Constify some commands in exec.c, plus symbol_file_command
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static const struct sym_fns *find_sym_fns (bfd *);
91
92 static void overlay_invalidate_all (void);
93
94 static void overlay_command (char *, int);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void info_ext_lang_command (char *args, int from_tty);
106
107 static void symfile_find_segment_sections (struct objfile *objfile);
108
109 /* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
111 prepared to read. */
112
113 typedef struct
114 {
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120 } registered_sym_fns;
121
122 DEF_VEC_O (registered_sym_fns);
123
124 static VEC (registered_sym_fns) *symtab_fns = NULL;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
220 new object's 'num_sections' field is set to 0; it must be updated
221 by the caller. */
222
223 struct section_addr_info *
224 alloc_section_addr_info (size_t num_sections)
225 {
226 struct section_addr_info *sap;
227 size_t size;
228
229 size = (sizeof (struct section_addr_info)
230 + sizeof (struct other_sections) * (num_sections - 1));
231 sap = (struct section_addr_info *) xmalloc (size);
232 memset (sap, 0, size);
233
234 return sap;
235 }
236
237 /* Build (allocate and populate) a section_addr_info struct from
238 an existing section table. */
239
240 extern struct section_addr_info *
241 build_section_addr_info_from_section_table (const struct target_section *start,
242 const struct target_section *end)
243 {
244 struct section_addr_info *sap;
245 const struct target_section *stp;
246 int oidx;
247
248 sap = alloc_section_addr_info (end - start);
249
250 for (stp = start, oidx = 0; stp != end; stp++)
251 {
252 struct bfd_section *asect = stp->the_bfd_section;
253 bfd *abfd = asect->owner;
254
255 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
256 && oidx < end - start)
257 {
258 sap->other[oidx].addr = stp->addr;
259 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
260 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
261 oidx++;
262 }
263 }
264
265 sap->num_sections = oidx;
266
267 return sap;
268 }
269
270 /* Create a section_addr_info from section offsets in ABFD. */
271
272 static struct section_addr_info *
273 build_section_addr_info_from_bfd (bfd *abfd)
274 {
275 struct section_addr_info *sap;
276 int i;
277 struct bfd_section *sec;
278
279 sap = alloc_section_addr_info (bfd_count_sections (abfd));
280 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
281 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
282 {
283 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
284 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
285 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
286 i++;
287 }
288
289 sap->num_sections = i;
290
291 return sap;
292 }
293
294 /* Create a section_addr_info from section offsets in OBJFILE. */
295
296 struct section_addr_info *
297 build_section_addr_info_from_objfile (const struct objfile *objfile)
298 {
299 struct section_addr_info *sap;
300 int i;
301
302 /* Before reread_symbols gets rewritten it is not safe to call:
303 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
304 */
305 sap = build_section_addr_info_from_bfd (objfile->obfd);
306 for (i = 0; i < sap->num_sections; i++)
307 {
308 int sectindex = sap->other[i].sectindex;
309
310 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
311 }
312 return sap;
313 }
314
315 /* Free all memory allocated by build_section_addr_info_from_section_table. */
316
317 extern void
318 free_section_addr_info (struct section_addr_info *sap)
319 {
320 int idx;
321
322 for (idx = 0; idx < sap->num_sections; idx++)
323 xfree (sap->other[idx].name);
324 xfree (sap);
325 }
326
327 /* Initialize OBJFILE's sect_index_* members. */
328
329 static void
330 init_objfile_sect_indices (struct objfile *objfile)
331 {
332 asection *sect;
333 int i;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
336 if (sect)
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
340 if (sect)
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
344 if (sect)
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
348 if (sect)
349 objfile->sect_index_rodata = sect->index;
350
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
386 }
387
388 /* The arguments to place_section. */
389
390 struct place_section_arg
391 {
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394 };
395
396 /* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
399 static void
400 place_section (bfd *abfd, asection *sect, void *obj)
401 {
402 struct place_section_arg *arg = (struct place_section_arg *) obj;
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
406
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
409 return;
410
411 /* If the user specified an offset, honor it. */
412 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
416 start_addr = (arg->lowest + align - 1) & -align;
417
418 do {
419 asection *cur_sec;
420
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
448 break;
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
456 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
457 arg->lowest = start_addr + bfd_get_section_size (sect);
458 }
459
460 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
463
464 void
465 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
467 const struct section_addr_info *addrs)
468 {
469 int i;
470
471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
472
473 /* Now calculate offsets for section that were specified by the caller. */
474 for (i = 0; i < addrs->num_sections; i++)
475 {
476 const struct other_sections *osp;
477
478 osp = &addrs->other[i];
479 if (osp->sectindex == -1)
480 continue;
481
482 /* Record all sections in offsets. */
483 /* The section_offsets in the objfile are here filled in using
484 the BFD index. */
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487 }
488
489 /* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495 static const char *
496 addr_section_name (const char *s)
497 {
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504 }
505
506 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509 static int
510 addrs_section_compar (const void *ap, const void *bp)
511 {
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
514 int retval;
515
516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
517 if (retval)
518 return retval;
519
520 return a->sectindex - b->sectindex;
521 }
522
523 /* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526 static struct other_sections **
527 addrs_section_sort (struct section_addr_info *addrs)
528 {
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
533 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
534 for (i = 0; i < addrs->num_sections; i++)
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541 }
542
543 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
546
547 void
548 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549 {
550 asection *lower_sect;
551 CORE_ADDR lower_offset;
552 int i;
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
557
558 /* Find lowest loadable section to be used as starting point for
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
567 }
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
591
592 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
593 make_cleanup (xfree, addrs_to_abfd_addrs);
594
595 while (*addrs_sorted)
596 {
597 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
598
599 while (*abfd_addrs_sorted
600 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
601 sect_name) < 0)
602 abfd_addrs_sorted++;
603
604 if (*abfd_addrs_sorted
605 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
606 sect_name) == 0)
607 {
608 int index_in_addrs;
609
610 /* Make the found item directly addressable from ADDRS. */
611 index_in_addrs = *addrs_sorted - addrs->other;
612 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
613 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
614
615 /* Never use the same ABFD entry twice. */
616 abfd_addrs_sorted++;
617 }
618
619 addrs_sorted++;
620 }
621
622 /* Calculate offsets for the loadable sections.
623 FIXME! Sections must be in order of increasing loadable section
624 so that contiguous sections can use the lower-offset!!!
625
626 Adjust offsets if the segments are not contiguous.
627 If the section is contiguous, its offset should be set to
628 the offset of the highest loadable section lower than it
629 (the loadable section directly below it in memory).
630 this_offset = lower_offset = lower_addr - lower_orig_addr */
631
632 for (i = 0; i < addrs->num_sections; i++)
633 {
634 struct other_sections *sect = addrs_to_abfd_addrs[i];
635
636 if (sect)
637 {
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->sectindex;
640
641 if (addrs->other[i].addr != 0)
642 {
643 addrs->other[i].addr -= sect->addr;
644 lower_offset = addrs->other[i].addr;
645 }
646 else
647 addrs->other[i].addr = lower_offset;
648 }
649 else
650 {
651 /* addr_section_name transformation is not used for SECT_NAME. */
652 const char *sect_name = addrs->other[i].name;
653
654 /* This section does not exist in ABFD, which is normally
655 unexpected and we want to issue a warning.
656
657 However, the ELF prelinker does create a few sections which are
658 marked in the main executable as loadable (they are loaded in
659 memory from the DYNAMIC segment) and yet are not present in
660 separate debug info files. This is fine, and should not cause
661 a warning. Shared libraries contain just the section
662 ".gnu.liblist" but it is not marked as loadable there. There is
663 no other way to identify them than by their name as the sections
664 created by prelink have no special flags.
665
666 For the sections `.bss' and `.sbss' see addr_section_name. */
667
668 if (!(strcmp (sect_name, ".gnu.liblist") == 0
669 || strcmp (sect_name, ".gnu.conflict") == 0
670 || (strcmp (sect_name, ".bss") == 0
671 && i > 0
672 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
673 && addrs_to_abfd_addrs[i - 1] != NULL)
674 || (strcmp (sect_name, ".sbss") == 0
675 && i > 0
676 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
677 && addrs_to_abfd_addrs[i - 1] != NULL)))
678 warning (_("section %s not found in %s"), sect_name,
679 bfd_get_filename (abfd));
680
681 addrs->other[i].addr = 0;
682 addrs->other[i].sectindex = -1;
683 }
684 }
685
686 do_cleanups (my_cleanup);
687 }
688
689 /* Parse the user's idea of an offset for dynamic linking, into our idea
690 of how to represent it for fast symbol reading. This is the default
691 version of the sym_fns.sym_offsets function for symbol readers that
692 don't need to do anything special. It allocates a section_offsets table
693 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
694
695 void
696 default_symfile_offsets (struct objfile *objfile,
697 const struct section_addr_info *addrs)
698 {
699 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
700 objfile->section_offsets = (struct section_offsets *)
701 obstack_alloc (&objfile->objfile_obstack,
702 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
703 relative_addr_info_to_section_offsets (objfile->section_offsets,
704 objfile->num_sections, addrs);
705
706 /* For relocatable files, all loadable sections will start at zero.
707 The zero is meaningless, so try to pick arbitrary addresses such
708 that no loadable sections overlap. This algorithm is quadratic,
709 but the number of sections in a single object file is generally
710 small. */
711 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
712 {
713 struct place_section_arg arg;
714 bfd *abfd = objfile->obfd;
715 asection *cur_sec;
716
717 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
718 /* We do not expect this to happen; just skip this step if the
719 relocatable file has a section with an assigned VMA. */
720 if (bfd_section_vma (abfd, cur_sec) != 0)
721 break;
722
723 if (cur_sec == NULL)
724 {
725 CORE_ADDR *offsets = objfile->section_offsets->offsets;
726
727 /* Pick non-overlapping offsets for sections the user did not
728 place explicitly. */
729 arg.offsets = objfile->section_offsets;
730 arg.lowest = 0;
731 bfd_map_over_sections (objfile->obfd, place_section, &arg);
732
733 /* Correctly filling in the section offsets is not quite
734 enough. Relocatable files have two properties that
735 (most) shared objects do not:
736
737 - Their debug information will contain relocations. Some
738 shared libraries do also, but many do not, so this can not
739 be assumed.
740
741 - If there are multiple code sections they will be loaded
742 at different relative addresses in memory than they are
743 in the objfile, since all sections in the file will start
744 at address zero.
745
746 Because GDB has very limited ability to map from an
747 address in debug info to the correct code section,
748 it relies on adding SECT_OFF_TEXT to things which might be
749 code. If we clear all the section offsets, and set the
750 section VMAs instead, then symfile_relocate_debug_section
751 will return meaningful debug information pointing at the
752 correct sections.
753
754 GDB has too many different data structures for section
755 addresses - a bfd, objfile, and so_list all have section
756 tables, as does exec_ops. Some of these could probably
757 be eliminated. */
758
759 for (cur_sec = abfd->sections; cur_sec != NULL;
760 cur_sec = cur_sec->next)
761 {
762 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
763 continue;
764
765 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
766 exec_set_section_address (bfd_get_filename (abfd),
767 cur_sec->index,
768 offsets[cur_sec->index]);
769 offsets[cur_sec->index] = 0;
770 }
771 }
772 }
773
774 /* Remember the bfd indexes for the .text, .data, .bss and
775 .rodata sections. */
776 init_objfile_sect_indices (objfile);
777 }
778
779 /* Divide the file into segments, which are individual relocatable units.
780 This is the default version of the sym_fns.sym_segments function for
781 symbol readers that do not have an explicit representation of segments.
