* symfile.c (symfile_relocate_debug_section): Remove check for
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include "gdb_string.h"
61 #include "gdb_stat.h"
62 #include <ctype.h>
63 #include <time.h>
64 #include <sys/time.h>
65
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct section_table *start,
372 const struct section_table *end)
373 {
374 struct section_addr_info *sap;
375 const struct section_table *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 static void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 MAINLINE is nonzero if this is the main symbol file, or zero if
745 it's an extra symbol file such as dynamically loaded code.
746
747 VERBO is nonzero if the caller has printed a verbose message about
748 the symbol reading (and complaints can be more terse about it). */
749
750 void
751 syms_from_objfile (struct objfile *objfile,
752 struct section_addr_info *addrs,
753 struct section_offsets *offsets,
754 int num_offsets,
755 int mainline,
756 int verbo)
757 {
758 struct section_addr_info *local_addr = NULL;
759 struct cleanup *old_chain;
760
761 gdb_assert (! (addrs && offsets));
762
763 init_entry_point_info (objfile);
764 objfile->sf = find_sym_fns (objfile->obfd);
765
766 if (objfile->sf == NULL)
767 return; /* No symbols. */
768
769 /* Make sure that partially constructed symbol tables will be cleaned up
770 if an error occurs during symbol reading. */
771 old_chain = make_cleanup_free_objfile (objfile);
772
773 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
774 list. We now establish the convention that an addr of zero means
775 no load address was specified. */
776 if (! addrs && ! offsets)
777 {
778 local_addr
779 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
780 make_cleanup (xfree, local_addr);
781 addrs = local_addr;
782 }
783
784 /* Now either addrs or offsets is non-zero. */
785
786 if (mainline)
787 {
788 /* We will modify the main symbol table, make sure that all its users
789 will be cleaned up if an error occurs during symbol reading. */
790 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791
792 /* Since no error yet, throw away the old symbol table. */
793
794 if (symfile_objfile != NULL)
795 {
796 free_objfile (symfile_objfile);
797 symfile_objfile = NULL;
798 }
799
800 /* Currently we keep symbols from the add-symbol-file command.
801 If the user wants to get rid of them, they should do "symbol-file"
802 without arguments first. Not sure this is the best behavior
803 (PR 2207). */
804
805 (*objfile->sf->sym_new_init) (objfile);
806 }
807
808 /* Convert addr into an offset rather than an absolute address.
809 We find the lowest address of a loaded segment in the objfile,
810 and assume that <addr> is where that got loaded.
811
812 We no longer warn if the lowest section is not a text segment (as
813 happens for the PA64 port. */
814 if (!mainline && addrs && addrs->other[0].name)
815 {
816 asection *lower_sect;
817 asection *sect;
818 CORE_ADDR lower_offset;
819 int i;
820
821 /* Find lowest loadable section to be used as starting point for
822 continguous sections. FIXME!! won't work without call to find
823 .text first, but this assumes text is lowest section. */
824 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
825 if (lower_sect == NULL)
826 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 &lower_sect);
828 if (lower_sect == NULL)
829 {
830 warning (_("no loadable sections found in added symbol-file %s"),
831 objfile->name);
832 lower_offset = 0;
833 }
834 else
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, mainline);
898
899 /* Discard cleanups as symbol reading was successful. */
900
901 discard_cleanups (old_chain);
902 xfree (local_addr);
903 }
904
905 /* Perform required actions after either reading in the initial
906 symbols for a new objfile, or mapping in the symbols from a reusable
907 objfile. */
908
909 void
910 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
911 {
912
913 /* If this is the main symbol file we have to clean up all users of the
914 old main symbol file. Otherwise it is sufficient to fixup all the
915 breakpoints that may have been redefined by this symbol file. */
916 if (mainline)
917 {
918 /* OK, make it the "real" symbol file. */
919 symfile_objfile = objfile;
920
921 clear_symtab_users ();
922 }
923 else
924 {
925 breakpoint_re_set ();
926 }
927
928 /* We're done reading the symbol file; finish off complaints. */
929 clear_complaints (&symfile_complaints, 0, verbo);
930 }
931
932 /* Process a symbol file, as either the main file or as a dynamically
933 loaded file.
934
935 ABFD is a BFD already open on the file, as from symfile_bfd_open.
936 This BFD will be closed on error, and is always consumed by this function.
937
938 FROM_TTY says how verbose to be.
939
940 MAINLINE specifies whether this is the main symbol file, or whether
941 it's an extra symbol file such as dynamically loaded code.
942
943 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
944 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
945 non-zero.
946
947 Upon success, returns a pointer to the objfile that was added.
948 Upon failure, jumps back to command level (never returns). */
949 static struct objfile *
950 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
951 struct section_addr_info *addrs,
952 struct section_offsets *offsets,
953 int num_offsets,
954 int mainline, int flags)
955 {
956 struct objfile *objfile;
957 struct partial_symtab *psymtab;
958 char *debugfile = NULL;
959 struct section_addr_info *orig_addrs = NULL;
960 struct cleanup *my_cleanups;
961 const char *name = bfd_get_filename (abfd);
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && mainline
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 mainline, from_tty);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 return objfile; /* No symbols. */
1084
1085 new_symfile_objfile (objfile, mainline, from_tty);
1086
1087 observer_notify_new_objfile (objfile);
1088
1089 bfd_cache_close_all ();
1090 return (objfile);
1091 }
1092
1093
1094 /* Process the symbol file ABFD, as either the main file or as a
1095 dynamically loaded file.
1096
1097 See symbol_file_add_with_addrs_or_offsets's comments for
1098 details. */
1099 struct objfile *
1100 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1101 struct section_addr_info *addrs,
1102 int mainline, int flags)
1103 {
1104 return symbol_file_add_with_addrs_or_offsets (abfd,
1105 from_tty, addrs, 0, 0,
1106 mainline, flags);
1107 }
1108
1109
1110 /* Process a symbol file, as either the main file or as a dynamically
1111 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1112 for details. */
1113 struct objfile *
1114 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1115 int mainline, int flags)
1116 {
1117 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1118 addrs, mainline, flags);
1119 }
1120
1121
1122 /* Call symbol_file_add() with default values and update whatever is
1123 affected by the loading of a new main().
1124 Used when the file is supplied in the gdb command line
1125 and by some targets with special loading requirements.
1126 The auxiliary function, symbol_file_add_main_1(), has the flags
1127 argument for the switches that can only be specified in the symbol_file
1128 command itself. */
1129
1130 void
1131 symbol_file_add_main (char *args, int from_tty)
1132 {
1133 symbol_file_add_main_1 (args, from_tty, 0);
1134 }
1135
1136 static void
1137 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1138 {
1139 symbol_file_add (args, from_tty, NULL, 1, flags);
1140
1141 /* Getting new symbols may change our opinion about
1142 what is frameless. */
1143 reinit_frame_cache ();
1144
1145 set_initial_language ();
1146 }
1147
1148 void
1149 symbol_file_clear (int from_tty)
1150 {
1151 if ((have_full_symbols () || have_partial_symbols ())
1152 && from_tty
1153 && (symfile_objfile
1154 ? !query (_("Discard symbol table from `%s'? "),
1155 symfile_objfile->name)
1156 : !query (_("Discard symbol table? "))))
1157 error (_("Not confirmed."));
1158 free_all_objfiles ();
1159
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well.
1163 */
1164 no_shared_libraries (NULL, from_tty);
1165
1166 symfile_objfile = NULL;
1167 if (from_tty)
1168 printf_unfiltered (_("No symbol file now.\n"));
1169 }
1170
1171 struct build_id
1172 {
1173 size_t size;
1174 gdb_byte data[1];
1175 };
1176
1177 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1178
1179 static struct build_id *
1180 build_id_bfd_get (bfd *abfd)
1181 {
1182 struct build_id *retval;
1183
1184 if (!bfd_check_format (abfd, bfd_object)
1185 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1186 || elf_tdata (abfd)->build_id == NULL)
1187 return NULL;
1188
1189 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1190 retval->size = elf_tdata (abfd)->build_id_size;
1191 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1192
1193 return retval;
1194 }
1195
1196 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1197
1198 static int
1199 build_id_verify (const char *filename, struct build_id *check)
1200 {
1201 bfd *abfd;
1202 struct build_id *found = NULL;
1203 int retval = 0;
1204
1205 /* We expect to be silent on the non-existing files. */
1206 if (remote_filename_p (filename))
1207 abfd = remote_bfd_open (filename, gnutarget);
1208 else
1209 abfd = bfd_openr (filename, gnutarget);
1210 if (abfd == NULL)
1211 return 0;
1212
1213 found = build_id_bfd_get (abfd);
1214
1215 if (found == NULL)
1216 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1217 else if (found->size != check->size
1218 || memcmp (found->data, check->data, found->size) != 0)
1219 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1220 else
1221 retval = 1;
1222
1223 if (!bfd_close (abfd))
1224 warning (_("cannot close \"%s\": %s"), filename,
1225 bfd_errmsg (bfd_get_error ()));
1226
1227 xfree (found);
1228
1229 return retval;
1230 }
1231
1232 static char *
1233 build_id_to_debug_filename (struct build_id *build_id)
1234 {
1235 char *link, *s, *retval = NULL;
1236 gdb_byte *data = build_id->data;
1237 size_t size = build_id->size;
1238
1239 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1240 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1241 + 2 * size + (sizeof ".debug" - 1) + 1);
1242 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1243 if (size > 0)
1244 {
1245 size--;
1246 s += sprintf (s, "%02x", (unsigned) *data++);
1247 }
1248 if (size > 0)
1249 *s++ = '/';
1250 while (size-- > 0)
1251 s += sprintf (s, "%02x", (unsigned) *data++);
1252 strcpy (s, ".debug");
1253
1254 /* lrealpath() is expensive even for the usually non-existent files. */
1255 if (access (link, F_OK) == 0)
1256 retval = lrealpath (link);
1257 xfree (link);
1258
1259 if (retval != NULL && !build_id_verify (retval, build_id))
1260 {
1261 xfree (retval);
1262 retval = NULL;
1263 }
1264
1265 return retval;
1266 }
1267
1268 static char *
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270 {
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276 unsigned char *p;
1277
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
1284
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1294
1295 *crc32_out = crc32;
1296 return contents;
1297 }
1298
1299 static int
1300 separate_debug_file_exists (const char *name, unsigned long crc)
1301 {
1302 unsigned long file_crc = 0;
1303 bfd *abfd;
1304 gdb_byte buffer[8*1024];
1305 int count;
1306
1307 if (remote_filename_p (name))
1308 abfd = remote_bfd_open (name, gnutarget);
1309 else
1310 abfd = bfd_openr (name, gnutarget);
1311
1312 if (!abfd)
1313 return 0;
1314
1315 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1316 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1317
1318 bfd_close (abfd);
1319
1320 return crc == file_crc;
1321 }
1322
1323 char *debug_file_directory = NULL;
1324 static void
1325 show_debug_file_directory (struct ui_file *file, int from_tty,
1326 struct cmd_list_element *c, const char *value)
1327 {
1328 fprintf_filtered (file, _("\
1329 The directory where separate debug symbols are searched for is \"%s\".\n"),
1330 value);
1331 }
1332
1333 #if ! defined (DEBUG_SUBDIRECTORY)
1334 #define DEBUG_SUBDIRECTORY ".debug"
1335 #endif
1336
1337 static char *
1338 find_separate_debug_file (struct objfile *objfile)
1339 {
1340 asection *sect;
1341 char *basename;
1342 char *dir;
1343 char *debugfile;
1344 char *name_copy;
1345 char *canon_name;
1346 bfd_size_type debuglink_size;
1347 unsigned long crc32;
1348 int i;
1349 struct build_id *build_id;
1350
1351 build_id = build_id_bfd_get (objfile->obfd);
1352 if (build_id != NULL)
1353 {
1354 char *build_id_name;
1355
1356 build_id_name = build_id_to_debug_filename (build_id);
1357 xfree (build_id);
1358 /* Prevent looping on a stripped .debug file. */
1359 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1360 {
1361 warning (_("\"%s\": separate debug info file has no debug info"),
1362 build_id_name);
1363 xfree (build_id_name);
1364 }
1365 else if (build_id_name != NULL)
1366 return build_id_name;
1367 }
1368
1369 basename = get_debug_link_info (objfile, &crc32);
1370
1371 if (basename == NULL)
1372 return NULL;
1373
1374 dir = xstrdup (objfile->name);
1375
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. Objfile names should always be absolute and
1378 tilde-expanded, so there should always be a slash in there
1379 somewhere. */
1380 for (i = strlen(dir) - 1; i >= 0; i--)
1381 {
1382 if (IS_DIR_SEPARATOR (dir[i]))
1383 break;
1384 }
1385 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1386 dir[i+1] = '\0';
1387
1388 debugfile = alloca (strlen (debug_file_directory) + 1
1389 + strlen (dir)
1390 + strlen (DEBUG_SUBDIRECTORY)
1391 + strlen ("/")
1392 + strlen (basename)
1393 + 1);
1394
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1397 strcat (debugfile, basename);
1398
1399 if (separate_debug_file_exists (debugfile, crc32))
1400 {
1401 xfree (basename);
1402 xfree (dir);
1403 return xstrdup (debugfile);
1404 }
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1411
1412 if (separate_debug_file_exists (debugfile, crc32))
1413 {
1414 xfree (basename);
1415 xfree (dir);
1416 return xstrdup (debugfile);
1417 }
1418
1419 /* Then try in the global debugfile directory. */
1420 strcpy (debugfile, debug_file_directory);
1421 strcat (debugfile, "/");
1422 strcat (debugfile, dir);
1423 strcat (debugfile, basename);
1424
1425 if (separate_debug_file_exists (debugfile, crc32))
1426 {
1427 xfree (basename);
1428 xfree (dir);
1429 return xstrdup (debugfile);
1430 }
1431
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1434 canon_name = lrealpath (dir);
1435 if (canon_name
1436 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1437 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1438 {
1439 strcpy (debugfile, debug_file_directory);
1440 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
1444 if (separate_debug_file_exists (debugfile, crc32))
1445 {
1446 xfree (canon_name);
1447 xfree (basename);
1448 xfree (dir);
1449 return xstrdup (debugfile);
1450 }
1451 }
1452
1453 if (canon_name)
1454 xfree (canon_name);
1455
1456 xfree (basename);
1457 xfree (dir);
1458 return NULL;
1459 }
1460
1461
1462 /* This is the symbol-file command. Read the file, analyze its
1463 symbols, and add a struct symtab to a symtab list. The syntax of
1464 the command is rather bizarre:
1465
1466 1. The function buildargv implements various quoting conventions
1467 which are undocumented and have little or nothing in common with
1468 the way things are quoted (or not quoted) elsewhere in GDB.
