Use gdb::byte_vector in load_progress
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <sys/stat.h>
64 #include <ctype.h>
65 #include <chrono>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void overlay_command (char *, int);
96
97 static void simple_free_overlay_table (void);
98
99 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
100 enum bfd_endian);
101
102 static int simple_read_overlay_table (void);
103
104 static int simple_overlay_update_1 (struct obj_section *);
105
106 static void info_ext_lang_command (char *args, int from_tty);
107
108 static void symfile_find_segment_sections (struct objfile *objfile);
109
110 /* List of all available sym_fns. On gdb startup, each object file reader
111 calls add_symtab_fns() to register information on each format it is
112 prepared to read. */
113
114 typedef struct
115 {
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 } registered_sym_fns;
122
123 DEF_VEC_O (registered_sym_fns);
124
125 static VEC (registered_sym_fns) *symtab_fns = NULL;
126
127 /* Values for "set print symbol-loading". */
128
129 const char print_symbol_loading_off[] = "off";
130 const char print_symbol_loading_brief[] = "brief";
131 const char print_symbol_loading_full[] = "full";
132 static const char *print_symbol_loading_enums[] =
133 {
134 print_symbol_loading_off,
135 print_symbol_loading_brief,
136 print_symbol_loading_full,
137 NULL
138 };
139 static const char *print_symbol_loading = print_symbol_loading_full;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162 int
163 print_symbol_loading_p (int from_tty, int exec, int full)
164 {
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177 }
178
179 /* True if we are reading a symbol table. */
180
181 int currently_reading_symtab = 0;
182
183 /* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
185
186 scoped_restore_tmpl<int>
187 increment_reading_symtab (void)
188 {
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
192 }
193
194 /* Remember the lowest-addressed loadable section we've seen.
195 This function is called via bfd_map_over_sections.
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203 void
204 find_lowest_section (bfd *abfd, asection *sect, void *obj)
205 {
206 asection **lowest = (asection **) obj;
207
208 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
209 return;
210 if (!*lowest)
211 *lowest = sect; /* First loadable section */
212 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
213 *lowest = sect; /* A lower loadable section */
214 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
215 && (bfd_section_size (abfd, (*lowest))
216 <= bfd_section_size (abfd, sect)))
217 *lowest = sect;
218 }
219
220 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
221 new object's 'num_sections' field is set to 0; it must be updated
222 by the caller. */
223
224 struct section_addr_info *
225 alloc_section_addr_info (size_t num_sections)
226 {
227 struct section_addr_info *sap;
228 size_t size;
229
230 size = (sizeof (struct section_addr_info)
231 + sizeof (struct other_sections) * (num_sections - 1));
232 sap = (struct section_addr_info *) xmalloc (size);
233 memset (sap, 0, size);
234
235 return sap;
236 }
237
238 /* Build (allocate and populate) a section_addr_info struct from
239 an existing section table. */
240
241 extern struct section_addr_info *
242 build_section_addr_info_from_section_table (const struct target_section *start,
243 const struct target_section *end)
244 {
245 struct section_addr_info *sap;
246 const struct target_section *stp;
247 int oidx;
248
249 sap = alloc_section_addr_info (end - start);
250
251 for (stp = start, oidx = 0; stp != end; stp++)
252 {
253 struct bfd_section *asect = stp->the_bfd_section;
254 bfd *abfd = asect->owner;
255
256 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
257 && oidx < end - start)
258 {
259 sap->other[oidx].addr = stp->addr;
260 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
261 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
262 oidx++;
263 }
264 }
265
266 sap->num_sections = oidx;
267
268 return sap;
269 }
270
271 /* Create a section_addr_info from section offsets in ABFD. */
272
273 static struct section_addr_info *
274 build_section_addr_info_from_bfd (bfd *abfd)
275 {
276 struct section_addr_info *sap;
277 int i;
278 struct bfd_section *sec;
279
280 sap = alloc_section_addr_info (bfd_count_sections (abfd));
281 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
282 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
283 {
284 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
285 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
286 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
287 i++;
288 }
289
290 sap->num_sections = i;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in OBJFILE. */
296
297 struct section_addr_info *
298 build_section_addr_info_from_objfile (const struct objfile *objfile)
299 {
300 struct section_addr_info *sap;
301 int i;
302
303 /* Before reread_symbols gets rewritten it is not safe to call:
304 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
305 */
306 sap = build_section_addr_info_from_bfd (objfile->obfd);
307 for (i = 0; i < sap->num_sections; i++)
308 {
309 int sectindex = sap->other[i].sectindex;
310
311 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
312 }
313 return sap;
314 }
315
316 /* Free all memory allocated by build_section_addr_info_from_section_table. */
317
318 extern void
319 free_section_addr_info (struct section_addr_info *sap)
320 {
321 int idx;
322
323 for (idx = 0; idx < sap->num_sections; idx++)
324 xfree (sap->other[idx].name);
325 xfree (sap);
326 }
327
328 /* Initialize OBJFILE's sect_index_* members. */
329
330 static void
331 init_objfile_sect_indices (struct objfile *objfile)
332 {
333 asection *sect;
334 int i;
335
336 sect = bfd_get_section_by_name (objfile->obfd, ".text");
337 if (sect)
338 objfile->sect_index_text = sect->index;
339
340 sect = bfd_get_section_by_name (objfile->obfd, ".data");
341 if (sect)
342 objfile->sect_index_data = sect->index;
343
344 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
345 if (sect)
346 objfile->sect_index_bss = sect->index;
347
348 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
349 if (sect)
350 objfile->sect_index_rodata = sect->index;
351
352 /* This is where things get really weird... We MUST have valid
353 indices for the various sect_index_* members or gdb will abort.
354 So if for example, there is no ".text" section, we have to
355 accomodate that. First, check for a file with the standard
356 one or two segments. */
357
358 symfile_find_segment_sections (objfile);
359
360 /* Except when explicitly adding symbol files at some address,
361 section_offsets contains nothing but zeros, so it doesn't matter
362 which slot in section_offsets the individual sect_index_* members
363 index into. So if they are all zero, it is safe to just point
364 all the currently uninitialized indices to the first slot. But
365 beware: if this is the main executable, it may be relocated
366 later, e.g. by the remote qOffsets packet, and then this will
367 be wrong! That's why we try segments first. */
368
369 for (i = 0; i < objfile->num_sections; i++)
370 {
371 if (ANOFFSET (objfile->section_offsets, i) != 0)
372 {
373 break;
374 }
375 }
376 if (i == objfile->num_sections)
377 {
378 if (objfile->sect_index_text == -1)
379 objfile->sect_index_text = 0;
380 if (objfile->sect_index_data == -1)
381 objfile->sect_index_data = 0;
382 if (objfile->sect_index_bss == -1)
383 objfile->sect_index_bss = 0;
384 if (objfile->sect_index_rodata == -1)
385 objfile->sect_index_rodata = 0;
386 }
387 }
388
389 /* The arguments to place_section. */
390
391 struct place_section_arg
392 {
393 struct section_offsets *offsets;
394 CORE_ADDR lowest;
395 };
396
397 /* Find a unique offset to use for loadable section SECT if
398 the user did not provide an offset. */
399
400 static void
401 place_section (bfd *abfd, asection *sect, void *obj)
402 {
403 struct place_section_arg *arg = (struct place_section_arg *) obj;
404 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
405 int done;
406 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
407
408 /* We are only interested in allocated sections. */
409 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
410 return;
411
412 /* If the user specified an offset, honor it. */
413 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
414 return;
415
416 /* Otherwise, let's try to find a place for the section. */
417 start_addr = (arg->lowest + align - 1) & -align;
418
419 do {
420 asection *cur_sec;
421
422 done = 1;
423
424 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
425 {
426 int indx = cur_sec->index;
427
428 /* We don't need to compare against ourself. */
429 if (cur_sec == sect)
430 continue;
431
432 /* We can only conflict with allocated sections. */
433 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
434 continue;
435
436 /* If the section offset is 0, either the section has not been placed
437 yet, or it was the lowest section placed (in which case LOWEST
438 will be past its end). */
439 if (offsets[indx] == 0)
440 continue;
441
442 /* If this section would overlap us, then we must move up. */
443 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
444 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
445 {
446 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
447 start_addr = (start_addr + align - 1) & -align;
448 done = 0;
449 break;
450 }
451
452 /* Otherwise, we appear to be OK. So far. */
453 }
454 }
455 while (!done);
456
457 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
458 arg->lowest = start_addr + bfd_get_section_size (sect);
459 }
460
461 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
462 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
463 entries. */
464
465 void
466 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
467 int num_sections,
468 const struct section_addr_info *addrs)
469 {
470 int i;
471
472 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
473
474 /* Now calculate offsets for section that were specified by the caller. */
475 for (i = 0; i < addrs->num_sections; i++)
476 {
477 const struct other_sections *osp;
478
479 osp = &addrs->other[i];
480 if (osp->sectindex == -1)
481 continue;
482
483 /* Record all sections in offsets. */
484 /* The section_offsets in the objfile are here filled in using
485 the BFD index. */
486 section_offsets->offsets[osp->sectindex] = osp->addr;
487 }
488 }
489
490 /* Transform section name S for a name comparison. prelink can split section
491 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
492 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
493 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
494 (`.sbss') section has invalid (increased) virtual address. */
495
496 static const char *
497 addr_section_name (const char *s)
498 {
499 if (strcmp (s, ".dynbss") == 0)
500 return ".bss";
501 if (strcmp (s, ".sdynbss") == 0)
502 return ".sbss";
503
504 return s;
505 }
506
507 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
508 their (name, sectindex) pair. sectindex makes the sort by name stable. */
509
510 static int
511 addrs_section_compar (const void *ap, const void *bp)
512 {
513 const struct other_sections *a = *((struct other_sections **) ap);
514 const struct other_sections *b = *((struct other_sections **) bp);
515 int retval;
516
517 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
518 if (retval)
519 return retval;
520
521 return a->sectindex - b->sectindex;
522 }
523
524 /* Provide sorted array of pointers to sections of ADDRS. The array is
525 terminated by NULL. Caller is responsible to call xfree for it. */
526
527 static struct other_sections **
528 addrs_section_sort (struct section_addr_info *addrs)
529 {
530 struct other_sections **array;
531 int i;
532
533 /* `+ 1' for the NULL terminator. */
534 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
535 for (i = 0; i < addrs->num_sections; i++)
536 array[i] = &addrs->other[i];
537 array[i] = NULL;
538
539 qsort (array, i, sizeof (*array), addrs_section_compar);
540
541 return array;
542 }
543
544 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
545 also SECTINDEXes specific to ABFD there. This function can be used to
546 rebase ADDRS to start referencing different BFD than before. */
547
548 void
549 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
550 {
551 asection *lower_sect;
552 CORE_ADDR lower_offset;
553 int i;
554 struct cleanup *my_cleanup;
555 struct section_addr_info *abfd_addrs;
556 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
557 struct other_sections **addrs_to_abfd_addrs;
558
559 /* Find lowest loadable section to be used as starting point for
560 continguous sections. */
561 lower_sect = NULL;
562 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
563 if (lower_sect == NULL)
564 {
565 warning (_("no loadable sections found in added symbol-file %s"),
566 bfd_get_filename (abfd));
567 lower_offset = 0;
568 }
569 else
570 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
571
572 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
573 in ABFD. Section names are not unique - there can be multiple sections of
574 the same name. Also the sections of the same name do not have to be
575 adjacent to each other. Some sections may be present only in one of the
576 files. Even sections present in both files do not have to be in the same
577 order.
578
579 Use stable sort by name for the sections in both files. Then linearly
580 scan both lists matching as most of the entries as possible. */
581
582 addrs_sorted = addrs_section_sort (addrs);
583 my_cleanup = make_cleanup (xfree, addrs_sorted);
584
585 abfd_addrs = build_section_addr_info_from_bfd (abfd);
586 make_cleanup_free_section_addr_info (abfd_addrs);
587 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
588 make_cleanup (xfree, abfd_addrs_sorted);
589
590 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
591 ABFD_ADDRS_SORTED. */
592
593 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
594 make_cleanup (xfree, addrs_to_abfd_addrs);
595
596 while (*addrs_sorted)
597 {
598 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
599
600 while (*abfd_addrs_sorted
601 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
602 sect_name) < 0)
603 abfd_addrs_sorted++;
604
605 if (*abfd_addrs_sorted
606 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
607 sect_name) == 0)
608 {
609 int index_in_addrs;
610
611 /* Make the found item directly addressable from ADDRS. */
612 index_in_addrs = *addrs_sorted - addrs->other;
613 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
614 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
615
616 /* Never use the same ABFD entry twice. */
617 abfd_addrs_sorted++;
618 }
619
620 addrs_sorted++;
621 }
622
623 /* Calculate offsets for the loadable sections.
624 FIXME! Sections must be in order of increasing loadable section
625 so that contiguous sections can use the lower-offset!!!
626
627 Adjust offsets if the segments are not contiguous.
628 If the section is contiguous, its offset should be set to
629 the offset of the highest loadable section lower than it
630 (the loadable section directly below it in memory).
