lma and size match those of OSECT. Re-read the entry and make sure
3440 it still matches OSECT (else the table may no longer be valid).
3441 Set OSECT's mapped state to match the entry. Return: 1 for
3442 success, 0 for failure. */
3443
3444 static int
3445 simple_overlay_update_1 (struct obj_section *osect)
3446 {
3447 int i, size;
3448 bfd *obfd = osect->objfile->obfd;
3449 asection *bsect = osect->the_bfd_section;
3450 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3451 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3452 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3453
3454 size = bfd_get_section_size (osect->the_bfd_section);
3455 for (i = 0; i < cache_novlys; i++)
3456 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3457 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3458 /* && cache_ovly_table[i][SIZE] == size */ )
3459 {
3460 read_target_long_array (cache_ovly_table_base + i * word_size,
3461 (unsigned int *) cache_ovly_table[i],
3462 4, word_size, byte_order);
3463 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3464 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3465 /* && cache_ovly_table[i][SIZE] == size */ )
3466 {
3467 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3468 return 1;
3469 }
3470 else /* Warning! Warning! Target's ovly table has changed! */
3471 return 0;
3472 }
3473 return 0;
3474 }
3475
3476 /* Function: simple_overlay_update
3477 If OSECT is NULL, then update all sections' mapped state
3478 (after re-reading the entire target _ovly_table).
3479 If OSECT is non-NULL, then try to find a matching entry in the
3480 cached ovly_table and update only OSECT's mapped state.
3481 If a cached entry can't be found or the cache isn't valid, then
3482 re-read the entire cache, and go ahead and update all sections. */
3483
3484 void
3485 simple_overlay_update (struct obj_section *osect)
3486 {
3487 struct objfile *objfile;
3488
3489 /* Were we given an osect to look up? NULL means do all of them. */
3490 if (osect)
3491 /* Have we got a cached copy of the target's overlay table? */
3492 if (cache_ovly_table != NULL)
3493 {
3494 /* Does its cached location match what's currently in the
3495 symtab? */
3496 struct minimal_symbol *minsym
3497 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3498
3499 if (minsym == NULL)
3500 error (_("Error reading inferior's overlay table: couldn't "
3501 "find `_ovly_table' array\n"
3502 "in inferior. Use `overlay manual' mode."));
3503
3504 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3505 /* Then go ahead and try to look up this single section in
3506 the cache. */
3507 if (simple_overlay_update_1 (osect))
3508 /* Found it! We're done. */
3509 return;
3510 }
3511
3512 /* Cached table no good: need to read the entire table anew.
3513 Or else we want all the sections, in which case it's actually
3514 more efficient to read the whole table in one block anyway. */
3515
3516 if (! simple_read_overlay_table ())
3517 return;
3518
3519 /* Now may as well update all sections, even if only one was requested. */
3520 ALL_OBJSECTIONS (objfile, osect)
3521 if (section_is_overlay (osect))
3522 {
3523 int i, size;
3524 bfd *obfd = osect->objfile->obfd;
3525 asection *bsect = osect->the_bfd_section;
3526
3527 size = bfd_get_section_size (bsect);
3528 for (i = 0; i < cache_novlys; i++)
3529 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3530 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3531 /* && cache_ovly_table[i][SIZE] == size */ )
3532 { /* obj_section matches i'th entry in ovly_table. */
3533 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3534 break; /* finished with inner for loop: break out. */
3535 }
3536 }
3537 }
3538
3539 /* Set the output sections and output offsets for section SECTP in
3540 ABFD. The relocation code in BFD will read these offsets, so we
3541 need to be sure they're initialized. We map each section to itself,
3542 with no offset; this means that SECTP->vma will be honored. */
3543
3544 static void
3545 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3546 {
3547 sectp->output_section = sectp;
3548 sectp->output_offset = 0;
3549 }
3550
3551 /* Default implementation for sym_relocate. */
3552
3553 bfd_byte *
3554 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3555 bfd_byte *buf)
3556 {
3557 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3558 DWO file. */
3559 bfd *abfd = sectp->owner;
3560
3561 /* We're only interested in sections with relocation
3562 information. */
3563 if ((sectp->flags & SEC_RELOC) == 0)
3564 return NULL;
3565
3566 /* We will handle section offsets properly elsewhere, so relocate as if
3567 all sections begin at 0. */
3568 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3569
3570 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3571 }
3572
3573 /* Relocate the contents of a debug section SECTP in ABFD. The
3574 contents are stored in BUF if it is non-NULL, or returned in a
3575 malloc'd buffer otherwise.
