Use std::vector in reread_symbols
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void overlay_auto_command (char *, int);
97
98 static void overlay_manual_command (char *, int);
99
100 static void overlay_off_command (char *, int);
101
102 static void overlay_load_command (char *, int);
103
104 static void overlay_command (char *, int);
105
106 static void simple_free_overlay_table (void);
107
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
110
111 static int simple_read_overlay_table (void);
112
113 static int simple_overlay_update_1 (struct obj_section *);
114
115 static void info_ext_lang_command (char *args, int from_tty);
116
117 static void symfile_find_segment_sections (struct objfile *objfile);
118
119 void _initialize_symfile (void);
120
121 /* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
123 prepared to read. */
124
125 typedef struct
126 {
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132 } registered_sym_fns;
133
134 DEF_VEC_O (registered_sym_fns);
135
136 static VEC (registered_sym_fns) *symtab_fns = NULL;
137
138 /* Values for "set print symbol-loading". */
139
140 const char print_symbol_loading_off[] = "off";
141 const char print_symbol_loading_brief[] = "brief";
142 const char print_symbol_loading_full[] = "full";
143 static const char *print_symbol_loading_enums[] =
144 {
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149 };
150 static const char *print_symbol_loading = print_symbol_loading_full;
151
152 /* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
159 library symbols are not loaded, commands like "info fun" will *not*
160 report all the functions that are actually present. */
161
162 int auto_solib_add = 1;
163 \f
164
165 /* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173 int
174 print_symbol_loading_p (int from_tty, int exec, int full)
175 {
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188 }
189
190 /* True if we are reading a symbol table. */
191
192 int currently_reading_symtab = 0;
193
194 /* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
196
197 scoped_restore_tmpl<int>
198 increment_reading_symtab (void)
199 {
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
203 }
204
205 /* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214 void
215 find_lowest_section (bfd *abfd, asection *sect, void *obj)
216 {
217 asection **lowest = (asection **) obj;
218
219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229 }
230
231 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
234
235 struct section_addr_info *
236 alloc_section_addr_info (size_t num_sections)
237 {
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
245
246 return sap;
247 }
248
249 /* Build (allocate and populate) a section_addr_info struct from
250 an existing section table. */
251
252 extern struct section_addr_info *
253 build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
255 {
256 struct section_addr_info *sap;
257 const struct target_section *stp;
258 int oidx;
259
260 sap = alloc_section_addr_info (end - start);
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
268 && oidx < end - start)
269 {
270 sap->other[oidx].addr = stp->addr;
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
273 oidx++;
274 }
275 }
276
277 sap->num_sections = oidx;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in ABFD. */
283
284 static struct section_addr_info *
285 build_section_addr_info_from_bfd (bfd *abfd)
286 {
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
294 {
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
298 i++;
299 }
300
301 sap->num_sections = i;
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in OBJFILE. */
307
308 struct section_addr_info *
309 build_section_addr_info_from_objfile (const struct objfile *objfile)
310 {
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
318 for (i = 0; i < sap->num_sections; i++)
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325 }
326
327 /* Free all memory allocated by build_section_addr_info_from_section_table. */
328
329 extern void
330 free_section_addr_info (struct section_addr_info *sap)
331 {
332 int idx;
333
334 for (idx = 0; idx < sap->num_sections; idx++)
335 xfree (sap->other[idx].name);
336 xfree (sap);
337 }
338
339 /* Initialize OBJFILE's sect_index_* members. */
340
341 static void
342 init_objfile_sect_indices (struct objfile *objfile)
343 {
344 asection *sect;
345 int i;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
348 if (sect)
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
352 if (sect)
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
356 if (sect)
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
360 if (sect)
361 objfile->sect_index_rodata = sect->index;
362
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
398 }
399
400 /* The arguments to place_section. */
401
402 struct place_section_arg
403 {
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406 };
407
408 /* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
411 static void
412 place_section (bfd *abfd, asection *sect, void *obj)
413 {
414 struct place_section_arg *arg = (struct place_section_arg *) obj;
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
418
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
421 return;
422
423 /* If the user specified an offset, honor it. */
424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
428 start_addr = (arg->lowest + align - 1) & -align;
429
430 do {
431 asection *cur_sec;
432
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
460 break;
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
469 arg->lowest = start_addr + bfd_get_section_size (sect);
470 }
471
472 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
475
476 void
477 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
479 const struct section_addr_info *addrs)
480 {
481 int i;
482
483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
484
485 /* Now calculate offsets for section that were specified by the caller. */
486 for (i = 0; i < addrs->num_sections; i++)
487 {
488 const struct other_sections *osp;
489
490 osp = &addrs->other[i];
491 if (osp->sectindex == -1)
492 continue;
493
494 /* Record all sections in offsets. */
495 /* The section_offsets in the objfile are here filled in using
496 the BFD index. */
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499 }
500
501 /* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507 static const char *
508 addr_section_name (const char *s)
509 {
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516 }
517
518 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521 static int
522 addrs_section_compar (const void *ap, const void *bp)
523 {
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
526 int retval;
527
528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
529 if (retval)
530 return retval;
531
532 return a->sectindex - b->sectindex;
533 }
534
535 /* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538 static struct other_sections **
539 addrs_section_sort (struct section_addr_info *addrs)
540 {
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
546 for (i = 0; i < addrs->num_sections; i++)
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553 }
554
555 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
558
559 void
560 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561 {
562 asection *lower_sect;
563 CORE_ADDR lower_offset;
564 int i;
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
579 }
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
603
604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
610
611 while (*abfd_addrs_sorted
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
644 for (i = 0; i < addrs->num_sections; i++)
645 {
646 struct other_sections *sect = addrs_to_abfd_addrs[i];
647
648 if (sect)
649 {
650 /* This is the index used by BFD. */
651 addrs->other[i].sectindex = sect->sectindex;
652
653 if (addrs->other[i].addr != 0)
654 {
655 addrs->other[i].addr -= sect->addr;
656 lower_offset = addrs->other[i].addr;
657 }
658 else
659 addrs->other[i].addr = lower_offset;
660 }
661 else
662 {
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
681 || strcmp (sect_name, ".gnu.conflict") == 0
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
693 addrs->other[i].addr = 0;
694 addrs->other[i].sectindex = -1;
695 }
696 }
697
698 do_cleanups (my_cleanup);
699 }
700
701 /* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707 void
708 default_symfile_offsets (struct objfile *objfile,
709 const struct section_addr_info *addrs)
710 {
711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
717
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
780 offsets[cur_sec->index]);
781 offsets[cur_sec->index] = 0;
782 }
783 }
784 }
785
786 /* Remember the bfd indexes for the .text, .data, .bss and
787 .rodata sections. */
788 init_objfile_sect_indices (objfile);
789 }
790
791 /* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797 struct symfile_segment_data *
798 default_symfile_segments (bfd *abfd)
799 {
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
825 data = XCNEW (struct symfile_segment_data);
826 data->num_segments = 1;
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
829
830 num_sections = bfd_count_sections (abfd);
831 data->segment_info = XCNEWVEC (int, num_sections);
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853 }
854
855 /* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858 static void
859 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
860 {
861 (*objfile->sf->sym_read) (objfile, add_flags);
862 objfile->per_bfd->minsyms_read = 1;
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
869 {
870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
871
872 if (abfd != NULL)
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
880 }
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884 }
885
886 /* Initialize entry point information for this objfile. */
887
888 static void
889 init_entry_point_info (struct objfile *objfile)
890 {
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
919 ei->entry_point_p = 0;
920 }
921
922 if (ei->entry_point_p)
923 {
924 struct obj_section *osect;
925 CORE_ADDR entry_point = ei->entry_point;
926 int found;
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
937 ei->entry_point
938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
949 ei->the_bfd_section_index
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
958 }
959 }
960
961 /* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
964 This function does not set the OBJFILE's entry-point info.
965
966 OBJFILE is where the symbols are to be read from.
967
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
977
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
981
982 static void
983 syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
985 symfile_add_flags add_flags)
986 {
987 struct section_addr_info *local_addr = NULL;
988 struct cleanup *old_chain;
989 const int mainline = add_flags & SYMFILE_MAINLINE;
990
991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
992
993 if (objfile->sf == NULL)
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
1007
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
1010 old_chain = make_cleanup_free_objfile (objfile);
1011
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
1014 no load address was specified. */
1015 if (! addrs)
1016 {
1017 local_addr = alloc_section_addr_info (1);
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
1022 if (mainline)
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
1025 will be cleaned up if an error occurs during symbol reading. */
1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
1033 gdb_assert (symfile_objfile == NULL);
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
1040
1041 (*objfile->sf->sym_new_init) (objfile);
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
1046 and assume that <addr> is where that got loaded.
1047
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
1050 if (addrs->num_sections > 0)
1051 addr_info_make_relative (addrs, objfile->obfd);
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
1055 initial symbol reading for this file. */
1056
1057 (*objfile->sf->sym_init) (objfile);
1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1059
1060 (*objfile->sf->sym_offsets) (objfile, addrs);
1061
1062 read_symbols (objfile, add_flags);
1063
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
1067 xfree (local_addr);
1068 }
1069
1070 /* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
1073 static void
1074 syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
1076 symfile_add_flags add_flags)
1077 {
1078 syms_from_objfile_1 (objfile, addrs, add_flags);
1079 init_entry_point_info (objfile);
1080 }
1081
1082 /* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1085
1086 static void
1087 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1088 {
1089 /* If this is the main symbol file we have to clean up all users of the
1090 old main symbol file. Otherwise it is sufficient to fixup all the
1091 breakpoints that may have been redefined by this symbol file. */
1092 if (add_flags & SYMFILE_MAINLINE)
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
1097 clear_symtab_users (add_flags);
1098 }
1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1100 {
1101 breakpoint_re_set ();
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1106 }
1107
1108 /* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1112 A new reference is acquired by this function.
