Clear static_links in reread_symbols
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
923 {
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
949
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
953 if (! addrs)
954 addrs = &local_addr;
955
956 if (mainline)
957 {
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
974
975 (*objfile->sf->sym_new_init) (objfile);
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
981
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
990
991 (*objfile->sf->sym_init) (objfile);
992 clear_complaints ();
993
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
995
996 read_symbols (objfile, add_flags);
997
998 /* Discard cleanups as symbol reading was successful. */
999
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1002 }
1003
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
1007 static void
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1011 {
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1014 }
1015
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1019
1020 static void
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1022 {
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
1031 clear_symtab_users (add_flags);
1032 }
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1034 {
1035 breakpoint_re_set ();
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints ();
1040 }
1041
1042 /* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1047
1048 For NAME description see the objfile constructor.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1067 {
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 printf_filtered (_("Reading symbols from %s...\n"), name);
1114 }
1115 syms_from_objfile (objfile, addrs, add_flags);
1116
1117 /* We now have at least a partial symbol table. Check to see if the
1118 user requested that all symbols be read on initial access via either
1119 the gdb startup command line or on a per symbol file basis. Expand
1120 all partial symbol tables for this objfile if so. */
1121
1122 if ((flags & OBJF_READNOW))
1123 {
1124 if (should_print)
1125 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1126
1127 if (objfile->sf)
1128 objfile->sf->qf->expand_all_symtabs (objfile);
1129 }
1130
1131 /* Note that we only print a message if we have no symbols and have
1132 no separate debug file. If there is a separate debug file which
1133 does not have symbols, we'll have emitted this message for that
1134 file, and so printing it twice is just redundant. */
1135 if (should_print && !objfile_has_symbols (objfile)
1136 && objfile->separate_debug_objfile == nullptr)
1137 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1138
1139 if (should_print)
1140 {
1141 if (deprecated_post_add_symbol_hook)
1142 deprecated_post_add_symbol_hook ();
1143 }
1144
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
1150 if (objfile->sf == NULL)
1151 {
1152 gdb::observers::new_objfile.notify (objfile);
1153 return objfile; /* No symbols. */
1154 }
1155
1156 finish_new_objfile (objfile, add_flags);
1157
1158 gdb::observers::new_objfile.notify (objfile);
1159
1160 bfd_cache_close_all ();
1161 return (objfile);
1162 }
1163
1164 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1165 see the objfile constructor. */
1166
1167 void
1168 symbol_file_add_separate (bfd *bfd, const char *name,
1169 symfile_add_flags symfile_flags,
1170 struct objfile *objfile)
1171 {
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1176
1177 symbol_file_add_with_addrs
1178 (bfd, name, symfile_flags, &sap,
1179 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1180 | OBJF_USERLOADED),
1181 objfile);
1182 }
1183
1184 /* Process the symbol file ABFD, as either the main file or as a
1185 dynamically loaded file.
1186 See symbol_file_add_with_addrs's comments for details. */
1187
1188 struct objfile *
1189 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1190 symfile_add_flags add_flags,
1191 section_addr_info *addrs,
1192 objfile_flags flags, struct objfile *parent)
1193 {
1194 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1195 parent);
1196 }
1197
1198 /* Process a symbol file, as either the main file or as a dynamically
1199 loaded file. See symbol_file_add_with_addrs's comments for details. */
1200
1201 struct objfile *
1202 symbol_file_add (const char *name, symfile_add_flags add_flags,
1203 section_addr_info *addrs, objfile_flags flags)
1204 {
1205 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1206
1207 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1208 flags, NULL);
1209 }
1210
1211 /* Call symbol_file_add() with default values and update whatever is
1212 affected by the loading of a new main().
1213 Used when the file is supplied in the gdb command line
1214 and by some targets with special loading requirements.
1215 The auxiliary function, symbol_file_add_main_1(), has the flags
1216 argument for the switches that can only be specified in the symbol_file
1217 command itself. */
1218
1219 void
1220 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1221 {
1222 symbol_file_add_main_1 (args, add_flags, 0, 0);
1223 }
1224
1225 static void
1226 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1227 objfile_flags flags, CORE_ADDR reloff)
1228 {
1229 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1230
1231 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1232 if (reloff != 0)
1233 objfile_rebase (objfile, reloff);
1234
1235 /* Getting new symbols may change our opinion about
1236 what is frameless. */
1237 reinit_frame_cache ();
1238
1239 if ((add_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
1241 }
1242
1243 void
1244 symbol_file_clear (int from_tty)
1245 {
1246 if ((have_full_symbols () || have_partial_symbols ())
1247 && from_tty
1248 && (symfile_objfile
1249 ? !query (_("Discard symbol table from `%s'? "),
1250 objfile_name (symfile_objfile))
1251 : !query (_("Discard symbol table? "))))
1252 error (_("Not confirmed."));
1253
1254 /* solib descriptors may have handles to objfiles. Wipe them before their
1255 objfiles get stale by free_all_objfiles. */
1256 no_shared_libraries (NULL, from_tty);
1257
1258 free_all_objfiles ();
1259
1260 gdb_assert (symfile_objfile == NULL);
1261 if (from_tty)
1262 printf_filtered (_("No symbol file now.\n"));
1263 }
1264
1265 /* See symfile.h. */
1266
1267 int separate_debug_file_debug = 0;
1268
1269 static int
1270 separate_debug_file_exists (const std::string &name, unsigned long crc,
1271 struct objfile *parent_objfile)
1272 {
1273 unsigned long file_crc;
1274 int file_crc_p;
1275 struct stat parent_stat, abfd_stat;
1276 int verified_as_different;
1277
1278 /* Find a separate debug info file as if symbols would be present in
1279 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1280 section can contain just the basename of PARENT_OBJFILE without any
1281 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1282 the separate debug infos with the same basename can exist. */
1283
1284 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1285 return 0;
1286
1287 if (separate_debug_file_debug)
1288 printf_filtered (_(" Trying %s\n"), name.c_str ());
1289
1290 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1291
1292 if (abfd == NULL)
1293 return 0;
1294
1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Files accessed from gdbservers that do not
1300 support the vFile:fstat packet will also have st_ino set to zero.
1301 Do not indicate a duplicate library in either case. While there
1302 is no guarantee that a system that provides meaningful inode
1303 numbers will never set st_ino to zero, this is merely an
1304 optimization, so we do not need to worry about false negatives. */
1305
1306 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1307 && abfd_stat.st_ino != 0
1308 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1309 {
1310 if (abfd_stat.st_dev == parent_stat.st_dev
1311 && abfd_stat.st_ino == parent_stat.st_ino)
1312 return 0;
1313 verified_as_different = 1;
1314 }
1315 else
1316 verified_as_different = 0;
1317
1318 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1319
1320 if (!file_crc_p)
1321 return 0;
1322
1323 if (crc != file_crc)
1324 {
1325 unsigned long parent_crc;
1326
1327 /* If the files could not be verified as different with
1328 bfd_stat then we need to calculate the parent's CRC
1329 to verify whether the files are different or not. */
1330
1331 if (!verified_as_different)
1332 {
1333 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1334 return 0;
1335 }
1336
1337 if (verified_as_different || parent_crc != file_crc)
1338 warning (_("the debug information found in \"%s\""
1339 " does not match \"%s\" (CRC mismatch).\n"),
1340 name.c_str (), objfile_name (parent_objfile));
1341
1342 return 0;
1343 }
1344
1345 return 1;
1346 }
1347
1348 char *debug_file_directory = NULL;
1349 static void
1350 show_debug_file_directory (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *c, const char *value)
1352 {
1353 fprintf_filtered (file,
1354 _("The directory where separate debug "
1355 "symbols are searched for is \"%s\".\n"),
1356 value);
1357 }
1358
1359 #if ! defined (DEBUG_SUBDIRECTORY)
1360 #define DEBUG_SUBDIRECTORY ".debug"
1361 #endif
1362
1363 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1364 where the original file resides (may not be the same as
1365 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1366 looking for. CANON_DIR is the "realpath" form of DIR.
1367 DIR must contain a trailing '/'.
1368 Returns the path of the file with separate debug info, or an empty
1369 string. */
1370
1371 static std::string
1372 find_separate_debug_file (const char *dir,
1373 const char *canon_dir,
1374 const char *debuglink,
1375 unsigned long crc32, struct objfile *objfile)
1376 {
1377 if (separate_debug_file_debug)
1378 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1379 "%s\n"), objfile_name (objfile));
1380
1381 /* First try in the same directory as the original file. */
1382 std::string debugfile = dir;
1383 debugfile += debuglink;
1384
1385 if (separate_debug_file_exists (debugfile, crc32, objfile))
1386 return debugfile;
1387
1388 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1389 debugfile = dir;
1390 debugfile += DEBUG_SUBDIRECTORY;
1391 debugfile += "/";
1392 debugfile += debuglink;
1393
1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1395 return debugfile;
1396
1397 /* Then try in the global debugfile directories.
1398
1399 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1400 cause "/..." lookups. */
1401
1402 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1403 = dirnames_to_char_ptr_vec (debug_file_directory);
1404
1405 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1406 {
1407 debugfile = debugdir.get ();
1408 debugfile += "/";
1409 debugfile += dir;
1410 debugfile += debuglink;
1411
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1413 return debugfile;
1414
1415 /* If the file is in the sysroot, try using its base path in the
1416 global debugfile directory. */
1417 if (canon_dir != NULL
1418 && filename_ncmp (canon_dir, gdb_sysroot,
1419 strlen (gdb_sysroot)) == 0
1420 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1421 {
1422 debugfile = debugdir.get ();
1423 debugfile += (canon_dir + strlen (gdb_sysroot));
1424 debugfile += "/";
1425 debugfile += debuglink;
1426
1427 if (separate_debug_file_exists (debugfile, crc32, objfile))
1428 return debugfile;
1429 }
1430 }
1431
1432 return std::string ();
1433 }
1434
1435 /* Modify PATH to contain only "[/]directory/" part of PATH.
