Use filtered printing when reading symbols
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
923 {
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
949
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
953 if (! addrs)
954 addrs = &local_addr;
955
956 if (mainline)
957 {
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
974
975 (*objfile->sf->sym_new_init) (objfile);
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
981
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
990
991 (*objfile->sf->sym_init) (objfile);
992 clear_complaints (1);
993
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
995
996 read_symbols (objfile, add_flags);
997
998 /* Discard cleanups as symbol reading was successful. */
999
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1002 }
1003
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
1007 static void
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1011 {
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1014 }
1015
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1019
1020 static void
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1022 {
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
1031 clear_symtab_users (add_flags);
1032 }
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1034 {
1035 breakpoint_re_set ();
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints (0);
1040 }
1041
1042 /* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1047
1048 For NAME description see the objfile constructor.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1067 {
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 {
1114 printf_filtered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
1117 }
1118 }
1119 syms_from_objfile (objfile, addrs, add_flags);
1120
1121 /* We now have at least a partial symbol table. Check to see if the
1122 user requested that all symbols be read on initial access via either
1123 the gdb startup command line or on a per symbol file basis. Expand
1124 all partial symbol tables for this objfile if so. */
1125
1126 if ((flags & OBJF_READNOW))
1127 {
1128 if (should_print)
1129 {
1130 printf_filtered (_("expanding to full symbols..."));
1131 wrap_here ("");
1132 gdb_flush (gdb_stdout);
1133 }
1134
1135 if (objfile->sf)
1136 objfile->sf->qf->expand_all_symtabs (objfile);
1137 }
1138
1139 if (should_print && !objfile_has_symbols (objfile))
1140 {
1141 wrap_here ("");
1142 printf_filtered (_("(no debugging symbols found)..."));
1143 wrap_here ("");
1144 }
1145
1146 if (should_print)
1147 {
1148 if (deprecated_post_add_symbol_hook)
1149 deprecated_post_add_symbol_hook ();
1150 else
1151 printf_filtered (_("done.\n"));
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 printf_filtered (_(" Trying %s\n"), name.c_str ());
1298
1299 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1300
1301 if (abfd == NULL)
1302 return 0;
1303
1304 /* Verify symlinks were not the cause of filename_cmp name difference above.
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Files accessed from gdbservers that do not
1309 support the vFile:fstat packet will also have st_ino set to zero.
1310 Do not indicate a duplicate library in either case. While there
1311 is no guarantee that a system that provides meaningful inode
1312 numbers will never set st_ino to zero, this is merely an
1313 optimization, so we do not need to worry about false negatives. */
1314
1315 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1316 && abfd_stat.st_ino != 0
1317 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1318 {
1319 if (abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino)
1321 return 0;
1322 verified_as_different = 1;
1323 }
1324 else
1325 verified_as_different = 0;
1326
1327 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1328
1329 if (!file_crc_p)
1330 return 0;
1331
1332 if (crc != file_crc)
1333 {
1334 unsigned long parent_crc;
1335
1336 /* If the files could not be verified as different with
1337 bfd_stat then we need to calculate the parent's CRC
1338 to verify whether the files are different or not. */
1339
1340 if (!verified_as_different)
1341 {
1342 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1343 return 0;
1344 }
1345
1346 if (verified_as_different || parent_crc != file_crc)
1347 warning (_("the debug information found in \"%s\""
1348 " does not match \"%s\" (CRC mismatch).\n"),
1349 name.c_str (), objfile_name (parent_objfile));
1350
1351 return 0;
1352 }
1353
1354 return 1;
1355 }
1356
1357 char *debug_file_directory = NULL;
1358 static void
1359 show_debug_file_directory (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file,
1363 _("The directory where separate debug "
1364 "symbols are searched for is \"%s\".\n"),
1365 value);
1366 }
1367
1368 #if ! defined (DEBUG_SUBDIRECTORY)
1369 #define DEBUG_SUBDIRECTORY ".debug"
1370 #endif
1371
1372 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1373 where the original file resides (may not be the same as
1374 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1375 looking for. CANON_DIR is the "realpath" form of DIR.
1376 DIR must contain a trailing '/'.
1377 Returns the path of the file with separate debug info, or an empty
1378 string. */
1379
1380 static std::string
1381 find_separate_debug_file (const char *dir,
1382 const char *canon_dir,
1383 const char *debuglink,
1384 unsigned long crc32, struct objfile *objfile)
1385 {
1386 if (separate_debug_file_debug)
1387 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1388 "%s\n"), objfile_name (objfile));
1389
1390 /* First try in the same directory as the original file. */
1391 std::string debugfile = dir;
1392 debugfile += debuglink;
1393
1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1395 return debugfile;
1396
1397 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1398 debugfile = dir;
1399 debugfile += DEBUG_SUBDIRECTORY;
1400 debugfile += "/";
1401 debugfile += debuglink;
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 return debugfile;
1405
1406 /* Then try in the global debugfile directories.
1407
1408 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1409 cause "/..." lookups. */
1410
1411 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1412 = dirnames_to_char_ptr_vec (debug_file_directory);
1413
1414 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1415 {
1416 debugfile = debugdir.get ();
1417 debugfile += "/";
1418 debugfile += dir;
1419 debugfile += debuglink;
1420
1421 if (separate_debug_file_exists (debugfile, crc32, objfile))
1422 return debugfile;
1423
1424 /* If the file is in the sysroot, try using its base path in the
1425 global debugfile directory. */
1426 if (canon_dir != NULL
1427 && filename_ncmp (canon_dir, gdb_sysroot,
1428 strlen (gdb_sysroot)) == 0
1429 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1430 {
1431 debugfile = debugdir.get ();
1432 debugfile += (canon_dir + strlen (gdb_sysroot));
1433 debugfile += "/";
1434 debugfile += debuglink;
1435
1436 if (separate_debug_file_exists (debugfile, crc32, objfile))
1437 return debugfile;
1438 }
1439 }
1440
1441 return std::string ();
1442 }
1443
1444 /* Modify PATH to contain only "[/]directory/" part of PATH.
1445 If there were no directory separators in PATH, PATH will be empty
1446 string on return. */
1447
1448 static void
1449 terminate_after_last_dir_separator (char *path)
1450 {
1451 int i;
1452
1453 /* Strip off the final filename part, leaving the directory name,
1454 followed by a slash. The directory can be relative or absolute. */
1455 for (i = strlen(path) - 1; i >= 0; i--)
1456 if (IS_DIR_SEPARATOR (path[i]))
1457 break;
1458
1459 /* If I is -1 then no directory is present there and DIR will be "". */
1460 path[i + 1] = '\0';
1461 }
1462
1463 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1464 Returns pathname, or an empty string. */
1465
1466 std::string
1467 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1468 {
1469 unsigned long crc32;
1470
1471 gdb::unique_xmalloc_ptr<char> debuglink
1472 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1473
1474 if (debuglink == NULL)
1475 {
1476 /* There's no separate debug info, hence there's no way we could
1477 load it => no warning. */
1478 return std::string ();
1479 }
1480
1481 std::string dir = objfile_name (objfile);
1482 terminate_after_last_dir_separator (&dir[0]);
1483 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1484
1485 std::string debugfile
1486 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1487 debuglink.get (), crc32, objfile);
1488
1489 if (debugfile.empty ())
1490 {
1491 /* For PR gdb/9538, try again with realpath (if different from the
1492 original). */
1493
1494 struct stat st_buf;
1495
1496 if (lstat (objfile_name (objfile), &st_buf) == 0
1497 && S_ISLNK (st_buf.st_mode))
1498 {
1499 gdb::unique_xmalloc_ptr<char> symlink_dir
1500 (lrealpath (objfile_name (objfile)));
1501 if (symlink_dir != NULL)
1502 {
1503 terminate_after_last_dir_separator (symlink_dir.get ());
1504 if (dir != symlink_dir.get ())
1505 {
1506 /* Different directory, so try using it. */
1507 debugfile = find_separate_debug_file (symlink_dir.get (),
1508 symlink_dir.get (),
1509 debuglink.get (),
1510 crc32,
1511 objfile);
1512 }
1513 }
1514 }
1515 }
1516
1517 return debugfile;
1518 }
1519
1520 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1521 simultaneously. */
1522
1523 static void
1524 validate_readnow_readnever (objfile_flags flags)
1525 {
1526 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1527 error (_("-readnow and -readnever cannot be used simultaneously"));
1528 }
1529
1530 /* This is the symbol-file command. Read the file, analyze its
1531 symbols, and add a struct symtab to a symtab list. The syntax of
1532 the command is rather bizarre:
1533
1534 1. The function buildargv implements various quoting conventions
1535 which are undocumented and have little or nothing in common with
1536 the way things are quoted (or not quoted) elsewhere in GDB.
1537
1538 2. Options are used, which are not generally used in GDB (perhaps
1539 "set mapped on", "set readnow on" would be better)
1540
1541 3. The order of options matters, which is contrary to GNU
1542 conventions (because it is confusing and inconvenient). */
1543
1544 void
1545 symbol_file_command (const char *args, int from_tty)
1546 {
1547 dont_repeat ();
1548
1549 if (args == NULL)
1550 {
1551 symbol_file_clear (from_tty);
1552 }
1553 else
1554 {
1555 objfile_flags flags = OBJF_USERLOADED;
1556 symfile_add_flags add_flags = 0;
1557 char *name = NULL;
1558 bool stop_processing_options = false;
1559 CORE_ADDR offset = 0;
1560 int idx;
1561 char *arg;
1562
1563 if (from_tty)
1564 add_flags |= SYMFILE_VERBOSE;
1565
1566 gdb_argv built_argv (args);
1567 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1568 {
1569 if (stop_processing_options || *arg != '-')
1570 {
1571 if (name == NULL)
1572 name = arg;
1573 else
1574 error (_("Unrecognized argument \"%s\""), arg);
1575 }
1576 else if (strcmp (arg, "-readnow") == 0)
1577 flags |= OBJF_READNOW;
1578 else if (strcmp (arg, "-readnever") == 0)
1579 flags |= OBJF_READNEVER;
1580 else if (strcmp (arg, "-o") == 0)
1581 {
1582 arg = built_argv[++idx];
1583 if (arg == NULL)
1584 error (_("Missing argument to -o"));
1585
1586 offset = parse_and_eval_address (arg);
1587 }
1588 else if (strcmp (arg, "--") == 0)
1589 stop_processing_options = true;
1590 else
1591 error (_("Unrecognized argument \"%s\""), arg);
1592 }
1593
1594 if (name == NULL)
1595 error (_("no symbol file name was specified"));
1596
1597 validate_readnow_readnever (flags);
1598
1599 symbol_file_add_main_1 (name, add_flags, flags, offset);
1600 }
1601 }
1602
1603 /* Set the initial language.