1469
1470 2. Options are used, which are not generally used in GDB (perhaps
1471 "set mapped on", "set readnow on" would be better)
1472
1473 3. The order of options matters, which is contrary to GNU
1474 conventions (because it is confusing and inconvenient). */
1475
1476 void
1477 symbol_file_command (char *args, int from_tty)
1478 {
1479 dont_repeat ();
1480
1481 if (args == NULL)
1482 {
1483 symbol_file_clear (from_tty);
1484 }
1485 else
1486 {
1487 char **argv = gdb_buildargv (args);
1488 int flags = OBJF_USERLOADED;
1489 struct cleanup *cleanups;
1490 char *name = NULL;
1491
1492 cleanups = make_cleanup_freeargv (argv);
1493 while (*argv != NULL)
1494 {
1495 if (strcmp (*argv, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else if (**argv == '-')
1498 error (_("unknown option `%s'"), *argv);
1499 else
1500 {
1501 symbol_file_add_main_1 (*argv, from_tty, flags);
1502 name = *argv;
1503 }
1504
1505 argv++;
1506 }
1507
1508 if (name == NULL)
1509 error (_("no symbol file name was specified"));
1510
1511 do_cleanups (cleanups);
1512 }
1513 }
1514
1515 /* Set the initial language.
1516
1517 FIXME: A better solution would be to record the language in the
1518 psymtab when reading partial symbols, and then use it (if known) to
1519 set the language. This would be a win for formats that encode the
1520 language in an easily discoverable place, such as DWARF. For
1521 stabs, we can jump through hoops looking for specially named
1522 symbols or try to intuit the language from the specific type of
1523 stabs we find, but we can't do that until later when we read in
1524 full symbols. */
1525
1526 void
1527 set_initial_language (void)
1528 {
1529 struct partial_symtab *pst;
1530 enum language lang = language_unknown;
1531
1532 pst = find_main_psymtab ();
1533 if (pst != NULL)
1534 {
1535 if (pst->filename != NULL)
1536 lang = deduce_language_from_filename (pst->filename);
1537
1538 if (lang == language_unknown)
1539 {
1540 /* Make C the default language */
1541 lang = language_c;
1542 }
1543
1544 set_language (lang);
1545 expected_language = current_language; /* Don't warn the user. */
1546 }
1547 }
1548
1549 /* Open the file specified by NAME and hand it off to BFD for
1550 preliminary analysis. Return a newly initialized bfd *, which
1551 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1552 absolute). In case of trouble, error() is called. */
1553
1554 bfd *
1555 symfile_bfd_open (char *name)
1556 {
1557 bfd *sym_bfd;
1558 int desc;
1559 char *absolute_name;
1560
1561 if (remote_filename_p (name))
1562 {
1563 name = xstrdup (name);
1564 sym_bfd = remote_bfd_open (name, gnutarget);
1565 if (!sym_bfd)
1566 {
1567 make_cleanup (xfree, name);
1568 error (_("`%s': can't open to read symbols: %s."), name,
1569 bfd_errmsg (bfd_get_error ()));
1570 }
1571
1572 if (!bfd_check_format (sym_bfd, bfd_object))
1573 {
1574 bfd_close (sym_bfd);
1575 make_cleanup (xfree, name);
1576 error (_("`%s': can't read symbols: %s."), name,
1577 bfd_errmsg (bfd_get_error ()));
1578 }
1579
1580 return sym_bfd;
1581 }
1582
1583 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1584
1585 /* Look down path for it, allocate 2nd new malloc'd copy. */
1586 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1587 O_RDONLY | O_BINARY, 0, &absolute_name);
1588 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1589 if (desc < 0)
1590 {
1591 char *exename = alloca (strlen (name) + 5);
1592 strcat (strcpy (exename, name), ".exe");
1593 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1594 O_RDONLY | O_BINARY, 0, &absolute_name);
1595 }
1596 #endif
1597 if (desc < 0)
1598 {
1599 make_cleanup (xfree, name);
1600 perror_with_name (name);
1601 }
1602
1603 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1604 bfd. It'll be freed in free_objfile(). */
1605 xfree (name);
1606 name = absolute_name;
1607
1608 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1609 if (!sym_bfd)
1610 {
1611 close (desc);
1612 make_cleanup (xfree, name);
1613 error (_("`%s': can't open to read symbols: %s."), name,
1614 bfd_errmsg (bfd_get_error ()));
1615 }
1616 bfd_set_cacheable (sym_bfd, 1);
1617
1618 if (!bfd_check_format (sym_bfd, bfd_object))
1619 {
1620 /* FIXME: should be checking for errors from bfd_close (for one
1621 thing, on error it does not free all the storage associated
1622 with the bfd). */
1623 bfd_close (sym_bfd); /* This also closes desc. */
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628
1629 return sym_bfd;
1630 }
1631
1632 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1633 the section was not found. */
1634
1635 int
1636 get_section_index (struct objfile *objfile, char *section_name)
1637 {
1638 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1639
1640 if (sect)
1641 return sect->index;
1642 else
1643 return -1;
1644 }
1645
1646 /* Link SF into the global symtab_fns list. Called on startup by the
1647 _initialize routine in each object file format reader, to register
1648 information about each format the the reader is prepared to
1649 handle. */
1650
1651 void
1652 add_symtab_fns (struct sym_fns *sf)
1653 {
1654 sf->next = symtab_fns;
1655 symtab_fns = sf;
1656 }
1657
1658 /* Initialize OBJFILE to read symbols from its associated BFD. It
1659 either returns or calls error(). The result is an initialized
1660 struct sym_fns in the objfile structure, that contains cached
1661 information about the symbol file. */
1662
1663 static struct sym_fns *
1664 find_sym_fns (bfd *abfd)
1665 {
1666 struct sym_fns *sf;
1667 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1668
1669 if (our_flavour == bfd_target_srec_flavour
1670 || our_flavour == bfd_target_ihex_flavour
1671 || our_flavour == bfd_target_tekhex_flavour)
1672 return NULL; /* No symbols. */
1673
1674 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1675 if (our_flavour == sf->sym_flavour)
1676 return sf;
1677
1678 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1679 bfd_get_target (abfd));
1680 }
1681 \f
1682
1683 /* This function runs the load command of our current target. */
1684
1685 static void
1686 load_command (char *arg, int from_tty)
1687 {
1688 /* The user might be reloading because the binary has changed. Take
1689 this opportunity to check. */
1690 reopen_exec_file ();
1691 reread_symbols ();
1692
1693 if (arg == NULL)
1694 {
1695 char *parg;
1696 int count = 0;
1697
1698 parg = arg = get_exec_file (1);
1699
1700 /* Count how many \ " ' tab space there are in the name. */
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1702 {
1703 parg++;
1704 count++;
1705 }
1706
1707 if (count)
1708 {
1709 /* We need to quote this string so buildargv can pull it apart. */
1710 char *temp = xmalloc (strlen (arg) + count + 1 );
1711 char *ptemp = temp;
1712 char *prev;
1713
1714 make_cleanup (xfree, temp);
1715
1716 prev = parg = arg;
1717 while ((parg = strpbrk (parg, "\\\"'\t ")))
1718 {
1719 strncpy (ptemp, prev, parg - prev);
1720 ptemp += parg - prev;
1721 prev = parg++;
1722 *ptemp++ = '\\';
1723 }
1724 strcpy (ptemp, prev);
1725
1726 arg = temp;
1727 }
1728 }
1729
1730 target_load (arg, from_tty);
1731
1732 /* After re-loading the executable, we don't really know which
1733 overlays are mapped any more. */
1734 overlay_cache_invalid = 1;
1735 }
1736
1737 /* This version of "load" should be usable for any target. Currently
1738 it is just used for remote targets, not inftarg.c or core files,
1739 on the theory that only in that case is it useful.
