Change target_write_memory_blocks to use std::vector
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name, objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1454 i = strlen (dir);
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1457
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, debuglink);
1469
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 return debugfile;
1472
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1477 strcat (debugfile, debuglink);
1478
1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1480 return debugfile;
1481
1482 /* Then try in the global debugfile directories.
1483
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
1486
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1489
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
1493 strcat (debugfile, "/");
1494 strcat (debugfile, dir);
1495 strcat (debugfile, debuglink);
1496
1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
1507 strlen (gdb_sysroot)) == 0
1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1509 {
1510 strcpy (debugfile, debugdir);
1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1512 strcat (debugfile, "/");
1513 strcat (debugfile, debuglink);
1514
1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
1520 }
1521 }
1522
1523 do_cleanups (back_to);
1524 xfree (debugfile);
1525 return NULL;
1526 }
1527
1528 /* Modify PATH to contain only "[/]directory/" part of PATH.
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532 static void
1533 terminate_after_last_dir_separator (char *path)
1534 {
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545 }
1546
1547 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550 char *
1551 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552 {
1553 char *debugfile;
1554 unsigned long crc32;
1555
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1569
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1572
1573 if (debugfile == NULL)
1574 {
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1582 {
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1585 if (symlink_dir != NULL)
1586 {
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1599 }
1600
1601 return debugfile;
1602 }
1603
1604 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607 static void
1608 validate_readnow_readnever (objfile_flags flags)
1609 {
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612 }
1613
1614 /* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
1626 conventions (because it is confusing and inconvenient). */
1627
1628 void
1629 symbol_file_command (const char *args, int from_tty)
1630 {
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1635 symbol_file_clear (from_tty);
1636 }
1637 else
1638 {
1639 objfile_flags flags = OBJF_USERLOADED;
1640 symfile_add_flags add_flags = 0;
1641 char *name = NULL;
1642 bool stop_processing_options = false;
1643 int idx;
1644 char *arg;
1645
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
1649 gdb_argv built_argv (args);
1650 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1651 {
1652 if (stop_processing_options || *arg != '-')
1653 {
1654 if (name == NULL)
1655 name = arg;
1656 else
1657 error (_("Unrecognized argument \"%s\""), arg);
1658 }
1659 else if (strcmp (arg, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (strcmp (arg, "-readnever") == 0)
1662 flags |= OBJF_READNEVER;
1663 else if (strcmp (arg, "--") == 0)
1664 stop_processing_options = true;
1665 else
1666 error (_("Unrecognized argument \"%s\""), arg);
1667 }
1668
1669 if (name == NULL)
1670 error (_("no symbol file name was specified"));
1671
1672 validate_readnow_readnever (flags);
1673
1674 symbol_file_add_main_1 (name, add_flags, flags);
1675 }
1676 }
1677
1678 /* Set the initial language.
1679
1680 FIXME: A better solution would be to record the language in the
1681 psymtab when reading partial symbols, and then use it (if known) to
1682 set the language. This would be a win for formats that encode the
1683 language in an easily discoverable place, such as DWARF. For
1684 stabs, we can jump through hoops looking for specially named
1685 symbols or try to intuit the language from the specific type of
1686 stabs we find, but we can't do that until later when we read in
1687 full symbols. */
1688
1689 void
1690 set_initial_language (void)
1691 {
1692 enum language lang = main_language ();
1693
1694 if (lang == language_unknown)
1695 {
1696 char *name = main_name ();
1697 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1698
1699 if (sym != NULL)
1700 lang = SYMBOL_LANGUAGE (sym);
1701 }
1702
1703 if (lang == language_unknown)
1704 {
1705 /* Make C the default language */
1706 lang = language_c;
1707 }
1708
1709 set_language (lang);
1710 expected_language = current_language; /* Don't warn the user. */
1711 }
1712
1713 /* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
1717
1718 gdb_bfd_ref_ptr
1719 symfile_bfd_open (const char *name)
1720 {
1721 int desc = -1;
1722
1723 gdb::unique_xmalloc_ptr<char> absolute_name;
1724 if (!is_target_filename (name))
1725 {
1726 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1727
1728 /* Look down path for it, allocate 2nd new malloc'd copy. */
1729 desc = openp (getenv ("PATH"),
1730 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1731 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1732 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1733 if (desc < 0)
1734 {
1735 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1736
1737 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 exename, O_RDONLY | O_BINARY, &absolute_name);
1741 }
1742 #endif
1743 if (desc < 0)
1744 perror_with_name (expanded_name.get ());
1745
1746 name = absolute_name.get ();
1747 }
1748
1749 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1750 if (sym_bfd == NULL)
1751 error (_("`%s': can't open to read symbols: %s."), name,
1752 bfd_errmsg (bfd_get_error ()));
1753
1754 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1755 bfd_set_cacheable (sym_bfd.get (), 1);
1756
1757 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1758 error (_("`%s': can't read symbols: %s."), name,
1759 bfd_errmsg (bfd_get_error ()));
1760
1761 return sym_bfd;
1762 }
1763
1764 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
1767 int
1768 get_section_index (struct objfile *objfile, const char *section_name)
1769 {
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1771
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776 }
1777
1778 /* Link SF into the global symtab_fns list.