1436 If there were no directory separators in PATH, PATH will be empty
1437 string on return. */
1438
1439 static void
1440 terminate_after_last_dir_separator (char *path)
1441 {
1442 int i;
1443
1444 /* Strip off the final filename part, leaving the directory name,
1445 followed by a slash. The directory can be relative or absolute. */
1446 for (i = strlen(path) - 1; i >= 0; i--)
1447 if (IS_DIR_SEPARATOR (path[i]))
1448 break;
1449
1450 /* If I is -1 then no directory is present there and DIR will be "". */
1451 path[i + 1] = '\0';
1452 }
1453
1454 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1455 Returns pathname, or an empty string. */
1456
1457 std::string
1458 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1459 {
1460 unsigned long crc32;
1461
1462 gdb::unique_xmalloc_ptr<char> debuglink
1463 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1464
1465 if (debuglink == NULL)
1466 {
1467 /* There's no separate debug info, hence there's no way we could
1468 load it => no warning. */
1469 return std::string ();
1470 }
1471
1472 std::string dir = objfile_name (objfile);
1473 terminate_after_last_dir_separator (&dir[0]);
1474 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1475
1476 std::string debugfile
1477 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1478 debuglink.get (), crc32, objfile);
1479
1480 if (debugfile.empty ())
1481 {
1482 /* For PR gdb/9538, try again with realpath (if different from the
1483 original). */
1484
1485 struct stat st_buf;
1486
1487 if (lstat (objfile_name (objfile), &st_buf) == 0
1488 && S_ISLNK (st_buf.st_mode))
1489 {
1490 gdb::unique_xmalloc_ptr<char> symlink_dir
1491 (lrealpath (objfile_name (objfile)));
1492 if (symlink_dir != NULL)
1493 {
1494 terminate_after_last_dir_separator (symlink_dir.get ());
1495 if (dir != symlink_dir.get ())
1496 {
1497 /* Different directory, so try using it. */
1498 debugfile = find_separate_debug_file (symlink_dir.get (),
1499 symlink_dir.get (),
1500 debuglink.get (),
1501 crc32,
1502 objfile);
1503 }
1504 }
1505 }
1506 }
1507
1508 return debugfile;
1509 }
1510
1511 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1512 simultaneously. */
1513
1514 static void
1515 validate_readnow_readnever (objfile_flags flags)
1516 {
1517 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1518 error (_("-readnow and -readnever cannot be used simultaneously"));
1519 }
1520
1521 /* This is the symbol-file command. Read the file, analyze its
1522 symbols, and add a struct symtab to a symtab list. The syntax of
1523 the command is rather bizarre:
1524
1525 1. The function buildargv implements various quoting conventions
1526 which are undocumented and have little or nothing in common with
1527 the way things are quoted (or not quoted) elsewhere in GDB.
1528
1529 2. Options are used, which are not generally used in GDB (perhaps
1530 "set mapped on", "set readnow on" would be better)
1531
1532 3. The order of options matters, which is contrary to GNU
1533 conventions (because it is confusing and inconvenient). */
1534
1535 void
1536 symbol_file_command (const char *args, int from_tty)
1537 {
1538 dont_repeat ();
1539
1540 if (args == NULL)
1541 {
1542 symbol_file_clear (from_tty);
1543 }
1544 else
1545 {
1546 objfile_flags flags = OBJF_USERLOADED;
1547 symfile_add_flags add_flags = 0;
1548 char *name = NULL;
1549 bool stop_processing_options = false;
1550 CORE_ADDR offset = 0;
1551 int idx;
1552 char *arg;
1553
1554 if (from_tty)
1555 add_flags |= SYMFILE_VERBOSE;
1556
1557 gdb_argv built_argv (args);
1558 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1559 {
1560 if (stop_processing_options || *arg != '-')
1561 {
1562 if (name == NULL)
1563 name = arg;
1564 else
1565 error (_("Unrecognized argument \"%s\""), arg);
1566 }
1567 else if (strcmp (arg, "-readnow") == 0)
1568 flags |= OBJF_READNOW;
1569 else if (strcmp (arg, "-readnever") == 0)
1570 flags |= OBJF_READNEVER;
1571 else if (strcmp (arg, "-o") == 0)
1572 {
1573 arg = built_argv[++idx];
1574 if (arg == NULL)
1575 error (_("Missing argument to -o"));
1576
1577 offset = parse_and_eval_address (arg);
1578 }
1579 else if (strcmp (arg, "--") == 0)
1580 stop_processing_options = true;
1581 else
1582 error (_("Unrecognized argument \"%s\""), arg);
1583 }
1584
1585 if (name == NULL)
1586 error (_("no symbol file name was specified"));
1587
1588 validate_readnow_readnever (flags);
1589
1590 symbol_file_add_main_1 (name, add_flags, flags, offset);
1591 }
1592 }
1593
1594 /* Set the initial language.
1595
1596 FIXME: A better solution would be to record the language in the
1597 psymtab when reading partial symbols, and then use it (if known) to
1598 set the language. This would be a win for formats that encode the
1599 language in an easily discoverable place, such as DWARF. For
1600 stabs, we can jump through hoops looking for specially named
1601 symbols or try to intuit the language from the specific type of
1602 stabs we find, but we can't do that until later when we read in
1603 full symbols. */
1604
1605 void
1606 set_initial_language (void)
1607 {
1608 enum language lang = main_language ();
1609
1610 if (lang == language_unknown)
1611 {
1612 char *name = main_name ();
1613 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1614
1615 if (sym != NULL)
1616 lang = SYMBOL_LANGUAGE (sym);
1617 }
1618
1619 if (lang == language_unknown)
1620 {
1621 /* Make C the default language */
1622 lang = language_c;
1623 }
1624
1625 set_language (lang);
1626 expected_language = current_language; /* Don't warn the user. */
1627 }
1628
1629 /* Open the file specified by NAME and hand it off to BFD for
1630 preliminary analysis. Return a newly initialized bfd *, which
1631 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1632 absolute). In case of trouble, error() is called. */
1633
1634 gdb_bfd_ref_ptr
1635 symfile_bfd_open (const char *name)
1636 {
1637 int desc = -1;
1638
1639 gdb::unique_xmalloc_ptr<char> absolute_name;
1640 if (!is_target_filename (name))
1641 {
1642 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1643
1644 /* Look down path for it, allocate 2nd new malloc'd copy. */
1645 desc = openp (getenv ("PATH"),
1646 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1647 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1648 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1649 if (desc < 0)
1650 {
1651 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1652
1653 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1656 exename, O_RDONLY | O_BINARY, &absolute_name);
1657 }
1658 #endif
1659 if (desc < 0)
1660 perror_with_name (expanded_name.get ());
1661
1662 name = absolute_name.get ();
1663 }
1664
1665 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1666 if (sym_bfd == NULL)
1667 error (_("`%s': can't open to read symbols: %s."), name,
1668 bfd_errmsg (bfd_get_error ()));
1669
1670 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1671 bfd_set_cacheable (sym_bfd.get (), 1);
1672
1673 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1674 error (_("`%s': can't read symbols: %s."), name,
1675 bfd_errmsg (bfd_get_error ()));
1676
1677 return sym_bfd;
1678 }
1679
1680 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1681 the section was not found. */
1682
1683 int
1684 get_section_index (struct objfile *objfile, const char *section_name)
1685 {
1686 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1687
1688 if (sect)
1689 return sect->index;
1690 else
1691 return -1;
1692 }
1693
1694 /* Link SF into the global symtab_fns list.
1695 FLAVOUR is the file format that SF handles.
1696 Called on startup by the _initialize routine in each object file format
1697 reader, to register information about each format the reader is prepared
1698 to handle. */
1699
1700 void
1701 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1702 {
1703 symtab_fns.emplace_back (flavour, sf);
1704 }
1705
1706 /* Initialize OBJFILE to read symbols from its associated BFD. It
1707 either returns or calls error(). The result is an initialized
1708 struct sym_fns in the objfile structure, that contains cached
1709 information about the symbol file. */
1710
1711 static const struct sym_fns *
1712 find_sym_fns (bfd *abfd)
1713 {
1714 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1715
1716 if (our_flavour == bfd_target_srec_flavour
1717 || our_flavour == bfd_target_ihex_flavour
1718 || our_flavour == bfd_target_tekhex_flavour)
1719 return NULL; /* No symbols. */
1720
1721 for (const registered_sym_fns &rsf : symtab_fns)
1722 if (our_flavour == rsf.sym_flavour)
1723 return rsf.sym_fns;
1724
1725 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1726 bfd_get_target (abfd));
1727 }
1728 \f
1729
1730 /* This function runs the load command of our current target. */
1731
1732 static void
1733 load_command (const char *arg, int from_tty)
1734 {
1735 dont_repeat ();
1736
1737 /* The user might be reloading because the binary has changed. Take
1738 this opportunity to check. */
1739 reopen_exec_file ();
1740 reread_symbols ();
1741
1742 std::string temp;
1743 if (arg == NULL)
1744 {
1745 const char *parg, *prev;
1746
1747 arg = get_exec_file (1);
1748
1749 /* We may need to quote this string so buildargv can pull it
1750 apart. */
1751 prev = parg = arg;
1752 while ((parg = strpbrk (parg, "\\\"'\t ")))
1753 {
1754 temp.append (prev, parg - prev);
1755 prev = parg++;
1756 temp.push_back ('\\');
1757 }
1758 /* If we have not copied anything yet, then we didn't see a
1759 character to quote, and we can just leave ARG unchanged. */
1760 if (!temp.empty ())
1761 {
1762 temp.append (prev);
1763 arg = temp.c_str ();
1764 }
1765 }
1766
1767 target_load (arg, from_tty);
1768
1769 /* After re-loading the executable, we don't really know which
1770 overlays are mapped any more. */
1771 overlay_cache_invalid = 1;
1772 }
1773
1774 /* This version of "load" should be usable for any target. Currently
1775 it is just used for remote targets, not inftarg.c or core files,
1776 on the theory that only in that case is it useful.
