f31075d0ebf39bc547473d21817fd8eb16ea691f
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void info_ext_lang_command (char *args, int from_tty);
118
119 static void symfile_find_segment_sections (struct objfile *objfile);
120
121 void _initialize_symfile (void);
122
123 /* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
125 prepared to read. */
126
127 typedef struct
128 {
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134 } registered_sym_fns;
135
136 DEF_VEC_O (registered_sym_fns);
137
138 static VEC (registered_sym_fns) *symtab_fns = NULL;
139
140 /* Values for "set print symbol-loading". */
141
142 const char print_symbol_loading_off[] = "off";
143 const char print_symbol_loading_brief[] = "brief";
144 const char print_symbol_loading_full[] = "full";
145 static const char *print_symbol_loading_enums[] =
146 {
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151 };
152 static const char *print_symbol_loading = print_symbol_loading_full;
153
154 /* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
161 library symbols are not loaded, commands like "info fun" will *not*
162 report all the functions that are actually present. */
163
164 int auto_solib_add = 1;
165 \f
166
167 /* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175 int
176 print_symbol_loading_p (int from_tty, int exec, int full)
177 {
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190 }
191
192 /* True if we are reading a symbol table. */
193
194 int currently_reading_symtab = 0;
195
196 static void
197 decrement_reading_symtab (void *dummy)
198 {
199 currently_reading_symtab--;
200 gdb_assert (currently_reading_symtab >= 0);
201 }
202
203 /* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
205
206 struct cleanup *
207 increment_reading_symtab (void)
208 {
209 ++currently_reading_symtab;
210 gdb_assert (currently_reading_symtab > 0);
211 return make_cleanup (decrement_reading_symtab, NULL);
212 }
213
214 /* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223 void
224 find_lowest_section (bfd *abfd, asection *sect, void *obj)
225 {
226 asection **lowest = (asection **) obj;
227
228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238 }
239
240 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
243
244 struct section_addr_info *
245 alloc_section_addr_info (size_t num_sections)
246 {
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
254
255 return sap;
256 }
257
258 /* Build (allocate and populate) a section_addr_info struct from
259 an existing section table. */
260
261 extern struct section_addr_info *
262 build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
264 {
265 struct section_addr_info *sap;
266 const struct target_section *stp;
267 int oidx;
268
269 sap = alloc_section_addr_info (end - start);
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
277 && oidx < end - start)
278 {
279 sap->other[oidx].addr = stp->addr;
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
282 oidx++;
283 }
284 }
285
286 sap->num_sections = oidx;
287
288 return sap;
289 }
290
291 /* Create a section_addr_info from section offsets in ABFD. */
292
293 static struct section_addr_info *
294 build_section_addr_info_from_bfd (bfd *abfd)
295 {
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
303 {
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
307 i++;
308 }
309
310 sap->num_sections = i;
311
312 return sap;
313 }
314
315 /* Create a section_addr_info from section offsets in OBJFILE. */
316
317 struct section_addr_info *
318 build_section_addr_info_from_objfile (const struct objfile *objfile)
319 {
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
327 for (i = 0; i < sap->num_sections; i++)
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334 }
335
336 /* Free all memory allocated by build_section_addr_info_from_section_table. */
337
338 extern void
339 free_section_addr_info (struct section_addr_info *sap)
340 {
341 int idx;
342
343 for (idx = 0; idx < sap->num_sections; idx++)
344 xfree (sap->other[idx].name);
345 xfree (sap);
346 }
347
348 /* Initialize OBJFILE's sect_index_* members. */
349
350 static void
351 init_objfile_sect_indices (struct objfile *objfile)
352 {
353 asection *sect;
354 int i;
355
356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
357 if (sect)
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
361 if (sect)
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
365 if (sect)
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
369 if (sect)
370 objfile->sect_index_rodata = sect->index;
371
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
407 }
408
409 /* The arguments to place_section. */
410
411 struct place_section_arg
412 {
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415 };
416
417 /* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
420 static void
421 place_section (bfd *abfd, asection *sect, void *obj)
422 {
423 struct place_section_arg *arg = (struct place_section_arg *) obj;
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
427
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
430 return;
431
432 /* If the user specified an offset, honor it. */
433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
437 start_addr = (arg->lowest + align - 1) & -align;
438
439 do {
440 asection *cur_sec;
441
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
469 break;
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
478 arg->lowest = start_addr + bfd_get_section_size (sect);
479 }
480
481 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
484
485 void
486 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
488 const struct section_addr_info *addrs)
489 {
490 int i;
491
492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
493
494 /* Now calculate offsets for section that were specified by the caller. */
495 for (i = 0; i < addrs->num_sections; i++)
496 {
497 const struct other_sections *osp;
498
499 osp = &addrs->other[i];
500 if (osp->sectindex == -1)
501 continue;
502
503 /* Record all sections in offsets. */
504 /* The section_offsets in the objfile are here filled in using
505 the BFD index. */
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508 }
509
510 /* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516 static const char *
517 addr_section_name (const char *s)
518 {
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525 }
526
527 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530 static int
531 addrs_section_compar (const void *ap, const void *bp)
532 {
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
535 int retval;
536
537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
538 if (retval)
539 return retval;
540
541 return a->sectindex - b->sectindex;
542 }
543
544 /* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547 static struct other_sections **
548 addrs_section_sort (struct section_addr_info *addrs)
549 {
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
555 for (i = 0; i < addrs->num_sections; i++)
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562 }
563
564 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
567
568 void
569 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570 {
571 asection *lower_sect;
572 CORE_ADDR lower_offset;
573 int i;
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
578
579 /* Find lowest loadable section to be used as starting point for
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
588 }
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
612
613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
619
620 while (*abfd_addrs_sorted
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
653 for (i = 0; i < addrs->num_sections; i++)
654 {
655 struct other_sections *sect = addrs_to_abfd_addrs[i];
656
657 if (sect)
658 {
659 /* This is the index used by BFD. */
660 addrs->other[i].sectindex = sect->sectindex;
661
662 if (addrs->other[i].addr != 0)
663 {
664 addrs->other[i].addr -= sect->addr;
665 lower_offset = addrs->other[i].addr;
666 }
667 else
668 addrs->other[i].addr = lower_offset;
669 }
670 else
671 {
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
690 || strcmp (sect_name, ".gnu.conflict") == 0
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
702 addrs->other[i].addr = 0;
703 addrs->other[i].sectindex = -1;
704 }
705 }
706
707 do_cleanups (my_cleanup);
708 }
709
710 /* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716 void
717 default_symfile_offsets (struct objfile *objfile,
718 const struct section_addr_info *addrs)
719 {
720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
726
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
789 offsets[cur_sec->index]);
790 offsets[cur_sec->index] = 0;
791 }
792 }
793 }
794
795 /* Remember the bfd indexes for the .text, .data, .bss and
796 .rodata sections. */
797 init_objfile_sect_indices (objfile);
798 }
799
800 /* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806 struct symfile_segment_data *
807 default_symfile_segments (bfd *abfd)
808 {
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
834 data = XCNEW (struct symfile_segment_data);
835 data->num_segments = 1;
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
838
839 num_sections = bfd_count_sections (abfd);
840 data->segment_info = XCNEWVEC (int, num_sections);
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862 }
863
864 /* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867 static void
868 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
869 {
870 (*objfile->sf->sym_read) (objfile, add_flags);
871 objfile->per_bfd->minsyms_read = 1;
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
878 {
879 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
880
881 if (abfd != NULL)
882 {
883 /* find_separate_debug_file_in_section uses the same filename for the
884 virtual section-as-bfd like the bfd filename containing the
885 section. Therefore use also non-canonical name form for the same
886 file containing the section. */
887 symbol_file_add_separate (abfd.get (), objfile->original_name,
888 add_flags, objfile);
889 }
890 }
891 if ((add_flags & SYMFILE_NO_READ) == 0)
892 require_partial_symbols (objfile, 0);
893 }
894
895 /* Initialize entry point information for this objfile. */
896
897 static void
898 init_entry_point_info (struct objfile *objfile)
899 {
900 struct entry_info *ei = &objfile->per_bfd->ei;
901
902 if (ei->initialized)
903 return;
904 ei->initialized = 1;
905
906 /* Save startup file's range of PC addresses to help blockframe.c
907 decide where the bottom of the stack is. */
908
909 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
910 {
911 /* Executable file -- record its entry point so we'll recognize
912 the startup file because it contains the entry point. */
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
915 }
916 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
917 && bfd_get_start_address (objfile->obfd) != 0)
918 {
919 /* Some shared libraries may have entry points set and be
920 runnable. There's no clear way to indicate this, so just check
921 for values other than zero. */
922 ei->entry_point = bfd_get_start_address (objfile->obfd);
923 ei->entry_point_p = 1;
924 }
925 else
926 {
927 /* Examination of non-executable.o files. Short-circuit this stuff. */
928 ei->entry_point_p = 0;
929 }
930
931 if (ei->entry_point_p)
932 {
933 struct obj_section *osect;
934 CORE_ADDR entry_point = ei->entry_point;
935 int found;
936
937 /* Make certain that the address points at real code, and not a
938 function descriptor. */
939 entry_point
940 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
941 entry_point,
942 &current_target);
943
944 /* Remove any ISA markers, so that this matches entries in the
945 symbol table. */
946 ei->entry_point
947 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
948
949 found = 0;
950 ALL_OBJFILE_OSECTIONS (objfile, osect)
951 {
952 struct bfd_section *sect = osect->the_bfd_section;
953
954 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
955 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
956 + bfd_get_section_size (sect)))
957 {
958 ei->the_bfd_section_index
959 = gdb_bfd_section_index (objfile->obfd, sect);
960 found = 1;
961 break;
962 }
963 }
964
965 if (!found)
966 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
967 }
968 }
969
970 /* Process a symbol file, as either the main file or as a dynamically
971 loaded file.
972
973 This function does not set the OBJFILE's entry-point info.
974
975 OBJFILE is where the symbols are to be read from.
976
977 ADDRS is the list of section load addresses. If the user has given
978 an 'add-symbol-file' command, then this is the list of offsets and
979 addresses he or she provided as arguments to the command; or, if
980 we're handling a shared library, these are the actual addresses the
981 sections are loaded at, according to the inferior's dynamic linker
982 (as gleaned by GDB's shared library code). We convert each address
983 into an offset from the section VMA's as it appears in the object
984 file, and then call the file's sym_offsets function to convert this
985 into a format-specific offset table --- a `struct section_offsets'.
986
987 ADD_FLAGS encodes verbosity level, whether this is main symbol or
988 an extra symbol file such as dynamically loaded code, and wether
989 breakpoint reset should be deferred. */
990
991 static void
992 syms_from_objfile_1 (struct objfile *objfile,
993 struct section_addr_info *addrs,
994 symfile_add_flags add_flags)
995 {
996 struct section_addr_info *local_addr = NULL;
997 struct cleanup *old_chain;
998 const int mainline = add_flags & SYMFILE_MAINLINE;
999
1000 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1001
1002 if (objfile->sf == NULL)
1003 {
1004 /* No symbols to load, but we still need to make sure
1005 that the section_offsets table is allocated. */
1006 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1007 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1008
1009 objfile->num_sections = num_sections;
1010 objfile->section_offsets
1011 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1012 size);
1013 memset (objfile->section_offsets, 0, size);
1014 return;
1015 }
1016
1017 /* Make sure that partially constructed symbol tables will be cleaned up
1018 if an error occurs during symbol reading. */
1019 old_chain = make_cleanup_free_objfile (objfile);
1020
1021 /* If ADDRS is NULL, put together a dummy address list.
1022 We now establish the convention that an addr of zero means
1023 no load address was specified. */
1024 if (! addrs)
1025 {
1026 local_addr = alloc_section_addr_info (1);
1027 make_cleanup (xfree, local_addr);
1028 addrs = local_addr;
1029 }
1030
1031 if (mainline)
1032 {
1033 /* We will modify the main symbol table, make sure that all its users
1034 will be cleaned up if an error occurs during symbol reading. */
1035 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1036
1037 /* Since no error yet, throw away the old symbol table. */
1038
1039 if (symfile_objfile != NULL)
1040 {
1041 free_objfile (symfile_objfile);
1042 gdb_assert (symfile_objfile == NULL);
1043 }
1044
1045 /* Currently we keep symbols from the add-symbol-file command.
1046 If the user wants to get rid of them, they should do "symbol-file"
1047 without arguments first. Not sure this is the best behavior
1048 (PR 2207). */
1049
1050 (*objfile->sf->sym_new_init) (objfile);
1051 }
1052
1053 /* Convert addr into an offset rather than an absolute address.
1054 We find the lowest address of a loaded segment in the objfile,
1055 and assume that <addr> is where that got loaded.