782 It assumes that object files do not have segments, and fully linked
783 files have a single segment. */
784
785 struct symfile_segment_data *
786 default_symfile_segments (bfd *abfd)
787 {
788 int num_sections, i;
789 asection *sect;
790 struct symfile_segment_data *data;
791 CORE_ADDR low, high;
792
793 /* Relocatable files contain enough information to position each
794 loadable section independently; they should not be relocated
795 in segments. */
796 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
797 return NULL;
798
799 /* Make sure there is at least one loadable section in the file. */
800 for (sect = abfd->sections; sect != NULL; sect = sect->next)
801 {
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 break;
806 }
807 if (sect == NULL)
808 return NULL;
809
810 low = bfd_get_section_vma (abfd, sect);
811 high = low + bfd_get_section_size (sect);
812
813 data = XCNEW (struct symfile_segment_data);
814 data->num_segments = 1;
815 data->segment_bases = XCNEW (CORE_ADDR);
816 data->segment_sizes = XCNEW (CORE_ADDR);
817
818 num_sections = bfd_count_sections (abfd);
819 data->segment_info = XCNEWVEC (int, num_sections);
820
821 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
822 {
823 CORE_ADDR vma;
824
825 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
826 continue;
827
828 vma = bfd_get_section_vma (abfd, sect);
829 if (vma < low)
830 low = vma;
831 if (vma + bfd_get_section_size (sect) > high)
832 high = vma + bfd_get_section_size (sect);
833
834 data->segment_info[i] = 1;
835 }
836
837 data->segment_bases[0] = low;
838 data->segment_sizes[0] = high - low;
839
840 return data;
841 }
842
843 /* This is a convenience function to call sym_read for OBJFILE and
844 possibly force the partial symbols to be read. */
845
846 static void
847 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
848 {
849 (*objfile->sf->sym_read) (objfile, add_flags);
850 objfile->per_bfd->minsyms_read = true;
851
852 /* find_separate_debug_file_in_section should be called only if there is
853 single binary with no existing separate debug info file. */
854 if (!objfile_has_partial_symbols (objfile)
855 && objfile->separate_debug_objfile == NULL
856 && objfile->separate_debug_objfile_backlink == NULL)
857 {
858 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
859
860 if (abfd != NULL)
861 {
862 /* find_separate_debug_file_in_section uses the same filename for the
863 virtual section-as-bfd like the bfd filename containing the
864 section. Therefore use also non-canonical name form for the same
865 file containing the section. */
866 symbol_file_add_separate (abfd.get (), objfile->original_name,
867 add_flags, objfile);
868 }
869 }
870 if ((add_flags & SYMFILE_NO_READ) == 0)
871 require_partial_symbols (objfile, 0);
872 }
873
874 /* Initialize entry point information for this objfile. */
875
876 static void
877 init_entry_point_info (struct objfile *objfile)
878 {
879 struct entry_info *ei = &objfile->per_bfd->ei;
880
881 if (ei->initialized)
882 return;
883 ei->initialized = 1;
884
885 /* Save startup file's range of PC addresses to help blockframe.c
886 decide where the bottom of the stack is. */
887
888 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
889 {
890 /* Executable file -- record its entry point so we'll recognize
891 the startup file because it contains the entry point. */
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
894 }
895 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
896 && bfd_get_start_address (objfile->obfd) != 0)
897 {
898 /* Some shared libraries may have entry points set and be
899 runnable. There's no clear way to indicate this, so just check
900 for values other than zero. */
901 ei->entry_point = bfd_get_start_address (objfile->obfd);
902 ei->entry_point_p = 1;
903 }
904 else
905 {
906 /* Examination of non-executable.o files. Short-circuit this stuff. */
907 ei->entry_point_p = 0;
908 }
909
910 if (ei->entry_point_p)
911 {
912 struct obj_section *osect;
913 CORE_ADDR entry_point = ei->entry_point;
914 int found;
915
916 /* Make certain that the address points at real code, and not a
917 function descriptor. */
918 entry_point
919 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
920 entry_point,
921 &current_target);
922
923 /* Remove any ISA markers, so that this matches entries in the
924 symbol table. */
925 ei->entry_point
926 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
927
928 found = 0;
929 ALL_OBJFILE_OSECTIONS (objfile, osect)
930 {
931 struct bfd_section *sect = osect->the_bfd_section;
932
933 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
934 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
935 + bfd_get_section_size (sect)))
936 {
937 ei->the_bfd_section_index
938 = gdb_bfd_section_index (objfile->obfd, sect);
939 found = 1;
940 break;
941 }
942 }
943
944 if (!found)
945 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
946 }
947 }
948
949 /* Process a symbol file, as either the main file or as a dynamically
950 loaded file.
951
952 This function does not set the OBJFILE's entry-point info.
953
954 OBJFILE is where the symbols are to be read from.
955
956 ADDRS is the list of section load addresses. If the user has given
957 an 'add-symbol-file' command, then this is the list of offsets and
958 addresses he or she provided as arguments to the command; or, if
959 we're handling a shared library, these are the actual addresses the
960 sections are loaded at, according to the inferior's dynamic linker
961 (as gleaned by GDB's shared library code). We convert each address
962 into an offset from the section VMA's as it appears in the object
963 file, and then call the file's sym_offsets function to convert this
964 into a format-specific offset table --- a `struct section_offsets'.
965
966 ADD_FLAGS encodes verbosity level, whether this is main symbol or
967 an extra symbol file such as dynamically loaded code, and wether
968 breakpoint reset should be deferred. */
969
970 static void
971 syms_from_objfile_1 (struct objfile *objfile,
972 struct section_addr_info *addrs,
973 symfile_add_flags add_flags)
974 {
975 struct section_addr_info *local_addr = NULL;
976 struct cleanup *old_chain;
977 const int mainline = add_flags & SYMFILE_MAINLINE;
978
979 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
980
981 if (objfile->sf == NULL)
982 {
983 /* No symbols to load, but we still need to make sure
984 that the section_offsets table is allocated. */
985 int num_sections = gdb_bfd_count_sections (objfile->obfd);
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
987
988 objfile->num_sections = num_sections;
989 objfile->section_offsets
990 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
991 size);
992 memset (objfile->section_offsets, 0, size);
993 return;
994 }
995
996 /* Make sure that partially constructed symbol tables will be cleaned up
997 if an error occurs during symbol reading. */
998 old_chain = make_cleanup_free_objfile (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 free_objfile (symfile_objfile);
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 discard_cleanups (old_chain);
1055 xfree (local_addr);
1056 }
1057
1058 /* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
1061 static void
1062 syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
1064 symfile_add_flags add_flags)
1065 {
1066 syms_from_objfile_1 (objfile, addrs, add_flags);
1067 init_entry_point_info (objfile);
1068 }
1069
1070 /* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1073
1074 static void
1075 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1076 {
1077 /* If this is the main symbol file we have to clean up all users of the
1078 old main symbol file. Otherwise it is sufficient to fixup all the
1079 breakpoints that may have been redefined by this symbol file. */
1080 if (add_flags & SYMFILE_MAINLINE)
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
1085 clear_symtab_users (add_flags);
1086 }
1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1088 {
1089 breakpoint_re_set ();
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1094 }
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1100 A new reference is acquired by this function.
1101
1102 For NAME description see allocate_objfile's definition.
1103
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
1106
1107 ADDRS is as described for syms_from_objfile_1, above.
1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1109
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
1113 Upon success, returns a pointer to the objfile that was added.
1114 Upon failure, jumps back to command level (never returns). */
1115
1116 static struct objfile *
1117 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
1119 struct section_addr_info *addrs,
1120 objfile_flags flags, struct objfile *parent)
1121 {
1122 struct objfile *objfile;
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = allocate_objfile (abfd, name, flags);
1147
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
1153 performed, or need to read an unmapped symbol table. */
1154 if (should_print)
1155 {
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
1158 else
1159 {
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164 }
1165 syms_from_objfile (objfile, addrs, add_flags);
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
1170 all partial symbol tables for this objfile if so. */
1171
1172 if ((flags & OBJF_READNOW))
1173 {
1174 if (should_print)
1175 {
1176 printf_unfiltered (_("expanding to full symbols..."));
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
1183 }
1184
1185 if (should_print && !objfile_has_symbols (objfile))
1186 {
1187 wrap_here ("");
1188 printf_unfiltered (_("(no debugging symbols found)..."));
1189 wrap_here ("");
1190 }
1191
1192 if (should_print)
1193 {
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
1196 else
1197 printf_unfiltered (_("done.\n"));
1198 }
1199
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
1205 if (objfile->sf == NULL)
1206 {
1207 observer_notify_new_objfile (objfile);
1208 return objfile; /* No symbols. */
1209 }
1210
1211 finish_new_objfile (objfile, add_flags);
1212
1213 observer_notify_new_objfile (objfile);
1214
1215 bfd_cache_close_all ();
1216 return (objfile);
1217 }
1218
1219 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see allocate_objfile's definition. */
1221
1222 void
1223 symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
1225 struct objfile *objfile)
1226 {
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
1235
1236 symbol_file_add_with_addrs
1237 (bfd, name, symfile_flags, sap,
1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1239 | OBJF_USERLOADED),
1240 objfile);
1241
1242 do_cleanups (my_cleanup);
1243 }
1244
1245 /* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
1247 See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
1252 struct section_addr_info *addrs,
1253 objfile_flags flags, struct objfile *parent)
1254 {
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
1257 }
1258
1259 /* Process a symbol file, as either the main file or as a dynamically
1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
1261
1262 struct objfile *
1263 symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
1265 {
1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1267
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
1270 }
1271
1272 /* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
1279
1280 void
1281 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1282 {
1283 symbol_file_add_main_1 (args, add_flags, 0);
1284 }
1285
1286 static void
1287 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
1289 {
1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1291
1292 symbol_file_add (args, add_flags, NULL, flags);
1293
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
1298 if ((add_flags & SYMFILE_NO_READ) == 0)
1299 set_initial_language ();
1300 }
1301
1302 void
1303 symbol_file_clear (int from_tty)
1304 {
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
1309 objfile_name (symfile_objfile))
1310 : !query (_("Discard symbol table? "))))
1311 error (_("Not confirmed."));
1312
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
1315 no_shared_libraries (NULL, from_tty);
1316
1317 free_all_objfiles ();
1318
1319 gdb_assert (symfile_objfile == NULL);
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1322 }
1323
1324 /* See symfile.h. */
1325
1326 int separate_debug_file_debug = 0;
1327
1328 static int
1329 separate_debug_file_exists (const char *name, unsigned long crc,
1330 struct objfile *parent_objfile)
1331 {
1332 unsigned long file_crc;
1333 int file_crc_p;
1334 struct stat parent_stat, abfd_stat;
1335 int verified_as_different;
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1341 the separate debug infos with the same basename can exist. */
1342
1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1344 return 0;
1345
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1350
1351 if (abfd == NULL)
1352 return 0;
1353
1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
1364
1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1368 {
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
1371 return 0;
1372 verified_as_different = 1;
1373 }
1374 else
1375 verified_as_different = 0;
1376
1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1378
1379 if (!file_crc_p)
1380 return 0;
1381
1382 if (crc != file_crc)
1383 {
1384 unsigned long parent_crc;
1385
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
1389
1390 if (!verified_as_different)
1391 {
1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1393 return 0;
1394 }
1395
1396 if (verified_as_different || parent_crc != file_crc)
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
1399 name, objfile_name (parent_objfile));
1400
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 char *debug_file_directory = NULL;
1408 static void
1409 show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411 {
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
1415 value);
1416 }
1417
1418 #if ! defined (DEBUG_SUBDIRECTORY)
1419 #define DEBUG_SUBDIRECTORY ".debug"
1420 #endif
1421
1422 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1428
1429 static char *
1430 find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
1434 {
1435 char *debugdir;
1436 char *debugfile;
1437 int i;
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
1441
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1447 i = strlen (dir);
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1450
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1464 return debugfile;
1465
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* Then try in the global debugfile directories.
1476
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
1479
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1482
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, debuglink);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
1513 }
1514 }
1515
1516 do_cleanups (back_to);
1517 xfree (debugfile);
1518 return NULL;
1519 }
1520
1521 /* Modify PATH to contain only "[/]directory/" part of PATH.