3576
3577 For some platforms and debug info formats, shared libraries contain
3578 relocations against the debug sections (particularly for DWARF-2;
3579 one affected platform is PowerPC GNU/Linux, although it depends on
3580 the version of the linker in use). Also, ELF object files naturally
3581 have unresolved relocations for their debug sections. We need to apply
3582 the relocations in order to get the locations of symbols correct.
3583 Another example that may require relocation processing, is the
3584 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3585 debug section. */
3586
3587 bfd_byte *
3588 symfile_relocate_debug_section (struct objfile *objfile,
3589 asection *sectp, bfd_byte *buf)
3590 {
3591 gdb_assert (objfile->sf->sym_relocate);
3592
3593 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3594 }
3595
3596 struct symfile_segment_data *
3597 get_symfile_segment_data (bfd *abfd)
3598 {
3599 const struct sym_fns *sf = find_sym_fns (abfd);
3600
3601 if (sf == NULL)
3602 return NULL;
3603
3604 return sf->sym_segments (abfd);
3605 }
3606
3607 void
3608 free_symfile_segment_data (struct symfile_segment_data *data)
3609 {
3610 xfree (data->segment_bases);
3611 xfree (data->segment_sizes);
3612 xfree (data->segment_info);
3613 xfree (data);
3614 }
3615
3616 /* Given:
3617 - DATA, containing segment addresses from the object file ABFD, and
3618 the mapping from ABFD's sections onto the segments that own them,
3619 and
3620 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3621 segment addresses reported by the target,
3622 store the appropriate offsets for each section in OFFSETS.
3623
3624 If there are fewer entries in SEGMENT_BASES than there are segments
3625 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3626
3627 If there are more entries, then ignore the extra. The target may
3628 not be able to distinguish between an empty data segment and a
3629 missing data segment; a missing text segment is less plausible. */
3630
3631 int
3632 symfile_map_offsets_to_segments (bfd *abfd,
3633 const struct symfile_segment_data *data,
3634 struct section_offsets *offsets,
3635 int num_segment_bases,
3636 const CORE_ADDR *segment_bases)
3637 {
3638 int i;
3639 asection *sect;
3640
3641 /* It doesn't make sense to call this function unless you have some
3642 segment base addresses. */
3643 gdb_assert (num_segment_bases > 0);
3644
3645 /* If we do not have segment mappings for the object file, we
3646 can not relocate it by segments. */
3647 gdb_assert (data != NULL);
3648 gdb_assert (data->num_segments > 0);
3649
3650 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3651 {
3652 int which = data->segment_info[i];
3653
3654 gdb_assert (0 <= which && which <= data->num_segments);
3655
3656 /* Don't bother computing offsets for sections that aren't
3657 loaded as part of any segment. */
3658 if (! which)
3659 continue;
3660
3661 /* Use the last SEGMENT_BASES entry as the address of any extra
3662 segments mentioned in DATA->segment_info. */
3663 if (which > num_segment_bases)
3664 which = num_segment_bases;
3665
3666 offsets->offsets[i] = (segment_bases[which - 1]
3667 - data->segment_bases[which - 1]);
3668 }
3669
3670 return 1;
3671 }
3672
3673 static void
3674 symfile_find_segment_sections (struct objfile *objfile)
3675 {
3676 bfd *abfd = objfile->obfd;
3677 int i;
3678 asection *sect;
3679 struct symfile_segment_data *data;
3680
3681 data = get_symfile_segment_data (objfile->obfd);
3682 if (data == NULL)
3683 return;
3684
3685 if (data->num_segments != 1 && data->num_segments != 2)
3686 {
3687 free_symfile_segment_data (data);
3688 return;
3689 }
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
3693 int which = data->segment_info[i];
3694
3695 if (which == 1)
3696 {
3697 if (objfile->sect_index_text == -1)
3698 objfile->sect_index_text = sect->index;
3699
3700 if (objfile->sect_index_rodata == -1)