631 this_offset = lower_offset = lower_addr - lower_orig_addr */
632
633 for (i = 0; i < addrs->num_sections; i++)
634 {
635 struct other_sections *sect = addrs_to_abfd_addrs[i];
636
637 if (sect)
638 {
639 /* This is the index used by BFD. */
640 addrs->other[i].sectindex = sect->sectindex;
641
642 if (addrs->other[i].addr != 0)
643 {
644 addrs->other[i].addr -= sect->addr;
645 lower_offset = addrs->other[i].addr;
646 }
647 else
648 addrs->other[i].addr = lower_offset;
649 }
650 else
651 {
652 /* addr_section_name transformation is not used for SECT_NAME. */
653 const char *sect_name = addrs->other[i].name;
654
655 /* This section does not exist in ABFD, which is normally
656 unexpected and we want to issue a warning.
657
658 However, the ELF prelinker does create a few sections which are
659 marked in the main executable as loadable (they are loaded in
660 memory from the DYNAMIC segment) and yet are not present in
661 separate debug info files. This is fine, and should not cause
662 a warning. Shared libraries contain just the section
663 ".gnu.liblist" but it is not marked as loadable there. There is
664 no other way to identify them than by their name as the sections
665 created by prelink have no special flags.
666
667 For the sections `.bss' and `.sbss' see addr_section_name. */
668
669 if (!(strcmp (sect_name, ".gnu.liblist") == 0
670 || strcmp (sect_name, ".gnu.conflict") == 0
671 || (strcmp (sect_name, ".bss") == 0
672 && i > 0
673 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
674 && addrs_to_abfd_addrs[i - 1] != NULL)
675 || (strcmp (sect_name, ".sbss") == 0
676 && i > 0
677 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
678 && addrs_to_abfd_addrs[i - 1] != NULL)))
679 warning (_("section %s not found in %s"), sect_name,
680 bfd_get_filename (abfd));
681
682 addrs->other[i].addr = 0;
683 addrs->other[i].sectindex = -1;
684 }
685 }
686
687 do_cleanups (my_cleanup);
688 }
689
690 /* Parse the user's idea of an offset for dynamic linking, into our idea
691 of how to represent it for fast symbol reading. This is the default
692 version of the sym_fns.sym_offsets function for symbol readers that
693 don't need to do anything special. It allocates a section_offsets table
694 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
695
696 void
697 default_symfile_offsets (struct objfile *objfile,
698 const struct section_addr_info *addrs)
699 {
700 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
701 objfile->section_offsets = (struct section_offsets *)
702 obstack_alloc (&objfile->objfile_obstack,
703 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
704 relative_addr_info_to_section_offsets (objfile->section_offsets,
705 objfile->num_sections, addrs);
706
707 /* For relocatable files, all loadable sections will start at zero.
708 The zero is meaningless, so try to pick arbitrary addresses such
709 that no loadable sections overlap. This algorithm is quadratic,
710 but the number of sections in a single object file is generally
711 small. */
712 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
713 {
714 struct place_section_arg arg;
715 bfd *abfd = objfile->obfd;
716 asection *cur_sec;
717
718 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
719 /* We do not expect this to happen; just skip this step if the
720 relocatable file has a section with an assigned VMA. */
721 if (bfd_section_vma (abfd, cur_sec) != 0)
722 break;
723
724 if (cur_sec == NULL)
725 {
726 CORE_ADDR *offsets = objfile->section_offsets->offsets;
727
728 /* Pick non-overlapping offsets for sections the user did not
729 place explicitly. */
730 arg.offsets = objfile->section_offsets;
731 arg.lowest = 0;
732 bfd_map_over_sections (objfile->obfd, place_section, &arg);
733
734 /* Correctly filling in the section offsets is not quite
735 enough. Relocatable files have two properties that
736 (most) shared objects do not:
737
738 - Their debug information will contain relocations. Some
739 shared libraries do also, but many do not, so this can not
740 be assumed.
741
742 - If there are multiple code sections they will be loaded
743 at different relative addresses in memory than they are
744 in the objfile, since all sections in the file will start
745 at address zero.
746
747 Because GDB has very limited ability to map from an
748 address in debug info to the correct code section,
749 it relies on adding SECT_OFF_TEXT to things which might be
750 code. If we clear all the section offsets, and set the
751 section VMAs instead, then symfile_relocate_debug_section
752 will return meaningful debug information pointing at the
753 correct sections.
754
755 GDB has too many different data structures for section
756 addresses - a bfd, objfile, and so_list all have section
757 tables, as does exec_ops. Some of these could probably
758 be eliminated. */
759
760 for (cur_sec = abfd->sections; cur_sec != NULL;
761 cur_sec = cur_sec->next)
762 {
763 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
764 continue;
765
766 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
767 exec_set_section_address (bfd_get_filename (abfd),
768 cur_sec->index,
769 offsets[cur_sec->index]);
770 offsets[cur_sec->index] = 0;
771 }
772 }
773 }
774
775 /* Remember the bfd indexes for the .text, .data, .bss and
776 .rodata sections. */
777 init_objfile_sect_indices (objfile);
778 }
779
780 /* Divide the file into segments, which are individual relocatable units.
781 This is the default version of the sym_fns.sym_segments function for
782 symbol readers that do not have an explicit representation of segments.
783 It assumes that object files do not have segments, and fully linked
784 files have a single segment. */
785
786 struct symfile_segment_data *
787 default_symfile_segments (bfd *abfd)
788 {
789 int num_sections, i;
790 asection *sect;
791 struct symfile_segment_data *data;
792 CORE_ADDR low, high;
793
794 /* Relocatable files contain enough information to position each
795 loadable section independently; they should not be relocated
796 in segments. */
797 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
798 return NULL;
799
800 /* Make sure there is at least one loadable section in the file. */
801 for (sect = abfd->sections; sect != NULL; sect = sect->next)
802 {
803 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
804 continue;
805
806 break;
807 }
808 if (sect == NULL)
809 return NULL;
810
811 low = bfd_get_section_vma (abfd, sect);
812 high = low + bfd_get_section_size (sect);
813
814 data = XCNEW (struct symfile_segment_data);
815 data->num_segments = 1;
816 data->segment_bases = XCNEW (CORE_ADDR);
817 data->segment_sizes = XCNEW (CORE_ADDR);
818
819 num_sections = bfd_count_sections (abfd);
820 data->segment_info = XCNEWVEC (int, num_sections);
821
822 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
823 {
824 CORE_ADDR vma;
825
826 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
827 continue;
828
829 vma = bfd_get_section_vma (abfd, sect);
830 if (vma < low)
831 low = vma;
832 if (vma + bfd_get_section_size (sect) > high)
833 high = vma + bfd_get_section_size (sect);
834
835 data->segment_info[i] = 1;
836 }
837
838 data->segment_bases[0] = low;
839 data->segment_sizes[0] = high - low;
840
841 return data;
842 }
843
844 /* This is a convenience function to call sym_read for OBJFILE and
845 possibly force the partial symbols to be read. */
846
847 static void
848 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
849 {
850 (*objfile->sf->sym_read) (objfile, add_flags);
851 objfile->per_bfd->minsyms_read = true;
852
853 /* find_separate_debug_file_in_section should be called only if there is
854 single binary with no existing separate debug info file. */
855 if (!objfile_has_partial_symbols (objfile)
856 && objfile->separate_debug_objfile == NULL
857 && objfile->separate_debug_objfile_backlink == NULL)
858 {
859 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
860
861 if (abfd != NULL)
862 {
863 /* find_separate_debug_file_in_section uses the same filename for the
864 virtual section-as-bfd like the bfd filename containing the
865 section. Therefore use also non-canonical name form for the same
866 file containing the section. */
867 symbol_file_add_separate (abfd.get (), objfile->original_name,
868 add_flags, objfile);
869 }
870 }
871 if ((add_flags & SYMFILE_NO_READ) == 0)
872 require_partial_symbols (objfile, 0);
873 }
874
875 /* Initialize entry point information for this objfile. */
876
877 static void
878 init_entry_point_info (struct objfile *objfile)
879 {
880 struct entry_info *ei = &objfile->per_bfd->ei;
881
882 if (ei->initialized)
883 return;
884 ei->initialized = 1;
885
886 /* Save startup file's range of PC addresses to help blockframe.c
887 decide where the bottom of the stack is. */
888
889 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
890 {
891 /* Executable file -- record its entry point so we'll recognize
892 the startup file because it contains the entry point. */
893 ei->entry_point = bfd_get_start_address (objfile->obfd);
894 ei->entry_point_p = 1;
895 }
896 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
897 && bfd_get_start_address (objfile->obfd) != 0)
898 {
899 /* Some shared libraries may have entry points set and be
900 runnable. There's no clear way to indicate this, so just check
901 for values other than zero. */
902 ei->entry_point = bfd_get_start_address (objfile->obfd);
903 ei->entry_point_p = 1;
904 }
905 else
906 {
907 /* Examination of non-executable.o files. Short-circuit this stuff. */
908 ei->entry_point_p = 0;
909 }
910
911 if (ei->entry_point_p)
912 {
913 struct obj_section *osect;
914 CORE_ADDR entry_point = ei->entry_point;
915 int found;
916
917 /* Make certain that the address points at real code, and not a
918 function descriptor. */
919 entry_point
920 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
921 entry_point,
922 &current_target);
923
924 /* Remove any ISA markers, so that this matches entries in the
925 symbol table. */
926 ei->entry_point
927 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
928
929 found = 0;
930 ALL_OBJFILE_OSECTIONS (objfile, osect)
931 {
932 struct bfd_section *sect = osect->the_bfd_section;
933
934 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
935 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
936 + bfd_get_section_size (sect)))
937 {
938 ei->the_bfd_section_index
939 = gdb_bfd_section_index (objfile->obfd, sect);
940 found = 1;
941 break;
942 }
943 }
944
945 if (!found)
946 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
947 }
948 }
949
950 /* Process a symbol file, as either the main file or as a dynamically
951 loaded file.
952
953 This function does not set the OBJFILE's entry-point info.
954
955 OBJFILE is where the symbols are to be read from.
956
957 ADDRS is the list of section load addresses. If the user has given
958 an 'add-symbol-file' command, then this is the list of offsets and
959 addresses he or she provided as arguments to the command; or, if
960 we're handling a shared library, these are the actual addresses the
961 sections are loaded at, according to the inferior's dynamic linker
962 (as gleaned by GDB's shared library code). We convert each address
963 into an offset from the section VMA's as it appears in the object
964 file, and then call the file's sym_offsets function to convert this
965 into a format-specific offset table --- a `struct section_offsets'.
966
967 ADD_FLAGS encodes verbosity level, whether this is main symbol or
968 an extra symbol file such as dynamically loaded code, and wether
969 breakpoint reset should be deferred. */
970
971 static void
972 syms_from_objfile_1 (struct objfile *objfile,
973 struct section_addr_info *addrs,
974 symfile_add_flags add_flags)
975 {
976 struct section_addr_info *local_addr = NULL;
977 struct cleanup *old_chain;
978 const int mainline = add_flags & SYMFILE_MAINLINE;
979
980 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
981
982 if (objfile->sf == NULL)
983 {
984 /* No symbols to load, but we still need to make sure
985 that the section_offsets table is allocated. */
986 int num_sections = gdb_bfd_count_sections (objfile->obfd);
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
988
989 objfile->num_sections = num_sections;
990 objfile->section_offsets
991 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
992 size);
993 memset (objfile->section_offsets, 0, size);
994 return;
995 }
996
997 /* Make sure that partially constructed symbol tables will be cleaned up
998 if an error occurs during symbol reading. */
999 old_chain = make_cleanup_free_objfile (objfile);
1000
1001 /* If ADDRS is NULL, put together a dummy address list.
1002 We now establish the convention that an addr of zero means
1003 no load address was specified. */
1004 if (! addrs)
1005 {
1006 local_addr = alloc_section_addr_info (1);
1007 make_cleanup (xfree, local_addr);
1008 addrs = local_addr;
1009 }
1010
1011 if (mainline)
1012 {
1013 /* We will modify the main symbol table, make sure that all its users
1014 will be cleaned up if an error occurs during symbol reading. */
1015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1016
1017 /* Since no error yet, throw away the old symbol table. */
1018
1019 if (symfile_objfile != NULL)
1020 {
1021 free_objfile (symfile_objfile);
1022 gdb_assert (symfile_objfile == NULL);
1023 }
1024
1025 /* Currently we keep symbols from the add-symbol-file command.
1026 If the user wants to get rid of them, they should do "symbol-file"
1027 without arguments first. Not sure this is the best behavior
1028 (PR 2207). */
1029
1030 (*objfile->sf->sym_new_init) (objfile);
1031 }
1032
1033 /* Convert addr into an offset rather than an absolute address.
1034 We find the lowest address of a loaded segment in the objfile,
1035 and assume that <addr> is where that got loaded.