1113
1114 For NAME description see allocate_objfile's definition.
1115
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
1118
1119 ADDRS is as described for syms_from_objfile_1, above.
1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1121
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
1125 Upon success, returns a pointer to the objfile that was added.
1126 Upon failure, jumps back to command level (never returns). */
1127
1128 static struct objfile *
1129 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
1131 struct section_addr_info *addrs,
1132 objfile_flags flags, struct objfile *parent)
1133 {
1134 struct objfile *objfile;
1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
1136 const int mainline = add_flags & SYMFILE_MAINLINE;
1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
1140
1141 if (readnow_symbol_files)
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
1146
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && mainline
1152 && from_tty
1153 && !query (_("Load new symbol table from \"%s\"? "), name))
1154 error (_("Not confirmed."));
1155
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
1159
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
1165 performed, or need to read an unmapped symbol table. */
1166 if (should_print)
1167 {
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
1170 else
1171 {
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
1175 }
1176 }
1177 syms_from_objfile (objfile, addrs, add_flags);
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
1182 all partial symbol tables for this objfile if so. */
1183
1184 if ((flags & OBJF_READNOW))
1185 {
1186 if (should_print)
1187 {
1188 printf_unfiltered (_("expanding to full symbols..."));
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
1195 }
1196
1197 if (should_print && !objfile_has_symbols (objfile))
1198 {
1199 wrap_here ("");
1200 printf_unfiltered (_("(no debugging symbols found)..."));
1201 wrap_here ("");
1202 }
1203
1204 if (should_print)
1205 {
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
1208 else
1209 printf_unfiltered (_("done.\n"));
1210 }
1211
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
1217 if (objfile->sf == NULL)
1218 {
1219 observer_notify_new_objfile (objfile);
1220 return objfile; /* No symbols. */
1221 }
1222
1223 finish_new_objfile (objfile, add_flags);
1224
1225 observer_notify_new_objfile (objfile);
1226
1227 bfd_cache_close_all ();
1228 return (objfile);
1229 }
1230
1231 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
1233
1234 void
1235 symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
1237 struct objfile *objfile)
1238 {
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
1247
1248 symbol_file_add_with_addrs
1249 (bfd, name, symfile_flags, sap,
1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1251 | OBJF_USERLOADED),
1252 objfile);
1253
1254 do_cleanups (my_cleanup);
1255 }
1256
1257 /* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
1259 See symbol_file_add_with_addrs's comments for details. */
1260
1261 struct objfile *
1262 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
1264 struct section_addr_info *addrs,
1265 objfile_flags flags, struct objfile *parent)
1266 {
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
1269 }
1270
1271 /* Process a symbol file, as either the main file or as a dynamically
1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
1277 {
1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1279
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
1282 }
1283
1284 /* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
1291
1292 void
1293 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1294 {
1295 symbol_file_add_main_1 (args, add_flags, 0);
1296 }
1297
1298 static void
1299 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
1301 {
1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1303
1304 symbol_file_add (args, add_flags, NULL, flags);
1305
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
1310 if ((add_flags & SYMFILE_NO_READ) == 0)
1311 set_initial_language ();
1312 }
1313
1314 void
1315 symbol_file_clear (int from_tty)
1316 {
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
1321 objfile_name (symfile_objfile))
1322 : !query (_("Discard symbol table? "))))
1323 error (_("Not confirmed."));
1324
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
1327 no_shared_libraries (NULL, from_tty);
1328
1329 free_all_objfiles ();
1330
1331 gdb_assert (symfile_objfile == NULL);
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1334 }
1335
1336 static int
1337 separate_debug_file_exists (const char *name, unsigned long crc,
1338 struct objfile *parent_objfile)
1339 {
1340 unsigned long file_crc;
1341 int file_crc_p;
1342 struct stat parent_stat, abfd_stat;
1343 int verified_as_different;
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1349 the separate debug infos with the same basename can exist. */
1350
1351 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1352 return 0;
1353
1354 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1355
1356 if (abfd == NULL)
1357 return 0;
1358
1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Files accessed from gdbservers that do not
1364 support the vFile:fstat packet will also have st_ino set to zero.
1365 Do not indicate a duplicate library in either case. While there
1366 is no guarantee that a system that provides meaningful inode
1367 numbers will never set st_ino to zero, this is merely an
1368 optimization, so we do not need to worry about false negatives. */
1369
1370 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1371 && abfd_stat.st_ino != 0
1372 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1373 {
1374 if (abfd_stat.st_dev == parent_stat.st_dev
1375 && abfd_stat.st_ino == parent_stat.st_ino)
1376 return 0;
1377 verified_as_different = 1;
1378 }
1379 else
1380 verified_as_different = 0;
1381
1382 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1383
1384 if (!file_crc_p)
1385 return 0;
1386
1387 if (crc != file_crc)
1388 {
1389 unsigned long parent_crc;
1390
1391 /* If the files could not be verified as different with
1392 bfd_stat then we need to calculate the parent's CRC
1393 to verify whether the files are different or not. */
1394
1395 if (!verified_as_different)
1396 {
1397 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1398 return 0;
1399 }
1400
1401 if (verified_as_different || parent_crc != file_crc)
1402 warning (_("the debug information found in \"%s\""
1403 " does not match \"%s\" (CRC mismatch).\n"),
1404 name, objfile_name (parent_objfile));
1405
1406 return 0;
1407 }
1408
1409 return 1;
1410 }
1411
1412 char *debug_file_directory = NULL;
1413 static void
1414 show_debug_file_directory (struct ui_file *file, int from_tty,
1415 struct cmd_list_element *c, const char *value)
1416 {
1417 fprintf_filtered (file,
1418 _("The directory where separate debug "
1419 "symbols are searched for is \"%s\".\n"),
1420 value);
1421 }
1422
1423 #if ! defined (DEBUG_SUBDIRECTORY)
1424 #define DEBUG_SUBDIRECTORY ".debug"
1425 #endif
1426
1427 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1428 where the original file resides (may not be the same as
1429 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1430 looking for. CANON_DIR is the "realpath" form of DIR.
1431 DIR must contain a trailing '/'.
1432 Returns the path of the file with separate debug info, of NULL. */
1433
1434 static char *
1435 find_separate_debug_file (const char *dir,
1436 const char *canon_dir,
1437 const char *debuglink,
1438 unsigned long crc32, struct objfile *objfile)
1439 {
1440 char *debugdir;
1441 char *debugfile;
1442 int i;
1443 VEC (char_ptr) *debugdir_vec;
1444 struct cleanup *back_to;
1445 int ix;
1446
1447 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1448 i = strlen (dir);
1449 if (canon_dir != NULL && strlen (canon_dir) > i)
1450 i = strlen (canon_dir);
1451
1452 debugfile
1453 = (char *) xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the global debugfile directories.
1477
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
1480
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1483
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, "/");
1488 strcat (debugfile, dir);
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
1501 strlen (gdb_sysroot)) == 0
1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1503 {
1504 strcpy (debugfile, debugdir);
1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1506 strcat (debugfile, "/");
1507 strcat (debugfile, debuglink);
1508
1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
1510 {
1511 do_cleanups (back_to);
1512 return debugfile;
1513 }
1514 }
1515 }
1516
1517 do_cleanups (back_to);
1518 xfree (debugfile);
1519 return NULL;
1520 }
1521
1522 /* Modify PATH to contain only "[/]directory/" part of PATH.
1523 If there were no directory separators in PATH, PATH will be empty
1524 string on return. */
1525
1526 static void
1527 terminate_after_last_dir_separator (char *path)
1528 {
1529 int i;
1530
1531 /* Strip off the final filename part, leaving the directory name,
1532 followed by a slash. The directory can be relative or absolute. */
1533 for (i = strlen(path) - 1; i >= 0; i--)
1534 if (IS_DIR_SEPARATOR (path[i]))
1535 break;
1536
1537 /* If I is -1 then no directory is present there and DIR will be "". */
1538 path[i + 1] = '\0';
1539 }
1540
1541 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1542 Returns pathname, or NULL. */
1543
1544 char *
1545 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1546 {
1547 char *debuglink;
1548 char *dir, *canon_dir;
1549 char *debugfile;
1550 unsigned long crc32;
1551 struct cleanup *cleanups;
1552
1553 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1554
1555 if (debuglink == NULL)
1556 {
1557 /* There's no separate debug info, hence there's no way we could
1558 load it => no warning. */
1559 return NULL;
1560 }
1561
1562 cleanups = make_cleanup (xfree, debuglink);
1563 dir = xstrdup (objfile_name (objfile));
1564 make_cleanup (xfree, dir);
1565 terminate_after_last_dir_separator (dir);
1566 canon_dir = lrealpath (dir);
1567
1568 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1569 crc32, objfile);
1570 xfree (canon_dir);
1571
1572 if (debugfile == NULL)
1573 {
1574 /* For PR gdb/9538, try again with realpath (if different from the
1575 original). */
1576
1577 struct stat st_buf;
1578
1579 if (lstat (objfile_name (objfile), &st_buf) == 0
1580 && S_ISLNK (st_buf.st_mode))
1581 {
1582 char *symlink_dir;
1583
1584 symlink_dir = lrealpath (objfile_name (objfile));
1585 if (symlink_dir != NULL)
1586 {
1587 make_cleanup (xfree, symlink_dir);
1588 terminate_after_last_dir_separator (symlink_dir);
1589 if (strcmp (dir, symlink_dir) != 0)
1590 {
1591 /* Different directory, so try using it. */
1592 debugfile = find_separate_debug_file (symlink_dir,
1593 symlink_dir,
1594 debuglink,
1595 crc32,
1596 objfile);
1597 }
1598 }
1599 }
1600 }
1601
1602 do_cleanups (cleanups);
1603 return debugfile;
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 char **argv = gdb_buildargv (args);
1632 objfile_flags flags = OBJF_USERLOADED;
1633 symfile_add_flags add_flags = 0;
1634 struct cleanup *cleanups;
1635 char *name = NULL;
1636
1637 if (from_tty)
1638 add_flags |= SYMFILE_VERBOSE;
1639
1640 cleanups = make_cleanup_freeargv (argv);
1641 while (*argv != NULL)
1642 {
1643 if (strcmp (*argv, "-readnow") == 0)
1644 flags |= OBJF_READNOW;
1645 else if (**argv == '-')
1646 error (_("unknown option `%s'"), *argv);
1647 else
1648 {
1649 symbol_file_add_main_1 (*argv, add_flags, flags);
1650 name = *argv;
1651 }
1652
1653 argv++;
1654 }
1655
1656 if (name == NULL)
1657 error (_("no symbol file name was specified"));
1658
1659 do_cleanups (cleanups);
1660 }
1661 }
1662
1663 /* Set the initial language.
1664
1665 FIXME: A better solution would be to record the language in the
1666 psymtab when reading partial symbols, and then use it (if known) to
1667 set the language. This would be a win for formats that encode the
1668 language in an easily discoverable place, such as DWARF. For
1669 stabs, we can jump through hoops looking for specially named
1670 symbols or try to intuit the language from the specific type of
1671 stabs we find, but we can't do that until later when we read in
1672 full symbols. */
1673
1674 void
1675 set_initial_language (void)
1676 {
1677 enum language lang = main_language ();
1678
1679 if (lang == language_unknown)
1680 {
1681 char *name = main_name ();
1682 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1683
1684 if (sym != NULL)
1685 lang = SYMBOL_LANGUAGE (sym);
1686 }
1687
1688 if (lang == language_unknown)
1689 {
1690 /* Make C the default language */
1691 lang = language_c;
1692 }
1693
1694 set_language (lang);
1695 expected_language = current_language; /* Don't warn the user. */
1696 }
1697
1698 /* Open the file specified by NAME and hand it off to BFD for
1699 preliminary analysis. Return a newly initialized bfd *, which
1700 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1701 absolute). In case of trouble, error() is called. */
1702
1703 gdb_bfd_ref_ptr
1704 symfile_bfd_open (const char *name)
1705 {
1706 int desc = -1;
1707 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1708
1709 if (!is_target_filename (name))
1710 {
1711 char *expanded_name, *absolute_name;
1712
1713 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1714
1715 /* Look down path for it, allocate 2nd new malloc'd copy. */
1716 desc = openp (getenv ("PATH"),
1717 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1718 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1719 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1720 if (desc < 0)
1721 {
1722 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1723
1724 strcat (strcpy (exename, expanded_name), ".exe");
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 exename, O_RDONLY | O_BINARY, &absolute_name);
1728 }
1729 #endif
1730 if (desc < 0)
1731 {
1732 make_cleanup (xfree, expanded_name);
1733 perror_with_name (expanded_name);
1734 }
1735
1736 xfree (expanded_name);
1737 make_cleanup (xfree, absolute_name);
1738 name = absolute_name;
1739 }
1740
1741 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1742 if (sym_bfd == NULL)
1743 error (_("`%s': can't open to read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
1745
1746 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1747 bfd_set_cacheable (sym_bfd.get (), 1);
1748
1749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1750 error (_("`%s': can't read symbols: %s."), name,
1751 bfd_errmsg (bfd_get_error ()));
1752
1753 do_cleanups (back_to);
1754
1755 return sym_bfd;
1756 }
1757
1758 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1759 the section was not found. */
1760
1761 int
1762 get_section_index (struct objfile *objfile, const char *section_name)
1763 {
1764 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1765
1766 if (sect)
1767 return sect->index;
1768 else
1769 return -1;
1770 }
1771
1772 /* Link SF into the global symtab_fns list.