1056
1057 We no longer warn if the lowest section is not a text segment (as
1058 happens for the PA64 port. */
1059 if (addrs->num_sections > 0)
1060 addr_info_make_relative (addrs, objfile->obfd);
1061
1062 /* Initialize symbol reading routines for this objfile, allow complaints to
1063 appear for this new file, and record how verbose to be, then do the
1064 initial symbol reading for this file. */
1065
1066 (*objfile->sf->sym_init) (objfile);
1067 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1068
1069 (*objfile->sf->sym_offsets) (objfile, addrs);
1070
1071 read_symbols (objfile, add_flags);
1072
1073 /* Discard cleanups as symbol reading was successful. */
1074
1075 discard_cleanups (old_chain);
1076 xfree (local_addr);
1077 }
1078
1079 /* Same as syms_from_objfile_1, but also initializes the objfile
1080 entry-point info. */
1081
1082 static void
1083 syms_from_objfile (struct objfile *objfile,
1084 struct section_addr_info *addrs,
1085 symfile_add_flags add_flags)
1086 {
1087 syms_from_objfile_1 (objfile, addrs, add_flags);
1088 init_entry_point_info (objfile);
1089 }
1090
1091 /* Perform required actions after either reading in the initial
1092 symbols for a new objfile, or mapping in the symbols from a reusable
1093 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1094
1095 static void
1096 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1097 {
1098 /* If this is the main symbol file we have to clean up all users of the
1099 old main symbol file. Otherwise it is sufficient to fixup all the
1100 breakpoints that may have been redefined by this symbol file. */
1101 if (add_flags & SYMFILE_MAINLINE)
1102 {
1103 /* OK, make it the "real" symbol file. */
1104 symfile_objfile = objfile;
1105
1106 clear_symtab_users (add_flags);
1107 }
1108 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1109 {
1110 breakpoint_re_set ();
1111 }
1112
1113 /* We're done reading the symbol file; finish off complaints. */
1114 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1115 }
1116
1117 /* Process a symbol file, as either the main file or as a dynamically
1118 loaded file.
1119
1120 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1121 A new reference is acquired by this function.
1122
1123 For NAME description see allocate_objfile's definition.
1124
1125 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1126 extra, such as dynamically loaded code, and what to do with breakpoins.
1127
1128 ADDRS is as described for syms_from_objfile_1, above.
1129 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1130
1131 PARENT is the original objfile if ABFD is a separate debug info file.
1132 Otherwise PARENT is NULL.
1133
1134 Upon success, returns a pointer to the objfile that was added.
1135 Upon failure, jumps back to command level (never returns). */
1136
1137 static struct objfile *
1138 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1139 symfile_add_flags add_flags,
1140 struct section_addr_info *addrs,
1141 objfile_flags flags, struct objfile *parent)
1142 {
1143 struct objfile *objfile;
1144 const int from_tty = add_flags & SYMFILE_VERBOSE;
1145 const int mainline = add_flags & SYMFILE_MAINLINE;
1146 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1147 && (readnow_symbol_files
1148 || (add_flags & SYMFILE_NO_READ) == 0));
1149
1150 if (readnow_symbol_files)
1151 {
1152 flags |= OBJF_READNOW;
1153 add_flags &= ~SYMFILE_NO_READ;
1154 }
1155
1156 /* Give user a chance to burp if we'd be
1157 interactively wiping out any existing symbols. */
1158
1159 if ((have_full_symbols () || have_partial_symbols ())
1160 && mainline
1161 && from_tty
1162 && !query (_("Load new symbol table from \"%s\"? "), name))
1163 error (_("Not confirmed."));
1164
1165 if (mainline)
1166 flags |= OBJF_MAINLINE;
1167 objfile = allocate_objfile (abfd, name, flags);
1168
1169 if (parent)
1170 add_separate_debug_objfile (objfile, parent);
1171
1172 /* We either created a new mapped symbol table, mapped an existing
1173 symbol table file which has not had initial symbol reading
1174 performed, or need to read an unmapped symbol table. */
1175 if (should_print)
1176 {
1177 if (deprecated_pre_add_symbol_hook)
1178 deprecated_pre_add_symbol_hook (name);
1179 else
1180 {
1181 printf_unfiltered (_("Reading symbols from %s..."), name);
1182 wrap_here ("");
1183 gdb_flush (gdb_stdout);
1184 }
1185 }
1186 syms_from_objfile (objfile, addrs, add_flags);
1187
1188 /* We now have at least a partial symbol table. Check to see if the
1189 user requested that all symbols be read on initial access via either
1190 the gdb startup command line or on a per symbol file basis. Expand
1191 all partial symbol tables for this objfile if so. */
1192
1193 if ((flags & OBJF_READNOW))
1194 {
1195 if (should_print)
1196 {
1197 printf_unfiltered (_("expanding to full symbols..."));
1198 wrap_here ("");
1199 gdb_flush (gdb_stdout);
1200 }
1201
1202 if (objfile->sf)
1203 objfile->sf->qf->expand_all_symtabs (objfile);
1204 }
1205
1206 if (should_print && !objfile_has_symbols (objfile))
1207 {
1208 wrap_here ("");
1209 printf_unfiltered (_("(no debugging symbols found)..."));
1210 wrap_here ("");
1211 }
1212
1213 if (should_print)
1214 {
1215 if (deprecated_post_add_symbol_hook)
1216 deprecated_post_add_symbol_hook ();
1217 else
1218 printf_unfiltered (_("done.\n"));
1219 }
1220
1221 /* We print some messages regardless of whether 'from_tty ||
1222 info_verbose' is true, so make sure they go out at the right
1223 time. */
1224 gdb_flush (gdb_stdout);
1225
1226 if (objfile->sf == NULL)
1227 {
1228 observer_notify_new_objfile (objfile);
1229 return objfile; /* No symbols. */
1230 }
1231
1232 finish_new_objfile (objfile, add_flags);
1233
1234 observer_notify_new_objfile (objfile);
1235
1236 bfd_cache_close_all ();
1237 return (objfile);
1238 }
1239
1240 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1241 see allocate_objfile's definition. */
1242
1243 void
1244 symbol_file_add_separate (bfd *bfd, const char *name,
1245 symfile_add_flags symfile_flags,
1246 struct objfile *objfile)
1247 {
1248 struct section_addr_info *sap;
1249 struct cleanup *my_cleanup;
1250
1251 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1252 because sections of BFD may not match sections of OBJFILE and because
1253 vma may have been modified by tools such as prelink. */
1254 sap = build_section_addr_info_from_objfile (objfile);
1255 my_cleanup = make_cleanup_free_section_addr_info (sap);
1256
1257 symbol_file_add_with_addrs
1258 (bfd, name, symfile_flags, sap,
1259 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1260 | OBJF_USERLOADED),
1261 objfile);
1262
1263 do_cleanups (my_cleanup);
1264 }
1265
1266 /* Process the symbol file ABFD, as either the main file or as a
1267 dynamically loaded file.
1268 See symbol_file_add_with_addrs's comments for details. */
1269
1270 struct objfile *
1271 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1272 symfile_add_flags add_flags,
1273 struct section_addr_info *addrs,
1274 objfile_flags flags, struct objfile *parent)
1275 {
1276 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1277 parent);
1278 }
1279
1280 /* Process a symbol file, as either the main file or as a dynamically
1281 loaded file. See symbol_file_add_with_addrs's comments for details. */
1282
1283 struct objfile *
1284 symbol_file_add (const char *name, symfile_add_flags add_flags,
1285 struct section_addr_info *addrs, objfile_flags flags)
1286 {
1287 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1288
1289 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1290 flags, NULL);
1291 }
1292
1293 /* Call symbol_file_add() with default values and update whatever is
1294 affected by the loading of a new main().
1295 Used when the file is supplied in the gdb command line
1296 and by some targets with special loading requirements.
1297 The auxiliary function, symbol_file_add_main_1(), has the flags
1298 argument for the switches that can only be specified in the symbol_file
1299 command itself. */
1300
1301 void
1302 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1303 {
1304 symbol_file_add_main_1 (args, add_flags, 0);
1305 }
1306
1307 static void
1308 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1309 objfile_flags flags)
1310 {
1311 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1312
1313 symbol_file_add (args, add_flags, NULL, flags);
1314
1315 /* Getting new symbols may change our opinion about
1316 what is frameless. */
1317 reinit_frame_cache ();
1318
1319 if ((add_flags & SYMFILE_NO_READ) == 0)
1320 set_initial_language ();
1321 }
1322
1323 void
1324 symbol_file_clear (int from_tty)
1325 {
1326 if ((have_full_symbols () || have_partial_symbols ())
1327 && from_tty
1328 && (symfile_objfile
1329 ? !query (_("Discard symbol table from `%s'? "),
1330 objfile_name (symfile_objfile))
1331 : !query (_("Discard symbol table? "))))
1332 error (_("Not confirmed."));
1333
1334 /* solib descriptors may have handles to objfiles. Wipe them before their
1335 objfiles get stale by free_all_objfiles. */
1336 no_shared_libraries (NULL, from_tty);
1337
1338 free_all_objfiles ();
1339
1340 gdb_assert (symfile_objfile == NULL);
1341 if (from_tty)
1342 printf_unfiltered (_("No symbol file now.\n"));
1343 }
1344
1345 static int
1346 separate_debug_file_exists (const char *name, unsigned long crc,
1347 struct objfile *parent_objfile)
1348 {
1349 unsigned long file_crc;
1350 int file_crc_p;
1351 struct stat parent_stat, abfd_stat;
1352 int verified_as_different;
1353
1354 /* Find a separate debug info file as if symbols would be present in
1355 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1356 section can contain just the basename of PARENT_OBJFILE without any
1357 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1358 the separate debug infos with the same basename can exist. */
1359
1360 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1361 return 0;
1362
1363 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1364
1365 if (abfd == NULL)
1366 return 0;
1367
1368 /* Verify symlinks were not the cause of filename_cmp name difference above.
1369
1370 Some operating systems, e.g. Windows, do not provide a meaningful
1371 st_ino; they always set it to zero. (Windows does provide a
1372 meaningful st_dev.) Files accessed from gdbservers that do not
1373 support the vFile:fstat packet will also have st_ino set to zero.
1374 Do not indicate a duplicate library in either case. While there
1375 is no guarantee that a system that provides meaningful inode
1376 numbers will never set st_ino to zero, this is merely an
1377 optimization, so we do not need to worry about false negatives. */
1378
1379 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1380 && abfd_stat.st_ino != 0
1381 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1382 {
1383 if (abfd_stat.st_dev == parent_stat.st_dev
1384 && abfd_stat.st_ino == parent_stat.st_ino)
1385 return 0;
1386 verified_as_different = 1;
1387 }
1388 else
1389 verified_as_different = 0;
1390
1391 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1392
1393 if (!file_crc_p)
1394 return 0;
1395
1396 if (crc != file_crc)
1397 {
1398 unsigned long parent_crc;
1399
1400 /* If the files could not be verified as different with
1401 bfd_stat then we need to calculate the parent's CRC
1402 to verify whether the files are different or not. */
1403
1404 if (!verified_as_different)
1405 {
1406 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1407 return 0;
1408 }
1409
1410 if (verified_as_different || parent_crc != file_crc)
1411 warning (_("the debug information found in \"%s\""
1412 " does not match \"%s\" (CRC mismatch).\n"),
1413 name, objfile_name (parent_objfile));
1414
1415 return 0;
1416 }
1417
1418 return 1;
1419 }
1420
1421 char *debug_file_directory = NULL;
1422 static void
1423 show_debug_file_directory (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file,
1427 _("The directory where separate debug "
1428 "symbols are searched for is \"%s\".\n"),
1429 value);
1430 }
1431
1432 #if ! defined (DEBUG_SUBDIRECTORY)
1433 #define DEBUG_SUBDIRECTORY ".debug"
1434 #endif
1435
1436 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1437 where the original file resides (may not be the same as
1438 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1439 looking for. CANON_DIR is the "realpath" form of DIR.
1440 DIR must contain a trailing '/'.
1441 Returns the path of the file with separate debug info, of NULL. */
1442
1443 static char *
1444 find_separate_debug_file (const char *dir,
1445 const char *canon_dir,
1446 const char *debuglink,
1447 unsigned long crc32, struct objfile *objfile)
1448 {
1449 char *debugdir;
1450 char *debugfile;
1451 int i;
1452 VEC (char_ptr) *debugdir_vec;
1453 struct cleanup *back_to;
1454 int ix;
1455
1456 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1457 i = strlen (dir);
1458 if (canon_dir != NULL && strlen (canon_dir) > i)
1459 i = strlen (canon_dir);
1460
1461 debugfile
1462 = (char *) xmalloc (strlen (debug_file_directory) + 1
1463 + i
1464 + strlen (DEBUG_SUBDIRECTORY)
1465 + strlen ("/")
1466 + strlen (debuglink)
1467 + 1);
1468
1469 /* First try in the same directory as the original file. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1477 strcpy (debugfile, dir);
1478 strcat (debugfile, DEBUG_SUBDIRECTORY);
1479 strcat (debugfile, "/");
1480 strcat (debugfile, debuglink);
1481
1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1483 return debugfile;
1484
1485 /* Then try in the global debugfile directories.