1779 FLAVOUR is the file format that SF handles.
1780 Called on startup by the _initialize routine in each object file format
1781 reader, to register information about each format the reader is prepared
1782 to handle. */
1783
1784 void
1785 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1786 {
1787 symtab_fns.emplace_back (flavour, sf);
1788 }
1789
1790 /* Initialize OBJFILE to read symbols from its associated BFD. It
1791 either returns or calls error(). The result is an initialized
1792 struct sym_fns in the objfile structure, that contains cached
1793 information about the symbol file. */
1794
1795 static const struct sym_fns *
1796 find_sym_fns (bfd *abfd)
1797 {
1798 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1799
1800 if (our_flavour == bfd_target_srec_flavour
1801 || our_flavour == bfd_target_ihex_flavour
1802 || our_flavour == bfd_target_tekhex_flavour)
1803 return NULL; /* No symbols. */
1804
1805 for (const registered_sym_fns &rsf : symtab_fns)
1806 if (our_flavour == rsf.sym_flavour)
1807 return rsf.sym_fns;
1808
1809 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1810 bfd_get_target (abfd));
1811 }
1812 \f
1813
1814 /* This function runs the load command of our current target. */
1815
1816 static void
1817 load_command (const char *arg, int from_tty)
1818 {
1819 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1820
1821 dont_repeat ();
1822
1823 /* The user might be reloading because the binary has changed. Take
1824 this opportunity to check. */
1825 reopen_exec_file ();
1826 reread_symbols ();
1827
1828 if (arg == NULL)
1829 {
1830 const char *parg;
1831 int count = 0;
1832
1833 parg = arg = get_exec_file (1);
1834
1835 /* Count how many \ " ' tab space there are in the name. */
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 parg++;
1839 count++;
1840 }
1841
1842 if (count)
1843 {
1844 /* We need to quote this string so buildargv can pull it apart. */
1845 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1846 char *ptemp = temp;
1847 const char *prev;
1848
1849 make_cleanup (xfree, temp);
1850
1851 prev = parg = arg;
1852 while ((parg = strpbrk (parg, "\\\"'\t ")))
1853 {
1854 strncpy (ptemp, prev, parg - prev);
1855 ptemp += parg - prev;
1856 prev = parg++;
1857 *ptemp++ = '\\';
1858 }
1859 strcpy (ptemp, prev);
1860
1861 arg = temp;
1862 }
1863 }
1864
1865 target_load (arg, from_tty);
1866
1867 /* After re-loading the executable, we don't really know which
1868 overlays are mapped any more. */
1869 overlay_cache_invalid = 1;
1870
1871 do_cleanups (cleanup);
1872 }
1873
1874 /* This version of "load" should be usable for any target. Currently
1875 it is just used for remote targets, not inftarg.c or core files,
1876 on the theory that only in that case is it useful.
1877
1878 Avoiding xmodem and the like seems like a win (a) because we don't have
1879 to worry about finding it, and (b) On VMS, fork() is very slow and so
1880 we don't want to run a subprocess. On the other hand, I'm not sure how
1881 performance compares. */
1882
1883 static int validate_download = 0;
1884
1885 /* Callback service function for generic_load (bfd_map_over_sections). */
1886
1887 static void
1888 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1889 {
1890 bfd_size_type *sum = (bfd_size_type *) data;
1891
1892 *sum += bfd_get_section_size (asec);
1893 }
1894
1895 /* Opaque data for load_progress. */
1896 struct load_progress_data
1897 {
1898 /* Cumulative data. */
1899 unsigned long write_count = 0;
1900 unsigned long data_count = 0;
1901 bfd_size_type total_size = 0;
1902 };
1903
1904 /* Opaque data for load_progress for a single section. */
1905 struct load_progress_section_data
1906 {
1907 load_progress_section_data (load_progress_data *cumulative_,
1908 const char *section_name_, ULONGEST section_size_,
1909 CORE_ADDR lma_, gdb_byte *buffer_)
1910 : cumulative (cumulative_), section_name (section_name_),
1911 section_size (section_size_), lma (lma_), buffer (buffer_)
1912 {}
1913
1914 struct load_progress_data *cumulative;
1915
1916 /* Per-section data. */
1917 const char *section_name;
1918 ULONGEST section_sent = 0;
1919 ULONGEST section_size;
1920 CORE_ADDR lma;
1921 gdb_byte *buffer;
1922 };
1923
1924 /* Opaque data for load_section_callback. */
1925 struct load_section_data
1926 {
1927 load_section_data (load_progress_data *progress_data_)
1928 : progress_data (progress_data_)
1929 {}
1930
1931 ~load_section_data ()
1932 {
1933 for (auto &&request : requests)
1934 {
1935 xfree (request.data);
1936 delete ((load_progress_section_data *) request.baton);
1937 }
1938 }
1939
1940 CORE_ADDR load_offset = 0;