1773 FLAVOUR is the file format that SF handles.
1774 Called on startup by the _initialize routine in each object file format
1775 reader, to register information about each format the reader is prepared
1776 to handle. */
1777
1778 void
1779 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1780 {
1781 registered_sym_fns fns = { flavour, sf };
1782
1783 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1784 }
1785
1786 /* Initialize OBJFILE to read symbols from its associated BFD. It
1787 either returns or calls error(). The result is an initialized
1788 struct sym_fns in the objfile structure, that contains cached
1789 information about the symbol file. */
1790
1791 static const struct sym_fns *
1792 find_sym_fns (bfd *abfd)
1793 {
1794 registered_sym_fns *rsf;
1795 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1796 int i;
1797
1798 if (our_flavour == bfd_target_srec_flavour
1799 || our_flavour == bfd_target_ihex_flavour
1800 || our_flavour == bfd_target_tekhex_flavour)
1801 return NULL; /* No symbols. */
1802
1803 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1804 if (our_flavour == rsf->sym_flavour)
1805 return rsf->sym_fns;
1806
1807 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1808 bfd_get_target (abfd));
1809 }
1810 \f
1811
1812 /* This function runs the load command of our current target. */
1813
1814 static void
1815 load_command (char *arg, int from_tty)
1816 {
1817 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1818
1819 dont_repeat ();
1820
1821 /* The user might be reloading because the binary has changed. Take
1822 this opportunity to check. */
1823 reopen_exec_file ();
1824 reread_symbols ();
1825
1826 if (arg == NULL)
1827 {
1828 char *parg;
1829 int count = 0;
1830
1831 parg = arg = get_exec_file (1);
1832
1833 /* Count how many \ " ' tab space there are in the name. */
1834 while ((parg = strpbrk (parg, "\\\"'\t ")))
1835 {
1836 parg++;
1837 count++;
1838 }
1839
1840 if (count)
1841 {
1842 /* We need to quote this string so buildargv can pull it apart. */
1843 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1844 char *ptemp = temp;
1845 char *prev;
1846
1847 make_cleanup (xfree, temp);
1848
1849 prev = parg = arg;
1850 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 {
1852 strncpy (ptemp, prev, parg - prev);
1853 ptemp += parg - prev;
1854 prev = parg++;
1855 *ptemp++ = '\\';
1856 }
1857 strcpy (ptemp, prev);
1858
1859 arg = temp;
1860 }
1861 }
1862
1863 target_load (arg, from_tty);
1864
1865 /* After re-loading the executable, we don't really know which
1866 overlays are mapped any more. */
1867 overlay_cache_invalid = 1;
1868
1869 do_cleanups (cleanup);
1870 }
1871
1872 /* This version of "load" should be usable for any target. Currently
1873 it is just used for remote targets, not inftarg.c or core files,
1874 on the theory that only in that case is it useful.
1875
1876 Avoiding xmodem and the like seems like a win (a) because we don't have
1877 to worry about finding it, and (b) On VMS, fork() is very slow and so
1878 we don't want to run a subprocess. On the other hand, I'm not sure how
1879 performance compares. */
1880
1881 static int validate_download = 0;
1882
1883 /* Callback service function for generic_load (bfd_map_over_sections). */
1884
1885 static void
1886 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887 {
1888 bfd_size_type *sum = (bfd_size_type *) data;
1889
1890 *sum += bfd_get_section_size (asec);
1891 }
1892
1893 /* Opaque data for load_section_callback. */
1894 struct load_section_data {
1895 CORE_ADDR load_offset;
1896 struct load_progress_data *progress_data;
1897 VEC(memory_write_request_s) *requests;
1898 };
1899
1900 /* Opaque data for load_progress. */
1901 struct load_progress_data {
1902 /* Cumulative data. */
1903 unsigned long write_count;
1904 unsigned long data_count;
1905 bfd_size_type total_size;
1906 };
1907
1908 /* Opaque data for load_progress for a single section. */
1909 struct load_progress_section_data {
1910 struct load_progress_data *cumulative;
1911
1912 /* Per-section data. */
1913 const char *section_name;
1914 ULONGEST section_sent;
1915 ULONGEST section_size;
1916 CORE_ADDR lma;
1917 gdb_byte *buffer;
1918 };
1919
1920 /* Target write callback routine for progress reporting. */
1921
1922 static void
1923 load_progress (ULONGEST bytes, void *untyped_arg)
1924 {
1925 struct load_progress_section_data *args
1926 = (struct load_progress_section_data *) untyped_arg;
1927 struct load_progress_data *totals;
1928
1929 if (args == NULL)
1930 /* Writing padding data. No easy way to get at the cumulative
1931 stats, so just ignore this. */
1932 return;
1933
1934 totals = args->cumulative;
1935
1936 if (bytes == 0 && args->section_sent == 0)
1937 {
1938 /* The write is just starting. Let the user know we've started
1939 this section. */
1940 current_uiout->message ("Loading section %s, size %s lma %s\n",
1941 args->section_name,
1942 hex_string (args->section_size),
1943 paddress (target_gdbarch (), args->lma));
1944 return;
1945 }
1946
1947 if (validate_download)
1948 {
1949 /* Broken memories and broken monitors manifest themselves here
1950 when bring new computers to life. This doubles already slow
1951 downloads. */
1952 /* NOTE: cagney/1999-10-18: A more efficient implementation
1953 might add a verify_memory() method to the target vector and
1954 then use that. remote.c could implement that method using
1955 the ``qCRC'' packet. */
1956 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1957 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1958
1959 if (target_read_memory (args->lma, check, bytes) != 0)
1960 error (_("Download verify read failed at %s"),
1961 paddress (target_gdbarch (), args->lma));
1962 if (memcmp (args->buffer, check, bytes) != 0)
1963 error (_("Download verify compare failed at %s"),
1964 paddress (target_gdbarch (), args->lma));
1965 do_cleanups (verify_cleanups);
1966 }
1967 totals->data_count += bytes;
1968 args->lma += bytes;
1969 args->buffer += bytes;
1970 totals->write_count += 1;
1971 args->section_sent += bytes;
1972 if (check_quit_flag ()
1973 || (deprecated_ui_load_progress_hook != NULL
1974 && deprecated_ui_load_progress_hook (args->section_name,
1975 args->section_sent)))
1976 error (_("Canceled the download"));
1977
1978 if (deprecated_show_load_progress != NULL)
1979 deprecated_show_load_progress (args->section_name,
1980 args->section_sent,
1981 args->section_size,
1982 totals->data_count,
1983 totals->total_size);
1984 }
1985
1986 /* Callback service function for generic_load (bfd_map_over_sections). */
1987
1988 static void
1989 load_section_callback (bfd *abfd, asection *asec, void *data)
1990 {
1991 struct memory_write_request *new_request;
1992 struct load_section_data *args = (struct load_section_data *) data;
1993 struct load_progress_section_data *section_data;
1994 bfd_size_type size = bfd_get_section_size (asec);
1995 gdb_byte *buffer;
1996 const char *sect_name = bfd_get_section_name (abfd, asec);
1997
1998 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1999 return;
2000
2001 if (size == 0)
2002 return;
2003
2004 new_request = VEC_safe_push (memory_write_request_s,
2005 args->requests, NULL);
2006 memset (new_request, 0, sizeof (struct memory_write_request));
2007 section_data = XCNEW (struct load_progress_section_data);
2008 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2009 new_request->end = new_request->begin + size; /* FIXME Should size
2010 be in instead? */
2011 new_request->data = (gdb_byte *) xmalloc (size);
2012 new_request->baton = section_data;
2013
2014 buffer = new_request->data;
2015
2016 section_data->cumulative = args->progress_data;
2017 section_data->section_name = sect_name;
2018 section_data->section_size = size;
2019 section_data->lma = new_request->begin;
2020 section_data->buffer = buffer;
2021
2022 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2023 }
2024
2025 /* Clean up an entire memory request vector, including load
2026 data and progress records. */
2027
2028 static void
2029 clear_memory_write_data (void *arg)
2030 {
2031 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2032 VEC(memory_write_request_s) *vec = *vec_p;
2033 int i;
2034 struct memory_write_request *mr;
2035
2036 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2037 {
2038 xfree (mr->data);
2039 xfree (mr->baton);
2040 }
2041 VEC_free (memory_write_request_s, vec);
2042 }
2043
2044 static void print_transfer_performance (struct ui_file *stream,
2045 unsigned long data_count,
2046 unsigned long write_count,
2047 std::chrono::steady_clock::duration d);
2048
2049 void
2050 generic_load (const char *args, int from_tty)
2051 {
2052 char *filename;
2053 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2054 struct load_section_data cbdata;
2055 struct load_progress_data total_progress;
2056 struct ui_out *uiout = current_uiout;
2057
2058 CORE_ADDR entry;
2059 char **argv;
2060
2061 memset (&cbdata, 0, sizeof (cbdata));
2062 memset (&total_progress, 0, sizeof (total_progress));
2063 cbdata.progress_data = &total_progress;
2064
2065 make_cleanup (clear_memory_write_data, &cbdata.requests);
2066
2067 if (args == NULL)
2068 error_no_arg (_("file to load"));
2069
2070 argv = gdb_buildargv (args);
2071 make_cleanup_freeargv (argv);
2072
2073 filename = tilde_expand (argv[0]);
2074 make_cleanup (xfree, filename);
2075
2076 if (argv[1] != NULL)
2077 {
2078 const char *endptr;
2079
2080 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2081
2082 /* If the last word was not a valid number then
2083 treat it as a file name with spaces in. */
2084 if (argv[1] == endptr)
2085 error (_("Invalid download offset:%s."), argv[1]);
2086
2087 if (argv[2] != NULL)
2088 error (_("Too many parameters."));
2089 }
2090
2091 /* Open the file for loading. */
2092 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
2093 if (loadfile_bfd == NULL)
2094 {
2095 perror_with_name (filename);
2096 return;
2097 }
2098
2099 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2100 {
2101 error (_("\"%s\" is not an object file: %s"), filename,
2102 bfd_errmsg (bfd_get_error ()));
2103 }
2104
2105 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2106 (void *) &total_progress.total_size);
2107
2108 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2109
2110 using namespace std::chrono;
2111
2112 steady_clock::time_point start_time = steady_clock::now ();
2113
2114 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2115 load_progress) != 0)
2116 error (_("Load failed"));
2117
2118 steady_clock::time_point end_time = steady_clock::now ();
2119
2120 entry = bfd_get_start_address (loadfile_bfd.get ());
2121 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2122 uiout->text ("Start address ");
2123 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2124 uiout->text (", load size ");
2125 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2126 uiout->text ("\n");
2127 regcache_write_pc (get_current_regcache (), entry);
2128
2129 /* Reset breakpoints, now that we have changed the load image. For
2130 instance, breakpoints may have been set (or reset, by
2131 post_create_inferior) while connected to the target but before we
2132 loaded the program. In that case, the prologue analyzer could
2133 have read instructions from the target to find the right
2134 breakpoint locations. Loading has changed the contents of that
2135 memory. */
2136
2137 breakpoint_re_set ();
2138
2139 print_transfer_performance (gdb_stdout, total_progress.data_count,
2140 total_progress.write_count,
2141 end_time - start_time);
2142
2143 do_cleanups (old_cleanups);
2144 }
2145
2146 /* Report on STREAM the performance of a memory transfer operation,
2147 such as 'load'. DATA_COUNT is the number of bytes transferred.