1486
1487 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1488 cause "/..." lookups. */
1489
1490 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1491 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1492
1493 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1494 {
1495 strcpy (debugfile, debugdir);
1496 strcat (debugfile, "/");
1497 strcat (debugfile, dir);
1498 strcat (debugfile, debuglink);
1499
1500 if (separate_debug_file_exists (debugfile, crc32, objfile))
1501 {
1502 do_cleanups (back_to);
1503 return debugfile;
1504 }
1505
1506 /* If the file is in the sysroot, try using its base path in the
1507 global debugfile directory. */
1508 if (canon_dir != NULL
1509 && filename_ncmp (canon_dir, gdb_sysroot,
1510 strlen (gdb_sysroot)) == 0
1511 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1512 {
1513 strcpy (debugfile, debugdir);
1514 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1515 strcat (debugfile, "/");
1516 strcat (debugfile, debuglink);
1517
1518 if (separate_debug_file_exists (debugfile, crc32, objfile))
1519 {
1520 do_cleanups (back_to);
1521 return debugfile;
1522 }
1523 }
1524 }
1525
1526 do_cleanups (back_to);
1527 xfree (debugfile);
1528 return NULL;
1529 }
1530
1531 /* Modify PATH to contain only "[/]directory/" part of PATH.
1532 If there were no directory separators in PATH, PATH will be empty
1533 string on return. */
1534
1535 static void
1536 terminate_after_last_dir_separator (char *path)
1537 {
1538 int i;
1539
1540 /* Strip off the final filename part, leaving the directory name,
1541 followed by a slash. The directory can be relative or absolute. */
1542 for (i = strlen(path) - 1; i >= 0; i--)
1543 if (IS_DIR_SEPARATOR (path[i]))
1544 break;
1545
1546 /* If I is -1 then no directory is present there and DIR will be "". */
1547 path[i + 1] = '\0';
1548 }
1549
1550 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1551 Returns pathname, or NULL. */
1552
1553 char *
1554 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1555 {
1556 char *debuglink;
1557 char *dir, *canon_dir;
1558 char *debugfile;
1559 unsigned long crc32;
1560 struct cleanup *cleanups;
1561
1562 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1563
1564 if (debuglink == NULL)
1565 {
1566 /* There's no separate debug info, hence there's no way we could
1567 load it => no warning. */
1568 return NULL;
1569 }
1570
1571 cleanups = make_cleanup (xfree, debuglink);
1572 dir = xstrdup (objfile_name (objfile));
1573 make_cleanup (xfree, dir);
1574 terminate_after_last_dir_separator (dir);
1575 canon_dir = lrealpath (dir);
1576
1577 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1578 crc32, objfile);
1579 xfree (canon_dir);
1580
1581 if (debugfile == NULL)
1582 {
1583 /* For PR gdb/9538, try again with realpath (if different from the
1584 original). */
1585
1586 struct stat st_buf;
1587
1588 if (lstat (objfile_name (objfile), &st_buf) == 0
1589 && S_ISLNK (st_buf.st_mode))
1590 {
1591 char *symlink_dir;
1592
1593 symlink_dir = lrealpath (objfile_name (objfile));
1594 if (symlink_dir != NULL)
1595 {
1596 make_cleanup (xfree, symlink_dir);
1597 terminate_after_last_dir_separator (symlink_dir);
1598 if (strcmp (dir, symlink_dir) != 0)
1599 {
1600 /* Different directory, so try using it. */
1601 debugfile = find_separate_debug_file (symlink_dir,
1602 symlink_dir,
1603 debuglink,
1604 crc32,
1605 objfile);
1606 }
1607 }
1608 }
1609 }
1610
1611 do_cleanups (cleanups);
1612 return debugfile;
1613 }
1614
1615 /* This is the symbol-file command. Read the file, analyze its
1616 symbols, and add a struct symtab to a symtab list. The syntax of
1617 the command is rather bizarre:
1618
1619 1. The function buildargv implements various quoting conventions
1620 which are undocumented and have little or nothing in common with
1621 the way things are quoted (or not quoted) elsewhere in GDB.
1622
1623 2. Options are used, which are not generally used in GDB (perhaps
1624 "set mapped on", "set readnow on" would be better)
1625
1626 3. The order of options matters, which is contrary to GNU
1627 conventions (because it is confusing and inconvenient). */
1628
1629 void
1630 symbol_file_command (char *args, int from_tty)
1631 {
1632 dont_repeat ();
1633
1634 if (args == NULL)
1635 {
1636 symbol_file_clear (from_tty);
1637 }
1638 else
1639 {
1640 char **argv = gdb_buildargv (args);
1641 objfile_flags flags = OBJF_USERLOADED;
1642 symfile_add_flags add_flags = 0;
1643 struct cleanup *cleanups;
1644 char *name = NULL;
1645
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
1649 cleanups = make_cleanup_freeargv (argv);
1650 while (*argv != NULL)
1651 {
1652 if (strcmp (*argv, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (**argv == '-')
1655 error (_("unknown option `%s'"), *argv);
1656 else
1657 {
1658 symbol_file_add_main_1 (*argv, add_flags, flags);
1659 name = *argv;
1660 }
1661
1662 argv++;
1663 }
1664
1665 if (name == NULL)
1666 error (_("no symbol file name was specified"));
1667
1668 do_cleanups (cleanups);
1669 }
1670 }
1671
1672 /* Set the initial language.
1673
1674 FIXME: A better solution would be to record the language in the
1675 psymtab when reading partial symbols, and then use it (if known) to
1676 set the language. This would be a win for formats that encode the
1677 language in an easily discoverable place, such as DWARF. For
1678 stabs, we can jump through hoops looking for specially named
1679 symbols or try to intuit the language from the specific type of
1680 stabs we find, but we can't do that until later when we read in
1681 full symbols. */
1682
1683 void
1684 set_initial_language (void)
1685 {
1686 enum language lang = main_language ();
1687
1688 if (lang == language_unknown)
1689 {
1690 char *name = main_name ();
1691 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1692
1693 if (sym != NULL)
1694 lang = SYMBOL_LANGUAGE (sym);
1695 }
1696
1697 if (lang == language_unknown)
1698 {
1699 /* Make C the default language */
1700 lang = language_c;
1701 }
1702
1703 set_language (lang);
1704 expected_language = current_language; /* Don't warn the user. */
1705 }
1706
1707 /* Open the file specified by NAME and hand it off to BFD for
1708 preliminary analysis. Return a newly initialized bfd *, which
1709 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1710 absolute). In case of trouble, error() is called. */
1711
1712 gdb_bfd_ref_ptr
1713 symfile_bfd_open (const char *name)
1714 {
1715 int desc = -1;
1716 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1717
1718 if (!is_target_filename (name))
1719 {
1720 char *expanded_name, *absolute_name;
1721
1722 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1723
1724 /* Look down path for it, allocate 2nd new malloc'd copy. */
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1728 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1729 if (desc < 0)
1730 {
1731 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1732
1733 strcat (strcpy (exename, expanded_name), ".exe");
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 exename, O_RDONLY | O_BINARY, &absolute_name);
1737 }
1738 #endif
1739 if (desc < 0)
1740 {
1741 make_cleanup (xfree, expanded_name);
1742 perror_with_name (expanded_name);
1743 }
1744
1745 xfree (expanded_name);
1746 make_cleanup (xfree, absolute_name);
1747 name = absolute_name;
1748 }
1749
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
1757
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
1761
1762 do_cleanups (back_to);
1763
1764 return sym_bfd;
1765 }
1766
1767 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1768 the section was not found. */
1769
1770 int
1771 get_section_index (struct objfile *objfile, char *section_name)
1772 {
1773 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1774
1775 if (sect)
1776 return sect->index;
1777 else
1778 return -1;
1779 }
1780
1781 /* Link SF into the global symtab_fns list.
1782 FLAVOUR is the file format that SF handles.
1783 Called on startup by the _initialize routine in each object file format
1784 reader, to register information about each format the reader is prepared
1785 to handle. */
1786
1787 void
1788 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1789 {
1790 registered_sym_fns fns = { flavour, sf };
1791
1792 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1793 }
1794
1795 /* Initialize OBJFILE to read symbols from its associated BFD. It
1796 either returns or calls error(). The result is an initialized
1797 struct sym_fns in the objfile structure, that contains cached
1798 information about the symbol file. */
1799
1800 static const struct sym_fns *
1801 find_sym_fns (bfd *abfd)
1802 {
1803 registered_sym_fns *rsf;
1804 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1805 int i;
1806
1807 if (our_flavour == bfd_target_srec_flavour
1808 || our_flavour == bfd_target_ihex_flavour
1809 || our_flavour == bfd_target_tekhex_flavour)
1810 return NULL; /* No symbols. */
1811
1812 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1813 if (our_flavour == rsf->sym_flavour)
1814 return rsf->sym_fns;
1815
1816 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1817 bfd_get_target (abfd));
1818 }
1819 \f
1820
1821 /* This function runs the load command of our current target. */
1822
1823 static void
1824 load_command (char *arg, int from_tty)
1825 {
1826 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1827
1828 dont_repeat ();
1829
1830 /* The user might be reloading because the binary has changed. Take
1831 this opportunity to check. */
1832 reopen_exec_file ();
1833 reread_symbols ();
1834
1835 if (arg == NULL)
1836 {
1837 char *parg;
1838 int count = 0;
1839
1840 parg = arg = get_exec_file (1);
1841
1842 /* Count how many \ " ' tab space there are in the name. */
1843 while ((parg = strpbrk (parg, "\\\"'\t ")))
1844 {
1845 parg++;
1846 count++;
1847 }
1848
1849 if (count)
1850 {
1851 /* We need to quote this string so buildargv can pull it apart. */
1852 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1853 char *ptemp = temp;
1854 char *prev;
1855
1856 make_cleanup (xfree, temp);
1857
1858 prev = parg = arg;
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 strncpy (ptemp, prev, parg - prev);
1862 ptemp += parg - prev;
1863 prev = parg++;
1864 *ptemp++ = '\\';
1865 }
1866 strcpy (ptemp, prev);
1867
1868 arg = temp;
1869 }
1870 }
1871
1872 target_load (arg, from_tty);
1873
1874 /* After re-loading the executable, we don't really know which
1875 overlays are mapped any more. */
1876 overlay_cache_invalid = 1;
1877
1878 do_cleanups (cleanup);
1879 }
1880
1881 /* This version of "load" should be usable for any target. Currently
1882 it is just used for remote targets, not inftarg.c or core files,
1883 on the theory that only in that case is it useful.