1036
1037 We no longer warn if the lowest section is not a text segment (as
1038 happens for the PA64 port. */
1039 if (addrs->num_sections > 0)
1040 addr_info_make_relative (addrs, objfile->obfd);
1041
1042 /* Initialize symbol reading routines for this objfile, allow complaints to
1043 appear for this new file, and record how verbose to be, then do the
1044 initial symbol reading for this file. */
1045
1046 (*objfile->sf->sym_init) (objfile);
1047 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1048
1049 (*objfile->sf->sym_offsets) (objfile, addrs);
1050
1051 read_symbols (objfile, add_flags);
1052
1053 /* Discard cleanups as symbol reading was successful. */
1054
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see allocate_objfile's definition.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135
1136 /* Give user a chance to burp if we'd be
1137 interactively wiping out any existing symbols. */
1138
1139 if ((have_full_symbols () || have_partial_symbols ())
1140 && mainline
1141 && from_tty
1142 && !query (_("Load new symbol table from \"%s\"? "), name))
1143 error (_("Not confirmed."));
1144
1145 if (mainline)
1146 flags |= OBJF_MAINLINE;
1147 objfile = allocate_objfile (abfd, name, flags);
1148
1149 if (parent)
1150 add_separate_debug_objfile (objfile, parent);
1151
1152 /* We either created a new mapped symbol table, mapped an existing
1153 symbol table file which has not had initial symbol reading
1154 performed, or need to read an unmapped symbol table. */
1155 if (should_print)
1156 {
1157 if (deprecated_pre_add_symbol_hook)
1158 deprecated_pre_add_symbol_hook (name);
1159 else
1160 {
1161 printf_unfiltered (_("Reading symbols from %s..."), name);
1162 wrap_here ("");
1163 gdb_flush (gdb_stdout);
1164 }
1165 }
1166 syms_from_objfile (objfile, addrs, add_flags);
1167
1168 /* We now have at least a partial symbol table. Check to see if the
1169 user requested that all symbols be read on initial access via either
1170 the gdb startup command line or on a per symbol file basis. Expand
1171 all partial symbol tables for this objfile if so. */
1172
1173 if ((flags & OBJF_READNOW))
1174 {
1175 if (should_print)
1176 {
1177 printf_unfiltered (_("expanding to full symbols..."));
1178 wrap_here ("");
1179 gdb_flush (gdb_stdout);
1180 }
1181
1182 if (objfile->sf)
1183 objfile->sf->qf->expand_all_symtabs (objfile);
1184 }
1185
1186 if (should_print && !objfile_has_symbols (objfile))
1187 {
1188 wrap_here ("");
1189 printf_unfiltered (_("(no debugging symbols found)..."));
1190 wrap_here ("");
1191 }
1192
1193 if (should_print)
1194 {
1195 if (deprecated_post_add_symbol_hook)
1196 deprecated_post_add_symbol_hook ();
1197 else
1198 printf_unfiltered (_("done.\n"));
1199 }
1200
1201 /* We print some messages regardless of whether 'from_tty ||
1202 info_verbose' is true, so make sure they go out at the right
1203 time. */
1204 gdb_flush (gdb_stdout);
1205
1206 if (objfile->sf == NULL)
1207 {
1208 observer_notify_new_objfile (objfile);
1209 return objfile; /* No symbols. */
1210 }
1211
1212 finish_new_objfile (objfile, add_flags);
1213
1214 observer_notify_new_objfile (objfile);
1215
1216 bfd_cache_close_all ();
1217 return (objfile);
1218 }
1219
1220 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1221 see allocate_objfile's definition. */
1222
1223 void
1224 symbol_file_add_separate (bfd *bfd, const char *name,
1225 symfile_add_flags symfile_flags,
1226 struct objfile *objfile)
1227 {
1228 struct section_addr_info *sap;
1229 struct cleanup *my_cleanup;
1230
1231 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1232 because sections of BFD may not match sections of OBJFILE and because
1233 vma may have been modified by tools such as prelink. */
1234 sap = build_section_addr_info_from_objfile (objfile);
1235 my_cleanup = make_cleanup_free_section_addr_info (sap);
1236
1237 symbol_file_add_with_addrs
1238 (bfd, name, symfile_flags, sap,
1239 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1240 | OBJF_USERLOADED),
1241 objfile);
1242
1243 do_cleanups (my_cleanup);
1244 }
1245
1246 /* Process the symbol file ABFD, as either the main file or as a
1247 dynamically loaded file.
1248 See symbol_file_add_with_addrs's comments for details. */
1249
1250 struct objfile *
1251 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1252 symfile_add_flags add_flags,
1253 struct section_addr_info *addrs,
1254 objfile_flags flags, struct objfile *parent)
1255 {
1256 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1257 parent);
1258 }
1259
1260 /* Process a symbol file, as either the main file or as a dynamically
1261 loaded file. See symbol_file_add_with_addrs's comments for details. */
1262
1263 struct objfile *
1264 symbol_file_add (const char *name, symfile_add_flags add_flags,
1265 struct section_addr_info *addrs, objfile_flags flags)
1266 {
1267 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1268
1269 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1270 flags, NULL);
1271 }
1272
1273 /* Call symbol_file_add() with default values and update whatever is
1274 affected by the loading of a new main().
1275 Used when the file is supplied in the gdb command line
1276 and by some targets with special loading requirements.
1277 The auxiliary function, symbol_file_add_main_1(), has the flags
1278 argument for the switches that can only be specified in the symbol_file
1279 command itself. */
1280
1281 void
1282 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1283 {
1284 symbol_file_add_main_1 (args, add_flags, 0);
1285 }
1286
1287 static void
1288 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1289 objfile_flags flags)
1290 {
1291 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1292
1293 symbol_file_add (args, add_flags, NULL, flags);
1294
1295 /* Getting new symbols may change our opinion about
1296 what is frameless. */
1297 reinit_frame_cache ();
1298
1299 if ((add_flags & SYMFILE_NO_READ) == 0)
1300 set_initial_language ();
1301 }
1302
1303 void
1304 symbol_file_clear (int from_tty)
1305 {
1306 if ((have_full_symbols () || have_partial_symbols ())
1307 && from_tty
1308 && (symfile_objfile
1309 ? !query (_("Discard symbol table from `%s'? "),
1310 objfile_name (symfile_objfile))
1311 : !query (_("Discard symbol table? "))))
1312 error (_("Not confirmed."));
1313
1314 /* solib descriptors may have handles to objfiles. Wipe them before their
1315 objfiles get stale by free_all_objfiles. */
1316 no_shared_libraries (NULL, from_tty);
1317
1318 free_all_objfiles ();
1319
1320 gdb_assert (symfile_objfile == NULL);
1321 if (from_tty)
1322 printf_unfiltered (_("No symbol file now.\n"));
1323 }
1324
1325 /* See symfile.h. */
1326
1327 int separate_debug_file_debug = 0;
1328
1329 static int
1330 separate_debug_file_exists (const char *name, unsigned long crc,
1331 struct objfile *parent_objfile)
1332 {
1333 unsigned long file_crc;
1334 int file_crc_p;
1335 struct stat parent_stat, abfd_stat;
1336 int verified_as_different;
1337
1338 /* Find a separate debug info file as if symbols would be present in
1339 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1340 section can contain just the basename of PARENT_OBJFILE without any
1341 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1342 the separate debug infos with the same basename can exist. */
1343
1344 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1345 return 0;
1346
1347 if (separate_debug_file_debug)
1348 printf_unfiltered (_(" Trying %s\n"), name);
1349
1350 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1351
1352 if (abfd == NULL)
1353 return 0;
1354
1355 /* Verify symlinks were not the cause of filename_cmp name difference above.
1356
1357 Some operating systems, e.g. Windows, do not provide a meaningful
1358 st_ino; they always set it to zero. (Windows does provide a
1359 meaningful st_dev.) Files accessed from gdbservers that do not
1360 support the vFile:fstat packet will also have st_ino set to zero.
1361 Do not indicate a duplicate library in either case. While there
1362 is no guarantee that a system that provides meaningful inode
1363 numbers will never set st_ino to zero, this is merely an
1364 optimization, so we do not need to worry about false negatives. */
1365
1366 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1367 && abfd_stat.st_ino != 0
1368 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1369 {
1370 if (abfd_stat.st_dev == parent_stat.st_dev
1371 && abfd_stat.st_ino == parent_stat.st_ino)
1372 return 0;
1373 verified_as_different = 1;
1374 }
1375 else
1376 verified_as_different = 0;
1377
1378 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1379
1380 if (!file_crc_p)
1381 return 0;
1382
1383 if (crc != file_crc)
1384 {
1385 unsigned long parent_crc;
1386
1387 /* If the files could not be verified as different with
1388 bfd_stat then we need to calculate the parent's CRC
1389 to verify whether the files are different or not. */
1390
1391 if (!verified_as_different)
1392 {
1393 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1394 return 0;
1395 }
1396
1397 if (verified_as_different || parent_crc != file_crc)
1398 warning (_("the debug information found in \"%s\""
1399 " does not match \"%s\" (CRC mismatch).\n"),
1400 name, objfile_name (parent_objfile));
1401
1402 return 0;
1403 }
1404
1405 return 1;
1406 }
1407
1408 char *debug_file_directory = NULL;
1409 static void
1410 show_debug_file_directory (struct ui_file *file, int from_tty,
1411 struct cmd_list_element *c, const char *value)
1412 {
1413 fprintf_filtered (file,
1414 _("The directory where separate debug "
1415 "symbols are searched for is \"%s\".\n"),
1416 value);
1417 }
1418
1419 #if ! defined (DEBUG_SUBDIRECTORY)
1420 #define DEBUG_SUBDIRECTORY ".debug"
1421 #endif
1422
1423 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1424 where the original file resides (may not be the same as
1425 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1426 looking for. CANON_DIR is the "realpath" form of DIR.
1427 DIR must contain a trailing '/'.
1428 Returns the path of the file with separate debug info, of NULL. */
1429
1430 static char *
1431 find_separate_debug_file (const char *dir,
1432 const char *canon_dir,
1433 const char *debuglink,
1434 unsigned long crc32, struct objfile *objfile)
1435 {
1436 char *debugdir;
1437 char *debugfile;
1438 int i;
1439 VEC (char_ptr) *debugdir_vec;
1440 struct cleanup *back_to;
1441 int ix;
1442
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
1447 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1448 i = strlen (dir);
1449 if (canon_dir != NULL && strlen (canon_dir) > i)
1450 i = strlen (canon_dir);
1451
1452 debugfile
1453 = (char *) xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the global debugfile directories.
1477
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
1480
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1483
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, "/");
1488 strcat (debugfile, dir);
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
1501 strlen (gdb_sysroot)) == 0
1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1503 {
1504 strcpy (debugfile, debugdir);
1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1506 strcat (debugfile, "/");
1507 strcat (debugfile, debuglink);
1508
1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
1510 {
1511 do_cleanups (back_to);
1512 return debugfile;
1513 }
1514 }
1515 }
1516
1517 do_cleanups (back_to);
1518 xfree (debugfile);
1519 return NULL;
1520 }
1521
1522 /* Modify PATH to contain only "[/]directory/" part of PATH.
1523 If there were no directory separators in PATH, PATH will be empty
1524 string on return. */
1525
1526 static void
1527 terminate_after_last_dir_separator (char *path)
1528 {
1529 int i;
1530
1531 /* Strip off the final filename part, leaving the directory name,
1532 followed by a slash. The directory can be relative or absolute. */
1533 for (i = strlen(path) - 1; i >= 0; i--)
1534 if (IS_DIR_SEPARATOR (path[i]))
1535 break;
1536
1537 /* If I is -1 then no directory is present there and DIR will be "". */
1538 path[i + 1] = '\0';
1539 }
1540
1541 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1542 Returns pathname, or NULL. */
1543
1544 char *
1545 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1546 {
1547 char *debuglink;
1548 char *dir, *canon_dir;
1549 char *debugfile;
1550 unsigned long crc32;
1551 struct cleanup *cleanups;
1552
1553 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1554
1555 if (debuglink == NULL)
1556 {
1557 /* There's no separate debug info, hence there's no way we could
1558 load it => no warning. */
1559 return NULL;
1560 }
1561
1562 cleanups = make_cleanup (xfree, debuglink);
1563 dir = xstrdup (objfile_name (objfile));
1564 make_cleanup (xfree, dir);
1565 terminate_after_last_dir_separator (dir);
1566 canon_dir = lrealpath (dir);
1567
1568 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1569 crc32, objfile);
1570 xfree (canon_dir);
1571
1572 if (debugfile == NULL)
1573 {
1574 /* For PR gdb/9538, try again with realpath (if different from the
1575 original). */
1576
1577 struct stat st_buf;
1578
1579 if (lstat (objfile_name (objfile), &st_buf) == 0
1580 && S_ISLNK (st_buf.st_mode))
1581 {
1582 char *symlink_dir;
1583
1584 symlink_dir = lrealpath (objfile_name (objfile));
1585 if (symlink_dir != NULL)
1586 {
1587 make_cleanup (xfree, symlink_dir);
1588 terminate_after_last_dir_separator (symlink_dir);
1589 if (strcmp (dir, symlink_dir) != 0)
1590 {
1591 /* Different directory, so try using it. */
1592 debugfile = find_separate_debug_file (symlink_dir,
1593 symlink_dir,
1594 debuglink,
1595 crc32,
1596 objfile);
1597 }
1598 }
1599 }
1600 }
1601
1602 do_cleanups (cleanups);
1603 return debugfile;
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
1638 gdb_argv built_argv (args);
1639 for (char *arg : built_argv)
1640 {
1641 if (strcmp (arg, "-readnow") == 0)
1642 flags |= OBJF_READNOW;
1643 else if (*arg == '-')
1644 error (_("unknown option `%s'"), arg);
1645 else
1646 {
1647 symbol_file_add_main_1 (arg, add_flags, flags);
1648 name = arg;
1649 }
1650 }
1651
1652 if (name == NULL)
1653 error (_("no symbol file name was specified"));
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = main_language ();
1672
1673 if (lang == language_unknown)
1674 {
1675 char *name = main_name ();
1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1677
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
1680 }
1681
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1702
1703 if (!is_target_filename (name))
1704 {
1705 char *absolute_name;
1706
1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1708
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1713 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1714 if (desc < 0)
1715 {
1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1717
1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
1723 #endif
1724 if (desc < 0)
1725 perror_with_name (expanded_name.get ());
1726
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
1730
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
1738
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742
1743 do_cleanups (back_to);
1744
1745 return sym_bfd;
1746 }
1747
1748 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
1751 int
1752 get_section_index (struct objfile *objfile, const char *section_name)
1753 {
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1755
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760 }
1761
1762 /* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
1767
1768 void
1769 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1770 {
1771 registered_sym_fns fns = { flavour, sf };
1772
1773 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1774 }
1775
1776 /* Initialize OBJFILE to read symbols from its associated BFD. It
1777 either returns or calls error(). The result is an initialized
1778 struct sym_fns in the objfile structure, that contains cached
1779 information about the symbol file. */
1780
1781 static const struct sym_fns *
1782 find_sym_fns (bfd *abfd)
1783 {
1784 registered_sym_fns *rsf;
1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1786 int i;
1787
1788 if (our_flavour == bfd_target_srec_flavour
1789 || our_flavour == bfd_target_ihex_flavour
1790 || our_flavour == bfd_target_tekhex_flavour)
1791 return NULL; /* No symbols. */
1792
1793 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1794 if (our_flavour == rsf->sym_flavour)
1795 return rsf->sym_fns;
1796
1797 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1798 bfd_get_target (abfd));
1799 }
1800 \f
1801
1802 /* This function runs the load command of our current target. */
1803
1804 static void
1805 load_command (char *arg, int from_tty)
1806 {
1807 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1808
1809 dont_repeat ();
1810
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
1816 if (arg == NULL)
1817 {
1818 char *parg;
1819 int count = 0;
1820
1821 parg = arg = get_exec_file (1);
1822
1823 /* Count how many \ " ' tab space there are in the name. */
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 parg++;
1827 count++;
1828 }
1829
1830 if (count)
1831 {
1832 /* We need to quote this string so buildargv can pull it apart. */
1833 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1834 char *ptemp = temp;
1835 char *prev;
1836
1837 make_cleanup (xfree, temp);
1838
1839 prev = parg = arg;
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 strncpy (ptemp, prev, parg - prev);
1843 ptemp += parg - prev;
1844 prev = parg++;
1845 *ptemp++ = '\\';
1846 }
1847 strcpy (ptemp, prev);
1848
1849 arg = temp;
1850 }
1851 }
1852
1853 target_load (arg, from_tty);
1854
1855 /* After re-loading the executable, we don't really know which
1856 overlays are mapped any more. */
1857 overlay_cache_invalid = 1;
1858
1859 do_cleanups (cleanup);
1860 }
1861
1862 /* This version of "load" should be usable for any target. Currently
1863 it is just used for remote targets, not inftarg.c or core files,
1864 on the theory that only in that case is it useful.