1740
1741 Avoiding xmodem and the like seems like a win (a) because we don't have
1742 to worry about finding it, and (b) On VMS, fork() is very slow and so
1743 we don't want to run a subprocess. On the other hand, I'm not sure how
1744 performance compares. */
1745
1746 static int validate_download = 0;
1747
1748 /* Callback service function for generic_load (bfd_map_over_sections). */
1749
1750 static void
1751 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1752 {
1753 bfd_size_type *sum = data;
1754
1755 *sum += bfd_get_section_size (asec);
1756 }
1757
1758 /* Opaque data for load_section_callback. */
1759 struct load_section_data {
1760 unsigned long load_offset;
1761 struct load_progress_data *progress_data;
1762 VEC(memory_write_request_s) *requests;
1763 };
1764
1765 /* Opaque data for load_progress. */
1766 struct load_progress_data {
1767 /* Cumulative data. */
1768 unsigned long write_count;
1769 unsigned long data_count;
1770 bfd_size_type total_size;
1771 };
1772
1773 /* Opaque data for load_progress for a single section. */
1774 struct load_progress_section_data {
1775 struct load_progress_data *cumulative;
1776
1777 /* Per-section data. */
1778 const char *section_name;
1779 ULONGEST section_sent;
1780 ULONGEST section_size;
1781 CORE_ADDR lma;
1782 gdb_byte *buffer;
1783 };
1784
1785 /* Target write callback routine for progress reporting. */
1786
1787 static void
1788 load_progress (ULONGEST bytes, void *untyped_arg)
1789 {
1790 struct load_progress_section_data *args = untyped_arg;
1791 struct load_progress_data *totals;
1792
1793 if (args == NULL)
1794 /* Writing padding data. No easy way to get at the cumulative
1795 stats, so just ignore this. */
1796 return;
1797
1798 totals = args->cumulative;
1799
1800 if (bytes == 0 && args->section_sent == 0)
1801 {
1802 /* The write is just starting. Let the user know we've started
1803 this section. */
1804 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1805 args->section_name, paddr_nz (args->section_size),
1806 paddr_nz (args->lma));
1807 return;
1808 }
1809
1810 if (validate_download)
1811 {
1812 /* Broken memories and broken monitors manifest themselves here
1813 when bring new computers to life. This doubles already slow
1814 downloads. */
1815 /* NOTE: cagney/1999-10-18: A more efficient implementation
1816 might add a verify_memory() method to the target vector and
1817 then use that. remote.c could implement that method using
1818 the ``qCRC'' packet. */
1819 gdb_byte *check = xmalloc (bytes);
1820 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1821
1822 if (target_read_memory (args->lma, check, bytes) != 0)
1823 error (_("Download verify read failed at 0x%s"),
1824 paddr (args->lma));
1825 if (memcmp (args->buffer, check, bytes) != 0)
1826 error (_("Download verify compare failed at 0x%s"),
1827 paddr (args->lma));
1828 do_cleanups (verify_cleanups);
1829 }
1830 totals->data_count += bytes;
1831 args->lma += bytes;
1832 args->buffer += bytes;
1833 totals->write_count += 1;
1834 args->section_sent += bytes;
1835 if (quit_flag
1836 || (deprecated_ui_load_progress_hook != NULL
1837 && deprecated_ui_load_progress_hook (args->section_name,
1838 args->section_sent)))
1839 error (_("Canceled the download"));
1840
1841 if (deprecated_show_load_progress != NULL)
1842 deprecated_show_load_progress (args->section_name,
1843 args->section_sent,
1844 args->section_size,
1845 totals->data_count,
1846 totals->total_size);
1847 }
1848
1849 /* Callback service function for generic_load (bfd_map_over_sections). */
1850
1851 static void
1852 load_section_callback (bfd *abfd, asection *asec, void *data)
1853 {
1854 struct memory_write_request *new_request;
1855 struct load_section_data *args = data;
1856 struct load_progress_section_data *section_data;
1857 bfd_size_type size = bfd_get_section_size (asec);
1858 gdb_byte *buffer;
1859 const char *sect_name = bfd_get_section_name (abfd, asec);
1860
1861 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1862 return;
1863
1864 if (size == 0)
1865 return;
1866
1867 new_request = VEC_safe_push (memory_write_request_s,
1868 args->requests, NULL);
1869 memset (new_request, 0, sizeof (struct memory_write_request));
1870 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1871 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1872 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1873 new_request->data = xmalloc (size);
1874 new_request->baton = section_data;
1875
1876 buffer = new_request->data;
1877
1878 section_data->cumulative = args->progress_data;
1879 section_data->section_name = sect_name;
1880 section_data->section_size = size;
1881 section_data->lma = new_request->begin;
1882 section_data->buffer = buffer;
1883
1884 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1885 }
1886
1887 /* Clean up an entire memory request vector, including load
1888 data and progress records. */
1889
1890 static void
1891 clear_memory_write_data (void *arg)
1892 {
1893 VEC(memory_write_request_s) **vec_p = arg;
1894 VEC(memory_write_request_s) *vec = *vec_p;
1895 int i;
1896 struct memory_write_request *mr;
1897
1898 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1899 {
1900 xfree (mr->data);
1901 xfree (mr->baton);
1902 }
1903 VEC_free (memory_write_request_s, vec);
1904 }
1905
1906 void
1907 generic_load (char *args, int from_tty)
1908 {
1909 bfd *loadfile_bfd;
1910 struct timeval start_time, end_time;
1911 char *filename;
1912 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1913 struct load_section_data cbdata;
1914 struct load_progress_data total_progress;
1915
1916 CORE_ADDR entry;
1917 char **argv;
1918
1919 memset (&cbdata, 0, sizeof (cbdata));
1920 memset (&total_progress, 0, sizeof (total_progress));
1921 cbdata.progress_data = &total_progress;
1922
1923 make_cleanup (clear_memory_write_data, &cbdata.requests);
1924
1925 if (args == NULL)
1926 error_no_arg (_("file to load"));
1927
1928 argv = gdb_buildargv (args);
1929 make_cleanup_freeargv (argv);
1930
1931 filename = tilde_expand (argv[0]);
1932 make_cleanup (xfree, filename);
1933
1934 if (argv[1] != NULL)
1935 {
1936 char *endptr;
1937
1938 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1939
1940 /* If the last word was not a valid number then
1941 treat it as a file name with spaces in. */
1942 if (argv[1] == endptr)
1943 error (_("Invalid download offset:%s."), argv[1]);
1944
1945 if (argv[2] != NULL)
1946 error (_("Too many parameters."));
1947 }
1948
1949 /* Open the file for loading. */
1950 loadfile_bfd = bfd_openr (filename, gnutarget);
1951 if (loadfile_bfd == NULL)
1952 {
1953 perror_with_name (filename);
1954 return;
1955 }
1956
1957 /* FIXME: should be checking for errors from bfd_close (for one thing,
1958 on error it does not free all the storage associated with the
1959 bfd). */
1960 make_cleanup_bfd_close (loadfile_bfd);
1961
1962 if (!bfd_check_format (loadfile_bfd, bfd_object))
1963 {
1964 error (_("\"%s\" is not an object file: %s"), filename,
1965 bfd_errmsg (bfd_get_error ()));
1966 }
1967
1968 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1969 (void *) &total_progress.total_size);
1970
1971 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1972
1973 gettimeofday (&start_time, NULL);
1974
1975 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1976 load_progress) != 0)
1977 error (_("Load failed"));
1978
1979 gettimeofday (&end_time, NULL);
1980
1981 entry = bfd_get_start_address (loadfile_bfd);
1982 ui_out_text (uiout, "Start address ");
1983 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1984 ui_out_text (uiout, ", load size ");
1985 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1986 ui_out_text (uiout, "\n");
1987 /* We were doing this in remote-mips.c, I suspect it is right
1988 for other targets too. */
1989 write_pc (entry);
1990
1991 /* FIXME: are we supposed to call symbol_file_add or not? According
1992 to a comment from remote-mips.c (where a call to symbol_file_add
1993 was commented out), making the call confuses GDB if more than one
1994 file is loaded in. Some targets do (e.g., remote-vx.c) but
1995 others don't (or didn't - perhaps they have all been deleted). */
1996
1997 print_transfer_performance (gdb_stdout, total_progress.data_count,
1998 total_progress.write_count,
1999 &start_time, &end_time);
2000
2001 do_cleanups (old_cleanups);
2002 }
2003
2004 /* Report how fast the transfer went. */
2005
2006 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2007 replaced by print_transfer_performance (with a very different
2008 function signature). */
2009
2010 void
2011 report_transfer_performance (unsigned long data_count, time_t start_time,
2012 time_t end_time)
2013 {
2014 struct timeval start, end;
2015
2016 start.tv_sec = start_time;
2017 start.tv_usec = 0;
2018 end.tv_sec = end_time;
2019 end.tv_usec = 0;
2020
2021 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2022 }
2023
2024 void
2025 print_transfer_performance (struct ui_file *stream,
2026 unsigned long data_count,
2027 unsigned long write_count,
2028 const struct timeval *start_time,
2029 const struct timeval *end_time)
2030 {
2031 ULONGEST time_count;
2032
2033 /* Compute the elapsed time in milliseconds, as a tradeoff between
2034 accuracy and overflow. */
2035 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2036 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2037
2038 ui_out_text (uiout, "Transfer rate: ");
2039 if (time_count > 0)
2040 {
2041 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2042
2043 if (ui_out_is_mi_like_p (uiout))
2044 {
2045 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2046 ui_out_text (uiout, " bits/sec");
2047 }
2048 else if (rate < 1024)
2049 {
2050 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2051 ui_out_text (uiout, " bytes/sec");
2052 }
2053 else
2054 {
2055 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2056 ui_out_text (uiout, " KB/sec");
2057 }
2058 }
2059 else
2060 {
2061 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2062 ui_out_text (uiout, " bits in <1 sec");
2063 }
2064 if (write_count > 0)
2065 {
2066 ui_out_text (uiout, ", ");
2067 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2068 ui_out_text (uiout, " bytes/write");
2069 }
2070 ui_out_text (uiout, ".\n");
2071 }
2072
2073 /* This function allows the addition of incrementally linked object files.
2074 It does not modify any state in the target, only in the debugger. */
2075 /* Note: ezannoni 2000-04-13 This function/command used to have a
2076 special case syntax for the rombug target (Rombug is the boot
2077 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2078 rombug case, the user doesn't need to supply a text address,
2079 instead a call to target_link() (in target.c) would supply the
2080 value to use. We are now discontinuing this type of ad hoc syntax. */
2081
2082 static void
2083 add_symbol_file_command (char *args, int from_tty)
2084 {
2085 char *filename = NULL;
2086 int flags = OBJF_USERLOADED;
2087 char *arg;
2088 int expecting_option = 0;
2089 int section_index = 0;
2090 int argcnt = 0;
2091 int sec_num = 0;
2092 int i;
2093 int expecting_sec_name = 0;
2094 int expecting_sec_addr = 0;
2095 char **argv;
2096
2097 struct sect_opt
2098 {
2099 char *name;
2100 char *value;
2101 };
2102
2103 struct section_addr_info *section_addrs;
2104 struct sect_opt *sect_opts = NULL;
2105 size_t num_sect_opts = 0;
2106 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2107
2108 num_sect_opts = 16;
2109 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2110 * sizeof (struct sect_opt));
2111
2112 dont_repeat ();
2113
2114 if (args == NULL)
2115 error (_("add-symbol-file takes a file name and an address"));
2116
2117 argv = gdb_buildargv (args);
2118 make_cleanup_freeargv (argv);
2119
2120 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2121 {
2122 /* Process the argument. */
2123 if (argcnt == 0)
2124 {
2125 /* The first argument is the file name. */
2126 filename = tilde_expand (arg);
2127 make_cleanup (xfree, filename);
2128 }
2129 else
2130 if (argcnt == 1)
2131 {
2132 /* The second argument is always the text address at which
2133 to load the program. */
2134 sect_opts[section_index].name = ".text";
2135 sect_opts[section_index].value = arg;
2136 if (++section_index >= num_sect_opts)
2137 {
2138 num_sect_opts *= 2;
2139 sect_opts = ((struct sect_opt *)
2140 xrealloc (sect_opts,
2141 num_sect_opts
2142 * sizeof (struct sect_opt)));
2143 }
2144 }
2145 else
2146 {
2147 /* It's an option (starting with '-') or it's an argument
2148 to an option */
2149
2150 if (*arg == '-')
2151 {
2152 if (strcmp (arg, "-readnow") == 0)
2153 flags |= OBJF_READNOW;
2154 else if (strcmp (arg, "-s") == 0)
2155 {
2156 expecting_sec_name = 1;
2157 expecting_sec_addr = 1;
2158 }
2159 }
2160 else
2161 {
2162 if (expecting_sec_name)
2163 {
2164 sect_opts[section_index].name = arg;
2165 expecting_sec_name = 0;
2166 }
2167 else
2168 if (expecting_sec_addr)
2169 {
2170 sect_opts[section_index].value = arg;
2171 expecting_sec_addr = 0;
2172 if (++section_index >= num_sect_opts)
2173 {
2174 num_sect_opts *= 2;
2175 sect_opts = ((struct sect_opt *)
2176 xrealloc (sect_opts,
2177 num_sect_opts
2178 * sizeof (struct sect_opt)));
2179 }
2180 }
2181 else
2182 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2183 }
2184 }
2185 }
2186
2187 /* This command takes at least two arguments. The first one is a
2188 filename, and the second is the address where this file has been
2189 loaded. Abort now if this address hasn't been provided by the
2190 user. */
2191 if (section_index < 1)
2192 error (_("The address where %s has been loaded is missing"), filename);
2193
2194 /* Print the prompt for the query below. And save the arguments into
2195 a sect_addr_info structure to be passed around to other
2196 functions. We have to split this up into separate print
2197 statements because hex_string returns a local static
2198 string. */
2199
2200 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2201 section_addrs = alloc_section_addr_info (section_index);
2202 make_cleanup (xfree, section_addrs);
2203 for (i = 0; i < section_index; i++)
2204 {
2205 CORE_ADDR addr;
2206 char *val = sect_opts[i].value;
2207 char *sec = sect_opts[i].name;
2208
2209 addr = parse_and_eval_address (val);
2210
2211 /* Here we store the section offsets in the order they were
2212 entered on the command line. */
2213 section_addrs->other[sec_num].name = sec;
2214 section_addrs->other[sec_num].addr = addr;
2215 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2216 sec_num++;
2217
2218 /* The object's sections are initialized when a
2219 call is made to build_objfile_section_table (objfile).
2220 This happens in reread_symbols.
2221 At this point, we don't know what file type this is,
2222 so we can't determine what section names are valid. */
2223 }
2224
2225 if (from_tty && (!query ("%s", "")))
2226 error (_("Not confirmed."));
2227
2228 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2229
2230 /* Getting new symbols may change our opinion about what is
2231 frameless. */
2232 reinit_frame_cache ();
2233 do_cleanups (my_cleanups);
2234 }
2235 \f
2236 static void
2237 add_shared_symbol_files_command (char *args, int from_tty)
2238 {
2239 #ifdef ADD_SHARED_SYMBOL_FILES
2240 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2241 #else
2242 error (_("This command is not available in this configuration of GDB."));
2243 #endif
2244 }
2245 \f
2246 /* Re-read symbols if a symbol-file has changed. */
2247 void
2248 reread_symbols (void)
2249 {
2250 struct objfile *objfile;
2251 long new_modtime;
2252 int reread_one = 0;
2253 struct stat new_statbuf;
2254 int res;
2255
2256 /* With the addition of shared libraries, this should be modified,
2257 the load time should be saved in the partial symbol tables, since
2258 different tables may come from different source files. FIXME.
