Improve "set debug separate-debug-file"
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
923 {
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
949
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
953 if (! addrs)
954 addrs = &local_addr;
955
956 if (mainline)
957 {
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
974
975 (*objfile->sf->sym_new_init) (objfile);
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
981
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
990
991 (*objfile->sf->sym_init) (objfile);
992 clear_complaints ();
993
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
995
996 read_symbols (objfile, add_flags);
997
998 /* Discard cleanups as symbol reading was successful. */
999
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1002 }
1003
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
1007 static void
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1011 {
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1014 }
1015
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1019
1020 static void
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1022 {
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
1031 clear_symtab_users (add_flags);
1032 }
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1034 {
1035 breakpoint_re_set ();
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints ();
1040 }
1041
1042 /* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1047
1048 For NAME description see the objfile constructor.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1067 {
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 printf_filtered (_("Reading symbols from %s...\n"), name);
1114 }
1115 syms_from_objfile (objfile, addrs, add_flags);
1116
1117 /* We now have at least a partial symbol table. Check to see if the
1118 user requested that all symbols be read on initial access via either
1119 the gdb startup command line or on a per symbol file basis. Expand
1120 all partial symbol tables for this objfile if so. */
1121
1122 if ((flags & OBJF_READNOW))
1123 {
1124 if (should_print)
1125 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1126
1127 if (objfile->sf)
1128 objfile->sf->qf->expand_all_symtabs (objfile);
1129 }
1130
1131 /* Note that we only print a message if we have no symbols and have
1132 no separate debug file. If there is a separate debug file which
1133 does not have symbols, we'll have emitted this message for that
1134 file, and so printing it twice is just redundant. */
1135 if (should_print && !objfile_has_symbols (objfile)
1136 && objfile->separate_debug_objfile == nullptr)
1137 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1138
1139 if (should_print)
1140 {
1141 if (deprecated_post_add_symbol_hook)
1142 deprecated_post_add_symbol_hook ();
1143 }
1144
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
1150 if (objfile->sf == NULL)
1151 {
1152 gdb::observers::new_objfile.notify (objfile);
1153 return objfile; /* No symbols. */
1154 }
1155
1156 finish_new_objfile (objfile, add_flags);
1157
1158 gdb::observers::new_objfile.notify (objfile);
1159
1160 bfd_cache_close_all ();
1161 return (objfile);
1162 }
1163
1164 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1165 see the objfile constructor. */
1166
1167 void
1168 symbol_file_add_separate (bfd *bfd, const char *name,
1169 symfile_add_flags symfile_flags,
1170 struct objfile *objfile)
1171 {
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1176
1177 symbol_file_add_with_addrs
1178 (bfd, name, symfile_flags, &sap,
1179 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1180 | OBJF_USERLOADED),
1181 objfile);
1182 }
1183
1184 /* Process the symbol file ABFD, as either the main file or as a
1185 dynamically loaded file.
1186 See symbol_file_add_with_addrs's comments for details. */
1187
1188 struct objfile *
1189 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1190 symfile_add_flags add_flags,
1191 section_addr_info *addrs,
1192 objfile_flags flags, struct objfile *parent)
1193 {
1194 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1195 parent);
1196 }
1197
1198 /* Process a symbol file, as either the main file or as a dynamically
1199 loaded file. See symbol_file_add_with_addrs's comments for details. */
1200
1201 struct objfile *
1202 symbol_file_add (const char *name, symfile_add_flags add_flags,
1203 section_addr_info *addrs, objfile_flags flags)
1204 {
1205 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1206
1207 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1208 flags, NULL);
1209 }
1210
1211 /* Call symbol_file_add() with default values and update whatever is
1212 affected by the loading of a new main().
1213 Used when the file is supplied in the gdb command line
1214 and by some targets with special loading requirements.
1215 The auxiliary function, symbol_file_add_main_1(), has the flags
1216 argument for the switches that can only be specified in the symbol_file
1217 command itself. */
1218
1219 void
1220 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1221 {
1222 symbol_file_add_main_1 (args, add_flags, 0, 0);
1223 }
1224
1225 static void
1226 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1227 objfile_flags flags, CORE_ADDR reloff)
1228 {
1229 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1230
1231 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1232 if (reloff != 0)
1233 objfile_rebase (objfile, reloff);
1234
1235 /* Getting new symbols may change our opinion about
1236 what is frameless. */
1237 reinit_frame_cache ();
1238
1239 if ((add_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
1241 }
1242
1243 void
1244 symbol_file_clear (int from_tty)
1245 {
1246 if ((have_full_symbols () || have_partial_symbols ())
1247 && from_tty
1248 && (symfile_objfile
1249 ? !query (_("Discard symbol table from `%s'? "),
1250 objfile_name (symfile_objfile))
1251 : !query (_("Discard symbol table? "))))
1252 error (_("Not confirmed."));
1253
1254 /* solib descriptors may have handles to objfiles. Wipe them before their
1255 objfiles get stale by free_all_objfiles. */
1256 no_shared_libraries (NULL, from_tty);
1257
1258 free_all_objfiles ();
1259
1260 gdb_assert (symfile_objfile == NULL);
1261 if (from_tty)
1262 printf_filtered (_("No symbol file now.\n"));
1263 }
1264
1265 /* See symfile.h. */
1266
1267 int separate_debug_file_debug = 0;
1268
1269 static int
1270 separate_debug_file_exists (const std::string &name, unsigned long crc,
1271 struct objfile *parent_objfile)
1272 {
1273 unsigned long file_crc;
1274 int file_crc_p;
1275 struct stat parent_stat, abfd_stat;
1276 int verified_as_different;
1277
1278 /* Find a separate debug info file as if symbols would be present in
1279 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1280 section can contain just the basename of PARENT_OBJFILE without any
1281 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1282 the separate debug infos with the same basename can exist. */
1283
1284 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1285 return 0;
1286
1287 if (separate_debug_file_debug)
1288 {
1289 printf_filtered (_(" Trying %s..."), name.c_str ());
1290 gdb_flush (gdb_stdout);
1291 }
1292
1293 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1294
1295 if (abfd == NULL)
1296 {
1297 if (separate_debug_file_debug)
1298 printf_filtered (_(" no, unable to open.\n"));
1299
1300 return 0;
1301 }
1302
1303 /* Verify symlinks were not the cause of filename_cmp name difference above.
1304
1305 Some operating systems, e.g. Windows, do not provide a meaningful
1306 st_ino; they always set it to zero. (Windows does provide a
1307 meaningful st_dev.) Files accessed from gdbservers that do not
1308 support the vFile:fstat packet will also have st_ino set to zero.
1309 Do not indicate a duplicate library in either case. While there
1310 is no guarantee that a system that provides meaningful inode
1311 numbers will never set st_ino to zero, this is merely an
1312 optimization, so we do not need to worry about false negatives. */
1313
1314 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1315 && abfd_stat.st_ino != 0
1316 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1317 {
1318 if (abfd_stat.st_dev == parent_stat.st_dev
1319 && abfd_stat.st_ino == parent_stat.st_ino)
1320 {
1321 if (separate_debug_file_debug)
1322 printf_filtered (_(" no, same file as the objfile.\n"));
1323
1324 return 0;
1325 }
1326 verified_as_different = 1;
1327 }
1328 else
1329 verified_as_different = 0;
1330
1331 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1332
1333 if (!file_crc_p)
1334 {
1335 if (separate_debug_file_debug)
1336 printf_filtered (_(" no, error computing CRC.\n"));
1337
1338 return 0;
1339 }
1340
1341 if (crc != file_crc)
1342 {
1343 unsigned long parent_crc;
1344
1345 /* If the files could not be verified as different with
1346 bfd_stat then we need to calculate the parent's CRC
1347 to verify whether the files are different or not. */
1348
1349 if (!verified_as_different)
1350 {
1351 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1352 {
1353 if (separate_debug_file_debug)
1354 printf_filtered (_(" no, error computing CRC.\n"));
1355
1356 return 0;
1357 }
1358 }
1359
1360 if (verified_as_different || parent_crc != file_crc)
1361 warning (_("the debug information found in \"%s\""
1362 " does not match \"%s\" (CRC mismatch).\n"),
1363 name.c_str (), objfile_name (parent_objfile));
1364
1365 if (separate_debug_file_debug)
1366 printf_filtered (_(" no, CRC doesn't match.\n"));
1367
1368 return 0;
1369 }
1370
1371 if (separate_debug_file_debug)
1372 printf_filtered (_(" yes!\n"));
1373
1374 return 1;
1375 }
1376
1377 char *debug_file_directory = NULL;
1378 static void
1379 show_debug_file_directory (struct ui_file *file, int from_tty,
1380 struct cmd_list_element *c, const char *value)
1381 {
1382 fprintf_filtered (file,
1383 _("The directory where separate debug "
1384 "symbols are searched for is \"%s\".\n"),
1385 value);
1386 }
1387
1388 #if ! defined (DEBUG_SUBDIRECTORY)
1389 #define DEBUG_SUBDIRECTORY ".debug"
1390 #endif
1391
1392 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1393 where the original file resides (may not be the same as
1394 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1395 looking for. CANON_DIR is the "realpath" form of DIR.
1396 DIR must contain a trailing '/'.
1397 Returns the path of the file with separate debug info, or an empty
1398 string. */
1399
1400 static std::string
1401 find_separate_debug_file (const char *dir,
1402 const char *canon_dir,
1403 const char *debuglink,
1404 unsigned long crc32, struct objfile *objfile)
1405 {
1406 if (separate_debug_file_debug)
1407 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1408 "%s\n"), objfile_name (objfile));
1409
1410 /* First try in the same directory as the original file. */
1411 std::string debugfile = dir;
1412 debugfile += debuglink;
1413
1414 if (separate_debug_file_exists (debugfile, crc32, objfile))
1415 return debugfile;
1416
1417 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1418 debugfile = dir;
1419 debugfile += DEBUG_SUBDIRECTORY;
1420 debugfile += "/";
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the global debugfile directories.
1427
1428 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1429 cause "/..." lookups. */
1430
1431 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1432 = dirnames_to_char_ptr_vec (debug_file_directory);
1433
1434 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1435 {
1436 debugfile = debugdir.get ();
1437 debugfile += "/";
1438 debugfile += dir;
1439 debugfile += debuglink;
1440
1441 if (separate_debug_file_exists (debugfile, crc32, objfile))
1442 return debugfile;
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_dir != NULL
1447 && filename_ncmp (canon_dir, gdb_sysroot,
1448 strlen (gdb_sysroot)) == 0
1449 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1450 {
1451 debugfile = debugdir.get ();
1452 debugfile += (canon_dir + strlen (gdb_sysroot));
1453 debugfile += "/";
1454 debugfile += debuglink;
1455
1456 if (separate_debug_file_exists (debugfile, crc32, objfile))
1457 return debugfile;
1458 }
1459 }
1460
1461 return std::string ();
1462 }
1463
1464 /* Modify PATH to contain only "[/]directory/" part of PATH.