1777
1778 Avoiding xmodem and the like seems like a win (a) because we don't have
1779 to worry about finding it, and (b) On VMS, fork() is very slow and so
1780 we don't want to run a subprocess. On the other hand, I'm not sure how
1781 performance compares. */
1782
1783 static int validate_download = 0;
1784
1785 /* Callback service function for generic_load (bfd_map_over_sections). */
1786
1787 static void
1788 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1789 {
1790 bfd_size_type *sum = (bfd_size_type *) data;
1791
1792 *sum += bfd_get_section_size (asec);
1793 }
1794
1795 /* Opaque data for load_progress. */
1796 struct load_progress_data
1797 {
1798 /* Cumulative data. */
1799 unsigned long write_count = 0;
1800 unsigned long data_count = 0;
1801 bfd_size_type total_size = 0;
1802 };
1803
1804 /* Opaque data for load_progress for a single section. */
1805 struct load_progress_section_data
1806 {
1807 load_progress_section_data (load_progress_data *cumulative_,
1808 const char *section_name_, ULONGEST section_size_,
1809 CORE_ADDR lma_, gdb_byte *buffer_)
1810 : cumulative (cumulative_), section_name (section_name_),
1811 section_size (section_size_), lma (lma_), buffer (buffer_)
1812 {}
1813
1814 struct load_progress_data *cumulative;
1815
1816 /* Per-section data. */
1817 const char *section_name;
1818 ULONGEST section_sent = 0;
1819 ULONGEST section_size;
1820 CORE_ADDR lma;
1821 gdb_byte *buffer;
1822 };
1823
1824 /* Opaque data for load_section_callback. */
1825 struct load_section_data
1826 {
1827 load_section_data (load_progress_data *progress_data_)
1828 : progress_data (progress_data_)
1829 {}
1830
1831 ~load_section_data ()
1832 {
1833 for (auto &&request : requests)
1834 {
1835 xfree (request.data);
1836 delete ((load_progress_section_data *) request.baton);
1837 }
1838 }
1839
1840 CORE_ADDR load_offset = 0;
1841 struct load_progress_data *progress_data;
1842 std::vector<struct memory_write_request> requests;
1843 };
1844
1845 /* Target write callback routine for progress reporting. */
1846
1847 static void
1848 load_progress (ULONGEST bytes, void *untyped_arg)
1849 {
1850 struct load_progress_section_data *args
1851 = (struct load_progress_section_data *) untyped_arg;
1852 struct load_progress_data *totals;
1853
1854 if (args == NULL)
1855 /* Writing padding data. No easy way to get at the cumulative
1856 stats, so just ignore this. */
1857 return;
1858
1859 totals = args->cumulative;
1860
1861 if (bytes == 0 && args->section_sent == 0)
1862 {
1863 /* The write is just starting. Let the user know we've started
1864 this section. */
1865 current_uiout->message ("Loading section %s, size %s lma %s\n",
1866 args->section_name,
1867 hex_string (args->section_size),
1868 paddress (target_gdbarch (), args->lma));
1869 return;
1870 }
1871
1872 if (validate_download)
1873 {
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1876 downloads. */
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb::byte_vector check (bytes);
1882
1883 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1884 error (_("Download verify read failed at %s"),
1885 paddress (target_gdbarch (), args->lma));
1886 if (memcmp (args->buffer, check.data (), bytes) != 0)
1887 error (_("Download verify compare failed at %s"),
1888 paddress (target_gdbarch (), args->lma));
1889 }
1890 totals->data_count += bytes;
1891 args->lma += bytes;
1892 args->buffer += bytes;
1893 totals->write_count += 1;
1894 args->section_sent += bytes;
1895 if (check_quit_flag ()
1896 || (deprecated_ui_load_progress_hook != NULL
1897 && deprecated_ui_load_progress_hook (args->section_name,
1898 args->section_sent)))
1899 error (_("Canceled the download"));
1900
1901 if (deprecated_show_load_progress != NULL)
1902 deprecated_show_load_progress (args->section_name,
1903 args->section_sent,
1904 args->section_size,
1905 totals->data_count,
1906 totals->total_size);
1907 }
1908
1909 /* Callback service function for generic_load (bfd_map_over_sections). */
1910
1911 static void
1912 load_section_callback (bfd *abfd, asection *asec, void *data)
1913 {
1914 struct load_section_data *args = (struct load_section_data *) data;
1915 bfd_size_type size = bfd_get_section_size (asec);
1916 const char *sect_name = bfd_get_section_name (abfd, asec);
1917
1918 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1919 return;
1920
1921 if (size == 0)
1922 return;
1923
1924 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1925 ULONGEST end = begin + size;
1926 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1927 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1928
1929 load_progress_section_data *section_data
1930 = new load_progress_section_data (args->progress_data, sect_name, size,
1931 begin, buffer);
1932
1933 args->requests.emplace_back (begin, end, buffer, section_data);
1934 }
1935
1936 static void print_transfer_performance (struct ui_file *stream,
1937 unsigned long data_count,
1938 unsigned long write_count,
1939 std::chrono::steady_clock::duration d);
1940
1941 void
1942 generic_load (const char *args, int from_tty)
1943 {
1944 struct load_progress_data total_progress;
1945 struct load_section_data cbdata (&total_progress);
1946 struct ui_out *uiout = current_uiout;
1947
1948 if (args == NULL)
1949 error_no_arg (_("file to load"));
1950
1951 gdb_argv argv (args);
1952
1953 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1954
1955 if (argv[1] != NULL)
1956 {
1957 const char *endptr;
1958
1959 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1960
1961 /* If the last word was not a valid number then
1962 treat it as a file name with spaces in. */
1963 if (argv[1] == endptr)
1964 error (_("Invalid download offset:%s."), argv[1]);
1965
1966 if (argv[2] != NULL)
1967 error (_("Too many parameters."));
1968 }
1969
1970 /* Open the file for loading. */
1971 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1972 if (loadfile_bfd == NULL)
1973 perror_with_name (filename.get ());
1974
1975 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1976 {
1977 error (_("\"%s\" is not an object file: %s"), filename.get (),
1978 bfd_errmsg (bfd_get_error ()));
1979 }
1980
1981 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1982 (void *) &total_progress.total_size);
1983
1984 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1985
1986 using namespace std::chrono;
1987
1988 steady_clock::time_point start_time = steady_clock::now ();
1989
1990 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1991 load_progress) != 0)
1992 error (_("Load failed"));
1993
1994 steady_clock::time_point end_time = steady_clock::now ();
1995
1996 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
1997 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
1998 uiout->text ("Start address ");
1999 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2000 uiout->text (", load size ");
2001 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2002 uiout->text ("\n");
2003 regcache_write_pc (get_current_regcache (), entry);
2004
2005 /* Reset breakpoints, now that we have changed the load image. For
2006 instance, breakpoints may have been set (or reset, by
2007 post_create_inferior) while connected to the target but before we
2008 loaded the program. In that case, the prologue analyzer could
2009 have read instructions from the target to find the right
2010 breakpoint locations. Loading has changed the contents of that
2011 memory. */
2012
2013 breakpoint_re_set ();
2014
2015 print_transfer_performance (gdb_stdout, total_progress.data_count,
2016 total_progress.write_count,
2017 end_time - start_time);
2018 }
2019
2020 /* Report on STREAM the performance of a memory transfer operation,
2021 such as 'load'. DATA_COUNT is the number of bytes transferred.
2022 WRITE_COUNT is the number of separate write operations, or 0, if
2023 that information is not available. TIME is how long the operation
2024 lasted. */
2025
2026 static void
2027 print_transfer_performance (struct ui_file *stream,
2028 unsigned long data_count,
2029 unsigned long write_count,
2030 std::chrono::steady_clock::duration time)
2031 {
2032 using namespace std::chrono;
2033 struct ui_out *uiout = current_uiout;
2034
2035 milliseconds ms = duration_cast<milliseconds> (time);
2036
2037 uiout->text ("Transfer rate: ");
2038 if (ms.count () > 0)
2039 {
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2041
2042 if (uiout->is_mi_like_p ())
2043 {
2044 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2045 uiout->text (" bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 uiout->field_fmt ("transfer-rate", "%lu", rate);
2050 uiout->text (" bytes/sec");
2051 }
2052 else
2053 {
2054 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2055 uiout->text (" KB/sec");
2056 }
2057 }
2058 else
2059 {
2060 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2061 uiout->text (" bits in <1 sec");
2062 }
2063 if (write_count > 0)
2064 {
2065 uiout->text (", ");
2066 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2067 uiout->text (" bytes/write");
2068 }
2069 uiout->text (".\n");
2070 }
2071
2072 /* Add an OFFSET to the start address of each section in OBJF, except
2073 sections that were specified in ADDRS. */
2074
2075 static void
2076 set_objfile_default_section_offset (struct objfile *objf,
2077 const section_addr_info &addrs,
2078 CORE_ADDR offset)
2079 {
2080 /* Add OFFSET to all sections by default. */
2081 std::vector<struct section_offsets> offsets (objf->num_sections,
2082 { { offset } });
2083
2084 /* Create sorted lists of all sections in ADDRS as well as all
2085 sections in OBJF. */
2086
2087 std::vector<const struct other_sections *> addrs_sorted
2088 = addrs_section_sort (addrs);
2089
2090 section_addr_info objf_addrs
2091 = build_section_addr_info_from_objfile (objf);
2092 std::vector<const struct other_sections *> objf_addrs_sorted
2093 = addrs_section_sort (objf_addrs);
2094
2095 /* Walk the BFD section list, and if a matching section is found in
2096 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2097 unchanged.
2098
2099 Note that both lists may contain multiple sections with the same
2100 name, and then the sections from ADDRS are matched in BFD order
2101 (thanks to sectindex). */
2102
2103 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2104 = addrs_sorted.begin ();
2105 for (const other_sections *objf_sect : objf_addrs_sorted)
2106 {
2107 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2108 int cmp = -1;
2109
2110 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2111 {
2112 const struct other_sections *sect = *addrs_sorted_iter;
2113 const char *sect_name = addr_section_name (sect->name.c_str ());
2114 cmp = strcmp (sect_name, objf_name);
2115 if (cmp <= 0)
2116 ++addrs_sorted_iter;
2117 }
2118
2119 if (cmp == 0)
2120 offsets[objf_sect->sectindex].offsets[0] = 0;
2121 }
2122
2123 /* Apply the new section offsets. */
2124 objfile_relocate (objf, offsets.data ());
2125 }
2126
2127 /* This function allows the addition of incrementally linked object files.
2128 It does not modify any state in the target, only in the debugger. */
2129 /* Note: ezannoni 2000-04-13 This function/command used to have a
2130 special case syntax for the rombug target (Rombug is the boot
2131 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2132 rombug case, the user doesn't need to supply a text address,
2133 instead a call to target_link() (in target.c) would supply the
2134 value to use. We are now discontinuing this type of ad hoc syntax. */
2135
2136 static void
2137 add_symbol_file_command (const char *args, int from_tty)
2138 {
2139 struct gdbarch *gdbarch = get_current_arch ();
2140 gdb::unique_xmalloc_ptr<char> filename;
2141 char *arg;
2142 int argcnt = 0;
2143 struct objfile *objf;
2144 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2145 symfile_add_flags add_flags = 0;
2146
2147 if (from_tty)
2148 add_flags |= SYMFILE_VERBOSE;
2149
2150 struct sect_opt
2151 {
2152 const char *name;
2153 const char *value;
2154 };
2155
2156 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2157 bool stop_processing_options = false;
2158 CORE_ADDR offset = 0;
2159
2160 dont_repeat ();
2161
2162 if (args == NULL)
2163 error (_("add-symbol-file takes a file name and an address"));
2164
2165 bool seen_addr = false;
2166 bool seen_offset = false;
2167 gdb_argv argv (args);
2168
2169 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2170 {
2171 if (stop_processing_options || *arg != '-')
2172 {
2173 if (filename == NULL)
2174 {
2175 /* First non-option argument is always the filename. */
2176 filename.reset (tilde_expand (arg));
2177 }
2178 else if (!seen_addr)
2179 {
2180 /* The second non-option argument is always the text
2181 address at which to load the program. */
2182 sect_opts[0].value = arg;
2183 seen_addr = true;
2184 }
2185 else
2186 error (_("Unrecognized argument \"%s\""), arg);
2187 }
2188 else if (strcmp (arg, "-readnow") == 0)
2189 flags |= OBJF_READNOW;
2190 else if (strcmp (arg, "-readnever") == 0)
2191 flags |= OBJF_READNEVER;
2192 else if (strcmp (arg, "-s") == 0)
2193 {
2194 if (argv[argcnt + 1] == NULL)
2195 error (_("Missing section name after \"-s\""));
2196 else if (argv[argcnt + 2] == NULL)
2197 error (_("Missing section address after \"-s\""));
2198
2199 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2200
2201 sect_opts.push_back (sect);
2202 argcnt += 2;
2203 }
2204 else if (strcmp (arg, "-o") == 0)
2205 {
2206 arg = argv[++argcnt];
2207 if (arg == NULL)
2208 error (_("Missing argument to -o"));
2209
2210 offset = parse_and_eval_address (arg);
2211 seen_offset = true;
2212 }
2213 else if (strcmp (arg, "--") == 0)
2214 stop_processing_options = true;
2215 else
2216 error (_("Unrecognized argument \"%s\""), arg);
2217 }
2218
2219 if (filename == NULL)
2220 error (_("You must provide a filename to be loaded."));
2221
2222 validate_readnow_readnever (flags);
2223
2224 /* Print the prompt for the query below. And save the arguments into
2225 a sect_addr_info structure to be passed around to other
2226 functions. We have to split this up into separate print
2227 statements because hex_string returns a local static
2228 string. */
2229
2230 printf_unfiltered (_("add symbol table from file \"%s\""),
2231 filename.get ());
2232 section_addr_info section_addrs;
2233 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2234 if (!seen_addr)
2235 ++it;
2236 for (; it != sect_opts.end (); ++it)
2237 {
2238 CORE_ADDR addr;
2239 const char *val = it->value;
2240 const char *sec = it->name;
2241
2242 if (section_addrs.empty ())
2243 printf_unfiltered (_(" at\n"));
2244 addr = parse_and_eval_address (val);
2245
2246 /* Here we store the section offsets in the order they were
2247 entered on the command line. Every array element is
2248 assigned an ascending section index to preserve the above
2249 order over an unstable sorting algorithm. This dummy
2250 index is not used for any other purpose.