2259 This routine should then walk down each partial symbol table
2260 and see if the symbol table that it originates from has been changed */
2261
2262 for (objfile = object_files; objfile; objfile = objfile->next)
2263 {
2264 if (objfile->obfd)
2265 {
2266 #ifdef DEPRECATED_IBM6000_TARGET
2267 /* If this object is from a shared library, then you should
2268 stat on the library name, not member name. */
2269
2270 if (objfile->obfd->my_archive)
2271 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2272 else
2273 #endif
2274 res = stat (objfile->name, &new_statbuf);
2275 if (res != 0)
2276 {
2277 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2278 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2279 objfile->name);
2280 continue;
2281 }
2282 new_modtime = new_statbuf.st_mtime;
2283 if (new_modtime != objfile->mtime)
2284 {
2285 struct cleanup *old_cleanups;
2286 struct section_offsets *offsets;
2287 int num_offsets;
2288 char *obfd_filename;
2289
2290 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2291 objfile->name);
2292
2293 /* There are various functions like symbol_file_add,
2294 symfile_bfd_open, syms_from_objfile, etc., which might
2295 appear to do what we want. But they have various other
2296 effects which we *don't* want. So we just do stuff
2297 ourselves. We don't worry about mapped files (for one thing,
2298 any mapped file will be out of date). */
2299
2300 /* If we get an error, blow away this objfile (not sure if
2301 that is the correct response for things like shared
2302 libraries). */
2303 old_cleanups = make_cleanup_free_objfile (objfile);
2304 /* We need to do this whenever any symbols go away. */
2305 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2306
2307 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2308 bfd_get_filename (exec_bfd)) == 0)
2309 {
2310 /* Reload EXEC_BFD without asking anything. */
2311
2312 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2313 }
2314
2315 /* Clean up any state BFD has sitting around. We don't need
2316 to close the descriptor but BFD lacks a way of closing the
2317 BFD without closing the descriptor. */
2318 obfd_filename = bfd_get_filename (objfile->obfd);
2319 if (!bfd_close (objfile->obfd))
2320 error (_("Can't close BFD for %s: %s"), objfile->name,
2321 bfd_errmsg (bfd_get_error ()));
2322 if (remote_filename_p (obfd_filename))
2323 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2324 else
2325 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2326 if (objfile->obfd == NULL)
2327 error (_("Can't open %s to read symbols."), objfile->name);
2328 /* bfd_openr sets cacheable to true, which is what we want. */
2329 if (!bfd_check_format (objfile->obfd, bfd_object))
2330 error (_("Can't read symbols from %s: %s."), objfile->name,
2331 bfd_errmsg (bfd_get_error ()));
2332
2333 /* Save the offsets, we will nuke them with the rest of the
2334 objfile_obstack. */
2335 num_offsets = objfile->num_sections;
2336 offsets = ((struct section_offsets *)
2337 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2338 memcpy (offsets, objfile->section_offsets,
2339 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2340
2341 /* Remove any references to this objfile in the global
2342 value lists. */
2343 preserve_values (objfile);
2344
2345 /* Nuke all the state that we will re-read. Much of the following
2346 code which sets things to NULL really is necessary to tell
2347 other parts of GDB that there is nothing currently there. */
2348
2349 /* FIXME: Do we have to free a whole linked list, or is this
2350 enough? */
2351 if (objfile->global_psymbols.list)
2352 xfree (objfile->global_psymbols.list);
2353 memset (&objfile->global_psymbols, 0,
2354 sizeof (objfile->global_psymbols));
2355 if (objfile->static_psymbols.list)
2356 xfree (objfile->static_psymbols.list);
2357 memset (&objfile->static_psymbols, 0,
2358 sizeof (objfile->static_psymbols));
2359
2360 /* Free the obstacks for non-reusable objfiles */
2361 bcache_xfree (objfile->psymbol_cache);
2362 objfile->psymbol_cache = bcache_xmalloc ();
2363 bcache_xfree (objfile->macro_cache);
2364 objfile->macro_cache = bcache_xmalloc ();
2365 if (objfile->demangled_names_hash != NULL)
2366 {
2367 htab_delete (objfile->demangled_names_hash);
2368 objfile->demangled_names_hash = NULL;
2369 }
2370 obstack_free (&objfile->objfile_obstack, 0);
2371 objfile->sections = NULL;
2372 objfile->symtabs = NULL;
2373 objfile->psymtabs = NULL;
2374 objfile->free_psymtabs = NULL;
2375 objfile->cp_namespace_symtab = NULL;
2376 objfile->msymbols = NULL;
2377 objfile->deprecated_sym_private = NULL;
2378 objfile->minimal_symbol_count = 0;
2379 memset (&objfile->msymbol_hash, 0,
2380 sizeof (objfile->msymbol_hash));
2381 memset (&objfile->msymbol_demangled_hash, 0,
2382 sizeof (objfile->msymbol_demangled_hash));
2383 clear_objfile_data (objfile);
2384 if (objfile->sf != NULL)
2385 {
2386 (*objfile->sf->sym_finish) (objfile);
2387 }
2388
2389 objfile->psymbol_cache = bcache_xmalloc ();
2390 objfile->macro_cache = bcache_xmalloc ();
2391 /* obstack_init also initializes the obstack so it is
2392 empty. We could use obstack_specify_allocation but
2393 gdb_obstack.h specifies the alloc/dealloc
2394 functions. */
2395 obstack_init (&objfile->objfile_obstack);
2396 if (build_objfile_section_table (objfile))
2397 {
2398 error (_("Can't find the file sections in `%s': %s"),
2399 objfile->name, bfd_errmsg (bfd_get_error ()));
2400 }
2401 terminate_minimal_symbol_table (objfile);
2402
2403 /* We use the same section offsets as from last time. I'm not
2404 sure whether that is always correct for shared libraries. */
2405 objfile->section_offsets = (struct section_offsets *)
2406 obstack_alloc (&objfile->objfile_obstack,
2407 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2408 memcpy (objfile->section_offsets, offsets,
2409 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2410 objfile->num_sections = num_offsets;
2411
2412 /* What the hell is sym_new_init for, anyway? The concept of
2413 distinguishing between the main file and additional files
2414 in this way seems rather dubious. */
2415 if (objfile == symfile_objfile)
2416 {
2417 (*objfile->sf->sym_new_init) (objfile);
2418 }
2419
2420 (*objfile->sf->sym_init) (objfile);
2421 clear_complaints (&symfile_complaints, 1, 1);
2422 /* The "mainline" parameter is a hideous hack; I think leaving it
2423 zero is OK since dbxread.c also does what it needs to do if
2424 objfile->global_psymbols.size is 0. */
2425 (*objfile->sf->sym_read) (objfile, 0);
2426 if (!have_partial_symbols () && !have_full_symbols ())
2427 {
2428 wrap_here ("");
2429 printf_unfiltered (_("(no debugging symbols found)\n"));
2430 wrap_here ("");
2431 }
2432
2433 /* We're done reading the symbol file; finish off complaints. */
2434 clear_complaints (&symfile_complaints, 0, 1);
2435
2436 /* Getting new symbols may change our opinion about what is
2437 frameless. */
2438
2439 reinit_frame_cache ();
2440
2441 /* Discard cleanups as symbol reading was successful. */
2442 discard_cleanups (old_cleanups);
2443
2444 /* If the mtime has changed between the time we set new_modtime
2445 and now, we *want* this to be out of date, so don't call stat
2446 again now. */
2447 objfile->mtime = new_modtime;
2448 reread_one = 1;
2449 reread_separate_symbols (objfile);
2450 init_entry_point_info (objfile);
2451 }
2452 }
2453 }
2454
2455 if (reread_one)
2456 {
2457 clear_symtab_users ();
2458 /* At least one objfile has changed, so we can consider that
2459 the executable we're debugging has changed too. */
2460 observer_notify_executable_changed ();
2461 }
2462
2463 }
2464
2465
2466 /* Handle separate debug info for OBJFILE, which has just been
2467 re-read:
2468 - If we had separate debug info before, but now we don't, get rid
2469 of the separated objfile.
2470 - If we didn't have separated debug info before, but now we do,
2471 read in the new separated debug info file.
2472 - If the debug link points to a different file, toss the old one
2473 and read the new one.
2474 This function does *not* handle the case where objfile is still
2475 using the same separate debug info file, but that file's timestamp
2476 has changed. That case should be handled by the loop in
2477 reread_symbols already. */
2478 static void
2479 reread_separate_symbols (struct objfile *objfile)
2480 {
2481 char *debug_file;
2482 unsigned long crc32;
2483
2484 /* Does the updated objfile's debug info live in a
2485 separate file? */
2486 debug_file = find_separate_debug_file (objfile);
2487
2488 if (objfile->separate_debug_objfile)
2489 {
2490 /* There are two cases where we need to get rid of
2491 the old separated debug info objfile:
2492 - if the new primary objfile doesn't have
2493 separated debug info, or
2494 - if the new primary objfile has separate debug
2495 info, but it's under a different filename.
2496
2497 If the old and new objfiles both have separate
2498 debug info, under the same filename, then we're
2499 okay --- if the separated file's contents have
2500 changed, we will have caught that when we
2501 visited it in this function's outermost
2502 loop. */
2503 if (! debug_file
2504 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2505 free_objfile (objfile->separate_debug_objfile);
2506 }
2507
2508 /* If the new objfile has separate debug info, and we
2509 haven't loaded it already, do so now. */
2510 if (debug_file
2511 && ! objfile->separate_debug_objfile)
2512 {
2513 /* Use the same section offset table as objfile itself.
2514 Preserve the flags from objfile that make sense. */
2515 objfile->separate_debug_objfile
2516 = (symbol_file_add_with_addrs_or_offsets
2517 (symfile_bfd_open (debug_file),
2518 info_verbose, /* from_tty: Don't override the default. */
2519 0, /* No addr table. */
2520 objfile->section_offsets, objfile->num_sections,
2521 0, /* Not mainline. See comments about this above. */
2522 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2523 | OBJF_USERLOADED)));
2524 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2525 = objfile;
2526 }
2527 if (debug_file)
2528 xfree (debug_file);
2529 }
2530
2531
2532 \f
2533
2534
2535 typedef struct
2536 {
2537 char *ext;
2538 enum language lang;
2539 }
2540 filename_language;
2541
2542 static filename_language *filename_language_table;
2543 static int fl_table_size, fl_table_next;
2544
2545 static void
2546 add_filename_language (char *ext, enum language lang)
2547 {
2548 if (fl_table_next >= fl_table_size)
2549 {
2550 fl_table_size += 10;
2551 filename_language_table =
2552 xrealloc (filename_language_table,
2553 fl_table_size * sizeof (*filename_language_table));
2554 }
2555
2556 filename_language_table[fl_table_next].ext = xstrdup (ext);
2557 filename_language_table[fl_table_next].lang = lang;
2558 fl_table_next++;
2559 }
2560
2561 static char *ext_args;
2562 static void
2563 show_ext_args (struct ui_file *file, int from_tty,
2564 struct cmd_list_element *c, const char *value)
2565 {
2566 fprintf_filtered (file, _("\
2567 Mapping between filename extension and source language is \"%s\".\n"),
2568 value);
2569 }
2570
2571 static void
2572 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2573 {
2574 int i;
2575 char *cp = ext_args;
2576 enum language lang;
2577
2578 /* First arg is filename extension, starting with '.' */
2579 if (*cp != '.')