1465 If there were no directory separators in PATH, PATH will be empty
1466 string on return. */
1467
1468 static void
1469 terminate_after_last_dir_separator (char *path)
1470 {
1471 int i;
1472
1473 /* Strip off the final filename part, leaving the directory name,
1474 followed by a slash. The directory can be relative or absolute. */
1475 for (i = strlen(path) - 1; i >= 0; i--)
1476 if (IS_DIR_SEPARATOR (path[i]))
1477 break;
1478
1479 /* If I is -1 then no directory is present there and DIR will be "". */
1480 path[i + 1] = '\0';
1481 }
1482
1483 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1484 Returns pathname, or an empty string. */
1485
1486 std::string
1487 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1488 {
1489 unsigned long crc32;
1490
1491 gdb::unique_xmalloc_ptr<char> debuglink
1492 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1493
1494 if (debuglink == NULL)
1495 {
1496 /* There's no separate debug info, hence there's no way we could
1497 load it => no warning. */
1498 return std::string ();
1499 }
1500
1501 std::string dir = objfile_name (objfile);
1502 terminate_after_last_dir_separator (&dir[0]);
1503 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1504
1505 std::string debugfile
1506 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1507 debuglink.get (), crc32, objfile);
1508
1509 if (debugfile.empty ())
1510 {
1511 /* For PR gdb/9538, try again with realpath (if different from the
1512 original). */
1513
1514 struct stat st_buf;
1515
1516 if (lstat (objfile_name (objfile), &st_buf) == 0
1517 && S_ISLNK (st_buf.st_mode))
1518 {
1519 gdb::unique_xmalloc_ptr<char> symlink_dir
1520 (lrealpath (objfile_name (objfile)));
1521 if (symlink_dir != NULL)
1522 {
1523 terminate_after_last_dir_separator (symlink_dir.get ());
1524 if (dir != symlink_dir.get ())
1525 {
1526 /* Different directory, so try using it. */
1527 debugfile = find_separate_debug_file (symlink_dir.get (),
1528 symlink_dir.get (),
1529 debuglink.get (),
1530 crc32,
1531 objfile);
1532 }
1533 }
1534 }
1535 }
1536
1537 return debugfile;
1538 }
1539
1540 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1541 simultaneously. */
1542
1543 static void
1544 validate_readnow_readnever (objfile_flags flags)
1545 {
1546 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1547 error (_("-readnow and -readnever cannot be used simultaneously"));
1548 }
1549
1550 /* This is the symbol-file command. Read the file, analyze its
1551 symbols, and add a struct symtab to a symtab list. The syntax of
1552 the command is rather bizarre:
1553
1554 1. The function buildargv implements various quoting conventions
1555 which are undocumented and have little or nothing in common with
1556 the way things are quoted (or not quoted) elsewhere in GDB.
1557
1558 2. Options are used, which are not generally used in GDB (perhaps
1559 "set mapped on", "set readnow on" would be better)
1560
1561 3. The order of options matters, which is contrary to GNU
1562 conventions (because it is confusing and inconvenient). */
1563
1564 void
1565 symbol_file_command (const char *args, int from_tty)
1566 {
1567 dont_repeat ();
1568
1569 if (args == NULL)
1570 {
1571 symbol_file_clear (from_tty);
1572 }
1573 else
1574 {
1575 objfile_flags flags = OBJF_USERLOADED;
1576 symfile_add_flags add_flags = 0;
1577 char *name = NULL;
1578 bool stop_processing_options = false;
1579 CORE_ADDR offset = 0;
1580 int idx;
1581 char *arg;
1582
1583 if (from_tty)
1584 add_flags |= SYMFILE_VERBOSE;
1585
1586 gdb_argv built_argv (args);
1587 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1588 {
1589 if (stop_processing_options || *arg != '-')
1590 {
1591 if (name == NULL)
1592 name = arg;
1593 else
1594 error (_("Unrecognized argument \"%s\""), arg);
1595 }
1596 else if (strcmp (arg, "-readnow") == 0)
1597 flags |= OBJF_READNOW;
1598 else if (strcmp (arg, "-readnever") == 0)
1599 flags |= OBJF_READNEVER;
1600 else if (strcmp (arg, "-o") == 0)
1601 {
1602 arg = built_argv[++idx];
1603 if (arg == NULL)
1604 error (_("Missing argument to -o"));
1605
1606 offset = parse_and_eval_address (arg);
1607 }
1608 else if (strcmp (arg, "--") == 0)
1609 stop_processing_options = true;
1610 else
1611 error (_("Unrecognized argument \"%s\""), arg);
1612 }
1613
1614 if (name == NULL)
1615 error (_("no symbol file name was specified"));
1616
1617 validate_readnow_readnever (flags);
1618
1619 symbol_file_add_main_1 (name, add_flags, flags, offset);
1620 }
1621 }
1622
1623 /* Set the initial language.
1624
1625 FIXME: A better solution would be to record the language in the
1626 psymtab when reading partial symbols, and then use it (if known) to
1627 set the language. This would be a win for formats that encode the
1628 language in an easily discoverable place, such as DWARF. For
1629 stabs, we can jump through hoops looking for specially named
1630 symbols or try to intuit the language from the specific type of
1631 stabs we find, but we can't do that until later when we read in
1632 full symbols. */
1633
1634 void
1635 set_initial_language (void)
1636 {
1637 enum language lang = main_language ();
1638
1639 if (lang == language_unknown)
1640 {
1641 char *name = main_name ();
1642 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1643
1644 if (sym != NULL)
1645 lang = SYMBOL_LANGUAGE (sym);
1646 }
1647
1648 if (lang == language_unknown)
1649 {
1650 /* Make C the default language */
1651 lang = language_c;
1652 }
1653
1654 set_language (lang);
1655 expected_language = current_language; /* Don't warn the user. */
1656 }
1657
1658 /* Open the file specified by NAME and hand it off to BFD for
1659 preliminary analysis. Return a newly initialized bfd *, which
1660 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1661 absolute). In case of trouble, error() is called. */
1662
1663 gdb_bfd_ref_ptr
1664 symfile_bfd_open (const char *name)
1665 {
1666 int desc = -1;
1667
1668 gdb::unique_xmalloc_ptr<char> absolute_name;
1669 if (!is_target_filename (name))
1670 {
1671 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1672
1673 /* Look down path for it, allocate 2nd new malloc'd copy. */
1674 desc = openp (getenv ("PATH"),
1675 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1676 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1677 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1678 if (desc < 0)
1679 {
1680 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1681
1682 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1683 desc = openp (getenv ("PATH"),
1684 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1685 exename, O_RDONLY | O_BINARY, &absolute_name);
1686 }
1687 #endif
1688 if (desc < 0)
1689 perror_with_name (expanded_name.get ());
1690
1691 name = absolute_name.get ();
1692 }
1693
1694 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1695 if (sym_bfd == NULL)
1696 error (_("`%s': can't open to read symbols: %s."), name,
1697 bfd_errmsg (bfd_get_error ()));
1698
1699 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1700 bfd_set_cacheable (sym_bfd.get (), 1);
1701
1702 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1703 error (_("`%s': can't read symbols: %s."), name,
1704 bfd_errmsg (bfd_get_error ()));
1705
1706 return sym_bfd;
1707 }
1708
1709 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1710 the section was not found. */
1711
1712 int
1713 get_section_index (struct objfile *objfile, const char *section_name)
1714 {
1715 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1716
1717 if (sect)
1718 return sect->index;
1719 else
1720 return -1;
1721 }
1722
1723 /* Link SF into the global symtab_fns list.
1724 FLAVOUR is the file format that SF handles.
1725 Called on startup by the _initialize routine in each object file format
1726 reader, to register information about each format the reader is prepared
1727 to handle. */
1728
1729 void
1730 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1731 {
1732 symtab_fns.emplace_back (flavour, sf);
1733 }
1734
1735 /* Initialize OBJFILE to read symbols from its associated BFD. It
1736 either returns or calls error(). The result is an initialized
1737 struct sym_fns in the objfile structure, that contains cached
1738 information about the symbol file. */
1739
1740 static const struct sym_fns *
1741 find_sym_fns (bfd *abfd)
1742 {
1743 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1744
1745 if (our_flavour == bfd_target_srec_flavour
1746 || our_flavour == bfd_target_ihex_flavour
1747 || our_flavour == bfd_target_tekhex_flavour)
1748 return NULL; /* No symbols. */
1749
1750 for (const registered_sym_fns &rsf : symtab_fns)
1751 if (our_flavour == rsf.sym_flavour)
1752 return rsf.sym_fns;
1753
1754 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1755 bfd_get_target (abfd));
1756 }
1757 \f
1758
1759 /* This function runs the load command of our current target. */
1760
1761 static void
1762 load_command (const char *arg, int from_tty)
1763 {
1764 dont_repeat ();
1765
1766 /* The user might be reloading because the binary has changed. Take
1767 this opportunity to check. */
1768 reopen_exec_file ();
1769 reread_symbols ();
1770
1771 std::string temp;
1772 if (arg == NULL)
1773 {
1774 const char *parg, *prev;
1775
1776 arg = get_exec_file (1);
1777
1778 /* We may need to quote this string so buildargv can pull it
1779 apart. */
1780 prev = parg = arg;
1781 while ((parg = strpbrk (parg, "\\\"'\t ")))
1782 {
1783 temp.append (prev, parg - prev);
1784 prev = parg++;
1785 temp.push_back ('\\');
1786 }
1787 /* If we have not copied anything yet, then we didn't see a
1788 character to quote, and we can just leave ARG unchanged. */
1789 if (!temp.empty ())
1790 {
1791 temp.append (prev);
1792 arg = temp.c_str ();
1793 }
1794 }
1795
1796 target_load (arg, from_tty);
1797
1798 /* After re-loading the executable, we don't really know which
1799 overlays are mapped any more. */
1800 overlay_cache_invalid = 1;
1801 }
1802
1803 /* This version of "load" should be usable for any target. Currently
1804 it is just used for remote targets, not inftarg.c or core files,
1805 on the theory that only in that case is it useful.