2148 WRITE_COUNT is the number of separate write operations, or 0, if
2149 that information is not available. TIME is how long the operation
2150 lasted. */
2151
2152 static void
2153 print_transfer_performance (struct ui_file *stream,
2154 unsigned long data_count,
2155 unsigned long write_count,
2156 std::chrono::steady_clock::duration time)
2157 {
2158 using namespace std::chrono;
2159 struct ui_out *uiout = current_uiout;
2160
2161 milliseconds ms = duration_cast<milliseconds> (time);
2162
2163 uiout->text ("Transfer rate: ");
2164 if (ms.count () > 0)
2165 {
2166 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2167
2168 if (uiout->is_mi_like_p ())
2169 {
2170 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2171 uiout->text (" bits/sec");
2172 }
2173 else if (rate < 1024)
2174 {
2175 uiout->field_fmt ("transfer-rate", "%lu", rate);
2176 uiout->text (" bytes/sec");
2177 }
2178 else
2179 {
2180 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2181 uiout->text (" KB/sec");
2182 }
2183 }
2184 else
2185 {
2186 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2187 uiout->text (" bits in <1 sec");
2188 }
2189 if (write_count > 0)
2190 {
2191 uiout->text (", ");
2192 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2193 uiout->text (" bytes/write");
2194 }
2195 uiout->text (".\n");
2196 }
2197
2198 /* This function allows the addition of incrementally linked object files.
2199 It does not modify any state in the target, only in the debugger. */
2200 /* Note: ezannoni 2000-04-13 This function/command used to have a
2201 special case syntax for the rombug target (Rombug is the boot
2202 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2203 rombug case, the user doesn't need to supply a text address,
2204 instead a call to target_link() (in target.c) would supply the
2205 value to use. We are now discontinuing this type of ad hoc syntax. */
2206
2207 static void
2208 add_symbol_file_command (char *args, int from_tty)
2209 {
2210 struct gdbarch *gdbarch = get_current_arch ();
2211 char *filename = NULL;
2212 char *arg;
2213 int section_index = 0;
2214 int argcnt = 0;
2215 int sec_num = 0;
2216 int i;
2217 int expecting_sec_name = 0;
2218 int expecting_sec_addr = 0;
2219 char **argv;
2220 struct objfile *objf;
2221 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2222 symfile_add_flags add_flags = 0;
2223
2224 if (from_tty)
2225 add_flags |= SYMFILE_VERBOSE;
2226
2227 struct sect_opt
2228 {
2229 const char *name;
2230 const char *value;
2231 };
2232
2233 struct section_addr_info *section_addrs;
2234 struct sect_opt *sect_opts = NULL;
2235 size_t num_sect_opts = 0;
2236 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2237
2238 num_sect_opts = 16;
2239 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2240
2241 dont_repeat ();
2242
2243 if (args == NULL)
2244 error (_("add-symbol-file takes a file name and an address"));
2245
2246 argv = gdb_buildargv (args);
2247 make_cleanup_freeargv (argv);
2248
2249 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2250 {
2251 /* Process the argument. */
2252 if (argcnt == 0)
2253 {
2254 /* The first argument is the file name. */
2255 filename = tilde_expand (arg);
2256 make_cleanup (xfree, filename);
2257 }
2258 else if (argcnt == 1)
2259 {
2260 /* The second argument is always the text address at which
2261 to load the program. */
2262 sect_opts[section_index].name = ".text";
2263 sect_opts[section_index].value = arg;
2264 if (++section_index >= num_sect_opts)
2265 {
2266 num_sect_opts *= 2;
2267 sect_opts = ((struct sect_opt *)
2268 xrealloc (sect_opts,
2269 num_sect_opts
2270 * sizeof (struct sect_opt)));
2271 }
2272 }
2273 else
2274 {
2275 /* It's an option (starting with '-') or it's an argument
2276 to an option. */
2277 if (expecting_sec_name)
2278 {
2279 sect_opts[section_index].name = arg;
2280 expecting_sec_name = 0;
2281 }
2282 else if (expecting_sec_addr)
2283 {
2284 sect_opts[section_index].value = arg;
2285 expecting_sec_addr = 0;
2286 if (++section_index >= num_sect_opts)
2287 {
2288 num_sect_opts *= 2;
2289 sect_opts = ((struct sect_opt *)
2290 xrealloc (sect_opts,
2291 num_sect_opts
2292 * sizeof (struct sect_opt)));
2293 }
2294 }
2295 else if (strcmp (arg, "-readnow") == 0)
2296 flags |= OBJF_READNOW;
2297 else if (strcmp (arg, "-s") == 0)
2298 {
2299 expecting_sec_name = 1;
2300 expecting_sec_addr = 1;
2301 }
2302 else
2303 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2304 " [-readnow] [-s <secname> <addr>]*"));
2305 }
2306 }
2307
2308 /* This command takes at least two arguments. The first one is a
2309 filename, and the second is the address where this file has been
2310 loaded. Abort now if this address hasn't been provided by the
2311 user. */
2312 if (section_index < 1)
2313 error (_("The address where %s has been loaded is missing"), filename);
2314
2315 /* Print the prompt for the query below. And save the arguments into
2316 a sect_addr_info structure to be passed around to other
2317 functions. We have to split this up into separate print
2318 statements because hex_string returns a local static
2319 string. */
2320
2321 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2322 section_addrs = alloc_section_addr_info (section_index);
2323 make_cleanup (xfree, section_addrs);
2324 for (i = 0; i < section_index; i++)
2325 {
2326 CORE_ADDR addr;
2327 const char *val = sect_opts[i].value;
2328 const char *sec = sect_opts[i].name;
2329
2330 addr = parse_and_eval_address (val);
2331
2332 /* Here we store the section offsets in the order they were
2333 entered on the command line. */
2334 section_addrs->other[sec_num].name = (char *) sec;
2335 section_addrs->other[sec_num].addr = addr;
2336 printf_unfiltered ("\t%s_addr = %s\n", sec,
2337 paddress (gdbarch, addr));
2338 sec_num++;
2339
2340 /* The object's sections are initialized when a
2341 call is made to build_objfile_section_table (objfile).
2342 This happens in reread_symbols.
2343 At this point, we don't know what file type this is,
2344 so we can't determine what section names are valid. */
2345 }
2346 section_addrs->num_sections = sec_num;
2347
2348 if (from_tty && (!query ("%s", "")))
2349 error (_("Not confirmed."));
2350
2351 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2352
2353 add_target_sections_of_objfile (objf);
2354
2355 /* Getting new symbols may change our opinion about what is
2356 frameless. */
2357 reinit_frame_cache ();
2358 do_cleanups (my_cleanups);
2359 }
2360 \f
2361
2362 /* This function removes a symbol file that was added via add-symbol-file. */
2363
2364 static void
2365 remove_symbol_file_command (char *args, int from_tty)
2366 {
2367 char **argv;
2368 struct objfile *objf = NULL;
2369 struct cleanup *my_cleanups;
2370 struct program_space *pspace = current_program_space;
2371
2372 dont_repeat ();
2373
2374 if (args == NULL)
2375 error (_("remove-symbol-file: no symbol file provided"));
2376
2377 my_cleanups = make_cleanup (null_cleanup, NULL);
2378
2379 argv = gdb_buildargv (args);
2380
2381 if (strcmp (argv[0], "-a") == 0)
2382 {
2383 /* Interpret the next argument as an address. */
2384 CORE_ADDR addr;
2385
2386 if (argv[1] == NULL)
2387 error (_("Missing address argument"));
2388
2389 if (argv[2] != NULL)
2390 error (_("Junk after %s"), argv[1]);
2391
2392 addr = parse_and_eval_address (argv[1]);
2393
2394 ALL_OBJFILES (objf)
2395 {
2396 if ((objf->flags & OBJF_USERLOADED) != 0
2397 && (objf->flags & OBJF_SHARED) != 0
2398 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2399 break;
2400 }
2401 }
2402 else if (argv[0] != NULL)
2403 {
2404 /* Interpret the current argument as a file name. */
2405 char *filename;
2406
2407 if (argv[1] != NULL)
2408 error (_("Junk after %s"), argv[0]);
2409
2410 filename = tilde_expand (argv[0]);
2411 make_cleanup (xfree, filename);
2412
2413 ALL_OBJFILES (objf)
2414 {
2415 if ((objf->flags & OBJF_USERLOADED) != 0
2416 && (objf->flags & OBJF_SHARED) != 0
2417 && objf->pspace == pspace
2418 && filename_cmp (filename, objfile_name (objf)) == 0)
2419 break;
2420 }
2421 }
2422
2423 if (objf == NULL)
2424 error (_("No symbol file found"));
2425
2426 if (from_tty
2427 && !query (_("Remove symbol table from file \"%s\"? "),
2428 objfile_name (objf)))
2429 error (_("Not confirmed."));
2430
2431 free_objfile (objf);
2432 clear_symtab_users (0);
2433
2434 do_cleanups (my_cleanups);
2435 }
2436
2437 /* Re-read symbols if a symbol-file has changed. */
2438
2439 void
2440 reread_symbols (void)
2441 {
2442 struct objfile *objfile;
2443 long new_modtime;
2444 struct stat new_statbuf;
2445 int res;
2446 std::vector<struct objfile *> new_objfiles;
2447
2448 /* With the addition of shared libraries, this should be modified,
2449 the load time should be saved in the partial symbol tables, since
2450 different tables may come from different source files. FIXME.
2451 This routine should then walk down each partial symbol table
2452 and see if the symbol table that it originates from has been changed. */
2453
2454 for (objfile = object_files; objfile; objfile = objfile->next)
2455 {
2456 if (objfile->obfd == NULL)
2457 continue;
2458
2459 /* Separate debug objfiles are handled in the main objfile. */
2460 if (objfile->separate_debug_objfile_backlink)
2461 continue;
2462
2463 /* If this object is from an archive (what you usually create with
2464 `ar', often called a `static library' on most systems, though
2465 a `shared library' on AIX is also an archive), then you should
2466 stat on the archive name, not member name. */
2467 if (objfile->obfd->my_archive)
2468 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2469 else
2470 res = stat (objfile_name (objfile), &new_statbuf);
2471 if (res != 0)
2472 {
2473 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2474 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2475 objfile_name (objfile));
2476 continue;
2477 }
2478 new_modtime = new_statbuf.st_mtime;
2479 if (new_modtime != objfile->mtime)
2480 {
2481 struct cleanup *old_cleanups;
2482 struct section_offsets *offsets;
2483 int num_offsets;
2484 char *original_name;
2485
2486 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2487 objfile_name (objfile));
2488
2489 /* There are various functions like symbol_file_add,
2490 symfile_bfd_open, syms_from_objfile, etc., which might
2491 appear to do what we want. But they have various other
2492 effects which we *don't* want. So we just do stuff
2493 ourselves. We don't worry about mapped files (for one thing,
2494 any mapped file will be out of date). */
2495
2496 /* If we get an error, blow away this objfile (not sure if
2497 that is the correct response for things like shared
2498 libraries). */
2499 old_cleanups = make_cleanup_free_objfile (objfile);
2500 /* We need to do this whenever any symbols go away. */
2501 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2502
2503 if (exec_bfd != NULL
2504 && filename_cmp (bfd_get_filename (objfile->obfd),
2505 bfd_get_filename (exec_bfd)) == 0)
2506 {
2507 /* Reload EXEC_BFD without asking anything. */
2508
2509 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2510 }
2511
2512 /* Keep the calls order approx. the same as in free_objfile. */
2513
2514 /* Free the separate debug objfiles. It will be
2515 automatically recreated by sym_read. */
2516 free_objfile_separate_debug (objfile);
2517
2518 /* Remove any references to this objfile in the global
2519 value lists. */
2520 preserve_values (objfile);
2521
2522 /* Nuke all the state that we will re-read. Much of the following
2523 code which sets things to NULL really is necessary to tell
2524 other parts of GDB that there is nothing currently there.