2580 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2581
2582 /* Find end of first arg. */
2583 while (*cp && !isspace (*cp))
2584 cp++;
2585
2586 if (*cp == '\0')
2587 error (_("'%s': two arguments required -- filename extension and language"),
2588 ext_args);
2589
2590 /* Null-terminate first arg */
2591 *cp++ = '\0';
2592
2593 /* Find beginning of second arg, which should be a source language. */
2594 while (*cp && isspace (*cp))
2595 cp++;
2596
2597 if (*cp == '\0')
2598 error (_("'%s': two arguments required -- filename extension and language"),
2599 ext_args);
2600
2601 /* Lookup the language from among those we know. */
2602 lang = language_enum (cp);
2603
2604 /* Now lookup the filename extension: do we already know it? */
2605 for (i = 0; i < fl_table_next; i++)
2606 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2607 break;
2608
2609 if (i >= fl_table_next)
2610 {
2611 /* new file extension */
2612 add_filename_language (ext_args, lang);
2613 }
2614 else
2615 {
2616 /* redefining a previously known filename extension */
2617
2618 /* if (from_tty) */
2619 /* query ("Really make files of type %s '%s'?", */
2620 /* ext_args, language_str (lang)); */
2621
2622 xfree (filename_language_table[i].ext);
2623 filename_language_table[i].ext = xstrdup (ext_args);
2624 filename_language_table[i].lang = lang;
2625 }
2626 }
2627
2628 static void
2629 info_ext_lang_command (char *args, int from_tty)
2630 {
2631 int i;
2632
2633 printf_filtered (_("Filename extensions and the languages they represent:"));
2634 printf_filtered ("\n\n");
2635 for (i = 0; i < fl_table_next; i++)
2636 printf_filtered ("\t%s\t- %s\n",
2637 filename_language_table[i].ext,
2638 language_str (filename_language_table[i].lang));
2639 }
2640
2641 static void
2642 init_filename_language_table (void)
2643 {
2644 if (fl_table_size == 0) /* protect against repetition */
2645 {
2646 fl_table_size = 20;
2647 fl_table_next = 0;
2648 filename_language_table =
2649 xmalloc (fl_table_size * sizeof (*filename_language_table));
2650 add_filename_language (".c", language_c);
2651 add_filename_language (".C", language_cplus);
2652 add_filename_language (".cc", language_cplus);
2653 add_filename_language (".cp", language_cplus);
2654 add_filename_language (".cpp", language_cplus);
2655 add_filename_language (".cxx", language_cplus);
2656 add_filename_language (".c++", language_cplus);
2657 add_filename_language (".java", language_java);
2658 add_filename_language (".class", language_java);
2659 add_filename_language (".m", language_objc);
2660 add_filename_language (".f", language_fortran);
2661 add_filename_language (".F", language_fortran);
2662 add_filename_language (".s", language_asm);
2663 add_filename_language (".sx", language_asm);
2664 add_filename_language (".S", language_asm);
2665 add_filename_language (".pas", language_pascal);
2666 add_filename_language (".p", language_pascal);
2667 add_filename_language (".pp", language_pascal);
2668 add_filename_language (".adb", language_ada);
2669 add_filename_language (".ads", language_ada);
2670 add_filename_language (".a", language_ada);
2671 add_filename_language (".ada", language_ada);
2672 }
2673 }
2674
2675 enum language
2676 deduce_language_from_filename (char *filename)
2677 {
2678 int i;
2679 char *cp;
2680
2681 if (filename != NULL)
2682 if ((cp = strrchr (filename, '.')) != NULL)
2683 for (i = 0; i < fl_table_next; i++)
2684 if (strcmp (cp, filename_language_table[i].ext) == 0)
2685 return filename_language_table[i].lang;
2686
2687 return language_unknown;
2688 }
2689 \f
2690 /* allocate_symtab:
2691
2692 Allocate and partly initialize a new symbol table. Return a pointer
2693 to it. error() if no space.
2694
2695 Caller must set these fields:
2696 LINETABLE(symtab)
2697 symtab->blockvector
2698 symtab->dirname
2699 symtab->free_code
2700 symtab->free_ptr
2701 possibly free_named_symtabs (symtab->filename);
2702 */
2703
2704 struct symtab *
2705 allocate_symtab (char *filename, struct objfile *objfile)
2706 {
2707 struct symtab *symtab;
2708
2709 symtab = (struct symtab *)
2710 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2711 memset (symtab, 0, sizeof (*symtab));
2712 symtab->filename = obsavestring (filename, strlen (filename),
2713 &objfile->objfile_obstack);
2714 symtab->fullname = NULL;
2715 symtab->language = deduce_language_from_filename (filename);
2716 symtab->debugformat = obsavestring ("unknown", 7,
2717 &objfile->objfile_obstack);
2718
2719 /* Hook it to the objfile it comes from */
2720
2721 symtab->objfile = objfile;
2722 symtab->next = objfile->symtabs;
2723 objfile->symtabs = symtab;
2724
2725 return (symtab);
2726 }
2727
2728 struct partial_symtab *
2729 allocate_psymtab (char *filename, struct objfile *objfile)
2730 {
2731 struct partial_symtab *psymtab;
2732
2733 if (objfile->free_psymtabs)
2734 {
2735 psymtab = objfile->free_psymtabs;
2736 objfile->free_psymtabs = psymtab->next;
2737 }
2738 else
2739 psymtab = (struct partial_symtab *)
2740 obstack_alloc (&objfile->objfile_obstack,
2741 sizeof (struct partial_symtab));
2742
2743 memset (psymtab, 0, sizeof (struct partial_symtab));
2744 psymtab->filename = obsavestring (filename, strlen (filename),
2745 &objfile->objfile_obstack);
2746 psymtab->symtab = NULL;
2747
2748 /* Prepend it to the psymtab list for the objfile it belongs to.
2749 Psymtabs are searched in most recent inserted -> least recent
2750 inserted order. */
2751
2752 psymtab->objfile = objfile;
2753 psymtab->next = objfile->psymtabs;
2754 objfile->psymtabs = psymtab;
2755 #if 0
2756 {
2757 struct partial_symtab **prev_pst;
2758 psymtab->objfile = objfile;
2759 psymtab->next = NULL;
2760 prev_pst = &(objfile->psymtabs);
2761 while ((*prev_pst) != NULL)
2762 prev_pst = &((*prev_pst)->next);
2763 (*prev_pst) = psymtab;
2764 }
2765 #endif
2766
2767 return (psymtab);
2768 }
2769
2770 void
2771 discard_psymtab (struct partial_symtab *pst)
2772 {
2773 struct partial_symtab **prev_pst;
2774
2775 /* From dbxread.c:
2776 Empty psymtabs happen as a result of header files which don't
2777 have any symbols in them. There can be a lot of them. But this
2778 check is wrong, in that a psymtab with N_SLINE entries but
2779 nothing else is not empty, but we don't realize that. Fixing
2780 that without slowing things down might be tricky. */
2781
2782 /* First, snip it out of the psymtab chain */
2783
2784 prev_pst = &(pst->objfile->psymtabs);
2785 while ((*prev_pst) != pst)
2786 prev_pst = &((*prev_pst)->next);
2787 (*prev_pst) = pst->next;
2788
2789 /* Next, put it on a free list for recycling */
2790
2791 pst->next = pst->objfile->free_psymtabs;
2792 pst->objfile->free_psymtabs = pst;
2793 }
2794 \f
2795
2796 /* Reset all data structures in gdb which may contain references to symbol
2797 table data. */
2798
2799 void
2800 clear_symtab_users (void)
2801 {
2802 /* Someday, we should do better than this, by only blowing away
2803 the things that really need to be blown. */
2804
2805 /* Clear the "current" symtab first, because it is no longer valid.
2806 breakpoint_re_set may try to access the current symtab. */
2807 clear_current_source_symtab_and_line ();
2808
2809 clear_displays ();
2810 breakpoint_re_set ();
2811 set_default_breakpoint (0, 0, 0, 0);
2812 clear_pc_function_cache ();
2813 observer_notify_new_objfile (NULL);
2814
2815 /* Clear globals which might have pointed into a removed objfile.
2816 FIXME: It's not clear which of these are supposed to persist
2817 between expressions and which ought to be reset each time. */
2818 expression_context_block = NULL;
2819 innermost_block = NULL;
2820
2821 /* Varobj may refer to old symbols, perform a cleanup. */
2822 varobj_invalidate ();
2823
2824 }
2825
2826 static void
2827 clear_symtab_users_cleanup (void *ignore)
2828 {
2829 clear_symtab_users ();
2830 }
2831
2832 /* clear_symtab_users_once:
2833
2834 This function is run after symbol reading, or from a cleanup.
2835 If an old symbol table was obsoleted, the old symbol table
2836 has been blown away, but the other GDB data structures that may
2837 reference it have not yet been cleared or re-directed. (The old
2838 symtab was zapped, and the cleanup queued, in free_named_symtab()
2839 below.)
2840
2841 This function can be queued N times as a cleanup, or called
2842 directly; it will do all the work the first time, and then will be a
2843 no-op until the next time it is queued. This works by bumping a
2844 counter at queueing time. Much later when the cleanup is run, or at
2845 the end of symbol processing (in case the cleanup is discarded), if
2846 the queued count is greater than the "done-count", we do the work
2847 and set the done-count to the queued count. If the queued count is
2848 less than or equal to the done-count, we just ignore the call. This
2849 is needed because reading a single .o file will often replace many
2850 symtabs (one per .h file, for example), and we don't want to reset
2851 the breakpoints N times in the user's face.
2852
2853 The reason we both queue a cleanup, and call it directly after symbol
2854 reading, is because the cleanup protects us in case of errors, but is
2855 discarded if symbol reading is successful. */
2856
2857 #if 0
2858 /* FIXME: As free_named_symtabs is currently a big noop this function
2859 is no longer needed. */
2860 static void clear_symtab_users_once (void);
2861
2862 static int clear_symtab_users_queued;
2863 static int clear_symtab_users_done;
2864
2865 static void
2866 clear_symtab_users_once (void)
2867 {
2868 /* Enforce once-per-`do_cleanups'-semantics */
2869 if (clear_symtab_users_queued <= clear_symtab_users_done)
2870 return;
2871 clear_symtab_users_done = clear_symtab_users_queued;
2872
2873 clear_symtab_users ();
2874 }
2875 #endif
2876
2877 /* Delete the specified psymtab, and any others that reference it. */
2878
2879 static void
2880 cashier_psymtab (struct partial_symtab *pst)
2881 {
2882 struct partial_symtab *ps, *pprev = NULL;
2883 int i;
2884
2885 /* Find its previous psymtab in the chain */
2886 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2887 {
2888 if (ps == pst)
2889 break;
2890 pprev = ps;
2891 }
2892
2893 if (ps)
2894 {
2895 /* Unhook it from the chain. */
2896 if (ps == pst->objfile->psymtabs)
2897 pst->objfile->psymtabs = ps->next;
2898 else
2899 pprev->next = ps->next;
2900
2901 /* FIXME, we can't conveniently deallocate the entries in the
2902 partial_symbol lists (global_psymbols/static_psymbols) that
2903 this psymtab points to. These just take up space until all
2904 the psymtabs are reclaimed. Ditto the dependencies list and
2905 filename, which are all in the objfile_obstack. */
2906
2907 /* We need to cashier any psymtab that has this one as a dependency... */
2908 again:
2909 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2910 {
2911 for (i = 0; i < ps->number_of_dependencies; i++)
2912 {
2913 if (ps->dependencies[i] == pst)
2914 {
2915 cashier_psymtab (ps);
2916 goto again; /* Must restart, chain has been munged. */
2917 }
2918 }
2919 }
2920 }
2921 }
2922
2923 /* If a symtab or psymtab for filename NAME is found, free it along
2924 with any dependent breakpoints, displays, etc.
2925 Used when loading new versions of object modules with the "add-file"
2926 command. This is only called on the top-level symtab or psymtab's name;
2927 it is not called for subsidiary files such as .h files.
2928
2929 Return value is 1 if we blew away the environment, 0 if not.
2930 FIXME. The return value appears to never be used.
2931
2932 FIXME. I think this is not the best way to do this. We should
2933 work on being gentler to the environment while still cleaning up
2934 all stray pointers into the freed symtab. */
2935
2936 int
2937 free_named_symtabs (char *name)
2938 {
2939 #if 0
2940 /* FIXME: With the new method of each objfile having it's own
2941 psymtab list, this function needs serious rethinking. In particular,
2942 why was it ever necessary to toss psymtabs with specific compilation
2943 unit filenames, as opposed to all psymtabs from a particular symbol
2944 file? -- fnf
2945 Well, the answer is that some systems permit reloading of particular
2946 compilation units. We want to blow away any old info about these
2947 compilation units, regardless of which objfiles they arrived in. --gnu. */
2948
2949 struct symtab *s;
2950 struct symtab *prev;
2951 struct partial_symtab *ps;
2952 struct blockvector *bv;
2953 int blewit = 0;
2954
2955 /* We only wack things if the symbol-reload switch is set. */
2956 if (!symbol_reloading)
2957 return 0;
2958
2959 /* Some symbol formats have trouble providing file names... */
2960 if (name == 0 || *name == '\0')
2961 return 0;
2962
2963 /* Look for a psymtab with the specified name. */
2964
2965 again2:
2966 for (ps = partial_symtab_list; ps; ps = ps->next)
2967 {
2968 if (strcmp (name, ps->filename) == 0)
2969 {
2970 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2971 goto again2; /* Must restart, chain has been munged */
2972 }
2973 }
2974
2975 /* Look for a symtab with the specified name. */
2976
2977 for (s = symtab_list; s; s = s->next)
2978 {
2979 if (strcmp (name, s->filename) == 0)
2980 break;
2981 prev = s;
2982 }
2983
2984 if (s)
2985 {
2986 if (s == symtab_list)
2987 symtab_list = s->next;
2988 else
2989 prev->next = s->next;
2990
2991 /* For now, queue a delete for all breakpoints, displays, etc., whether
2992 or not they depend on the symtab being freed. This should be
2993 changed so that only those data structures affected are deleted. */
2994
2995 /* But don't delete anything if the symtab is empty.