1884
1885 Avoiding xmodem and the like seems like a win (a) because we don't have
1886 to worry about finding it, and (b) On VMS, fork() is very slow and so
1887 we don't want to run a subprocess. On the other hand, I'm not sure how
1888 performance compares. */
1889
1890 static int validate_download = 0;
1891
1892 /* Callback service function for generic_load (bfd_map_over_sections). */
1893
1894 static void
1895 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1896 {
1897 bfd_size_type *sum = (bfd_size_type *) data;
1898
1899 *sum += bfd_get_section_size (asec);
1900 }
1901
1902 /* Opaque data for load_section_callback. */
1903 struct load_section_data {
1904 CORE_ADDR load_offset;
1905 struct load_progress_data *progress_data;
1906 VEC(memory_write_request_s) *requests;
1907 };
1908
1909 /* Opaque data for load_progress. */
1910 struct load_progress_data {
1911 /* Cumulative data. */
1912 unsigned long write_count;
1913 unsigned long data_count;
1914 bfd_size_type total_size;
1915 };
1916
1917 /* Opaque data for load_progress for a single section. */
1918 struct load_progress_section_data {
1919 struct load_progress_data *cumulative;
1920
1921 /* Per-section data. */
1922 const char *section_name;
1923 ULONGEST section_sent;
1924 ULONGEST section_size;
1925 CORE_ADDR lma;
1926 gdb_byte *buffer;
1927 };
1928
1929 /* Target write callback routine for progress reporting. */
1930
1931 static void
1932 load_progress (ULONGEST bytes, void *untyped_arg)
1933 {
1934 struct load_progress_section_data *args
1935 = (struct load_progress_section_data *) untyped_arg;
1936 struct load_progress_data *totals;
1937
1938 if (args == NULL)
1939 /* Writing padding data. No easy way to get at the cumulative
1940 stats, so just ignore this. */
1941 return;
1942
1943 totals = args->cumulative;
1944
1945 if (bytes == 0 && args->section_sent == 0)
1946 {
1947 /* The write is just starting. Let the user know we've started
1948 this section. */
1949 current_uiout->message ("Loading section %s, size %s lma %s\n",
1950 args->section_name,
1951 hex_string (args->section_size),
1952 paddress (target_gdbarch (), args->lma));
1953 return;
1954 }
1955
1956 if (validate_download)
1957 {
1958 /* Broken memories and broken monitors manifest themselves here
1959 when bring new computers to life. This doubles already slow
1960 downloads. */
1961 /* NOTE: cagney/1999-10-18: A more efficient implementation
1962 might add a verify_memory() method to the target vector and
1963 then use that. remote.c could implement that method using
1964 the ``qCRC'' packet. */
1965 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1966 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1967
1968 if (target_read_memory (args->lma, check, bytes) != 0)
1969 error (_("Download verify read failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 if (memcmp (args->buffer, check, bytes) != 0)
1972 error (_("Download verify compare failed at %s"),
1973 paddress (target_gdbarch (), args->lma));
1974 do_cleanups (verify_cleanups);
1975 }
1976 totals->data_count += bytes;
1977 args->lma += bytes;
1978 args->buffer += bytes;
1979 totals->write_count += 1;
1980 args->section_sent += bytes;
1981 if (check_quit_flag ()
1982 || (deprecated_ui_load_progress_hook != NULL
1983 && deprecated_ui_load_progress_hook (args->section_name,
1984 args->section_sent)))
1985 error (_("Canceled the download"));
1986
1987 if (deprecated_show_load_progress != NULL)
1988 deprecated_show_load_progress (args->section_name,
1989 args->section_sent,
1990 args->section_size,
1991 totals->data_count,
1992 totals->total_size);
1993 }
1994
1995 /* Callback service function for generic_load (bfd_map_over_sections). */
1996
1997 static void
1998 load_section_callback (bfd *abfd, asection *asec, void *data)
1999 {
2000 struct memory_write_request *new_request;
2001 struct load_section_data *args = (struct load_section_data *) data;
2002 struct load_progress_section_data *section_data;
2003 bfd_size_type size = bfd_get_section_size (asec);
2004 gdb_byte *buffer;
2005 const char *sect_name = bfd_get_section_name (abfd, asec);
2006
2007 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2008 return;
2009
2010 if (size == 0)
2011 return;
2012
2013 new_request = VEC_safe_push (memory_write_request_s,
2014 args->requests, NULL);
2015 memset (new_request, 0, sizeof (struct memory_write_request));
2016 section_data = XCNEW (struct load_progress_section_data);
2017 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2018 new_request->end = new_request->begin + size; /* FIXME Should size
2019 be in instead? */
2020 new_request->data = (gdb_byte *) xmalloc (size);
2021 new_request->baton = section_data;
2022
2023 buffer = new_request->data;
2024
2025 section_data->cumulative = args->progress_data;
2026 section_data->section_name = sect_name;
2027 section_data->section_size = size;
2028 section_data->lma = new_request->begin;
2029 section_data->buffer = buffer;
2030
2031 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2032 }
2033
2034 /* Clean up an entire memory request vector, including load
2035 data and progress records. */
2036
2037 static void
2038 clear_memory_write_data (void *arg)
2039 {
2040 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2041 VEC(memory_write_request_s) *vec = *vec_p;
2042 int i;
2043 struct memory_write_request *mr;
2044
2045 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2046 {
2047 xfree (mr->data);
2048 xfree (mr->baton);
2049 }
2050 VEC_free (memory_write_request_s, vec);
2051 }
2052
2053 static void print_transfer_performance (struct ui_file *stream,
2054 unsigned long data_count,
2055 unsigned long write_count,
2056 std::chrono::steady_clock::duration d);
2057
2058 void
2059 generic_load (const char *args, int from_tty)
2060 {
2061 char *filename;
2062 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2063 struct load_section_data cbdata;
2064 struct load_progress_data total_progress;
2065 struct ui_out *uiout = current_uiout;
2066
2067 CORE_ADDR entry;
2068 char **argv;
2069
2070 memset (&cbdata, 0, sizeof (cbdata));
2071 memset (&total_progress, 0, sizeof (total_progress));
2072 cbdata.progress_data = &total_progress;
2073
2074 make_cleanup (clear_memory_write_data, &cbdata.requests);
2075
2076 if (args == NULL)
2077 error_no_arg (_("file to load"));
2078
2079 argv = gdb_buildargv (args);
2080 make_cleanup_freeargv (argv);
2081
2082 filename = tilde_expand (argv[0]);
2083 make_cleanup (xfree, filename);
2084
2085 if (argv[1] != NULL)
2086 {
2087 const char *endptr;
2088
2089 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2090
2091 /* If the last word was not a valid number then
2092 treat it as a file name with spaces in. */
2093 if (argv[1] == endptr)
2094 error (_("Invalid download offset:%s."), argv[1]);
2095
2096 if (argv[2] != NULL)
2097 error (_("Too many parameters."));
2098 }
2099
2100 /* Open the file for loading. */
2101 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
2102 if (loadfile_bfd == NULL)
2103 {
2104 perror_with_name (filename);
2105 return;
2106 }
2107
2108 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2109 {
2110 error (_("\"%s\" is not an object file: %s"), filename,
2111 bfd_errmsg (bfd_get_error ()));
2112 }
2113
2114 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2115 (void *) &total_progress.total_size);
2116
2117 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2118
2119 using namespace std::chrono;
2120
2121 steady_clock::time_point start_time = steady_clock::now ();
2122
2123 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2124 load_progress) != 0)
2125 error (_("Load failed"));
2126
2127 steady_clock::time_point end_time = steady_clock::now ();
2128
2129 entry = bfd_get_start_address (loadfile_bfd.get ());
2130 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2131 uiout->text ("Start address ");
2132 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2133 uiout->text (", load size ");
2134 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2135 uiout->text ("\n");
2136 regcache_write_pc (get_current_regcache (), entry);
2137
2138 /* Reset breakpoints, now that we have changed the load image. For
2139 instance, breakpoints may have been set (or reset, by
2140 post_create_inferior) while connected to the target but before we
2141 loaded the program. In that case, the prologue analyzer could
2142 have read instructions from the target to find the right
2143 breakpoint locations. Loading has changed the contents of that
2144 memory. */
2145
2146 breakpoint_re_set ();
2147
2148 print_transfer_performance (gdb_stdout, total_progress.data_count,
2149 total_progress.write_count,
2150 end_time - start_time);
2151
2152 do_cleanups (old_cleanups);
2153 }
2154
2155 /* Report on STREAM the performance of a memory transfer operation,
2156 such as 'load'. DATA_COUNT is the number of bytes transferred.
2157 WRITE_COUNT is the number of separate write operations, or 0, if
2158 that information is not available. TIME is how long the operation
2159 lasted. */
2160
2161 static void
2162 print_transfer_performance (struct ui_file *stream,
2163 unsigned long data_count,
2164 unsigned long write_count,
2165 std::chrono::steady_clock::duration time)
2166 {
2167 using namespace std::chrono;
2168 struct ui_out *uiout = current_uiout;
2169
2170 milliseconds ms = duration_cast<milliseconds> (time);
2171
2172 uiout->text ("Transfer rate: ");
2173 if (ms.count () > 0)
2174 {
2175 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2176
2177 if (uiout->is_mi_like_p ())
2178 {
2179 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2180 uiout->text (" bits/sec");
2181 }
2182 else if (rate < 1024)
2183 {
2184 uiout->field_fmt ("transfer-rate", "%lu", rate);
2185 uiout->text (" bytes/sec");
2186 }
2187 else
2188 {
2189 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2190 uiout->text (" KB/sec");
2191 }
2192 }
2193 else
2194 {
2195 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2196 uiout->text (" bits in <1 sec");
2197 }
2198 if (write_count > 0)
2199 {
2200 uiout->text (", ");
2201 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2202 uiout->text (" bytes/write");
2203 }
2204 uiout->text (".\n");
2205 }
2206
2207 /* This function allows the addition of incrementally linked object files.
2208 It does not modify any state in the target, only in the debugger. */
2209 /* Note: ezannoni 2000-04-13 This function/command used to have a
2210 special case syntax for the rombug target (Rombug is the boot
2211 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2212 rombug case, the user doesn't need to supply a text address,
2213 instead a call to target_link() (in target.c) would supply the
2214 value to use. We are now discontinuing this type of ad hoc syntax. */
2215
2216 static void
2217 add_symbol_file_command (char *args, int from_tty)
2218 {
2219 struct gdbarch *gdbarch = get_current_arch ();
2220 char *filename = NULL;
2221 char *arg;
2222 int section_index = 0;
2223 int argcnt = 0;
2224 int sec_num = 0;
2225 int i;
2226 int expecting_sec_name = 0;
2227 int expecting_sec_addr = 0;
2228 char **argv;
2229 struct objfile *objf;
2230 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2231 symfile_add_flags add_flags = 0;
2232
2233 if (from_tty)
2234 add_flags |= SYMFILE_VERBOSE;
2235
2236 struct sect_opt
2237 {
2238 char *name;
2239 char *value;
2240 };
2241
2242 struct section_addr_info *section_addrs;
2243 struct sect_opt *sect_opts = NULL;
2244 size_t num_sect_opts = 0;
2245 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2246
2247 num_sect_opts = 16;
2248 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2249
2250 dont_repeat ();
2251
2252 if (args == NULL)
2253 error (_("add-symbol-file takes a file name and an address"));
2254
2255 argv = gdb_buildargv (args);
2256 make_cleanup_freeargv (argv);
2257
2258 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2259 {
2260 /* Process the argument. */
2261 if (argcnt == 0)
2262 {
2263 /* The first argument is the file name. */
2264 filename = tilde_expand (arg);
2265 make_cleanup (xfree, filename);
2266 }
2267 else if (argcnt == 1)
2268 {
2269 /* The second argument is always the text address at which
2270 to load the program. */
2271 sect_opts[section_index].name = ".text";
2272 sect_opts[section_index].value = arg;
2273 if (++section_index >= num_sect_opts)
2274 {
2275 num_sect_opts *= 2;
2276 sect_opts = ((struct sect_opt *)
2277 xrealloc (sect_opts,
2278 num_sect_opts
2279 * sizeof (struct sect_opt)));
2280 }
2281 }
2282 else
2283 {
2284 /* It's an option (starting with '-') or it's an argument
2285 to an option. */
2286 if (expecting_sec_name)
2287 {
2288 sect_opts[section_index].name = arg;
2289 expecting_sec_name = 0;
2290 }
2291 else if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
2295 if (++section_index >= num_sect_opts)
2296 {
2297 num_sect_opts *= 2;
2298 sect_opts = ((struct sect_opt *)
2299 xrealloc (sect_opts,
2300 num_sect_opts
2301 * sizeof (struct sect_opt)));
2302 }
2303 }
2304 else if (strcmp (arg, "-readnow") == 0)
2305 flags |= OBJF_READNOW;
2306 else if (strcmp (arg, "-s") == 0)
2307 {
2308 expecting_sec_name = 1;
2309 expecting_sec_addr = 1;
2310 }
2311 else
2312 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2313 " [-readnow] [-s <secname> <addr>]*"));
2314 }
2315 }
2316
2317 /* This command takes at least two arguments. The first one is a
2318 filename, and the second is the address where this file has been
2319 loaded. Abort now if this address hasn't been provided by the
2320 user. */
2321 if (section_index < 1)
2322 error (_("The address where %s has been loaded is missing"), filename);
2323
2324 /* Print the prompt for the query below. And save the arguments into
2325 a sect_addr_info structure to be passed around to other
2326 functions. We have to split this up into separate print
2327 statements because hex_string returns a local static
2328 string. */
2329
2330 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2331 section_addrs = alloc_section_addr_info (section_index);
2332 make_cleanup (xfree, section_addrs);
2333 for (i = 0; i < section_index; i++)
2334 {
2335 CORE_ADDR addr;
2336 char *val = sect_opts[i].value;
2337 char *sec = sect_opts[i].name;
2338
2339 addr = parse_and_eval_address (val);
2340
2341 /* Here we store the section offsets in the order they were
2342 entered on the command line. */
2343 section_addrs->other[sec_num].name = sec;
2344 section_addrs->other[sec_num].addr = addr;
2345 printf_unfiltered ("\t%s_addr = %s\n", sec,
2346 paddress (gdbarch, addr));
2347 sec_num++;
2348
2349 /* The object's sections are initialized when a
2350 call is made to build_objfile_section_table (objfile).