1865
1866 Avoiding xmodem and the like seems like a win (a) because we don't have
1867 to worry about finding it, and (b) On VMS, fork() is very slow and so
1868 we don't want to run a subprocess. On the other hand, I'm not sure how
1869 performance compares. */
1870
1871 static int validate_download = 0;
1872
1873 /* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875 static void
1876 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1877 {
1878 bfd_size_type *sum = (bfd_size_type *) data;
1879
1880 *sum += bfd_get_section_size (asec);
1881 }
1882
1883 /* Opaque data for load_section_callback. */
1884 struct load_section_data {
1885 CORE_ADDR load_offset;
1886 struct load_progress_data *progress_data;
1887 VEC(memory_write_request_s) *requests;
1888 };
1889
1890 /* Opaque data for load_progress. */
1891 struct load_progress_data {
1892 /* Cumulative data. */
1893 unsigned long write_count;
1894 unsigned long data_count;
1895 bfd_size_type total_size;
1896 };
1897
1898 /* Opaque data for load_progress for a single section. */
1899 struct load_progress_section_data {
1900 struct load_progress_data *cumulative;
1901
1902 /* Per-section data. */
1903 const char *section_name;
1904 ULONGEST section_sent;
1905 ULONGEST section_size;
1906 CORE_ADDR lma;
1907 gdb_byte *buffer;
1908 };
1909
1910 /* Target write callback routine for progress reporting. */
1911
1912 static void
1913 load_progress (ULONGEST bytes, void *untyped_arg)
1914 {
1915 struct load_progress_section_data *args
1916 = (struct load_progress_section_data *) untyped_arg;
1917 struct load_progress_data *totals;
1918
1919 if (args == NULL)
1920 /* Writing padding data. No easy way to get at the cumulative
1921 stats, so just ignore this. */
1922 return;
1923
1924 totals = args->cumulative;
1925
1926 if (bytes == 0 && args->section_sent == 0)
1927 {
1928 /* The write is just starting. Let the user know we've started
1929 this section. */
1930 current_uiout->message ("Loading section %s, size %s lma %s\n",
1931 args->section_name,
1932 hex_string (args->section_size),
1933 paddress (target_gdbarch (), args->lma));
1934 return;
1935 }
1936
1937 if (validate_download)
1938 {
1939 /* Broken memories and broken monitors manifest themselves here
1940 when bring new computers to life. This doubles already slow
1941 downloads. */
1942 /* NOTE: cagney/1999-10-18: A more efficient implementation
1943 might add a verify_memory() method to the target vector and
1944 then use that. remote.c could implement that method using
1945 the ``qCRC'' packet. */
1946 gdb::byte_vector check (bytes);
1947
1948 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1949 error (_("Download verify read failed at %s"),
1950 paddress (target_gdbarch (), args->lma));
1951 if (memcmp (args->buffer, check.data (), bytes) != 0)
1952 error (_("Download verify compare failed at %s"),
1953 paddress (target_gdbarch (), args->lma));
1954 }
1955 totals->data_count += bytes;
1956 args->lma += bytes;
1957 args->buffer += bytes;
1958 totals->write_count += 1;
1959 args->section_sent += bytes;
1960 if (check_quit_flag ()
1961 || (deprecated_ui_load_progress_hook != NULL
1962 && deprecated_ui_load_progress_hook (args->section_name,
1963 args->section_sent)))
1964 error (_("Canceled the download"));
1965
1966 if (deprecated_show_load_progress != NULL)
1967 deprecated_show_load_progress (args->section_name,
1968 args->section_sent,
1969 args->section_size,
1970 totals->data_count,
1971 totals->total_size);
1972 }
1973
1974 /* Callback service function for generic_load (bfd_map_over_sections). */
1975
1976 static void
1977 load_section_callback (bfd *abfd, asection *asec, void *data)
1978 {
1979 struct memory_write_request *new_request;
1980 struct load_section_data *args = (struct load_section_data *) data;
1981 struct load_progress_section_data *section_data;
1982 bfd_size_type size = bfd_get_section_size (asec);
1983 gdb_byte *buffer;
1984 const char *sect_name = bfd_get_section_name (abfd, asec);
1985
1986 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1987 return;
1988
1989 if (size == 0)
1990 return;
1991
1992 new_request = VEC_safe_push (memory_write_request_s,
1993 args->requests, NULL);
1994 memset (new_request, 0, sizeof (struct memory_write_request));
1995 section_data = XCNEW (struct load_progress_section_data);
1996 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1997 new_request->end = new_request->begin + size; /* FIXME Should size
1998 be in instead? */
1999 new_request->data = (gdb_byte *) xmalloc (size);
2000 new_request->baton = section_data;
2001
2002 buffer = new_request->data;
2003
2004 section_data->cumulative = args->progress_data;
2005 section_data->section_name = sect_name;
2006 section_data->section_size = size;
2007 section_data->lma = new_request->begin;
2008 section_data->buffer = buffer;
2009
2010 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2011 }
2012
2013 /* Clean up an entire memory request vector, including load
2014 data and progress records. */
2015
2016 static void
2017 clear_memory_write_data (void *arg)
2018 {
2019 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2020 VEC(memory_write_request_s) *vec = *vec_p;
2021 int i;
2022 struct memory_write_request *mr;
2023
2024 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2025 {
2026 xfree (mr->data);
2027 xfree (mr->baton);
2028 }
2029 VEC_free (memory_write_request_s, vec);
2030 }
2031
2032 static void print_transfer_performance (struct ui_file *stream,
2033 unsigned long data_count,
2034 unsigned long write_count,
2035 std::chrono::steady_clock::duration d);
2036
2037 void
2038 generic_load (const char *args, int from_tty)
2039 {
2040 struct cleanup *old_cleanups;
2041 struct load_section_data cbdata;
2042 struct load_progress_data total_progress;
2043 struct ui_out *uiout = current_uiout;
2044
2045 CORE_ADDR entry;
2046
2047 memset (&cbdata, 0, sizeof (cbdata));
2048 memset (&total_progress, 0, sizeof (total_progress));
2049 cbdata.progress_data = &total_progress;
2050
2051 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2052
2053 if (args == NULL)
2054 error_no_arg (_("file to load"));
2055
2056 gdb_argv argv (args);
2057
2058 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2059
2060 if (argv[1] != NULL)
2061 {
2062 const char *endptr;
2063
2064 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2065
2066 /* If the last word was not a valid number then
2067 treat it as a file name with spaces in. */
2068 if (argv[1] == endptr)
2069 error (_("Invalid download offset:%s."), argv[1]);
2070
2071 if (argv[2] != NULL)
2072 error (_("Too many parameters."));
2073 }
2074
2075 /* Open the file for loading. */
2076 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2077 if (loadfile_bfd == NULL)
2078 perror_with_name (filename.get ());
2079
2080 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2081 {
2082 error (_("\"%s\" is not an object file: %s"), filename.get (),
2083 bfd_errmsg (bfd_get_error ()));
2084 }
2085
2086 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2087 (void *) &total_progress.total_size);
2088
2089 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2090
2091 using namespace std::chrono;
2092
2093 steady_clock::time_point start_time = steady_clock::now ();
2094
2095 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2096 load_progress) != 0)
2097 error (_("Load failed"));
2098
2099 steady_clock::time_point end_time = steady_clock::now ();
2100
2101 entry = bfd_get_start_address (loadfile_bfd.get ());
2102 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2103 uiout->text ("Start address ");
2104 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2105 uiout->text (", load size ");
2106 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2107 uiout->text ("\n");
2108 regcache_write_pc (get_current_regcache (), entry);
2109
2110 /* Reset breakpoints, now that we have changed the load image. For
2111 instance, breakpoints may have been set (or reset, by
2112 post_create_inferior) while connected to the target but before we
2113 loaded the program. In that case, the prologue analyzer could
2114 have read instructions from the target to find the right
2115 breakpoint locations. Loading has changed the contents of that
2116 memory. */
2117
2118 breakpoint_re_set ();
2119
2120 print_transfer_performance (gdb_stdout, total_progress.data_count,
2121 total_progress.write_count,
2122 end_time - start_time);
2123
2124 do_cleanups (old_cleanups);
2125 }
2126
2127 /* Report on STREAM the performance of a memory transfer operation,
2128 such as 'load'. DATA_COUNT is the number of bytes transferred.
2129 WRITE_COUNT is the number of separate write operations, or 0, if
2130 that information is not available. TIME is how long the operation
2131 lasted. */
2132
2133 static void
2134 print_transfer_performance (struct ui_file *stream,
2135 unsigned long data_count,
2136 unsigned long write_count,
2137 std::chrono::steady_clock::duration time)
2138 {
2139 using namespace std::chrono;
2140 struct ui_out *uiout = current_uiout;
2141
2142 milliseconds ms = duration_cast<milliseconds> (time);
2143
2144 uiout->text ("Transfer rate: ");
2145 if (ms.count () > 0)
2146 {
2147 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2148
2149 if (uiout->is_mi_like_p ())
2150 {
2151 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2152 uiout->text (" bits/sec");
2153 }
2154 else if (rate < 1024)
2155 {
2156 uiout->field_fmt ("transfer-rate", "%lu", rate);
2157 uiout->text (" bytes/sec");
2158 }
2159 else
2160 {
2161 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2162 uiout->text (" KB/sec");
2163 }
2164 }
2165 else
2166 {
2167 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2168 uiout->text (" bits in <1 sec");
2169 }
2170 if (write_count > 0)
2171 {
2172 uiout->text (", ");
2173 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2174 uiout->text (" bytes/write");
2175 }
2176 uiout->text (".\n");
2177 }
2178
2179 /* This function allows the addition of incrementally linked object files.