1806
1807 Avoiding xmodem and the like seems like a win (a) because we don't have
1808 to worry about finding it, and (b) On VMS, fork() is very slow and so
1809 we don't want to run a subprocess. On the other hand, I'm not sure how
1810 performance compares. */
1811
1812 static int validate_download = 0;
1813
1814 /* Callback service function for generic_load (bfd_map_over_sections). */
1815
1816 static void
1817 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1818 {
1819 bfd_size_type *sum = (bfd_size_type *) data;
1820
1821 *sum += bfd_get_section_size (asec);
1822 }
1823
1824 /* Opaque data for load_progress. */
1825 struct load_progress_data
1826 {
1827 /* Cumulative data. */
1828 unsigned long write_count = 0;
1829 unsigned long data_count = 0;
1830 bfd_size_type total_size = 0;
1831 };
1832
1833 /* Opaque data for load_progress for a single section. */
1834 struct load_progress_section_data
1835 {
1836 load_progress_section_data (load_progress_data *cumulative_,
1837 const char *section_name_, ULONGEST section_size_,
1838 CORE_ADDR lma_, gdb_byte *buffer_)
1839 : cumulative (cumulative_), section_name (section_name_),
1840 section_size (section_size_), lma (lma_), buffer (buffer_)
1841 {}
1842
1843 struct load_progress_data *cumulative;
1844
1845 /* Per-section data. */
1846 const char *section_name;
1847 ULONGEST section_sent = 0;
1848 ULONGEST section_size;
1849 CORE_ADDR lma;
1850 gdb_byte *buffer;
1851 };
1852
1853 /* Opaque data for load_section_callback. */
1854 struct load_section_data
1855 {
1856 load_section_data (load_progress_data *progress_data_)
1857 : progress_data (progress_data_)
1858 {}
1859
1860 ~load_section_data ()
1861 {
1862 for (auto &&request : requests)
1863 {
1864 xfree (request.data);
1865 delete ((load_progress_section_data *) request.baton);
1866 }
1867 }
1868
1869 CORE_ADDR load_offset = 0;
1870 struct load_progress_data *progress_data;
1871 std::vector<struct memory_write_request> requests;
1872 };
1873
1874 /* Target write callback routine for progress reporting. */
1875
1876 static void
1877 load_progress (ULONGEST bytes, void *untyped_arg)
1878 {
1879 struct load_progress_section_data *args
1880 = (struct load_progress_section_data *) untyped_arg;
1881 struct load_progress_data *totals;
1882
1883 if (args == NULL)
1884 /* Writing padding data. No easy way to get at the cumulative
1885 stats, so just ignore this. */
1886 return;
1887
1888 totals = args->cumulative;
1889
1890 if (bytes == 0 && args->section_sent == 0)
1891 {
1892 /* The write is just starting. Let the user know we've started
1893 this section. */
1894 current_uiout->message ("Loading section %s, size %s lma %s\n",
1895 args->section_name,
1896 hex_string (args->section_size),
1897 paddress (target_gdbarch (), args->lma));
1898 return;
1899 }
1900
1901 if (validate_download)
1902 {
1903 /* Broken memories and broken monitors manifest themselves here
1904 when bring new computers to life. This doubles already slow
1905 downloads. */
1906 /* NOTE: cagney/1999-10-18: A more efficient implementation
1907 might add a verify_memory() method to the target vector and
1908 then use that. remote.c could implement that method using
1909 the ``qCRC'' packet. */
1910 gdb::byte_vector check (bytes);
1911
1912 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1913 error (_("Download verify read failed at %s"),
1914 paddress (target_gdbarch (), args->lma));
1915 if (memcmp (args->buffer, check.data (), bytes) != 0)
1916 error (_("Download verify compare failed at %s"),
1917 paddress (target_gdbarch (), args->lma));
1918 }
1919 totals->data_count += bytes;
1920 args->lma += bytes;
1921 args->buffer += bytes;
1922 totals->write_count += 1;
1923 args->section_sent += bytes;
1924 if (check_quit_flag ()
1925 || (deprecated_ui_load_progress_hook != NULL
1926 && deprecated_ui_load_progress_hook (args->section_name,
1927 args->section_sent)))
1928 error (_("Canceled the download"));
1929
1930 if (deprecated_show_load_progress != NULL)
1931 deprecated_show_load_progress (args->section_name,
1932 args->section_sent,
1933 args->section_size,
1934 totals->data_count,
1935 totals->total_size);
1936 }
1937
1938 /* Callback service function for generic_load (bfd_map_over_sections). */
1939
1940 static void
1941 load_section_callback (bfd *abfd, asection *asec, void *data)
1942 {
1943 struct load_section_data *args = (struct load_section_data *) data;
1944 bfd_size_type size = bfd_get_section_size (asec);
1945 const char *sect_name = bfd_get_section_name (abfd, asec);
1946
1947 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1948 return;
1949
1950 if (size == 0)
1951 return;
1952
1953 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1954 ULONGEST end = begin + size;
1955 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1956 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1957
1958 load_progress_section_data *section_data
1959 = new load_progress_section_data (args->progress_data, sect_name, size,
1960 begin, buffer);
1961
1962 args->requests.emplace_back (begin, end, buffer, section_data);
1963 }
1964
1965 static void print_transfer_performance (struct ui_file *stream,
1966 unsigned long data_count,
1967 unsigned long write_count,
1968 std::chrono::steady_clock::duration d);
1969
1970 void
1971 generic_load (const char *args, int from_tty)
1972 {
1973 struct load_progress_data total_progress;
1974 struct load_section_data cbdata (&total_progress);
1975 struct ui_out *uiout = current_uiout;
1976
1977 if (args == NULL)
1978 error_no_arg (_("file to load"));
1979
1980 gdb_argv argv (args);
1981
1982 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1983
1984 if (argv[1] != NULL)
1985 {
1986 const char *endptr;
1987
1988 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1989
1990 /* If the last word was not a valid number then
1991 treat it as a file name with spaces in. */
1992 if (argv[1] == endptr)
1993 error (_("Invalid download offset:%s."), argv[1]);
1994
1995 if (argv[2] != NULL)
1996 error (_("Too many parameters."));
1997 }
1998
1999 /* Open the file for loading. */
2000 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2001 if (loadfile_bfd == NULL)
2002 perror_with_name (filename.get ());
2003
2004 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2005 {
2006 error (_("\"%s\" is not an object file: %s"), filename.get (),
2007 bfd_errmsg (bfd_get_error ()));
2008 }
2009
2010 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2011 (void *) &total_progress.total_size);
2012
2013 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2014
2015 using namespace std::chrono;
2016
2017 steady_clock::time_point start_time = steady_clock::now ();
2018
2019 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2020 load_progress) != 0)
2021 error (_("Load failed"));
2022
2023 steady_clock::time_point end_time = steady_clock::now ();
2024
2025 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2026 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2027 uiout->text ("Start address ");
2028 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2029 uiout->text (", load size ");
2030 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2031 uiout->text ("\n");
2032 regcache_write_pc (get_current_regcache (), entry);
2033
2034 /* Reset breakpoints, now that we have changed the load image. For
2035 instance, breakpoints may have been set (or reset, by
2036 post_create_inferior) while connected to the target but before we
2037 loaded the program. In that case, the prologue analyzer could
2038 have read instructions from the target to find the right
2039 breakpoint locations. Loading has changed the contents of that
2040 memory. */
2041
2042 breakpoint_re_set ();
2043
2044 print_transfer_performance (gdb_stdout, total_progress.data_count,
2045 total_progress.write_count,
2046 end_time - start_time);
2047 }
2048
2049 /* Report on STREAM the performance of a memory transfer operation,
2050 such as 'load'. DATA_COUNT is the number of bytes transferred.
2051 WRITE_COUNT is the number of separate write operations, or 0, if
2052 that information is not available. TIME is how long the operation
2053 lasted. */
2054
2055 static void
2056 print_transfer_performance (struct ui_file *stream,
2057 unsigned long data_count,
2058 unsigned long write_count,
2059 std::chrono::steady_clock::duration time)
2060 {
2061 using namespace std::chrono;
2062 struct ui_out *uiout = current_uiout;
2063
2064 milliseconds ms = duration_cast<milliseconds> (time);
2065
2066 uiout->text ("Transfer rate: ");
2067 if (ms.count () > 0)
2068 {
2069 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2070
2071 if (uiout->is_mi_like_p ())
2072 {
2073 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2074 uiout->text (" bits/sec");
2075 }
2076 else if (rate < 1024)
2077 {
2078 uiout->field_fmt ("transfer-rate", "%lu", rate);
2079 uiout->text (" bytes/sec");
2080 }
2081 else
2082 {
2083 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2084 uiout->text (" KB/sec");
2085 }
2086 }
2087 else
2088 {
2089 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2090 uiout->text (" bits in <1 sec");
2091 }
2092 if (write_count > 0)
2093 {
2094 uiout->text (", ");
2095 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2096 uiout->text (" bytes/write");
2097 }
2098 uiout->text (".\n");
2099 }
2100
2101 /* Add an OFFSET to the start address of each section in OBJF, except
2102 sections that were specified in ADDRS. */
2103
2104 static void
2105 set_objfile_default_section_offset (struct objfile *objf,
2106 const section_addr_info &addrs,
2107 CORE_ADDR offset)
2108 {
2109 /* Add OFFSET to all sections by default. */
2110 std::vector<struct section_offsets> offsets (objf->num_sections,
2111 { { offset } });
2112
2113 /* Create sorted lists of all sections in ADDRS as well as all
2114 sections in OBJF. */
2115
2116 std::vector<const struct other_sections *> addrs_sorted
2117 = addrs_section_sort (addrs);
2118
2119 section_addr_info objf_addrs
2120 = build_section_addr_info_from_objfile (objf);
2121 std::vector<const struct other_sections *> objf_addrs_sorted
2122 = addrs_section_sort (objf_addrs);
2123
2124 /* Walk the BFD section list, and if a matching section is found in
2125 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2126 unchanged.
2127
2128 Note that both lists may contain multiple sections with the same
2129 name, and then the sections from ADDRS are matched in BFD order
2130 (thanks to sectindex). */
2131
2132 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2133 = addrs_sorted.begin ();
2134 for (const other_sections *objf_sect : objf_addrs_sorted)
2135 {
2136 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2137 int cmp = -1;
2138
2139 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2140 {
2141 const struct other_sections *sect = *addrs_sorted_iter;
2142 const char *sect_name = addr_section_name (sect->name.c_str ());
2143 cmp = strcmp (sect_name, objf_name);
2144 if (cmp <= 0)
2145 ++addrs_sorted_iter;
2146 }
2147
2148 if (cmp == 0)
2149 offsets[objf_sect->sectindex].offsets[0] = 0;
2150 }
2151
2152 /* Apply the new section offsets. */
2153 objfile_relocate (objf, offsets.data ());
2154 }
2155
2156 /* This function allows the addition of incrementally linked object files.