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525 static void
1526 terminate_after_last_dir_separator (char *path)
1527 {
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538 }
1539
1540 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543 char *
1544 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 {
1546 char *debuglink;
1547 char *dir, *canon_dir;
1548 char *debugfile;
1549 unsigned long crc32;
1550 struct cleanup *cleanups;
1551
1552 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
1561 cleanups = make_cleanup (xfree, debuglink);
1562 dir = xstrdup (objfile_name (objfile));
1563 make_cleanup (xfree, dir);
1564 terminate_after_last_dir_separator (dir);
1565 canon_dir = lrealpath (dir);
1566
1567 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1568 crc32, objfile);
1569 xfree (canon_dir);
1570
1571 if (debugfile == NULL)
1572 {
1573 /* For PR gdb/9538, try again with realpath (if different from the
1574 original). */
1575
1576 struct stat st_buf;
1577
1578 if (lstat (objfile_name (objfile), &st_buf) == 0
1579 && S_ISLNK (st_buf.st_mode))
1580 {
1581 char *symlink_dir;
1582
1583 symlink_dir = lrealpath (objfile_name (objfile));
1584 if (symlink_dir != NULL)
1585 {
1586 make_cleanup (xfree, symlink_dir);
1587 terminate_after_last_dir_separator (symlink_dir);
1588 if (strcmp (dir, symlink_dir) != 0)
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir,
1592 symlink_dir,
1593 debuglink,
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1599 }
1600
1601 do_cleanups (cleanups);
1602 return debugfile;
1603 }
1604
1605 /* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
1617 conventions (because it is confusing and inconvenient). */
1618
1619 void
1620 symbol_file_command (const char *args, int from_tty)
1621 {
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1626 symbol_file_clear (from_tty);
1627 }
1628 else
1629 {
1630 objfile_flags flags = OBJF_USERLOADED;
1631 symfile_add_flags add_flags = 0;
1632 struct cleanup *cleanups;
1633 char *name = NULL;
1634
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
1638 gdb_argv built_argv (args);
1639 for (char *arg : built_argv)
1640 {
1641 if (strcmp (arg, "-readnow") == 0)
1642 flags |= OBJF_READNOW;
1643 else if (*arg == '-')
1644 error (_("unknown option `%s'"), arg);
1645 else
1646 {
1647 symbol_file_add_main_1 (arg, add_flags, flags);
1648 name = arg;
1649 }
1650 }
1651
1652 if (name == NULL)
1653 error (_("no symbol file name was specified"));
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = main_language ();
1672
1673 if (lang == language_unknown)
1674 {
1675 char *name = main_name ();
1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1677
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
1680 }
1681
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1702
1703 if (!is_target_filename (name))
1704 {
1705 char *absolute_name;
1706
1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1708
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1713 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1714 if (desc < 0)
1715 {
1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1717
1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
1723 #endif
1724 if (desc < 0)
1725 perror_with_name (expanded_name.get ());
1726
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
1730
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
1738
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742
1743 do_cleanups (back_to);
1744
1745 return sym_bfd;
1746 }
1747
1748 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
1751 int
1752 get_section_index (struct objfile *objfile, const char *section_name)
1753 {
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1755
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760 }
1761
1762 /* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
1767
1768 void
1769 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1770 {
1771 registered_sym_fns fns = { flavour, sf };
1772
1773 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1774 }
1775
1776 /* Initialize OBJFILE to read symbols from its associated BFD. It
1777 either returns or calls error(). The result is an initialized
1778 struct sym_fns in the objfile structure, that contains cached
1779 information about the symbol file. */
1780
1781 static const struct sym_fns *
1782 find_sym_fns (bfd *abfd)
1783 {
1784 registered_sym_fns *rsf;
1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1786 int i;
1787
1788 if (our_flavour == bfd_target_srec_flavour
1789 || our_flavour == bfd_target_ihex_flavour
1790 || our_flavour == bfd_target_tekhex_flavour)
1791 return NULL; /* No symbols. */
1792
1793 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1794 if (our_flavour == rsf->sym_flavour)
1795 return rsf->sym_fns;
1796
1797 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1798 bfd_get_target (abfd));
1799 }
1800 \f
1801
1802 /* This function runs the load command of our current target. */
1803
1804 static void
1805 load_command (char *arg, int from_tty)
1806 {
1807 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1808
1809 dont_repeat ();
1810
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
1816 if (arg == NULL)
1817 {
1818 char *parg;
1819 int count = 0;
1820
1821 parg = arg = get_exec_file (1);
1822
1823 /* Count how many \ " ' tab space there are in the name. */
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 parg++;
1827 count++;
1828 }
1829
1830 if (count)
1831 {
1832 /* We need to quote this string so buildargv can pull it apart. */
1833 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1834 char *ptemp = temp;
1835 char *prev;
1836
1837 make_cleanup (xfree, temp);
1838
1839 prev = parg = arg;
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 strncpy (ptemp, prev, parg - prev);
1843 ptemp += parg - prev;
1844 prev = parg++;
1845 *ptemp++ = '\\';
1846 }
1847 strcpy (ptemp, prev);
1848
1849 arg = temp;
1850 }
1851 }
1852
1853 target_load (arg, from_tty);
1854
1855 /* After re-loading the executable, we don't really know which
1856 overlays are mapped any more. */
1857 overlay_cache_invalid = 1;
1858
1859 do_cleanups (cleanup);
1860 }
1861
1862 /* This version of "load" should be usable for any target. Currently
1863 it is just used for remote targets, not inftarg.c or core files,
1864 on the theory that only in that case is it useful.
1865
1866 Avoiding xmodem and the like seems like a win (a) because we don't have
1867 to worry about finding it, and (b) On VMS, fork() is very slow and so
1868 we don't want to run a subprocess. On the other hand, I'm not sure how
1869 performance compares. */
1870
1871 static int validate_download = 0;
1872
1873 /* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875 static void
1876 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1877 {
1878 bfd_size_type *sum = (bfd_size_type *) data;
1879
1880 *sum += bfd_get_section_size (asec);
1881 }
1882
1883 /* Opaque data for load_section_callback. */
1884 struct load_section_data {
1885 CORE_ADDR load_offset;
1886 struct load_progress_data *progress_data;
1887 VEC(memory_write_request_s) *requests;
1888 };
1889
1890 /* Opaque data for load_progress. */
1891 struct load_progress_data {
1892 /* Cumulative data. */
1893 unsigned long write_count;
1894 unsigned long data_count;
1895 bfd_size_type total_size;
1896 };
1897
1898 /* Opaque data for load_progress for a single section. */
1899 struct load_progress_section_data {
1900 struct load_progress_data *cumulative;
1901
1902 /* Per-section data. */
1903 const char *section_name;
1904 ULONGEST section_sent;
1905 ULONGEST section_size;
1906 CORE_ADDR lma;
1907 gdb_byte *buffer;
1908 };
1909
1910 /* Target write callback routine for progress reporting. */
1911
1912 static void
1913 load_progress (ULONGEST bytes, void *untyped_arg)
1914 {
1915 struct load_progress_section_data *args
1916 = (struct load_progress_section_data *) untyped_arg;
1917 struct load_progress_data *totals;
1918
1919 if (args == NULL)
1920 /* Writing padding data. No easy way to get at the cumulative
1921 stats, so just ignore this. */
1922 return;
1923
1924 totals = args->cumulative;
1925
1926 if (bytes == 0 && args->section_sent == 0)
1927 {
1928 /* The write is just starting. Let the user know we've started
1929 this section. */
1930 current_uiout->message ("Loading section %s, size %s lma %s\n",
1931 args->section_name,
1932 hex_string (args->section_size),
1933 paddress (target_gdbarch (), args->lma));
1934 return;
1935 }
1936
1937 if (validate_download)
1938 {
1939 /* Broken memories and broken monitors manifest themselves here
1940 when bring new computers to life. This doubles already slow
1941 downloads. */
1942 /* NOTE: cagney/1999-10-18: A more efficient implementation
1943 might add a verify_memory() method to the target vector and
1944 then use that. remote.c could implement that method using
1945 the ``qCRC'' packet. */
1946 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1947 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1948
1949 if (target_read_memory (args->lma, check, bytes) != 0)
1950 error (_("Download verify read failed at %s"),
1951 paddress (target_gdbarch (), args->lma));
1952 if (memcmp (args->buffer, check, bytes) != 0)
1953 error (_("Download verify compare failed at %s"),
1954 paddress (target_gdbarch (), args->lma));
1955 do_cleanups (verify_cleanups);
1956 }
1957 totals->data_count += bytes;
1958 args->lma += bytes;
1959 args->buffer += bytes;
1960 totals->write_count += 1;
1961 args->section_sent += bytes;
1962 if (check_quit_flag ()
1963 || (deprecated_ui_load_progress_hook != NULL
1964 && deprecated_ui_load_progress_hook (args->section_name,
1965 args->section_sent)))
1966 error (_("Canceled the download"));
1967
1968 if (deprecated_show_load_progress != NULL)
1969 deprecated_show_load_progress (args->section_name,
1970 args->section_sent,
1971 args->section_size,
1972 totals->data_count,
1973 totals->total_size);
1974 }
1975
1976 /* Callback service function for generic_load (bfd_map_over_sections). */
1977
1978 static void
1979 load_section_callback (bfd *abfd, asection *asec, void *data)
1980 {
1981 struct memory_write_request *new_request;
1982 struct load_section_data *args = (struct load_section_data *) data;
1983 struct load_progress_section_data *section_data;
1984 bfd_size_type size = bfd_get_section_size (asec);
1985 gdb_byte *buffer;
1986 const char *sect_name = bfd_get_section_name (abfd, asec);
1987
1988 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1989 return;
1990
1991 if (size == 0)
1992 return;
1993
1994 new_request = VEC_safe_push (memory_write_request_s,
1995 args->requests, NULL);
1996 memset (new_request, 0, sizeof (struct memory_write_request));
1997 section_data = XCNEW (struct load_progress_section_data);
1998 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1999 new_request->end = new_request->begin + size; /* FIXME Should size
2000 be in instead? */
2001 new_request->data = (gdb_byte *) xmalloc (size);
2002 new_request->baton = section_data;
2003
2004 buffer = new_request->data;
2005
2006 section_data->cumulative = args->progress_data;
2007 section_data->section_name = sect_name;
2008 section_data->section_size = size;
2009 section_data->lma = new_request->begin;
2010 section_data->buffer = buffer;
2011
2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2013 }
2014
2015 /* Clean up an entire memory request vector, including load
2016 data and progress records. */
2017
2018 static void
2019 clear_memory_write_data (void *arg)
2020 {
2021 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2022 VEC(memory_write_request_s) *vec = *vec_p;
2023 int i;
2024 struct memory_write_request *mr;
2025
2026 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2027 {
2028 xfree (mr->data);
2029 xfree (mr->baton);
2030 }
2031 VEC_free (memory_write_request_s, vec);
2032 }
2033
2034 static void print_transfer_performance (struct ui_file *stream,
2035 unsigned long data_count,
2036 unsigned long write_count,
2037 std::chrono::steady_clock::duration d);
2038
2039 void
2040 generic_load (const char *args, int from_tty)
2041 {
2042 struct cleanup *old_cleanups;
2043 struct load_section_data cbdata;
2044 struct load_progress_data total_progress;
2045 struct ui_out *uiout = current_uiout;
2046
2047 CORE_ADDR entry;
2048
2049 memset (&cbdata, 0, sizeof (cbdata));
2050 memset (&total_progress, 0, sizeof (total_progress));
2051 cbdata.progress_data = &total_progress;
2052
2053 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2054
2055 if (args == NULL)
2056 error_no_arg (_("file to load"));
2057
2058 gdb_argv argv (args);
2059
2060 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2061
2062 if (argv[1] != NULL)
2063 {
2064 const char *endptr;
2065
2066 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2067
2068 /* If the last word was not a valid number then
2069 treat it as a file name with spaces in. */
2070 if (argv[1] == endptr)
2071 error (_("Invalid download offset:%s."), argv[1]);
2072
2073 if (argv[2] != NULL)
2074 error (_("Too many parameters."));
2075 }
2076
2077 /* Open the file for loading. */
2078 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2079 if (loadfile_bfd == NULL)
2080 perror_with_name (filename.get ());
2081
2082 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2083 {
2084 error (_("\"%s\" is not an object file: %s"), filename.get (),
2085 bfd_errmsg (bfd_get_error ()));
2086 }
2087
2088 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2089 (void *) &total_progress.total_size);
2090
2091 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2092
2093 using namespace std::chrono;
2094
2095 steady_clock::time_point start_time = steady_clock::now ();
2096
2097 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2098 load_progress) != 0)
2099 error (_("Load failed"));
2100
2101 steady_clock::time_point end_time = steady_clock::now ();
2102
2103 entry = bfd_get_start_address (loadfile_bfd.get ());
2104 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2105 uiout->text ("Start address ");
2106 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2107 uiout->text (", load size ");
2108 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2109 uiout->text ("\n");
2110 regcache_write_pc (get_current_regcache (), entry);
2111
2112 /* Reset breakpoints, now that we have changed the load image. For
2113 instance, breakpoints may have been set (or reset, by
2114 post_create_inferior) while connected to the target but before we
2115 loaded the program. In that case, the prologue analyzer could
2116 have read instructions from the target to find the right
2117 breakpoint locations. Loading has changed the contents of that
2118 memory. */
2119
2120 breakpoint_re_set ();
2121
2122 print_transfer_performance (gdb_stdout, total_progress.data_count,
2123 total_progress.write_count,
2124 end_time - start_time);
2125
2126 do_cleanups (old_cleanups);
2127 }
2128
2129 /* Report on STREAM the performance of a memory transfer operation,
2130 such as 'load'. DATA_COUNT is the number of bytes transferred.