1604
1605 FIXME: A better solution would be to record the language in the
1606 psymtab when reading partial symbols, and then use it (if known) to
1607 set the language. This would be a win for formats that encode the
1608 language in an easily discoverable place, such as DWARF. For
1609 stabs, we can jump through hoops looking for specially named
1610 symbols or try to intuit the language from the specific type of
1611 stabs we find, but we can't do that until later when we read in
1612 full symbols. */
1613
1614 void
1615 set_initial_language (void)
1616 {
1617 enum language lang = main_language ();
1618
1619 if (lang == language_unknown)
1620 {
1621 char *name = main_name ();
1622 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1623
1624 if (sym != NULL)
1625 lang = SYMBOL_LANGUAGE (sym);
1626 }
1627
1628 if (lang == language_unknown)
1629 {
1630 /* Make C the default language */
1631 lang = language_c;
1632 }
1633
1634 set_language (lang);
1635 expected_language = current_language; /* Don't warn the user. */
1636 }
1637
1638 /* Open the file specified by NAME and hand it off to BFD for
1639 preliminary analysis. Return a newly initialized bfd *, which
1640 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1641 absolute). In case of trouble, error() is called. */
1642
1643 gdb_bfd_ref_ptr
1644 symfile_bfd_open (const char *name)
1645 {
1646 int desc = -1;
1647
1648 gdb::unique_xmalloc_ptr<char> absolute_name;
1649 if (!is_target_filename (name))
1650 {
1651 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1652
1653 /* Look down path for it, allocate 2nd new malloc'd copy. */
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1656 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1657 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1658 if (desc < 0)
1659 {
1660 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1661
1662 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1663 desc = openp (getenv ("PATH"),
1664 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1665 exename, O_RDONLY | O_BINARY, &absolute_name);
1666 }
1667 #endif
1668 if (desc < 0)
1669 perror_with_name (expanded_name.get ());
1670
1671 name = absolute_name.get ();
1672 }
1673
1674 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1675 if (sym_bfd == NULL)
1676 error (_("`%s': can't open to read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
1678
1679 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1680 bfd_set_cacheable (sym_bfd.get (), 1);
1681
1682 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
1685
1686 return sym_bfd;
1687 }
1688
1689 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
1692 int
1693 get_section_index (struct objfile *objfile, const char *section_name)
1694 {
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1696
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701 }
1702
1703 /* Link SF into the global symtab_fns list.
1704 FLAVOUR is the file format that SF handles.
1705 Called on startup by the _initialize routine in each object file format
1706 reader, to register information about each format the reader is prepared
1707 to handle. */
1708
1709 void
1710 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1711 {
1712 symtab_fns.emplace_back (flavour, sf);
1713 }
1714
1715 /* Initialize OBJFILE to read symbols from its associated BFD. It
1716 either returns or calls error(). The result is an initialized
1717 struct sym_fns in the objfile structure, that contains cached
1718 information about the symbol file. */
1719
1720 static const struct sym_fns *
1721 find_sym_fns (bfd *abfd)
1722 {
1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1724
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
1728 return NULL; /* No symbols. */
1729
1730 for (const registered_sym_fns &rsf : symtab_fns)
1731 if (our_flavour == rsf.sym_flavour)
1732 return rsf.sym_fns;
1733
1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1735 bfd_get_target (abfd));
1736 }
1737 \f
1738
1739 /* This function runs the load command of our current target. */
1740
1741 static void
1742 load_command (const char *arg, int from_tty)
1743 {
1744 dont_repeat ();
1745
1746 /* The user might be reloading because the binary has changed. Take
1747 this opportunity to check. */
1748 reopen_exec_file ();
1749 reread_symbols ();
1750
1751 std::string temp;
1752 if (arg == NULL)
1753 {
1754 const char *parg, *prev;
1755
1756 arg = get_exec_file (1);
1757
1758 /* We may need to quote this string so buildargv can pull it
1759 apart. */
1760 prev = parg = arg;
1761 while ((parg = strpbrk (parg, "\\\"'\t ")))
1762 {
1763 temp.append (prev, parg - prev);
1764 prev = parg++;
1765 temp.push_back ('\\');
1766 }
1767 /* If we have not copied anything yet, then we didn't see a
1768 character to quote, and we can just leave ARG unchanged. */
1769 if (!temp.empty ())
1770 {
1771 temp.append (prev);
1772 arg = temp.c_str ();
1773 }
1774 }
1775
1776 target_load (arg, from_tty);
1777
1778 /* After re-loading the executable, we don't really know which
1779 overlays are mapped any more. */
1780 overlay_cache_invalid = 1;
1781 }
1782
1783 /* This version of "load" should be usable for any target. Currently
1784 it is just used for remote targets, not inftarg.c or core files,
1785 on the theory that only in that case is it useful.
1786
1787 Avoiding xmodem and the like seems like a win (a) because we don't have
1788 to worry about finding it, and (b) On VMS, fork() is very slow and so
1789 we don't want to run a subprocess. On the other hand, I'm not sure how
1790 performance compares. */
1791
1792 static int validate_download = 0;
1793
1794 /* Callback service function for generic_load (bfd_map_over_sections). */
1795
1796 static void
1797 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1798 {
1799 bfd_size_type *sum = (bfd_size_type *) data;
1800
1801 *sum += bfd_get_section_size (asec);
1802 }
1803
1804 /* Opaque data for load_progress. */
1805 struct load_progress_data
1806 {
1807 /* Cumulative data. */
1808 unsigned long write_count = 0;
1809 unsigned long data_count = 0;
1810 bfd_size_type total_size = 0;
1811 };
1812
1813 /* Opaque data for load_progress for a single section. */
1814 struct load_progress_section_data
1815 {
1816 load_progress_section_data (load_progress_data *cumulative_,
1817 const char *section_name_, ULONGEST section_size_,
1818 CORE_ADDR lma_, gdb_byte *buffer_)
1819 : cumulative (cumulative_), section_name (section_name_),
1820 section_size (section_size_), lma (lma_), buffer (buffer_)
1821 {}
1822
1823 struct load_progress_data *cumulative;
1824
1825 /* Per-section data. */
1826 const char *section_name;
1827 ULONGEST section_sent = 0;
1828 ULONGEST section_size;
1829 CORE_ADDR lma;
1830 gdb_byte *buffer;
1831 };
1832
1833 /* Opaque data for load_section_callback. */
1834 struct load_section_data
1835 {
1836 load_section_data (load_progress_data *progress_data_)
1837 : progress_data (progress_data_)
1838 {}
1839
1840 ~load_section_data ()
1841 {
1842 for (auto &&request : requests)
1843 {
1844 xfree (request.data);
1845 delete ((load_progress_section_data *) request.baton);
1846 }
1847 }
1848
1849 CORE_ADDR load_offset = 0;
1850 struct load_progress_data *progress_data;
1851 std::vector<struct memory_write_request> requests;
1852 };
1853
1854 /* Target write callback routine for progress reporting. */
1855
1856 static void
1857 load_progress (ULONGEST bytes, void *untyped_arg)
1858 {
1859 struct load_progress_section_data *args
1860 = (struct load_progress_section_data *) untyped_arg;
1861 struct load_progress_data *totals;
1862
1863 if (args == NULL)
1864 /* Writing padding data. No easy way to get at the cumulative
1865 stats, so just ignore this. */
1866 return;
1867
1868 totals = args->cumulative;
1869
1870 if (bytes == 0 && args->section_sent == 0)
1871 {
1872 /* The write is just starting. Let the user know we've started
1873 this section. */
1874 current_uiout->message ("Loading section %s, size %s lma %s\n",
1875 args->section_name,
1876 hex_string (args->section_size),
1877 paddress (target_gdbarch (), args->lma));
1878 return;
1879 }
1880
1881 if (validate_download)
1882 {
1883 /* Broken memories and broken monitors manifest themselves here
1884 when bring new computers to life. This doubles already slow
1885 downloads. */
1886 /* NOTE: cagney/1999-10-18: A more efficient implementation
1887 might add a verify_memory() method to the target vector and
1888 then use that. remote.c could implement that method using
1889 the ``qCRC'' packet. */
1890 gdb::byte_vector check (bytes);
1891
1892 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1893 error (_("Download verify read failed at %s"),
1894 paddress (target_gdbarch (), args->lma));
1895 if (memcmp (args->buffer, check.data (), bytes) != 0)
1896 error (_("Download verify compare failed at %s"),
1897 paddress (target_gdbarch (), args->lma));
1898 }
1899 totals->data_count += bytes;
1900 args->lma += bytes;
1901 args->buffer += bytes;
1902 totals->write_count += 1;
1903 args->section_sent += bytes;
1904 if (check_quit_flag ()
1905 || (deprecated_ui_load_progress_hook != NULL
1906 && deprecated_ui_load_progress_hook (args->section_name,
1907 args->section_sent)))
1908 error (_("Canceled the download"));
1909
1910 if (deprecated_show_load_progress != NULL)
1911 deprecated_show_load_progress (args->section_name,
1912 args->section_sent,
1913 args->section_size,
1914 totals->data_count,
1915 totals->total_size);
1916 }
1917
1918 /* Callback service function for generic_load (bfd_map_over_sections). */
1919
1920 static void
1921 load_section_callback (bfd *abfd, asection *asec, void *data)
1922 {
1923 struct load_section_data *args = (struct load_section_data *) data;
1924 bfd_size_type size = bfd_get_section_size (asec);
1925 const char *sect_name = bfd_get_section_name (abfd, asec);
1926
1927 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1928 return;
1929
1930 if (size == 0)
1931 return;
1932
1933 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 ULONGEST end = begin + size;
1935 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1936 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1937
1938 load_progress_section_data *section_data
1939 = new load_progress_section_data (args->progress_data, sect_name, size,
1940 begin, buffer);
1941
1942 args->requests.emplace_back (begin, end, buffer, section_data);
1943 }
1944
1945 static void print_transfer_performance (struct ui_file *stream,
1946 unsigned long data_count,
1947 unsigned long write_count,
1948 std::chrono::steady_clock::duration d);
1949
1950 void
1951 generic_load (const char *args, int from_tty)
1952 {
1953 struct load_progress_data total_progress;
1954 struct load_section_data cbdata (&total_progress);
1955 struct ui_out *uiout = current_uiout;
1956
1957 if (args == NULL)
1958 error_no_arg (_("file to load"));
1959
1960 gdb_argv argv (args);
1961
1962 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1963
1964 if (argv[1] != NULL)
1965 {
1966 const char *endptr;
1967
1968 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1969
1970 /* If the last word was not a valid number then
1971 treat it as a file name with spaces in. */
1972 if (argv[1] == endptr)
1973 error (_("Invalid download offset:%s."), argv[1]);
1974
1975 if (argv[2] != NULL)
1976 error (_("Too many parameters."));
1977 }
1978
1979 /* Open the file for loading. */
1980 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1981 if (loadfile_bfd == NULL)
1982 perror_with_name (filename.get ());
1983
1984 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1985 {
1986 error (_("\"%s\" is not an object file: %s"), filename.get (),
1987 bfd_errmsg (bfd_get_error ()));
1988 }
1989
1990 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1991 (void *) &total_progress.total_size);
1992
1993 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1994
1995 using namespace std::chrono;
1996
1997 steady_clock::time_point start_time = steady_clock::now ();
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 steady_clock::time_point end_time = steady_clock::now ();
2004
2005 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2006 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2007 uiout->text ("Start address ");
2008 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2009 uiout->text (", load size ");
2010 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2011 uiout->text ("\n");
2012 regcache_write_pc (get_current_regcache (), entry);
2013
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2020 memory. */
2021
2022 breakpoint_re_set ();
2023
2024 print_transfer_performance (gdb_stdout, total_progress.data_count,
2025 total_progress.write_count,
2026 end_time - start_time);
2027 }
2028
2029 /* Report on STREAM the performance of a memory transfer operation,
2030 such as 'load'. DATA_COUNT is the number of bytes transferred.