2251 */
2252 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2253 printf_filtered ("\t%s_addr = %s\n", sec,
2254 paddress (gdbarch, addr));
2255
2256 /* The object's sections are initialized when a
2257 call is made to build_objfile_section_table (objfile).
2258 This happens in reread_symbols.
2259 At this point, we don't know what file type this is,
2260 so we can't determine what section names are valid. */
2261 }
2262 if (seen_offset)
2263 printf_unfiltered (_("%s offset by %s\n"),
2264 (section_addrs.empty ()
2265 ? _(" with all sections")
2266 : _("with other sections")),
2267 paddress (gdbarch, offset));
2268 else if (section_addrs.empty ())
2269 printf_unfiltered ("\n");
2270
2271 if (from_tty && (!query ("%s", "")))
2272 error (_("Not confirmed."));
2273
2274 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2275 flags);
2276
2277 if (seen_offset)
2278 set_objfile_default_section_offset (objf, section_addrs, offset);
2279
2280 add_target_sections_of_objfile (objf);
2281
2282 /* Getting new symbols may change our opinion about what is
2283 frameless. */
2284 reinit_frame_cache ();
2285 }
2286 \f
2287
2288 /* This function removes a symbol file that was added via add-symbol-file. */
2289
2290 static void
2291 remove_symbol_file_command (const char *args, int from_tty)
2292 {
2293 struct objfile *objf = NULL;
2294 struct program_space *pspace = current_program_space;
2295
2296 dont_repeat ();
2297
2298 if (args == NULL)
2299 error (_("remove-symbol-file: no symbol file provided"));
2300
2301 gdb_argv argv (args);
2302
2303 if (strcmp (argv[0], "-a") == 0)
2304 {
2305 /* Interpret the next argument as an address. */
2306 CORE_ADDR addr;
2307
2308 if (argv[1] == NULL)
2309 error (_("Missing address argument"));
2310
2311 if (argv[2] != NULL)
2312 error (_("Junk after %s"), argv[1]);
2313
2314 addr = parse_and_eval_address (argv[1]);
2315
2316 ALL_OBJFILES (objf)
2317 {
2318 if ((objf->flags & OBJF_USERLOADED) != 0
2319 && (objf->flags & OBJF_SHARED) != 0
2320 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2321 break;
2322 }
2323 }
2324 else if (argv[0] != NULL)
2325 {
2326 /* Interpret the current argument as a file name. */
2327
2328 if (argv[1] != NULL)
2329 error (_("Junk after %s"), argv[0]);
2330
2331 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2332
2333 ALL_OBJFILES (objf)
2334 {
2335 if ((objf->flags & OBJF_USERLOADED) != 0
2336 && (objf->flags & OBJF_SHARED) != 0
2337 && objf->pspace == pspace
2338 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2339 break;
2340 }
2341 }
2342
2343 if (objf == NULL)
2344 error (_("No symbol file found"));
2345
2346 if (from_tty
2347 && !query (_("Remove symbol table from file \"%s\"? "),
2348 objfile_name (objf)))
2349 error (_("Not confirmed."));
2350
2351 delete objf;
2352 clear_symtab_users (0);
2353 }
2354
2355 /* Re-read symbols if a symbol-file has changed. */
2356
2357 void
2358 reread_symbols (void)
2359 {
2360 struct objfile *objfile;
2361 long new_modtime;
2362 struct stat new_statbuf;
2363 int res;
2364 std::vector<struct objfile *> new_objfiles;
2365
2366 /* With the addition of shared libraries, this should be modified,
2367 the load time should be saved in the partial symbol tables, since
2368 different tables may come from different source files. FIXME.
2369 This routine should then walk down each partial symbol table
2370 and see if the symbol table that it originates from has been changed. */
2371
2372 for (objfile = object_files; objfile; objfile = objfile->next)
2373 {
2374 if (objfile->obfd == NULL)
2375 continue;
2376
2377 /* Separate debug objfiles are handled in the main objfile. */
2378 if (objfile->separate_debug_objfile_backlink)
2379 continue;
2380
2381 /* If this object is from an archive (what you usually create with
2382 `ar', often called a `static library' on most systems, though
2383 a `shared library' on AIX is also an archive), then you should
2384 stat on the archive name, not member name. */
2385 if (objfile->obfd->my_archive)
2386 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2387 else
2388 res = stat (objfile_name (objfile), &new_statbuf);
2389 if (res != 0)
2390 {
2391 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2392 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2393 objfile_name (objfile));
2394 continue;
2395 }
2396 new_modtime = new_statbuf.st_mtime;
2397 if (new_modtime != objfile->mtime)
2398 {
2399 struct cleanup *old_cleanups;
2400 struct section_offsets *offsets;
2401 int num_offsets;
2402
2403 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2404 objfile_name (objfile));
2405
2406 /* There are various functions like symbol_file_add,
2407 symfile_bfd_open, syms_from_objfile, etc., which might
2408 appear to do what we want. But they have various other
2409 effects which we *don't* want. So we just do stuff
2410 ourselves. We don't worry about mapped files (for one thing,
2411 any mapped file will be out of date). */
2412
2413 /* If we get an error, blow away this objfile (not sure if
2414 that is the correct response for things like shared
2415 libraries). */
2416 std::unique_ptr<struct objfile> objfile_holder (objfile);
2417
2418 /* We need to do this whenever any symbols go away. */
2419 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2420
2421 if (exec_bfd != NULL
2422 && filename_cmp (bfd_get_filename (objfile->obfd),
2423 bfd_get_filename (exec_bfd)) == 0)
2424 {
2425 /* Reload EXEC_BFD without asking anything. */
2426
2427 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2428 }
2429
2430 /* Keep the calls order approx. the same as in free_objfile. */
2431
2432 /* Free the separate debug objfiles. It will be
2433 automatically recreated by sym_read. */
2434 free_objfile_separate_debug (objfile);
2435
2436 /* Remove any references to this objfile in the global
2437 value lists. */
2438 preserve_values (objfile);
2439
2440 /* Nuke all the state that we will re-read. Much of the following
2441 code which sets things to NULL really is necessary to tell
2442 other parts of GDB that there is nothing currently there.
2443
2444 Try to keep the freeing order compatible with free_objfile. */
2445
2446 if (objfile->sf != NULL)
2447 {
2448 (*objfile->sf->sym_finish) (objfile);
2449 }
2450
2451 clear_objfile_data (objfile);
2452
2453 /* Clean up any state BFD has sitting around. */
2454 {
2455 gdb_bfd_ref_ptr obfd (objfile->obfd);
2456 char *obfd_filename;
2457
2458 obfd_filename = bfd_get_filename (objfile->obfd);
2459 /* Open the new BFD before freeing the old one, so that
2460 the filename remains live. */
2461 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2462 objfile->obfd = temp.release ();
2463 if (objfile->obfd == NULL)
2464 error (_("Can't open %s to read symbols."), obfd_filename);
2465 }
2466
2467 std::string original_name = objfile->original_name;
2468
2469 /* bfd_openr sets cacheable to true, which is what we want. */
2470 if (!bfd_check_format (objfile->obfd, bfd_object))
2471 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2472 bfd_errmsg (bfd_get_error ()));
2473
2474 /* Save the offsets, we will nuke them with the rest of the
2475 objfile_obstack. */
2476 num_offsets = objfile->num_sections;
2477 offsets = ((struct section_offsets *)
2478 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2479 memcpy (offsets, objfile->section_offsets,
2480 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2481
2482 /* FIXME: Do we have to free a whole linked list, or is this
2483 enough? */
2484 objfile->global_psymbols.clear ();
2485 objfile->static_psymbols.clear ();
2486
2487 /* Free the obstacks for non-reusable objfiles. */
2488 psymbol_bcache_free (objfile->psymbol_cache);
2489 objfile->psymbol_cache = psymbol_bcache_init ();
2490
2491 /* NB: after this call to obstack_free, objfiles_changed
2492 will need to be called (see discussion below). */
2493 obstack_free (&objfile->objfile_obstack, 0);
2494 objfile->sections = NULL;
2495 objfile->compunit_symtabs = NULL;
2496 objfile->psymtabs = NULL;
2497 objfile->psymtabs_addrmap = NULL;
2498 objfile->free_psymtabs = NULL;
2499 objfile->template_symbols = NULL;
2500 objfile->static_links = NULL;
2501
2502 /* obstack_init also initializes the obstack so it is
2503 empty. We could use obstack_specify_allocation but
2504 gdb_obstack.h specifies the alloc/dealloc functions. */
2505 obstack_init (&objfile->objfile_obstack);
2506
2507 /* set_objfile_per_bfd potentially allocates the per-bfd
2508 data on the objfile's obstack (if sharing data across
2509 multiple users is not possible), so it's important to
2510 do it *after* the obstack has been initialized. */
2511 set_objfile_per_bfd (objfile);
2512
2513 objfile->original_name
2514 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2515 original_name.c_str (),
2516 original_name.size ());
2517
2518 /* Reset the sym_fns pointer. The ELF reader can change it
2519 based on whether .gdb_index is present, and we need it to
2520 start over. PR symtab/15885 */
2521 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2522
2523 build_objfile_section_table (objfile);
2524 terminate_minimal_symbol_table (objfile);
2525
2526 /* We use the same section offsets as from last time. I'm not
2527 sure whether that is always correct for shared libraries. */
2528 objfile->section_offsets = (struct section_offsets *)
2529 obstack_alloc (&objfile->objfile_obstack,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531 memcpy (objfile->section_offsets, offsets,
2532 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2533 objfile->num_sections = num_offsets;
2534
2535 /* What the hell is sym_new_init for, anyway? The concept of
2536 distinguishing between the main file and additional files
2537 in this way seems rather dubious. */
2538 if (objfile == symfile_objfile)
2539 {
2540 (*objfile->sf->sym_new_init) (objfile);
2541 }
2542
2543 (*objfile->sf->sym_init) (objfile);
2544 clear_complaints ();
2545
2546 objfile->flags &= ~OBJF_PSYMTABS_READ;
2547
2548 /* We are about to read new symbols and potentially also
2549 DWARF information. Some targets may want to pass addresses
2550 read from DWARF DIE's through an adjustment function before
2551 saving them, like MIPS, which may call into
2552 "find_pc_section". When called, that function will make
2553 use of per-objfile program space data.