2157 It does not modify any state in the target, only in the debugger. */
2158 /* Note: ezannoni 2000-04-13 This function/command used to have a
2159 special case syntax for the rombug target (Rombug is the boot
2160 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2161 rombug case, the user doesn't need to supply a text address,
2162 instead a call to target_link() (in target.c) would supply the
2163 value to use. We are now discontinuing this type of ad hoc syntax. */
2164
2165 static void
2166 add_symbol_file_command (const char *args, int from_tty)
2167 {
2168 struct gdbarch *gdbarch = get_current_arch ();
2169 gdb::unique_xmalloc_ptr<char> filename;
2170 char *arg;
2171 int argcnt = 0;
2172 struct objfile *objf;
2173 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2174 symfile_add_flags add_flags = 0;
2175
2176 if (from_tty)
2177 add_flags |= SYMFILE_VERBOSE;
2178
2179 struct sect_opt
2180 {
2181 const char *name;
2182 const char *value;
2183 };
2184
2185 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2186 bool stop_processing_options = false;
2187 CORE_ADDR offset = 0;
2188
2189 dont_repeat ();
2190
2191 if (args == NULL)
2192 error (_("add-symbol-file takes a file name and an address"));
2193
2194 bool seen_addr = false;
2195 bool seen_offset = false;
2196 gdb_argv argv (args);
2197
2198 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2199 {
2200 if (stop_processing_options || *arg != '-')
2201 {
2202 if (filename == NULL)
2203 {
2204 /* First non-option argument is always the filename. */
2205 filename.reset (tilde_expand (arg));
2206 }
2207 else if (!seen_addr)
2208 {
2209 /* The second non-option argument is always the text
2210 address at which to load the program. */
2211 sect_opts[0].value = arg;
2212 seen_addr = true;
2213 }
2214 else
2215 error (_("Unrecognized argument \"%s\""), arg);
2216 }
2217 else if (strcmp (arg, "-readnow") == 0)
2218 flags |= OBJF_READNOW;
2219 else if (strcmp (arg, "-readnever") == 0)
2220 flags |= OBJF_READNEVER;
2221 else if (strcmp (arg, "-s") == 0)
2222 {
2223 if (argv[argcnt + 1] == NULL)
2224 error (_("Missing section name after \"-s\""));
2225 else if (argv[argcnt + 2] == NULL)
2226 error (_("Missing section address after \"-s\""));
2227
2228 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2229
2230 sect_opts.push_back (sect);
2231 argcnt += 2;
2232 }
2233 else if (strcmp (arg, "-o") == 0)
2234 {
2235 arg = argv[++argcnt];
2236 if (arg == NULL)
2237 error (_("Missing argument to -o"));
2238
2239 offset = parse_and_eval_address (arg);
2240 seen_offset = true;
2241 }
2242 else if (strcmp (arg, "--") == 0)
2243 stop_processing_options = true;
2244 else
2245 error (_("Unrecognized argument \"%s\""), arg);
2246 }
2247
2248 if (filename == NULL)
2249 error (_("You must provide a filename to be loaded."));
2250
2251 validate_readnow_readnever (flags);
2252
2253 /* Print the prompt for the query below. And save the arguments into
2254 a sect_addr_info structure to be passed around to other
2255 functions. We have to split this up into separate print
2256 statements because hex_string returns a local static
2257 string. */
2258
2259 printf_unfiltered (_("add symbol table from file \"%s\""),
2260 filename.get ());
2261 section_addr_info section_addrs;
2262 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2263 if (!seen_addr)
2264 ++it;
2265 for (; it != sect_opts.end (); ++it)
2266 {
2267 CORE_ADDR addr;
2268 const char *val = it->value;
2269 const char *sec = it->name;
2270
2271 if (section_addrs.empty ())
2272 printf_unfiltered (_(" at\n"));
2273 addr = parse_and_eval_address (val);
2274
2275 /* Here we store the section offsets in the order they were
2276 entered on the command line. Every array element is
2277 assigned an ascending section index to preserve the above
2278 order over an unstable sorting algorithm. This dummy
2279 index is not used for any other purpose.
2280 */
2281 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2282 printf_filtered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
2284
2285 /* The object's sections are initialized when a
2286 call is made to build_objfile_section_table (objfile).
2287 This happens in reread_symbols.
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2290 }
2291 if (seen_offset)
2292 printf_unfiltered (_("%s offset by %s\n"),
2293 (section_addrs.empty ()
2294 ? _(" with all sections")
2295 : _("with other sections")),
2296 paddress (gdbarch, offset));
2297 else if (section_addrs.empty ())
2298 printf_unfiltered ("\n");
2299
2300 if (from_tty && (!query ("%s", "")))
2301 error (_("Not confirmed."));
2302
2303 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2304 flags);
2305
2306 if (seen_offset)
2307 set_objfile_default_section_offset (objf, section_addrs, offset);
2308
2309 add_target_sections_of_objfile (objf);
2310
2311 /* Getting new symbols may change our opinion about what is
2312 frameless. */
2313 reinit_frame_cache ();
2314 }
2315 \f
2316
2317 /* This function removes a symbol file that was added via add-symbol-file. */
2318
2319 static void
2320 remove_symbol_file_command (const char *args, int from_tty)
2321 {
2322 struct objfile *objf = NULL;
2323 struct program_space *pspace = current_program_space;
2324
2325 dont_repeat ();
2326
2327 if (args == NULL)
2328 error (_("remove-symbol-file: no symbol file provided"));
2329
2330 gdb_argv argv (args);
2331
2332 if (strcmp (argv[0], "-a") == 0)
2333 {
2334 /* Interpret the next argument as an address. */
2335 CORE_ADDR addr;
2336
2337 if (argv[1] == NULL)
2338 error (_("Missing address argument"));
2339
2340 if (argv[2] != NULL)
2341 error (_("Junk after %s"), argv[1]);
2342
2343 addr = parse_and_eval_address (argv[1]);
2344
2345 ALL_OBJFILES (objf)
2346 {
2347 if ((objf->flags & OBJF_USERLOADED) != 0
2348 && (objf->flags & OBJF_SHARED) != 0
2349 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2350 break;
2351 }
2352 }
2353 else if (argv[0] != NULL)
2354 {
2355 /* Interpret the current argument as a file name. */
2356
2357 if (argv[1] != NULL)
2358 error (_("Junk after %s"), argv[0]);
2359
2360 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2361
2362 ALL_OBJFILES (objf)
2363 {
2364 if ((objf->flags & OBJF_USERLOADED) != 0
2365 && (objf->flags & OBJF_SHARED) != 0
2366 && objf->pspace == pspace
2367 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2368 break;
2369 }
2370 }
2371
2372 if (objf == NULL)
2373 error (_("No symbol file found"));
2374
2375 if (from_tty
2376 && !query (_("Remove symbol table from file \"%s\"? "),
2377 objfile_name (objf)))
2378 error (_("Not confirmed."));
2379
2380 delete objf;
2381 clear_symtab_users (0);
2382 }
2383
2384 /* Re-read symbols if a symbol-file has changed. */
2385
2386 void
2387 reread_symbols (void)
2388 {
2389 struct objfile *objfile;
2390 long new_modtime;
2391 struct stat new_statbuf;
2392 int res;
2393 std::vector<struct objfile *> new_objfiles;
2394
2395 /* With the addition of shared libraries, this should be modified,
2396 the load time should be saved in the partial symbol tables, since
2397 different tables may come from different source files. FIXME.
2398 This routine should then walk down each partial symbol table
2399 and see if the symbol table that it originates from has been changed. */
2400
2401 for (objfile = object_files; objfile; objfile = objfile->next)
2402 {
2403 if (objfile->obfd == NULL)
2404 continue;
2405
2406 /* Separate debug objfiles are handled in the main objfile. */
2407 if (objfile->separate_debug_objfile_backlink)
2408 continue;
2409
2410 /* If this object is from an archive (what you usually create with
2411 `ar', often called a `static library' on most systems, though
2412 a `shared library' on AIX is also an archive), then you should
2413 stat on the archive name, not member name. */
2414 if (objfile->obfd->my_archive)
2415 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2416 else
2417 res = stat (objfile_name (objfile), &new_statbuf);
2418 if (res != 0)
2419 {
2420 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2421 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2422 objfile_name (objfile));
2423 continue;
2424 }
2425 new_modtime = new_statbuf.st_mtime;
2426 if (new_modtime != objfile->mtime)
2427 {
2428 struct cleanup *old_cleanups;
2429 struct section_offsets *offsets;
2430 int num_offsets;
2431
2432 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2433 objfile_name (objfile));
2434
2435 /* There are various functions like symbol_file_add,
2436 symfile_bfd_open, syms_from_objfile, etc., which might
2437 appear to do what we want. But they have various other
2438 effects which we *don't* want. So we just do stuff
2439 ourselves. We don't worry about mapped files (for one thing,
2440 any mapped file will be out of date). */
2441
2442 /* If we get an error, blow away this objfile (not sure if
2443 that is the correct response for things like shared
2444 libraries). */
2445 std::unique_ptr<struct objfile> objfile_holder (objfile);
2446
2447 /* We need to do this whenever any symbols go away. */
2448 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2449
2450 if (exec_bfd != NULL
2451 && filename_cmp (bfd_get_filename (objfile->obfd),
2452 bfd_get_filename (exec_bfd)) == 0)
2453 {
2454 /* Reload EXEC_BFD without asking anything. */
2455
2456 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2457 }
2458
2459 /* Keep the calls order approx. the same as in free_objfile. */
2460
2461 /* Free the separate debug objfiles. It will be
2462 automatically recreated by sym_read. */
2463 free_objfile_separate_debug (objfile);
2464
2465 /* Remove any references to this objfile in the global
2466 value lists. */
2467 preserve_values (objfile);
2468
2469 /* Nuke all the state that we will re-read. Much of the following
2470 code which sets things to NULL really is necessary to tell
2471 other parts of GDB that there is nothing currently there.
2472
2473 Try to keep the freeing order compatible with free_objfile. */
2474
2475 if (objfile->sf != NULL)
2476 {
2477 (*objfile->sf->sym_finish) (objfile);
2478 }
2479
2480 clear_objfile_data (objfile);
2481
2482 /* Clean up any state BFD has sitting around. */
2483 {
2484 gdb_bfd_ref_ptr obfd (objfile->obfd);
2485 char *obfd_filename;
2486
2487 obfd_filename = bfd_get_filename (objfile->obfd);
2488 /* Open the new BFD before freeing the old one, so that
2489 the filename remains live. */
2490 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2491 objfile->obfd = temp.release ();
2492 if (objfile->obfd == NULL)
2493 error (_("Can't open %s to read symbols."), obfd_filename);
2494 }
2495
2496 std::string original_name = objfile->original_name;
2497
2498 /* bfd_openr sets cacheable to true, which is what we want. */
2499 if (!bfd_check_format (objfile->obfd, bfd_object))
2500 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2501 bfd_errmsg (bfd_get_error ()));
2502
2503 /* Save the offsets, we will nuke them with the rest of the
2504 objfile_obstack. */
2505 num_offsets = objfile->num_sections;
2506 offsets = ((struct section_offsets *)
2507 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2508 memcpy (offsets, objfile->section_offsets,
2509 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2510
2511 /* FIXME: Do we have to free a whole linked list, or is this
2512 enough? */
2513 objfile->global_psymbols.clear ();
2514 objfile->static_psymbols.clear ();
2515
2516 /* Free the obstacks for non-reusable objfiles. */
2517 psymbol_bcache_free (objfile->psymbol_cache);
2518 objfile->psymbol_cache = psymbol_bcache_init ();
2519
2520 /* NB: after this call to obstack_free, objfiles_changed
2521 will need to be called (see discussion below). */
2522 obstack_free (&objfile->objfile_obstack, 0);
2523 objfile->sections = NULL;
2524 objfile->compunit_symtabs = NULL;
2525 objfile->psymtabs = NULL;
2526 objfile->psymtabs_addrmap = NULL;
2527 objfile->free_psymtabs = NULL;
2528 objfile->template_symbols = NULL;
2529 objfile->static_links = NULL;
2530
2531 /* obstack_init also initializes the obstack so it is
2532 empty. We could use obstack_specify_allocation but
2533 gdb_obstack.h specifies the alloc/dealloc functions. */
2534 obstack_init (&objfile->objfile_obstack);
2535
2536 /* set_objfile_per_bfd potentially allocates the per-bfd
2537 data on the objfile's obstack (if sharing data across
2538 multiple users is not possible), so it's important to
2539 do it *after* the obstack has been initialized. */
2540 set_objfile_per_bfd (objfile);
2541
2542 objfile->original_name
2543 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2544 original_name.c_str (),
2545 original_name.size ());
2546
2547 /* Reset the sym_fns pointer. The ELF reader can change it
2548 based on whether .gdb_index is present, and we need it to
2549 start over. PR symtab/15885 */
2550 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2551
2552 build_objfile_section_table (objfile);
2553 terminate_minimal_symbol_table (objfile);
2554
2555 /* We use the same section offsets as from last time. I'm not
2556 sure whether that is always correct for shared libraries. */
2557 objfile->section_offsets = (struct section_offsets *)
2558 obstack_alloc (&objfile->objfile_obstack,
2559 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2560 memcpy (objfile->section_offsets, offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562 objfile->num_sections = num_offsets;
2563
2564 /* What the hell is sym_new_init for, anyway? The concept of
2565 distinguishing between the main file and additional files
2566 in this way seems rather dubious. */
2567 if (objfile == symfile_objfile)
2568 {
2569 (*objfile->sf->sym_new_init) (objfile);
2570 }
2571
2572 (*objfile->sf->sym_init) (objfile);
2573 clear_complaints ();
2574
2575 objfile->flags &= ~OBJF_PSYMTABS_READ;
2576
2577 /* We are about to read new symbols and potentially also
2578 DWARF information. Some targets may want to pass addresses
2579 read from DWARF DIE's through an adjustment function before
2580 saving them, like MIPS, which may call into
2581 "find_pc_section". When called, that function will make
2582 use of per-objfile program space data.