2996 This test is necessary due to a bug in "dbxread.c" that
2997 causes empty symtabs to be created for N_SO symbols that
2998 contain the pathname of the object file. (This problem
2999 has been fixed in GDB 3.9x). */
3000
3001 bv = BLOCKVECTOR (s);
3002 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3003 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3005 {
3006 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3007 name);
3008 clear_symtab_users_queued++;
3009 make_cleanup (clear_symtab_users_once, 0);
3010 blewit = 1;
3011 }
3012 else
3013 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3014 name);
3015
3016 free_symtab (s);
3017 }
3018 else
3019 {
3020 /* It is still possible that some breakpoints will be affected
3021 even though no symtab was found, since the file might have
3022 been compiled without debugging, and hence not be associated
3023 with a symtab. In order to handle this correctly, we would need
3024 to keep a list of text address ranges for undebuggable files.
3025 For now, we do nothing, since this is a fairly obscure case. */
3026 ;
3027 }
3028
3029 /* FIXME, what about the minimal symbol table? */
3030 return blewit;
3031 #else
3032 return (0);
3033 #endif
3034 }
3035 \f
3036 /* Allocate and partially fill a partial symtab. It will be
3037 completely filled at the end of the symbol list.
3038
3039 FILENAME is the name of the symbol-file we are reading from. */
3040
3041 struct partial_symtab *
3042 start_psymtab_common (struct objfile *objfile,
3043 struct section_offsets *section_offsets, char *filename,
3044 CORE_ADDR textlow, struct partial_symbol **global_syms,
3045 struct partial_symbol **static_syms)
3046 {
3047 struct partial_symtab *psymtab;
3048
3049 psymtab = allocate_psymtab (filename, objfile);
3050 psymtab->section_offsets = section_offsets;
3051 psymtab->textlow = textlow;
3052 psymtab->texthigh = psymtab->textlow; /* default */
3053 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3054 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3055 return (psymtab);
3056 }
3057 \f
3058 /* Helper function, initialises partial symbol structure and stashes
3059 it into objfile's bcache. Note that our caching mechanism will
3060 use all fields of struct partial_symbol to determine hash value of the
3061 structure. In other words, having two symbols with the same name but
3062 different domain (or address) is possible and correct. */
3063
3064 static const struct partial_symbol *
3065 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3066 enum address_class class,
3067 long val, /* Value as a long */
3068 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3069 enum language language, struct objfile *objfile,
3070 int *added)
3071 {
3072 char *buf = name;
3073 /* psymbol is static so that there will be no uninitialized gaps in the
3074 structure which might contain random data, causing cache misses in
3075 bcache. */
3076 static struct partial_symbol psymbol;
3077
3078 if (name[namelength] != '\0')
3079 {
3080 buf = alloca (namelength + 1);
3081 /* Create local copy of the partial symbol */
3082 memcpy (buf, name, namelength);
3083 buf[namelength] = '\0';
3084 }
3085 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3086 if (val != 0)
3087 {
3088 SYMBOL_VALUE (&psymbol) = val;
3089 }
3090 else
3091 {
3092 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3093 }
3094 SYMBOL_SECTION (&psymbol) = 0;
3095 SYMBOL_LANGUAGE (&psymbol) = language;
3096 PSYMBOL_DOMAIN (&psymbol) = domain;
3097 PSYMBOL_CLASS (&psymbol) = class;
3098
3099 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3100
3101 /* Stash the partial symbol away in the cache */
3102 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3103 objfile->psymbol_cache, added);
3104 }
3105
3106 /* Helper function, adds partial symbol to the given partial symbol
3107 list. */
3108
3109 static void
3110 append_psymbol_to_list (struct psymbol_allocation_list *list,
3111 const struct partial_symbol *psym,
3112 struct objfile *objfile)
3113 {
3114 if (list->next >= list->list + list->size)
3115 extend_psymbol_list (list, objfile);
3116 *list->next++ = (struct partial_symbol *) psym;
3117 OBJSTAT (objfile, n_psyms++);
3118 }
3119
3120 /* Add a symbol with a long value to a psymtab.
3121 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3122 Return the partial symbol that has been added. */
3123
3124 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3125 symbol is so that callers can get access to the symbol's demangled
3126 name, which they don't have any cheap way to determine otherwise.
3127 (Currenly, dwarf2read.c is the only file who uses that information,
3128 though it's possible that other readers might in the future.)
3129 Elena wasn't thrilled about that, and I don't blame her, but we
3130 couldn't come up with a better way to get that information. If
3131 it's needed in other situations, we could consider breaking up
3132 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3133 cache. */
3134
3135 const struct partial_symbol *
3136 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3137 enum address_class class,
3138 struct psymbol_allocation_list *list,
3139 long val, /* Value as a long */
3140 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3141 enum language language, struct objfile *objfile)
3142 {
3143 const struct partial_symbol *psym;
3144
3145 int added;
3146
3147 /* Stash the partial symbol away in the cache */
3148 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3149 val, coreaddr, language, objfile, &added);
3150
3151 /* Do not duplicate global partial symbols. */
3152 if (list == &objfile->global_psymbols
3153 && !added)
3154 return psym;
3155
3156 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3157 append_psymbol_to_list (list, psym, objfile);
3158 return psym;
3159 }
3160
3161 /* Initialize storage for partial symbols. */
3162
3163 void
3164 init_psymbol_list (struct objfile *objfile, int total_symbols)
3165 {
3166 /* Free any previously allocated psymbol lists. */
3167
3168 if (objfile->global_psymbols.list)
3169 {
3170 xfree (objfile->global_psymbols.list);
3171 }
3172 if (objfile->static_psymbols.list)
3173 {
3174 xfree (objfile->static_psymbols.list);
3175 }
3176
3177 /* Current best guess is that approximately a twentieth
3178 of the total symbols (in a debugging file) are global or static
3179 oriented symbols */
3180
3181 objfile->global_psymbols.size = total_symbols / 10;
3182 objfile->static_psymbols.size = total_symbols / 10;
3183
3184 if (objfile->global_psymbols.size > 0)
3185 {
3186 objfile->global_psymbols.next =
3187 objfile->global_psymbols.list = (struct partial_symbol **)
3188 xmalloc ((objfile->global_psymbols.size
3189 * sizeof (struct partial_symbol *)));
3190 }
3191 if (objfile->static_psymbols.size > 0)
3192 {
3193 objfile->static_psymbols.next =
3194 objfile->static_psymbols.list = (struct partial_symbol **)
3195 xmalloc ((objfile->static_psymbols.size
3196 * sizeof (struct partial_symbol *)));
3197 }
3198 }
3199
3200 /* OVERLAYS:
3201 The following code implements an abstraction for debugging overlay sections.
3202
3203 The target model is as follows:
3204 1) The gnu linker will permit multiple sections to be mapped into the
3205 same VMA, each with its own unique LMA (or load address).
3206 2) It is assumed that some runtime mechanism exists for mapping the
3207 sections, one by one, from the load address into the VMA address.
3208 3) This code provides a mechanism for gdb to keep track of which
3209 sections should be considered to be mapped from the VMA to the LMA.
3210 This information is used for symbol lookup, and memory read/write.
3211 For instance, if a section has been mapped then its contents
3212 should be read from the VMA, otherwise from the LMA.
3213
3214 Two levels of debugger support for overlays are available. One is
3215 "manual", in which the debugger relies on the user to tell it which
3216 overlays are currently mapped. This level of support is
3217 implemented entirely in the core debugger, and the information about
3218 whether a section is mapped is kept in the objfile->obj_section table.
3219
3220 The second level of support is "automatic", and is only available if
3221 the target-specific code provides functionality to read the target's
3222 overlay mapping table, and translate its contents for the debugger
3223 (by updating the mapped state information in the obj_section tables).
3224
3225 The interface is as follows:
3226 User commands:
3227 overlay map <name> -- tell gdb to consider this section mapped
3228 overlay unmap <name> -- tell gdb to consider this section unmapped
3229 overlay list -- list the sections that GDB thinks are mapped
3230 overlay read-target -- get the target's state of what's mapped
3231 overlay off/manual/auto -- set overlay debugging state
3232 Functional interface:
3233 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3234 section, return that section.
3235 find_pc_overlay(pc): find any overlay section that contains
3236 the pc, either in its VMA or its LMA
3237 section_is_mapped(sect): true if overlay is marked as mapped
3238 section_is_overlay(sect): true if section's VMA != LMA
3239 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3240 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3241 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3242 overlay_mapped_address(...): map an address from section's LMA to VMA
3243 overlay_unmapped_address(...): map an address from section's VMA to LMA
3244 symbol_overlayed_address(...): Return a "current" address for symbol:
3245 either in VMA or LMA depending on whether
3246 the symbol's section is currently mapped
3247 */
3248
3249 /* Overlay debugging state: */
3250
3251 enum overlay_debugging_state overlay_debugging = ovly_off;
3252 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3253
3254 /* Function: section_is_overlay (SECTION)
3255 Returns true if SECTION has VMA not equal to LMA, ie.
3256 SECTION is loaded at an address different from where it will "run". */
3257
3258 int
3259 section_is_overlay (struct obj_section *section)
3260 {
3261 if (overlay_debugging && section)
3262 {
3263 bfd *abfd = section->objfile->obfd;
3264 asection *bfd_section = section->the_bfd_section;
3265
3266 if (bfd_section_lma (abfd, bfd_section) != 0
3267 && bfd_section_lma (abfd, bfd_section)
3268 != bfd_section_vma (abfd, bfd_section))
3269 return 1;
3270 }
3271
3272 return 0;
3273 }
3274
3275 /* Function: overlay_invalidate_all (void)
3276 Invalidate the mapped state of all overlay sections (mark it as stale). */
3277
3278 static void
3279 overlay_invalidate_all (void)
3280 {
3281 struct objfile *objfile;
3282 struct obj_section *sect;
3283
3284 ALL_OBJSECTIONS (objfile, sect)
3285 if (section_is_overlay (sect))
3286 sect->ovly_mapped = -1;
3287 }
3288
3289 /* Function: section_is_mapped (SECTION)
3290 Returns true if section is an overlay, and is currently mapped.
3291
3292 Access to the ovly_mapped flag is restricted to this function, so
3293 that we can do automatic update. If the global flag
3294 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3295 overlay_invalidate_all. If the mapped state of the particular
3296 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3297
3298 int
3299 section_is_mapped (struct obj_section *osect)
3300 {
3301 if (osect == 0 || !section_is_overlay (osect))
3302 return 0;
3303
3304 switch (overlay_debugging)
3305 {
3306 default:
3307 case ovly_off:
3308 return 0; /* overlay debugging off */
3309 case ovly_auto: /* overlay debugging automatic */
3310 /* Unles there is a gdbarch_overlay_update function,
3311 there's really nothing useful to do here (can't really go auto) */
3312 if (gdbarch_overlay_update_p (current_gdbarch))
3313 {
3314 if (overlay_cache_invalid)
3315 {
3316 overlay_invalidate_all ();
3317 overlay_cache_invalid = 0;
3318 }
3319 if (osect->ovly_mapped == -1)
3320 gdbarch_overlay_update (current_gdbarch, osect);
3321 }
3322 /* fall thru to manual case */
3323 case ovly_on: /* overlay debugging manual */
3324 return osect->ovly_mapped == 1;
3325 }
3326 }
3327
3328 /* Function: pc_in_unmapped_range
3329 If PC falls into the lma range of SECTION, return true, else false. */
3330
3331 CORE_ADDR
3332 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3333 {
3334 if (section_is_overlay (section))
3335 {
3336 bfd *abfd = section->objfile->obfd;
3337 asection *bfd_section = section->the_bfd_section;
3338
3339 /* We assume the LMA is relocated by the same offset as the VMA. */
3340 bfd_vma size = bfd_get_section_size (bfd_section);
3341 CORE_ADDR offset = obj_section_offset (section);
3342
3343 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3344 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3345 return 1;
3346 }
3347
3348 return 0;
3349 }
3350
3351 /* Function: pc_in_mapped_range
3352 If PC falls into the vma range of SECTION, return true, else false. */
3353
3354 CORE_ADDR
3355 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3356 {
3357 if (section_is_overlay (section))
3358 {
3359 if (obj_section_addr (section) <= pc
3360 && pc < obj_section_endaddr (section))
3361 return 1;
3362 }
3363
3364 return 0;
3365 }
3366
3367
3368 /* Return true if the mapped ranges of sections A and B overlap, false
3369 otherwise. */
3370 static int
3371 sections_overlap (struct obj_section *a, struct obj_section *b)
3372 {
3373 CORE_ADDR a_start = obj_section_addr (a);
3374 CORE_ADDR a_end = obj_section_endaddr (a);
3375 CORE_ADDR b_start = obj_section_addr (b);
3376 CORE_ADDR b_end = obj_section_endaddr (b);
3377
3378 return (a_start < b_end && b_start < a_end);
3379 }
3380
3381 /* Function: overlay_unmapped_address (PC, SECTION)