2351 This happens in reread_symbols.
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2354 }
2355 section_addrs->num_sections = sec_num;
2356
2357 if (from_tty && (!query ("%s", "")))
2358 error (_("Not confirmed."));
2359
2360 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2361
2362 add_target_sections_of_objfile (objf);
2363
2364 /* Getting new symbols may change our opinion about what is
2365 frameless. */
2366 reinit_frame_cache ();
2367 do_cleanups (my_cleanups);
2368 }
2369 \f
2370
2371 /* This function removes a symbol file that was added via add-symbol-file. */
2372
2373 static void
2374 remove_symbol_file_command (char *args, int from_tty)
2375 {
2376 char **argv;
2377 struct objfile *objf = NULL;
2378 struct cleanup *my_cleanups;
2379 struct program_space *pspace = current_program_space;
2380
2381 dont_repeat ();
2382
2383 if (args == NULL)
2384 error (_("remove-symbol-file: no symbol file provided"));
2385
2386 my_cleanups = make_cleanup (null_cleanup, NULL);
2387
2388 argv = gdb_buildargv (args);
2389
2390 if (strcmp (argv[0], "-a") == 0)
2391 {
2392 /* Interpret the next argument as an address. */
2393 CORE_ADDR addr;
2394
2395 if (argv[1] == NULL)
2396 error (_("Missing address argument"));
2397
2398 if (argv[2] != NULL)
2399 error (_("Junk after %s"), argv[1]);
2400
2401 addr = parse_and_eval_address (argv[1]);
2402
2403 ALL_OBJFILES (objf)
2404 {
2405 if ((objf->flags & OBJF_USERLOADED) != 0
2406 && (objf->flags & OBJF_SHARED) != 0
2407 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2408 break;
2409 }
2410 }
2411 else if (argv[0] != NULL)
2412 {
2413 /* Interpret the current argument as a file name. */
2414 char *filename;
2415
2416 if (argv[1] != NULL)
2417 error (_("Junk after %s"), argv[0]);
2418
2419 filename = tilde_expand (argv[0]);
2420 make_cleanup (xfree, filename);
2421
2422 ALL_OBJFILES (objf)
2423 {
2424 if ((objf->flags & OBJF_USERLOADED) != 0
2425 && (objf->flags & OBJF_SHARED) != 0
2426 && objf->pspace == pspace
2427 && filename_cmp (filename, objfile_name (objf)) == 0)
2428 break;
2429 }
2430 }
2431
2432 if (objf == NULL)
2433 error (_("No symbol file found"));
2434
2435 if (from_tty
2436 && !query (_("Remove symbol table from file \"%s\"? "),
2437 objfile_name (objf)))
2438 error (_("Not confirmed."));
2439
2440 free_objfile (objf);
2441 clear_symtab_users (0);
2442
2443 do_cleanups (my_cleanups);
2444 }
2445
2446 typedef struct objfile *objfilep;
2447
2448 DEF_VEC_P (objfilep);
2449
2450 /* Re-read symbols if a symbol-file has changed. */
2451
2452 void
2453 reread_symbols (void)
2454 {
2455 struct objfile *objfile;
2456 long new_modtime;
2457 struct stat new_statbuf;
2458 int res;
2459 VEC (objfilep) *new_objfiles = NULL;
2460 struct cleanup *all_cleanups;
2461
2462 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2463
2464 /* With the addition of shared libraries, this should be modified,
2465 the load time should be saved in the partial symbol tables, since
2466 different tables may come from different source files. FIXME.
2467 This routine should then walk down each partial symbol table
2468 and see if the symbol table that it originates from has been changed. */
2469
2470 for (objfile = object_files; objfile; objfile = objfile->next)
2471 {
2472 if (objfile->obfd == NULL)
2473 continue;
2474
2475 /* Separate debug objfiles are handled in the main objfile. */
2476 if (objfile->separate_debug_objfile_backlink)
2477 continue;
2478
2479 /* If this object is from an archive (what you usually create with
2480 `ar', often called a `static library' on most systems, though
2481 a `shared library' on AIX is also an archive), then you should
2482 stat on the archive name, not member name. */
2483 if (objfile->obfd->my_archive)
2484 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2485 else
2486 res = stat (objfile_name (objfile), &new_statbuf);
2487 if (res != 0)
2488 {
2489 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2490 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2491 objfile_name (objfile));
2492 continue;
2493 }
2494 new_modtime = new_statbuf.st_mtime;
2495 if (new_modtime != objfile->mtime)
2496 {
2497 struct cleanup *old_cleanups;
2498 struct section_offsets *offsets;
2499 int num_offsets;
2500 char *original_name;
2501
2502 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2503 objfile_name (objfile));
2504
2505 /* There are various functions like symbol_file_add,
2506 symfile_bfd_open, syms_from_objfile, etc., which might
2507 appear to do what we want. But they have various other
2508 effects which we *don't* want. So we just do stuff
2509 ourselves. We don't worry about mapped files (for one thing,
2510 any mapped file will be out of date). */
2511
2512 /* If we get an error, blow away this objfile (not sure if
2513 that is the correct response for things like shared
2514 libraries). */
2515 old_cleanups = make_cleanup_free_objfile (objfile);
2516 /* We need to do this whenever any symbols go away. */
2517 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2518
2519 if (exec_bfd != NULL
2520 && filename_cmp (bfd_get_filename (objfile->obfd),
2521 bfd_get_filename (exec_bfd)) == 0)
2522 {
2523 /* Reload EXEC_BFD without asking anything. */
2524
2525 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2526 }
2527
2528 /* Keep the calls order approx. the same as in free_objfile. */
2529
2530 /* Free the separate debug objfiles. It will be
2531 automatically recreated by sym_read. */
2532 free_objfile_separate_debug (objfile);
2533
2534 /* Remove any references to this objfile in the global
2535 value lists. */
2536 preserve_values (objfile);
2537
2538 /* Nuke all the state that we will re-read. Much of the following
2539 code which sets things to NULL really is necessary to tell
2540 other parts of GDB that there is nothing currently there.
2541
2542 Try to keep the freeing order compatible with free_objfile. */
2543
2544 if (objfile->sf != NULL)
2545 {
2546 (*objfile->sf->sym_finish) (objfile);
2547 }
2548
2549 clear_objfile_data (objfile);
2550
2551 /* Clean up any state BFD has sitting around. */
2552 {
2553 gdb_bfd_ref_ptr obfd (objfile->obfd);
2554 char *obfd_filename;
2555
2556 obfd_filename = bfd_get_filename (objfile->obfd);
2557 /* Open the new BFD before freeing the old one, so that
2558 the filename remains live. */
2559 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2560 objfile->obfd = temp.release ();
2561 if (objfile->obfd == NULL)
2562 error (_("Can't open %s to read symbols."), obfd_filename);
2563 }
2564
2565 original_name = xstrdup (objfile->original_name);
2566 make_cleanup (xfree, original_name);
2567
2568 /* bfd_openr sets cacheable to true, which is what we want. */
2569 if (!bfd_check_format (objfile->obfd, bfd_object))
2570 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2571 bfd_errmsg (bfd_get_error ()));
2572
2573 /* Save the offsets, we will nuke them with the rest of the
2574 objfile_obstack. */
2575 num_offsets = objfile->num_sections;
2576 offsets = ((struct section_offsets *)
2577 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2578 memcpy (offsets, objfile->section_offsets,
2579 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2580
2581 /* FIXME: Do we have to free a whole linked list, or is this
2582 enough? */
2583 if (objfile->global_psymbols.list)
2584 xfree (objfile->global_psymbols.list);
2585 memset (&objfile->global_psymbols, 0,
2586 sizeof (objfile->global_psymbols));
2587 if (objfile->static_psymbols.list)
2588 xfree (objfile->static_psymbols.list);
2589 memset (&objfile->static_psymbols, 0,
2590 sizeof (objfile->static_psymbols));
2591
2592 /* Free the obstacks for non-reusable objfiles. */
2593 psymbol_bcache_free (objfile->psymbol_cache);
2594 objfile->psymbol_cache = psymbol_bcache_init ();
2595 obstack_free (&objfile->objfile_obstack, 0);
2596 objfile->sections = NULL;
2597 objfile->compunit_symtabs = NULL;
2598 objfile->psymtabs = NULL;
2599 objfile->psymtabs_addrmap = NULL;
2600 objfile->free_psymtabs = NULL;
2601 objfile->template_symbols = NULL;
2602
2603 /* obstack_init also initializes the obstack so it is
2604 empty. We could use obstack_specify_allocation but
2605 gdb_obstack.h specifies the alloc/dealloc functions. */
2606 obstack_init (&objfile->objfile_obstack);
2607
2608 /* set_objfile_per_bfd potentially allocates the per-bfd
2609 data on the objfile's obstack (if sharing data across
2610 multiple users is not possible), so it's important to
2611 do it *after* the obstack has been initialized. */
2612 set_objfile_per_bfd (objfile);
2613
2614 objfile->original_name
2615 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2616 strlen (original_name));
2617
2618 /* Reset the sym_fns pointer. The ELF reader can change it
2619 based on whether .gdb_index is present, and we need it to
2620 start over. PR symtab/15885 */
2621 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2622
2623 build_objfile_section_table (objfile);
2624 terminate_minimal_symbol_table (objfile);
2625
2626 /* We use the same section offsets as from last time. I'm not
2627 sure whether that is always correct for shared libraries. */
2628 objfile->section_offsets = (struct section_offsets *)
2629 obstack_alloc (&objfile->objfile_obstack,
2630 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2631 memcpy (objfile->section_offsets, offsets,
2632 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2633 objfile->num_sections = num_offsets;
2634
2635 /* What the hell is sym_new_init for, anyway? The concept of
2636 distinguishing between the main file and additional files
2637 in this way seems rather dubious. */
2638 if (objfile == symfile_objfile)
2639 {
2640 (*objfile->sf->sym_new_init) (objfile);
2641 }
2642
2643 (*objfile->sf->sym_init) (objfile);
2644 clear_complaints (&symfile_complaints, 1, 1);
2645
2646 objfile->flags &= ~OBJF_PSYMTABS_READ;
2647 read_symbols (objfile, 0);
2648
2649 if (!objfile_has_symbols (objfile))
2650 {
2651 wrap_here ("");
2652 printf_unfiltered (_("(no debugging symbols found)\n"));
2653 wrap_here ("");
2654 }
2655
2656 /* We're done reading the symbol file; finish off complaints. */
2657 clear_complaints (&symfile_complaints, 0, 1);
2658
2659 /* Getting new symbols may change our opinion about what is
2660 frameless. */
2661
2662 reinit_frame_cache ();
2663
2664 /* Discard cleanups as symbol reading was successful. */
2665 discard_cleanups (old_cleanups);
2666
2667 /* If the mtime has changed between the time we set new_modtime
2668 and now, we *want* this to be out of date, so don't call stat
2669 again now. */
2670 objfile->mtime = new_modtime;
2671 init_entry_point_info (objfile);
2672
2673 VEC_safe_push (objfilep, new_objfiles, objfile);
2674 }
2675 }
2676
2677 if (new_objfiles)
2678 {
2679 int ix;
2680
2681 /* Notify objfiles that we've modified objfile sections. */
2682 objfiles_changed ();
2683
2684 clear_symtab_users (0);
2685
2686 /* clear_objfile_data for each objfile was called before freeing it and
2687 observer_notify_new_objfile (NULL) has been called by
2688 clear_symtab_users above. Notify the new files now. */
2689 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2690 observer_notify_new_objfile (objfile);
2691
2692 /* At least one objfile has changed, so we can consider that
2693 the executable we're debugging has changed too. */
2694 observer_notify_executable_changed ();
2695 }
2696
2697 do_cleanups (all_cleanups);
2698 }
2699 \f
2700
2701 typedef struct
2702 {
2703 char *ext;
2704 enum language lang;
2705 } filename_language;
2706
2707 DEF_VEC_O (filename_language);
2708
2709 static VEC (filename_language) *filename_language_table;
2710
2711 /* See symfile.h. */
2712
2713 void
2714 add_filename_language (const char *ext, enum language lang)
2715 {
2716 filename_language entry;
2717
2718 entry.ext = xstrdup (ext);
2719 entry.lang = lang;
2720
2721 VEC_safe_push (filename_language, filename_language_table, &entry);
2722 }
2723
2724 static char *ext_args;
2725 static void
2726 show_ext_args (struct ui_file *file, int from_tty,
2727 struct cmd_list_element *c, const char *value)
2728 {
2729 fprintf_filtered (file,
2730 _("Mapping between filename extension "
2731 "and source language is \"%s\".\n"),
2732 value);
2733 }
2734
2735 static void
2736 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2737 {
2738 int i;
2739 char *cp = ext_args;
2740 enum language lang;
2741 filename_language *entry;
2742
2743 /* First arg is filename extension, starting with '.' */
2744 if (*cp != '.')