2583
2584 Since we discarded our section information above, we have
2585 dangling pointers in the per-objfile program space data
2586 structure. Force GDB to update the section mapping
2587 information by letting it know the objfile has changed,
2588 making the dangling pointers point to correct data
2589 again. */
2590
2591 objfiles_changed ();
2592
2593 read_symbols (objfile, 0);
2594
2595 if (!objfile_has_symbols (objfile))
2596 {
2597 wrap_here ("");
2598 printf_filtered (_("(no debugging symbols found)\n"));
2599 wrap_here ("");
2600 }
2601
2602 /* We're done reading the symbol file; finish off complaints. */
2603 clear_complaints ();
2604
2605 /* Getting new symbols may change our opinion about what is
2606 frameless. */
2607
2608 reinit_frame_cache ();
2609
2610 /* Discard cleanups as symbol reading was successful. */
2611 objfile_holder.release ();
2612 discard_cleanups (old_cleanups);
2613
2614 /* If the mtime has changed between the time we set new_modtime
2615 and now, we *want* this to be out of date, so don't call stat
2616 again now. */
2617 objfile->mtime = new_modtime;
2618 init_entry_point_info (objfile);
2619
2620 new_objfiles.push_back (objfile);
2621 }
2622 }
2623
2624 if (!new_objfiles.empty ())
2625 {
2626 clear_symtab_users (0);
2627
2628 /* clear_objfile_data for each objfile was called before freeing it and
2629 gdb::observers::new_objfile.notify (NULL) has been called by
2630 clear_symtab_users above. Notify the new files now. */
2631 for (auto iter : new_objfiles)
2632 gdb::observers::new_objfile.notify (iter);
2633
2634 /* At least one objfile has changed, so we can consider that
2635 the executable we're debugging has changed too. */
2636 gdb::observers::executable_changed.notify ();
2637 }
2638 }
2639 \f
2640
2641 struct filename_language
2642 {
2643 filename_language (const std::string &ext_, enum language lang_)
2644 : ext (ext_), lang (lang_)
2645 {}
2646
2647 std::string ext;
2648 enum language lang;
2649 };
2650
2651 static std::vector<filename_language> filename_language_table;
2652
2653 /* See symfile.h. */
2654
2655 void
2656 add_filename_language (const char *ext, enum language lang)
2657 {
2658 filename_language_table.emplace_back (ext, lang);
2659 }
2660
2661 static char *ext_args;
2662 static void
2663 show_ext_args (struct ui_file *file, int from_tty,
2664 struct cmd_list_element *c, const char *value)
2665 {
2666 fprintf_filtered (file,
2667 _("Mapping between filename extension "
2668 "and source language is \"%s\".\n"),
2669 value);
2670 }
2671
2672 static void
2673 set_ext_lang_command (const char *args,
2674 int from_tty, struct cmd_list_element *e)
2675 {
2676 char *cp = ext_args;
2677 enum language lang;
2678
2679 /* First arg is filename extension, starting with '.' */
2680 if (*cp != '.')
2681 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2682
2683 /* Find end of first arg. */
2684 while (*cp && !isspace (*cp))
2685 cp++;
2686
2687 if (*cp == '\0')
2688 error (_("'%s': two arguments required -- "
2689 "filename extension and language"),
2690 ext_args);
2691
2692 /* Null-terminate first arg. */
2693 *cp++ = '\0';
2694
2695 /* Find beginning of second arg, which should be a source language. */
2696 cp = skip_spaces (cp);
2697
2698 if (*cp == '\0')
2699 error (_("'%s': two arguments required -- "
2700 "filename extension and language"),
2701 ext_args);
2702
2703 /* Lookup the language from among those we know. */
2704 lang = language_enum (cp);
2705
2706 auto it = filename_language_table.begin ();
2707 /* Now lookup the filename extension: do we already know it? */
2708 for (; it != filename_language_table.end (); it++)
2709 {
2710 if (it->ext == ext_args)
2711 break;
2712 }
2713
2714 if (it == filename_language_table.end ())
2715 {
2716 /* New file extension. */
2717 add_filename_language (ext_args, lang);
2718 }
2719 else
2720 {
2721 /* Redefining a previously known filename extension. */
2722
2723 /* if (from_tty) */
2724 /* query ("Really make files of type %s '%s'?", */
2725 /* ext_args, language_str (lang)); */
2726
2727 it->lang = lang;
2728 }
2729 }
2730
2731 static void
2732 info_ext_lang_command (const char *args, int from_tty)
2733 {
2734 printf_filtered (_("Filename extensions and the languages they represent:"));
2735 printf_filtered ("\n\n");
2736 for (const filename_language &entry : filename_language_table)
2737 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2738 language_str (entry.lang));
2739 }
2740
2741 enum language
2742 deduce_language_from_filename (const char *filename)
2743 {
2744 const char *cp;
2745
2746 if (filename != NULL)
2747 if ((cp = strrchr (filename, '.')) != NULL)
2748 {
2749 for (const filename_language &entry : filename_language_table)
2750 if (entry.ext == cp)
2751 return entry.lang;
2752 }
2753
2754 return language_unknown;
2755 }
2756 \f
2757 /* Allocate and initialize a new symbol table.
2758 CUST is from the result of allocate_compunit_symtab. */
2759
2760 struct symtab *
2761 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2762 {
2763 struct objfile *objfile = cust->objfile;
2764 struct symtab *symtab
2765 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2766
2767 symtab->filename
2768 = (const char *) bcache (filename, strlen (filename) + 1,
2769 objfile->per_bfd->filename_cache);
2770 symtab->fullname = NULL;
2771 symtab->language = deduce_language_from_filename (filename);
2772
2773 /* This can be very verbose with lots of headers.
2774 Only print at higher debug levels. */
2775 if (symtab_create_debug >= 2)
2776 {
2777 /* Be a bit clever with debugging messages, and don't print objfile
2778 every time, only when it changes. */
2779 static char *last_objfile_name = NULL;
2780
2781 if (last_objfile_name == NULL
2782 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2783 {
2784 xfree (last_objfile_name);
2785 last_objfile_name = xstrdup (objfile_name (objfile));
2786 fprintf_filtered (gdb_stdlog,
2787 "Creating one or more symtabs for objfile %s ...\n",
2788 last_objfile_name);
2789 }
2790 fprintf_filtered (gdb_stdlog,
2791 "Created symtab %s for module %s.\n",
2792 host_address_to_string (symtab), filename);
2793 }
2794
2795 /* Add it to CUST's list of symtabs. */
2796 if (cust->filetabs == NULL)
2797 {
2798 cust->filetabs = symtab;
2799 cust->last_filetab = symtab;
2800 }
2801 else
2802 {
2803 cust->last_filetab->next = symtab;
2804 cust->last_filetab = symtab;
2805 }
2806
2807 /* Backlink to the containing compunit symtab. */
2808 symtab->compunit_symtab = cust;
2809
2810 return symtab;
2811 }
2812
2813 /* Allocate and initialize a new compunit.
2814 NAME is the name of the main source file, if there is one, or some
2815 descriptive text if there are no source files. */
2816
2817 struct compunit_symtab *
2818 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2819 {
2820 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct compunit_symtab);
2822 const char *saved_name;
2823
2824 cu->objfile = objfile;
2825
2826 /* The name we record here is only for display/debugging purposes.
2827 Just save the basename to avoid path issues (too long for display,
2828 relative vs absolute, etc.). */
2829 saved_name = lbasename (name);
2830 cu->name
2831 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2832 strlen (saved_name));
2833
2834 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2835
2836 if (symtab_create_debug)
2837 {
2838 fprintf_filtered (gdb_stdlog,
2839 "Created compunit symtab %s for %s.\n",
2840 host_address_to_string (cu),
2841 cu->name);
2842 }
2843
2844 return cu;
2845 }
2846
2847 /* Hook CU to the objfile it comes from. */
2848
2849 void
2850 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2851 {
2852 cu->next = cu->objfile->compunit_symtabs;
2853 cu->objfile->compunit_symtabs = cu;
2854 }
2855 \f
2856
2857 /* Reset all data structures in gdb which may contain references to
2858 symbol table data. */
2859
2860 void
2861 clear_symtab_users (symfile_add_flags add_flags)
2862 {
2863 /* Someday, we should do better than this, by only blowing away
2864 the things that really need to be blown. */
2865
2866 /* Clear the "current" symtab first, because it is no longer valid.
2867 breakpoint_re_set may try to access the current symtab. */
2868 clear_current_source_symtab_and_line ();
2869
2870 clear_displays ();
2871 clear_last_displayed_sal ();
2872 clear_pc_function_cache ();
2873 gdb::observers::new_objfile.notify (NULL);
2874
2875 /* Clear globals which might have pointed into a removed objfile.
2876 FIXME: It's not clear which of these are supposed to persist
2877 between expressions and which ought to be reset each time. */
2878 expression_context_block = NULL;
2879 innermost_block.reset ();
2880
2881 /* Varobj may refer to old symbols, perform a cleanup. */
2882 varobj_invalidate ();
2883
2884 /* Now that the various caches have been cleared, we can re_set
2885 our breakpoints without risking it using stale data. */
2886 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2887 breakpoint_re_set ();
2888 }
2889
2890 static void
2891 clear_symtab_users_cleanup (void *ignore)
2892 {
2893 clear_symtab_users (0);
2894 }
2895 \f
2896 /* OVERLAYS:
2897 The following code implements an abstraction for debugging overlay sections.
2898
2899 The target model is as follows:
2900 1) The gnu linker will permit multiple sections to be mapped into the
2901 same VMA, each with its own unique LMA (or load address).
2902 2) It is assumed that some runtime mechanism exists for mapping the
2903 sections, one by one, from the load address into the VMA address.
2904 3) This code provides a mechanism for gdb to keep track of which
2905 sections should be considered to be mapped from the VMA to the LMA.
2906 This information is used for symbol lookup, and memory read/write.
2907 For instance, if a section has been mapped then its contents
2908 should be read from the VMA, otherwise from the LMA.