3382 Returns the address corresponding to PC in the unmapped (load) range.
3383 May be the same as PC. */
3384
3385 CORE_ADDR
3386 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3387 {
3388 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3389 {
3390 bfd *abfd = section->objfile->obfd;
3391 asection *bfd_section = section->the_bfd_section;
3392
3393 return pc + bfd_section_lma (abfd, bfd_section)
3394 - bfd_section_vma (abfd, bfd_section);
3395 }
3396
3397 return pc;
3398 }
3399
3400 /* Function: overlay_mapped_address (PC, SECTION)
3401 Returns the address corresponding to PC in the mapped (runtime) range.
3402 May be the same as PC. */
3403
3404 CORE_ADDR
3405 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3406 {
3407 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3408 {
3409 bfd *abfd = section->objfile->obfd;
3410 asection *bfd_section = section->the_bfd_section;
3411
3412 return pc + bfd_section_vma (abfd, bfd_section)
3413 - bfd_section_lma (abfd, bfd_section);
3414 }
3415
3416 return pc;
3417 }
3418
3419
3420 /* Function: symbol_overlayed_address
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
3424 CORE_ADDR
3425 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3426 {
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445 }
3446
3447 /* Function: find_pc_overlay (PC)
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453 struct obj_section *
3454 find_pc_overlay (CORE_ADDR pc)
3455 {
3456 struct objfile *objfile;
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect))
3462 {
3463 if (pc_in_mapped_range (pc, osect))
3464 {
3465 if (section_is_mapped (osect))
3466 return osect;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect))
3471 best_match = osect;
3472 }
3473 return best_match;
3474 }
3475
3476 /* Function: find_pc_mapped_section (PC)
3477 If PC falls into the VMA address range of an overlay section that is
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480 struct obj_section *
3481 find_pc_mapped_section (CORE_ADDR pc)
3482 {
3483 struct objfile *objfile;
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3489 return osect;
3490
3491 return NULL;
3492 }
3493
3494 /* Function: list_overlays_command
3495 Print a list of mapped sections and their PC ranges */
3496
3497 void
3498 list_overlays_command (char *args, int from_tty)
3499 {
3500 int nmapped = 0;
3501 struct objfile *objfile;
3502 struct obj_section *osect;
3503
3504 if (overlay_debugging)
3505 ALL_OBJSECTIONS (objfile, osect)
3506 if (section_is_mapped (osect))
3507 {
3508 const char *name;
3509 bfd_vma lma, vma;
3510 int size;
3511
3512 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3513 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3514 size = bfd_get_section_size (osect->the_bfd_section);
3515 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3516
3517 printf_filtered ("Section %s, loaded at ", name);
3518 fputs_filtered (paddress (lma), gdb_stdout);
3519 puts_filtered (" - ");
3520 fputs_filtered (paddress (lma + size), gdb_stdout);
3521 printf_filtered (", mapped at ");
3522 fputs_filtered (paddress (vma), gdb_stdout);
3523 puts_filtered (" - ");
3524 fputs_filtered (paddress (vma + size), gdb_stdout);
3525 puts_filtered ("\n");
3526
3527 nmapped++;
3528 }
3529 if (nmapped == 0)
3530 printf_filtered (_("No sections are mapped.\n"));
3531 }
3532
3533 /* Function: map_overlay_command
3534 Mark the named section as mapped (ie. residing at its VMA address). */
3535
3536 void
3537 map_overlay_command (char *args, int from_tty)
3538 {
3539 struct objfile *objfile, *objfile2;
3540 struct obj_section *sec, *sec2;
3541
3542 if (!overlay_debugging)
3543 error (_("\
3544 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3545 the 'overlay manual' command."));
3546
3547 if (args == 0 || *args == 0)
3548 error (_("Argument required: name of an overlay section"));
3549
3550 /* First, find a section matching the user supplied argument */
3551 ALL_OBJSECTIONS (objfile, sec)
3552 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3553 {
3554 /* Now, check to see if the section is an overlay. */
3555 if (!section_is_overlay (sec))
3556 continue; /* not an overlay section */
3557
3558 /* Mark the overlay as "mapped" */
3559 sec->ovly_mapped = 1;
3560
3561 /* Next, make a pass and unmap any sections that are
3562 overlapped by this new section: */
3563 ALL_OBJSECTIONS (objfile2, sec2)
3564 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3565 {
3566 if (info_verbose)
3567 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3568 bfd_section_name (objfile->obfd,
3569 sec2->the_bfd_section));
3570 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3571 }
3572 return;
3573 }
3574 error (_("No overlay section called %s"), args);
3575 }
3576
3577 /* Function: unmap_overlay_command
3578 Mark the overlay section as unmapped
3579 (ie. resident in its LMA address range, rather than the VMA range). */
3580
3581 void
3582 unmap_overlay_command (char *args, int from_tty)
3583 {
3584 struct objfile *objfile;
3585 struct obj_section *sec;
3586
3587 if (!overlay_debugging)
3588 error (_("\
3589 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3590 the 'overlay manual' command."));
3591
3592 if (args == 0 || *args == 0)
3593 error (_("Argument required: name of an overlay section"));
3594
3595 /* First, find a section matching the user supplied argument */
3596 ALL_OBJSECTIONS (objfile, sec)
3597 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3598 {
3599 if (!sec->ovly_mapped)
3600 error (_("Section %s is not mapped"), args);
3601 sec->ovly_mapped = 0;
3602 return;
3603 }
3604 error (_("No overlay section called %s"), args);
3605 }
3606
3607 /* Function: overlay_auto_command
3608 A utility command to turn on overlay debugging.
3609 Possibly this should be done via a set/show command. */
3610
3611 static void
3612 overlay_auto_command (char *args, int from_tty)
3613 {
3614 overlay_debugging = ovly_auto;
3615 enable_overlay_breakpoints ();
3616 if (info_verbose)
3617 printf_unfiltered (_("Automatic overlay debugging enabled."));
3618 }
3619
3620 /* Function: overlay_manual_command
3621 A utility command to turn on overlay debugging.
3622 Possibly this should be done via a set/show command. */
3623
3624 static void
3625 overlay_manual_command (char *args, int from_tty)
3626 {
3627 overlay_debugging = ovly_on;
3628 disable_overlay_breakpoints ();
3629 if (info_verbose)
3630 printf_unfiltered (_("Overlay debugging enabled."));
3631 }
3632
3633 /* Function: overlay_off_command
3634 A utility command to turn on overlay debugging.
3635 Possibly this should be done via a set/show command. */
3636
3637 static void
3638 overlay_off_command (char *args, int from_tty)
3639 {
3640 overlay_debugging = ovly_off;
3641 disable_overlay_breakpoints ();
3642 if (info_verbose)
3643 printf_unfiltered (_("Overlay debugging disabled."));
3644 }
3645
3646 static void
3647 overlay_load_command (char *args, int from_tty)
3648 {
3649 if (gdbarch_overlay_update_p (current_gdbarch))
3650 gdbarch_overlay_update (current_gdbarch, NULL);
3651 else
3652 error (_("This target does not know how to read its overlay state."));
3653 }
3654
3655 /* Function: overlay_command
3656 A place-holder for a mis-typed command */
3657
3658 /* Command list chain containing all defined "overlay" subcommands. */
3659 struct cmd_list_element *overlaylist;
3660
3661 static void
3662 overlay_command (char *args, int from_tty)
3663 {
3664 printf_unfiltered
3665 ("\"overlay\" must be followed by the name of an overlay command.\n");
3666 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3667 }
3668
3669
3670 /* Target Overlays for the "Simplest" overlay manager:
3671
3672 This is GDB's default target overlay layer. It works with the
3673 minimal overlay manager supplied as an example by Cygnus. The
3674 entry point is via a function pointer "gdbarch_overlay_update",
3675 so targets that use a different runtime overlay manager can
3676 substitute their own overlay_update function and take over the
3677 function pointer.
3678
3679 The overlay_update function pokes around in the target's data structures
3680 to see what overlays are mapped, and updates GDB's overlay mapping with
3681 this information.
3682
3683 In this simple implementation, the target data structures are as follows:
3684 unsigned _novlys; /# number of overlay sections #/
3685 unsigned _ovly_table[_novlys][4] = {
3686 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3687 {..., ..., ..., ...},
3688 }
3689 unsigned _novly_regions; /# number of overlay regions #/
3690 unsigned _ovly_region_table[_novly_regions][3] = {
3691 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3692 {..., ..., ...},
3693 }
3694 These functions will attempt to update GDB's mappedness state in the
3695 symbol section table, based on the target's mappedness state.
3696
3697 To do this, we keep a cached copy of the target's _ovly_table, and
3698 attempt to detect when the cached copy is invalidated. The main
3699 entry point is "simple_overlay_update(SECT), which looks up SECT in
3700 the cached table and re-reads only the entry for that section from
3701 the target (whenever possible).
3702 */
3703
3704 /* Cached, dynamically allocated copies of the target data structures: */
3705 static unsigned (*cache_ovly_table)[4] = 0;
3706 #if 0
3707 static unsigned (*cache_ovly_region_table)[3] = 0;
3708 #endif
3709 static unsigned cache_novlys = 0;
3710 #if 0
3711 static unsigned cache_novly_regions = 0;
3712 #endif
3713 static CORE_ADDR cache_ovly_table_base = 0;
3714 #if 0
3715 static CORE_ADDR cache_ovly_region_table_base = 0;
3716 #endif
3717 enum ovly_index
3718 {
3719 VMA, SIZE, LMA, MAPPED
3720 };
3721 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3722 / TARGET_CHAR_BIT)
3723
3724 /* Throw away the cached copy of _ovly_table */
3725 static void
3726 simple_free_overlay_table (void)
3727 {
3728 if (cache_ovly_table)
3729 xfree (cache_ovly_table);
3730 cache_novlys = 0;
3731 cache_ovly_table = NULL;
3732 cache_ovly_table_base = 0;
3733 }
3734
3735 #if 0
3736 /* Throw away the cached copy of _ovly_region_table */
3737 static void
3738 simple_free_overlay_region_table (void)
3739 {
3740 if (cache_ovly_region_table)
3741 xfree (cache_ovly_region_table);
3742 cache_novly_regions = 0;
3743 cache_ovly_region_table = NULL;
3744 cache_ovly_region_table_base = 0;
3745 }
3746 #endif
3747
3748 /* Read an array of ints from the target into a local buffer.
3749 Convert to host order. int LEN is number of ints */
3750 static void
3751 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3752 {
3753 /* FIXME (alloca): Not safe if array is very large. */
3754 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3755 int i;
3756
3757 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3758 for (i = 0; i < len; i++)
3759 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3760 TARGET_LONG_BYTES);
3761 }
3762
3763 /* Find and grab a copy of the target _ovly_table
3764 (and _novlys, which is needed for the table's size) */
3765 static int
3766 simple_read_overlay_table (void)
3767 {
3768 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3769
3770 simple_free_overlay_table ();
3771 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3772 if (! novlys_msym)
3773 {
3774 error (_("Error reading inferior's overlay table: "
3775 "couldn't find `_novlys' variable\n"
3776 "in inferior. Use `overlay manual' mode."));
3777 return 0;
3778 }
3779
3780 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3781 if (! ovly_table_msym)
3782 {
3783 error (_("Error reading inferior's overlay table: couldn't find "
3784 "`_ovly_table' array\n"
3785 "in inferior. Use `overlay manual' mode."));
3786 return 0;
3787 }
3788
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3790 cache_ovly_table
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
3794 (unsigned int *) cache_ovly_table,
3795 cache_novlys * 4);
3796
3797 return 1; /* SUCCESS */
3798 }
3799
3800 #if 0
3801 /* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
3803 static int
3804 simple_read_overlay_region_table (void)
3805 {
3806 struct minimal_symbol *msym;
3807
3808 simple_free_overlay_region_table ();
3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3810 if (msym != NULL)
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3812 else
3813 return 0; /* failure */
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3816 {
3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3818 if (msym != NULL)
3819 {
3820 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3821 read_target_long_array (cache_ovly_region_table_base,
3822 (unsigned int *) cache_ovly_region_table,
3823 cache_novly_regions * 3);
3824 }
3825 else
3826 return 0; /* failure */
3827 }
3828 else
3829 return 0; /* failure */
3830 return 1; /* SUCCESS */
3831 }
3832 #endif
3833
3834 /* Function: simple_overlay_update_1
3835 A helper function for simple_overlay_update. Assuming a cached copy
3836 of _ovly_table exists, look through it to find an entry whose vma,
3837 lma and size match those of OSECT. Re-read the entry and make sure
3838 it still matches OSECT (else the table may no longer be valid).