2554
2555 Since we discarded our section information above, we have
2556 dangling pointers in the per-objfile program space data
2557 structure. Force GDB to update the section mapping
2558 information by letting it know the objfile has changed,
2559 making the dangling pointers point to correct data
2560 again. */
2561
2562 objfiles_changed ();
2563
2564 read_symbols (objfile, 0);
2565
2566 if (!objfile_has_symbols (objfile))
2567 {
2568 wrap_here ("");
2569 printf_filtered (_("(no debugging symbols found)\n"));
2570 wrap_here ("");
2571 }
2572
2573 /* We're done reading the symbol file; finish off complaints. */
2574 clear_complaints ();
2575
2576 /* Getting new symbols may change our opinion about what is
2577 frameless. */
2578
2579 reinit_frame_cache ();
2580
2581 /* Discard cleanups as symbol reading was successful. */
2582 objfile_holder.release ();
2583 discard_cleanups (old_cleanups);
2584
2585 /* If the mtime has changed between the time we set new_modtime
2586 and now, we *want* this to be out of date, so don't call stat
2587 again now. */
2588 objfile->mtime = new_modtime;
2589 init_entry_point_info (objfile);
2590
2591 new_objfiles.push_back (objfile);
2592 }
2593 }
2594
2595 if (!new_objfiles.empty ())
2596 {
2597 clear_symtab_users (0);
2598
2599 /* clear_objfile_data for each objfile was called before freeing it and
2600 gdb::observers::new_objfile.notify (NULL) has been called by
2601 clear_symtab_users above. Notify the new files now. */
2602 for (auto iter : new_objfiles)
2603 gdb::observers::new_objfile.notify (iter);
2604
2605 /* At least one objfile has changed, so we can consider that
2606 the executable we're debugging has changed too. */
2607 gdb::observers::executable_changed.notify ();
2608 }
2609 }
2610 \f
2611
2612 struct filename_language
2613 {
2614 filename_language (const std::string &ext_, enum language lang_)
2615 : ext (ext_), lang (lang_)
2616 {}
2617
2618 std::string ext;
2619 enum language lang;
2620 };
2621
2622 static std::vector<filename_language> filename_language_table;
2623
2624 /* See symfile.h. */
2625
2626 void
2627 add_filename_language (const char *ext, enum language lang)
2628 {
2629 filename_language_table.emplace_back (ext, lang);
2630 }
2631
2632 static char *ext_args;
2633 static void
2634 show_ext_args (struct ui_file *file, int from_tty,
2635 struct cmd_list_element *c, const char *value)
2636 {
2637 fprintf_filtered (file,
2638 _("Mapping between filename extension "
2639 "and source language is \"%s\".\n"),
2640 value);
2641 }
2642
2643 static void
2644 set_ext_lang_command (const char *args,
2645 int from_tty, struct cmd_list_element *e)
2646 {
2647 char *cp = ext_args;
2648 enum language lang;
2649
2650 /* First arg is filename extension, starting with '.' */
2651 if (*cp != '.')
2652 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2653
2654 /* Find end of first arg. */
2655 while (*cp && !isspace (*cp))
2656 cp++;
2657
2658 if (*cp == '\0')
2659 error (_("'%s': two arguments required -- "
2660 "filename extension and language"),
2661 ext_args);
2662
2663 /* Null-terminate first arg. */
2664 *cp++ = '\0';
2665
2666 /* Find beginning of second arg, which should be a source language. */
2667 cp = skip_spaces (cp);
2668
2669 if (*cp == '\0')
2670 error (_("'%s': two arguments required -- "
2671 "filename extension and language"),
2672 ext_args);
2673
2674 /* Lookup the language from among those we know. */
2675 lang = language_enum (cp);
2676
2677 auto it = filename_language_table.begin ();
2678 /* Now lookup the filename extension: do we already know it? */
2679 for (; it != filename_language_table.end (); it++)
2680 {
2681 if (it->ext == ext_args)
2682 break;
2683 }
2684
2685 if (it == filename_language_table.end ())
2686 {
2687 /* New file extension. */
2688 add_filename_language (ext_args, lang);
2689 }
2690 else
2691 {
2692 /* Redefining a previously known filename extension. */
2693
2694 /* if (from_tty) */
2695 /* query ("Really make files of type %s '%s'?", */
2696 /* ext_args, language_str (lang)); */
2697
2698 it->lang = lang;
2699 }
2700 }
2701
2702 static void
2703 info_ext_lang_command (const char *args, int from_tty)
2704 {
2705 printf_filtered (_("Filename extensions and the languages they represent:"));
2706 printf_filtered ("\n\n");
2707 for (const filename_language &entry : filename_language_table)
2708 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2709 language_str (entry.lang));
2710 }
2711
2712 enum language
2713 deduce_language_from_filename (const char *filename)
2714 {
2715 const char *cp;
2716
2717 if (filename != NULL)
2718 if ((cp = strrchr (filename, '.')) != NULL)
2719 {
2720 for (const filename_language &entry : filename_language_table)
2721 if (entry.ext == cp)
2722 return entry.lang;
2723 }
2724
2725 return language_unknown;
2726 }
2727 \f
2728 /* Allocate and initialize a new symbol table.
2729 CUST is from the result of allocate_compunit_symtab. */
2730
2731 struct symtab *
2732 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2733 {
2734 struct objfile *objfile = cust->objfile;
2735 struct symtab *symtab
2736 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2737
2738 symtab->filename
2739 = (const char *) bcache (filename, strlen (filename) + 1,
2740 objfile->per_bfd->filename_cache);
2741 symtab->fullname = NULL;
2742 symtab->language = deduce_language_from_filename (filename);
2743
2744 /* This can be very verbose with lots of headers.
2745 Only print at higher debug levels. */
2746 if (symtab_create_debug >= 2)
2747 {
2748 /* Be a bit clever with debugging messages, and don't print objfile
2749 every time, only when it changes. */
2750 static char *last_objfile_name = NULL;
2751
2752 if (last_objfile_name == NULL
2753 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2754 {
2755 xfree (last_objfile_name);
2756 last_objfile_name = xstrdup (objfile_name (objfile));
2757 fprintf_filtered (gdb_stdlog,
2758 "Creating one or more symtabs for objfile %s ...\n",
2759 last_objfile_name);
2760 }
2761 fprintf_filtered (gdb_stdlog,
2762 "Created symtab %s for module %s.\n",
2763 host_address_to_string (symtab), filename);
2764 }
2765
2766 /* Add it to CUST's list of symtabs. */
2767 if (cust->filetabs == NULL)
2768 {
2769 cust->filetabs = symtab;
2770 cust->last_filetab = symtab;
2771 }
2772 else
2773 {
2774 cust->last_filetab->next = symtab;
2775 cust->last_filetab = symtab;
2776 }
2777
2778 /* Backlink to the containing compunit symtab. */
2779 symtab->compunit_symtab = cust;
2780
2781 return symtab;
2782 }
2783
2784 /* Allocate and initialize a new compunit.
2785 NAME is the name of the main source file, if there is one, or some
2786 descriptive text if there are no source files. */
2787
2788 struct compunit_symtab *
2789 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2790 {
2791 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct compunit_symtab);
2793 const char *saved_name;
2794
2795 cu->objfile = objfile;
2796
2797 /* The name we record here is only for display/debugging purposes.
2798 Just save the basename to avoid path issues (too long for display,
2799 relative vs absolute, etc.). */
2800 saved_name = lbasename (name);
2801 cu->name
2802 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2803 strlen (saved_name));
2804
2805 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2806
2807 if (symtab_create_debug)
2808 {
2809 fprintf_filtered (gdb_stdlog,
2810 "Created compunit symtab %s for %s.\n",
2811 host_address_to_string (cu),
2812 cu->name);
2813 }
2814
2815 return cu;
2816 }
2817
2818 /* Hook CU to the objfile it comes from. */
2819
2820 void
2821 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2822 {
2823 cu->next = cu->objfile->compunit_symtabs;
2824 cu->objfile->compunit_symtabs = cu;
2825 }
2826 \f
2827
2828 /* Reset all data structures in gdb which may contain references to
2829 symbol table data. */
2830
2831 void
2832 clear_symtab_users (symfile_add_flags add_flags)
2833 {
2834 /* Someday, we should do better than this, by only blowing away
2835 the things that really need to be blown. */
2836
2837 /* Clear the "current" symtab first, because it is no longer valid.
2838 breakpoint_re_set may try to access the current symtab. */
2839 clear_current_source_symtab_and_line ();
2840
2841 clear_displays ();
2842 clear_last_displayed_sal ();
2843 clear_pc_function_cache ();
2844 gdb::observers::new_objfile.notify (NULL);
2845
2846 /* Clear globals which might have pointed into a removed objfile.
2847 FIXME: It's not clear which of these are supposed to persist
2848 between expressions and which ought to be reset each time. */
2849 expression_context_block = NULL;
2850 innermost_block.reset ();
2851
2852 /* Varobj may refer to old symbols, perform a cleanup. */
2853 varobj_invalidate ();
2854
2855 /* Now that the various caches have been cleared, we can re_set
2856 our breakpoints without risking it using stale data. */
2857 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2858 breakpoint_re_set ();
2859 }
2860
2861 static void
2862 clear_symtab_users_cleanup (void *ignore)
2863 {
2864 clear_symtab_users (0);
2865 }
2866 \f
2867 /* OVERLAYS:
2868 The following code implements an abstraction for debugging overlay sections.
2869
2870 The target model is as follows:
2871 1) The gnu linker will permit multiple sections to be mapped into the
2872 same VMA, each with its own unique LMA (or load address).
2873 2) It is assumed that some runtime mechanism exists for mapping the
2874 sections, one by one, from the load address into the VMA address.
2875 3) This code provides a mechanism for gdb to keep track of which
2876 sections should be considered to be mapped from the VMA to the LMA.
2877 This information is used for symbol lookup, and memory read/write.
2878 For instance, if a section has been mapped then its contents
2879 should be read from the VMA, otherwise from the LMA.
2880
2881 Two levels of debugger support for overlays are available. One is
2882 "manual", in which the debugger relies on the user to tell it which
2883 overlays are currently mapped. This level of support is
2884 implemented entirely in the core debugger, and the information about
2885 whether a section is mapped is kept in the objfile->obj_section table.
2886
2887 The second level of support is "automatic", and is only available if
2888 the target-specific code provides functionality to read the target's
2889 overlay mapping table, and translate its contents for the debugger
2890 (by updating the mapped state information in the obj_section tables).
2891
2892 The interface is as follows:
2893 User commands:
2894 overlay map <name> -- tell gdb to consider this section mapped
2895 overlay unmap <name> -- tell gdb to consider this section unmapped
2896 overlay list -- list the sections that GDB thinks are mapped
2897 overlay read-target -- get the target's state of what's mapped
2898 overlay off/manual/auto -- set overlay debugging state
2899 Functional interface:
2900 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2901 section, return that section.