2131 WRITE_COUNT is the number of separate write operations, or 0, if
2132 that information is not available. TIME is how long the operation
2133 lasted. */
2134
2135 static void
2136 print_transfer_performance (struct ui_file *stream,
2137 unsigned long data_count,
2138 unsigned long write_count,
2139 std::chrono::steady_clock::duration time)
2140 {
2141 using namespace std::chrono;
2142 struct ui_out *uiout = current_uiout;
2143
2144 milliseconds ms = duration_cast<milliseconds> (time);
2145
2146 uiout->text ("Transfer rate: ");
2147 if (ms.count () > 0)
2148 {
2149 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2150
2151 if (uiout->is_mi_like_p ())
2152 {
2153 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2154 uiout->text (" bits/sec");
2155 }
2156 else if (rate < 1024)
2157 {
2158 uiout->field_fmt ("transfer-rate", "%lu", rate);
2159 uiout->text (" bytes/sec");
2160 }
2161 else
2162 {
2163 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2164 uiout->text (" KB/sec");
2165 }
2166 }
2167 else
2168 {
2169 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2170 uiout->text (" bits in <1 sec");
2171 }
2172 if (write_count > 0)
2173 {
2174 uiout->text (", ");
2175 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2176 uiout->text (" bytes/write");
2177 }
2178 uiout->text (".\n");
2179 }
2180
2181 /* This function allows the addition of incrementally linked object files.
2182 It does not modify any state in the target, only in the debugger. */
2183 /* Note: ezannoni 2000-04-13 This function/command used to have a
2184 special case syntax for the rombug target (Rombug is the boot
2185 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2186 rombug case, the user doesn't need to supply a text address,
2187 instead a call to target_link() (in target.c) would supply the
2188 value to use. We are now discontinuing this type of ad hoc syntax. */
2189
2190 static void
2191 add_symbol_file_command (const char *args, int from_tty)
2192 {
2193 struct gdbarch *gdbarch = get_current_arch ();
2194 gdb::unique_xmalloc_ptr<char> filename;
2195 char *arg;
2196 int argcnt = 0;
2197 int sec_num = 0;
2198 int expecting_sec_name = 0;
2199 int expecting_sec_addr = 0;
2200 struct objfile *objf;
2201 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2202 symfile_add_flags add_flags = 0;
2203
2204 if (from_tty)
2205 add_flags |= SYMFILE_VERBOSE;
2206
2207 struct sect_opt
2208 {
2209 const char *name;
2210 const char *value;
2211 };
2212
2213 struct section_addr_info *section_addrs;
2214 std::vector<sect_opt> sect_opts;
2215 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2216
2217 dont_repeat ();
2218
2219 if (args == NULL)
2220 error (_("add-symbol-file takes a file name and an address"));
2221
2222 gdb_argv argv (args);
2223
2224 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2225 {
2226 /* Process the argument. */
2227 if (argcnt == 0)
2228 {
2229 /* The first argument is the file name. */
2230 filename.reset (tilde_expand (arg));
2231 }
2232 else if (argcnt == 1)
2233 {
2234 /* The second argument is always the text address at which
2235 to load the program. */
2236 sect_opt sect = { ".text", arg };
2237 sect_opts.push_back (sect);
2238 }
2239 else
2240 {
2241 /* It's an option (starting with '-') or it's an argument
2242 to an option. */
2243 if (expecting_sec_name)
2244 {
2245 sect_opt sect = { arg, NULL };
2246 sect_opts.push_back (sect);
2247 expecting_sec_name = 0;
2248 }
2249 else if (expecting_sec_addr)
2250 {
2251 sect_opts.back ().value = arg;
2252 expecting_sec_addr = 0;
2253 }
2254 else if (strcmp (arg, "-readnow") == 0)
2255 flags |= OBJF_READNOW;
2256 else if (strcmp (arg, "-s") == 0)
2257 {
2258 expecting_sec_name = 1;
2259 expecting_sec_addr = 1;
2260 }
2261 else
2262 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2263 " [-readnow] [-s <secname> <addr>]*"));
2264 }
2265 }
2266
2267 /* This command takes at least two arguments. The first one is a
2268 filename, and the second is the address where this file has been
2269 loaded. Abort now if this address hasn't been provided by the
2270 user. */
2271 if (sect_opts.empty ())
2272 error (_("The address where %s has been loaded is missing"),
2273 filename.get ());
2274
2275 /* Print the prompt for the query below. And save the arguments into
2276 a sect_addr_info structure to be passed around to other
2277 functions. We have to split this up into separate print
2278 statements because hex_string returns a local static
2279 string. */
2280
2281 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2282 filename.get ());
2283 section_addrs = alloc_section_addr_info (sect_opts.size ());
2284 make_cleanup (xfree, section_addrs);
2285 for (sect_opt &sect : sect_opts)
2286 {
2287 CORE_ADDR addr;
2288 const char *val = sect.value;
2289 const char *sec = sect.name;
2290
2291 addr = parse_and_eval_address (val);
2292
2293 /* Here we store the section offsets in the order they were
2294 entered on the command line. */
2295 section_addrs->other[sec_num].name = (char *) sec;
2296 section_addrs->other[sec_num].addr = addr;
2297 printf_unfiltered ("\t%s_addr = %s\n", sec,
2298 paddress (gdbarch, addr));
2299 sec_num++;
2300
2301 /* The object's sections are initialized when a
2302 call is made to build_objfile_section_table (objfile).
2303 This happens in reread_symbols.
2304 At this point, we don't know what file type this is,
2305 so we can't determine what section names are valid. */
2306 }
2307 section_addrs->num_sections = sec_num;
2308
2309 if (from_tty && (!query ("%s", "")))
2310 error (_("Not confirmed."));
2311
2312 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2313
2314 add_target_sections_of_objfile (objf);
2315
2316 /* Getting new symbols may change our opinion about what is
2317 frameless. */
2318 reinit_frame_cache ();
2319 do_cleanups (my_cleanups);
2320 }
2321 \f
2322
2323 /* This function removes a symbol file that was added via add-symbol-file. */
2324
2325 static void
2326 remove_symbol_file_command (const char *args, int from_tty)
2327 {
2328 struct objfile *objf = NULL;
2329 struct program_space *pspace = current_program_space;
2330
2331 dont_repeat ();
2332
2333 if (args == NULL)
2334 error (_("remove-symbol-file: no symbol file provided"));
2335
2336 gdb_argv argv (args);
2337
2338 if (strcmp (argv[0], "-a") == 0)
2339 {
2340 /* Interpret the next argument as an address. */
2341 CORE_ADDR addr;
2342
2343 if (argv[1] == NULL)
2344 error (_("Missing address argument"));
2345
2346 if (argv[2] != NULL)
2347 error (_("Junk after %s"), argv[1]);
2348
2349 addr = parse_and_eval_address (argv[1]);
2350
2351 ALL_OBJFILES (objf)
2352 {
2353 if ((objf->flags & OBJF_USERLOADED) != 0
2354 && (objf->flags & OBJF_SHARED) != 0
2355 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2356 break;
2357 }
2358 }
2359 else if (argv[0] != NULL)
2360 {
2361 /* Interpret the current argument as a file name. */
2362
2363 if (argv[1] != NULL)
2364 error (_("Junk after %s"), argv[0]);
2365
2366 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2367
2368 ALL_OBJFILES (objf)
2369 {
2370 if ((objf->flags & OBJF_USERLOADED) != 0
2371 && (objf->flags & OBJF_SHARED) != 0
2372 && objf->pspace == pspace
2373 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2374 break;
2375 }
2376 }
2377
2378 if (objf == NULL)
2379 error (_("No symbol file found"));
2380
2381 if (from_tty
2382 && !query (_("Remove symbol table from file \"%s\"? "),
2383 objfile_name (objf)))
2384 error (_("Not confirmed."));
2385
2386 free_objfile (objf);
2387 clear_symtab_users (0);
2388 }
2389
2390 /* Re-read symbols if a symbol-file has changed. */
2391
2392 void
2393 reread_symbols (void)
2394 {
2395 struct objfile *objfile;
2396 long new_modtime;
2397 struct stat new_statbuf;
2398 int res;
2399 std::vector<struct objfile *> new_objfiles;
2400
2401 /* With the addition of shared libraries, this should be modified,
2402 the load time should be saved in the partial symbol tables, since
2403 different tables may come from different source files. FIXME.
2404 This routine should then walk down each partial symbol table
2405 and see if the symbol table that it originates from has been changed. */
2406
2407 for (objfile = object_files; objfile; objfile = objfile->next)
2408 {
2409 if (objfile->obfd == NULL)
2410 continue;
2411
2412 /* Separate debug objfiles are handled in the main objfile. */
2413 if (objfile->separate_debug_objfile_backlink)
2414 continue;
2415
2416 /* If this object is from an archive (what you usually create with
2417 `ar', often called a `static library' on most systems, though
2418 a `shared library' on AIX is also an archive), then you should
2419 stat on the archive name, not member name. */
2420 if (objfile->obfd->my_archive)
2421 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2422 else
2423 res = stat (objfile_name (objfile), &new_statbuf);
2424 if (res != 0)
2425 {
2426 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2427 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2428 objfile_name (objfile));
2429 continue;
2430 }
2431 new_modtime = new_statbuf.st_mtime;
2432 if (new_modtime != objfile->mtime)
2433 {
2434 struct cleanup *old_cleanups;
2435 struct section_offsets *offsets;
2436 int num_offsets;
2437 char *original_name;
2438
2439 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2440 objfile_name (objfile));
2441
2442 /* There are various functions like symbol_file_add,
2443 symfile_bfd_open, syms_from_objfile, etc., which might
2444 appear to do what we want. But they have various other
2445 effects which we *don't* want. So we just do stuff
2446 ourselves. We don't worry about mapped files (for one thing,
2447 any mapped file will be out of date). */
2448
2449 /* If we get an error, blow away this objfile (not sure if
2450 that is the correct response for things like shared
2451 libraries). */
2452 old_cleanups = make_cleanup_free_objfile (objfile);
2453 /* We need to do this whenever any symbols go away. */
2454 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2455
2456 if (exec_bfd != NULL
2457 && filename_cmp (bfd_get_filename (objfile->obfd),
2458 bfd_get_filename (exec_bfd)) == 0)
2459 {
2460 /* Reload EXEC_BFD without asking anything. */
2461
2462 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2463 }
2464
2465 /* Keep the calls order approx. the same as in free_objfile. */
2466
2467 /* Free the separate debug objfiles. It will be
2468 automatically recreated by sym_read. */
2469 free_objfile_separate_debug (objfile);
2470
2471 /* Remove any references to this objfile in the global
2472 value lists. */
2473 preserve_values (objfile);
2474
2475 /* Nuke all the state that we will re-read. Much of the following
2476 code which sets things to NULL really is necessary to tell
2477 other parts of GDB that there is nothing currently there.