2525
2526 Try to keep the freeing order compatible with free_objfile. */
2527
2528 if (objfile->sf != NULL)
2529 {
2530 (*objfile->sf->sym_finish) (objfile);
2531 }
2532
2533 clear_objfile_data (objfile);
2534
2535 /* Clean up any state BFD has sitting around. */
2536 {
2537 gdb_bfd_ref_ptr obfd (objfile->obfd);
2538 char *obfd_filename;
2539
2540 obfd_filename = bfd_get_filename (objfile->obfd);
2541 /* Open the new BFD before freeing the old one, so that
2542 the filename remains live. */
2543 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2544 objfile->obfd = temp.release ();
2545 if (objfile->obfd == NULL)
2546 error (_("Can't open %s to read symbols."), obfd_filename);
2547 }
2548
2549 original_name = xstrdup (objfile->original_name);
2550 make_cleanup (xfree, original_name);
2551
2552 /* bfd_openr sets cacheable to true, which is what we want. */
2553 if (!bfd_check_format (objfile->obfd, bfd_object))
2554 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2555 bfd_errmsg (bfd_get_error ()));
2556
2557 /* Save the offsets, we will nuke them with the rest of the
2558 objfile_obstack. */
2559 num_offsets = objfile->num_sections;
2560 offsets = ((struct section_offsets *)
2561 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2562 memcpy (offsets, objfile->section_offsets,
2563 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2564
2565 /* FIXME: Do we have to free a whole linked list, or is this
2566 enough? */
2567 if (objfile->global_psymbols.list)
2568 xfree (objfile->global_psymbols.list);
2569 memset (&objfile->global_psymbols, 0,
2570 sizeof (objfile->global_psymbols));
2571 if (objfile->static_psymbols.list)
2572 xfree (objfile->static_psymbols.list);
2573 memset (&objfile->static_psymbols, 0,
2574 sizeof (objfile->static_psymbols));
2575
2576 /* Free the obstacks for non-reusable objfiles. */
2577 psymbol_bcache_free (objfile->psymbol_cache);
2578 objfile->psymbol_cache = psymbol_bcache_init ();
2579 obstack_free (&objfile->objfile_obstack, 0);
2580 objfile->sections = NULL;
2581 objfile->compunit_symtabs = NULL;
2582 objfile->psymtabs = NULL;
2583 objfile->psymtabs_addrmap = NULL;
2584 objfile->free_psymtabs = NULL;
2585 objfile->template_symbols = NULL;
2586
2587 /* obstack_init also initializes the obstack so it is
2588 empty. We could use obstack_specify_allocation but
2589 gdb_obstack.h specifies the alloc/dealloc functions. */
2590 obstack_init (&objfile->objfile_obstack);
2591
2592 /* set_objfile_per_bfd potentially allocates the per-bfd
2593 data on the objfile's obstack (if sharing data across
2594 multiple users is not possible), so it's important to
2595 do it *after* the obstack has been initialized. */
2596 set_objfile_per_bfd (objfile);
2597
2598 objfile->original_name
2599 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2600 strlen (original_name));
2601
2602 /* Reset the sym_fns pointer. The ELF reader can change it
2603 based on whether .gdb_index is present, and we need it to
2604 start over. PR symtab/15885 */
2605 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2606
2607 build_objfile_section_table (objfile);
2608 terminate_minimal_symbol_table (objfile);
2609
2610 /* We use the same section offsets as from last time. I'm not
2611 sure whether that is always correct for shared libraries. */
2612 objfile->section_offsets = (struct section_offsets *)
2613 obstack_alloc (&objfile->objfile_obstack,
2614 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2615 memcpy (objfile->section_offsets, offsets,
2616 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2617 objfile->num_sections = num_offsets;
2618
2619 /* What the hell is sym_new_init for, anyway? The concept of
2620 distinguishing between the main file and additional files
2621 in this way seems rather dubious. */
2622 if (objfile == symfile_objfile)
2623 {
2624 (*objfile->sf->sym_new_init) (objfile);
2625 }
2626
2627 (*objfile->sf->sym_init) (objfile);
2628 clear_complaints (&symfile_complaints, 1, 1);
2629
2630 objfile->flags &= ~OBJF_PSYMTABS_READ;
2631 read_symbols (objfile, 0);
2632
2633 if (!objfile_has_symbols (objfile))
2634 {
2635 wrap_here ("");
2636 printf_unfiltered (_("(no debugging symbols found)\n"));
2637 wrap_here ("");
2638 }
2639
2640 /* We're done reading the symbol file; finish off complaints. */
2641 clear_complaints (&symfile_complaints, 0, 1);
2642
2643 /* Getting new symbols may change our opinion about what is
2644 frameless. */
2645
2646 reinit_frame_cache ();
2647
2648 /* Discard cleanups as symbol reading was successful. */
2649 discard_cleanups (old_cleanups);
2650
2651 /* If the mtime has changed between the time we set new_modtime
2652 and now, we *want* this to be out of date, so don't call stat
2653 again now. */
2654 objfile->mtime = new_modtime;
2655 init_entry_point_info (objfile);
2656
2657 new_objfiles.push_back (objfile);
2658 }
2659 }
2660
2661 if (!new_objfiles.empty ())
2662 {
2663 /* Notify objfiles that we've modified objfile sections. */
2664 objfiles_changed ();
2665
2666 clear_symtab_users (0);
2667
2668 /* clear_objfile_data for each objfile was called before freeing it and
2669 observer_notify_new_objfile (NULL) has been called by
2670 clear_symtab_users above. Notify the new files now. */
2671 for (auto iter : new_objfiles)
2672 observer_notify_new_objfile (iter);
2673
2674 /* At least one objfile has changed, so we can consider that
2675 the executable we're debugging has changed too. */
2676 observer_notify_executable_changed ();
2677 }
2678 }
2679 \f
2680
2681 typedef struct
2682 {
2683 char *ext;
2684 enum language lang;
2685 } filename_language;
2686
2687 DEF_VEC_O (filename_language);
2688
2689 static VEC (filename_language) *filename_language_table;
2690
2691 /* See symfile.h. */
2692
2693 void
2694 add_filename_language (const char *ext, enum language lang)
2695 {
2696 filename_language entry;
2697
2698 entry.ext = xstrdup (ext);
2699 entry.lang = lang;
2700
2701 VEC_safe_push (filename_language, filename_language_table, &entry);
2702 }
2703
2704 static char *ext_args;
2705 static void
2706 show_ext_args (struct ui_file *file, int from_tty,
2707 struct cmd_list_element *c, const char *value)
2708 {
2709 fprintf_filtered (file,
2710 _("Mapping between filename extension "
2711 "and source language is \"%s\".\n"),
2712 value);
2713 }
2714
2715 static void
2716 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2717 {
2718 int i;
2719 char *cp = ext_args;
2720 enum language lang;
2721 filename_language *entry;
2722
2723 /* First arg is filename extension, starting with '.' */
2724 if (*cp != '.')
2725 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2726
2727 /* Find end of first arg. */
2728 while (*cp && !isspace (*cp))
2729 cp++;
2730
2731 if (*cp == '\0')
2732 error (_("'%s': two arguments required -- "
2733 "filename extension and language"),
2734 ext_args);
2735
2736 /* Null-terminate first arg. */
2737 *cp++ = '\0';
2738
2739 /* Find beginning of second arg, which should be a source language. */
2740 cp = skip_spaces (cp);
2741
2742 if (*cp == '\0')
2743 error (_("'%s': two arguments required -- "
2744 "filename extension and language"),
2745 ext_args);
2746
2747 /* Lookup the language from among those we know. */
2748 lang = language_enum (cp);
2749
2750 /* Now lookup the filename extension: do we already know it? */
2751 for (i = 0;
2752 VEC_iterate (filename_language, filename_language_table, i, entry);
2753 ++i)
2754 {
2755 if (0 == strcmp (ext_args, entry->ext))
2756 break;
2757 }
2758
2759 if (entry == NULL)
2760 {
2761 /* New file extension. */
2762 add_filename_language (ext_args, lang);
2763 }
2764 else
2765 {
2766 /* Redefining a previously known filename extension. */
2767
2768 /* if (from_tty) */
2769 /* query ("Really make files of type %s '%s'?", */
2770 /* ext_args, language_str (lang)); */
2771
2772 xfree (entry->ext);
2773 entry->ext = xstrdup (ext_args);
2774 entry->lang = lang;
2775 }
2776 }
2777
2778 static void
2779 info_ext_lang_command (char *args, int from_tty)
2780 {
2781 int i;
2782 filename_language *entry;
2783
2784 printf_filtered (_("Filename extensions and the languages they represent:"));
2785 printf_filtered ("\n\n");
2786 for (i = 0;
2787 VEC_iterate (filename_language, filename_language_table, i, entry);
2788 ++i)
2789 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2790 }
2791
2792 enum language
2793 deduce_language_from_filename (const char *filename)
2794 {
2795 int i;
2796 const char *cp;
2797
2798 if (filename != NULL)
2799 if ((cp = strrchr (filename, '.')) != NULL)
2800 {
2801 filename_language *entry;
2802
2803 for (i = 0;
2804 VEC_iterate (filename_language, filename_language_table, i, entry);
2805 ++i)
2806 if (strcmp (cp, entry->ext) == 0)
2807 return entry->lang;
2808 }
2809
2810 return language_unknown;
2811 }
2812 \f
2813 /* Allocate and initialize a new symbol table.
2814 CUST is from the result of allocate_compunit_symtab. */
2815
2816 struct symtab *
2817 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2818 {
2819 struct objfile *objfile = cust->objfile;
2820 struct symtab *symtab
2821 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2822
2823 symtab->filename
2824 = (const char *) bcache (filename, strlen (filename) + 1,
2825 objfile->per_bfd->filename_cache);
2826 symtab->fullname = NULL;
2827 symtab->language = deduce_language_from_filename (filename);
2828
2829 /* This can be very verbose with lots of headers.
2830 Only print at higher debug levels. */
2831 if (symtab_create_debug >= 2)
2832 {
2833 /* Be a bit clever with debugging messages, and don't print objfile
2834 every time, only when it changes. */
2835 static char *last_objfile_name = NULL;
2836
2837 if (last_objfile_name == NULL
2838 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2839 {
2840 xfree (last_objfile_name);
2841 last_objfile_name = xstrdup (objfile_name (objfile));
2842 fprintf_unfiltered (gdb_stdlog,
2843 "Creating one or more symtabs for objfile %s ...\n",
2844 last_objfile_name);
2845 }
2846 fprintf_unfiltered (gdb_stdlog,
2847 "Created symtab %s for module %s.\n",
2848 host_address_to_string (symtab), filename);
2849 }
2850
2851 /* Add it to CUST's list of symtabs. */
2852 if (cust->filetabs == NULL)
2853 {
2854 cust->filetabs = symtab;
2855 cust->last_filetab = symtab;
2856 }
2857 else
2858 {
2859 cust->last_filetab->next = symtab;
2860 cust->last_filetab = symtab;
2861 }
2862
2863 /* Backlink to the containing compunit symtab. */
2864 symtab->compunit_symtab = cust;
2865
2866 return symtab;
2867 }
2868
2869 /* Allocate and initialize a new compunit.
2870 NAME is the name of the main source file, if there is one, or some
2871 descriptive text if there are no source files. */
2872
2873 struct compunit_symtab *
2874 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2875 {
2876 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2877 struct compunit_symtab);
2878 const char *saved_name;
2879
2880 cu->objfile = objfile;
2881
2882 /* The name we record here is only for display/debugging purposes.