2909
2910 Two levels of debugger support for overlays are available. One is
2911 "manual", in which the debugger relies on the user to tell it which
2912 overlays are currently mapped. This level of support is
2913 implemented entirely in the core debugger, and the information about
2914 whether a section is mapped is kept in the objfile->obj_section table.
2915
2916 The second level of support is "automatic", and is only available if
2917 the target-specific code provides functionality to read the target's
2918 overlay mapping table, and translate its contents for the debugger
2919 (by updating the mapped state information in the obj_section tables).
2920
2921 The interface is as follows:
2922 User commands:
2923 overlay map <name> -- tell gdb to consider this section mapped
2924 overlay unmap <name> -- tell gdb to consider this section unmapped
2925 overlay list -- list the sections that GDB thinks are mapped
2926 overlay read-target -- get the target's state of what's mapped
2927 overlay off/manual/auto -- set overlay debugging state
2928 Functional interface:
2929 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2930 section, return that section.
2931 find_pc_overlay(pc): find any overlay section that contains
2932 the pc, either in its VMA or its LMA
2933 section_is_mapped(sect): true if overlay is marked as mapped
2934 section_is_overlay(sect): true if section's VMA != LMA
2935 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2936 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2937 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2938 overlay_mapped_address(...): map an address from section's LMA to VMA
2939 overlay_unmapped_address(...): map an address from section's VMA to LMA
2940 symbol_overlayed_address(...): Return a "current" address for symbol:
2941 either in VMA or LMA depending on whether
2942 the symbol's section is currently mapped. */
2943
2944 /* Overlay debugging state: */
2945
2946 enum overlay_debugging_state overlay_debugging = ovly_off;
2947 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2948
2949 /* Function: section_is_overlay (SECTION)
2950 Returns true if SECTION has VMA not equal to LMA, ie.
2951 SECTION is loaded at an address different from where it will "run". */
2952
2953 int
2954 section_is_overlay (struct obj_section *section)
2955 {
2956 if (overlay_debugging && section)
2957 {
2958 asection *bfd_section = section->the_bfd_section;
2959
2960 if (bfd_section_lma (abfd, bfd_section) != 0
2961 && bfd_section_lma (abfd, bfd_section)
2962 != bfd_section_vma (abfd, bfd_section))
2963 return 1;
2964 }
2965
2966 return 0;
2967 }
2968
2969 /* Function: overlay_invalidate_all (void)
2970 Invalidate the mapped state of all overlay sections (mark it as stale). */
2971
2972 static void
2973 overlay_invalidate_all (void)
2974 {
2975 struct objfile *objfile;
2976 struct obj_section *sect;
2977
2978 ALL_OBJSECTIONS (objfile, sect)
2979 if (section_is_overlay (sect))
2980 sect->ovly_mapped = -1;
2981 }
2982
2983 /* Function: section_is_mapped (SECTION)
2984 Returns true if section is an overlay, and is currently mapped.
2985
2986 Access to the ovly_mapped flag is restricted to this function, so
2987 that we can do automatic update. If the global flag
2988 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2989 overlay_invalidate_all. If the mapped state of the particular
2990 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2991
2992 int
2993 section_is_mapped (struct obj_section *osect)
2994 {
2995 struct gdbarch *gdbarch;
2996
2997 if (osect == 0 || !section_is_overlay (osect))
2998 return 0;
2999
3000 switch (overlay_debugging)
3001 {
3002 default:
3003 case ovly_off:
3004 return 0; /* overlay debugging off */
3005 case ovly_auto: /* overlay debugging automatic */
3006 /* Unles there is a gdbarch_overlay_update function,
3007 there's really nothing useful to do here (can't really go auto). */
3008 gdbarch = get_objfile_arch (osect->objfile);
3009 if (gdbarch_overlay_update_p (gdbarch))
3010 {
3011 if (overlay_cache_invalid)
3012 {
3013 overlay_invalidate_all ();
3014 overlay_cache_invalid = 0;
3015 }
3016 if (osect->ovly_mapped == -1)
3017 gdbarch_overlay_update (gdbarch, osect);
3018 }
3019 /* fall thru */
3020 case ovly_on: /* overlay debugging manual */
3021 return osect->ovly_mapped == 1;
3022 }
3023 }
3024
3025 /* Function: pc_in_unmapped_range
3026 If PC falls into the lma range of SECTION, return true, else false. */
3027
3028 CORE_ADDR
3029 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3030 {
3031 if (section_is_overlay (section))
3032 {
3033 bfd *abfd = section->objfile->obfd;
3034 asection *bfd_section = section->the_bfd_section;
3035
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_get_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3041 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066
3067 static int
3068 sections_overlap (struct obj_section *a, struct obj_section *b)
3069 {
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
3074
3075 return (a_start < b_end && b_start < a_end);
3076 }
3077
3078 /* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082 CORE_ADDR
3083 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return pc + bfd_section_lma (abfd, bfd_section)
3090 - bfd_section_vma (abfd, bfd_section);
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3102 {
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 asection *bfd_section = section->the_bfd_section;
3106
3107 return pc + bfd_section_vma (abfd, bfd_section)
3108 - bfd_section_lma (abfd, bfd_section);
3109 }
3110
3111 return pc;
3112 }
3113
3114 /* Function: symbol_overlayed_address
3115 Return one of two addresses (relative to the VMA or to the LMA),
3116 depending on whether the section is mapped or not. */
3117
3118 CORE_ADDR
3119 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3120 {
3121 if (overlay_debugging)
3122 {
3123 /* If the symbol has no section, just return its regular address. */
3124 if (section == 0)
3125 return address;
3126 /* If the symbol's section is not an overlay, just return its
3127 address. */
3128 if (!section_is_overlay (section))
3129 return address;
3130 /* If the symbol's section is mapped, just return its address. */
3131 if (section_is_mapped (section))
3132 return address;
3133 /*
3134 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3135 * then return its LOADED address rather than its vma address!!
3136 */
3137 return overlay_unmapped_address (address, section);
3138 }
3139 return address;
3140 }
3141
3142 /* Function: find_pc_overlay (PC)
3143 Return the best-match overlay section for PC:
3144 If PC matches a mapped overlay section's VMA, return that section.
3145 Else if PC matches an unmapped section's VMA, return that section.
3146 Else if PC matches an unmapped section's LMA, return that section. */
3147
3148 struct obj_section *
3149 find_pc_overlay (CORE_ADDR pc)
3150 {
3151 struct objfile *objfile;
3152 struct obj_section *osect, *best_match = NULL;
3153
3154 if (overlay_debugging)
3155 {
3156 ALL_OBJSECTIONS (objfile, osect)
3157 if (section_is_overlay (osect))
3158 {
3159 if (pc_in_mapped_range (pc, osect))
3160 {
3161 if (section_is_mapped (osect))
3162 return osect;
3163 else
3164 best_match = osect;
3165 }
3166 else if (pc_in_unmapped_range (pc, osect))
3167 best_match = osect;
3168 }
3169 }
3170 return best_match;
3171 }
3172
3173 /* Function: find_pc_mapped_section (PC)
3174 If PC falls into the VMA address range of an overlay section that is
3175 currently marked as MAPPED, return that section. Else return NULL. */
3176
3177 struct obj_section *
3178 find_pc_mapped_section (CORE_ADDR pc)
3179 {
3180 struct objfile *objfile;
3181 struct obj_section *osect;
3182
3183 if (overlay_debugging)
3184 {
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3187 return osect;
3188 }
3189
3190 return NULL;
3191 }
3192
3193 /* Function: list_overlays_command
3194 Print a list of mapped sections and their PC ranges. */
3195
3196 static void
3197 list_overlays_command (const char *args, int from_tty)
3198 {
3199 int nmapped = 0;
3200 struct objfile *objfile;
3201 struct obj_section *osect;
3202
3203 if (overlay_debugging)
3204 {
3205 ALL_OBJSECTIONS (objfile, osect)
3206 if (section_is_mapped (osect))
3207 {
3208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3209 const char *name;
3210 bfd_vma lma, vma;
3211 int size;
3212
3213 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3214 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3215 size = bfd_get_section_size (osect->the_bfd_section);
3216 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3217
3218 printf_filtered ("Section %s, loaded at ", name);
3219 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3220 puts_filtered (" - ");
3221 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3222 printf_filtered (", mapped at ");
3223 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3224 puts_filtered (" - ");
3225 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3226 puts_filtered ("\n");
3227
3228 nmapped++;
3229 }
3230 }
3231 if (nmapped == 0)
3232 printf_filtered (_("No sections are mapped.\n"));
3233 }
3234
3235 /* Function: map_overlay_command
3236 Mark the named section as mapped (ie. residing at its VMA address). */
3237
3238 static void
3239 map_overlay_command (const char *args, int from_tty)
3240 {
3241 struct objfile *objfile, *objfile2;
3242 struct obj_section *sec, *sec2;
3243
3244 if (!overlay_debugging)
3245 error (_("Overlay debugging not enabled. Use "
3246 "either the 'overlay auto' or\n"
3247 "the 'overlay manual' command."));
3248
3249 if (args == 0 || *args == 0)
3250 error (_("Argument required: name of an overlay section"));
3251
3252 /* First, find a section matching the user supplied argument. */
3253 ALL_OBJSECTIONS (objfile, sec)
3254 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3255 {
3256 /* Now, check to see if the section is an overlay. */
3257 if (!section_is_overlay (sec))
3258 continue; /* not an overlay section */
3259
3260 /* Mark the overlay as "mapped". */
3261 sec->ovly_mapped = 1;
3262
3263 /* Next, make a pass and unmap any sections that are
3264 overlapped by this new section: */
3265 ALL_OBJSECTIONS (objfile2, sec2)
3266 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3267 {
3268 if (info_verbose)
3269 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3270 bfd_section_name (objfile->obfd,
3271 sec2->the_bfd_section));
3272 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3273 }
3274 return;
3275 }
3276 error (_("No overlay section called %s"), args);
3277 }
3278
3279 /* Function: unmap_overlay_command
3280 Mark the overlay section as unmapped
3281 (ie. resident in its LMA address range, rather than the VMA range). */
3282
3283 static void
3284 unmap_overlay_command (const char *args, int from_tty)
3285 {
3286 struct objfile *objfile;
3287 struct obj_section *sec = NULL;
3288
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. "
3291 "Use either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3293
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3296
3297 /* First, find a section matching the user supplied argument. */
3298 ALL_OBJSECTIONS (objfile, sec)
3299 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3300 {
3301 if (!sec->ovly_mapped)
3302 error (_("Section %s is not mapped"), args);
3303 sec->ovly_mapped = 0;
3304 return;
3305 }
3306 error (_("No overlay section called %s"), args);
3307 }
3308
3309 /* Function: overlay_auto_command
3310 A utility command to turn on overlay debugging.
3311 Possibly this should be done via a set/show command. */
3312
3313 static void
3314 overlay_auto_command (const char *args, int from_tty)
3315 {
3316 overlay_debugging = ovly_auto;
3317 enable_overlay_breakpoints ();
3318 if (info_verbose)
3319 printf_unfiltered (_("Automatic overlay debugging enabled."));