2180 It does not modify any state in the target, only in the debugger. */
2181 /* Note: ezannoni 2000-04-13 This function/command used to have a
2182 special case syntax for the rombug target (Rombug is the boot
2183 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2184 rombug case, the user doesn't need to supply a text address,
2185 instead a call to target_link() (in target.c) would supply the
2186 value to use. We are now discontinuing this type of ad hoc syntax. */
2187
2188 static void
2189 add_symbol_file_command (const char *args, int from_tty)
2190 {
2191 struct gdbarch *gdbarch = get_current_arch ();
2192 gdb::unique_xmalloc_ptr<char> filename;
2193 char *arg;
2194 int argcnt = 0;
2195 int sec_num = 0;
2196 int expecting_sec_name = 0;
2197 int expecting_sec_addr = 0;
2198 struct objfile *objf;
2199 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2200 symfile_add_flags add_flags = 0;
2201
2202 if (from_tty)
2203 add_flags |= SYMFILE_VERBOSE;
2204
2205 struct sect_opt
2206 {
2207 const char *name;
2208 const char *value;
2209 };
2210
2211 struct section_addr_info *section_addrs;
2212 std::vector<sect_opt> sect_opts;
2213 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2214
2215 dont_repeat ();
2216
2217 if (args == NULL)
2218 error (_("add-symbol-file takes a file name and an address"));
2219
2220 gdb_argv argv (args);
2221
2222 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2223 {
2224 /* Process the argument. */
2225 if (argcnt == 0)
2226 {
2227 /* The first argument is the file name. */
2228 filename.reset (tilde_expand (arg));
2229 }
2230 else if (argcnt == 1)
2231 {
2232 /* The second argument is always the text address at which
2233 to load the program. */
2234 sect_opt sect = { ".text", arg };
2235 sect_opts.push_back (sect);
2236 }
2237 else
2238 {
2239 /* It's an option (starting with '-') or it's an argument
2240 to an option. */
2241 if (expecting_sec_name)
2242 {
2243 sect_opt sect = { arg, NULL };
2244 sect_opts.push_back (sect);
2245 expecting_sec_name = 0;
2246 }
2247 else if (expecting_sec_addr)
2248 {
2249 sect_opts.back ().value = arg;
2250 expecting_sec_addr = 0;
2251 }
2252 else if (strcmp (arg, "-readnow") == 0)
2253 flags |= OBJF_READNOW;
2254 else if (strcmp (arg, "-s") == 0)
2255 {
2256 expecting_sec_name = 1;
2257 expecting_sec_addr = 1;
2258 }
2259 else
2260 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2261 " [-readnow] [-s <secname> <addr>]*"));
2262 }
2263 }
2264
2265 /* This command takes at least two arguments. The first one is a
2266 filename, and the second is the address where this file has been
2267 loaded. Abort now if this address hasn't been provided by the
2268 user. */
2269 if (sect_opts.empty ())
2270 error (_("The address where %s has been loaded is missing"),
2271 filename.get ());
2272
2273 /* Print the prompt for the query below. And save the arguments into
2274 a sect_addr_info structure to be passed around to other
2275 functions. We have to split this up into separate print
2276 statements because hex_string returns a local static
2277 string. */
2278
2279 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2280 filename.get ());
2281 section_addrs = alloc_section_addr_info (sect_opts.size ());
2282 make_cleanup (xfree, section_addrs);
2283 for (sect_opt &sect : sect_opts)
2284 {
2285 CORE_ADDR addr;
2286 const char *val = sect.value;
2287 const char *sec = sect.name;
2288
2289 addr = parse_and_eval_address (val);
2290
2291 /* Here we store the section offsets in the order they were
2292 entered on the command line. */
2293 section_addrs->other[sec_num].name = (char *) sec;
2294 section_addrs->other[sec_num].addr = addr;
2295 printf_unfiltered ("\t%s_addr = %s\n", sec,
2296 paddress (gdbarch, addr));
2297 sec_num++;
2298
2299 /* The object's sections are initialized when a
2300 call is made to build_objfile_section_table (objfile).
2301 This happens in reread_symbols.
2302 At this point, we don't know what file type this is,
2303 so we can't determine what section names are valid. */
2304 }
2305 section_addrs->num_sections = sec_num;
2306
2307 if (from_tty && (!query ("%s", "")))
2308 error (_("Not confirmed."));
2309
2310 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2311
2312 add_target_sections_of_objfile (objf);
2313
2314 /* Getting new symbols may change our opinion about what is
2315 frameless. */
2316 reinit_frame_cache ();
2317 do_cleanups (my_cleanups);
2318 }
2319 \f
2320
2321 /* This function removes a symbol file that was added via add-symbol-file. */
2322
2323 static void
2324 remove_symbol_file_command (const char *args, int from_tty)
2325 {
2326 struct objfile *objf = NULL;
2327 struct program_space *pspace = current_program_space;
2328
2329 dont_repeat ();
2330
2331 if (args == NULL)
2332 error (_("remove-symbol-file: no symbol file provided"));
2333
2334 gdb_argv argv (args);
2335
2336 if (strcmp (argv[0], "-a") == 0)
2337 {
2338 /* Interpret the next argument as an address. */
2339 CORE_ADDR addr;
2340
2341 if (argv[1] == NULL)
2342 error (_("Missing address argument"));
2343
2344 if (argv[2] != NULL)
2345 error (_("Junk after %s"), argv[1]);
2346
2347 addr = parse_and_eval_address (argv[1]);
2348
2349 ALL_OBJFILES (objf)
2350 {
2351 if ((objf->flags & OBJF_USERLOADED) != 0
2352 && (objf->flags & OBJF_SHARED) != 0
2353 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2354 break;
2355 }
2356 }
2357 else if (argv[0] != NULL)
2358 {
2359 /* Interpret the current argument as a file name. */
2360
2361 if (argv[1] != NULL)
2362 error (_("Junk after %s"), argv[0]);
2363
2364 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2365
2366 ALL_OBJFILES (objf)
2367 {
2368 if ((objf->flags & OBJF_USERLOADED) != 0
2369 && (objf->flags & OBJF_SHARED) != 0
2370 && objf->pspace == pspace
2371 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2372 break;
2373 }
2374 }
2375
2376 if (objf == NULL)
2377 error (_("No symbol file found"));
2378
2379 if (from_tty
2380 && !query (_("Remove symbol table from file \"%s\"? "),
2381 objfile_name (objf)))
2382 error (_("Not confirmed."));
2383
2384 free_objfile (objf);
2385 clear_symtab_users (0);
2386 }
2387
2388 /* Re-read symbols if a symbol-file has changed. */
2389
2390 void
2391 reread_symbols (void)
2392 {
2393 struct objfile *objfile;
2394 long new_modtime;
2395 struct stat new_statbuf;
2396 int res;
2397 std::vector<struct objfile *> new_objfiles;
2398
2399 /* With the addition of shared libraries, this should be modified,
2400 the load time should be saved in the partial symbol tables, since
2401 different tables may come from different source files. FIXME.
2402 This routine should then walk down each partial symbol table
2403 and see if the symbol table that it originates from has been changed. */
2404
2405 for (objfile = object_files; objfile; objfile = objfile->next)
2406 {
2407 if (objfile->obfd == NULL)
2408 continue;
2409
2410 /* Separate debug objfiles are handled in the main objfile. */
2411 if (objfile->separate_debug_objfile_backlink)
2412 continue;
2413
2414 /* If this object is from an archive (what you usually create with
2415 `ar', often called a `static library' on most systems, though
2416 a `shared library' on AIX is also an archive), then you should
2417 stat on the archive name, not member name. */
2418 if (objfile->obfd->my_archive)
2419 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2420 else
2421 res = stat (objfile_name (objfile), &new_statbuf);
2422 if (res != 0)
2423 {
2424 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2425 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2426 objfile_name (objfile));
2427 continue;
2428 }
2429 new_modtime = new_statbuf.st_mtime;
2430 if (new_modtime != objfile->mtime)
2431 {
2432 struct cleanup *old_cleanups;
2433 struct section_offsets *offsets;
2434 int num_offsets;
2435 char *original_name;
2436
2437 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2438 objfile_name (objfile));
2439
2440 /* There are various functions like symbol_file_add,
2441 symfile_bfd_open, syms_from_objfile, etc., which might
2442 appear to do what we want. But they have various other
2443 effects which we *don't* want. So we just do stuff
2444 ourselves. We don't worry about mapped files (for one thing,
2445 any mapped file will be out of date). */
2446
2447 /* If we get an error, blow away this objfile (not sure if
2448 that is the correct response for things like shared
2449 libraries). */
2450 old_cleanups = make_cleanup_free_objfile (objfile);
2451 /* We need to do this whenever any symbols go away. */
2452 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2453
2454 if (exec_bfd != NULL
2455 && filename_cmp (bfd_get_filename (objfile->obfd),
2456 bfd_get_filename (exec_bfd)) == 0)
2457 {
2458 /* Reload EXEC_BFD without asking anything. */
2459
2460 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2461 }
2462
2463 /* Keep the calls order approx. the same as in free_objfile. */
2464
2465 /* Free the separate debug objfiles. It will be
2466 automatically recreated by sym_read. */
2467 free_objfile_separate_debug (objfile);
2468
2469 /* Remove any references to this objfile in the global
2470 value lists. */
2471 preserve_values (objfile);
2472
2473 /* Nuke all the state that we will re-read. Much of the following
2474 code which sets things to NULL really is necessary to tell
2475 other parts of GDB that there is nothing currently there.
2476
2477 Try to keep the freeing order compatible with free_objfile. */
2478
2479 if (objfile->sf != NULL)
2480 {
2481 (*objfile->sf->sym_finish) (objfile);
2482 }
2483
2484 clear_objfile_data (objfile);
2485
2486 /* Clean up any state BFD has sitting around. */
2487 {
2488 gdb_bfd_ref_ptr obfd (objfile->obfd);
2489 char *obfd_filename;
2490
2491 obfd_filename = bfd_get_filename (objfile->obfd);
2492 /* Open the new BFD before freeing the old one, so that
2493 the filename remains live. */
2494 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2495 objfile->obfd = temp.release ();
2496 if (objfile->obfd == NULL)
2497 error (_("Can't open %s to read symbols."), obfd_filename);
2498 }
2499
2500 original_name = xstrdup (objfile->original_name);
2501 make_cleanup (xfree, original_name);
2502
2503 /* bfd_openr sets cacheable to true, which is what we want. */
2504 if (!bfd_check_format (objfile->obfd, bfd_object))
2505 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2506 bfd_errmsg (bfd_get_error ()));
2507
2508 /* Save the offsets, we will nuke them with the rest of the
2509 objfile_obstack. */
2510 num_offsets = objfile->num_sections;
2511 offsets = ((struct section_offsets *)
2512 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2513 memcpy (offsets, objfile->section_offsets,
2514 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2515
2516 /* FIXME: Do we have to free a whole linked list, or is this
2517 enough? */
2518 if (objfile->global_psymbols.list)
2519 xfree (objfile->global_psymbols.list);
2520 memset (&objfile->global_psymbols, 0,
2521 sizeof (objfile->global_psymbols));
2522 if (objfile->static_psymbols.list)
2523 xfree (objfile->static_psymbols.list);
2524 memset (&objfile->static_psymbols, 0,
2525 sizeof (objfile->static_psymbols));
2526
2527 /* Free the obstacks for non-reusable objfiles. */
2528 psymbol_bcache_free (objfile->psymbol_cache);
2529 objfile->psymbol_cache = psymbol_bcache_init ();
2530
2531 /* NB: after this call to obstack_free, objfiles_changed
2532 will need to be called (see discussion below). */
2533 obstack_free (&objfile->objfile_obstack, 0);
2534 objfile->sections = NULL;
2535 objfile->compunit_symtabs = NULL;
2536 objfile->psymtabs = NULL;
2537 objfile->psymtabs_addrmap = NULL;
2538 objfile->free_psymtabs = NULL;
2539 objfile->template_symbols = NULL;
2540
2541 /* obstack_init also initializes the obstack so it is
2542 empty. We could use obstack_specify_allocation but
2543 gdb_obstack.h specifies the alloc/dealloc functions. */
2544 obstack_init (&objfile->objfile_obstack);
2545
2546 /* set_objfile_per_bfd potentially allocates the per-bfd
2547 data on the objfile's obstack (if sharing data across
2548 multiple users is not possible), so it's important to
2549 do it *after* the obstack has been initialized. */
2550 set_objfile_per_bfd (objfile);
2551
2552 objfile->original_name
2553 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2554 strlen (original_name));
2555
2556 /* Reset the sym_fns pointer. The ELF reader can change it
2557 based on whether .gdb_index is present, and we need it to
2558 start over. PR symtab/15885 */
2559 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2560
2561 build_objfile_section_table (objfile);
2562 terminate_minimal_symbol_table (objfile);
2563
2564 /* We use the same section offsets as from last time. I'm not
2565 sure whether that is always correct for shared libraries. */
2566 objfile->section_offsets = (struct section_offsets *)
2567 obstack_alloc (&objfile->objfile_obstack,
2568 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2569 memcpy (objfile->section_offsets, offsets,
2570 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2571 objfile->num_sections = num_offsets;
2572
2573 /* What the hell is sym_new_init for, anyway? The concept of
2574 distinguishing between the main file and additional files
2575 in this way seems rather dubious. */
2576 if (objfile == symfile_objfile)
2577 {
2578 (*objfile->sf->sym_new_init) (objfile);
2579 }
2580
2581 (*objfile->sf->sym_init) (objfile);
2582 clear_complaints (&symfile_complaints, 1, 1);
2583
2584 objfile->flags &= ~OBJF_PSYMTABS_READ;
2585
2586 /* We are about to read new symbols and potentially also
2587 DWARF information. Some targets may want to pass addresses
2588 read from DWARF DIE's through an adjustment function before
2589 saving them, like MIPS, which may call into
2590 "find_pc_section". When called, that function will make
2591 use of per-objfile program space data.