2883 Just save the basename to avoid path issues (too long for display,
2884 relative vs absolute, etc.). */
2885 saved_name = lbasename (name);
2886 cu->name
2887 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2888 strlen (saved_name));
2889
2890 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2891
2892 if (symtab_create_debug)
2893 {
2894 fprintf_unfiltered (gdb_stdlog,
2895 "Created compunit symtab %s for %s.\n",
2896 host_address_to_string (cu),
2897 cu->name);
2898 }
2899
2900 return cu;
2901 }
2902
2903 /* Hook CU to the objfile it comes from. */
2904
2905 void
2906 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2907 {
2908 cu->next = cu->objfile->compunit_symtabs;
2909 cu->objfile->compunit_symtabs = cu;
2910 }
2911 \f
2912
2913 /* Reset all data structures in gdb which may contain references to
2914 symbol table data. */
2915
2916 void
2917 clear_symtab_users (symfile_add_flags add_flags)
2918 {
2919 /* Someday, we should do better than this, by only blowing away
2920 the things that really need to be blown. */
2921
2922 /* Clear the "current" symtab first, because it is no longer valid.
2923 breakpoint_re_set may try to access the current symtab. */
2924 clear_current_source_symtab_and_line ();
2925
2926 clear_displays ();
2927 clear_last_displayed_sal ();
2928 clear_pc_function_cache ();
2929 observer_notify_new_objfile (NULL);
2930
2931 /* Clear globals which might have pointed into a removed objfile.
2932 FIXME: It's not clear which of these are supposed to persist
2933 between expressions and which ought to be reset each time. */
2934 expression_context_block = NULL;
2935 innermost_block = NULL;
2936
2937 /* Varobj may refer to old symbols, perform a cleanup. */
2938 varobj_invalidate ();
2939
2940 /* Now that the various caches have been cleared, we can re_set
2941 our breakpoints without risking it using stale data. */
2942 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2943 breakpoint_re_set ();
2944 }
2945
2946 static void
2947 clear_symtab_users_cleanup (void *ignore)
2948 {
2949 clear_symtab_users (0);
2950 }
2951 \f
2952 /* OVERLAYS:
2953 The following code implements an abstraction for debugging overlay sections.
2954
2955 The target model is as follows:
2956 1) The gnu linker will permit multiple sections to be mapped into the
2957 same VMA, each with its own unique LMA (or load address).
2958 2) It is assumed that some runtime mechanism exists for mapping the
2959 sections, one by one, from the load address into the VMA address.
2960 3) This code provides a mechanism for gdb to keep track of which
2961 sections should be considered to be mapped from the VMA to the LMA.
2962 This information is used for symbol lookup, and memory read/write.
2963 For instance, if a section has been mapped then its contents
2964 should be read from the VMA, otherwise from the LMA.
2965
2966 Two levels of debugger support for overlays are available. One is
2967 "manual", in which the debugger relies on the user to tell it which
2968 overlays are currently mapped. This level of support is
2969 implemented entirely in the core debugger, and the information about
2970 whether a section is mapped is kept in the objfile->obj_section table.
2971
2972 The second level of support is "automatic", and is only available if
2973 the target-specific code provides functionality to read the target's
2974 overlay mapping table, and translate its contents for the debugger
2975 (by updating the mapped state information in the obj_section tables).
2976
2977 The interface is as follows:
2978 User commands:
2979 overlay map <name> -- tell gdb to consider this section mapped
2980 overlay unmap <name> -- tell gdb to consider this section unmapped
2981 overlay list -- list the sections that GDB thinks are mapped
2982 overlay read-target -- get the target's state of what's mapped
2983 overlay off/manual/auto -- set overlay debugging state
2984 Functional interface:
2985 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2986 section, return that section.
2987 find_pc_overlay(pc): find any overlay section that contains
2988 the pc, either in its VMA or its LMA
2989 section_is_mapped(sect): true if overlay is marked as mapped
2990 section_is_overlay(sect): true if section's VMA != LMA
2991 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2992 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2993 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2994 overlay_mapped_address(...): map an address from section's LMA to VMA
2995 overlay_unmapped_address(...): map an address from section's VMA to LMA
2996 symbol_overlayed_address(...): Return a "current" address for symbol:
2997 either in VMA or LMA depending on whether
2998 the symbol's section is currently mapped. */
2999
3000 /* Overlay debugging state: */
3001
3002 enum overlay_debugging_state overlay_debugging = ovly_off;
3003 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3004
3005 /* Function: section_is_overlay (SECTION)
3006 Returns true if SECTION has VMA not equal to LMA, ie.
3007 SECTION is loaded at an address different from where it will "run". */
3008
3009 int
3010 section_is_overlay (struct obj_section *section)
3011 {
3012 if (overlay_debugging && section)
3013 {
3014 bfd *abfd = section->objfile->obfd;
3015 asection *bfd_section = section->the_bfd_section;
3016
3017 if (bfd_section_lma (abfd, bfd_section) != 0
3018 && bfd_section_lma (abfd, bfd_section)
3019 != bfd_section_vma (abfd, bfd_section))
3020 return 1;
3021 }
3022
3023 return 0;
3024 }
3025
3026 /* Function: overlay_invalidate_all (void)
3027 Invalidate the mapped state of all overlay sections (mark it as stale). */
3028
3029 static void
3030 overlay_invalidate_all (void)
3031 {
3032 struct objfile *objfile;
3033 struct obj_section *sect;
3034
3035 ALL_OBJSECTIONS (objfile, sect)
3036 if (section_is_overlay (sect))
3037 sect->ovly_mapped = -1;
3038 }
3039
3040 /* Function: section_is_mapped (SECTION)
3041 Returns true if section is an overlay, and is currently mapped.
3042
3043 Access to the ovly_mapped flag is restricted to this function, so
3044 that we can do automatic update. If the global flag
3045 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3046 overlay_invalidate_all. If the mapped state of the particular
3047 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3048
3049 int
3050 section_is_mapped (struct obj_section *osect)
3051 {
3052 struct gdbarch *gdbarch;
3053
3054 if (osect == 0 || !section_is_overlay (osect))
3055 return 0;
3056
3057 switch (overlay_debugging)
3058 {
3059 default:
3060 case ovly_off:
3061 return 0; /* overlay debugging off */
3062 case ovly_auto: /* overlay debugging automatic */
3063 /* Unles there is a gdbarch_overlay_update function,
3064 there's really nothing useful to do here (can't really go auto). */
3065 gdbarch = get_objfile_arch (osect->objfile);
3066 if (gdbarch_overlay_update_p (gdbarch))
3067 {
3068 if (overlay_cache_invalid)
3069 {
3070 overlay_invalidate_all ();
3071 overlay_cache_invalid = 0;
3072 }
3073 if (osect->ovly_mapped == -1)
3074 gdbarch_overlay_update (gdbarch, osect);
3075 }
3076 /* fall thru to manual case */
3077 case ovly_on: /* overlay debugging manual */
3078 return osect->ovly_mapped == 1;
3079 }
3080 }
3081
3082 /* Function: pc_in_unmapped_range
3083 If PC falls into the lma range of SECTION, return true, else false. */
3084
3085 CORE_ADDR
3086 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3087 {
3088 if (section_is_overlay (section))
3089 {
3090 bfd *abfd = section->objfile->obfd;
3091 asection *bfd_section = section->the_bfd_section;
3092
3093 /* We assume the LMA is relocated by the same offset as the VMA. */
3094 bfd_vma size = bfd_get_section_size (bfd_section);
3095 CORE_ADDR offset = obj_section_offset (section);
3096
3097 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3098 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3099 return 1;
3100 }
3101
3102 return 0;
3103 }
3104
3105 /* Function: pc_in_mapped_range
3106 If PC falls into the vma range of SECTION, return true, else false. */
3107
3108 CORE_ADDR
3109 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3110 {
3111 if (section_is_overlay (section))
3112 {
3113 if (obj_section_addr (section) <= pc
3114 && pc < obj_section_endaddr (section))
3115 return 1;
3116 }
3117
3118 return 0;
3119 }
3120
3121 /* Return true if the mapped ranges of sections A and B overlap, false
3122 otherwise. */
3123
3124 static int
3125 sections_overlap (struct obj_section *a, struct obj_section *b)
3126 {
3127 CORE_ADDR a_start = obj_section_addr (a);
3128 CORE_ADDR a_end = obj_section_endaddr (a);
3129 CORE_ADDR b_start = obj_section_addr (b);
3130 CORE_ADDR b_end = obj_section_endaddr (b);
3131
3132 return (a_start < b_end && b_start < a_end);
3133 }
3134
3135 /* Function: overlay_unmapped_address (PC, SECTION)
3136 Returns the address corresponding to PC in the unmapped (load) range.
3137 May be the same as PC. */
3138
3139 CORE_ADDR
3140 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3141 {
3142 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3143 {
3144 bfd *abfd = section->objfile->obfd;
3145 asection *bfd_section = section->the_bfd_section;
3146
3147 return pc + bfd_section_lma (abfd, bfd_section)
3148 - bfd_section_vma (abfd, bfd_section);
3149 }
3150
3151 return pc;
3152 }
3153
3154 /* Function: overlay_mapped_address (PC, SECTION)
3155 Returns the address corresponding to PC in the mapped (runtime) range.
3156 May be the same as PC. */
3157
3158 CORE_ADDR
3159 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3160 {
3161 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3162 {
3163 bfd *abfd = section->objfile->obfd;
3164 asection *bfd_section = section->the_bfd_section;
3165
3166 return pc + bfd_section_vma (abfd, bfd_section)
3167 - bfd_section_lma (abfd, bfd_section);
3168 }
3169
3170 return pc;
3171 }
3172
3173 /* Function: symbol_overlayed_address
3174 Return one of two addresses (relative to the VMA or to the LMA),
3175 depending on whether the section is mapped or not. */
3176
3177 CORE_ADDR
3178 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3179 {
3180 if (overlay_debugging)
3181 {
3182 /* If the symbol has no section, just return its regular address. */
3183 if (section == 0)
3184 return address;
3185 /* If the symbol's section is not an overlay, just return its
3186 address. */
3187 if (!section_is_overlay (section))
3188 return address;
3189 /* If the symbol's section is mapped, just return its address. */
3190 if (section_is_mapped (section))
3191 return address;
3192 /*
3193 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3194 * then return its LOADED address rather than its vma address!!