2902 find_pc_overlay(pc): find any overlay section that contains
2903 the pc, either in its VMA or its LMA
2904 section_is_mapped(sect): true if overlay is marked as mapped
2905 section_is_overlay(sect): true if section's VMA != LMA
2906 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2907 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2908 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2909 overlay_mapped_address(...): map an address from section's LMA to VMA
2910 overlay_unmapped_address(...): map an address from section's VMA to LMA
2911 symbol_overlayed_address(...): Return a "current" address for symbol:
2912 either in VMA or LMA depending on whether
2913 the symbol's section is currently mapped. */
2914
2915 /* Overlay debugging state: */
2916
2917 enum overlay_debugging_state overlay_debugging = ovly_off;
2918 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2919
2920 /* Function: section_is_overlay (SECTION)
2921 Returns true if SECTION has VMA not equal to LMA, ie.
2922 SECTION is loaded at an address different from where it will "run". */
2923
2924 int
2925 section_is_overlay (struct obj_section *section)
2926 {
2927 if (overlay_debugging && section)
2928 {
2929 asection *bfd_section = section->the_bfd_section;
2930
2931 if (bfd_section_lma (abfd, bfd_section) != 0
2932 && bfd_section_lma (abfd, bfd_section)
2933 != bfd_section_vma (abfd, bfd_section))
2934 return 1;
2935 }
2936
2937 return 0;
2938 }
2939
2940 /* Function: overlay_invalidate_all (void)
2941 Invalidate the mapped state of all overlay sections (mark it as stale). */
2942
2943 static void
2944 overlay_invalidate_all (void)
2945 {
2946 struct objfile *objfile;
2947 struct obj_section *sect;
2948
2949 ALL_OBJSECTIONS (objfile, sect)
2950 if (section_is_overlay (sect))
2951 sect->ovly_mapped = -1;
2952 }
2953
2954 /* Function: section_is_mapped (SECTION)
2955 Returns true if section is an overlay, and is currently mapped.
2956
2957 Access to the ovly_mapped flag is restricted to this function, so
2958 that we can do automatic update. If the global flag
2959 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2960 overlay_invalidate_all. If the mapped state of the particular
2961 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2962
2963 int
2964 section_is_mapped (struct obj_section *osect)
2965 {
2966 struct gdbarch *gdbarch;
2967
2968 if (osect == 0 || !section_is_overlay (osect))
2969 return 0;
2970
2971 switch (overlay_debugging)
2972 {
2973 default:
2974 case ovly_off:
2975 return 0; /* overlay debugging off */
2976 case ovly_auto: /* overlay debugging automatic */
2977 /* Unles there is a gdbarch_overlay_update function,
2978 there's really nothing useful to do here (can't really go auto). */
2979 gdbarch = get_objfile_arch (osect->objfile);
2980 if (gdbarch_overlay_update_p (gdbarch))
2981 {
2982 if (overlay_cache_invalid)
2983 {
2984 overlay_invalidate_all ();
2985 overlay_cache_invalid = 0;
2986 }
2987 if (osect->ovly_mapped == -1)
2988 gdbarch_overlay_update (gdbarch, osect);
2989 }
2990 /* fall thru */
2991 case ovly_on: /* overlay debugging manual */
2992 return osect->ovly_mapped == 1;
2993 }
2994 }
2995
2996 /* Function: pc_in_unmapped_range
2997 If PC falls into the lma range of SECTION, return true, else false. */
2998
2999 CORE_ADDR
3000 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3001 {
3002 if (section_is_overlay (section))
3003 {
3004 bfd *abfd = section->objfile->obfd;
3005 asection *bfd_section = section->the_bfd_section;
3006
3007 /* We assume the LMA is relocated by the same offset as the VMA. */
3008 bfd_vma size = bfd_get_section_size (bfd_section);
3009 CORE_ADDR offset = obj_section_offset (section);
3010
3011 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3012 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3013 return 1;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /* Function: pc_in_mapped_range
3020 If PC falls into the vma range of SECTION, return true, else false. */
3021
3022 CORE_ADDR
3023 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3024 {
3025 if (section_is_overlay (section))
3026 {
3027 if (obj_section_addr (section) <= pc
3028 && pc < obj_section_endaddr (section))
3029 return 1;
3030 }
3031
3032 return 0;
3033 }
3034
3035 /* Return true if the mapped ranges of sections A and B overlap, false
3036 otherwise. */
3037
3038 static int
3039 sections_overlap (struct obj_section *a, struct obj_section *b)
3040 {
3041 CORE_ADDR a_start = obj_section_addr (a);
3042 CORE_ADDR a_end = obj_section_endaddr (a);
3043 CORE_ADDR b_start = obj_section_addr (b);
3044 CORE_ADDR b_end = obj_section_endaddr (b);
3045
3046 return (a_start < b_end && b_start < a_end);
3047 }
3048
3049 /* Function: overlay_unmapped_address (PC, SECTION)
3050 Returns the address corresponding to PC in the unmapped (load) range.
3051 May be the same as PC. */
3052
3053 CORE_ADDR
3054 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3055 {
3056 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3057 {
3058 asection *bfd_section = section->the_bfd_section;
3059
3060 return pc + bfd_section_lma (abfd, bfd_section)
3061 - bfd_section_vma (abfd, bfd_section);
3062 }
3063
3064 return pc;
3065 }
3066
3067 /* Function: overlay_mapped_address (PC, SECTION)
3068 Returns the address corresponding to PC in the mapped (runtime) range.
3069 May be the same as PC. */
3070
3071 CORE_ADDR
3072 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3073 {
3074 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3075 {
3076 asection *bfd_section = section->the_bfd_section;
3077
3078 return pc + bfd_section_vma (abfd, bfd_section)
3079 - bfd_section_lma (abfd, bfd_section);
3080 }
3081
3082 return pc;
3083 }
3084
3085 /* Function: symbol_overlayed_address
3086 Return one of two addresses (relative to the VMA or to the LMA),
3087 depending on whether the section is mapped or not. */
3088
3089 CORE_ADDR
3090 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3091 {
3092 if (overlay_debugging)
3093 {
3094 /* If the symbol has no section, just return its regular address. */
3095 if (section == 0)
3096 return address;
3097 /* If the symbol's section is not an overlay, just return its
3098 address. */
3099 if (!section_is_overlay (section))
3100 return address;
3101 /* If the symbol's section is mapped, just return its address. */
3102 if (section_is_mapped (section))
3103 return address;
3104 /*
3105 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3106 * then return its LOADED address rather than its vma address!!
3107 */
3108 return overlay_unmapped_address (address, section);
3109 }
3110 return address;
3111 }
3112
3113 /* Function: find_pc_overlay (PC)
3114 Return the best-match overlay section for PC:
3115 If PC matches a mapped overlay section's VMA, return that section.
3116 Else if PC matches an unmapped section's VMA, return that section.
3117 Else if PC matches an unmapped section's LMA, return that section. */
3118
3119 struct obj_section *
3120 find_pc_overlay (CORE_ADDR pc)
3121 {
3122 struct objfile *objfile;
3123 struct obj_section *osect, *best_match = NULL;
3124
3125 if (overlay_debugging)
3126 {
3127 ALL_OBJSECTIONS (objfile, osect)
3128 if (section_is_overlay (osect))
3129 {
3130 if (pc_in_mapped_range (pc, osect))
3131 {
3132 if (section_is_mapped (osect))
3133 return osect;
3134 else
3135 best_match = osect;
3136 }
3137 else if (pc_in_unmapped_range (pc, osect))
3138 best_match = osect;
3139 }
3140 }
3141 return best_match;
3142 }
3143
3144 /* Function: find_pc_mapped_section (PC)
3145 If PC falls into the VMA address range of an overlay section that is
3146 currently marked as MAPPED, return that section. Else return NULL. */
3147
3148 struct obj_section *
3149 find_pc_mapped_section (CORE_ADDR pc)
3150 {
3151 struct objfile *objfile;
3152 struct obj_section *osect;
3153
3154 if (overlay_debugging)
3155 {
3156 ALL_OBJSECTIONS (objfile, osect)
3157 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3158 return osect;
3159 }
3160
3161 return NULL;
3162 }
3163
3164 /* Function: list_overlays_command
3165 Print a list of mapped sections and their PC ranges. */
3166
3167 static void
3168 list_overlays_command (const char *args, int from_tty)
3169 {
3170 int nmapped = 0;
3171 struct objfile *objfile;
3172 struct obj_section *osect;
3173
3174 if (overlay_debugging)
3175 {
3176 ALL_OBJSECTIONS (objfile, osect)
3177 if (section_is_mapped (osect))
3178 {
3179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3180 const char *name;
3181 bfd_vma lma, vma;
3182 int size;
3183
3184 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3185 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3186 size = bfd_get_section_size (osect->the_bfd_section);
3187 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3188
3189 printf_filtered ("Section %s, loaded at ", name);
3190 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3191 puts_filtered (" - ");
3192 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3193 printf_filtered (", mapped at ");
3194 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3195 puts_filtered (" - ");
3196 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3197 puts_filtered ("\n");
3198
3199 nmapped++;
3200 }
3201 }
3202 if (nmapped == 0)
3203 printf_filtered (_("No sections are mapped.\n"));
3204 }
3205
3206 /* Function: map_overlay_command
3207 Mark the named section as mapped (ie. residing at its VMA address). */
3208
3209 static void
3210 map_overlay_command (const char *args, int from_tty)
3211 {
3212 struct objfile *objfile, *objfile2;
3213 struct obj_section *sec, *sec2;
3214
3215 if (!overlay_debugging)
3216 error (_("Overlay debugging not enabled. Use "
3217 "either the 'overlay auto' or\n"
3218 "the 'overlay manual' command."));
3219
3220 if (args == 0 || *args == 0)
3221 error (_("Argument required: name of an overlay section"));
3222
3223 /* First, find a section matching the user supplied argument. */
3224 ALL_OBJSECTIONS (objfile, sec)
3225 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3226 {
3227 /* Now, check to see if the section is an overlay. */
3228 if (!section_is_overlay (sec))
3229 continue; /* not an overlay section */
3230
3231 /* Mark the overlay as "mapped". */
3232 sec->ovly_mapped = 1;
3233
3234 /* Next, make a pass and unmap any sections that are
3235 overlapped by this new section: */
3236 ALL_OBJSECTIONS (objfile2, sec2)
3237 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3238 {
3239 if (info_verbose)
3240 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3241 bfd_section_name (objfile->obfd,
3242 sec2->the_bfd_section));
3243 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3244 }
3245 return;
3246 }
3247 error (_("No overlay section called %s"), args);
3248 }
3249
3250 /* Function: unmap_overlay_command
3251 Mark the overlay section as unmapped
3252 (ie. resident in its LMA address range, rather than the VMA range). */
3253
3254 static void
3255 unmap_overlay_command (const char *args, int from_tty)
3256 {
3257 struct objfile *objfile;
3258 struct obj_section *sec = NULL;
3259
3260 if (!overlay_debugging)
3261 error (_("Overlay debugging not enabled. "
3262 "Use either the 'overlay auto' or\n"
3263 "the 'overlay manual' command."));
3264
3265 if (args == 0 || *args == 0)
3266 error (_("Argument required: name of an overlay section"));
3267
3268 /* First, find a section matching the user supplied argument. */
3269 ALL_OBJSECTIONS (objfile, sec)
3270 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3271 {
3272 if (!sec->ovly_mapped)
3273 error (_("Section %s is not mapped"), args);
3274 sec->ovly_mapped = 0;
3275 return;
3276 }
3277 error (_("No overlay section called %s"), args);
3278 }
3279
3280 /* Function: overlay_auto_command
3281 A utility command to turn on overlay debugging.
3282 Possibly this should be done via a set/show command. */
3283
3284 static void
3285 overlay_auto_command (const char *args, int from_tty)
3286 {
3287 overlay_debugging = ovly_auto;
3288 enable_overlay_breakpoints ();
3289 if (info_verbose)
3290 printf_unfiltered (_("Automatic overlay debugging enabled."));