2031 WRITE_COUNT is the number of separate write operations, or 0, if
2032 that information is not available. TIME is how long the operation
2033 lasted. */
2034
2035 static void
2036 print_transfer_performance (struct ui_file *stream,
2037 unsigned long data_count,
2038 unsigned long write_count,
2039 std::chrono::steady_clock::duration time)
2040 {
2041 using namespace std::chrono;
2042 struct ui_out *uiout = current_uiout;
2043
2044 milliseconds ms = duration_cast<milliseconds> (time);
2045
2046 uiout->text ("Transfer rate: ");
2047 if (ms.count () > 0)
2048 {
2049 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2050
2051 if (uiout->is_mi_like_p ())
2052 {
2053 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2054 uiout->text (" bits/sec");
2055 }
2056 else if (rate < 1024)
2057 {
2058 uiout->field_fmt ("transfer-rate", "%lu", rate);
2059 uiout->text (" bytes/sec");
2060 }
2061 else
2062 {
2063 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2064 uiout->text (" KB/sec");
2065 }
2066 }
2067 else
2068 {
2069 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2070 uiout->text (" bits in <1 sec");
2071 }
2072 if (write_count > 0)
2073 {
2074 uiout->text (", ");
2075 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2076 uiout->text (" bytes/write");
2077 }
2078 uiout->text (".\n");
2079 }
2080
2081 /* Add an OFFSET to the start address of each section in OBJF, except
2082 sections that were specified in ADDRS. */
2083
2084 static void
2085 set_objfile_default_section_offset (struct objfile *objf,
2086 const section_addr_info &addrs,
2087 CORE_ADDR offset)
2088 {
2089 /* Add OFFSET to all sections by default. */
2090 std::vector<struct section_offsets> offsets (objf->num_sections,
2091 { { offset } });
2092
2093 /* Create sorted lists of all sections in ADDRS as well as all
2094 sections in OBJF. */
2095
2096 std::vector<const struct other_sections *> addrs_sorted
2097 = addrs_section_sort (addrs);
2098
2099 section_addr_info objf_addrs
2100 = build_section_addr_info_from_objfile (objf);
2101 std::vector<const struct other_sections *> objf_addrs_sorted
2102 = addrs_section_sort (objf_addrs);
2103
2104 /* Walk the BFD section list, and if a matching section is found in
2105 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2106 unchanged.
2107
2108 Note that both lists may contain multiple sections with the same
2109 name, and then the sections from ADDRS are matched in BFD order
2110 (thanks to sectindex). */
2111
2112 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2113 = addrs_sorted.begin ();
2114 for (const other_sections *objf_sect : objf_addrs_sorted)
2115 {
2116 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2117 int cmp = -1;
2118
2119 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2120 {
2121 const struct other_sections *sect = *addrs_sorted_iter;
2122 const char *sect_name = addr_section_name (sect->name.c_str ());
2123 cmp = strcmp (sect_name, objf_name);
2124 if (cmp <= 0)
2125 ++addrs_sorted_iter;
2126 }
2127
2128 if (cmp == 0)
2129 offsets[objf_sect->sectindex].offsets[0] = 0;
2130 }
2131
2132 /* Apply the new section offsets. */
2133 objfile_relocate (objf, offsets.data ());
2134 }
2135
2136 /* This function allows the addition of incrementally linked object files.
2137 It does not modify any state in the target, only in the debugger. */
2138 /* Note: ezannoni 2000-04-13 This function/command used to have a
2139 special case syntax for the rombug target (Rombug is the boot
2140 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2141 rombug case, the user doesn't need to supply a text address,
2142 instead a call to target_link() (in target.c) would supply the
2143 value to use. We are now discontinuing this type of ad hoc syntax. */
2144
2145 static void
2146 add_symbol_file_command (const char *args, int from_tty)
2147 {
2148 struct gdbarch *gdbarch = get_current_arch ();
2149 gdb::unique_xmalloc_ptr<char> filename;
2150 char *arg;
2151 int argcnt = 0;
2152 struct objfile *objf;
2153 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2154 symfile_add_flags add_flags = 0;
2155
2156 if (from_tty)
2157 add_flags |= SYMFILE_VERBOSE;
2158
2159 struct sect_opt
2160 {
2161 const char *name;
2162 const char *value;
2163 };
2164
2165 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2166 bool stop_processing_options = false;
2167 CORE_ADDR offset = 0;
2168
2169 dont_repeat ();
2170
2171 if (args == NULL)
2172 error (_("add-symbol-file takes a file name and an address"));
2173
2174 bool seen_addr = false;
2175 bool seen_offset = false;
2176 gdb_argv argv (args);
2177
2178 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2179 {
2180 if (stop_processing_options || *arg != '-')
2181 {
2182 if (filename == NULL)
2183 {
2184 /* First non-option argument is always the filename. */
2185 filename.reset (tilde_expand (arg));
2186 }
2187 else if (!seen_addr)
2188 {
2189 /* The second non-option argument is always the text
2190 address at which to load the program. */
2191 sect_opts[0].value = arg;
2192 seen_addr = true;
2193 }
2194 else
2195 error (_("Unrecognized argument \"%s\""), arg);
2196 }
2197 else if (strcmp (arg, "-readnow") == 0)
2198 flags |= OBJF_READNOW;
2199 else if (strcmp (arg, "-readnever") == 0)
2200 flags |= OBJF_READNEVER;
2201 else if (strcmp (arg, "-s") == 0)
2202 {
2203 if (argv[argcnt + 1] == NULL)
2204 error (_("Missing section name after \"-s\""));
2205 else if (argv[argcnt + 2] == NULL)
2206 error (_("Missing section address after \"-s\""));
2207
2208 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2209
2210 sect_opts.push_back (sect);
2211 argcnt += 2;
2212 }
2213 else if (strcmp (arg, "-o") == 0)
2214 {
2215 arg = argv[++argcnt];
2216 if (arg == NULL)
2217 error (_("Missing argument to -o"));
2218
2219 offset = parse_and_eval_address (arg);
2220 seen_offset = true;
2221 }
2222 else if (strcmp (arg, "--") == 0)
2223 stop_processing_options = true;
2224 else
2225 error (_("Unrecognized argument \"%s\""), arg);
2226 }
2227
2228 if (filename == NULL)
2229 error (_("You must provide a filename to be loaded."));
2230
2231 validate_readnow_readnever (flags);
2232
2233 /* Print the prompt for the query below. And save the arguments into
2234 a sect_addr_info structure to be passed around to other
2235 functions. We have to split this up into separate print
2236 statements because hex_string returns a local static
2237 string. */
2238
2239 printf_unfiltered (_("add symbol table from file \"%s\""),
2240 filename.get ());
2241 section_addr_info section_addrs;
2242 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2243 if (!seen_addr)
2244 ++it;
2245 for (; it != sect_opts.end (); ++it)
2246 {
2247 CORE_ADDR addr;
2248 const char *val = it->value;
2249 const char *sec = it->name;
2250
2251 if (section_addrs.empty ())
2252 printf_unfiltered (_(" at\n"));
2253 addr = parse_and_eval_address (val);
2254
2255 /* Here we store the section offsets in the order they were
2256 entered on the command line. Every array element is
2257 assigned an ascending section index to preserve the above
2258 order over an unstable sorting algorithm. This dummy
2259 index is not used for any other purpose.
2260 */
2261 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2262 printf_filtered ("\t%s_addr = %s\n", sec,
2263 paddress (gdbarch, addr));
2264
2265 /* The object's sections are initialized when a
2266 call is made to build_objfile_section_table (objfile).