2478
2479 Try to keep the freeing order compatible with free_objfile. */
2480
2481 if (objfile->sf != NULL)
2482 {
2483 (*objfile->sf->sym_finish) (objfile);
2484 }
2485
2486 clear_objfile_data (objfile);
2487
2488 /* Clean up any state BFD has sitting around. */
2489 {
2490 gdb_bfd_ref_ptr obfd (objfile->obfd);
2491 char *obfd_filename;
2492
2493 obfd_filename = bfd_get_filename (objfile->obfd);
2494 /* Open the new BFD before freeing the old one, so that
2495 the filename remains live. */
2496 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2497 objfile->obfd = temp.release ();
2498 if (objfile->obfd == NULL)
2499 error (_("Can't open %s to read symbols."), obfd_filename);
2500 }
2501
2502 original_name = xstrdup (objfile->original_name);
2503 make_cleanup (xfree, original_name);
2504
2505 /* bfd_openr sets cacheable to true, which is what we want. */
2506 if (!bfd_check_format (objfile->obfd, bfd_object))
2507 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2508 bfd_errmsg (bfd_get_error ()));
2509
2510 /* Save the offsets, we will nuke them with the rest of the
2511 objfile_obstack. */
2512 num_offsets = objfile->num_sections;
2513 offsets = ((struct section_offsets *)
2514 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2515 memcpy (offsets, objfile->section_offsets,
2516 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2517
2518 /* FIXME: Do we have to free a whole linked list, or is this
2519 enough? */
2520 if (objfile->global_psymbols.list)
2521 xfree (objfile->global_psymbols.list);
2522 memset (&objfile->global_psymbols, 0,
2523 sizeof (objfile->global_psymbols));
2524 if (objfile->static_psymbols.list)
2525 xfree (objfile->static_psymbols.list);
2526 memset (&objfile->static_psymbols, 0,
2527 sizeof (objfile->static_psymbols));
2528
2529 /* Free the obstacks for non-reusable objfiles. */
2530 psymbol_bcache_free (objfile->psymbol_cache);
2531 objfile->psymbol_cache = psymbol_bcache_init ();
2532
2533 /* NB: after this call to obstack_free, objfiles_changed
2534 will need to be called (see discussion below). */
2535 obstack_free (&objfile->objfile_obstack, 0);
2536 objfile->sections = NULL;
2537 objfile->compunit_symtabs = NULL;
2538 objfile->psymtabs = NULL;
2539 objfile->psymtabs_addrmap = NULL;
2540 objfile->free_psymtabs = NULL;
2541 objfile->template_symbols = NULL;
2542
2543 /* obstack_init also initializes the obstack so it is
2544 empty. We could use obstack_specify_allocation but
2545 gdb_obstack.h specifies the alloc/dealloc functions. */
2546 obstack_init (&objfile->objfile_obstack);
2547
2548 /* set_objfile_per_bfd potentially allocates the per-bfd
2549 data on the objfile's obstack (if sharing data across
2550 multiple users is not possible), so it's important to
2551 do it *after* the obstack has been initialized. */
2552 set_objfile_per_bfd (objfile);
2553
2554 objfile->original_name
2555 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2556 strlen (original_name));
2557
2558 /* Reset the sym_fns pointer. The ELF reader can change it
2559 based on whether .gdb_index is present, and we need it to
2560 start over. PR symtab/15885 */
2561 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2562
2563 build_objfile_section_table (objfile);
2564 terminate_minimal_symbol_table (objfile);
2565
2566 /* We use the same section offsets as from last time. I'm not
2567 sure whether that is always correct for shared libraries. */
2568 objfile->section_offsets = (struct section_offsets *)
2569 obstack_alloc (&objfile->objfile_obstack,
2570 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2571 memcpy (objfile->section_offsets, offsets,
2572 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2573 objfile->num_sections = num_offsets;
2574
2575 /* What the hell is sym_new_init for, anyway? The concept of
2576 distinguishing between the main file and additional files
2577 in this way seems rather dubious. */
2578 if (objfile == symfile_objfile)
2579 {
2580 (*objfile->sf->sym_new_init) (objfile);
2581 }
2582
2583 (*objfile->sf->sym_init) (objfile);
2584 clear_complaints (&symfile_complaints, 1, 1);
2585
2586 objfile->flags &= ~OBJF_PSYMTABS_READ;
2587
2588 /* We are about to read new symbols and potentially also
2589 DWARF information. Some targets may want to pass addresses
2590 read from DWARF DIE's through an adjustment function before
2591 saving them, like MIPS, which may call into
2592 "find_pc_section". When called, that function will make
2593 use of per-objfile program space data.
2594
2595 Since we discarded our section information above, we have
2596 dangling pointers in the per-objfile program space data
2597 structure. Force GDB to update the section mapping
2598 information by letting it know the objfile has changed,
2599 making the dangling pointers point to correct data
2600 again. */
2601
2602 objfiles_changed ();
2603
2604 read_symbols (objfile, 0);
2605
2606 if (!objfile_has_symbols (objfile))
2607 {
2608 wrap_here ("");
2609 printf_unfiltered (_("(no debugging symbols found)\n"));
2610 wrap_here ("");
2611 }
2612
2613 /* We're done reading the symbol file; finish off complaints. */
2614 clear_complaints (&symfile_complaints, 0, 1);
2615
2616 /* Getting new symbols may change our opinion about what is
2617 frameless. */
2618
2619 reinit_frame_cache ();
2620
2621 /* Discard cleanups as symbol reading was successful. */
2622 discard_cleanups (old_cleanups);
2623
2624 /* If the mtime has changed between the time we set new_modtime
2625 and now, we *want* this to be out of date, so don't call stat
2626 again now. */
2627 objfile->mtime = new_modtime;
2628 init_entry_point_info (objfile);
2629
2630 new_objfiles.push_back (objfile);
2631 }
2632 }
2633
2634 if (!new_objfiles.empty ())
2635 {
2636 clear_symtab_users (0);
2637
2638 /* clear_objfile_data for each objfile was called before freeing it and
2639 observer_notify_new_objfile (NULL) has been called by
2640 clear_symtab_users above. Notify the new files now. */
2641 for (auto iter : new_objfiles)
2642 observer_notify_new_objfile (iter);
2643
2644 /* At least one objfile has changed, so we can consider that
2645 the executable we're debugging has changed too. */
2646 observer_notify_executable_changed ();
2647 }
2648 }
2649 \f
2650
2651 typedef struct
2652 {
2653 char *ext;
2654 enum language lang;
2655 } filename_language;
2656
2657 DEF_VEC_O (filename_language);
2658
2659 static VEC (filename_language) *filename_language_table;
2660
2661 /* See symfile.h. */
2662
2663 void
2664 add_filename_language (const char *ext, enum language lang)
2665 {
2666 filename_language entry;
2667
2668 entry.ext = xstrdup (ext);
2669 entry.lang = lang;
2670
2671 VEC_safe_push (filename_language, filename_language_table, &entry);
2672 }
2673
2674 static char *ext_args;
2675 static void
2676 show_ext_args (struct ui_file *file, int from_tty,
2677 struct cmd_list_element *c, const char *value)
2678 {
2679 fprintf_filtered (file,
2680 _("Mapping between filename extension "
2681 "and source language is \"%s\".\n"),
2682 value);
2683 }
2684
2685 static void
2686 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2687 {
2688 int i;
2689 char *cp = ext_args;
2690 enum language lang;
2691 filename_language *entry;
2692
2693 /* First arg is filename extension, starting with '.' */
2694 if (*cp != '.')
2695 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2696
2697 /* Find end of first arg. */
2698 while (*cp && !isspace (*cp))
2699 cp++;
2700
2701 if (*cp == '\0')
2702 error (_("'%s': two arguments required -- "
2703 "filename extension and language"),
2704 ext_args);
2705
2706 /* Null-terminate first arg. */
2707 *cp++ = '\0';
2708
2709 /* Find beginning of second arg, which should be a source language. */
2710 cp = skip_spaces (cp);
2711
2712 if (*cp == '\0')
2713 error (_("'%s': two arguments required -- "
2714 "filename extension and language"),
2715 ext_args);
2716
2717 /* Lookup the language from among those we know. */
2718 lang = language_enum (cp);
2719
2720 /* Now lookup the filename extension: do we already know it? */
2721 for (i = 0;
2722 VEC_iterate (filename_language, filename_language_table, i, entry);
2723 ++i)
2724 {
2725 if (0 == strcmp (ext_args, entry->ext))
2726 break;
2727 }
2728
2729 if (entry == NULL)
2730 {
2731 /* New file extension. */
2732 add_filename_language (ext_args, lang);
2733 }
2734 else
2735 {
2736 /* Redefining a previously known filename extension. */
2737
2738 /* if (from_tty) */
2739 /* query ("Really make files of type %s '%s'?", */
2740 /* ext_args, language_str (lang)); */
2741
2742 xfree (entry->ext);
2743 entry->ext = xstrdup (ext_args);
2744 entry->lang = lang;
2745 }
2746 }
2747
2748 static void
2749 info_ext_lang_command (char *args, int from_tty)
2750 {
2751 int i;
2752 filename_language *entry;
2753
2754 printf_filtered (_("Filename extensions and the languages they represent:"));
2755 printf_filtered ("\n\n");
2756 for (i = 0;
2757 VEC_iterate (filename_language, filename_language_table, i, entry);
2758 ++i)
2759 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2760 }
2761
2762 enum language
2763 deduce_language_from_filename (const char *filename)
2764 {
2765 int i;
2766 const char *cp;
2767
2768 if (filename != NULL)
2769 if ((cp = strrchr (filename, '.')) != NULL)
2770 {
2771 filename_language *entry;
2772
2773 for (i = 0;
2774 VEC_iterate (filename_language, filename_language_table, i, entry);
2775 ++i)
2776 if (strcmp (cp, entry->ext) == 0)
2777 return entry->lang;
2778 }
2779
2780 return language_unknown;
2781 }
2782 \f
2783 /* Allocate and initialize a new symbol table.
2784 CUST is from the result of allocate_compunit_symtab. */
2785
2786 struct symtab *
2787 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2788 {
2789 struct objfile *objfile = cust->objfile;
2790 struct symtab *symtab
2791 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2792
2793 symtab->filename
2794 = (const char *) bcache (filename, strlen (filename) + 1,
2795 objfile->per_bfd->filename_cache);
2796 symtab->fullname = NULL;
2797 symtab->language = deduce_language_from_filename (filename);
2798
2799 /* This can be very verbose with lots of headers.
2800 Only print at higher debug levels. */
2801 if (symtab_create_debug >= 2)
2802 {
2803 /* Be a bit clever with debugging messages, and don't print objfile
2804 every time, only when it changes. */
2805 static char *last_objfile_name = NULL;
2806
2807 if (last_objfile_name == NULL
2808 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2809 {
2810 xfree (last_objfile_name);
2811 last_objfile_name = xstrdup (objfile_name (objfile));
2812 fprintf_unfiltered (gdb_stdlog,
2813 "Creating one or more symtabs for objfile %s ...\n",
2814 last_objfile_name);
2815 }
2816 fprintf_unfiltered (gdb_stdlog,
2817 "Created symtab %s for module %s.\n",
2818 host_address_to_string (symtab), filename);
2819 }
2820
2821 /* Add it to CUST's list of symtabs. */
2822 if (cust->filetabs == NULL)
2823 {
2824 cust->filetabs = symtab;
2825 cust->last_filetab = symtab;
2826 }
2827 else
2828 {
2829 cust->last_filetab->next = symtab;
2830 cust->last_filetab = symtab;
2831 }
2832
2833 /* Backlink to the containing compunit symtab. */
2834 symtab->compunit_symtab = cust;
2835
2836 return symtab;
2837 }
2838
2839 /* Allocate and initialize a new compunit.