3291 }
3292
3293 /* Function: overlay_manual_command
3294 A utility command to turn on overlay debugging.
3295 Possibly this should be done via a set/show command. */
3296
3297 static void
3298 overlay_manual_command (const char *args, int from_tty)
3299 {
3300 overlay_debugging = ovly_on;
3301 disable_overlay_breakpoints ();
3302 if (info_verbose)
3303 printf_unfiltered (_("Overlay debugging enabled."));
3304 }
3305
3306 /* Function: overlay_off_command
3307 A utility command to turn on overlay debugging.
3308 Possibly this should be done via a set/show command. */
3309
3310 static void
3311 overlay_off_command (const char *args, int from_tty)
3312 {
3313 overlay_debugging = ovly_off;
3314 disable_overlay_breakpoints ();
3315 if (info_verbose)
3316 printf_unfiltered (_("Overlay debugging disabled."));
3317 }
3318
3319 static void
3320 overlay_load_command (const char *args, int from_tty)
3321 {
3322 struct gdbarch *gdbarch = get_current_arch ();
3323
3324 if (gdbarch_overlay_update_p (gdbarch))
3325 gdbarch_overlay_update (gdbarch, NULL);
3326 else
3327 error (_("This target does not know how to read its overlay state."));
3328 }
3329
3330 /* Function: overlay_command
3331 A place-holder for a mis-typed command. */
3332
3333 /* Command list chain containing all defined "overlay" subcommands. */
3334 static struct cmd_list_element *overlaylist;
3335
3336 static void
3337 overlay_command (const char *args, int from_tty)
3338 {
3339 printf_unfiltered
3340 ("\"overlay\" must be followed by the name of an overlay command.\n");
3341 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3342 }
3343
3344 /* Target Overlays for the "Simplest" overlay manager:
3345
3346 This is GDB's default target overlay layer. It works with the
3347 minimal overlay manager supplied as an example by Cygnus. The
3348 entry point is via a function pointer "gdbarch_overlay_update",
3349 so targets that use a different runtime overlay manager can
3350 substitute their own overlay_update function and take over the
3351 function pointer.
3352
3353 The overlay_update function pokes around in the target's data structures
3354 to see what overlays are mapped, and updates GDB's overlay mapping with
3355 this information.
3356
3357 In this simple implementation, the target data structures are as follows:
3358 unsigned _novlys; /# number of overlay sections #/
3359 unsigned _ovly_table[_novlys][4] = {
3360 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3361 {..., ..., ..., ...},
3362 }
3363 unsigned _novly_regions; /# number of overlay regions #/
3364 unsigned _ovly_region_table[_novly_regions][3] = {
3365 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3366 {..., ..., ...},
3367 }
3368 These functions will attempt to update GDB's mappedness state in the
3369 symbol section table, based on the target's mappedness state.
3370
3371 To do this, we keep a cached copy of the target's _ovly_table, and
3372 attempt to detect when the cached copy is invalidated. The main
3373 entry point is "simple_overlay_update(SECT), which looks up SECT in
3374 the cached table and re-reads only the entry for that section from
3375 the target (whenever possible). */
3376
3377 /* Cached, dynamically allocated copies of the target data structures: */
3378 static unsigned (*cache_ovly_table)[4] = 0;
3379 static unsigned cache_novlys = 0;
3380 static CORE_ADDR cache_ovly_table_base = 0;
3381 enum ovly_index
3382 {
3383 VMA, OSIZE, LMA, MAPPED
3384 };
3385
3386 /* Throw away the cached copy of _ovly_table. */
3387
3388 static void
3389 simple_free_overlay_table (void)
3390 {
3391 if (cache_ovly_table)
3392 xfree (cache_ovly_table);
3393 cache_novlys = 0;
3394 cache_ovly_table = NULL;
3395 cache_ovly_table_base = 0;
3396 }
3397
3398 /* Read an array of ints of size SIZE from the target into a local buffer.
3399 Convert to host order. int LEN is number of ints. */
3400
3401 static void
3402 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3403 int len, int size, enum bfd_endian byte_order)
3404 {
3405 /* FIXME (alloca): Not safe if array is very large. */
3406 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3407 int i;
3408
3409 read_memory (memaddr, buf, len * size);
3410 for (i = 0; i < len; i++)
3411 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3412 }
3413
3414 /* Find and grab a copy of the target _ovly_table
3415 (and _novlys, which is needed for the table's size). */
3416
3417 static int
3418 simple_read_overlay_table (void)
3419 {
3420 struct bound_minimal_symbol novlys_msym;
3421 struct bound_minimal_symbol ovly_table_msym;
3422 struct gdbarch *gdbarch;
3423 int word_size;
3424 enum bfd_endian byte_order;
3425
3426 simple_free_overlay_table ();
3427 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3428 if (! novlys_msym.minsym)
3429 {
3430 error (_("Error reading inferior's overlay table: "
3431 "couldn't find `_novlys' variable\n"
3432 "in inferior. Use `overlay manual' mode."));
3433 return 0;
3434 }
3435
3436 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3437 if (! ovly_table_msym.minsym)
3438 {
3439 error (_("Error reading inferior's overlay table: couldn't find "
3440 "`_ovly_table' array\n"
3441 "in inferior. Use `overlay manual' mode."));
3442 return 0;
3443 }
3444
3445 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3446 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3447 byte_order = gdbarch_byte_order (gdbarch);
3448
3449 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3450 4, byte_order);
3451 cache_ovly_table
3452 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3453 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3454 read_target_long_array (cache_ovly_table_base,
3455 (unsigned int *) cache_ovly_table,
3456 cache_novlys * 4, word_size, byte_order);
3457
3458 return 1; /* SUCCESS */
3459 }
3460
3461 /* Function: simple_overlay_update_1
3462 A helper function for simple_overlay_update. Assuming a cached copy
3463 of _ovly_table exists, look through it to find an entry whose vma,
3464 lma and size match those of OSECT. Re-read the entry and make sure
3465 it still matches OSECT (else the table may no longer be valid).
3466 Set OSECT's mapped state to match the entry. Return: 1 for
3467 success, 0 for failure. */
3468
3469 static int
3470 simple_overlay_update_1 (struct obj_section *osect)
3471 {
3472 int i;
3473 asection *bsect = osect->the_bfd_section;
3474 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3475 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3477
3478 for (i = 0; i < cache_novlys; i++)
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3481 {
3482 read_target_long_array (cache_ovly_table_base + i * word_size,
3483 (unsigned int *) cache_ovly_table[i],
3484 4, word_size, byte_order);
3485 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3486 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3487 {
3488 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3489 return 1;
3490 }
3491 else /* Warning! Warning! Target's ovly table has changed! */
3492 return 0;
3493 }
3494 return 0;
3495 }
3496
3497 /* Function: simple_overlay_update
3498 If OSECT is NULL, then update all sections' mapped state
3499 (after re-reading the entire target _ovly_table).
3500 If OSECT is non-NULL, then try to find a matching entry in the
3501 cached ovly_table and update only OSECT's mapped state.
3502 If a cached entry can't be found or the cache isn't valid, then
3503 re-read the entire cache, and go ahead and update all sections. */
3504
3505 void
3506 simple_overlay_update (struct obj_section *osect)
3507 {
3508 struct objfile *objfile;
3509
3510 /* Were we given an osect to look up? NULL means do all of them. */
3511 if (osect)
3512 /* Have we got a cached copy of the target's overlay table? */
3513 if (cache_ovly_table != NULL)
3514 {
3515 /* Does its cached location match what's currently in the
3516 symtab? */
3517 struct bound_minimal_symbol minsym
3518 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3519
3520 if (minsym.minsym == NULL)
3521 error (_("Error reading inferior's overlay table: couldn't "
3522 "find `_ovly_table' array\n"
3523 "in inferior. Use `overlay manual' mode."));
3524
3525 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3526 /* Then go ahead and try to look up this single section in
3527 the cache. */
3528 if (simple_overlay_update_1 (osect))
3529 /* Found it! We're done. */
3530 return;
3531 }
3532
3533 /* Cached table no good: need to read the entire table anew.
3534 Or else we want all the sections, in which case it's actually
3535 more efficient to read the whole table in one block anyway. */
3536
3537 if (! simple_read_overlay_table ())
3538 return;
3539
3540 /* Now may as well update all sections, even if only one was requested. */
3541 ALL_OBJSECTIONS (objfile, osect)
3542 if (section_is_overlay (osect))
3543 {
3544 int i;
3545 asection *bsect = osect->the_bfd_section;
3546
3547 for (i = 0; i < cache_novlys; i++)
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3550 { /* obj_section matches i'th entry in ovly_table. */
3551 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3552 break; /* finished with inner for loop: break out. */
3553 }
3554 }
3555 }
3556
3557 /* Set the output sections and output offsets for section SECTP in
3558 ABFD. The relocation code in BFD will read these offsets, so we
3559 need to be sure they're initialized. We map each section to itself,
3560 with no offset; this means that SECTP->vma will be honored. */
3561
3562 static void
3563 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3564 {
3565 sectp->output_section = sectp;
3566 sectp->output_offset = 0;
3567 }
3568
3569 /* Default implementation for sym_relocate. */
3570
3571 bfd_byte *
3572 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3573 bfd_byte *buf)
3574 {
3575 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3576 DWO file. */
3577 bfd *abfd = sectp->owner;
3578
3579 /* We're only interested in sections with relocation
3580 information. */
3581 if ((sectp->flags & SEC_RELOC) == 0)
3582 return NULL;
3583
3584 /* We will handle section offsets properly elsewhere, so relocate as if
3585 all sections begin at 0. */
3586 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3587
3588 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3589 }
3590
3591 /* Relocate the contents of a debug section SECTP in ABFD. The
3592 contents are stored in BUF if it is non-NULL, or returned in a
3593 malloc'd buffer otherwise.
3594
3595 For some platforms and debug info formats, shared libraries contain
3596 relocations against the debug sections (particularly for DWARF-2;
3597 one affected platform is PowerPC GNU/Linux, although it depends on
3598 the version of the linker in use). Also, ELF object files naturally
3599 have unresolved relocations for their debug sections. We need to apply
3600 the relocations in order to get the locations of symbols correct.
3601 Another example that may require relocation processing, is the
3602 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3603 debug section. */
3604
3605 bfd_byte *
3606 symfile_relocate_debug_section (struct objfile *objfile,
3607 asection *sectp, bfd_byte *buf)
3608 {
3609 gdb_assert (objfile->sf->sym_relocate);
3610
3611 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3612 }
3613
3614 struct symfile_segment_data *
3615 get_symfile_segment_data (bfd *abfd)
3616 {
3617 const struct sym_fns *sf = find_sym_fns (abfd);
3618
3619 if (sf == NULL)
3620 return NULL;
3621
3622 return sf->sym_segments (abfd);
3623 }
3624
3625 void
3626 free_symfile_segment_data (struct symfile_segment_data *data)
3627 {
3628 xfree (data->segment_bases);
3629 xfree (data->segment_sizes);
3630 xfree (data->segment_info);
3631 xfree (data);
3632 }
3633
3634 /* Given:
3635 - DATA, containing segment addresses from the object file ABFD, and
3636 the mapping from ABFD's sections onto the segments that own them,
3637 and
3638 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3639 segment addresses reported by the target,
3640 store the appropriate offsets for each section in OFFSETS.