2267 This happens in reread_symbols.
2268 At this point, we don't know what file type this is,
2269 so we can't determine what section names are valid. */
2270 }
2271 if (seen_offset)
2272 printf_unfiltered (_("%s offset by %s\n"),
2273 (section_addrs.empty ()
2274 ? _(" with all sections")
2275 : _("with other sections")),
2276 paddress (gdbarch, offset));
2277 else if (section_addrs.empty ())
2278 printf_unfiltered ("\n");
2279
2280 if (from_tty && (!query ("%s", "")))
2281 error (_("Not confirmed."));
2282
2283 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2284 flags);
2285
2286 if (seen_offset)
2287 set_objfile_default_section_offset (objf, section_addrs, offset);
2288
2289 add_target_sections_of_objfile (objf);
2290
2291 /* Getting new symbols may change our opinion about what is
2292 frameless. */
2293 reinit_frame_cache ();
2294 }
2295 \f
2296
2297 /* This function removes a symbol file that was added via add-symbol-file. */
2298
2299 static void
2300 remove_symbol_file_command (const char *args, int from_tty)
2301 {
2302 struct objfile *objf = NULL;
2303 struct program_space *pspace = current_program_space;
2304
2305 dont_repeat ();
2306
2307 if (args == NULL)
2308 error (_("remove-symbol-file: no symbol file provided"));
2309
2310 gdb_argv argv (args);
2311
2312 if (strcmp (argv[0], "-a") == 0)
2313 {
2314 /* Interpret the next argument as an address. */
2315 CORE_ADDR addr;
2316
2317 if (argv[1] == NULL)
2318 error (_("Missing address argument"));
2319
2320 if (argv[2] != NULL)
2321 error (_("Junk after %s"), argv[1]);
2322
2323 addr = parse_and_eval_address (argv[1]);
2324
2325 ALL_OBJFILES (objf)
2326 {
2327 if ((objf->flags & OBJF_USERLOADED) != 0
2328 && (objf->flags & OBJF_SHARED) != 0
2329 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2330 break;
2331 }
2332 }
2333 else if (argv[0] != NULL)
2334 {
2335 /* Interpret the current argument as a file name. */
2336
2337 if (argv[1] != NULL)
2338 error (_("Junk after %s"), argv[0]);
2339
2340 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2341
2342 ALL_OBJFILES (objf)
2343 {
2344 if ((objf->flags & OBJF_USERLOADED) != 0
2345 && (objf->flags & OBJF_SHARED) != 0
2346 && objf->pspace == pspace
2347 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2348 break;
2349 }
2350 }
2351
2352 if (objf == NULL)
2353 error (_("No symbol file found"));
2354
2355 if (from_tty
2356 && !query (_("Remove symbol table from file \"%s\"? "),
2357 objfile_name (objf)))
2358 error (_("Not confirmed."));
2359
2360 delete objf;
2361 clear_symtab_users (0);
2362 }
2363
2364 /* Re-read symbols if a symbol-file has changed. */
2365
2366 void
2367 reread_symbols (void)
2368 {
2369 struct objfile *objfile;
2370 long new_modtime;
2371 struct stat new_statbuf;
2372 int res;
2373 std::vector<struct objfile *> new_objfiles;
2374
2375 /* With the addition of shared libraries, this should be modified,
2376 the load time should be saved in the partial symbol tables, since
2377 different tables may come from different source files. FIXME.
2378 This routine should then walk down each partial symbol table
2379 and see if the symbol table that it originates from has been changed. */
2380
2381 for (objfile = object_files; objfile; objfile = objfile->next)
2382 {
2383 if (objfile->obfd == NULL)
2384 continue;
2385
2386 /* Separate debug objfiles are handled in the main objfile. */
2387 if (objfile->separate_debug_objfile_backlink)
2388 continue;
2389
2390 /* If this object is from an archive (what you usually create with
2391 `ar', often called a `static library' on most systems, though
2392 a `shared library' on AIX is also an archive), then you should
2393 stat on the archive name, not member name. */
2394 if (objfile->obfd->my_archive)
2395 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2396 else
2397 res = stat (objfile_name (objfile), &new_statbuf);
2398 if (res != 0)
2399 {
2400 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2401 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2402 objfile_name (objfile));
2403 continue;
2404 }
2405 new_modtime = new_statbuf.st_mtime;
2406 if (new_modtime != objfile->mtime)
2407 {
2408 struct cleanup *old_cleanups;
2409 struct section_offsets *offsets;
2410 int num_offsets;
2411
2412 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2413 objfile_name (objfile));
2414
2415 /* There are various functions like symbol_file_add,
2416 symfile_bfd_open, syms_from_objfile, etc., which might
2417 appear to do what we want. But they have various other
2418 effects which we *don't* want. So we just do stuff
2419 ourselves. We don't worry about mapped files (for one thing,
2420 any mapped file will be out of date). */
2421
2422 /* If we get an error, blow away this objfile (not sure if
2423 that is the correct response for things like shared
2424 libraries). */
2425 std::unique_ptr<struct objfile> objfile_holder (objfile);
2426
2427 /* We need to do this whenever any symbols go away. */
2428 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2429
2430 if (exec_bfd != NULL
2431 && filename_cmp (bfd_get_filename (objfile->obfd),
2432 bfd_get_filename (exec_bfd)) == 0)
2433 {
2434 /* Reload EXEC_BFD without asking anything. */
2435
2436 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2437 }
2438
2439 /* Keep the calls order approx. the same as in free_objfile. */
2440
2441 /* Free the separate debug objfiles. It will be
2442 automatically recreated by sym_read. */
2443 free_objfile_separate_debug (objfile);
2444
2445 /* Remove any references to this objfile in the global
2446 value lists. */
2447 preserve_values (objfile);
2448
2449 /* Nuke all the state that we will re-read. Much of the following
2450 code which sets things to NULL really is necessary to tell
2451 other parts of GDB that there is nothing currently there.
2452
2453 Try to keep the freeing order compatible with free_objfile. */
2454
2455 if (objfile->sf != NULL)
2456 {
2457 (*objfile->sf->sym_finish) (objfile);
2458 }
2459
2460 clear_objfile_data (objfile);
2461
2462 /* Clean up any state BFD has sitting around. */
2463 {
2464 gdb_bfd_ref_ptr obfd (objfile->obfd);
2465 char *obfd_filename;
2466
2467 obfd_filename = bfd_get_filename (objfile->obfd);
2468 /* Open the new BFD before freeing the old one, so that
2469 the filename remains live. */
2470 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2471 objfile->obfd = temp.release ();
2472 if (objfile->obfd == NULL)
2473 error (_("Can't open %s to read symbols."), obfd_filename);
2474 }
2475
2476 std::string original_name = objfile->original_name;
2477
2478 /* bfd_openr sets cacheable to true, which is what we want. */
2479 if (!bfd_check_format (objfile->obfd, bfd_object))
2480 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2481 bfd_errmsg (bfd_get_error ()));
2482
2483 /* Save the offsets, we will nuke them with the rest of the
2484 objfile_obstack. */
2485 num_offsets = objfile->num_sections;
2486 offsets = ((struct section_offsets *)
2487 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2488 memcpy (offsets, objfile->section_offsets,
2489 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2490
2491 /* FIXME: Do we have to free a whole linked list, or is this
2492 enough? */
2493 objfile->global_psymbols.clear ();
2494 objfile->static_psymbols.clear ();
2495
2496 /* Free the obstacks for non-reusable objfiles. */
2497 psymbol_bcache_free (objfile->psymbol_cache);
2498 objfile->psymbol_cache = psymbol_bcache_init ();
2499
2500 /* NB: after this call to obstack_free, objfiles_changed
2501 will need to be called (see discussion below). */
2502 obstack_free (&objfile->objfile_obstack, 0);
2503 objfile->sections = NULL;
2504 objfile->compunit_symtabs = NULL;
2505 objfile->psymtabs = NULL;
2506 objfile->psymtabs_addrmap = NULL;
2507 objfile->free_psymtabs = NULL;
2508 objfile->template_symbols = NULL;
2509
2510 /* obstack_init also initializes the obstack so it is
2511 empty. We could use obstack_specify_allocation but
2512 gdb_obstack.h specifies the alloc/dealloc functions. */
2513 obstack_init (&objfile->objfile_obstack);
2514
2515 /* set_objfile_per_bfd potentially allocates the per-bfd
2516 data on the objfile's obstack (if sharing data across
2517 multiple users is not possible), so it's important to
2518 do it *after* the obstack has been initialized. */
2519 set_objfile_per_bfd (objfile);
2520
2521 objfile->original_name
2522 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2523 original_name.c_str (),
2524 original_name.size ());
2525
2526 /* Reset the sym_fns pointer. The ELF reader can change it
2527 based on whether .gdb_index is present, and we need it to
2528 start over. PR symtab/15885 */
2529 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2530
2531 build_objfile_section_table (objfile);
2532 terminate_minimal_symbol_table (objfile);
2533
2534 /* We use the same section offsets as from last time. I'm not
2535 sure whether that is always correct for shared libraries. */
2536 objfile->section_offsets = (struct section_offsets *)
2537 obstack_alloc (&objfile->objfile_obstack,
2538 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2539 memcpy (objfile->section_offsets, offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541 objfile->num_sections = num_offsets;
2542
2543 /* What the hell is sym_new_init for, anyway? The concept of
2544 distinguishing between the main file and additional files
2545 in this way seems rather dubious. */
2546 if (objfile == symfile_objfile)
2547 {
2548 (*objfile->sf->sym_new_init) (objfile);
2549 }
2550
2551 (*objfile->sf->sym_init) (objfile);
2552 clear_complaints (1);
2553
2554 objfile->flags &= ~OBJF_PSYMTABS_READ;
2555
2556 /* We are about to read new symbols and potentially also
2557 DWARF information. Some targets may want to pass addresses
2558 read from DWARF DIE's through an adjustment function before
2559 saving them, like MIPS, which may call into
2560 "find_pc_section". When called, that function will make
2561 use of per-objfile program space data.
2562
2563 Since we discarded our section information above, we have
2564 dangling pointers in the per-objfile program space data
2565 structure. Force GDB to update the section mapping
2566 information by letting it know the objfile has changed,
2567 making the dangling pointers point to correct data
2568 again. */
2569
2570 objfiles_changed ();
2571
2572 read_symbols (objfile, 0);
2573
2574 if (!objfile_has_symbols (objfile))
2575 {
2576 wrap_here ("");
2577 printf_filtered (_("(no debugging symbols found)\n"));
2578 wrap_here ("");
2579 }
2580
2581 /* We're done reading the symbol file; finish off complaints. */
2582 clear_complaints (0);
2583
2584 /* Getting new symbols may change our opinion about what is
2585 frameless. */
2586
2587 reinit_frame_cache ();
2588
2589 /* Discard cleanups as symbol reading was successful. */
2590 objfile_holder.release ();
2591 discard_cleanups (old_cleanups);
2592
2593 /* If the mtime has changed between the time we set new_modtime
2594 and now, we *want* this to be out of date, so don't call stat
2595 again now. */
2596 objfile->mtime = new_modtime;
2597 init_entry_point_info (objfile);
2598
2599 new_objfiles.push_back (objfile);
2600 }
2601 }
2602
2603 if (!new_objfiles.empty ())
2604 {
2605 clear_symtab_users (0);
2606
2607 /* clear_objfile_data for each objfile was called before freeing it and
2608 gdb::observers::new_objfile.notify (NULL) has been called by
2609 clear_symtab_users above. Notify the new files now. */
2610 for (auto iter : new_objfiles)
2611 gdb::observers::new_objfile.notify (iter);
2612
2613 /* At least one objfile has changed, so we can consider that
2614 the executable we're debugging has changed too. */
2615 gdb::observers::executable_changed.notify ();
2616 }
2617 }
2618 \f
2619
2620 struct filename_language
2621 {
2622 filename_language (const std::string &ext_, enum language lang_)
2623 : ext (ext_), lang (lang_)
2624 {}
2625
2626 std::string ext;
2627 enum language lang;
2628 };
2629
2630 static std::vector<filename_language> filename_language_table;
2631
2632 /* See symfile.h. */
2633
2634 void
2635 add_filename_language (const char *ext, enum language lang)
2636 {
2637 filename_language_table.emplace_back (ext, lang);
2638 }
2639
2640 static char *ext_args;
2641 static void
2642 show_ext_args (struct ui_file *file, int from_tty,
2643 struct cmd_list_element *c, const char *value)
2644 {
2645 fprintf_filtered (file,
2646 _("Mapping between filename extension "
2647 "and source language is \"%s\".\n"),
2648 value);
2649 }
2650
2651 static void
2652 set_ext_lang_command (const char *args,
2653 int from_tty, struct cmd_list_element *e)
2654 {
2655 char *cp = ext_args;
2656 enum language lang;
2657
2658 /* First arg is filename extension, starting with '.' */
2659 if (*cp != '.')