2840 NAME is the name of the main source file, if there is one, or some
2841 descriptive text if there are no source files. */
2842
2843 struct compunit_symtab *
2844 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2845 {
2846 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2847 struct compunit_symtab);
2848 const char *saved_name;
2849
2850 cu->objfile = objfile;
2851
2852 /* The name we record here is only for display/debugging purposes.
2853 Just save the basename to avoid path issues (too long for display,
2854 relative vs absolute, etc.). */
2855 saved_name = lbasename (name);
2856 cu->name
2857 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2858 strlen (saved_name));
2859
2860 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2861
2862 if (symtab_create_debug)
2863 {
2864 fprintf_unfiltered (gdb_stdlog,
2865 "Created compunit symtab %s for %s.\n",
2866 host_address_to_string (cu),
2867 cu->name);
2868 }
2869
2870 return cu;
2871 }
2872
2873 /* Hook CU to the objfile it comes from. */
2874
2875 void
2876 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2877 {
2878 cu->next = cu->objfile->compunit_symtabs;
2879 cu->objfile->compunit_symtabs = cu;
2880 }
2881 \f
2882
2883 /* Reset all data structures in gdb which may contain references to
2884 symbol table data. */
2885
2886 void
2887 clear_symtab_users (symfile_add_flags add_flags)
2888 {
2889 /* Someday, we should do better than this, by only blowing away
2890 the things that really need to be blown. */
2891
2892 /* Clear the "current" symtab first, because it is no longer valid.
2893 breakpoint_re_set may try to access the current symtab. */
2894 clear_current_source_symtab_and_line ();
2895
2896 clear_displays ();
2897 clear_last_displayed_sal ();
2898 clear_pc_function_cache ();
2899 observer_notify_new_objfile (NULL);
2900
2901 /* Clear globals which might have pointed into a removed objfile.
2902 FIXME: It's not clear which of these are supposed to persist
2903 between expressions and which ought to be reset each time. */
2904 expression_context_block = NULL;
2905 innermost_block = NULL;
2906
2907 /* Varobj may refer to old symbols, perform a cleanup. */
2908 varobj_invalidate ();
2909
2910 /* Now that the various caches have been cleared, we can re_set
2911 our breakpoints without risking it using stale data. */
2912 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2913 breakpoint_re_set ();
2914 }
2915
2916 static void
2917 clear_symtab_users_cleanup (void *ignore)
2918 {
2919 clear_symtab_users (0);
2920 }
2921 \f
2922 /* OVERLAYS:
2923 The following code implements an abstraction for debugging overlay sections.
2924
2925 The target model is as follows:
2926 1) The gnu linker will permit multiple sections to be mapped into the
2927 same VMA, each with its own unique LMA (or load address).
2928 2) It is assumed that some runtime mechanism exists for mapping the
2929 sections, one by one, from the load address into the VMA address.
2930 3) This code provides a mechanism for gdb to keep track of which
2931 sections should be considered to be mapped from the VMA to the LMA.
2932 This information is used for symbol lookup, and memory read/write.
2933 For instance, if a section has been mapped then its contents
2934 should be read from the VMA, otherwise from the LMA.
2935
2936 Two levels of debugger support for overlays are available. One is
2937 "manual", in which the debugger relies on the user to tell it which
2938 overlays are currently mapped. This level of support is
2939 implemented entirely in the core debugger, and the information about
2940 whether a section is mapped is kept in the objfile->obj_section table.
2941
2942 The second level of support is "automatic", and is only available if
2943 the target-specific code provides functionality to read the target's
2944 overlay mapping table, and translate its contents for the debugger
2945 (by updating the mapped state information in the obj_section tables).
2946
2947 The interface is as follows:
2948 User commands:
2949 overlay map <name> -- tell gdb to consider this section mapped
2950 overlay unmap <name> -- tell gdb to consider this section unmapped
2951 overlay list -- list the sections that GDB thinks are mapped
2952 overlay read-target -- get the target's state of what's mapped
2953 overlay off/manual/auto -- set overlay debugging state
2954 Functional interface:
2955 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2956 section, return that section.
2957 find_pc_overlay(pc): find any overlay section that contains
2958 the pc, either in its VMA or its LMA
2959 section_is_mapped(sect): true if overlay is marked as mapped
2960 section_is_overlay(sect): true if section's VMA != LMA
2961 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2962 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2963 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2964 overlay_mapped_address(...): map an address from section's LMA to VMA
2965 overlay_unmapped_address(...): map an address from section's VMA to LMA
2966 symbol_overlayed_address(...): Return a "current" address for symbol:
2967 either in VMA or LMA depending on whether
2968 the symbol's section is currently mapped. */
2969
2970 /* Overlay debugging state: */
2971
2972 enum overlay_debugging_state overlay_debugging = ovly_off;
2973 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2974
2975 /* Function: section_is_overlay (SECTION)
2976 Returns true if SECTION has VMA not equal to LMA, ie.
2977 SECTION is loaded at an address different from where it will "run". */
2978
2979 int
2980 section_is_overlay (struct obj_section *section)
2981 {
2982 if (overlay_debugging && section)
2983 {
2984 bfd *abfd = section->objfile->obfd;
2985 asection *bfd_section = section->the_bfd_section;
2986
2987 if (bfd_section_lma (abfd, bfd_section) != 0
2988 && bfd_section_lma (abfd, bfd_section)
2989 != bfd_section_vma (abfd, bfd_section))
2990 return 1;
2991 }
2992
2993 return 0;
2994 }
2995
2996 /* Function: overlay_invalidate_all (void)
2997 Invalidate the mapped state of all overlay sections (mark it as stale). */
2998
2999 static void
3000 overlay_invalidate_all (void)
3001 {
3002 struct objfile *objfile;
3003 struct obj_section *sect;
3004
3005 ALL_OBJSECTIONS (objfile, sect)
3006 if (section_is_overlay (sect))
3007 sect->ovly_mapped = -1;
3008 }
3009
3010 /* Function: section_is_mapped (SECTION)
3011 Returns true if section is an overlay, and is currently mapped.
3012
3013 Access to the ovly_mapped flag is restricted to this function, so
3014 that we can do automatic update. If the global flag
3015 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3016 overlay_invalidate_all. If the mapped state of the particular
3017 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3018
3019 int
3020 section_is_mapped (struct obj_section *osect)
3021 {
3022 struct gdbarch *gdbarch;
3023
3024 if (osect == 0 || !section_is_overlay (osect))
3025 return 0;
3026
3027 switch (overlay_debugging)
3028 {
3029 default:
3030 case ovly_off:
3031 return 0; /* overlay debugging off */
3032 case ovly_auto: /* overlay debugging automatic */
3033 /* Unles there is a gdbarch_overlay_update function,
3034 there's really nothing useful to do here (can't really go auto). */
3035 gdbarch = get_objfile_arch (osect->objfile);
3036 if (gdbarch_overlay_update_p (gdbarch))
3037 {
3038 if (overlay_cache_invalid)
3039 {
3040 overlay_invalidate_all ();
3041 overlay_cache_invalid = 0;
3042 }
3043 if (osect->ovly_mapped == -1)
3044 gdbarch_overlay_update (gdbarch, osect);
3045 }
3046 /* fall thru to manual case */
3047 case ovly_on: /* overlay debugging manual */
3048 return osect->ovly_mapped == 1;
3049 }
3050 }
3051
3052 /* Function: pc_in_unmapped_range
3053 If PC falls into the lma range of SECTION, return true, else false. */
3054
3055 CORE_ADDR
3056 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3057 {
3058 if (section_is_overlay (section))
3059 {
3060 bfd *abfd = section->objfile->obfd;
3061 asection *bfd_section = section->the_bfd_section;
3062
3063 /* We assume the LMA is relocated by the same offset as the VMA. */
3064 bfd_vma size = bfd_get_section_size (bfd_section);
3065 CORE_ADDR offset = obj_section_offset (section);
3066
3067 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3068 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3069 return 1;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Function: pc_in_mapped_range
3076 If PC falls into the vma range of SECTION, return true, else false. */
3077
3078 CORE_ADDR
3079 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3080 {
3081 if (section_is_overlay (section))
3082 {
3083 if (obj_section_addr (section) <= pc
3084 && pc < obj_section_endaddr (section))
3085 return 1;
3086 }
3087
3088 return 0;
3089 }
3090
3091 /* Return true if the mapped ranges of sections A and B overlap, false
3092 otherwise. */
3093
3094 static int
3095 sections_overlap (struct obj_section *a, struct obj_section *b)
3096 {
3097 CORE_ADDR a_start = obj_section_addr (a);
3098 CORE_ADDR a_end = obj_section_endaddr (a);
3099 CORE_ADDR b_start = obj_section_addr (b);
3100 CORE_ADDR b_end = obj_section_endaddr (b);
3101
3102 return (a_start < b_end && b_start < a_end);
3103 }
3104
3105 /* Function: overlay_unmapped_address (PC, SECTION)
3106 Returns the address corresponding to PC in the unmapped (load) range.
3107 May be the same as PC. */
3108
3109 CORE_ADDR
3110 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3111 {
3112 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3113 {
3114 bfd *abfd = section->objfile->obfd;
3115 asection *bfd_section = section->the_bfd_section;
3116
3117 return pc + bfd_section_lma (abfd, bfd_section)
3118 - bfd_section_vma (abfd, bfd_section);
3119 }
3120
3121 return pc;
3122 }
3123
3124 /* Function: overlay_mapped_address (PC, SECTION)
3125 Returns the address corresponding to PC in the mapped (runtime) range.
3126 May be the same as PC. */
3127
3128 CORE_ADDR
3129 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3130 {
3131 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3132 {
3133 bfd *abfd = section->objfile->obfd;
3134 asection *bfd_section = section->the_bfd_section;
3135
3136 return pc + bfd_section_vma (abfd, bfd_section)
3137 - bfd_section_lma (abfd, bfd_section);
3138 }
3139
3140 return pc;
3141 }
3142
3143 /* Function: symbol_overlayed_address
3144 Return one of two addresses (relative to the VMA or to the LMA),
3145 depending on whether the section is mapped or not. */
3146
3147 CORE_ADDR
3148 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3149 {
3150 if (overlay_debugging)
3151 {
3152 /* If the symbol has no section, just return its regular address. */
3153 if (section == 0)
3154 return address;
3155 /* If the symbol's section is not an overlay, just return its
3156 address. */
3157 if (!section_is_overlay (section))
3158 return address;
3159 /* If the symbol's section is mapped, just return its address. */
3160 if (section_is_mapped (section))
3161 return address;
3162 /*
3163 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3164 * then return its LOADED address rather than its vma address!!