2592
2593 Since we discarded our section information above, we have
2594 dangling pointers in the per-objfile program space data
2595 structure. Force GDB to update the section mapping
2596 information by letting it know the objfile has changed,
2597 making the dangling pointers point to correct data
2598 again. */
2599
2600 objfiles_changed ();
2601
2602 read_symbols (objfile, 0);
2603
2604 if (!objfile_has_symbols (objfile))
2605 {
2606 wrap_here ("");
2607 printf_unfiltered (_("(no debugging symbols found)\n"));
2608 wrap_here ("");
2609 }
2610
2611 /* We're done reading the symbol file; finish off complaints. */
2612 clear_complaints (&symfile_complaints, 0, 1);
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
2620 discard_cleanups (old_cleanups);
2621
2622 /* If the mtime has changed between the time we set new_modtime
2623 and now, we *want* this to be out of date, so don't call stat
2624 again now. */
2625 objfile->mtime = new_modtime;
2626 init_entry_point_info (objfile);
2627
2628 new_objfiles.push_back (objfile);
2629 }
2630 }
2631
2632 if (!new_objfiles.empty ())
2633 {
2634 clear_symtab_users (0);
2635
2636 /* clear_objfile_data for each objfile was called before freeing it and
2637 observer_notify_new_objfile (NULL) has been called by
2638 clear_symtab_users above. Notify the new files now. */
2639 for (auto iter : new_objfiles)
2640 observer_notify_new_objfile (iter);
2641
2642 /* At least one objfile has changed, so we can consider that
2643 the executable we're debugging has changed too. */
2644 observer_notify_executable_changed ();
2645 }
2646 }
2647 \f
2648
2649 typedef struct
2650 {
2651 char *ext;
2652 enum language lang;
2653 } filename_language;
2654
2655 DEF_VEC_O (filename_language);
2656
2657 static VEC (filename_language) *filename_language_table;
2658
2659 /* See symfile.h. */
2660
2661 void
2662 add_filename_language (const char *ext, enum language lang)
2663 {
2664 filename_language entry;
2665
2666 entry.ext = xstrdup (ext);
2667 entry.lang = lang;
2668
2669 VEC_safe_push (filename_language, filename_language_table, &entry);
2670 }
2671
2672 static char *ext_args;
2673 static void
2674 show_ext_args (struct ui_file *file, int from_tty,
2675 struct cmd_list_element *c, const char *value)
2676 {
2677 fprintf_filtered (file,
2678 _("Mapping between filename extension "
2679 "and source language is \"%s\".\n"),
2680 value);
2681 }
2682
2683 static void
2684 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2685 {
2686 int i;
2687 char *cp = ext_args;
2688 enum language lang;
2689 filename_language *entry;
2690
2691 /* First arg is filename extension, starting with '.' */
2692 if (*cp != '.')
2693 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2694
2695 /* Find end of first arg. */
2696 while (*cp && !isspace (*cp))
2697 cp++;
2698
2699 if (*cp == '\0')
2700 error (_("'%s': two arguments required -- "
2701 "filename extension and language"),
2702 ext_args);
2703
2704 /* Null-terminate first arg. */
2705 *cp++ = '\0';
2706
2707 /* Find beginning of second arg, which should be a source language. */
2708 cp = skip_spaces (cp);
2709
2710 if (*cp == '\0')
2711 error (_("'%s': two arguments required -- "
2712 "filename extension and language"),
2713 ext_args);
2714
2715 /* Lookup the language from among those we know. */
2716 lang = language_enum (cp);
2717
2718 /* Now lookup the filename extension: do we already know it? */
2719 for (i = 0;
2720 VEC_iterate (filename_language, filename_language_table, i, entry);
2721 ++i)
2722 {
2723 if (0 == strcmp (ext_args, entry->ext))
2724 break;
2725 }
2726
2727 if (entry == NULL)
2728 {
2729 /* New file extension. */
2730 add_filename_language (ext_args, lang);
2731 }
2732 else
2733 {
2734 /* Redefining a previously known filename extension. */
2735
2736 /* if (from_tty) */
2737 /* query ("Really make files of type %s '%s'?", */
2738 /* ext_args, language_str (lang)); */
2739
2740 xfree (entry->ext);
2741 entry->ext = xstrdup (ext_args);
2742 entry->lang = lang;
2743 }
2744 }
2745
2746 static void
2747 info_ext_lang_command (char *args, int from_tty)
2748 {
2749 int i;
2750 filename_language *entry;
2751
2752 printf_filtered (_("Filename extensions and the languages they represent:"));
2753 printf_filtered ("\n\n");
2754 for (i = 0;
2755 VEC_iterate (filename_language, filename_language_table, i, entry);
2756 ++i)
2757 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2758 }
2759
2760 enum language
2761 deduce_language_from_filename (const char *filename)
2762 {
2763 int i;
2764 const char *cp;
2765
2766 if (filename != NULL)
2767 if ((cp = strrchr (filename, '.')) != NULL)
2768 {
2769 filename_language *entry;
2770
2771 for (i = 0;
2772 VEC_iterate (filename_language, filename_language_table, i, entry);
2773 ++i)
2774 if (strcmp (cp, entry->ext) == 0)
2775 return entry->lang;
2776 }
2777
2778 return language_unknown;
2779 }
2780 \f
2781 /* Allocate and initialize a new symbol table.
2782 CUST is from the result of allocate_compunit_symtab. */
2783
2784 struct symtab *
2785 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2786 {
2787 struct objfile *objfile = cust->objfile;
2788 struct symtab *symtab
2789 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2790
2791 symtab->filename
2792 = (const char *) bcache (filename, strlen (filename) + 1,
2793 objfile->per_bfd->filename_cache);
2794 symtab->fullname = NULL;
2795 symtab->language = deduce_language_from_filename (filename);
2796
2797 /* This can be very verbose with lots of headers.
2798 Only print at higher debug levels. */
2799 if (symtab_create_debug >= 2)
2800 {
2801 /* Be a bit clever with debugging messages, and don't print objfile
2802 every time, only when it changes. */
2803 static char *last_objfile_name = NULL;
2804
2805 if (last_objfile_name == NULL
2806 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2807 {
2808 xfree (last_objfile_name);
2809 last_objfile_name = xstrdup (objfile_name (objfile));
2810 fprintf_unfiltered (gdb_stdlog,
2811 "Creating one or more symtabs for objfile %s ...\n",
2812 last_objfile_name);
2813 }
2814 fprintf_unfiltered (gdb_stdlog,
2815 "Created symtab %s for module %s.\n",
2816 host_address_to_string (symtab), filename);
2817 }
2818
2819 /* Add it to CUST's list of symtabs. */
2820 if (cust->filetabs == NULL)
2821 {
2822 cust->filetabs = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825 else
2826 {
2827 cust->last_filetab->next = symtab;
2828 cust->last_filetab = symtab;
2829 }
2830
2831 /* Backlink to the containing compunit symtab. */
2832 symtab->compunit_symtab = cust;
2833
2834 return symtab;
2835 }
2836
2837 /* Allocate and initialize a new compunit.
2838 NAME is the name of the main source file, if there is one, or some
2839 descriptive text if there are no source files. */
2840
2841 struct compunit_symtab *
2842 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2843 {
2844 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2845 struct compunit_symtab);
2846 const char *saved_name;
2847
2848 cu->objfile = objfile;
2849
2850 /* The name we record here is only for display/debugging purposes.
2851 Just save the basename to avoid path issues (too long for display,
2852 relative vs absolute, etc.). */
2853 saved_name = lbasename (name);
2854 cu->name
2855 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2856 strlen (saved_name));
2857
2858 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2859
2860 if (symtab_create_debug)
2861 {
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Created compunit symtab %s for %s.\n",
2864 host_address_to_string (cu),
2865 cu->name);
2866 }
2867
2868 return cu;
2869 }
2870
2871 /* Hook CU to the objfile it comes from. */
2872
2873 void
2874 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2875 {
2876 cu->next = cu->objfile->compunit_symtabs;
2877 cu->objfile->compunit_symtabs = cu;
2878 }
2879 \f
2880
2881 /* Reset all data structures in gdb which may contain references to
2882 symbol table data. */
2883
2884 void
2885 clear_symtab_users (symfile_add_flags add_flags)
2886 {
2887 /* Someday, we should do better than this, by only blowing away
2888 the things that really need to be blown. */
2889
2890 /* Clear the "current" symtab first, because it is no longer valid.
2891 breakpoint_re_set may try to access the current symtab. */
2892 clear_current_source_symtab_and_line ();
2893
2894 clear_displays ();
2895 clear_last_displayed_sal ();
2896 clear_pc_function_cache ();
2897 observer_notify_new_objfile (NULL);
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
2908 /* Now that the various caches have been cleared, we can re_set
2909 our breakpoints without risking it using stale data. */
2910 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2911 breakpoint_re_set ();
2912 }
2913
2914 static void
2915 clear_symtab_users_cleanup (void *ignore)
2916 {
2917 clear_symtab_users (0);
2918 }
2919 \f
2920 /* OVERLAYS:
2921 The following code implements an abstraction for debugging overlay sections.
2922
2923 The target model is as follows:
2924 1) The gnu linker will permit multiple sections to be mapped into the
2925 same VMA, each with its own unique LMA (or load address).
2926 2) It is assumed that some runtime mechanism exists for mapping the
2927 sections, one by one, from the load address into the VMA address.
2928 3) This code provides a mechanism for gdb to keep track of which
2929 sections should be considered to be mapped from the VMA to the LMA.
2930 This information is used for symbol lookup, and memory read/write.
2931 For instance, if a section has been mapped then its contents
2932 should be read from the VMA, otherwise from the LMA.
2933
2934 Two levels of debugger support for overlays are available. One is
2935 "manual", in which the debugger relies on the user to tell it which
2936 overlays are currently mapped. This level of support is
2937 implemented entirely in the core debugger, and the information about
2938 whether a section is mapped is kept in the objfile->obj_section table.
2939
2940 The second level of support is "automatic", and is only available if
2941 the target-specific code provides functionality to read the target's
2942 overlay mapping table, and translate its contents for the debugger
2943 (by updating the mapped state information in the obj_section tables).
2944
2945 The interface is as follows:
2946 User commands:
2947 overlay map <name> -- tell gdb to consider this section mapped
2948 overlay unmap <name> -- tell gdb to consider this section unmapped
2949 overlay list -- list the sections that GDB thinks are mapped
2950 overlay read-target -- get the target's state of what's mapped
2951 overlay off/manual/auto -- set overlay debugging state
2952 Functional interface:
2953 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2954 section, return that section.
2955 find_pc_overlay(pc): find any overlay section that contains
2956 the pc, either in its VMA or its LMA
2957 section_is_mapped(sect): true if overlay is marked as mapped
2958 section_is_overlay(sect): true if section's VMA != LMA
2959 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2960 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2961 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2962 overlay_mapped_address(...): map an address from section's LMA to VMA
2963 overlay_unmapped_address(...): map an address from section's VMA to LMA
2964 symbol_overlayed_address(...): Return a "current" address for symbol:
2965 either in VMA or LMA depending on whether
2966 the symbol's section is currently mapped. */
2967
2968 /* Overlay debugging state: */
2969
2970 enum overlay_debugging_state overlay_debugging = ovly_off;
2971 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2972
2973 /* Function: section_is_overlay (SECTION)
2974 Returns true if SECTION has VMA not equal to LMA, ie.
2975 SECTION is loaded at an address different from where it will "run". */
2976
2977 int
2978 section_is_overlay (struct obj_section *section)
2979 {
2980 if (overlay_debugging && section)
2981 {
2982 bfd *abfd = section->objfile->obfd;
2983 asection *bfd_section = section->the_bfd_section;
2984
2985 if (bfd_section_lma (abfd, bfd_section) != 0
2986 && bfd_section_lma (abfd, bfd_section)
2987 != bfd_section_vma (abfd, bfd_section))
2988 return 1;
2989 }
2990
2991 return 0;
2992 }
2993
2994 /* Function: overlay_invalidate_all (void)
2995 Invalidate the mapped state of all overlay sections (mark it as stale). */
2996
2997 static void
2998 overlay_invalidate_all (void)
2999 {
3000 struct objfile *objfile;
3001 struct obj_section *sect;
3002
3003 ALL_OBJSECTIONS (objfile, sect)
3004 if (section_is_overlay (sect))
3005 sect->ovly_mapped = -1;
3006 }
3007
3008 /* Function: section_is_mapped (SECTION)