2660 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2661
2662 /* Find end of first arg. */
2663 while (*cp && !isspace (*cp))
2664 cp++;
2665
2666 if (*cp == '\0')
2667 error (_("'%s': two arguments required -- "
2668 "filename extension and language"),
2669 ext_args);
2670
2671 /* Null-terminate first arg. */
2672 *cp++ = '\0';
2673
2674 /* Find beginning of second arg, which should be a source language. */
2675 cp = skip_spaces (cp);
2676
2677 if (*cp == '\0')
2678 error (_("'%s': two arguments required -- "
2679 "filename extension and language"),
2680 ext_args);
2681
2682 /* Lookup the language from among those we know. */
2683 lang = language_enum (cp);
2684
2685 auto it = filename_language_table.begin ();
2686 /* Now lookup the filename extension: do we already know it? */
2687 for (; it != filename_language_table.end (); it++)
2688 {
2689 if (it->ext == ext_args)
2690 break;
2691 }
2692
2693 if (it == filename_language_table.end ())
2694 {
2695 /* New file extension. */
2696 add_filename_language (ext_args, lang);
2697 }
2698 else
2699 {
2700 /* Redefining a previously known filename extension. */
2701
2702 /* if (from_tty) */
2703 /* query ("Really make files of type %s '%s'?", */
2704 /* ext_args, language_str (lang)); */
2705
2706 it->lang = lang;
2707 }
2708 }
2709
2710 static void
2711 info_ext_lang_command (const char *args, int from_tty)
2712 {
2713 printf_filtered (_("Filename extensions and the languages they represent:"));
2714 printf_filtered ("\n\n");
2715 for (const filename_language &entry : filename_language_table)
2716 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2717 language_str (entry.lang));
2718 }
2719
2720 enum language
2721 deduce_language_from_filename (const char *filename)
2722 {
2723 const char *cp;
2724
2725 if (filename != NULL)
2726 if ((cp = strrchr (filename, '.')) != NULL)
2727 {
2728 for (const filename_language &entry : filename_language_table)
2729 if (entry.ext == cp)
2730 return entry.lang;
2731 }
2732
2733 return language_unknown;
2734 }
2735 \f
2736 /* Allocate and initialize a new symbol table.
2737 CUST is from the result of allocate_compunit_symtab. */
2738
2739 struct symtab *
2740 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2741 {
2742 struct objfile *objfile = cust->objfile;
2743 struct symtab *symtab
2744 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2745
2746 symtab->filename
2747 = (const char *) bcache (filename, strlen (filename) + 1,
2748 objfile->per_bfd->filename_cache);
2749 symtab->fullname = NULL;
2750 symtab->language = deduce_language_from_filename (filename);
2751
2752 /* This can be very verbose with lots of headers.
2753 Only print at higher debug levels. */
2754 if (symtab_create_debug >= 2)
2755 {
2756 /* Be a bit clever with debugging messages, and don't print objfile
2757 every time, only when it changes. */
2758 static char *last_objfile_name = NULL;
2759
2760 if (last_objfile_name == NULL
2761 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2762 {
2763 xfree (last_objfile_name);
2764 last_objfile_name = xstrdup (objfile_name (objfile));
2765 fprintf_filtered (gdb_stdlog,
2766 "Creating one or more symtabs for objfile %s ...\n",
2767 last_objfile_name);
2768 }
2769 fprintf_filtered (gdb_stdlog,
2770 "Created symtab %s for module %s.\n",
2771 host_address_to_string (symtab), filename);
2772 }
2773
2774 /* Add it to CUST's list of symtabs. */
2775 if (cust->filetabs == NULL)
2776 {
2777 cust->filetabs = symtab;
2778 cust->last_filetab = symtab;
2779 }
2780 else
2781 {
2782 cust->last_filetab->next = symtab;
2783 cust->last_filetab = symtab;
2784 }
2785
2786 /* Backlink to the containing compunit symtab. */
2787 symtab->compunit_symtab = cust;
2788
2789 return symtab;
2790 }
2791
2792 /* Allocate and initialize a new compunit.
2793 NAME is the name of the main source file, if there is one, or some
2794 descriptive text if there are no source files. */
2795
2796 struct compunit_symtab *
2797 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2798 {
2799 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct compunit_symtab);
2801 const char *saved_name;
2802
2803 cu->objfile = objfile;
2804
2805 /* The name we record here is only for display/debugging purposes.
2806 Just save the basename to avoid path issues (too long for display,
2807 relative vs absolute, etc.). */
2808 saved_name = lbasename (name);
2809 cu->name
2810 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2811 strlen (saved_name));
2812
2813 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2814
2815 if (symtab_create_debug)
2816 {
2817 fprintf_filtered (gdb_stdlog,
2818 "Created compunit symtab %s for %s.\n",
2819 host_address_to_string (cu),
2820 cu->name);
2821 }
2822
2823 return cu;
2824 }
2825
2826 /* Hook CU to the objfile it comes from. */
2827
2828 void
2829 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2830 {
2831 cu->next = cu->objfile->compunit_symtabs;
2832 cu->objfile->compunit_symtabs = cu;
2833 }
2834 \f
2835
2836 /* Reset all data structures in gdb which may contain references to
2837 symbol table data. */
2838
2839 void
2840 clear_symtab_users (symfile_add_flags add_flags)
2841 {
2842 /* Someday, we should do better than this, by only blowing away
2843 the things that really need to be blown. */
2844
2845 /* Clear the "current" symtab first, because it is no longer valid.
2846 breakpoint_re_set may try to access the current symtab. */
2847 clear_current_source_symtab_and_line ();
2848
2849 clear_displays ();
2850 clear_last_displayed_sal ();
2851 clear_pc_function_cache ();
2852 gdb::observers::new_objfile.notify (NULL);
2853
2854 /* Clear globals which might have pointed into a removed objfile.
2855 FIXME: It's not clear which of these are supposed to persist
2856 between expressions and which ought to be reset each time. */
2857 expression_context_block = NULL;
2858 innermost_block.reset ();
2859
2860 /* Varobj may refer to old symbols, perform a cleanup. */
2861 varobj_invalidate ();
2862
2863 /* Now that the various caches have been cleared, we can re_set
2864 our breakpoints without risking it using stale data. */
2865 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2866 breakpoint_re_set ();
2867 }
2868
2869 static void
2870 clear_symtab_users_cleanup (void *ignore)
2871 {
2872 clear_symtab_users (0);
2873 }
2874 \f
2875 /* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
2880 same VMA, each with its own unique LMA (or load address).
2881 2) It is assumed that some runtime mechanism exists for mapping the
2882 sections, one by one, from the load address into the VMA address.
2883 3) This code provides a mechanism for gdb to keep track of which
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
2886 For instance, if a section has been mapped then its contents
2887 should be read from the VMA, otherwise from the LMA.
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
2910 find_pc_overlay(pc): find any overlay section that contains
2911 the pc, either in its VMA or its LMA
2912 section_is_mapped(sect): true if overlay is marked as mapped
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
2921 the symbol's section is currently mapped. */
2922
2923 /* Overlay debugging state: */
2924
2925 enum overlay_debugging_state overlay_debugging = ovly_off;
2926 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2927
2928 /* Function: section_is_overlay (SECTION)
2929 Returns true if SECTION has VMA not equal to LMA, ie.
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932 int
2933 section_is_overlay (struct obj_section *section)
2934 {
2935 if (overlay_debugging && section)
2936 {
2937 asection *bfd_section = section->the_bfd_section;
2938
2939 if (bfd_section_lma (abfd, bfd_section) != 0
2940 && bfd_section_lma (abfd, bfd_section)
2941 != bfd_section_vma (abfd, bfd_section))
2942 return 1;
2943 }
2944
2945 return 0;
2946 }
2947
2948 /* Function: overlay_invalidate_all (void)
2949 Invalidate the mapped state of all overlay sections (mark it as stale). */
2950
2951 static void
2952 overlay_invalidate_all (void)
2953 {
2954 struct objfile *objfile;
2955 struct obj_section *sect;
2956
2957 ALL_OBJSECTIONS (objfile, sect)
2958 if (section_is_overlay (sect))
2959 sect->ovly_mapped = -1;
2960 }
2961
2962 /* Function: section_is_mapped (SECTION)