3165 */
3166 return overlay_unmapped_address (address, section);
3167 }
3168 return address;
3169 }
3170
3171 /* Function: find_pc_overlay (PC)
3172 Return the best-match overlay section for PC:
3173 If PC matches a mapped overlay section's VMA, return that section.
3174 Else if PC matches an unmapped section's VMA, return that section.
3175 Else if PC matches an unmapped section's LMA, return that section. */
3176
3177 struct obj_section *
3178 find_pc_overlay (CORE_ADDR pc)
3179 {
3180 struct objfile *objfile;
3181 struct obj_section *osect, *best_match = NULL;
3182
3183 if (overlay_debugging)
3184 {
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (section_is_overlay (osect))
3187 {
3188 if (pc_in_mapped_range (pc, osect))
3189 {
3190 if (section_is_mapped (osect))
3191 return osect;
3192 else
3193 best_match = osect;
3194 }
3195 else if (pc_in_unmapped_range (pc, osect))
3196 best_match = osect;
3197 }
3198 }
3199 return best_match;
3200 }
3201
3202 /* Function: find_pc_mapped_section (PC)
3203 If PC falls into the VMA address range of an overlay section that is
3204 currently marked as MAPPED, return that section. Else return NULL. */
3205
3206 struct obj_section *
3207 find_pc_mapped_section (CORE_ADDR pc)
3208 {
3209 struct objfile *objfile;
3210 struct obj_section *osect;
3211
3212 if (overlay_debugging)
3213 {
3214 ALL_OBJSECTIONS (objfile, osect)
3215 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3216 return osect;
3217 }
3218
3219 return NULL;
3220 }
3221
3222 /* Function: list_overlays_command
3223 Print a list of mapped sections and their PC ranges. */
3224
3225 static void
3226 list_overlays_command (const char *args, int from_tty)
3227 {
3228 int nmapped = 0;
3229 struct objfile *objfile;
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
3233 {
3234 ALL_OBJSECTIONS (objfile, osect)
3235 if (section_is_mapped (osect))
3236 {
3237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3238 const char *name;
3239 bfd_vma lma, vma;
3240 int size;
3241
3242 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3243 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3244 size = bfd_get_section_size (osect->the_bfd_section);
3245 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3246
3247 printf_filtered ("Section %s, loaded at ", name);
3248 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3249 puts_filtered (" - ");
3250 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3251 printf_filtered (", mapped at ");
3252 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3253 puts_filtered (" - ");
3254 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3255 puts_filtered ("\n");
3256
3257 nmapped++;
3258 }
3259 }
3260 if (nmapped == 0)
3261 printf_filtered (_("No sections are mapped.\n"));
3262 }
3263
3264 /* Function: map_overlay_command
3265 Mark the named section as mapped (ie. residing at its VMA address). */
3266
3267 static void
3268 map_overlay_command (const char *args, int from_tty)
3269 {
3270 struct objfile *objfile, *objfile2;
3271 struct obj_section *sec, *sec2;
3272
3273 if (!overlay_debugging)
3274 error (_("Overlay debugging not enabled. Use "
3275 "either the 'overlay auto' or\n"
3276 "the 'overlay manual' command."));
3277
3278 if (args == 0 || *args == 0)
3279 error (_("Argument required: name of an overlay section"));
3280
3281 /* First, find a section matching the user supplied argument. */
3282 ALL_OBJSECTIONS (objfile, sec)
3283 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3284 {
3285 /* Now, check to see if the section is an overlay. */
3286 if (!section_is_overlay (sec))
3287 continue; /* not an overlay section */
3288
3289 /* Mark the overlay as "mapped". */
3290 sec->ovly_mapped = 1;
3291
3292 /* Next, make a pass and unmap any sections that are
3293 overlapped by this new section: */
3294 ALL_OBJSECTIONS (objfile2, sec2)
3295 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3296 {
3297 if (info_verbose)
3298 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3299 bfd_section_name (objfile->obfd,
3300 sec2->the_bfd_section));
3301 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3302 }
3303 return;
3304 }
3305 error (_("No overlay section called %s"), args);
3306 }
3307
3308 /* Function: unmap_overlay_command
3309 Mark the overlay section as unmapped
3310 (ie. resident in its LMA address range, rather than the VMA range). */
3311
3312 static void
3313 unmap_overlay_command (const char *args, int from_tty)
3314 {
3315 struct objfile *objfile;
3316 struct obj_section *sec = NULL;
3317
3318 if (!overlay_debugging)
3319 error (_("Overlay debugging not enabled. "
3320 "Use either the 'overlay auto' or\n"
3321 "the 'overlay manual' command."));
3322
3323 if (args == 0 || *args == 0)
3324 error (_("Argument required: name of an overlay section"));
3325
3326 /* First, find a section matching the user supplied argument. */
3327 ALL_OBJSECTIONS (objfile, sec)
3328 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3329 {
3330 if (!sec->ovly_mapped)
3331 error (_("Section %s is not mapped"), args);
3332 sec->ovly_mapped = 0;
3333 return;
3334 }
3335 error (_("No overlay section called %s"), args);
3336 }
3337
3338 /* Function: overlay_auto_command
3339 A utility command to turn on overlay debugging.
3340 Possibly this should be done via a set/show command. */
3341
3342 static void
3343 overlay_auto_command (const char *args, int from_tty)
3344 {
3345 overlay_debugging = ovly_auto;
3346 enable_overlay_breakpoints ();
3347 if (info_verbose)
3348 printf_unfiltered (_("Automatic overlay debugging enabled."));
3349 }
3350
3351 /* Function: overlay_manual_command
3352 A utility command to turn on overlay debugging.
3353 Possibly this should be done via a set/show command. */
3354
3355 static void
3356 overlay_manual_command (const char *args, int from_tty)
3357 {
3358 overlay_debugging = ovly_on;
3359 disable_overlay_breakpoints ();
3360 if (info_verbose)
3361 printf_unfiltered (_("Overlay debugging enabled."));
3362 }
3363
3364 /* Function: overlay_off_command
3365 A utility command to turn on overlay debugging.
3366 Possibly this should be done via a set/show command. */
3367
3368 static void
3369 overlay_off_command (const char *args, int from_tty)
3370 {
3371 overlay_debugging = ovly_off;
3372 disable_overlay_breakpoints ();
3373 if (info_verbose)
3374 printf_unfiltered (_("Overlay debugging disabled."));
3375 }
3376
3377 static void
3378 overlay_load_command (const char *args, int from_tty)
3379 {
3380 struct gdbarch *gdbarch = get_current_arch ();
3381
3382 if (gdbarch_overlay_update_p (gdbarch))
3383 gdbarch_overlay_update (gdbarch, NULL);
3384 else
3385 error (_("This target does not know how to read its overlay state."));
3386 }
3387
3388 /* Function: overlay_command
3389 A place-holder for a mis-typed command. */
3390
3391 /* Command list chain containing all defined "overlay" subcommands. */
3392 static struct cmd_list_element *overlaylist;
3393
3394 static void
3395 overlay_command (char *args, int from_tty)
3396 {
3397 printf_unfiltered
3398 ("\"overlay\" must be followed by the name of an overlay command.\n");
3399 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3400 }
3401
3402 /* Target Overlays for the "Simplest" overlay manager:
3403
3404 This is GDB's default target overlay layer. It works with the
3405 minimal overlay manager supplied as an example by Cygnus. The
3406 entry point is via a function pointer "gdbarch_overlay_update",
3407 so targets that use a different runtime overlay manager can
3408 substitute their own overlay_update function and take over the
3409 function pointer.
3410
3411 The overlay_update function pokes around in the target's data structures
3412 to see what overlays are mapped, and updates GDB's overlay mapping with
3413 this information.
3414
3415 In this simple implementation, the target data structures are as follows:
3416 unsigned _novlys; /# number of overlay sections #/
3417 unsigned _ovly_table[_novlys][4] = {
3418 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3419 {..., ..., ..., ...},
3420 }
3421 unsigned _novly_regions; /# number of overlay regions #/
3422 unsigned _ovly_region_table[_novly_regions][3] = {
3423 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3424 {..., ..., ...},
3425 }
3426 These functions will attempt to update GDB's mappedness state in the
3427 symbol section table, based on the target's mappedness state.
3428
3429 To do this, we keep a cached copy of the target's _ovly_table, and
3430 attempt to detect when the cached copy is invalidated. The main
3431 entry point is "simple_overlay_update(SECT), which looks up SECT in
3432 the cached table and re-reads only the entry for that section from
3433 the target (whenever possible). */
3434
3435 /* Cached, dynamically allocated copies of the target data structures: */
3436 static unsigned (*cache_ovly_table)[4] = 0;
3437 static unsigned cache_novlys = 0;
3438 static CORE_ADDR cache_ovly_table_base = 0;
3439 enum ovly_index
3440 {
3441 VMA, OSIZE, LMA, MAPPED
3442 };
3443
3444 /* Throw away the cached copy of _ovly_table. */
3445
3446 static void
3447 simple_free_overlay_table (void)
3448 {
3449 if (cache_ovly_table)
3450 xfree (cache_ovly_table);
3451 cache_novlys = 0;
3452 cache_ovly_table = NULL;
3453 cache_ovly_table_base = 0;
3454 }
3455
3456 /* Read an array of ints of size SIZE from the target into a local buffer.
3457 Convert to host order. int LEN is number of ints. */
3458
3459 static void
3460 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3461 int len, int size, enum bfd_endian byte_order)
3462 {
3463 /* FIXME (alloca): Not safe if array is very large. */
3464 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3465 int i;
3466
3467 read_memory (memaddr, buf, len * size);
3468 for (i = 0; i < len; i++)
3469 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3470 }
3471
3472 /* Find and grab a copy of the target _ovly_table
3473 (and _novlys, which is needed for the table's size). */
3474
3475 static int
3476 simple_read_overlay_table (void)
3477 {
3478 struct bound_minimal_symbol novlys_msym;
3479 struct bound_minimal_symbol ovly_table_msym;
3480 struct gdbarch *gdbarch;
3481 int word_size;
3482 enum bfd_endian byte_order;
3483
3484 simple_free_overlay_table ();
3485 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3486 if (! novlys_msym.minsym)
3487 {
3488 error (_("Error reading inferior's overlay table: "
3489 "couldn't find `_novlys' variable\n"
3490 "in inferior. Use `overlay manual' mode."));
3491 return 0;
3492 }
3493
3494 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3495 if (! ovly_table_msym.minsym)
3496 {
3497 error (_("Error reading inferior's overlay table: couldn't find "
3498 "`_ovly_table' array\n"
3499 "in inferior. Use `overlay manual' mode."));
3500 return 0;
3501 }
3502
3503 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3504 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3505 byte_order = gdbarch_byte_order (gdbarch);
3506
3507 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3508 4, byte_order);
3509 cache_ovly_table
3510 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3511 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3512 read_target_long_array (cache_ovly_table_base,
3513 (unsigned int *) cache_ovly_table,
3514 cache_novlys * 4, word_size, byte_order);
3515
3516 return 1; /* SUCCESS */
3517 }
3518
3519 /* Function: simple_overlay_update_1
3520 A helper function for simple_overlay_update. Assuming a cached copy
3521 of _ovly_table exists, look through it to find an entry whose vma,
3522 lma and size match those of OSECT. Re-read the entry and make sure
3523 it still matches OSECT (else the table may no longer be valid).
3524 Set OSECT's mapped state to match the entry. Return: 1 for
3525 success, 0 for failure. */
3526
3527 static int
3528 simple_overlay_update_1 (struct obj_section *osect)
3529 {
3530 int i;
3531 bfd *obfd = osect->objfile->obfd;
3532 asection *bsect = osect->the_bfd_section;
3533 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3534 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3536
3537 for (i = 0; i < cache_novlys; i++)
3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3540 {
3541 read_target_long_array (cache_ovly_table_base + i * word_size,
3542 (unsigned int *) cache_ovly_table[i],
3543 4, word_size, byte_order);
3544 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3545 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3546 {
3547 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3548 return 1;
3549 }
3550 else /* Warning! Warning! Target's ovly table has changed! */
3551 return 0;
3552 }
3553 return 0;
3554 }
3555
3556 /* Function: simple_overlay_update
3557 If OSECT is NULL, then update all sections' mapped state
3558 (after re-reading the entire target _ovly_table).
3559 If OSECT is non-NULL, then try to find a matching entry in the
3560 cached ovly_table and update only OSECT's mapped state.
3561 If a cached entry can't be found or the cache isn't valid, then
3562 re-read the entire cache, and go ahead and update all sections. */
3563
3564 void
3565 simple_overlay_update (struct obj_section *osect)
3566 {
3567 struct objfile *objfile;
3568
3569 /* Were we given an osect to look up? NULL means do all of them. */
3570 if (osect)
3571 /* Have we got a cached copy of the target's overlay table? */
3572 if (cache_ovly_table != NULL)
3573 {
3574 /* Does its cached location match what's currently in the
3575 symtab? */
3576 struct bound_minimal_symbol minsym
3577 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3578
3579 if (minsym.minsym == NULL)
3580 error (_("Error reading inferior's overlay table: couldn't "
3581 "find `_ovly_table' array\n"
3582 "in inferior. Use `overlay manual' mode."));
3583
3584 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3585 /* Then go ahead and try to look up this single section in
3586 the cache. */
3587 if (simple_overlay_update_1 (osect))
3588 /* Found it! We're done. */
3589 return;
3590 }
3591
3592 /* Cached table no good: need to read the entire table anew.