2745 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2746
2747 /* Find end of first arg. */
2748 while (*cp && !isspace (*cp))
2749 cp++;
2750
2751 if (*cp == '\0')
2752 error (_("'%s': two arguments required -- "
2753 "filename extension and language"),
2754 ext_args);
2755
2756 /* Null-terminate first arg. */
2757 *cp++ = '\0';
2758
2759 /* Find beginning of second arg, which should be a source language. */
2760 cp = skip_spaces (cp);
2761
2762 if (*cp == '\0')
2763 error (_("'%s': two arguments required -- "
2764 "filename extension and language"),
2765 ext_args);
2766
2767 /* Lookup the language from among those we know. */
2768 lang = language_enum (cp);
2769
2770 /* Now lookup the filename extension: do we already know it? */
2771 for (i = 0;
2772 VEC_iterate (filename_language, filename_language_table, i, entry);
2773 ++i)
2774 {
2775 if (0 == strcmp (ext_args, entry->ext))
2776 break;
2777 }
2778
2779 if (entry == NULL)
2780 {
2781 /* New file extension. */
2782 add_filename_language (ext_args, lang);
2783 }
2784 else
2785 {
2786 /* Redefining a previously known filename extension. */
2787
2788 /* if (from_tty) */
2789 /* query ("Really make files of type %s '%s'?", */
2790 /* ext_args, language_str (lang)); */
2791
2792 xfree (entry->ext);
2793 entry->ext = xstrdup (ext_args);
2794 entry->lang = lang;
2795 }
2796 }
2797
2798 static void
2799 info_ext_lang_command (char *args, int from_tty)
2800 {
2801 int i;
2802 filename_language *entry;
2803
2804 printf_filtered (_("Filename extensions and the languages they represent:"));
2805 printf_filtered ("\n\n");
2806 for (i = 0;
2807 VEC_iterate (filename_language, filename_language_table, i, entry);
2808 ++i)
2809 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2810 }
2811
2812 enum language
2813 deduce_language_from_filename (const char *filename)
2814 {
2815 int i;
2816 const char *cp;
2817
2818 if (filename != NULL)
2819 if ((cp = strrchr (filename, '.')) != NULL)
2820 {
2821 filename_language *entry;
2822
2823 for (i = 0;
2824 VEC_iterate (filename_language, filename_language_table, i, entry);
2825 ++i)
2826 if (strcmp (cp, entry->ext) == 0)
2827 return entry->lang;
2828 }
2829
2830 return language_unknown;
2831 }
2832 \f
2833 /* Allocate and initialize a new symbol table.
2834 CUST is from the result of allocate_compunit_symtab. */
2835
2836 struct symtab *
2837 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2838 {
2839 struct objfile *objfile = cust->objfile;
2840 struct symtab *symtab
2841 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2842
2843 symtab->filename
2844 = (const char *) bcache (filename, strlen (filename) + 1,
2845 objfile->per_bfd->filename_cache);
2846 symtab->fullname = NULL;
2847 symtab->language = deduce_language_from_filename (filename);
2848
2849 /* This can be very verbose with lots of headers.
2850 Only print at higher debug levels. */
2851 if (symtab_create_debug >= 2)
2852 {
2853 /* Be a bit clever with debugging messages, and don't print objfile
2854 every time, only when it changes. */
2855 static char *last_objfile_name = NULL;
2856
2857 if (last_objfile_name == NULL
2858 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2859 {
2860 xfree (last_objfile_name);
2861 last_objfile_name = xstrdup (objfile_name (objfile));
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Creating one or more symtabs for objfile %s ...\n",
2864 last_objfile_name);
2865 }
2866 fprintf_unfiltered (gdb_stdlog,
2867 "Created symtab %s for module %s.\n",
2868 host_address_to_string (symtab), filename);
2869 }
2870
2871 /* Add it to CUST's list of symtabs. */
2872 if (cust->filetabs == NULL)
2873 {
2874 cust->filetabs = symtab;
2875 cust->last_filetab = symtab;
2876 }
2877 else
2878 {
2879 cust->last_filetab->next = symtab;
2880 cust->last_filetab = symtab;
2881 }
2882
2883 /* Backlink to the containing compunit symtab. */
2884 symtab->compunit_symtab = cust;
2885
2886 return symtab;
2887 }
2888
2889 /* Allocate and initialize a new compunit.
2890 NAME is the name of the main source file, if there is one, or some
2891 descriptive text if there are no source files. */
2892
2893 struct compunit_symtab *
2894 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2895 {
2896 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2897 struct compunit_symtab);
2898 const char *saved_name;
2899
2900 cu->objfile = objfile;
2901
2902 /* The name we record here is only for display/debugging purposes.
2903 Just save the basename to avoid path issues (too long for display,
2904 relative vs absolute, etc.). */
2905 saved_name = lbasename (name);
2906 cu->name
2907 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2908 strlen (saved_name));
2909
2910 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2911
2912 if (symtab_create_debug)
2913 {
2914 fprintf_unfiltered (gdb_stdlog,
2915 "Created compunit symtab %s for %s.\n",
2916 host_address_to_string (cu),
2917 cu->name);
2918 }
2919
2920 return cu;
2921 }
2922
2923 /* Hook CU to the objfile it comes from. */
2924
2925 void
2926 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2927 {
2928 cu->next = cu->objfile->compunit_symtabs;
2929 cu->objfile->compunit_symtabs = cu;
2930 }
2931 \f
2932
2933 /* Reset all data structures in gdb which may contain references to
2934 symbol table data. */
2935
2936 void
2937 clear_symtab_users (symfile_add_flags add_flags)
2938 {
2939 /* Someday, we should do better than this, by only blowing away
2940 the things that really need to be blown. */
2941
2942 /* Clear the "current" symtab first, because it is no longer valid.
2943 breakpoint_re_set may try to access the current symtab. */
2944 clear_current_source_symtab_and_line ();
2945
2946 clear_displays ();
2947 clear_last_displayed_sal ();
2948 clear_pc_function_cache ();
2949 observer_notify_new_objfile (NULL);
2950
2951 /* Clear globals which might have pointed into a removed objfile.
2952 FIXME: It's not clear which of these are supposed to persist
2953 between expressions and which ought to be reset each time. */
2954 expression_context_block = NULL;
2955 innermost_block = NULL;
2956
2957 /* Varobj may refer to old symbols, perform a cleanup. */
2958 varobj_invalidate ();
2959
2960 /* Now that the various caches have been cleared, we can re_set
2961 our breakpoints without risking it using stale data. */
2962 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2963 breakpoint_re_set ();
2964 }
2965
2966 static void
2967 clear_symtab_users_cleanup (void *ignore)
2968 {
2969 clear_symtab_users (0);
2970 }
2971 \f
2972 /* OVERLAYS:
2973 The following code implements an abstraction for debugging overlay sections.
2974
2975 The target model is as follows:
2976 1) The gnu linker will permit multiple sections to be mapped into the
2977 same VMA, each with its own unique LMA (or load address).
2978 2) It is assumed that some runtime mechanism exists for mapping the
2979 sections, one by one, from the load address into the VMA address.
2980 3) This code provides a mechanism for gdb to keep track of which
2981 sections should be considered to be mapped from the VMA to the LMA.
2982 This information is used for symbol lookup, and memory read/write.
2983 For instance, if a section has been mapped then its contents
2984 should be read from the VMA, otherwise from the LMA.
2985
2986 Two levels of debugger support for overlays are available. One is
2987 "manual", in which the debugger relies on the user to tell it which
2988 overlays are currently mapped. This level of support is
2989 implemented entirely in the core debugger, and the information about
2990 whether a section is mapped is kept in the objfile->obj_section table.
2991
2992 The second level of support is "automatic", and is only available if
2993 the target-specific code provides functionality to read the target's
2994 overlay mapping table, and translate its contents for the debugger
2995 (by updating the mapped state information in the obj_section tables).
2996
2997 The interface is as follows:
2998 User commands:
2999 overlay map <name> -- tell gdb to consider this section mapped
3000 overlay unmap <name> -- tell gdb to consider this section unmapped
3001 overlay list -- list the sections that GDB thinks are mapped
3002 overlay read-target -- get the target's state of what's mapped
3003 overlay off/manual/auto -- set overlay debugging state
3004 Functional interface:
3005 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3006 section, return that section.
3007 find_pc_overlay(pc): find any overlay section that contains
3008 the pc, either in its VMA or its LMA
3009 section_is_mapped(sect): true if overlay is marked as mapped
3010 section_is_overlay(sect): true if section's VMA != LMA
3011 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3012 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3013 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3014 overlay_mapped_address(...): map an address from section's LMA to VMA
3015 overlay_unmapped_address(...): map an address from section's VMA to LMA
3016 symbol_overlayed_address(...): Return a "current" address for symbol:
3017 either in VMA or LMA depending on whether
3018 the symbol's section is currently mapped. */
3019
3020 /* Overlay debugging state: */
3021
3022 enum overlay_debugging_state overlay_debugging = ovly_off;
3023 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3024
3025 /* Function: section_is_overlay (SECTION)
3026 Returns true if SECTION has VMA not equal to LMA, ie.
3027 SECTION is loaded at an address different from where it will "run". */
3028
3029 int
3030 section_is_overlay (struct obj_section *section)
3031 {
3032 if (overlay_debugging && section)
3033 {
3034 bfd *abfd = section->objfile->obfd;
3035 asection *bfd_section = section->the_bfd_section;
3036
3037 if (bfd_section_lma (abfd, bfd_section) != 0
3038 && bfd_section_lma (abfd, bfd_section)
3039 != bfd_section_vma (abfd, bfd_section))
3040 return 1;
3041 }
3042
3043 return 0;
3044 }
3045
3046 /* Function: overlay_invalidate_all (void)
3047 Invalidate the mapped state of all overlay sections (mark it as stale). */
3048
3049 static void
3050 overlay_invalidate_all (void)
3051 {
3052 struct objfile *objfile;
3053 struct obj_section *sect;
3054
3055 ALL_OBJSECTIONS (objfile, sect)
3056 if (section_is_overlay (sect))
3057 sect->ovly_mapped = -1;
3058 }
3059
3060 /* Function: section_is_mapped (SECTION)
3061 Returns true if section is an overlay, and is currently mapped.
3062
3063 Access to the ovly_mapped flag is restricted to this function, so
3064 that we can do automatic update. If the global flag
3065 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3066 overlay_invalidate_all. If the mapped state of the particular
3067 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3068
3069 int
3070 section_is_mapped (struct obj_section *osect)
3071 {
3072 struct gdbarch *gdbarch;
3073
3074 if (osect == 0 || !section_is_overlay (osect))
3075 return 0;
3076
3077 switch (overlay_debugging)
3078 {
3079 default:
3080 case ovly_off:
3081 return 0; /* overlay debugging off */
3082 case ovly_auto: /* overlay debugging automatic */
3083 /* Unles there is a gdbarch_overlay_update function,
3084 there's really nothing useful to do here (can't really go auto). */
3085 gdbarch = get_objfile_arch (osect->objfile);
3086 if (gdbarch_overlay_update_p (gdbarch))
3087 {
3088 if (overlay_cache_invalid)
3089 {
3090 overlay_invalidate_all ();
3091 overlay_cache_invalid = 0;
3092 }
3093 if (osect->ovly_mapped == -1)
3094 gdbarch_overlay_update (gdbarch, osect);
3095 }
3096 /* fall thru to manual case */
3097 case ovly_on: /* overlay debugging manual */
3098 return osect->ovly_mapped == 1;
3099 }
3100 }
3101
3102 /* Function: pc_in_unmapped_range
3103 If PC falls into the lma range of SECTION, return true, else false. */
3104
3105 CORE_ADDR
3106 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3107 {
3108 if (section_is_overlay (section))
3109 {
3110 bfd *abfd = section->objfile->obfd;
3111 asection *bfd_section = section->the_bfd_section;
3112
3113 /* We assume the LMA is relocated by the same offset as the VMA. */
3114 bfd_vma size = bfd_get_section_size (bfd_section);
3115 CORE_ADDR offset = obj_section_offset (section);
3116
3117 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3118 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3119 return 1;
3120 }
3121
3122 return 0;
3123 }
3124
3125 /* Function: pc_in_mapped_range
3126 If PC falls into the vma range of SECTION, return true, else false. */
3127
3128 CORE_ADDR
3129 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3130 {
3131 if (section_is_overlay (section))
3132 {
3133 if (obj_section_addr (section) <= pc
3134 && pc < obj_section_endaddr (section))
3135 return 1;
3136 }
3137
3138 return 0;
3139 }
3140
3141 /* Return true if the mapped ranges of sections A and B overlap, false
3142 otherwise. */
3143
3144 static int
3145 sections_overlap (struct obj_section *a, struct obj_section *b)
3146 {
3147 CORE_ADDR a_start = obj_section_addr (a);
3148 CORE_ADDR a_end = obj_section_endaddr (a);
3149 CORE_ADDR b_start = obj_section_addr (b);
3150 CORE_ADDR b_end = obj_section_endaddr (b);
3151
3152 return (a_start < b_end && b_start < a_end);
3153 }
3154
3155 /* Function: overlay_unmapped_address (PC, SECTION)
3156 Returns the address corresponding to PC in the unmapped (load) range.
3157 May be the same as PC. */
3158
3159 CORE_ADDR
3160 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3161 {
3162 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3163 {
3164 bfd *abfd = section->objfile->obfd;
3165 asection *bfd_section = section->the_bfd_section;
3166
3167 return pc + bfd_section_lma (abfd, bfd_section)
3168 - bfd_section_vma (abfd, bfd_section);
3169 }
3170
3171 return pc;
3172 }
3173
3174 /* Function: overlay_mapped_address (PC, SECTION)
3175 Returns the address corresponding to PC in the mapped (runtime) range.
3176 May be the same as PC. */
3177
3178 CORE_ADDR
3179 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3180 {
3181 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3182 {
3183 bfd *abfd = section->objfile->obfd;
3184 asection *bfd_section = section->the_bfd_section;
3185
3186 return pc + bfd_section_vma (abfd, bfd_section)
3187 - bfd_section_lma (abfd, bfd_section);
3188 }
3189
3190 return pc;
3191 }
3192
3193 /* Function: symbol_overlayed_address
3194 Return one of two addresses (relative to the VMA or to the LMA),
3195 depending on whether the section is mapped or not. */
3196
3197 CORE_ADDR
3198 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3199 {
3200 if (overlay_debugging)
3201 {
3202 /* If the symbol has no section, just return its regular address. */
3203 if (section == 0)
3204 return address;
3205 /* If the symbol's section is not an overlay, just return its
3206 address. */
3207 if (!section_is_overlay (section))
3208 return address;
3209 /* If the symbol's section is mapped, just return its address. */
3210 if (section_is_mapped (section))
3211 return address;
3212 /*
3213 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3214 * then return its LOADED address rather than its vma address!!