3701 objfile->sect_index_rodata = sect->index;
3702 }
3703 else if (which == 2)
3704 {
3705 if (objfile->sect_index_data == -1)
3706 objfile->sect_index_data = sect->index;
3707
3708 if (objfile->sect_index_bss == -1)
3709 objfile->sect_index_bss = sect->index;
3710 }
3711 }
3712
3713 free_symfile_segment_data (data);
3714 }
3715
3716 void
3717 _initialize_symfile (void)
3718 {
3719 struct cmd_list_element *c;
3720
3721 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3722 Load symbol table from executable file FILE.\n\
3723 The `file' command can also load symbol tables, as well as setting the file\n\
3724 to execute."), &cmdlist);
3725 set_cmd_completer (c, filename_completer);
3726
3727 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3728 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3729 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3730 ...]\nADDR is the starting address of the file's text.\n\
3731 The optional arguments are section-name section-address pairs and\n\
3732 should be specified if the data and bss segments are not contiguous\n\
3733 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3734 &cmdlist);
3735 set_cmd_completer (c, filename_completer);
3736
3737 c = add_cmd ("load", class_files, load_command, _("\
3738 Dynamically load FILE into the running program, and record its symbols\n\
3739 for access from GDB.\n\
3740 A load OFFSET may also be given."), &cmdlist);
3741 set_cmd_completer (c, filename_completer);
3742
3743 add_prefix_cmd ("overlay", class_support, overlay_command,
3744 _("Commands for debugging overlays."), &overlaylist,
3745 "overlay ", 0, &cmdlist);
3746
3747 add_com_alias ("ovly", "overlay", class_alias, 1);
3748 add_com_alias ("ov", "overlay", class_alias, 1);
3749
3750 add_cmd ("map-overlay", class_support, map_overlay_command,
3751 _("Assert that an overlay section is mapped."), &overlaylist);
3752
3753 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3754 _("Assert that an overlay section is unmapped."), &overlaylist);
3755
3756 add_cmd ("list-overlays", class_support, list_overlays_command,
3757 _("List mappings of overlay sections."), &overlaylist);
3758
3759 add_cmd ("manual", class_support, overlay_manual_command,
3760 _("Enable overlay debugging."), &overlaylist);
3761 add_cmd ("off", class_support, overlay_off_command,
3762 _("Disable overlay debugging."), &overlaylist);
3763 add_cmd ("auto", class_support, overlay_auto_command,
3764 _("Enable automatic overlay debugging."), &overlaylist);
3765 add_cmd ("load-target", class_support, overlay_load_command,
3766 _("Read the overlay mapping state from the target."), &overlaylist);
3767
3768 /* Filename extension to source language lookup table: */
3769 init_filename_language_table ();
3770 add_setshow_string_noescape_cmd ("extension-language", class_files,
3771 &ext_args, _("\
3772 Set mapping between filename extension and source language."), _("\
3773 Show mapping between filename extension and source language."), _("\
3774 Usage: set extension-language .foo bar"),
3775 set_ext_lang_command,
3776 show_ext_args,
3777 &setlist, &showlist);
3778
3779 add_info ("extensions", info_ext_lang_command,
3780 _("All filename extensions associated with a source language."));
3781
3782 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3783 &debug_file_directory, _("\
3784 Set the directories where separate debug symbols are searched for."), _("\
3785 Show the directories where separate debug symbols are searched for."), _("\
3786 Separate debug symbols are first searched for in the same\n\
3787 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3788 and lastly at the path of the directory of the binary with\n\
3789 each global debug-file-directory component prepended."),
3790 NULL,
3791 show_debug_file_directory,
3792 &setlist, &showlist);
3793 }
This page took 0.145551 seconds and 4 git commands to generate.