3593 Or else we want all the sections, in which case it's actually
3594 more efficient to read the whole table in one block anyway. */
3595
3596 if (! simple_read_overlay_table ())
3597 return;
3598
3599 /* Now may as well update all sections, even if only one was requested. */
3600 ALL_OBJSECTIONS (objfile, osect)
3601 if (section_is_overlay (osect))
3602 {
3603 int i;
3604 bfd *obfd = osect->objfile->obfd;
3605 asection *bsect = osect->the_bfd_section;
3606
3607 for (i = 0; i < cache_novlys; i++)
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3610 { /* obj_section matches i'th entry in ovly_table. */
3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3612 break; /* finished with inner for loop: break out. */
3613 }
3614 }
3615 }
3616
3617 /* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622 static void
3623 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624 {
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627 }
3628
3629 /* Default implementation for sym_relocate. */
3630
3631 bfd_byte *
3632 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3633 bfd_byte *buf)
3634 {
3635 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3636 DWO file. */
3637 bfd *abfd = sectp->owner;
3638
3639 /* We're only interested in sections with relocation
3640 information. */
3641 if ((sectp->flags & SEC_RELOC) == 0)
3642 return NULL;
3643
3644 /* We will handle section offsets properly elsewhere, so relocate as if
3645 all sections begin at 0. */
3646 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3647
3648 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3649 }
3650
3651 /* Relocate the contents of a debug section SECTP in ABFD. The
3652 contents are stored in BUF if it is non-NULL, or returned in a
3653 malloc'd buffer otherwise.
3654
3655 For some platforms and debug info formats, shared libraries contain
3656 relocations against the debug sections (particularly for DWARF-2;
3657 one affected platform is PowerPC GNU/Linux, although it depends on
3658 the version of the linker in use). Also, ELF object files naturally
3659 have unresolved relocations for their debug sections. We need to apply
3660 the relocations in order to get the locations of symbols correct.
3661 Another example that may require relocation processing, is the
3662 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3663 debug section. */
3664
3665 bfd_byte *
3666 symfile_relocate_debug_section (struct objfile *objfile,
3667 asection *sectp, bfd_byte *buf)
3668 {
3669 gdb_assert (objfile->sf->sym_relocate);
3670
3671 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3672 }
3673
3674 struct symfile_segment_data *
3675 get_symfile_segment_data (bfd *abfd)
3676 {
3677 const struct sym_fns *sf = find_sym_fns (abfd);
3678
3679 if (sf == NULL)
3680 return NULL;
3681
3682 return sf->sym_segments (abfd);
3683 }
3684
3685 void
3686 free_symfile_segment_data (struct symfile_segment_data *data)
3687 {
3688 xfree (data->segment_bases);
3689 xfree (data->segment_sizes);
3690 xfree (data->segment_info);
3691 xfree (data);
3692 }
3693
3694 /* Given:
3695 - DATA, containing segment addresses from the object file ABFD, and
3696 the mapping from ABFD's sections onto the segments that own them,
3697 and
3698 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3699 segment addresses reported by the target,
3700 store the appropriate offsets for each section in OFFSETS.
3701
3702 If there are fewer entries in SEGMENT_BASES than there are segments
3703 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3704
3705 If there are more entries, then ignore the extra. The target may
3706 not be able to distinguish between an empty data segment and a
3707 missing data segment; a missing text segment is less plausible. */
3708
3709 int
3710 symfile_map_offsets_to_segments (bfd *abfd,
3711 const struct symfile_segment_data *data,
3712 struct section_offsets *offsets,
3713 int num_segment_bases,
3714 const CORE_ADDR *segment_bases)
3715 {
3716 int i;
3717 asection *sect;
3718
3719 /* It doesn't make sense to call this function unless you have some
3720 segment base addresses. */
3721 gdb_assert (num_segment_bases > 0);
3722
3723 /* If we do not have segment mappings for the object file, we
3724 can not relocate it by segments. */
3725 gdb_assert (data != NULL);
3726 gdb_assert (data->num_segments > 0);
3727
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
3730 int which = data->segment_info[i];
3731
3732 gdb_assert (0 <= which && which <= data->num_segments);
3733
3734 /* Don't bother computing offsets for sections that aren't
3735 loaded as part of any segment. */
3736 if (! which)
3737 continue;
3738
3739 /* Use the last SEGMENT_BASES entry as the address of any extra
3740 segments mentioned in DATA->segment_info. */
3741 if (which > num_segment_bases)
3742 which = num_segment_bases;
3743
3744 offsets->offsets[i] = (segment_bases[which - 1]
3745 - data->segment_bases[which - 1]);
3746 }
3747
3748 return 1;
3749 }
3750
3751 static void
3752 symfile_find_segment_sections (struct objfile *objfile)
3753 {
3754 bfd *abfd = objfile->obfd;
3755 int i;
3756 asection *sect;
3757 struct symfile_segment_data *data;
3758
3759 data = get_symfile_segment_data (objfile->obfd);
3760 if (data == NULL)
3761 return;
3762
3763 if (data->num_segments != 1 && data->num_segments != 2)
3764 {
3765 free_symfile_segment_data (data);
3766 return;
3767 }
3768
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3770 {
3771 int which = data->segment_info[i];
3772
3773 if (which == 1)
3774 {
3775 if (objfile->sect_index_text == -1)
3776 objfile->sect_index_text = sect->index;
3777
3778 if (objfile->sect_index_rodata == -1)
3779 objfile->sect_index_rodata = sect->index;
3780 }
3781 else if (which == 2)
3782 {
3783 if (objfile->sect_index_data == -1)
3784 objfile->sect_index_data = sect->index;
3785
3786 if (objfile->sect_index_bss == -1)
3787 objfile->sect_index_bss = sect->index;
3788 }
3789 }
3790
3791 free_symfile_segment_data (data);
3792 }
3793
3794 /* Listen for free_objfile events. */
3795
3796 static void
3797 symfile_free_objfile (struct objfile *objfile)
3798 {
3799 /* Remove the target sections owned by this objfile. */
3800 if (objfile != NULL)
3801 remove_target_sections ((void *) objfile);
3802 }
3803
3804 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3805 Expand all symtabs that match the specified criteria.
3806 See quick_symbol_functions.expand_symtabs_matching for details. */
3807
3808 void
3809 expand_symtabs_matching
3810 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3811 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3812 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3813 enum search_domain kind)
3814 {
3815 struct objfile *objfile;
3816
3817 ALL_OBJFILES (objfile)
3818 {
3819 if (objfile->sf)
3820 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3821 symbol_matcher,
3822 expansion_notify, kind);
3823 }
3824 }
3825
3826 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3827 Map function FUN over every file.
3828 See quick_symbol_functions.map_symbol_filenames for details. */
3829
3830 void
3831 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3832 int need_fullname)
3833 {
3834 struct objfile *objfile;
3835
3836 ALL_OBJFILES (objfile)
3837 {
3838 if (objfile->sf)
3839 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3840 need_fullname);
3841 }
3842 }
3843
3844 void
3845 _initialize_symfile (void)
3846 {
3847 struct cmd_list_element *c;
3848
3849 observer_attach_free_objfile (symfile_free_objfile);
3850
3851 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3852 Load symbol table from executable file FILE.\n\
3853 The `file' command can also load symbol tables, as well as setting the file\n\
3854 to execute."), &cmdlist);
3855 set_cmd_completer (c, filename_completer);
3856
3857 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3858 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3859 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3860 ...]\nADDR is the starting address of the file's text.\n\
3861 The optional arguments are section-name section-address pairs and\n\
3862 should be specified if the data and bss segments are not contiguous\n\
3863 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3864 &cmdlist);
3865 set_cmd_completer (c, filename_completer);
3866
3867 c = add_cmd ("remove-symbol-file", class_files,
3868 remove_symbol_file_command, _("\
3869 Remove a symbol file added via the add-symbol-file command.\n\
3870 Usage: remove-symbol-file FILENAME\n\
3871 remove-symbol-file -a ADDRESS\n\
3872 The file to remove can be identified by its filename or by an address\n\
3873 that lies within the boundaries of this symbol file in memory."),
3874 &cmdlist);
3875
3876 c = add_cmd ("load", class_files, load_command, _("\
3877 Dynamically load FILE into the running program, and record its symbols\n\
3878 for access from GDB.\n\
3879 An optional load OFFSET may also be given as a literal address.\n\
3880 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3881 on its own.\n\
3882 Usage: load [FILE] [OFFSET]"), &cmdlist);
3883 set_cmd_completer (c, filename_completer);
3884
3885 add_prefix_cmd ("overlay", class_support, overlay_command,
3886 _("Commands for debugging overlays."), &overlaylist,
3887 "overlay ", 0, &cmdlist);
3888
3889 add_com_alias ("ovly", "overlay", class_alias, 1);
3890 add_com_alias ("ov", "overlay", class_alias, 1);
3891
3892 add_cmd ("map-overlay", class_support, map_overlay_command,
3893 _("Assert that an overlay section is mapped."), &overlaylist);
3894
3895 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3896 _("Assert that an overlay section is unmapped."), &overlaylist);
3897
3898 add_cmd ("list-overlays", class_support, list_overlays_command,
3899 _("List mappings of overlay sections."), &overlaylist);
3900
3901 add_cmd ("manual", class_support, overlay_manual_command,
3902 _("Enable overlay debugging."), &overlaylist);
3903 add_cmd ("off", class_support, overlay_off_command,
3904 _("Disable overlay debugging."), &overlaylist);
3905 add_cmd ("auto", class_support, overlay_auto_command,
3906 _("Enable automatic overlay debugging."), &overlaylist);
3907 add_cmd ("load-target", class_support, overlay_load_command,
3908 _("Read the overlay mapping state from the target."), &overlaylist);
3909
3910 /* Filename extension to source language lookup table: */
3911 add_setshow_string_noescape_cmd ("extension-language", class_files,
3912 &ext_args, _("\
3913 Set mapping between filename extension and source language."), _("\
3914 Show mapping between filename extension and source language."), _("\
3915 Usage: set extension-language .foo bar"),
3916 set_ext_lang_command,
3917 show_ext_args,
3918 &setlist, &showlist);
3919
3920 add_info ("extensions", info_ext_lang_command,
3921 _("All filename extensions associated with a source language."));
3922
3923 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3924 &debug_file_directory, _("\
3925 Set the directories where separate debug symbols are searched for."), _("\
3926 Show the directories where separate debug symbols are searched for."), _("\
3927 Separate debug symbols are first searched for in the same\n\
3928 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3929 and lastly at the path of the directory of the binary with\n\
3930 each global debug-file-directory component prepended."),
3931 NULL,
3932 show_debug_file_directory,
3933 &setlist, &showlist);
3934
3935 add_setshow_enum_cmd ("symbol-loading", no_class,
3936 print_symbol_loading_enums, &print_symbol_loading,
3937 _("\
3938 Set printing of symbol loading messages."), _("\
3939 Show printing of symbol loading messages."), _("\
3940 off == turn all messages off\n\
3941 brief == print messages for the executable,\n\
3942 and brief messages for shared libraries\n\
3943 full == print messages for the executable,\n\
3944 and messages for each shared library."),
3945 NULL,
3946 NULL,
3947 &setprintlist, &showprintlist);
3948
3949 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3950 &separate_debug_file_debug, _("\
3951 Set printing of separate debug info file search debug."), _("\
3952 Show printing of separate debug info file search debug."), _("\
3953 When on, GDB prints the searched locations while looking for separate debug \
3954 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3955 }
This page took 0.130848 seconds and 5 git commands to generate.