3009 Returns true if section is an overlay, and is currently mapped.
3010
3011 Access to the ovly_mapped flag is restricted to this function, so
3012 that we can do automatic update. If the global flag
3013 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3014 overlay_invalidate_all. If the mapped state of the particular
3015 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3016
3017 int
3018 section_is_mapped (struct obj_section *osect)
3019 {
3020 struct gdbarch *gdbarch;
3021
3022 if (osect == 0 || !section_is_overlay (osect))
3023 return 0;
3024
3025 switch (overlay_debugging)
3026 {
3027 default:
3028 case ovly_off:
3029 return 0; /* overlay debugging off */
3030 case ovly_auto: /* overlay debugging automatic */
3031 /* Unles there is a gdbarch_overlay_update function,
3032 there's really nothing useful to do here (can't really go auto). */
3033 gdbarch = get_objfile_arch (osect->objfile);
3034 if (gdbarch_overlay_update_p (gdbarch))
3035 {
3036 if (overlay_cache_invalid)
3037 {
3038 overlay_invalidate_all ();
3039 overlay_cache_invalid = 0;
3040 }
3041 if (osect->ovly_mapped == -1)
3042 gdbarch_overlay_update (gdbarch, osect);
3043 }
3044 /* fall thru to manual case */
3045 case ovly_on: /* overlay debugging manual */
3046 return osect->ovly_mapped == 1;
3047 }
3048 }
3049
3050 /* Function: pc_in_unmapped_range
3051 If PC falls into the lma range of SECTION, return true, else false. */
3052
3053 CORE_ADDR
3054 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3055 {
3056 if (section_is_overlay (section))
3057 {
3058 bfd *abfd = section->objfile->obfd;
3059 asection *bfd_section = section->the_bfd_section;
3060
3061 /* We assume the LMA is relocated by the same offset as the VMA. */
3062 bfd_vma size = bfd_get_section_size (bfd_section);
3063 CORE_ADDR offset = obj_section_offset (section);
3064
3065 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3066 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3067 return 1;
3068 }
3069
3070 return 0;
3071 }
3072
3073 /* Function: pc_in_mapped_range
3074 If PC falls into the vma range of SECTION, return true, else false. */
3075
3076 CORE_ADDR
3077 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3078 {
3079 if (section_is_overlay (section))
3080 {
3081 if (obj_section_addr (section) <= pc
3082 && pc < obj_section_endaddr (section))
3083 return 1;
3084 }
3085
3086 return 0;
3087 }
3088
3089 /* Return true if the mapped ranges of sections A and B overlap, false
3090 otherwise. */
3091
3092 static int
3093 sections_overlap (struct obj_section *a, struct obj_section *b)
3094 {
3095 CORE_ADDR a_start = obj_section_addr (a);
3096 CORE_ADDR a_end = obj_section_endaddr (a);
3097 CORE_ADDR b_start = obj_section_addr (b);
3098 CORE_ADDR b_end = obj_section_endaddr (b);
3099
3100 return (a_start < b_end && b_start < a_end);
3101 }
3102
3103 /* Function: overlay_unmapped_address (PC, SECTION)
3104 Returns the address corresponding to PC in the unmapped (load) range.
3105 May be the same as PC. */
3106
3107 CORE_ADDR
3108 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3109 {
3110 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3111 {
3112 bfd *abfd = section->objfile->obfd;
3113 asection *bfd_section = section->the_bfd_section;
3114
3115 return pc + bfd_section_lma (abfd, bfd_section)
3116 - bfd_section_vma (abfd, bfd_section);
3117 }
3118
3119 return pc;
3120 }
3121
3122 /* Function: overlay_mapped_address (PC, SECTION)
3123 Returns the address corresponding to PC in the mapped (runtime) range.
3124 May be the same as PC. */
3125
3126 CORE_ADDR
3127 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3128 {
3129 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3130 {
3131 bfd *abfd = section->objfile->obfd;
3132 asection *bfd_section = section->the_bfd_section;
3133
3134 return pc + bfd_section_vma (abfd, bfd_section)
3135 - bfd_section_lma (abfd, bfd_section);
3136 }
3137
3138 return pc;
3139 }
3140
3141 /* Function: symbol_overlayed_address
3142 Return one of two addresses (relative to the VMA or to the LMA),
3143 depending on whether the section is mapped or not. */
3144
3145 CORE_ADDR
3146 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3147 {
3148 if (overlay_debugging)
3149 {
3150 /* If the symbol has no section, just return its regular address. */
3151 if (section == 0)
3152 return address;
3153 /* If the symbol's section is not an overlay, just return its
3154 address. */
3155 if (!section_is_overlay (section))
3156 return address;
3157 /* If the symbol's section is mapped, just return its address. */
3158 if (section_is_mapped (section))
3159 return address;
3160 /*
3161 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3162 * then return its LOADED address rather than its vma address!!
3163 */
3164 return overlay_unmapped_address (address, section);
3165 }
3166 return address;
3167 }
3168
3169 /* Function: find_pc_overlay (PC)
3170 Return the best-match overlay section for PC:
3171 If PC matches a mapped overlay section's VMA, return that section.
3172 Else if PC matches an unmapped section's VMA, return that section.
3173 Else if PC matches an unmapped section's LMA, return that section. */
3174
3175 struct obj_section *
3176 find_pc_overlay (CORE_ADDR pc)
3177 {
3178 struct objfile *objfile;
3179 struct obj_section *osect, *best_match = NULL;
3180
3181 if (overlay_debugging)
3182 {
3183 ALL_OBJSECTIONS (objfile, osect)
3184 if (section_is_overlay (osect))
3185 {
3186 if (pc_in_mapped_range (pc, osect))
3187 {
3188 if (section_is_mapped (osect))
3189 return osect;
3190 else
3191 best_match = osect;
3192 }
3193 else if (pc_in_unmapped_range (pc, osect))
3194 best_match = osect;
3195 }
3196 }
3197 return best_match;
3198 }
3199
3200 /* Function: find_pc_mapped_section (PC)
3201 If PC falls into the VMA address range of an overlay section that is
3202 currently marked as MAPPED, return that section. Else return NULL. */
3203
3204 struct obj_section *
3205 find_pc_mapped_section (CORE_ADDR pc)
3206 {
3207 struct objfile *objfile;
3208 struct obj_section *osect;
3209
3210 if (overlay_debugging)
3211 {
3212 ALL_OBJSECTIONS (objfile, osect)
3213 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3214 return osect;
3215 }
3216
3217 return NULL;
3218 }
3219
3220 /* Function: list_overlays_command
3221 Print a list of mapped sections and their PC ranges. */
3222
3223 static void
3224 list_overlays_command (const char *args, int from_tty)
3225 {
3226 int nmapped = 0;
3227 struct objfile *objfile;
3228 struct obj_section *osect;
3229
3230 if (overlay_debugging)
3231 {
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (section_is_mapped (osect))
3234 {
3235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3236 const char *name;
3237 bfd_vma lma, vma;
3238 int size;
3239
3240 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3241 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3242 size = bfd_get_section_size (osect->the_bfd_section);
3243 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3244
3245 printf_filtered ("Section %s, loaded at ", name);
3246 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3247 puts_filtered (" - ");
3248 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3249 printf_filtered (", mapped at ");
3250 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3251 puts_filtered (" - ");
3252 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3253 puts_filtered ("\n");
3254
3255 nmapped++;
3256 }
3257 }
3258 if (nmapped == 0)
3259 printf_filtered (_("No sections are mapped.\n"));
3260 }
3261
3262 /* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265 static void
3266 map_overlay_command (const char *args, int from_tty)
3267 {
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
3270
3271 if (!overlay_debugging)
3272 error (_("Overlay debugging not enabled. Use "
3273 "either the 'overlay auto' or\n"
3274 "the 'overlay manual' command."));
3275
3276 if (args == 0 || *args == 0)
3277 error (_("Argument required: name of an overlay section"));
3278
3279 /* First, find a section matching the user supplied argument. */
3280 ALL_OBJSECTIONS (objfile, sec)
3281 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3282 {
3283 /* Now, check to see if the section is an overlay. */
3284 if (!section_is_overlay (sec))
3285 continue; /* not an overlay section */
3286
3287 /* Mark the overlay as "mapped". */
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 ALL_OBJSECTIONS (objfile2, sec2)
3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3294 {
3295 if (info_verbose)
3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3297 bfd_section_name (objfile->obfd,
3298 sec2->the_bfd_section));
3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3300 }
3301 return;
3302 }
3303 error (_("No overlay section called %s"), args);
3304 }
3305
3306 /* Function: unmap_overlay_command
3307 Mark the overlay section as unmapped
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
3310 static void
3311 unmap_overlay_command (const char *args, int from_tty)
3312 {
3313 struct objfile *objfile;
3314 struct obj_section *sec = NULL;
3315
3316 if (!overlay_debugging)
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
3320
3321 if (args == 0 || *args == 0)
3322 error (_("Argument required: name of an overlay section"));
3323
3324 /* First, find a section matching the user supplied argument. */
3325 ALL_OBJSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3327 {
3328 if (!sec->ovly_mapped)
3329 error (_("Section %s is not mapped"), args);
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
3333 error (_("No overlay section called %s"), args);
3334 }
3335
3336 /* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_auto_command (const char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_auto;
3344 enable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
3347 }
3348
3349 /* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
3351 Possibly this should be done via a set/show command. */
3352
3353 static void
3354 overlay_manual_command (const char *args, int from_tty)
3355 {
3356 overlay_debugging = ovly_on;
3357 disable_overlay_breakpoints ();
3358 if (info_verbose)
3359 printf_unfiltered (_("Overlay debugging enabled."));
3360 }
3361
3362 /* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
3364 Possibly this should be done via a set/show command. */
3365
3366 static void
3367 overlay_off_command (const char *args, int from_tty)
3368 {
3369 overlay_debugging = ovly_off;
3370 disable_overlay_breakpoints ();
3371 if (info_verbose)
3372 printf_unfiltered (_("Overlay debugging disabled."));
3373 }
3374
3375 static void
3376 overlay_load_command (const char *args, int from_tty)
3377 {
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
3382 else
3383 error (_("This target does not know how to read its overlay state."));
3384 }
3385
3386 /* Function: overlay_command
3387 A place-holder for a mis-typed command. */
3388
3389 /* Command list chain containing all defined "overlay" subcommands. */
3390 static struct cmd_list_element *overlaylist;
3391
3392 static void
3393 overlay_command (char *args, int from_tty)
3394 {
3395 printf_unfiltered
3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
3397 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3398 }
3399
3400 /* Target Overlays for the "Simplest" overlay manager:
3401
3402 This is GDB's default target overlay layer. It works with the
3403 minimal overlay manager supplied as an example by Cygnus. The
3404 entry point is via a function pointer "gdbarch_overlay_update",
3405 so targets that use a different runtime overlay manager can
3406 substitute their own overlay_update function and take over the
3407 function pointer.
3408
3409 The overlay_update function pokes around in the target's data structures
3410 to see what overlays are mapped, and updates GDB's overlay mapping with
3411 this information.
3412
3413 In this simple implementation, the target data structures are as follows:
3414 unsigned _novlys; /# number of overlay sections #/
3415 unsigned _ovly_table[_novlys][4] = {
3416 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3417 {..., ..., ..., ...},
3418 }
3419 unsigned _novly_regions; /# number of overlay regions #/
3420 unsigned _ovly_region_table[_novly_regions][3] = {
3421 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3422 {..., ..., ...},
3423 }
3424 These functions will attempt to update GDB's mappedness state in the
3425 symbol section table, based on the target's mappedness state.
3426
3427 To do this, we keep a cached copy of the target's _ovly_table, and
3428 attempt to detect when the cached copy is invalidated. The main
3429 entry point is "simple_overlay_update(SECT), which looks up SECT in
3430 the cached table and re-reads only the entry for that section from
3431 the target (whenever possible). */
3432
3433 /* Cached, dynamically allocated copies of the target data structures: */
3434 static unsigned (*cache_ovly_table)[4] = 0;
3435 static unsigned cache_novlys = 0;
3436 static CORE_ADDR cache_ovly_table_base = 0;
3437 enum ovly_index
3438 {
3439 VMA, OSIZE, LMA, MAPPED
3440 };
3441
3442 /* Throw away the cached copy of _ovly_table. */
3443
3444 static void
3445 simple_free_overlay_table (void)
3446 {
3447 if (cache_ovly_table)
3448 xfree (cache_ovly_table);
3449 cache_novlys = 0;
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452 }
3453
3454 /* Read an array of ints of size SIZE from the target into a local buffer.
3455 Convert to host order. int LEN is number of ints. */
3456
3457 static void
3458 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3459 int len, int size, enum bfd_endian byte_order)
3460 {
3461 /* FIXME (alloca): Not safe if array is very large. */
3462 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3463 int i;
3464
3465 read_memory (memaddr, buf, len * size);
3466 for (i = 0; i < len; i++)
3467 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3468 }
3469
3470 /* Find and grab a copy of the target _ovly_table
3471 (and _novlys, which is needed for the table's size). */
3472
3473 static int
3474 simple_read_overlay_table (void)
3475 {
3476 struct bound_minimal_symbol novlys_msym;
3477 struct bound_minimal_symbol ovly_table_msym;
3478 struct gdbarch *gdbarch;
3479 int word_size;
3480 enum bfd_endian byte_order;
3481
3482 simple_free_overlay_table ();
3483 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3484 if (! novlys_msym.minsym)
3485 {
3486 error (_("Error reading inferior's overlay table: "
3487 "couldn't find `_novlys' variable\n"
3488 "in inferior. Use `overlay manual' mode."));
3489 return 0;
3490 }
3491
3492 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3493 if (! ovly_table_msym.minsym)
3494 {
3495 error (_("Error reading inferior's overlay table: couldn't find "
3496 "`_ovly_table' array\n"
3497 "in inferior. Use `overlay manual' mode."));
3498 return 0;
3499 }
3500
3501 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3502 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3503 byte_order = gdbarch_byte_order (gdbarch);
3504
3505 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3506 4, byte_order);
3507 cache_ovly_table
3508 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3509 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3510 read_target_long_array (cache_ovly_table_base,
3511 (unsigned int *) cache_ovly_table,
3512 cache_novlys * 4, word_size, byte_order);
3513
3514 return 1; /* SUCCESS */
3515 }
3516
3517 /* Function: simple_overlay_update_1
3518 A helper function for simple_overlay_update. Assuming a cached copy
3519 of _ovly_table exists, look through it to find an entry whose vma,
3520 lma and size match those of OSECT. Re-read the entry and make sure
3521 it still matches OSECT (else the table may no longer be valid).