2963 Returns true if section is an overlay, and is currently mapped.
2964
2965 Access to the ovly_mapped flag is restricted to this function, so
2966 that we can do automatic update. If the global flag
2967 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2968 overlay_invalidate_all. If the mapped state of the particular
2969 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2970
2971 int
2972 section_is_mapped (struct obj_section *osect)
2973 {
2974 struct gdbarch *gdbarch;
2975
2976 if (osect == 0 || !section_is_overlay (osect))
2977 return 0;
2978
2979 switch (overlay_debugging)
2980 {
2981 default:
2982 case ovly_off:
2983 return 0; /* overlay debugging off */
2984 case ovly_auto: /* overlay debugging automatic */
2985 /* Unles there is a gdbarch_overlay_update function,
2986 there's really nothing useful to do here (can't really go auto). */
2987 gdbarch = get_objfile_arch (osect->objfile);
2988 if (gdbarch_overlay_update_p (gdbarch))
2989 {
2990 if (overlay_cache_invalid)
2991 {
2992 overlay_invalidate_all ();
2993 overlay_cache_invalid = 0;
2994 }
2995 if (osect->ovly_mapped == -1)
2996 gdbarch_overlay_update (gdbarch, osect);
2997 }
2998 /* fall thru */
2999 case ovly_on: /* overlay debugging manual */
3000 return osect->ovly_mapped == 1;
3001 }
3002 }
3003
3004 /* Function: pc_in_unmapped_range
3005 If PC falls into the lma range of SECTION, return true, else false. */
3006
3007 CORE_ADDR
3008 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3009 {
3010 if (section_is_overlay (section))
3011 {
3012 bfd *abfd = section->objfile->obfd;
3013 asection *bfd_section = section->the_bfd_section;
3014
3015 /* We assume the LMA is relocated by the same offset as the VMA. */
3016 bfd_vma size = bfd_get_section_size (bfd_section);
3017 CORE_ADDR offset = obj_section_offset (section);
3018
3019 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3020 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3021 return 1;
3022 }
3023
3024 return 0;
3025 }
3026
3027 /* Function: pc_in_mapped_range
3028 If PC falls into the vma range of SECTION, return true, else false. */
3029
3030 CORE_ADDR
3031 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3032 {
3033 if (section_is_overlay (section))
3034 {
3035 if (obj_section_addr (section) <= pc
3036 && pc < obj_section_endaddr (section))
3037 return 1;
3038 }
3039
3040 return 0;
3041 }
3042
3043 /* Return true if the mapped ranges of sections A and B overlap, false
3044 otherwise. */
3045
3046 static int
3047 sections_overlap (struct obj_section *a, struct obj_section *b)
3048 {
3049 CORE_ADDR a_start = obj_section_addr (a);
3050 CORE_ADDR a_end = obj_section_endaddr (a);
3051 CORE_ADDR b_start = obj_section_addr (b);
3052 CORE_ADDR b_end = obj_section_endaddr (b);
3053
3054 return (a_start < b_end && b_start < a_end);
3055 }
3056
3057 /* Function: overlay_unmapped_address (PC, SECTION)
3058 Returns the address corresponding to PC in the unmapped (load) range.
3059 May be the same as PC. */
3060
3061 CORE_ADDR
3062 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3063 {
3064 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3065 {
3066 asection *bfd_section = section->the_bfd_section;
3067
3068 return pc + bfd_section_lma (abfd, bfd_section)
3069 - bfd_section_vma (abfd, bfd_section);
3070 }
3071
3072 return pc;
3073 }
3074
3075 /* Function: overlay_mapped_address (PC, SECTION)
3076 Returns the address corresponding to PC in the mapped (runtime) range.
3077 May be the same as PC. */
3078
3079 CORE_ADDR
3080 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3081 {
3082 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3083 {
3084 asection *bfd_section = section->the_bfd_section;
3085
3086 return pc + bfd_section_vma (abfd, bfd_section)
3087 - bfd_section_lma (abfd, bfd_section);
3088 }
3089
3090 return pc;
3091 }
3092
3093 /* Function: symbol_overlayed_address
3094 Return one of two addresses (relative to the VMA or to the LMA),
3095 depending on whether the section is mapped or not. */
3096
3097 CORE_ADDR
3098 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3099 {
3100 if (overlay_debugging)
3101 {
3102 /* If the symbol has no section, just return its regular address. */
3103 if (section == 0)
3104 return address;
3105 /* If the symbol's section is not an overlay, just return its
3106 address. */
3107 if (!section_is_overlay (section))
3108 return address;
3109 /* If the symbol's section is mapped, just return its address. */
3110 if (section_is_mapped (section))
3111 return address;
3112 /*
3113 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3114 * then return its LOADED address rather than its vma address!!
3115 */
3116 return overlay_unmapped_address (address, section);
3117 }
3118 return address;
3119 }
3120
3121 /* Function: find_pc_overlay (PC)
3122 Return the best-match overlay section for PC:
3123 If PC matches a mapped overlay section's VMA, return that section.
3124 Else if PC matches an unmapped section's VMA, return that section.
3125 Else if PC matches an unmapped section's LMA, return that section. */
3126
3127 struct obj_section *
3128 find_pc_overlay (CORE_ADDR pc)
3129 {
3130 struct objfile *objfile;
3131 struct obj_section *osect, *best_match = NULL;
3132
3133 if (overlay_debugging)
3134 {
3135 ALL_OBJSECTIONS (objfile, osect)
3136 if (section_is_overlay (osect))
3137 {
3138 if (pc_in_mapped_range (pc, osect))
3139 {
3140 if (section_is_mapped (osect))
3141 return osect;
3142 else
3143 best_match = osect;
3144 }
3145 else if (pc_in_unmapped_range (pc, osect))
3146 best_match = osect;
3147 }
3148 }
3149 return best_match;
3150 }
3151
3152 /* Function: find_pc_mapped_section (PC)
3153 If PC falls into the VMA address range of an overlay section that is
3154 currently marked as MAPPED, return that section. Else return NULL. */
3155
3156 struct obj_section *
3157 find_pc_mapped_section (CORE_ADDR pc)
3158 {
3159 struct objfile *objfile;
3160 struct obj_section *osect;
3161
3162 if (overlay_debugging)
3163 {
3164 ALL_OBJSECTIONS (objfile, osect)
3165 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3166 return osect;
3167 }
3168
3169 return NULL;
3170 }
3171
3172 /* Function: list_overlays_command
3173 Print a list of mapped sections and their PC ranges. */
3174
3175 static void
3176 list_overlays_command (const char *args, int from_tty)
3177 {
3178 int nmapped = 0;
3179 struct objfile *objfile;
3180 struct obj_section *osect;
3181
3182 if (overlay_debugging)
3183 {
3184 ALL_OBJSECTIONS (objfile, osect)
3185 if (section_is_mapped (osect))
3186 {
3187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3188 const char *name;
3189 bfd_vma lma, vma;
3190 int size;
3191
3192 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3193 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3194 size = bfd_get_section_size (osect->the_bfd_section);
3195 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3196
3197 printf_filtered ("Section %s, loaded at ", name);
3198 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3199 puts_filtered (" - ");
3200 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3201 printf_filtered (", mapped at ");
3202 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3203 puts_filtered (" - ");
3204 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3205 puts_filtered ("\n");
3206
3207 nmapped++;
3208 }
3209 }
3210 if (nmapped == 0)
3211 printf_filtered (_("No sections are mapped.\n"));
3212 }
3213
3214 /* Function: map_overlay_command
3215 Mark the named section as mapped (ie. residing at its VMA address). */
3216
3217 static void
3218 map_overlay_command (const char *args, int from_tty)
3219 {
3220 struct objfile *objfile, *objfile2;
3221 struct obj_section *sec, *sec2;
3222
3223 if (!overlay_debugging)
3224 error (_("Overlay debugging not enabled. Use "
3225 "either the 'overlay auto' or\n"
3226 "the 'overlay manual' command."));
3227
3228 if (args == 0 || *args == 0)
3229 error (_("Argument required: name of an overlay section"));
3230
3231 /* First, find a section matching the user supplied argument. */
3232 ALL_OBJSECTIONS (objfile, sec)
3233 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3234 {
3235 /* Now, check to see if the section is an overlay. */
3236 if (!section_is_overlay (sec))
3237 continue; /* not an overlay section */
3238
3239 /* Mark the overlay as "mapped". */
3240 sec->ovly_mapped = 1;
3241
3242 /* Next, make a pass and unmap any sections that are
3243 overlapped by this new section: */
3244 ALL_OBJSECTIONS (objfile2, sec2)
3245 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3246 {
3247 if (info_verbose)
3248 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3249 bfd_section_name (objfile->obfd,
3250 sec2->the_bfd_section));
3251 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3252 }
3253 return;
3254 }
3255 error (_("No overlay section called %s"), args);
3256 }
3257
3258 /* Function: unmap_overlay_command
3259 Mark the overlay section as unmapped
3260 (ie. resident in its LMA address range, rather than the VMA range). */
3261
3262 static void
3263 unmap_overlay_command (const char *args, int from_tty)
3264 {
3265 struct objfile *objfile;
3266 struct obj_section *sec = NULL;
3267
3268 if (!overlay_debugging)
3269 error (_("Overlay debugging not enabled. "
3270 "Use either the 'overlay auto' or\n"
3271 "the 'overlay manual' command."));
3272
3273 if (args == 0 || *args == 0)
3274 error (_("Argument required: name of an overlay section"));
3275
3276 /* First, find a section matching the user supplied argument. */
3277 ALL_OBJSECTIONS (objfile, sec)
3278 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3279 {
3280 if (!sec->ovly_mapped)
3281 error (_("Section %s is not mapped"), args);
3282 sec->ovly_mapped = 0;
3283 return;
3284 }
3285 error (_("No overlay section called %s"), args);
3286 }
3287
3288 /* Function: overlay_auto_command
3289 A utility command to turn on overlay debugging.
3290 Possibly this should be done via a set/show command. */
3291
3292 static void
3293 overlay_auto_command (const char *args, int from_tty)
3294 {
3295 overlay_debugging = ovly_auto;
3296 enable_overlay_breakpoints ();
3297 if (info_verbose)
3298 printf_unfiltered (_("Automatic overlay debugging enabled."));
3299 }
3300
3301 /* Function: overlay_manual_command
3302 A utility command to turn on overlay debugging.
3303 Possibly this should be done via a set/show command. */
3304
3305 static void
3306 overlay_manual_command (const char *args, int from_tty)
3307 {
3308 overlay_debugging = ovly_on;
3309 disable_overlay_breakpoints ();
3310 if (info_verbose)
3311 printf_unfiltered (_("Overlay debugging enabled."));
3312 }
3313
3314 /* Function: overlay_off_command
3315 A utility command to turn on overlay debugging.
3316 Possibly this should be done via a set/show command. */
3317
3318 static void
3319 overlay_off_command (const char *args, int from_tty)
3320 {
3321 overlay_debugging = ovly_off;
3322 disable_overlay_breakpoints ();
3323 if (info_verbose)
3324 printf_unfiltered (_("Overlay debugging disabled."));
3325 }
3326
3327 static void
3328 overlay_load_command (const char *args, int from_tty)
3329 {
3330 struct gdbarch *gdbarch = get_current_arch ();
3331
3332 if (gdbarch_overlay_update_p (gdbarch))
3333 gdbarch_overlay_update (gdbarch, NULL);
3334 else
3335 error (_("This target does not know how to read its overlay state."));
3336 }
3337
3338 /* Function: overlay_command
3339 A place-holder for a mis-typed command. */
3340
3341 /* Command list chain containing all defined "overlay" subcommands. */
3342 static struct cmd_list_element *overlaylist;
3343
3344 static void
3345 overlay_command (const char *args, int from_tty)
3346 {
3347 printf_unfiltered
3348 ("\"overlay\" must be followed by the name of an overlay command.\n");
3349 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3350 }
3351
3352 /* Target Overlays for the "Simplest" overlay manager:
3353
3354 This is GDB's default target overlay layer. It works with the
3355 minimal overlay manager supplied as an example by Cygnus. The
3356 entry point is via a function pointer "gdbarch_overlay_update",
3357 so targets that use a different runtime overlay manager can
3358 substitute their own overlay_update function and take over the
3359 function pointer.