3215 */
3216 return overlay_unmapped_address (address, section);
3217 }
3218 return address;
3219 }
3220
3221 /* Function: find_pc_overlay (PC)
3222 Return the best-match overlay section for PC:
3223 If PC matches a mapped overlay section's VMA, return that section.
3224 Else if PC matches an unmapped section's VMA, return that section.
3225 Else if PC matches an unmapped section's LMA, return that section. */
3226
3227 struct obj_section *
3228 find_pc_overlay (CORE_ADDR pc)
3229 {
3230 struct objfile *objfile;
3231 struct obj_section *osect, *best_match = NULL;
3232
3233 if (overlay_debugging)
3234 {
3235 ALL_OBJSECTIONS (objfile, osect)
3236 if (section_is_overlay (osect))
3237 {
3238 if (pc_in_mapped_range (pc, osect))
3239 {
3240 if (section_is_mapped (osect))
3241 return osect;
3242 else
3243 best_match = osect;
3244 }
3245 else if (pc_in_unmapped_range (pc, osect))
3246 best_match = osect;
3247 }
3248 }
3249 return best_match;
3250 }
3251
3252 /* Function: find_pc_mapped_section (PC)
3253 If PC falls into the VMA address range of an overlay section that is
3254 currently marked as MAPPED, return that section. Else return NULL. */
3255
3256 struct obj_section *
3257 find_pc_mapped_section (CORE_ADDR pc)
3258 {
3259 struct objfile *objfile;
3260 struct obj_section *osect;
3261
3262 if (overlay_debugging)
3263 {
3264 ALL_OBJSECTIONS (objfile, osect)
3265 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3266 return osect;
3267 }
3268
3269 return NULL;
3270 }
3271
3272 /* Function: list_overlays_command
3273 Print a list of mapped sections and their PC ranges. */
3274
3275 static void
3276 list_overlays_command (char *args, int from_tty)
3277 {
3278 int nmapped = 0;
3279 struct objfile *objfile;
3280 struct obj_section *osect;
3281
3282 if (overlay_debugging)
3283 {
3284 ALL_OBJSECTIONS (objfile, osect)
3285 if (section_is_mapped (osect))
3286 {
3287 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3288 const char *name;
3289 bfd_vma lma, vma;
3290 int size;
3291
3292 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3293 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3294 size = bfd_get_section_size (osect->the_bfd_section);
3295 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3296
3297 printf_filtered ("Section %s, loaded at ", name);
3298 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3299 puts_filtered (" - ");
3300 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3301 printf_filtered (", mapped at ");
3302 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3303 puts_filtered (" - ");
3304 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3305 puts_filtered ("\n");
3306
3307 nmapped++;
3308 }
3309 }
3310 if (nmapped == 0)
3311 printf_filtered (_("No sections are mapped.\n"));
3312 }
3313
3314 /* Function: map_overlay_command
3315 Mark the named section as mapped (ie. residing at its VMA address). */
3316
3317 static void
3318 map_overlay_command (char *args, int from_tty)
3319 {
3320 struct objfile *objfile, *objfile2;
3321 struct obj_section *sec, *sec2;
3322
3323 if (!overlay_debugging)
3324 error (_("Overlay debugging not enabled. Use "
3325 "either the 'overlay auto' or\n"
3326 "the 'overlay manual' command."));
3327
3328 if (args == 0 || *args == 0)
3329 error (_("Argument required: name of an overlay section"));
3330
3331 /* First, find a section matching the user supplied argument. */
3332 ALL_OBJSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3334 {
3335 /* Now, check to see if the section is an overlay. */
3336 if (!section_is_overlay (sec))
3337 continue; /* not an overlay section */
3338
3339 /* Mark the overlay as "mapped". */
3340 sec->ovly_mapped = 1;
3341
3342 /* Next, make a pass and unmap any sections that are
3343 overlapped by this new section: */
3344 ALL_OBJSECTIONS (objfile2, sec2)
3345 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3346 {
3347 if (info_verbose)
3348 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3349 bfd_section_name (objfile->obfd,
3350 sec2->the_bfd_section));
3351 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3352 }
3353 return;
3354 }
3355 error (_("No overlay section called %s"), args);
3356 }
3357
3358 /* Function: unmap_overlay_command
3359 Mark the overlay section as unmapped
3360 (ie. resident in its LMA address range, rather than the VMA range). */
3361
3362 static void
3363 unmap_overlay_command (char *args, int from_tty)
3364 {
3365 struct objfile *objfile;
3366 struct obj_section *sec = NULL;
3367
3368 if (!overlay_debugging)
3369 error (_("Overlay debugging not enabled. "
3370 "Use either the 'overlay auto' or\n"
3371 "the 'overlay manual' command."));
3372
3373 if (args == 0 || *args == 0)
3374 error (_("Argument required: name of an overlay section"));
3375
3376 /* First, find a section matching the user supplied argument. */
3377 ALL_OBJSECTIONS (objfile, sec)
3378 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3379 {
3380 if (!sec->ovly_mapped)
3381 error (_("Section %s is not mapped"), args);
3382 sec->ovly_mapped = 0;
3383 return;
3384 }
3385 error (_("No overlay section called %s"), args);
3386 }
3387
3388 /* Function: overlay_auto_command
3389 A utility command to turn on overlay debugging.
3390 Possibly this should be done via a set/show command. */
3391
3392 static void
3393 overlay_auto_command (char *args, int from_tty)
3394 {
3395 overlay_debugging = ovly_auto;
3396 enable_overlay_breakpoints ();
3397 if (info_verbose)
3398 printf_unfiltered (_("Automatic overlay debugging enabled."));
3399 }
3400
3401 /* Function: overlay_manual_command
3402 A utility command to turn on overlay debugging.
3403 Possibly this should be done via a set/show command. */
3404
3405 static void
3406 overlay_manual_command (char *args, int from_tty)
3407 {
3408 overlay_debugging = ovly_on;
3409 disable_overlay_breakpoints ();
3410 if (info_verbose)
3411 printf_unfiltered (_("Overlay debugging enabled."));
3412 }
3413
3414 /* Function: overlay_off_command
3415 A utility command to turn on overlay debugging.
3416 Possibly this should be done via a set/show command. */
3417
3418 static void
3419 overlay_off_command (char *args, int from_tty)
3420 {
3421 overlay_debugging = ovly_off;
3422 disable_overlay_breakpoints ();
3423 if (info_verbose)
3424 printf_unfiltered (_("Overlay debugging disabled."));
3425 }
3426
3427 static void
3428 overlay_load_command (char *args, int from_tty)
3429 {
3430 struct gdbarch *gdbarch = get_current_arch ();
3431
3432 if (gdbarch_overlay_update_p (gdbarch))
3433 gdbarch_overlay_update (gdbarch, NULL);
3434 else
3435 error (_("This target does not know how to read its overlay state."));
3436 }
3437
3438 /* Function: overlay_command
3439 A place-holder for a mis-typed command. */
3440
3441 /* Command list chain containing all defined "overlay" subcommands. */
3442 static struct cmd_list_element *overlaylist;
3443
3444 static void
3445 overlay_command (char *args, int from_tty)
3446 {
3447 printf_unfiltered
3448 ("\"overlay\" must be followed by the name of an overlay command.\n");
3449 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3450 }
3451
3452 /* Target Overlays for the "Simplest" overlay manager:
3453
3454 This is GDB's default target overlay layer. It works with the
3455 minimal overlay manager supplied as an example by Cygnus. The
3456 entry point is via a function pointer "gdbarch_overlay_update",
3457 so targets that use a different runtime overlay manager can
3458 substitute their own overlay_update function and take over the
3459 function pointer.
3460
3461 The overlay_update function pokes around in the target's data structures
3462 to see what overlays are mapped, and updates GDB's overlay mapping with
3463 this information.
3464
3465 In this simple implementation, the target data structures are as follows:
3466 unsigned _novlys; /# number of overlay sections #/
3467 unsigned _ovly_table[_novlys][4] = {
3468 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3469 {..., ..., ..., ...},
3470 }
3471 unsigned _novly_regions; /# number of overlay regions #/
3472 unsigned _ovly_region_table[_novly_regions][3] = {
3473 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3474 {..., ..., ...},
3475 }
3476 These functions will attempt to update GDB's mappedness state in the
3477 symbol section table, based on the target's mappedness state.
3478
3479 To do this, we keep a cached copy of the target's _ovly_table, and
3480 attempt to detect when the cached copy is invalidated. The main
3481 entry point is "simple_overlay_update(SECT), which looks up SECT in
3482 the cached table and re-reads only the entry for that section from
3483 the target (whenever possible). */
3484
3485 /* Cached, dynamically allocated copies of the target data structures: */
3486 static unsigned (*cache_ovly_table)[4] = 0;
3487 static unsigned cache_novlys = 0;
3488 static CORE_ADDR cache_ovly_table_base = 0;
3489 enum ovly_index
3490 {
3491 VMA, OSIZE, LMA, MAPPED
3492 };
3493
3494 /* Throw away the cached copy of _ovly_table. */
3495
3496 static void
3497 simple_free_overlay_table (void)
3498 {
3499 if (cache_ovly_table)
3500 xfree (cache_ovly_table);
3501 cache_novlys = 0;
3502 cache_ovly_table = NULL;
3503 cache_ovly_table_base = 0;
3504 }
3505
3506 /* Read an array of ints of size SIZE from the target into a local buffer.
3507 Convert to host order. int LEN is number of ints. */
3508
3509 static void
3510 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3511 int len, int size, enum bfd_endian byte_order)
3512 {
3513 /* FIXME (alloca): Not safe if array is very large. */
3514 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3515 int i;
3516
3517 read_memory (memaddr, buf, len * size);
3518 for (i = 0; i < len; i++)
3519 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3520 }
3521
3522 /* Find and grab a copy of the target _ovly_table
3523 (and _novlys, which is needed for the table's size). */
3524
3525 static int
3526 simple_read_overlay_table (void)
3527 {
3528 struct bound_minimal_symbol novlys_msym;
3529 struct bound_minimal_symbol ovly_table_msym;
3530 struct gdbarch *gdbarch;
3531 int word_size;
3532 enum bfd_endian byte_order;
3533
3534 simple_free_overlay_table ();
3535 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3536 if (! novlys_msym.minsym)
3537 {
3538 error (_("Error reading inferior's overlay table: "
3539 "couldn't find `_novlys' variable\n"
3540 "in inferior. Use `overlay manual' mode."));
3541 return 0;
3542 }
3543
3544 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3545 if (! ovly_table_msym.minsym)
3546 {
3547 error (_("Error reading inferior's overlay table: couldn't find "
3548 "`_ovly_table' array\n"
3549 "in inferior. Use `overlay manual' mode."));
3550 return 0;
3551 }
3552
3553 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3554 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3555 byte_order = gdbarch_byte_order (gdbarch);
3556
3557 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3558 4, byte_order);
3559 cache_ovly_table
3560 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3561 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3562 read_target_long_array (cache_ovly_table_base,
3563 (unsigned int *) cache_ovly_table,
3564 cache_novlys * 4, word_size, byte_order);
3565
3566 return 1; /* SUCCESS */
3567 }
3568
3569 /* Function: simple_overlay_update_1
3570 A helper function for simple_overlay_update. Assuming a cached copy
3571 of _ovly_table exists, look through it to find an entry whose vma,
3572 lma and size match those of OSECT. Re-read the entry and make sure
3573 it still matches OSECT (else the table may no longer be valid).
3574 Set OSECT's mapped state to match the entry. Return: 1 for
3575 success, 0 for failure. */
3576
3577 static int
3578 simple_overlay_update_1 (struct obj_section *osect)
3579 {
3580 int i;
3581 bfd *obfd = osect->objfile->obfd;
3582 asection *bsect = osect->the_bfd_section;
3583 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3584 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3586
3587 for (i = 0; i < cache_novlys; i++)
3588 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3589 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3590 {
3591 read_target_long_array (cache_ovly_table_base + i * word_size,
3592 (unsigned int *) cache_ovly_table[i],
3593 4, word_size, byte_order);
3594 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3595 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3596 {
3597 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3598 return 1;
3599 }
3600 else /* Warning! Warning! Target's ovly table has changed! */
3601 return 0;
3602 }
3603 return 0;
3604 }
3605
3606 /* Function: simple_overlay_update
3607 If OSECT is NULL, then update all sections' mapped state
3608 (after re-reading the entire target _ovly_table).