3522 Set OSECT's mapped state to match the entry. Return: 1 for
3523 success, 0 for failure. */
3524
3525 static int
3526 simple_overlay_update_1 (struct obj_section *osect)
3527 {
3528 int i;
3529 bfd *obfd = osect->objfile->obfd;
3530 asection *bsect = osect->the_bfd_section;
3531 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3532 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3534
3535 for (i = 0; i < cache_novlys; i++)
3536 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3537 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3538 {
3539 read_target_long_array (cache_ovly_table_base + i * word_size,
3540 (unsigned int *) cache_ovly_table[i],
3541 4, word_size, byte_order);
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
3548 else /* Warning! Warning! Target's ovly table has changed! */
3549 return 0;
3550 }
3551 return 0;
3552 }
3553
3554 /* Function: simple_overlay_update
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
3558 cached ovly_table and update only OSECT's mapped state.
3559 If a cached entry can't be found or the cache isn't valid, then
3560 re-read the entire cache, and go ahead and update all sections. */
3561
3562 void
3563 simple_overlay_update (struct obj_section *osect)
3564 {
3565 struct objfile *objfile;
3566
3567 /* Were we given an osect to look up? NULL means do all of them. */
3568 if (osect)
3569 /* Have we got a cached copy of the target's overlay table? */
3570 if (cache_ovly_table != NULL)
3571 {
3572 /* Does its cached location match what's currently in the
3573 symtab? */
3574 struct bound_minimal_symbol minsym
3575 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3576
3577 if (minsym.minsym == NULL)
3578 error (_("Error reading inferior's overlay table: couldn't "
3579 "find `_ovly_table' array\n"
3580 "in inferior. Use `overlay manual' mode."));
3581
3582 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3583 /* Then go ahead and try to look up this single section in
3584 the cache. */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588 }
3589
3590 /* Cached table no good: need to read the entire table anew.
3591 Or else we want all the sections, in which case it's actually
3592 more efficient to read the whole table in one block anyway. */
3593
3594 if (! simple_read_overlay_table ())
3595 return;
3596
3597 /* Now may as well update all sections, even if only one was requested. */
3598 ALL_OBJSECTIONS (objfile, osect)
3599 if (section_is_overlay (osect))
3600 {
3601 int i;
3602 bfd *obfd = osect->objfile->obfd;
3603 asection *bsect = osect->the_bfd_section;
3604
3605 for (i = 0; i < cache_novlys; i++)
3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3608 { /* obj_section matches i'th entry in ovly_table. */
3609 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3610 break; /* finished with inner for loop: break out. */
3611 }
3612 }
3613 }
3614
3615 /* Set the output sections and output offsets for section SECTP in
3616 ABFD. The relocation code in BFD will read these offsets, so we
3617 need to be sure they're initialized. We map each section to itself,
3618 with no offset; this means that SECTP->vma will be honored. */
3619
3620 static void
3621 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3622 {
3623 sectp->output_section = sectp;
3624 sectp->output_offset = 0;
3625 }
3626
3627 /* Default implementation for sym_relocate. */
3628
3629 bfd_byte *
3630 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3631 bfd_byte *buf)
3632 {
3633 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3634 DWO file. */
3635 bfd *abfd = sectp->owner;
3636
3637 /* We're only interested in sections with relocation
3638 information. */
3639 if ((sectp->flags & SEC_RELOC) == 0)
3640 return NULL;
3641
3642 /* We will handle section offsets properly elsewhere, so relocate as if
3643 all sections begin at 0. */
3644 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3645
3646 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3647 }
3648
3649 /* Relocate the contents of a debug section SECTP in ABFD. The
3650 contents are stored in BUF if it is non-NULL, or returned in a
3651 malloc'd buffer otherwise.
3652
3653 For some platforms and debug info formats, shared libraries contain
3654 relocations against the debug sections (particularly for DWARF-2;
3655 one affected platform is PowerPC GNU/Linux, although it depends on
3656 the version of the linker in use). Also, ELF object files naturally
3657 have unresolved relocations for their debug sections. We need to apply
3658 the relocations in order to get the locations of symbols correct.
3659 Another example that may require relocation processing, is the
3660 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3661 debug section. */
3662
3663 bfd_byte *
3664 symfile_relocate_debug_section (struct objfile *objfile,
3665 asection *sectp, bfd_byte *buf)
3666 {
3667 gdb_assert (objfile->sf->sym_relocate);
3668
3669 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3670 }
3671
3672 struct symfile_segment_data *
3673 get_symfile_segment_data (bfd *abfd)
3674 {
3675 const struct sym_fns *sf = find_sym_fns (abfd);
3676
3677 if (sf == NULL)
3678 return NULL;
3679
3680 return sf->sym_segments (abfd);
3681 }
3682
3683 void
3684 free_symfile_segment_data (struct symfile_segment_data *data)
3685 {
3686 xfree (data->segment_bases);
3687 xfree (data->segment_sizes);
3688 xfree (data->segment_info);
3689 xfree (data);
3690 }
3691
3692 /* Given:
3693 - DATA, containing segment addresses from the object file ABFD, and
3694 the mapping from ABFD's sections onto the segments that own them,
3695 and
3696 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3697 segment addresses reported by the target,
3698 store the appropriate offsets for each section in OFFSETS.
3699
3700 If there are fewer entries in SEGMENT_BASES than there are segments
3701 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3702
3703 If there are more entries, then ignore the extra. The target may
3704 not be able to distinguish between an empty data segment and a
3705 missing data segment; a missing text segment is less plausible. */
3706
3707 int
3708 symfile_map_offsets_to_segments (bfd *abfd,
3709 const struct symfile_segment_data *data,
3710 struct section_offsets *offsets,
3711 int num_segment_bases,
3712 const CORE_ADDR *segment_bases)
3713 {
3714 int i;
3715 asection *sect;
3716
3717 /* It doesn't make sense to call this function unless you have some
3718 segment base addresses. */
3719 gdb_assert (num_segment_bases > 0);
3720
3721 /* If we do not have segment mappings for the object file, we
3722 can not relocate it by segments. */
3723 gdb_assert (data != NULL);
3724 gdb_assert (data->num_segments > 0);
3725
3726 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3727 {
3728 int which = data->segment_info[i];
3729
3730 gdb_assert (0 <= which && which <= data->num_segments);
3731
3732 /* Don't bother computing offsets for sections that aren't
3733 loaded as part of any segment. */
3734 if (! which)
3735 continue;
3736
3737 /* Use the last SEGMENT_BASES entry as the address of any extra
3738 segments mentioned in DATA->segment_info. */
3739 if (which > num_segment_bases)
3740 which = num_segment_bases;
3741
3742 offsets->offsets[i] = (segment_bases[which - 1]
3743 - data->segment_bases[which - 1]);
3744 }
3745
3746 return 1;
3747 }
3748
3749 static void
3750 symfile_find_segment_sections (struct objfile *objfile)
3751 {
3752 bfd *abfd = objfile->obfd;
3753 int i;
3754 asection *sect;
3755 struct symfile_segment_data *data;
3756
3757 data = get_symfile_segment_data (objfile->obfd);
3758 if (data == NULL)
3759 return;
3760
3761 if (data->num_segments != 1 && data->num_segments != 2)
3762 {
3763 free_symfile_segment_data (data);
3764 return;
3765 }
3766
3767 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3768 {
3769 int which = data->segment_info[i];
3770
3771 if (which == 1)
3772 {
3773 if (objfile->sect_index_text == -1)
3774 objfile->sect_index_text = sect->index;
3775
3776 if (objfile->sect_index_rodata == -1)
3777 objfile->sect_index_rodata = sect->index;
3778 }
3779 else if (which == 2)
3780 {
3781 if (objfile->sect_index_data == -1)
3782 objfile->sect_index_data = sect->index;
3783
3784 if (objfile->sect_index_bss == -1)
3785 objfile->sect_index_bss = sect->index;
3786 }
3787 }
3788
3789 free_symfile_segment_data (data);
3790 }
3791
3792 /* Listen for free_objfile events. */
3793
3794 static void
3795 symfile_free_objfile (struct objfile *objfile)
3796 {
3797 /* Remove the target sections owned by this objfile. */
3798 if (objfile != NULL)
3799 remove_target_sections ((void *) objfile);
3800 }
3801
3802 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3803 Expand all symtabs that match the specified criteria.
3804 See quick_symbol_functions.expand_symtabs_matching for details. */
3805
3806 void
3807 expand_symtabs_matching
3808 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3809 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3810 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3811 enum search_domain kind)
3812 {
3813 struct objfile *objfile;
3814
3815 ALL_OBJFILES (objfile)
3816 {
3817 if (objfile->sf)
3818 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3819 symbol_matcher,
3820 expansion_notify, kind);
3821 }
3822 }
3823
3824 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3825 Map function FUN over every file.
3826 See quick_symbol_functions.map_symbol_filenames for details. */
3827
3828 void
3829 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3830 int need_fullname)
3831 {
3832 struct objfile *objfile;
3833
3834 ALL_OBJFILES (objfile)
3835 {
3836 if (objfile->sf)
3837 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3838 need_fullname);
3839 }
3840 }
3841
3842 void
3843 _initialize_symfile (void)
3844 {
3845 struct cmd_list_element *c;
3846
3847 observer_attach_free_objfile (symfile_free_objfile);
3848
3849 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3850 Load symbol table from executable file FILE.\n\
3851 The `file' command can also load symbol tables, as well as setting the file\n\
3852 to execute."), &cmdlist);
3853 set_cmd_completer (c, filename_completer);
3854
3855 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3856 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3857 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3858 ...]\nADDR is the starting address of the file's text.\n\
3859 The optional arguments are section-name section-address pairs and\n\
3860 should be specified if the data and bss segments are not contiguous\n\
3861 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3862 &cmdlist);
3863 set_cmd_completer (c, filename_completer);
3864
3865 c = add_cmd ("remove-symbol-file", class_files,
3866 remove_symbol_file_command, _("\
3867 Remove a symbol file added via the add-symbol-file command.\n\
3868 Usage: remove-symbol-file FILENAME\n\
3869 remove-symbol-file -a ADDRESS\n\
3870 The file to remove can be identified by its filename or by an address\n\
3871 that lies within the boundaries of this symbol file in memory."),
3872 &cmdlist);
3873
3874 c = add_cmd ("load", class_files, load_command, _("\
3875 Dynamically load FILE into the running program, and record its symbols\n\
3876 for access from GDB.\n\
3877 An optional load OFFSET may also be given as a literal address.\n\
3878 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3879 on its own.\n\
3880 Usage: load [FILE] [OFFSET]"), &cmdlist);
3881 set_cmd_completer (c, filename_completer);
3882
3883 add_prefix_cmd ("overlay", class_support, overlay_command,
3884 _("Commands for debugging overlays."), &overlaylist,
3885 "overlay ", 0, &cmdlist);
3886
3887 add_com_alias ("ovly", "overlay", class_alias, 1);
3888 add_com_alias ("ov", "overlay", class_alias, 1);
3889
3890 add_cmd ("map-overlay", class_support, map_overlay_command,
3891 _("Assert that an overlay section is mapped."), &overlaylist);
3892
3893 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3894 _("Assert that an overlay section is unmapped."), &overlaylist);
3895
3896 add_cmd ("list-overlays", class_support, list_overlays_command,
3897 _("List mappings of overlay sections."), &overlaylist);
3898
3899 add_cmd ("manual", class_support, overlay_manual_command,
3900 _("Enable overlay debugging."), &overlaylist);
3901 add_cmd ("off", class_support, overlay_off_command,
3902 _("Disable overlay debugging."), &overlaylist);
3903 add_cmd ("auto", class_support, overlay_auto_command,
3904 _("Enable automatic overlay debugging."), &overlaylist);
3905 add_cmd ("load-target", class_support, overlay_load_command,
3906 _("Read the overlay mapping state from the target."), &overlaylist);
3907
3908 /* Filename extension to source language lookup table: */
3909 add_setshow_string_noescape_cmd ("extension-language", class_files,
3910 &ext_args, _("\
3911 Set mapping between filename extension and source language."), _("\
3912 Show mapping between filename extension and source language."), _("\
3913 Usage: set extension-language .foo bar"),
3914 set_ext_lang_command,
3915 show_ext_args,
3916 &setlist, &showlist);
3917
3918 add_info ("extensions", info_ext_lang_command,
3919 _("All filename extensions associated with a source language."));
3920
3921 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3922 &debug_file_directory, _("\
3923 Set the directories where separate debug symbols are searched for."), _("\
3924 Show the directories where separate debug symbols are searched for."), _("\
3925 Separate debug symbols are first searched for in the same\n\
3926 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3927 and lastly at the path of the directory of the binary with\n\
3928 each global debug-file-directory component prepended."),
3929 NULL,
3930 show_debug_file_directory,
3931 &setlist, &showlist);
3932
3933 add_setshow_enum_cmd ("symbol-loading", no_class,
3934 print_symbol_loading_enums, &print_symbol_loading,
3935 _("\
3936 Set printing of symbol loading messages."), _("\
3937 Show printing of symbol loading messages."), _("\
3938 off == turn all messages off\n\
3939 brief == print messages for the executable,\n\
3940 and brief messages for shared libraries\n\
3941 full == print messages for the executable,\n\
3942 and messages for each shared library."),
3943 NULL,
3944 NULL,
3945 &setprintlist, &showprintlist);
3946
3947 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3948 &separate_debug_file_debug, _("\
3949 Set printing of separate debug info file search debug."), _("\
3950 Show printing of separate debug info file search debug."), _("\
3951 When on, GDB prints the searched locations while looking for separate debug \
3952 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3953 }
This page took 0.168782 seconds and 5 git commands to generate.