3360
3361 The overlay_update function pokes around in the target's data structures
3362 to see what overlays are mapped, and updates GDB's overlay mapping with
3363 this information.
3364
3365 In this simple implementation, the target data structures are as follows:
3366 unsigned _novlys; /# number of overlay sections #/
3367 unsigned _ovly_table[_novlys][4] = {
3368 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3369 {..., ..., ..., ...},
3370 }
3371 unsigned _novly_regions; /# number of overlay regions #/
3372 unsigned _ovly_region_table[_novly_regions][3] = {
3373 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3374 {..., ..., ...},
3375 }
3376 These functions will attempt to update GDB's mappedness state in the
3377 symbol section table, based on the target's mappedness state.
3378
3379 To do this, we keep a cached copy of the target's _ovly_table, and
3380 attempt to detect when the cached copy is invalidated. The main
3381 entry point is "simple_overlay_update(SECT), which looks up SECT in
3382 the cached table and re-reads only the entry for that section from
3383 the target (whenever possible). */
3384
3385 /* Cached, dynamically allocated copies of the target data structures: */
3386 static unsigned (*cache_ovly_table)[4] = 0;
3387 static unsigned cache_novlys = 0;
3388 static CORE_ADDR cache_ovly_table_base = 0;
3389 enum ovly_index
3390 {
3391 VMA, OSIZE, LMA, MAPPED
3392 };
3393
3394 /* Throw away the cached copy of _ovly_table. */
3395
3396 static void
3397 simple_free_overlay_table (void)
3398 {
3399 if (cache_ovly_table)
3400 xfree (cache_ovly_table);
3401 cache_novlys = 0;
3402 cache_ovly_table = NULL;
3403 cache_ovly_table_base = 0;
3404 }
3405
3406 /* Read an array of ints of size SIZE from the target into a local buffer.
3407 Convert to host order. int LEN is number of ints. */
3408
3409 static void
3410 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3411 int len, int size, enum bfd_endian byte_order)
3412 {
3413 /* FIXME (alloca): Not safe if array is very large. */
3414 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3415 int i;
3416
3417 read_memory (memaddr, buf, len * size);
3418 for (i = 0; i < len; i++)
3419 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3420 }
3421
3422 /* Find and grab a copy of the target _ovly_table
3423 (and _novlys, which is needed for the table's size). */
3424
3425 static int
3426 simple_read_overlay_table (void)
3427 {
3428 struct bound_minimal_symbol novlys_msym;
3429 struct bound_minimal_symbol ovly_table_msym;
3430 struct gdbarch *gdbarch;
3431 int word_size;
3432 enum bfd_endian byte_order;
3433
3434 simple_free_overlay_table ();
3435 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3436 if (! novlys_msym.minsym)
3437 {
3438 error (_("Error reading inferior's overlay table: "
3439 "couldn't find `_novlys' variable\n"
3440 "in inferior. Use `overlay manual' mode."));
3441 return 0;
3442 }
3443
3444 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3445 if (! ovly_table_msym.minsym)
3446 {
3447 error (_("Error reading inferior's overlay table: couldn't find "
3448 "`_ovly_table' array\n"
3449 "in inferior. Use `overlay manual' mode."));
3450 return 0;
3451 }
3452
3453 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3454 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3455 byte_order = gdbarch_byte_order (gdbarch);
3456
3457 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3458 4, byte_order);
3459 cache_ovly_table
3460 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3461 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3462 read_target_long_array (cache_ovly_table_base,
3463 (unsigned int *) cache_ovly_table,
3464 cache_novlys * 4, word_size, byte_order);
3465
3466 return 1; /* SUCCESS */
3467 }
3468
3469 /* Function: simple_overlay_update_1
3470 A helper function for simple_overlay_update. Assuming a cached copy
3471 of _ovly_table exists, look through it to find an entry whose vma,
3472 lma and size match those of OSECT. Re-read the entry and make sure
3473 it still matches OSECT (else the table may no longer be valid).
3474 Set OSECT's mapped state to match the entry. Return: 1 for
3475 success, 0 for failure. */
3476
3477 static int
3478 simple_overlay_update_1 (struct obj_section *osect)
3479 {
3480 int i;
3481 asection *bsect = osect->the_bfd_section;
3482 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3483 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3485
3486 for (i = 0; i < cache_novlys; i++)
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3489 {
3490 read_target_long_array (cache_ovly_table_base + i * word_size,
3491 (unsigned int *) cache_ovly_table[i],
3492 4, word_size, byte_order);
3493 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3494 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3495 {
3496 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3497 return 1;
3498 }
3499 else /* Warning! Warning! Target's ovly table has changed! */
3500 return 0;
3501 }
3502 return 0;
3503 }
3504
3505 /* Function: simple_overlay_update
3506 If OSECT is NULL, then update all sections' mapped state
3507 (after re-reading the entire target _ovly_table).
3508 If OSECT is non-NULL, then try to find a matching entry in the
3509 cached ovly_table and update only OSECT's mapped state.
3510 If a cached entry can't be found or the cache isn't valid, then
3511 re-read the entire cache, and go ahead and update all sections. */
3512
3513 void
3514 simple_overlay_update (struct obj_section *osect)
3515 {
3516 struct objfile *objfile;
3517
3518 /* Were we given an osect to look up? NULL means do all of them. */
3519 if (osect)
3520 /* Have we got a cached copy of the target's overlay table? */
3521 if (cache_ovly_table != NULL)
3522 {
3523 /* Does its cached location match what's currently in the
3524 symtab? */
3525 struct bound_minimal_symbol minsym
3526 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3527
3528 if (minsym.minsym == NULL)
3529 error (_("Error reading inferior's overlay table: couldn't "
3530 "find `_ovly_table' array\n"
3531 "in inferior. Use `overlay manual' mode."));
3532
3533 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3534 /* Then go ahead and try to look up this single section in
3535 the cache. */
3536 if (simple_overlay_update_1 (osect))
3537 /* Found it! We're done. */
3538 return;
3539 }
3540
3541 /* Cached table no good: need to read the entire table anew.
3542 Or else we want all the sections, in which case it's actually
3543 more efficient to read the whole table in one block anyway. */
3544
3545 if (! simple_read_overlay_table ())
3546 return;
3547
3548 /* Now may as well update all sections, even if only one was requested. */
3549 ALL_OBJSECTIONS (objfile, osect)
3550 if (section_is_overlay (osect))
3551 {
3552 int i;
3553 asection *bsect = osect->the_bfd_section;
3554
3555 for (i = 0; i < cache_novlys; i++)
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3558 { /* obj_section matches i'th entry in ovly_table. */
3559 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3560 break; /* finished with inner for loop: break out. */
3561 }
3562 }
3563 }
3564
3565 /* Set the output sections and output offsets for section SECTP in
3566 ABFD. The relocation code in BFD will read these offsets, so we
3567 need to be sure they're initialized. We map each section to itself,
3568 with no offset; this means that SECTP->vma will be honored. */
3569
3570 static void
3571 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3572 {
3573 sectp->output_section = sectp;
3574 sectp->output_offset = 0;
3575 }
3576
3577 /* Default implementation for sym_relocate. */
3578
3579 bfd_byte *
3580 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3581 bfd_byte *buf)
3582 {
3583 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3584 DWO file. */
3585 bfd *abfd = sectp->owner;
3586
3587 /* We're only interested in sections with relocation
3588 information. */
3589 if ((sectp->flags & SEC_RELOC) == 0)
3590 return NULL;
3591
3592 /* We will handle section offsets properly elsewhere, so relocate as if
3593 all sections begin at 0. */
3594 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3595
3596 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3597 }
3598
3599 /* Relocate the contents of a debug section SECTP in ABFD. The
3600 contents are stored in BUF if it is non-NULL, or returned in a
3601 malloc'd buffer otherwise.
3602
3603 For some platforms and debug info formats, shared libraries contain
3604 relocations against the debug sections (particularly for DWARF-2;
3605 one affected platform is PowerPC GNU/Linux, although it depends on
3606 the version of the linker in use). Also, ELF object files naturally
3607 have unresolved relocations for their debug sections. We need to apply
3608 the relocations in order to get the locations of symbols correct.
3609 Another example that may require relocation processing, is the
3610 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3611 debug section. */
3612
3613 bfd_byte *
3614 symfile_relocate_debug_section (struct objfile *objfile,
3615 asection *sectp, bfd_byte *buf)
3616 {
3617 gdb_assert (objfile->sf->sym_relocate);
3618
3619 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3620 }
3621
3622 struct symfile_segment_data *
3623 get_symfile_segment_data (bfd *abfd)
3624 {
3625 const struct sym_fns *sf = find_sym_fns (abfd);
3626
3627 if (sf == NULL)
3628 return NULL;
3629
3630 return sf->sym_segments (abfd);
3631 }
3632
3633 void
3634 free_symfile_segment_data (struct symfile_segment_data *data)
3635 {
3636 xfree (data->segment_bases);
3637 xfree (data->segment_sizes);
3638 xfree (data->segment_info);
3639 xfree (data);
3640 }
3641
3642 /* Given:
3643 - DATA, containing segment addresses from the object file ABFD, and
3644 the mapping from ABFD's sections onto the segments that own them,
3645 and
3646 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3647 segment addresses reported by the target,
3648 store the appropriate offsets for each section in OFFSETS.