3609 If OSECT is non-NULL, then try to find a matching entry in the
3610 cached ovly_table and update only OSECT's mapped state.
3611 If a cached entry can't be found or the cache isn't valid, then
3612 re-read the entire cache, and go ahead and update all sections. */
3613
3614 void
3615 simple_overlay_update (struct obj_section *osect)
3616 {
3617 struct objfile *objfile;
3618
3619 /* Were we given an osect to look up? NULL means do all of them. */
3620 if (osect)
3621 /* Have we got a cached copy of the target's overlay table? */
3622 if (cache_ovly_table != NULL)
3623 {
3624 /* Does its cached location match what's currently in the
3625 symtab? */
3626 struct bound_minimal_symbol minsym
3627 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3628
3629 if (minsym.minsym == NULL)
3630 error (_("Error reading inferior's overlay table: couldn't "
3631 "find `_ovly_table' array\n"
3632 "in inferior. Use `overlay manual' mode."));
3633
3634 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3635 /* Then go ahead and try to look up this single section in
3636 the cache. */
3637 if (simple_overlay_update_1 (osect))
3638 /* Found it! We're done. */
3639 return;
3640 }
3641
3642 /* Cached table no good: need to read the entire table anew.
3643 Or else we want all the sections, in which case it's actually
3644 more efficient to read the whole table in one block anyway. */
3645
3646 if (! simple_read_overlay_table ())
3647 return;
3648
3649 /* Now may as well update all sections, even if only one was requested. */
3650 ALL_OBJSECTIONS (objfile, osect)
3651 if (section_is_overlay (osect))
3652 {
3653 int i;
3654 bfd *obfd = osect->objfile->obfd;
3655 asection *bsect = osect->the_bfd_section;
3656
3657 for (i = 0; i < cache_novlys; i++)
3658 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3659 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3660 { /* obj_section matches i'th entry in ovly_table. */
3661 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3662 break; /* finished with inner for loop: break out. */
3663 }
3664 }
3665 }
3666
3667 /* Set the output sections and output offsets for section SECTP in
3668 ABFD. The relocation code in BFD will read these offsets, so we
3669 need to be sure they're initialized. We map each section to itself,
3670 with no offset; this means that SECTP->vma will be honored. */
3671
3672 static void
3673 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3674 {
3675 sectp->output_section = sectp;
3676 sectp->output_offset = 0;
3677 }
3678
3679 /* Default implementation for sym_relocate. */
3680
3681 bfd_byte *
3682 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3683 bfd_byte *buf)
3684 {
3685 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3686 DWO file. */
3687 bfd *abfd = sectp->owner;
3688
3689 /* We're only interested in sections with relocation
3690 information. */
3691 if ((sectp->flags & SEC_RELOC) == 0)
3692 return NULL;
3693
3694 /* We will handle section offsets properly elsewhere, so relocate as if
3695 all sections begin at 0. */
3696 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3697
3698 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3699 }
3700
3701 /* Relocate the contents of a debug section SECTP in ABFD. The
3702 contents are stored in BUF if it is non-NULL, or returned in a
3703 malloc'd buffer otherwise.
3704
3705 For some platforms and debug info formats, shared libraries contain
3706 relocations against the debug sections (particularly for DWARF-2;
3707 one affected platform is PowerPC GNU/Linux, although it depends on
3708 the version of the linker in use). Also, ELF object files naturally
3709 have unresolved relocations for their debug sections. We need to apply
3710 the relocations in order to get the locations of symbols correct.
3711 Another example that may require relocation processing, is the
3712 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3713 debug section. */
3714
3715 bfd_byte *
3716 symfile_relocate_debug_section (struct objfile *objfile,
3717 asection *sectp, bfd_byte *buf)
3718 {
3719 gdb_assert (objfile->sf->sym_relocate);
3720
3721 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3722 }
3723
3724 struct symfile_segment_data *
3725 get_symfile_segment_data (bfd *abfd)
3726 {
3727 const struct sym_fns *sf = find_sym_fns (abfd);
3728
3729 if (sf == NULL)
3730 return NULL;
3731
3732 return sf->sym_segments (abfd);
3733 }
3734
3735 void
3736 free_symfile_segment_data (struct symfile_segment_data *data)
3737 {
3738 xfree (data->segment_bases);
3739 xfree (data->segment_sizes);
3740 xfree (data->segment_info);
3741 xfree (data);
3742 }
3743
3744 /* Given:
3745 - DATA, containing segment addresses from the object file ABFD, and
3746 the mapping from ABFD's sections onto the segments that own them,
3747 and
3748 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3749 segment addresses reported by the target,
3750 store the appropriate offsets for each section in OFFSETS.
3751
3752 If there are fewer entries in SEGMENT_BASES than there are segments
3753 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3754
3755 If there are more entries, then ignore the extra. The target may
3756 not be able to distinguish between an empty data segment and a
3757 missing data segment; a missing text segment is less plausible. */
3758
3759 int
3760 symfile_map_offsets_to_segments (bfd *abfd,
3761 const struct symfile_segment_data *data,
3762 struct section_offsets *offsets,
3763 int num_segment_bases,
3764 const CORE_ADDR *segment_bases)
3765 {
3766 int i;
3767 asection *sect;
3768
3769 /* It doesn't make sense to call this function unless you have some
3770 segment base addresses. */
3771 gdb_assert (num_segment_bases > 0);
3772
3773 /* If we do not have segment mappings for the object file, we
3774 can not relocate it by segments. */
3775 gdb_assert (data != NULL);
3776 gdb_assert (data->num_segments > 0);
3777
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
3780 int which = data->segment_info[i];
3781
3782 gdb_assert (0 <= which && which <= data->num_segments);
3783
3784 /* Don't bother computing offsets for sections that aren't
3785 loaded as part of any segment. */
3786 if (! which)
3787 continue;
3788
3789 /* Use the last SEGMENT_BASES entry as the address of any extra
3790 segments mentioned in DATA->segment_info. */
3791 if (which > num_segment_bases)
3792 which = num_segment_bases;
3793
3794 offsets->offsets[i] = (segment_bases[which - 1]
3795 - data->segment_bases[which - 1]);
3796 }
3797
3798 return 1;
3799 }
3800
3801 static void
3802 symfile_find_segment_sections (struct objfile *objfile)
3803 {
3804 bfd *abfd = objfile->obfd;
3805 int i;
3806 asection *sect;
3807 struct symfile_segment_data *data;
3808
3809 data = get_symfile_segment_data (objfile->obfd);
3810 if (data == NULL)
3811 return;
3812
3813 if (data->num_segments != 1 && data->num_segments != 2)
3814 {
3815 free_symfile_segment_data (data);
3816 return;
3817 }
3818
3819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3820 {
3821 int which = data->segment_info[i];
3822
3823 if (which == 1)
3824 {
3825 if (objfile->sect_index_text == -1)
3826 objfile->sect_index_text = sect->index;
3827
3828 if (objfile->sect_index_rodata == -1)
3829 objfile->sect_index_rodata = sect->index;
3830 }
3831 else if (which == 2)
3832 {
3833 if (objfile->sect_index_data == -1)
3834 objfile->sect_index_data = sect->index;
3835
3836 if (objfile->sect_index_bss == -1)
3837 objfile->sect_index_bss = sect->index;
3838 }
3839 }
3840
3841 free_symfile_segment_data (data);
3842 }
3843
3844 /* Listen for free_objfile events. */
3845
3846 static void
3847 symfile_free_objfile (struct objfile *objfile)
3848 {
3849 /* Remove the target sections owned by this objfile. */
3850 if (objfile != NULL)
3851 remove_target_sections ((void *) objfile);
3852 }
3853
3854 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3855 Expand all symtabs that match the specified criteria.
3856 See quick_symbol_functions.expand_symtabs_matching for details. */
3857
3858 void
3859 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3860 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3861 expand_symtabs_exp_notify_ftype *expansion_notify,
3862 enum search_domain kind,
3863 void *data)
3864 {
3865 struct objfile *objfile;
3866
3867 ALL_OBJFILES (objfile)
3868 {
3869 if (objfile->sf)
3870 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3871 symbol_matcher,
3872 expansion_notify, kind,
3873 data);
3874 }
3875 }
3876
3877 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3878 Map function FUN over every file.
3879 See quick_symbol_functions.map_symbol_filenames for details. */
3880
3881 void
3882 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3883 int need_fullname)
3884 {
3885 struct objfile *objfile;
3886
3887 ALL_OBJFILES (objfile)
3888 {
3889 if (objfile->sf)
3890 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3891 need_fullname);
3892 }
3893 }
3894
3895 void
3896 _initialize_symfile (void)
3897 {
3898 struct cmd_list_element *c;
3899
3900 observer_attach_free_objfile (symfile_free_objfile);
3901
3902 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3903 Load symbol table from executable file FILE.\n\
3904 The `file' command can also load symbol tables, as well as setting the file\n\
3905 to execute."), &cmdlist);
3906 set_cmd_completer (c, filename_completer);
3907
3908 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3909 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3910 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3911 ...]\nADDR is the starting address of the file's text.\n\
3912 The optional arguments are section-name section-address pairs and\n\
3913 should be specified if the data and bss segments are not contiguous\n\
3914 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3915 &cmdlist);
3916 set_cmd_completer (c, filename_completer);
3917
3918 c = add_cmd ("remove-symbol-file", class_files,
3919 remove_symbol_file_command, _("\
3920 Remove a symbol file added via the add-symbol-file command.\n\
3921 Usage: remove-symbol-file FILENAME\n\
3922 remove-symbol-file -a ADDRESS\n\
3923 The file to remove can be identified by its filename or by an address\n\
3924 that lies within the boundaries of this symbol file in memory."),
3925 &cmdlist);
3926
3927 c = add_cmd ("load", class_files, load_command, _("\
3928 Dynamically load FILE into the running program, and record its symbols\n\
3929 for access from GDB.\n\
3930 A load OFFSET may also be given."), &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3932
3933 add_prefix_cmd ("overlay", class_support, overlay_command,
3934 _("Commands for debugging overlays."), &overlaylist,
3935 "overlay ", 0, &cmdlist);
3936
3937 add_com_alias ("ovly", "overlay", class_alias, 1);
3938 add_com_alias ("ov", "overlay", class_alias, 1);
3939
3940 add_cmd ("map-overlay", class_support, map_overlay_command,
3941 _("Assert that an overlay section is mapped."), &overlaylist);
3942
3943 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3944 _("Assert that an overlay section is unmapped."), &overlaylist);
3945
3946 add_cmd ("list-overlays", class_support, list_overlays_command,
3947 _("List mappings of overlay sections."), &overlaylist);
3948
3949 add_cmd ("manual", class_support, overlay_manual_command,
3950 _("Enable overlay debugging."), &overlaylist);
3951 add_cmd ("off", class_support, overlay_off_command,
3952 _("Disable overlay debugging."), &overlaylist);
3953 add_cmd ("auto", class_support, overlay_auto_command,
3954 _("Enable automatic overlay debugging."), &overlaylist);
3955 add_cmd ("load-target", class_support, overlay_load_command,
3956 _("Read the overlay mapping state from the target."), &overlaylist);
3957
3958 /* Filename extension to source language lookup table: */
3959 add_setshow_string_noescape_cmd ("extension-language", class_files,
3960 &ext_args, _("\
3961 Set mapping between filename extension and source language."), _("\
3962 Show mapping between filename extension and source language."), _("\
3963 Usage: set extension-language .foo bar"),
3964 set_ext_lang_command,
3965 show_ext_args,
3966 &setlist, &showlist);
3967
3968 add_info ("extensions", info_ext_lang_command,
3969 _("All filename extensions associated with a source language."));
3970
3971 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3972 &debug_file_directory, _("\
3973 Set the directories where separate debug symbols are searched for."), _("\
3974 Show the directories where separate debug symbols are searched for."), _("\
3975 Separate debug symbols are first searched for in the same\n\
3976 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3977 and lastly at the path of the directory of the binary with\n\
3978 each global debug-file-directory component prepended."),
3979 NULL,
3980 show_debug_file_directory,
3981 &setlist, &showlist);
3982
3983 add_setshow_enum_cmd ("symbol-loading", no_class,
3984 print_symbol_loading_enums, &print_symbol_loading,
3985 _("\
3986 Set printing of symbol loading messages."), _("\
3987 Show printing of symbol loading messages."), _("\
3988 off == turn all messages off\n\
3989 brief == print messages for the executable,\n\
3990 and brief messages for shared libraries\n\
3991 full == print messages for the executable,\n\
3992 and messages for each shared library."),
3993 NULL,
3994 NULL,
3995 &setprintlist, &showprintlist);
3996 }
This page took 0.178713 seconds and 3 git commands to generate.