3195 */
3196 return overlay_unmapped_address (address, section);
3197 }
3198 return address;
3199 }
3200
3201 /* Function: find_pc_overlay (PC)
3202 Return the best-match overlay section for PC:
3203 If PC matches a mapped overlay section's VMA, return that section.
3204 Else if PC matches an unmapped section's VMA, return that section.
3205 Else if PC matches an unmapped section's LMA, return that section. */
3206
3207 struct obj_section *
3208 find_pc_overlay (CORE_ADDR pc)
3209 {
3210 struct objfile *objfile;
3211 struct obj_section *osect, *best_match = NULL;
3212
3213 if (overlay_debugging)
3214 {
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (section_is_overlay (osect))
3217 {
3218 if (pc_in_mapped_range (pc, osect))
3219 {
3220 if (section_is_mapped (osect))
3221 return osect;
3222 else
3223 best_match = osect;
3224 }
3225 else if (pc_in_unmapped_range (pc, osect))
3226 best_match = osect;
3227 }
3228 }
3229 return best_match;
3230 }
3231
3232 /* Function: find_pc_mapped_section (PC)
3233 If PC falls into the VMA address range of an overlay section that is
3234 currently marked as MAPPED, return that section. Else return NULL. */
3235
3236 struct obj_section *
3237 find_pc_mapped_section (CORE_ADDR pc)
3238 {
3239 struct objfile *objfile;
3240 struct obj_section *osect;
3241
3242 if (overlay_debugging)
3243 {
3244 ALL_OBJSECTIONS (objfile, osect)
3245 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3246 return osect;
3247 }
3248
3249 return NULL;
3250 }
3251
3252 /* Function: list_overlays_command
3253 Print a list of mapped sections and their PC ranges. */
3254
3255 static void
3256 list_overlays_command (char *args, int from_tty)
3257 {
3258 int nmapped = 0;
3259 struct objfile *objfile;
3260 struct obj_section *osect;
3261
3262 if (overlay_debugging)
3263 {
3264 ALL_OBJSECTIONS (objfile, osect)
3265 if (section_is_mapped (osect))
3266 {
3267 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3268 const char *name;
3269 bfd_vma lma, vma;
3270 int size;
3271
3272 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3273 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3274 size = bfd_get_section_size (osect->the_bfd_section);
3275 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3276
3277 printf_filtered ("Section %s, loaded at ", name);
3278 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3279 puts_filtered (" - ");
3280 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3281 printf_filtered (", mapped at ");
3282 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3283 puts_filtered (" - ");
3284 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3285 puts_filtered ("\n");
3286
3287 nmapped++;
3288 }
3289 }
3290 if (nmapped == 0)
3291 printf_filtered (_("No sections are mapped.\n"));
3292 }
3293
3294 /* Function: map_overlay_command
3295 Mark the named section as mapped (ie. residing at its VMA address). */
3296
3297 static void
3298 map_overlay_command (char *args, int from_tty)
3299 {
3300 struct objfile *objfile, *objfile2;
3301 struct obj_section *sec, *sec2;
3302
3303 if (!overlay_debugging)
3304 error (_("Overlay debugging not enabled. Use "
3305 "either the 'overlay auto' or\n"
3306 "the 'overlay manual' command."));
3307
3308 if (args == 0 || *args == 0)
3309 error (_("Argument required: name of an overlay section"));
3310
3311 /* First, find a section matching the user supplied argument. */
3312 ALL_OBJSECTIONS (objfile, sec)
3313 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3314 {
3315 /* Now, check to see if the section is an overlay. */
3316 if (!section_is_overlay (sec))
3317 continue; /* not an overlay section */
3318
3319 /* Mark the overlay as "mapped". */
3320 sec->ovly_mapped = 1;
3321
3322 /* Next, make a pass and unmap any sections that are
3323 overlapped by this new section: */
3324 ALL_OBJSECTIONS (objfile2, sec2)
3325 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3326 {
3327 if (info_verbose)
3328 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3329 bfd_section_name (objfile->obfd,
3330 sec2->the_bfd_section));
3331 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3332 }
3333 return;
3334 }
3335 error (_("No overlay section called %s"), args);
3336 }
3337
3338 /* Function: unmap_overlay_command
3339 Mark the overlay section as unmapped
3340 (ie. resident in its LMA address range, rather than the VMA range). */
3341
3342 static void
3343 unmap_overlay_command (char *args, int from_tty)
3344 {
3345 struct objfile *objfile;
3346 struct obj_section *sec = NULL;
3347
3348 if (!overlay_debugging)
3349 error (_("Overlay debugging not enabled. "
3350 "Use either the 'overlay auto' or\n"
3351 "the 'overlay manual' command."));
3352
3353 if (args == 0 || *args == 0)
3354 error (_("Argument required: name of an overlay section"));
3355
3356 /* First, find a section matching the user supplied argument. */
3357 ALL_OBJSECTIONS (objfile, sec)
3358 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3359 {
3360 if (!sec->ovly_mapped)
3361 error (_("Section %s is not mapped"), args);
3362 sec->ovly_mapped = 0;
3363 return;
3364 }
3365 error (_("No overlay section called %s"), args);
3366 }
3367
3368 /* Function: overlay_auto_command
3369 A utility command to turn on overlay debugging.
3370 Possibly this should be done via a set/show command. */
3371
3372 static void
3373 overlay_auto_command (char *args, int from_tty)
3374 {
3375 overlay_debugging = ovly_auto;
3376 enable_overlay_breakpoints ();
3377 if (info_verbose)
3378 printf_unfiltered (_("Automatic overlay debugging enabled."));
3379 }
3380
3381 /* Function: overlay_manual_command
3382 A utility command to turn on overlay debugging.
3383 Possibly this should be done via a set/show command. */
3384
3385 static void
3386 overlay_manual_command (char *args, int from_tty)
3387 {
3388 overlay_debugging = ovly_on;
3389 disable_overlay_breakpoints ();
3390 if (info_verbose)
3391 printf_unfiltered (_("Overlay debugging enabled."));
3392 }
3393
3394 /* Function: overlay_off_command
3395 A utility command to turn on overlay debugging.
3396 Possibly this should be done via a set/show command. */
3397
3398 static void
3399 overlay_off_command (char *args, int from_tty)
3400 {
3401 overlay_debugging = ovly_off;
3402 disable_overlay_breakpoints ();
3403 if (info_verbose)
3404 printf_unfiltered (_("Overlay debugging disabled."));
3405 }
3406
3407 static void
3408 overlay_load_command (char *args, int from_tty)
3409 {
3410 struct gdbarch *gdbarch = get_current_arch ();
3411
3412 if (gdbarch_overlay_update_p (gdbarch))
3413 gdbarch_overlay_update (gdbarch, NULL);
3414 else
3415 error (_("This target does not know how to read its overlay state."));
3416 }
3417
3418 /* Function: overlay_command
3419 A place-holder for a mis-typed command. */
3420
3421 /* Command list chain containing all defined "overlay" subcommands. */
3422 static struct cmd_list_element *overlaylist;
3423
3424 static void
3425 overlay_command (char *args, int from_tty)
3426 {
3427 printf_unfiltered
3428 ("\"overlay\" must be followed by the name of an overlay command.\n");
3429 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3430 }
3431
3432 /* Target Overlays for the "Simplest" overlay manager:
3433
3434 This is GDB's default target overlay layer. It works with the
3435 minimal overlay manager supplied as an example by Cygnus. The
3436 entry point is via a function pointer "gdbarch_overlay_update",
3437 so targets that use a different runtime overlay manager can
3438 substitute their own overlay_update function and take over the
3439 function pointer.
3440
3441 The overlay_update function pokes around in the target's data structures
3442 to see what overlays are mapped, and updates GDB's overlay mapping with
3443 this information.
3444
3445 In this simple implementation, the target data structures are as follows:
3446 unsigned _novlys; /# number of overlay sections #/
3447 unsigned _ovly_table[_novlys][4] = {
3448 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3449 {..., ..., ..., ...},
3450 }
3451 unsigned _novly_regions; /# number of overlay regions #/
3452 unsigned _ovly_region_table[_novly_regions][3] = {
3453 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3454 {..., ..., ...},
3455 }
3456 These functions will attempt to update GDB's mappedness state in the
3457 symbol section table, based on the target's mappedness state.
3458
3459 To do this, we keep a cached copy of the target's _ovly_table, and
3460 attempt to detect when the cached copy is invalidated. The main
3461 entry point is "simple_overlay_update(SECT), which looks up SECT in
3462 the cached table and re-reads only the entry for that section from
3463 the target (whenever possible). */
3464
3465 /* Cached, dynamically allocated copies of the target data structures: */
3466 static unsigned (*cache_ovly_table)[4] = 0;
3467 static unsigned cache_novlys = 0;
3468 static CORE_ADDR cache_ovly_table_base = 0;
3469 enum ovly_index
3470 {
3471 VMA, OSIZE, LMA, MAPPED
3472 };
3473
3474 /* Throw away the cached copy of _ovly_table. */
3475
3476 static void
3477 simple_free_overlay_table (void)
3478 {
3479 if (cache_ovly_table)
3480 xfree (cache_ovly_table);
3481 cache_novlys = 0;
3482 cache_ovly_table = NULL;
3483 cache_ovly_table_base = 0;
3484 }
3485
3486 /* Read an array of ints of size SIZE from the target into a local buffer.
3487 Convert to host order. int LEN is number of ints. */
3488
3489 static void
3490 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3491 int len, int size, enum bfd_endian byte_order)
3492 {
3493 /* FIXME (alloca): Not safe if array is very large. */
3494 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3495 int i;
3496
3497 read_memory (memaddr, buf, len * size);
3498 for (i = 0; i < len; i++)
3499 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3500 }
3501
3502 /* Find and grab a copy of the target _ovly_table
3503 (and _novlys, which is needed for the table's size). */
3504
3505 static int
3506 simple_read_overlay_table (void)
3507 {
3508 struct bound_minimal_symbol novlys_msym;
3509 struct bound_minimal_symbol ovly_table_msym;
3510 struct gdbarch *gdbarch;
3511 int word_size;
3512 enum bfd_endian byte_order;
3513
3514 simple_free_overlay_table ();
3515 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3516 if (! novlys_msym.minsym)
3517 {
3518 error (_("Error reading inferior's overlay table: "
3519 "couldn't find `_novlys' variable\n"
3520 "in inferior. Use `overlay manual' mode."));
3521 return 0;
3522 }
3523
3524 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3525 if (! ovly_table_msym.minsym)
3526 {
3527 error (_("Error reading inferior's overlay table: couldn't find "
3528 "`_ovly_table' array\n"
3529 "in inferior. Use `overlay manual' mode."));
3530 return 0;
3531 }
3532
3533 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3534 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3535 byte_order = gdbarch_byte_order (gdbarch);
3536
3537 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3538 4, byte_order);
3539 cache_ovly_table
3540 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3541 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3542 read_target_long_array (cache_ovly_table_base,
3543 (unsigned int *) cache_ovly_table,
3544 cache_novlys * 4, word_size, byte_order);
3545
3546 return 1; /* SUCCESS */
3547 }
3548
3549 /* Function: simple_overlay_update_1
3550 A helper function for simple_overlay_update. Assuming a cached copy
3551 of _ovly_table exists, look through it to find an entry whose vma,
3552 lma and size match those of OSECT. Re-read the entry and make sure
3553 it still matches OSECT (else the table may no longer be valid).
3554 Set OSECT's mapped state to match the entry. Return: 1 for
3555 success, 0 for failure. */
3556
3557 static int
3558 simple_overlay_update_1 (struct obj_section *osect)
3559 {
3560 int i;
3561 bfd *obfd = osect->objfile->obfd;
3562 asection *bsect = osect->the_bfd_section;
3563 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3564 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3565 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3566
3567 for (i = 0; i < cache_novlys; i++)
3568 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3569 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3570 {
3571 read_target_long_array (cache_ovly_table_base + i * word_size,
3572 (unsigned int *) cache_ovly_table[i],
3573 4, word_size, byte_order);
3574 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3575 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3576 {
3577 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3578 return 1;
3579 }
3580 else /* Warning! Warning! Target's ovly table has changed! */
3581 return 0;
3582 }
3583 return 0;
3584 }
3585
3586 /* Function: simple_overlay_update
3587 If OSECT is NULL, then update all sections' mapped state
3588 (after re-reading the entire target _ovly_table).
3589 If OSECT is non-NULL, then try to find a matching entry in the
3590 cached ovly_table and update only OSECT's mapped state.
3591 If a cached entry can't be found or the cache isn't valid, then
3592 re-read the entire cache, and go ahead and update all sections. */
3593
3594 void
3595 simple_overlay_update (struct obj_section *osect)
3596 {
3597 struct objfile *objfile;
3598
3599 /* Were we given an osect to look up? NULL means do all of them. */
3600 if (osect)
3601 /* Have we got a cached copy of the target's overlay table? */
3602 if (cache_ovly_table != NULL)
3603 {
3604 /* Does its cached location match what's currently in the
3605 symtab? */
3606 struct bound_minimal_symbol minsym
3607 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3608
3609 if (minsym.minsym == NULL)
3610 error (_("Error reading inferior's overlay table: couldn't "
3611 "find `_ovly_table' array\n"
3612 "in inferior. Use `overlay manual' mode."));
3613
3614 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3615 /* Then go ahead and try to look up this single section in
3616 the cache. */
3617 if (simple_overlay_update_1 (osect))
3618 /* Found it! We're done. */
3619 return;
3620 }
3621
3622 /* Cached table no good: need to read the entire table anew.