3320 }
3321
3322 /* Function: overlay_manual_command
3323 A utility command to turn on overlay debugging.
3324 Possibly this should be done via a set/show command. */
3325
3326 static void
3327 overlay_manual_command (const char *args, int from_tty)
3328 {
3329 overlay_debugging = ovly_on;
3330 disable_overlay_breakpoints ();
3331 if (info_verbose)
3332 printf_unfiltered (_("Overlay debugging enabled."));
3333 }
3334
3335 /* Function: overlay_off_command
3336 A utility command to turn on overlay debugging.
3337 Possibly this should be done via a set/show command. */
3338
3339 static void
3340 overlay_off_command (const char *args, int from_tty)
3341 {
3342 overlay_debugging = ovly_off;
3343 disable_overlay_breakpoints ();
3344 if (info_verbose)
3345 printf_unfiltered (_("Overlay debugging disabled."));
3346 }
3347
3348 static void
3349 overlay_load_command (const char *args, int from_tty)
3350 {
3351 struct gdbarch *gdbarch = get_current_arch ();
3352
3353 if (gdbarch_overlay_update_p (gdbarch))
3354 gdbarch_overlay_update (gdbarch, NULL);
3355 else
3356 error (_("This target does not know how to read its overlay state."));
3357 }
3358
3359 /* Function: overlay_command
3360 A place-holder for a mis-typed command. */
3361
3362 /* Command list chain containing all defined "overlay" subcommands. */
3363 static struct cmd_list_element *overlaylist;
3364
3365 static void
3366 overlay_command (const char *args, int from_tty)
3367 {
3368 printf_unfiltered
3369 ("\"overlay\" must be followed by the name of an overlay command.\n");
3370 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3371 }
3372
3373 /* Target Overlays for the "Simplest" overlay manager:
3374
3375 This is GDB's default target overlay layer. It works with the
3376 minimal overlay manager supplied as an example by Cygnus. The
3377 entry point is via a function pointer "gdbarch_overlay_update",
3378 so targets that use a different runtime overlay manager can
3379 substitute their own overlay_update function and take over the
3380 function pointer.
3381
3382 The overlay_update function pokes around in the target's data structures
3383 to see what overlays are mapped, and updates GDB's overlay mapping with
3384 this information.
3385
3386 In this simple implementation, the target data structures are as follows:
3387 unsigned _novlys; /# number of overlay sections #/
3388 unsigned _ovly_table[_novlys][4] = {
3389 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3390 {..., ..., ..., ...},
3391 }
3392 unsigned _novly_regions; /# number of overlay regions #/
3393 unsigned _ovly_region_table[_novly_regions][3] = {
3394 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3395 {..., ..., ...},
3396 }
3397 These functions will attempt to update GDB's mappedness state in the
3398 symbol section table, based on the target's mappedness state.
3399
3400 To do this, we keep a cached copy of the target's _ovly_table, and
3401 attempt to detect when the cached copy is invalidated. The main
3402 entry point is "simple_overlay_update(SECT), which looks up SECT in
3403 the cached table and re-reads only the entry for that section from
3404 the target (whenever possible). */
3405
3406 /* Cached, dynamically allocated copies of the target data structures: */
3407 static unsigned (*cache_ovly_table)[4] = 0;
3408 static unsigned cache_novlys = 0;
3409 static CORE_ADDR cache_ovly_table_base = 0;
3410 enum ovly_index
3411 {
3412 VMA, OSIZE, LMA, MAPPED
3413 };
3414
3415 /* Throw away the cached copy of _ovly_table. */
3416
3417 static void
3418 simple_free_overlay_table (void)
3419 {
3420 if (cache_ovly_table)
3421 xfree (cache_ovly_table);
3422 cache_novlys = 0;
3423 cache_ovly_table = NULL;
3424 cache_ovly_table_base = 0;
3425 }
3426
3427 /* Read an array of ints of size SIZE from the target into a local buffer.
3428 Convert to host order. int LEN is number of ints. */
3429
3430 static void
3431 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3432 int len, int size, enum bfd_endian byte_order)
3433 {
3434 /* FIXME (alloca): Not safe if array is very large. */
3435 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3436 int i;
3437
3438 read_memory (memaddr, buf, len * size);
3439 for (i = 0; i < len; i++)
3440 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3441 }
3442
3443 /* Find and grab a copy of the target _ovly_table
3444 (and _novlys, which is needed for the table's size). */
3445
3446 static int
3447 simple_read_overlay_table (void)
3448 {
3449 struct bound_minimal_symbol novlys_msym;
3450 struct bound_minimal_symbol ovly_table_msym;
3451 struct gdbarch *gdbarch;
3452 int word_size;
3453 enum bfd_endian byte_order;
3454
3455 simple_free_overlay_table ();
3456 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3457 if (! novlys_msym.minsym)
3458 {
3459 error (_("Error reading inferior's overlay table: "
3460 "couldn't find `_novlys' variable\n"
3461 "in inferior. Use `overlay manual' mode."));
3462 return 0;
3463 }
3464
3465 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3466 if (! ovly_table_msym.minsym)
3467 {
3468 error (_("Error reading inferior's overlay table: couldn't find "
3469 "`_ovly_table' array\n"
3470 "in inferior. Use `overlay manual' mode."));
3471 return 0;
3472 }
3473
3474 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3475 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3476 byte_order = gdbarch_byte_order (gdbarch);
3477
3478 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3479 4, byte_order);
3480 cache_ovly_table
3481 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3482 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3483 read_target_long_array (cache_ovly_table_base,
3484 (unsigned int *) cache_ovly_table,
3485 cache_novlys * 4, word_size, byte_order);
3486
3487 return 1; /* SUCCESS */
3488 }
3489
3490 /* Function: simple_overlay_update_1
3491 A helper function for simple_overlay_update. Assuming a cached copy
3492 of _ovly_table exists, look through it to find an entry whose vma,
3493 lma and size match those of OSECT. Re-read the entry and make sure
3494 it still matches OSECT (else the table may no longer be valid).
3495 Set OSECT's mapped state to match the entry. Return: 1 for
3496 success, 0 for failure. */
3497
3498 static int
3499 simple_overlay_update_1 (struct obj_section *osect)
3500 {
3501 int i;
3502 asection *bsect = osect->the_bfd_section;
3503 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3504 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3506
3507 for (i = 0; i < cache_novlys; i++)
3508 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3509 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3510 {
3511 read_target_long_array (cache_ovly_table_base + i * word_size,
3512 (unsigned int *) cache_ovly_table[i],
3513 4, word_size, byte_order);
3514 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3515 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3516 {
3517 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3518 return 1;
3519 }
3520 else /* Warning! Warning! Target's ovly table has changed! */
3521 return 0;
3522 }
3523 return 0;
3524 }
3525
3526 /* Function: simple_overlay_update
3527 If OSECT is NULL, then update all sections' mapped state
3528 (after re-reading the entire target _ovly_table).
3529 If OSECT is non-NULL, then try to find a matching entry in the
3530 cached ovly_table and update only OSECT's mapped state.
3531 If a cached entry can't be found or the cache isn't valid, then
3532 re-read the entire cache, and go ahead and update all sections. */
3533
3534 void
3535 simple_overlay_update (struct obj_section *osect)
3536 {
3537 struct objfile *objfile;
3538
3539 /* Were we given an osect to look up? NULL means do all of them. */
3540 if (osect)
3541 /* Have we got a cached copy of the target's overlay table? */
3542 if (cache_ovly_table != NULL)
3543 {
3544 /* Does its cached location match what's currently in the
3545 symtab? */
3546 struct bound_minimal_symbol minsym
3547 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3548
3549 if (minsym.minsym == NULL)
3550 error (_("Error reading inferior's overlay table: couldn't "
3551 "find `_ovly_table' array\n"
3552 "in inferior. Use `overlay manual' mode."));
3553
3554 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3555 /* Then go ahead and try to look up this single section in
3556 the cache. */
3557 if (simple_overlay_update_1 (osect))
3558 /* Found it! We're done. */
3559 return;
3560 }
3561
3562 /* Cached table no good: need to read the entire table anew.
3563 Or else we want all the sections, in which case it's actually
3564 more efficient to read the whole table in one block anyway. */
3565
3566 if (! simple_read_overlay_table ())
3567 return;
3568
3569 /* Now may as well update all sections, even if only one was requested. */
3570 ALL_OBJSECTIONS (objfile, osect)
3571 if (section_is_overlay (osect))
3572 {
3573 int i;
3574 asection *bsect = osect->the_bfd_section;
3575
3576 for (i = 0; i < cache_novlys; i++)
3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3578 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3579 { /* obj_section matches i'th entry in ovly_table. */
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 break; /* finished with inner for loop: break out. */
3582 }
3583 }
3584 }
3585
3586 /* Set the output sections and output offsets for section SECTP in
3587 ABFD. The relocation code in BFD will read these offsets, so we
3588 need to be sure they're initialized. We map each section to itself,
3589 with no offset; this means that SECTP->vma will be honored. */
3590
3591 static void
3592 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3593 {
3594 sectp->output_section = sectp;
3595 sectp->output_offset = 0;
3596 }
3597
3598 /* Default implementation for sym_relocate. */
3599
3600 bfd_byte *
3601 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3602 bfd_byte *buf)
3603 {
3604 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3605 DWO file. */
3606 bfd *abfd = sectp->owner;
3607
3608 /* We're only interested in sections with relocation
3609 information. */
3610 if ((sectp->flags & SEC_RELOC) == 0)
3611 return NULL;
3612
3613 /* We will handle section offsets properly elsewhere, so relocate as if
3614 all sections begin at 0. */
3615 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3616
3617 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3618 }
3619
3620 /* Relocate the contents of a debug section SECTP in ABFD. The
3621 contents are stored in BUF if it is non-NULL, or returned in a
3622 malloc'd buffer otherwise.
3623
3624 For some platforms and debug info formats, shared libraries contain
3625 relocations against the debug sections (particularly for DWARF-2;
3626 one affected platform is PowerPC GNU/Linux, although it depends on
3627 the version of the linker in use). Also, ELF object files naturally
3628 have unresolved relocations for their debug sections. We need to apply
3629 the relocations in order to get the locations of symbols correct.
3630 Another example that may require relocation processing, is the
3631 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3632 debug section. */
3633
3634 bfd_byte *
3635 symfile_relocate_debug_section (struct objfile *objfile,
3636 asection *sectp, bfd_byte *buf)
3637 {
3638 gdb_assert (objfile->sf->sym_relocate);
3639
3640 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3641 }
3642
3643 struct symfile_segment_data *
3644 get_symfile_segment_data (bfd *abfd)
3645 {
3646 const struct sym_fns *sf = find_sym_fns (abfd);
3647
3648 if (sf == NULL)
3649 return NULL;
3650
3651 return sf->sym_segments (abfd);
3652 }
3653
3654 void
3655 free_symfile_segment_data (struct symfile_segment_data *data)
3656 {
3657 xfree (data->segment_bases);
3658 xfree (data->segment_sizes);
3659 xfree (data->segment_info);
3660 xfree (data);
3661 }
3662
3663 /* Given:
3664 - DATA, containing segment addresses from the object file ABFD, and
3665 the mapping from ABFD's sections onto the segments that own them,
3666 and
3667 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3668 segment addresses reported by the target,
3669 store the appropriate offsets for each section in OFFSETS.