3649
3650 If there are fewer entries in SEGMENT_BASES than there are segments
3651 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3652
3653 If there are more entries, then ignore the extra. The target may
3654 not be able to distinguish between an empty data segment and a
3655 missing data segment; a missing text segment is less plausible. */
3656
3657 int
3658 symfile_map_offsets_to_segments (bfd *abfd,
3659 const struct symfile_segment_data *data,
3660 struct section_offsets *offsets,
3661 int num_segment_bases,
3662 const CORE_ADDR *segment_bases)
3663 {
3664 int i;
3665 asection *sect;
3666
3667 /* It doesn't make sense to call this function unless you have some
3668 segment base addresses. */
3669 gdb_assert (num_segment_bases > 0);
3670
3671 /* If we do not have segment mappings for the object file, we
3672 can not relocate it by segments. */
3673 gdb_assert (data != NULL);
3674 gdb_assert (data->num_segments > 0);
3675
3676 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3677 {
3678 int which = data->segment_info[i];
3679
3680 gdb_assert (0 <= which && which <= data->num_segments);
3681
3682 /* Don't bother computing offsets for sections that aren't
3683 loaded as part of any segment. */
3684 if (! which)
3685 continue;
3686
3687 /* Use the last SEGMENT_BASES entry as the address of any extra
3688 segments mentioned in DATA->segment_info. */
3689 if (which > num_segment_bases)
3690 which = num_segment_bases;
3691
3692 offsets->offsets[i] = (segment_bases[which - 1]
3693 - data->segment_bases[which - 1]);
3694 }
3695
3696 return 1;
3697 }
3698
3699 static void
3700 symfile_find_segment_sections (struct objfile *objfile)
3701 {
3702 bfd *abfd = objfile->obfd;
3703 int i;
3704 asection *sect;
3705 struct symfile_segment_data *data;
3706
3707 data = get_symfile_segment_data (objfile->obfd);
3708 if (data == NULL)
3709 return;
3710
3711 if (data->num_segments != 1 && data->num_segments != 2)
3712 {
3713 free_symfile_segment_data (data);
3714 return;
3715 }
3716
3717 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3718 {
3719 int which = data->segment_info[i];
3720
3721 if (which == 1)
3722 {
3723 if (objfile->sect_index_text == -1)
3724 objfile->sect_index_text = sect->index;
3725
3726 if (objfile->sect_index_rodata == -1)
3727 objfile->sect_index_rodata = sect->index;
3728 }
3729 else if (which == 2)
3730 {
3731 if (objfile->sect_index_data == -1)
3732 objfile->sect_index_data = sect->index;
3733
3734 if (objfile->sect_index_bss == -1)
3735 objfile->sect_index_bss = sect->index;
3736 }
3737 }
3738
3739 free_symfile_segment_data (data);
3740 }
3741
3742 /* Listen for free_objfile events. */
3743
3744 static void
3745 symfile_free_objfile (struct objfile *objfile)
3746 {
3747 /* Remove the target sections owned by this objfile. */
3748 if (objfile != NULL)
3749 remove_target_sections ((void *) objfile);
3750 }
3751
3752 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3753 Expand all symtabs that match the specified criteria.
3754 See quick_symbol_functions.expand_symtabs_matching for details. */
3755
3756 void
3757 expand_symtabs_matching
3758 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3759 const lookup_name_info &lookup_name,
3760 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3761 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3762 enum search_domain kind)
3763 {
3764 struct objfile *objfile;
3765
3766 ALL_OBJFILES (objfile)
3767 {
3768 if (objfile->sf)
3769 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3770 lookup_name,
3771 symbol_matcher,
3772 expansion_notify, kind);
3773 }
3774 }
3775
3776 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3777 Map function FUN over every file.
3778 See quick_symbol_functions.map_symbol_filenames for details. */
3779
3780 void
3781 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3782 int need_fullname)
3783 {
3784 struct objfile *objfile;
3785
3786 ALL_OBJFILES (objfile)
3787 {
3788 if (objfile->sf)
3789 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3790 need_fullname);
3791 }
3792 }
3793
3794 #if GDB_SELF_TEST
3795
3796 namespace selftests {
3797 namespace filename_language {
3798
3799 static void test_filename_language ()
3800 {
3801 /* This test messes up the filename_language_table global. */
3802 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3803
3804 /* Test deducing an unknown extension. */
3805 language lang = deduce_language_from_filename ("myfile.blah");
3806 SELF_CHECK (lang == language_unknown);
3807
3808 /* Test deducing a known extension. */
3809 lang = deduce_language_from_filename ("myfile.c");
3810 SELF_CHECK (lang == language_c);
3811
3812 /* Test adding a new extension using the internal API. */
3813 add_filename_language (".blah", language_pascal);
3814 lang = deduce_language_from_filename ("myfile.blah");
3815 SELF_CHECK (lang == language_pascal);
3816 }
3817
3818 static void
3819 test_set_ext_lang_command ()
3820 {
3821 /* This test messes up the filename_language_table global. */
3822 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3823
3824 /* Confirm that the .hello extension is not known. */
3825 language lang = deduce_language_from_filename ("cake.hello");
3826 SELF_CHECK (lang == language_unknown);
3827
3828 /* Test adding a new extension using the CLI command. */
3829 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3830 ext_args = args_holder.get ();
3831 set_ext_lang_command (NULL, 1, NULL);
3832
3833 lang = deduce_language_from_filename ("cake.hello");
3834 SELF_CHECK (lang == language_rust);
3835
3836 /* Test overriding an existing extension using the CLI command. */
3837 int size_before = filename_language_table.size ();
3838 args_holder.reset (xstrdup (".hello pascal"));
3839 ext_args = args_holder.get ();
3840 set_ext_lang_command (NULL, 1, NULL);
3841 int size_after = filename_language_table.size ();
3842
3843 lang = deduce_language_from_filename ("cake.hello");
3844 SELF_CHECK (lang == language_pascal);
3845 SELF_CHECK (size_before == size_after);
3846 }
3847
3848 } /* namespace filename_language */
3849 } /* namespace selftests */
3850
3851 #endif /* GDB_SELF_TEST */
3852
3853 void
3854 _initialize_symfile (void)
3855 {
3856 struct cmd_list_element *c;
3857
3858 gdb::observers::free_objfile.attach (symfile_free_objfile);
3859
3860 #define READNOW_READNEVER_HELP \
3861 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3862 immediately. This makes the command slower, but may make future operations\n\
3863 faster.\n\
3864 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3865 symbolic debug information."
3866
3867 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3868 Load symbol table from executable file FILE.\n\
3869 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3870 OFF is an optional offset which is added to each section address.\n\
3871 The `file' command can also load symbol tables, as well as setting the file\n\
3872 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3873 set_cmd_completer (c, filename_completer);
3874
3875 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3876 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3877 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3878 [-s SECT-NAME SECT-ADDR]...\n\
3879 ADDR is the starting address of the file's text.\n\
3880 Each '-s' argument provides a section name and address, and\n\
3881 should be specified if the data and bss segments are not contiguous\n\
3882 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3883 OFF is an optional offset which is added to the default load addresses\n\
3884 of all sections for which no other address was specified.\n"
3885 READNOW_READNEVER_HELP),
3886 &cmdlist);
3887 set_cmd_completer (c, filename_completer);
3888
3889 c = add_cmd ("remove-symbol-file", class_files,
3890 remove_symbol_file_command, _("\
3891 Remove a symbol file added via the add-symbol-file command.\n\
3892 Usage: remove-symbol-file FILENAME\n\
3893 remove-symbol-file -a ADDRESS\n\
3894 The file to remove can be identified by its filename or by an address\n\
3895 that lies within the boundaries of this symbol file in memory."),
3896 &cmdlist);
3897
3898 c = add_cmd ("load", class_files, load_command, _("\
3899 Dynamically load FILE into the running program, and record its symbols\n\
3900 for access from GDB.\n\
3901 Usage: load [FILE] [OFFSET]\n\
3902 An optional load OFFSET may also be given as a literal address.\n\
3903 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3904 on its own."), &cmdlist);
3905 set_cmd_completer (c, filename_completer);
3906
3907 add_prefix_cmd ("overlay", class_support, overlay_command,
3908 _("Commands for debugging overlays."), &overlaylist,
3909 "overlay ", 0, &cmdlist);
3910
3911 add_com_alias ("ovly", "overlay", class_alias, 1);
3912 add_com_alias ("ov", "overlay", class_alias, 1);
3913
3914 add_cmd ("map-overlay", class_support, map_overlay_command,
3915 _("Assert that an overlay section is mapped."), &overlaylist);
3916
3917 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3918 _("Assert that an overlay section is unmapped."), &overlaylist);
3919
3920 add_cmd ("list-overlays", class_support, list_overlays_command,
3921 _("List mappings of overlay sections."), &overlaylist);
3922
3923 add_cmd ("manual", class_support, overlay_manual_command,
3924 _("Enable overlay debugging."), &overlaylist);
3925 add_cmd ("off", class_support, overlay_off_command,
3926 _("Disable overlay debugging."), &overlaylist);
3927 add_cmd ("auto", class_support, overlay_auto_command,
3928 _("Enable automatic overlay debugging."), &overlaylist);
3929 add_cmd ("load-target", class_support, overlay_load_command,
3930 _("Read the overlay mapping state from the target."), &overlaylist);
3931
3932 /* Filename extension to source language lookup table: */
3933 add_setshow_string_noescape_cmd ("extension-language", class_files,
3934 &ext_args, _("\
3935 Set mapping between filename extension and source language."), _("\
3936 Show mapping between filename extension and source language."), _("\
3937 Usage: set extension-language .foo bar"),
3938 set_ext_lang_command,
3939 show_ext_args,
3940 &setlist, &showlist);
3941
3942 add_info ("extensions", info_ext_lang_command,
3943 _("All filename extensions associated with a source language."));
3944
3945 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3946 &debug_file_directory, _("\
3947 Set the directories where separate debug symbols are searched for."), _("\
3948 Show the directories where separate debug symbols are searched for."), _("\
3949 Separate debug symbols are first searched for in the same\n\
3950 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3951 and lastly at the path of the directory of the binary with\n\
3952 each global debug-file-directory component prepended."),
3953 NULL,
3954 show_debug_file_directory,
3955 &setlist, &showlist);
3956
3957 add_setshow_enum_cmd ("symbol-loading", no_class,
3958 print_symbol_loading_enums, &print_symbol_loading,
3959 _("\
3960 Set printing of symbol loading messages."), _("\
3961 Show printing of symbol loading messages."), _("\
3962 off == turn all messages off\n\
3963 brief == print messages for the executable,\n\
3964 and brief messages for shared libraries\n\
3965 full == print messages for the executable,\n\
3966 and messages for each shared library."),
3967 NULL,
3968 NULL,
3969 &setprintlist, &showprintlist);
3970
3971 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3972 &separate_debug_file_debug, _("\
3973 Set printing of separate debug info file search debug."), _("\
3974 Show printing of separate debug info file search debug."), _("\
3975 When on, GDB prints the searched locations while looking for separate debug \
3976 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3977
3978 #if GDB_SELF_TEST
3979 selftests::register_test
3980 ("filename_language", selftests::filename_language::test_filename_language);
3981 selftests::register_test
3982 ("set_ext_lang_command",
3983 selftests::filename_language::test_set_ext_lang_command);
3984 #endif
3985 }
This page took 0.107906 seconds and 5 git commands to generate.