3641
3642 If there are fewer entries in SEGMENT_BASES than there are segments
3643 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3644
3645 If there are more entries, then ignore the extra. The target may
3646 not be able to distinguish between an empty data segment and a
3647 missing data segment; a missing text segment is less plausible. */
3648
3649 int
3650 symfile_map_offsets_to_segments (bfd *abfd,
3651 const struct symfile_segment_data *data,
3652 struct section_offsets *offsets,
3653 int num_segment_bases,
3654 const CORE_ADDR *segment_bases)
3655 {
3656 int i;
3657 asection *sect;
3658
3659 /* It doesn't make sense to call this function unless you have some
3660 segment base addresses. */
3661 gdb_assert (num_segment_bases > 0);
3662
3663 /* If we do not have segment mappings for the object file, we
3664 can not relocate it by segments. */
3665 gdb_assert (data != NULL);
3666 gdb_assert (data->num_segments > 0);
3667
3668 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3669 {
3670 int which = data->segment_info[i];
3671
3672 gdb_assert (0 <= which && which <= data->num_segments);
3673
3674 /* Don't bother computing offsets for sections that aren't
3675 loaded as part of any segment. */
3676 if (! which)
3677 continue;
3678
3679 /* Use the last SEGMENT_BASES entry as the address of any extra
3680 segments mentioned in DATA->segment_info. */
3681 if (which > num_segment_bases)
3682 which = num_segment_bases;
3683
3684 offsets->offsets[i] = (segment_bases[which - 1]
3685 - data->segment_bases[which - 1]);
3686 }
3687
3688 return 1;
3689 }
3690
3691 static void
3692 symfile_find_segment_sections (struct objfile *objfile)
3693 {
3694 bfd *abfd = objfile->obfd;
3695 int i;
3696 asection *sect;
3697 struct symfile_segment_data *data;
3698
3699 data = get_symfile_segment_data (objfile->obfd);
3700 if (data == NULL)
3701 return;
3702
3703 if (data->num_segments != 1 && data->num_segments != 2)
3704 {
3705 free_symfile_segment_data (data);
3706 return;
3707 }
3708
3709 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3710 {
3711 int which = data->segment_info[i];
3712
3713 if (which == 1)
3714 {
3715 if (objfile->sect_index_text == -1)
3716 objfile->sect_index_text = sect->index;
3717
3718 if (objfile->sect_index_rodata == -1)
3719 objfile->sect_index_rodata = sect->index;
3720 }
3721 else if (which == 2)
3722 {
3723 if (objfile->sect_index_data == -1)
3724 objfile->sect_index_data = sect->index;
3725
3726 if (objfile->sect_index_bss == -1)
3727 objfile->sect_index_bss = sect->index;
3728 }
3729 }
3730
3731 free_symfile_segment_data (data);
3732 }
3733
3734 /* Listen for free_objfile events. */
3735
3736 static void
3737 symfile_free_objfile (struct objfile *objfile)
3738 {
3739 /* Remove the target sections owned by this objfile. */
3740 if (objfile != NULL)
3741 remove_target_sections ((void *) objfile);
3742 }
3743
3744 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3745 Expand all symtabs that match the specified criteria.
3746 See quick_symbol_functions.expand_symtabs_matching for details. */
3747
3748 void
3749 expand_symtabs_matching
3750 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3751 const lookup_name_info &lookup_name,
3752 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3753 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3754 enum search_domain kind)
3755 {
3756 struct objfile *objfile;
3757
3758 ALL_OBJFILES (objfile)
3759 {
3760 if (objfile->sf)
3761 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3762 lookup_name,
3763 symbol_matcher,
3764 expansion_notify, kind);
3765 }
3766 }
3767
3768 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3769 Map function FUN over every file.
3770 See quick_symbol_functions.map_symbol_filenames for details. */
3771
3772 void
3773 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3774 int need_fullname)
3775 {
3776 struct objfile *objfile;
3777
3778 ALL_OBJFILES (objfile)
3779 {
3780 if (objfile->sf)
3781 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3782 need_fullname);
3783 }
3784 }
3785
3786 #if GDB_SELF_TEST
3787
3788 namespace selftests {
3789 namespace filename_language {
3790
3791 static void test_filename_language ()
3792 {
3793 /* This test messes up the filename_language_table global. */
3794 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3795
3796 /* Test deducing an unknown extension. */
3797 language lang = deduce_language_from_filename ("myfile.blah");
3798 SELF_CHECK (lang == language_unknown);
3799
3800 /* Test deducing a known extension. */
3801 lang = deduce_language_from_filename ("myfile.c");
3802 SELF_CHECK (lang == language_c);
3803
3804 /* Test adding a new extension using the internal API. */
3805 add_filename_language (".blah", language_pascal);
3806 lang = deduce_language_from_filename ("myfile.blah");
3807 SELF_CHECK (lang == language_pascal);
3808 }
3809
3810 static void
3811 test_set_ext_lang_command ()
3812 {
3813 /* This test messes up the filename_language_table global. */
3814 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3815
3816 /* Confirm that the .hello extension is not known. */
3817 language lang = deduce_language_from_filename ("cake.hello");
3818 SELF_CHECK (lang == language_unknown);
3819
3820 /* Test adding a new extension using the CLI command. */
3821 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3822 ext_args = args_holder.get ();
3823 set_ext_lang_command (NULL, 1, NULL);
3824
3825 lang = deduce_language_from_filename ("cake.hello");
3826 SELF_CHECK (lang == language_rust);
3827
3828 /* Test overriding an existing extension using the CLI command. */
3829 int size_before = filename_language_table.size ();
3830 args_holder.reset (xstrdup (".hello pascal"));
3831 ext_args = args_holder.get ();
3832 set_ext_lang_command (NULL, 1, NULL);
3833 int size_after = filename_language_table.size ();
3834
3835 lang = deduce_language_from_filename ("cake.hello");
3836 SELF_CHECK (lang == language_pascal);
3837 SELF_CHECK (size_before == size_after);
3838 }
3839
3840 } /* namespace filename_language */
3841 } /* namespace selftests */
3842
3843 #endif /* GDB_SELF_TEST */
3844
3845 void
3846 _initialize_symfile (void)
3847 {
3848 struct cmd_list_element *c;
3849
3850 gdb::observers::free_objfile.attach (symfile_free_objfile);
3851
3852 #define READNOW_READNEVER_HELP \
3853 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3854 immediately. This makes the command slower, but may make future operations\n\
3855 faster.\n\
3856 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3857 symbolic debug information."
3858
3859 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3860 Load symbol table from executable file FILE.\n\
3861 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3862 OFF is an optional offset which is added to each section address.\n\
3863 The `file' command can also load symbol tables, as well as setting the file\n\
3864 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3865 set_cmd_completer (c, filename_completer);
3866
3867 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3868 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3869 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3870 [-s SECT-NAME SECT-ADDR]...\n\
3871 ADDR is the starting address of the file's text.\n\
3872 Each '-s' argument provides a section name and address, and\n\
3873 should be specified if the data and bss segments are not contiguous\n\
3874 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3875 OFF is an optional offset which is added to the default load addresses\n\
3876 of all sections for which no other address was specified.\n"
3877 READNOW_READNEVER_HELP),
3878 &cmdlist);
3879 set_cmd_completer (c, filename_completer);
3880
3881 c = add_cmd ("remove-symbol-file", class_files,
3882 remove_symbol_file_command, _("\
3883 Remove a symbol file added via the add-symbol-file command.\n\
3884 Usage: remove-symbol-file FILENAME\n\
3885 remove-symbol-file -a ADDRESS\n\
3886 The file to remove can be identified by its filename or by an address\n\
3887 that lies within the boundaries of this symbol file in memory."),
3888 &cmdlist);
3889
3890 c = add_cmd ("load", class_files, load_command, _("\
3891 Dynamically load FILE into the running program, and record its symbols\n\
3892 for access from GDB.\n\
3893 Usage: load [FILE] [OFFSET]\n\
3894 An optional load OFFSET may also be given as a literal address.\n\
3895 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3896 on its own."), &cmdlist);
3897 set_cmd_completer (c, filename_completer);
3898
3899 add_prefix_cmd ("overlay", class_support, overlay_command,
3900 _("Commands for debugging overlays."), &overlaylist,
3901 "overlay ", 0, &cmdlist);
3902
3903 add_com_alias ("ovly", "overlay", class_alias, 1);
3904 add_com_alias ("ov", "overlay", class_alias, 1);
3905
3906 add_cmd ("map-overlay", class_support, map_overlay_command,
3907 _("Assert that an overlay section is mapped."), &overlaylist);
3908
3909 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3910 _("Assert that an overlay section is unmapped."), &overlaylist);
3911
3912 add_cmd ("list-overlays", class_support, list_overlays_command,
3913 _("List mappings of overlay sections."), &overlaylist);
3914
3915 add_cmd ("manual", class_support, overlay_manual_command,
3916 _("Enable overlay debugging."), &overlaylist);
3917 add_cmd ("off", class_support, overlay_off_command,
3918 _("Disable overlay debugging."), &overlaylist);
3919 add_cmd ("auto", class_support, overlay_auto_command,
3920 _("Enable automatic overlay debugging."), &overlaylist);
3921 add_cmd ("load-target", class_support, overlay_load_command,
3922 _("Read the overlay mapping state from the target."), &overlaylist);
3923
3924 /* Filename extension to source language lookup table: */
3925 add_setshow_string_noescape_cmd ("extension-language", class_files,
3926 &ext_args, _("\
3927 Set mapping between filename extension and source language."), _("\
3928 Show mapping between filename extension and source language."), _("\
3929 Usage: set extension-language .foo bar"),
3930 set_ext_lang_command,
3931 show_ext_args,
3932 &setlist, &showlist);
3933
3934 add_info ("extensions", info_ext_lang_command,
3935 _("All filename extensions associated with a source language."));
3936
3937 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3938 &debug_file_directory, _("\
3939 Set the directories where separate debug symbols are searched for."), _("\
3940 Show the directories where separate debug symbols are searched for."), _("\
3941 Separate debug symbols are first searched for in the same\n\
3942 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3943 and lastly at the path of the directory of the binary with\n\
3944 each global debug-file-directory component prepended."),
3945 NULL,
3946 show_debug_file_directory,
3947 &setlist, &showlist);
3948
3949 add_setshow_enum_cmd ("symbol-loading", no_class,
3950 print_symbol_loading_enums, &print_symbol_loading,
3951 _("\
3952 Set printing of symbol loading messages."), _("\
3953 Show printing of symbol loading messages."), _("\
3954 off == turn all messages off\n\
3955 brief == print messages for the executable,\n\
3956 and brief messages for shared libraries\n\
3957 full == print messages for the executable,\n\
3958 and messages for each shared library."),
3959 NULL,
3960 NULL,
3961 &setprintlist, &showprintlist);
3962
3963 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3964 &separate_debug_file_debug, _("\
3965 Set printing of separate debug info file search debug."), _("\
3966 Show printing of separate debug info file search debug."), _("\
3967 When on, GDB prints the searched locations while looking for separate debug \
3968 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3969
3970 #if GDB_SELF_TEST
3971 selftests::register_test
3972 ("filename_language", selftests::filename_language::test_filename_language);
3973 selftests::register_test
3974 ("set_ext_lang_command",
3975 selftests::filename_language::test_set_ext_lang_command);
3976 #endif
3977 }
This page took 0.156007 seconds and 5 git commands to generate.