3623 Or else we want all the sections, in which case it's actually
3624 more efficient to read the whole table in one block anyway. */
3625
3626 if (! simple_read_overlay_table ())
3627 return;
3628
3629 /* Now may as well update all sections, even if only one was requested. */
3630 ALL_OBJSECTIONS (objfile, osect)
3631 if (section_is_overlay (osect))
3632 {
3633 int i;
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
3636
3637 for (i = 0; i < cache_novlys; i++)
3638 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3639 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3640 { /* obj_section matches i'th entry in ovly_table. */
3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3642 break; /* finished with inner for loop: break out. */
3643 }
3644 }
3645 }
3646
3647 /* Set the output sections and output offsets for section SECTP in
3648 ABFD. The relocation code in BFD will read these offsets, so we
3649 need to be sure they're initialized. We map each section to itself,
3650 with no offset; this means that SECTP->vma will be honored. */
3651
3652 static void
3653 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3654 {
3655 sectp->output_section = sectp;
3656 sectp->output_offset = 0;
3657 }
3658
3659 /* Default implementation for sym_relocate. */
3660
3661 bfd_byte *
3662 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3663 bfd_byte *buf)
3664 {
3665 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3666 DWO file. */
3667 bfd *abfd = sectp->owner;
3668
3669 /* We're only interested in sections with relocation
3670 information. */
3671 if ((sectp->flags & SEC_RELOC) == 0)
3672 return NULL;
3673
3674 /* We will handle section offsets properly elsewhere, so relocate as if
3675 all sections begin at 0. */
3676 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3677
3678 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3679 }
3680
3681 /* Relocate the contents of a debug section SECTP in ABFD. The
3682 contents are stored in BUF if it is non-NULL, or returned in a
3683 malloc'd buffer otherwise.
3684
3685 For some platforms and debug info formats, shared libraries contain
3686 relocations against the debug sections (particularly for DWARF-2;
3687 one affected platform is PowerPC GNU/Linux, although it depends on
3688 the version of the linker in use). Also, ELF object files naturally
3689 have unresolved relocations for their debug sections. We need to apply
3690 the relocations in order to get the locations of symbols correct.
3691 Another example that may require relocation processing, is the
3692 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3693 debug section. */
3694
3695 bfd_byte *
3696 symfile_relocate_debug_section (struct objfile *objfile,
3697 asection *sectp, bfd_byte *buf)
3698 {
3699 gdb_assert (objfile->sf->sym_relocate);
3700
3701 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3702 }
3703
3704 struct symfile_segment_data *
3705 get_symfile_segment_data (bfd *abfd)
3706 {
3707 const struct sym_fns *sf = find_sym_fns (abfd);
3708
3709 if (sf == NULL)
3710 return NULL;
3711
3712 return sf->sym_segments (abfd);
3713 }
3714
3715 void
3716 free_symfile_segment_data (struct symfile_segment_data *data)
3717 {
3718 xfree (data->segment_bases);
3719 xfree (data->segment_sizes);
3720 xfree (data->segment_info);
3721 xfree (data);
3722 }
3723
3724 /* Given:
3725 - DATA, containing segment addresses from the object file ABFD, and
3726 the mapping from ABFD's sections onto the segments that own them,
3727 and
3728 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3729 segment addresses reported by the target,
3730 store the appropriate offsets for each section in OFFSETS.
3731
3732 If there are fewer entries in SEGMENT_BASES than there are segments
3733 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3734
3735 If there are more entries, then ignore the extra. The target may
3736 not be able to distinguish between an empty data segment and a
3737 missing data segment; a missing text segment is less plausible. */
3738
3739 int
3740 symfile_map_offsets_to_segments (bfd *abfd,
3741 const struct symfile_segment_data *data,
3742 struct section_offsets *offsets,
3743 int num_segment_bases,
3744 const CORE_ADDR *segment_bases)
3745 {
3746 int i;
3747 asection *sect;
3748
3749 /* It doesn't make sense to call this function unless you have some
3750 segment base addresses. */
3751 gdb_assert (num_segment_bases > 0);
3752
3753 /* If we do not have segment mappings for the object file, we
3754 can not relocate it by segments. */
3755 gdb_assert (data != NULL);
3756 gdb_assert (data->num_segments > 0);
3757
3758 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3759 {
3760 int which = data->segment_info[i];
3761
3762 gdb_assert (0 <= which && which <= data->num_segments);
3763
3764 /* Don't bother computing offsets for sections that aren't
3765 loaded as part of any segment. */
3766 if (! which)
3767 continue;
3768
3769 /* Use the last SEGMENT_BASES entry as the address of any extra
3770 segments mentioned in DATA->segment_info. */
3771 if (which > num_segment_bases)
3772 which = num_segment_bases;
3773
3774 offsets->offsets[i] = (segment_bases[which - 1]
3775 - data->segment_bases[which - 1]);
3776 }
3777
3778 return 1;
3779 }
3780
3781 static void
3782 symfile_find_segment_sections (struct objfile *objfile)
3783 {
3784 bfd *abfd = objfile->obfd;
3785 int i;
3786 asection *sect;
3787 struct symfile_segment_data *data;
3788
3789 data = get_symfile_segment_data (objfile->obfd);
3790 if (data == NULL)
3791 return;
3792
3793 if (data->num_segments != 1 && data->num_segments != 2)
3794 {
3795 free_symfile_segment_data (data);
3796 return;
3797 }
3798
3799 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3800 {
3801 int which = data->segment_info[i];
3802
3803 if (which == 1)
3804 {
3805 if (objfile->sect_index_text == -1)
3806 objfile->sect_index_text = sect->index;
3807
3808 if (objfile->sect_index_rodata == -1)
3809 objfile->sect_index_rodata = sect->index;
3810 }
3811 else if (which == 2)
3812 {
3813 if (objfile->sect_index_data == -1)
3814 objfile->sect_index_data = sect->index;
3815
3816 if (objfile->sect_index_bss == -1)
3817 objfile->sect_index_bss = sect->index;
3818 }
3819 }
3820
3821 free_symfile_segment_data (data);
3822 }
3823
3824 /* Listen for free_objfile events. */
3825
3826 static void
3827 symfile_free_objfile (struct objfile *objfile)
3828 {
3829 /* Remove the target sections owned by this objfile. */
3830 if (objfile != NULL)
3831 remove_target_sections ((void *) objfile);
3832 }
3833
3834 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3835 Expand all symtabs that match the specified criteria.
3836 See quick_symbol_functions.expand_symtabs_matching for details. */
3837
3838 void
3839 expand_symtabs_matching
3840 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3841 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3842 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3843 enum search_domain kind)
3844 {
3845 struct objfile *objfile;
3846
3847 ALL_OBJFILES (objfile)
3848 {
3849 if (objfile->sf)
3850 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3851 symbol_matcher,
3852 expansion_notify, kind);
3853 }
3854 }
3855
3856 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3857 Map function FUN over every file.
3858 See quick_symbol_functions.map_symbol_filenames for details. */
3859
3860 void
3861 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3862 int need_fullname)
3863 {
3864 struct objfile *objfile;
3865
3866 ALL_OBJFILES (objfile)
3867 {
3868 if (objfile->sf)
3869 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3870 need_fullname);
3871 }
3872 }
3873
3874 void
3875 _initialize_symfile (void)
3876 {
3877 struct cmd_list_element *c;
3878
3879 observer_attach_free_objfile (symfile_free_objfile);
3880
3881 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3882 Load symbol table from executable file FILE.\n\
3883 The `file' command can also load symbol tables, as well as setting the file\n\
3884 to execute."), &cmdlist);
3885 set_cmd_completer (c, filename_completer);
3886
3887 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3888 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3889 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3890 ...]\nADDR is the starting address of the file's text.\n\
3891 The optional arguments are section-name section-address pairs and\n\
3892 should be specified if the data and bss segments are not contiguous\n\
3893 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3894 &cmdlist);
3895 set_cmd_completer (c, filename_completer);
3896
3897 c = add_cmd ("remove-symbol-file", class_files,
3898 remove_symbol_file_command, _("\
3899 Remove a symbol file added via the add-symbol-file command.\n\
3900 Usage: remove-symbol-file FILENAME\n\
3901 remove-symbol-file -a ADDRESS\n\
3902 The file to remove can be identified by its filename or by an address\n\
3903 that lies within the boundaries of this symbol file in memory."),
3904 &cmdlist);
3905
3906 c = add_cmd ("load", class_files, load_command, _("\
3907 Dynamically load FILE into the running program, and record its symbols\n\
3908 for access from GDB.\n\
3909 An optional load OFFSET may also be given as a literal address.\n\
3910 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3911 on its own.\n\
3912 Usage: load [FILE] [OFFSET]"), &cmdlist);
3913 set_cmd_completer (c, filename_completer);
3914
3915 add_prefix_cmd ("overlay", class_support, overlay_command,
3916 _("Commands for debugging overlays."), &overlaylist,
3917 "overlay ", 0, &cmdlist);
3918
3919 add_com_alias ("ovly", "overlay", class_alias, 1);
3920 add_com_alias ("ov", "overlay", class_alias, 1);
3921
3922 add_cmd ("map-overlay", class_support, map_overlay_command,
3923 _("Assert that an overlay section is mapped."), &overlaylist);
3924
3925 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3926 _("Assert that an overlay section is unmapped."), &overlaylist);
3927
3928 add_cmd ("list-overlays", class_support, list_overlays_command,
3929 _("List mappings of overlay sections."), &overlaylist);
3930
3931 add_cmd ("manual", class_support, overlay_manual_command,
3932 _("Enable overlay debugging."), &overlaylist);
3933 add_cmd ("off", class_support, overlay_off_command,
3934 _("Disable overlay debugging."), &overlaylist);
3935 add_cmd ("auto", class_support, overlay_auto_command,
3936 _("Enable automatic overlay debugging."), &overlaylist);
3937 add_cmd ("load-target", class_support, overlay_load_command,
3938 _("Read the overlay mapping state from the target."), &overlaylist);
3939
3940 /* Filename extension to source language lookup table: */
3941 add_setshow_string_noescape_cmd ("extension-language", class_files,
3942 &ext_args, _("\
3943 Set mapping between filename extension and source language."), _("\
3944 Show mapping between filename extension and source language."), _("\
3945 Usage: set extension-language .foo bar"),
3946 set_ext_lang_command,
3947 show_ext_args,
3948 &setlist, &showlist);
3949
3950 add_info ("extensions", info_ext_lang_command,
3951 _("All filename extensions associated with a source language."));
3952
3953 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3954 &debug_file_directory, _("\
3955 Set the directories where separate debug symbols are searched for."), _("\
3956 Show the directories where separate debug symbols are searched for."), _("\
3957 Separate debug symbols are first searched for in the same\n\
3958 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3959 and lastly at the path of the directory of the binary with\n\
3960 each global debug-file-directory component prepended."),
3961 NULL,
3962 show_debug_file_directory,
3963 &setlist, &showlist);
3964
3965 add_setshow_enum_cmd ("symbol-loading", no_class,
3966 print_symbol_loading_enums, &print_symbol_loading,
3967 _("\
3968 Set printing of symbol loading messages."), _("\
3969 Show printing of symbol loading messages."), _("\
3970 off == turn all messages off\n\
3971 brief == print messages for the executable,\n\
3972 and brief messages for shared libraries\n\
3973 full == print messages for the executable,\n\
3974 and messages for each shared library."),
3975 NULL,
3976 NULL,
3977 &setprintlist, &showprintlist);
3978 }
This page took 0.116573 seconds and 5 git commands to generate.