3839 Set OSECT's mapped state to match the entry. Return: 1 for
3840 success, 0 for failure. */
3841
3842 static int
3843 simple_overlay_update_1 (struct obj_section *osect)
3844 {
3845 int i, size;
3846 bfd *obfd = osect->objfile->obfd;
3847 asection *bsect = osect->the_bfd_section;
3848
3849 size = bfd_get_section_size (osect->the_bfd_section);
3850 for (i = 0; i < cache_novlys; i++)
3851 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3852 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3853 /* && cache_ovly_table[i][SIZE] == size */ )
3854 {
3855 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3856 (unsigned int *) cache_ovly_table[i], 4);
3857 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3858 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3859 /* && cache_ovly_table[i][SIZE] == size */ )
3860 {
3861 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3862 return 1;
3863 }
3864 else /* Warning! Warning! Target's ovly table has changed! */
3865 return 0;
3866 }
3867 return 0;
3868 }
3869
3870 /* Function: simple_overlay_update
3871 If OSECT is NULL, then update all sections' mapped state
3872 (after re-reading the entire target _ovly_table).
3873 If OSECT is non-NULL, then try to find a matching entry in the
3874 cached ovly_table and update only OSECT's mapped state.
3875 If a cached entry can't be found or the cache isn't valid, then
3876 re-read the entire cache, and go ahead and update all sections. */
3877
3878 void
3879 simple_overlay_update (struct obj_section *osect)
3880 {
3881 struct objfile *objfile;
3882
3883 /* Were we given an osect to look up? NULL means do all of them. */
3884 if (osect)
3885 /* Have we got a cached copy of the target's overlay table? */
3886 if (cache_ovly_table != NULL)
3887 /* Does its cached location match what's currently in the symtab? */
3888 if (cache_ovly_table_base ==
3889 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3890 /* Then go ahead and try to look up this single section in the cache */
3891 if (simple_overlay_update_1 (osect))
3892 /* Found it! We're done. */
3893 return;
3894
3895 /* Cached table no good: need to read the entire table anew.
3896 Or else we want all the sections, in which case it's actually
3897 more efficient to read the whole table in one block anyway. */
3898
3899 if (! simple_read_overlay_table ())
3900 return;
3901
3902 /* Now may as well update all sections, even if only one was requested. */
3903 ALL_OBJSECTIONS (objfile, osect)
3904 if (section_is_overlay (osect))
3905 {
3906 int i, size;
3907 bfd *obfd = osect->objfile->obfd;
3908 asection *bsect = osect->the_bfd_section;
3909
3910 size = bfd_get_section_size (bsect);
3911 for (i = 0; i < cache_novlys; i++)
3912 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3913 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3914 /* && cache_ovly_table[i][SIZE] == size */ )
3915 { /* obj_section matches i'th entry in ovly_table */
3916 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3917 break; /* finished with inner for loop: break out */
3918 }
3919 }
3920 }
3921
3922 /* Set the output sections and output offsets for section SECTP in
3923 ABFD. The relocation code in BFD will read these offsets, so we
3924 need to be sure they're initialized. We map each section to itself,
3925 with no offset; this means that SECTP->vma will be honored. */
3926
3927 static void
3928 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3929 {
3930 sectp->output_section = sectp;
3931 sectp->output_offset = 0;
3932 }
3933
3934 /* Relocate the contents of a debug section SECTP in ABFD. The
3935 contents are stored in BUF if it is non-NULL, or returned in a
3936 malloc'd buffer otherwise.
3937
3938 For some platforms and debug info formats, shared libraries contain
3939 relocations against the debug sections (particularly for DWARF-2;
3940 one affected platform is PowerPC GNU/Linux, although it depends on
3941 the version of the linker in use). Also, ELF object files naturally
3942 have unresolved relocations for their debug sections. We need to apply
3943 the relocations in order to get the locations of symbols correct.
3944 Another example that may require relocation processing, is the
3945 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3946 debug section. */
3947
3948 bfd_byte *
3949 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3950 {
3951 /* We're only interested in sections with relocation
3952 information. */
3953 if ((sectp->flags & SEC_RELOC) == 0)
3954 return NULL;
3955
3956 /* We will handle section offsets properly elsewhere, so relocate as if
3957 all sections begin at 0. */
3958 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3959
3960 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3961 }
3962
3963 struct symfile_segment_data *
3964 get_symfile_segment_data (bfd *abfd)
3965 {
3966 struct sym_fns *sf = find_sym_fns (abfd);
3967
3968 if (sf == NULL)
3969 return NULL;
3970
3971 return sf->sym_segments (abfd);
3972 }
3973
3974 void
3975 free_symfile_segment_data (struct symfile_segment_data *data)
3976 {
3977 xfree (data->segment_bases);
3978 xfree (data->segment_sizes);
3979 xfree (data->segment_info);
3980 xfree (data);
3981 }
3982
3983
3984 /* Given:
3985 - DATA, containing segment addresses from the object file ABFD, and
3986 the mapping from ABFD's sections onto the segments that own them,
3987 and
3988 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3989 segment addresses reported by the target,
3990 store the appropriate offsets for each section in OFFSETS.
3991
3992 If there are fewer entries in SEGMENT_BASES than there are segments
3993 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3994
3995 If there are more entries, then ignore the extra. The target may
3996 not be able to distinguish between an empty data segment and a
3997 missing data segment; a missing text segment is less plausible. */
3998 int
3999 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4000 struct section_offsets *offsets,
4001 int num_segment_bases,
4002 const CORE_ADDR *segment_bases)
4003 {
4004 int i;
4005 asection *sect;
4006
4007 /* It doesn't make sense to call this function unless you have some
4008 segment base addresses. */
4009 gdb_assert (segment_bases > 0);
4010
4011 /* If we do not have segment mappings for the object file, we
4012 can not relocate it by segments. */
4013 gdb_assert (data != NULL);
4014 gdb_assert (data->num_segments > 0);
4015
4016 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4017 {
4018 int which = data->segment_info[i];
4019
4020 gdb_assert (0 <= which && which <= data->num_segments);
4021
4022 /* Don't bother computing offsets for sections that aren't
4023 loaded as part of any segment. */
4024 if (! which)
4025 continue;
4026
4027 /* Use the last SEGMENT_BASES entry as the address of any extra
4028 segments mentioned in DATA->segment_info. */
4029 if (which > num_segment_bases)
4030 which = num_segment_bases;
4031
4032 offsets->offsets[i] = (segment_bases[which - 1]
4033 - data->segment_bases[which - 1]);
4034 }
4035
4036 return 1;
4037 }
4038
4039 static void
4040 symfile_find_segment_sections (struct objfile *objfile)
4041 {
4042 bfd *abfd = objfile->obfd;
4043 int i;
4044 asection *sect;
4045 struct symfile_segment_data *data;
4046
4047 data = get_symfile_segment_data (objfile->obfd);
4048 if (data == NULL)
4049 return;
4050
4051 if (data->num_segments != 1 && data->num_segments != 2)
4052 {
4053 free_symfile_segment_data (data);
4054 return;
4055 }
4056
4057 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4058 {
4059 CORE_ADDR vma;
4060 int which = data->segment_info[i];
4061
4062 if (which == 1)
4063 {
4064 if (objfile->sect_index_text == -1)
4065 objfile->sect_index_text = sect->index;
4066
4067 if (objfile->sect_index_rodata == -1)
4068 objfile->sect_index_rodata = sect->index;
4069 }
4070 else if (which == 2)
4071 {
4072 if (objfile->sect_index_data == -1)
4073 objfile->sect_index_data = sect->index;
4074
4075 if (objfile->sect_index_bss == -1)
4076 objfile->sect_index_bss = sect->index;
4077 }
4078 }
4079
4080 free_symfile_segment_data (data);
4081 }
4082
4083 void
4084 _initialize_symfile (void)
4085 {
4086 struct cmd_list_element *c;
4087
4088 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4089 Load symbol table from executable file FILE.\n\
4090 The `file' command can also load symbol tables, as well as setting the file\n\
4091 to execute."), &cmdlist);
4092 set_cmd_completer (c, filename_completer);
4093
4094 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4095 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4096 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4097 ADDR is the starting address of the file's text.\n\
4098 The optional arguments are section-name section-address pairs and\n\
4099 should be specified if the data and bss segments are not contiguous\n\
4100 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4101 &cmdlist);
4102 set_cmd_completer (c, filename_completer);
4103
4104 c = add_cmd ("add-shared-symbol-files", class_files,
4105 add_shared_symbol_files_command, _("\
4106 Load the symbols from shared objects in the dynamic linker's link map."),
4107 &cmdlist);
4108 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4109 &cmdlist);
4110
4111 c = add_cmd ("load", class_files, load_command, _("\
4112 Dynamically load FILE into the running program, and record its symbols\n\
4113 for access from GDB.\n\
4114 A load OFFSET may also be given."), &cmdlist);
4115 set_cmd_completer (c, filename_completer);
4116
4117 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4118 &symbol_reloading, _("\
4119 Set dynamic symbol table reloading multiple times in one run."), _("\
4120 Show dynamic symbol table reloading multiple times in one run."), NULL,
4121 NULL,
4122 show_symbol_reloading,
4123 &setlist, &showlist);
4124
4125 add_prefix_cmd ("overlay", class_support, overlay_command,
4126 _("Commands for debugging overlays."), &overlaylist,
4127 "overlay ", 0, &cmdlist);
4128
4129 add_com_alias ("ovly", "overlay", class_alias, 1);
4130 add_com_alias ("ov", "overlay", class_alias, 1);
4131
4132 add_cmd ("map-overlay", class_support, map_overlay_command,
4133 _("Assert that an overlay section is mapped."), &overlaylist);
4134
4135 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4136 _("Assert that an overlay section is unmapped."), &overlaylist);
4137
4138 add_cmd ("list-overlays", class_support, list_overlays_command,
4139 _("List mappings of overlay sections."), &overlaylist);
4140
4141 add_cmd ("manual", class_support, overlay_manual_command,
4142 _("Enable overlay debugging."), &overlaylist);
4143 add_cmd ("off", class_support, overlay_off_command,
4144 _("Disable overlay debugging."), &overlaylist);
4145 add_cmd ("auto", class_support, overlay_auto_command,
4146 _("Enable automatic overlay debugging."), &overlaylist);
4147 add_cmd ("load-target", class_support, overlay_load_command,
4148 _("Read the overlay mapping state from the target."), &overlaylist);
4149
4150 /* Filename extension to source language lookup table: */
4151 init_filename_language_table ();
4152 add_setshow_string_noescape_cmd ("extension-language", class_files,
4153 &ext_args, _("\
4154 Set mapping between filename extension and source language."), _("\
4155 Show mapping between filename extension and source language."), _("\
4156 Usage: set extension-language .foo bar"),
4157 set_ext_lang_command,
4158 show_ext_args,
4159 &setlist, &showlist);
4160
4161 add_info ("extensions", info_ext_lang_command,
4162 _("All filename extensions associated with a source language."));
4163
4164 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4165 &debug_file_directory, _("\
4166 Set the directory where separate debug symbols are searched for."), _("\
4167 Show the directory where separate debug symbols are searched for."), _("\
4168 Separate debug symbols are first searched for in the same\n\
4169 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4170 and lastly at the path of the directory of the binary with\n\
4171 the global debug-file directory prepended."),
4172 NULL,
4173 show_debug_file_directory,
4174 &setlist, &showlist);
4175
4176 add_setshow_boolean_cmd ("symbol-loading", no_class,
4177 &print_symbol_loading, _("\
4178 Set printing of symbol loading messages."), _("\
4179 Show printing of symbol loading messages."), NULL,
4180 NULL,
4181 NULL,
4182 &setprintlist, &showprintlist);
4183 }
This page took 0.119741 seconds and 4 git commands to generate.