3670
3671 If there are fewer entries in SEGMENT_BASES than there are segments
3672 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3673
3674 If there are more entries, then ignore the extra. The target may
3675 not be able to distinguish between an empty data segment and a
3676 missing data segment; a missing text segment is less plausible. */
3677
3678 int
3679 symfile_map_offsets_to_segments (bfd *abfd,
3680 const struct symfile_segment_data *data,
3681 struct section_offsets *offsets,
3682 int num_segment_bases,
3683 const CORE_ADDR *segment_bases)
3684 {
3685 int i;
3686 asection *sect;
3687
3688 /* It doesn't make sense to call this function unless you have some
3689 segment base addresses. */
3690 gdb_assert (num_segment_bases > 0);
3691
3692 /* If we do not have segment mappings for the object file, we
3693 can not relocate it by segments. */
3694 gdb_assert (data != NULL);
3695 gdb_assert (data->num_segments > 0);
3696
3697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3698 {
3699 int which = data->segment_info[i];
3700
3701 gdb_assert (0 <= which && which <= data->num_segments);
3702
3703 /* Don't bother computing offsets for sections that aren't
3704 loaded as part of any segment. */
3705 if (! which)
3706 continue;
3707
3708 /* Use the last SEGMENT_BASES entry as the address of any extra
3709 segments mentioned in DATA->segment_info. */
3710 if (which > num_segment_bases)
3711 which = num_segment_bases;
3712
3713 offsets->offsets[i] = (segment_bases[which - 1]
3714 - data->segment_bases[which - 1]);
3715 }
3716
3717 return 1;
3718 }
3719
3720 static void
3721 symfile_find_segment_sections (struct objfile *objfile)
3722 {
3723 bfd *abfd = objfile->obfd;
3724 int i;
3725 asection *sect;
3726 struct symfile_segment_data *data;
3727
3728 data = get_symfile_segment_data (objfile->obfd);
3729 if (data == NULL)
3730 return;
3731
3732 if (data->num_segments != 1 && data->num_segments != 2)
3733 {
3734 free_symfile_segment_data (data);
3735 return;
3736 }
3737
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
3740 int which = data->segment_info[i];
3741
3742 if (which == 1)
3743 {
3744 if (objfile->sect_index_text == -1)
3745 objfile->sect_index_text = sect->index;
3746
3747 if (objfile->sect_index_rodata == -1)
3748 objfile->sect_index_rodata = sect->index;
3749 }
3750 else if (which == 2)
3751 {
3752 if (objfile->sect_index_data == -1)
3753 objfile->sect_index_data = sect->index;
3754
3755 if (objfile->sect_index_bss == -1)
3756 objfile->sect_index_bss = sect->index;
3757 }
3758 }
3759
3760 free_symfile_segment_data (data);
3761 }
3762
3763 /* Listen for free_objfile events. */
3764
3765 static void
3766 symfile_free_objfile (struct objfile *objfile)
3767 {
3768 /* Remove the target sections owned by this objfile. */
3769 if (objfile != NULL)
3770 remove_target_sections ((void *) objfile);
3771 }
3772
3773 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3774 Expand all symtabs that match the specified criteria.
3775 See quick_symbol_functions.expand_symtabs_matching for details. */
3776
3777 void
3778 expand_symtabs_matching
3779 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3780 const lookup_name_info &lookup_name,
3781 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3782 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3783 enum search_domain kind)
3784 {
3785 struct objfile *objfile;
3786
3787 ALL_OBJFILES (objfile)
3788 {
3789 if (objfile->sf)
3790 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3791 lookup_name,
3792 symbol_matcher,
3793 expansion_notify, kind);
3794 }
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3798 Map function FUN over every file.
3799 See quick_symbol_functions.map_symbol_filenames for details. */
3800
3801 void
3802 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3803 int need_fullname)
3804 {
3805 struct objfile *objfile;
3806
3807 ALL_OBJFILES (objfile)
3808 {
3809 if (objfile->sf)
3810 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3811 need_fullname);
3812 }
3813 }
3814
3815 #if GDB_SELF_TEST
3816
3817 namespace selftests {
3818 namespace filename_language {
3819
3820 static void test_filename_language ()
3821 {
3822 /* This test messes up the filename_language_table global. */
3823 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3824
3825 /* Test deducing an unknown extension. */
3826 language lang = deduce_language_from_filename ("myfile.blah");
3827 SELF_CHECK (lang == language_unknown);
3828
3829 /* Test deducing a known extension. */
3830 lang = deduce_language_from_filename ("myfile.c");
3831 SELF_CHECK (lang == language_c);
3832
3833 /* Test adding a new extension using the internal API. */
3834 add_filename_language (".blah", language_pascal);
3835 lang = deduce_language_from_filename ("myfile.blah");
3836 SELF_CHECK (lang == language_pascal);
3837 }
3838
3839 static void
3840 test_set_ext_lang_command ()
3841 {
3842 /* This test messes up the filename_language_table global. */
3843 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3844
3845 /* Confirm that the .hello extension is not known. */
3846 language lang = deduce_language_from_filename ("cake.hello");
3847 SELF_CHECK (lang == language_unknown);
3848
3849 /* Test adding a new extension using the CLI command. */
3850 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3851 ext_args = args_holder.get ();
3852 set_ext_lang_command (NULL, 1, NULL);
3853
3854 lang = deduce_language_from_filename ("cake.hello");
3855 SELF_CHECK (lang == language_rust);
3856
3857 /* Test overriding an existing extension using the CLI command. */
3858 int size_before = filename_language_table.size ();
3859 args_holder.reset (xstrdup (".hello pascal"));
3860 ext_args = args_holder.get ();
3861 set_ext_lang_command (NULL, 1, NULL);
3862 int size_after = filename_language_table.size ();
3863
3864 lang = deduce_language_from_filename ("cake.hello");
3865 SELF_CHECK (lang == language_pascal);
3866 SELF_CHECK (size_before == size_after);
3867 }
3868
3869 } /* namespace filename_language */
3870 } /* namespace selftests */
3871
3872 #endif /* GDB_SELF_TEST */
3873
3874 void
3875 _initialize_symfile (void)
3876 {
3877 struct cmd_list_element *c;
3878
3879 gdb::observers::free_objfile.attach (symfile_free_objfile);
3880
3881 #define READNOW_READNEVER_HELP \
3882 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3883 immediately. This makes the command slower, but may make future operations\n\
3884 faster.\n\
3885 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3886 symbolic debug information."
3887
3888 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3889 Load symbol table from executable file FILE.\n\
3890 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3891 OFF is an optional offset which is added to each section address.\n\
3892 The `file' command can also load symbol tables, as well as setting the file\n\
3893 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3894 set_cmd_completer (c, filename_completer);
3895
3896 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3897 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3898 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3899 [-s SECT-NAME SECT-ADDR]...\n\
3900 ADDR is the starting address of the file's text.\n\
3901 Each '-s' argument provides a section name and address, and\n\
3902 should be specified if the data and bss segments are not contiguous\n\
3903 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3904 OFF is an optional offset which is added to the default load addresses\n\
3905 of all sections for which no other address was specified.\n"
3906 READNOW_READNEVER_HELP),
3907 &cmdlist);
3908 set_cmd_completer (c, filename_completer);
3909
3910 c = add_cmd ("remove-symbol-file", class_files,
3911 remove_symbol_file_command, _("\
3912 Remove a symbol file added via the add-symbol-file command.\n\
3913 Usage: remove-symbol-file FILENAME\n\
3914 remove-symbol-file -a ADDRESS\n\
3915 The file to remove can be identified by its filename or by an address\n\
3916 that lies within the boundaries of this symbol file in memory."),
3917 &cmdlist);
3918
3919 c = add_cmd ("load", class_files, load_command, _("\
3920 Dynamically load FILE into the running program, and record its symbols\n\
3921 for access from GDB.\n\
3922 Usage: load [FILE] [OFFSET]\n\
3923 An optional load OFFSET may also be given as a literal address.\n\
3924 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3925 on its own."), &cmdlist);
3926 set_cmd_completer (c, filename_completer);
3927
3928 add_prefix_cmd ("overlay", class_support, overlay_command,
3929 _("Commands for debugging overlays."), &overlaylist,
3930 "overlay ", 0, &cmdlist);
3931
3932 add_com_alias ("ovly", "overlay", class_alias, 1);
3933 add_com_alias ("ov", "overlay", class_alias, 1);
3934
3935 add_cmd ("map-overlay", class_support, map_overlay_command,
3936 _("Assert that an overlay section is mapped."), &overlaylist);
3937
3938 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3939 _("Assert that an overlay section is unmapped."), &overlaylist);
3940
3941 add_cmd ("list-overlays", class_support, list_overlays_command,
3942 _("List mappings of overlay sections."), &overlaylist);
3943
3944 add_cmd ("manual", class_support, overlay_manual_command,
3945 _("Enable overlay debugging."), &overlaylist);
3946 add_cmd ("off", class_support, overlay_off_command,
3947 _("Disable overlay debugging."), &overlaylist);
3948 add_cmd ("auto", class_support, overlay_auto_command,
3949 _("Enable automatic overlay debugging."), &overlaylist);
3950 add_cmd ("load-target", class_support, overlay_load_command,
3951 _("Read the overlay mapping state from the target."), &overlaylist);
3952
3953 /* Filename extension to source language lookup table: */
3954 add_setshow_string_noescape_cmd ("extension-language", class_files,
3955 &ext_args, _("\
3956 Set mapping between filename extension and source language."), _("\
3957 Show mapping between filename extension and source language."), _("\
3958 Usage: set extension-language .foo bar"),
3959 set_ext_lang_command,
3960 show_ext_args,
3961 &setlist, &showlist);
3962
3963 add_info ("extensions", info_ext_lang_command,
3964 _("All filename extensions associated with a source language."));
3965
3966 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3967 &debug_file_directory, _("\
3968 Set the directories where separate debug symbols are searched for."), _("\
3969 Show the directories where separate debug symbols are searched for."), _("\
3970 Separate debug symbols are first searched for in the same\n\
3971 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3972 and lastly at the path of the directory of the binary with\n\
3973 each global debug-file-directory component prepended."),
3974 NULL,
3975 show_debug_file_directory,
3976 &setlist, &showlist);
3977
3978 add_setshow_enum_cmd ("symbol-loading", no_class,
3979 print_symbol_loading_enums, &print_symbol_loading,
3980 _("\
3981 Set printing of symbol loading messages."), _("\
3982 Show printing of symbol loading messages."), _("\
3983 off == turn all messages off\n\
3984 brief == print messages for the executable,\n\
3985 and brief messages for shared libraries\n\
3986 full == print messages for the executable,\n\
3987 and messages for each shared library."),
3988 NULL,
3989 NULL,
3990 &setprintlist, &showprintlist);
3991
3992 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3993 &separate_debug_file_debug, _("\
3994 Set printing of separate debug info file search debug."), _("\
3995 Show printing of separate debug info file search debug."), _("\
3996 When on, GDB prints the searched locations while looking for separate debug \
3997 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3998
3999 #if GDB_SELF_TEST
4000 selftests::register_test
4001 ("filename_language", selftests::filename_language::test_filename_language);
4002 selftests::register_test
4003 ("set_ext_lang_command",
4004 selftests::filename_language::test_set_ext_lang_command);
4005 #endif
4006 }
This page took 0.171006 seconds and 5 git commands to generate.