1941 struct load_progress_data *progress_data;
1942 std::vector<struct memory_write_request> requests;
1943 };
1944
1945 /* Target write callback routine for progress reporting. */
1946
1947 static void
1948 load_progress (ULONGEST bytes, void *untyped_arg)
1949 {
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
1965 current_uiout->message ("Loading section %s, size %s lma %s\n",
1966 args->section_name,
1967 hex_string (args->section_size),
1968 paddress (target_gdbarch (), args->lma));
1969 return;
1970 }
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb::byte_vector check (bytes);
1982
1983 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1984 error (_("Download verify read failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1986 if (memcmp (args->buffer, check.data (), bytes) != 0)
1987 error (_("Download verify compare failed at %s"),
1988 paddress (target_gdbarch (), args->lma));
1989 }
1990 totals->data_count += bytes;
1991 args->lma += bytes;
1992 args->buffer += bytes;
1993 totals->write_count += 1;
1994 args->section_sent += bytes;
1995 if (check_quit_flag ()
1996 || (deprecated_ui_load_progress_hook != NULL
1997 && deprecated_ui_load_progress_hook (args->section_name,
1998 args->section_sent)))
1999 error (_("Canceled the download"));
2000
2001 if (deprecated_show_load_progress != NULL)
2002 deprecated_show_load_progress (args->section_name,
2003 args->section_sent,
2004 args->section_size,
2005 totals->data_count,
2006 totals->total_size);
2007 }
2008
2009 /* Callback service function for generic_load (bfd_map_over_sections). */
2010
2011 static void
2012 load_section_callback (bfd *abfd, asection *asec, void *data)
2013 {
2014 struct load_section_data *args = (struct load_section_data *) data;
2015 bfd_size_type size = bfd_get_section_size (asec);
2016 const char *sect_name = bfd_get_section_name (abfd, asec);
2017
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
2020
2021 if (size == 0)
2022 return;
2023
2024 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2025 ULONGEST end = begin + size;
2026 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2027 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2028
2029 load_progress_section_data *section_data
2030 = new load_progress_section_data (args->progress_data, sect_name, size,
2031 begin, buffer);
2032
2033 args->requests.emplace_back (begin, end, buffer, section_data);
2034 }
2035
2036 static void print_transfer_performance (struct ui_file *stream,
2037 unsigned long data_count,
2038 unsigned long write_count,
2039 std::chrono::steady_clock::duration d);
2040
2041 void
2042 generic_load (const char *args, int from_tty)
2043 {
2044 struct load_progress_data total_progress;
2045 struct load_section_data cbdata (&total_progress);
2046 struct ui_out *uiout = current_uiout;
2047
2048 if (args == NULL)
2049 error_no_arg (_("file to load"));
2050
2051 gdb_argv argv (args);
2052
2053 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2054
2055 if (argv[1] != NULL)
2056 {
2057 const char *endptr;
2058
2059 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2060
2061 /* If the last word was not a valid number then
2062 treat it as a file name with spaces in. */
2063 if (argv[1] == endptr)
2064 error (_("Invalid download offset:%s."), argv[1]);
2065
2066 if (argv[2] != NULL)
2067 error (_("Too many parameters."));
2068 }
2069
2070 /* Open the file for loading. */
2071 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2072 if (loadfile_bfd == NULL)
2073 perror_with_name (filename.get ());
2074
2075 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2076 {
2077 error (_("\"%s\" is not an object file: %s"), filename.get (),
2078 bfd_errmsg (bfd_get_error ()));
2079 }
2080
2081 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2082 (void *) &total_progress.total_size);
2083
2084 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2085
2086 using namespace std::chrono;
2087
2088 steady_clock::time_point start_time = steady_clock::now ();
2089
2090 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2091 load_progress) != 0)
2092 error (_("Load failed"));
2093
2094 steady_clock::time_point end_time = steady_clock::now ();
2095
2096 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2097 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2098 uiout->text ("Start address ");
2099 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2100 uiout->text (", load size ");
2101 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2102 uiout->text ("\n");
2103 regcache_write_pc (get_current_regcache (), entry);
2104
2105 /* Reset breakpoints, now that we have changed the load image. For
2106 instance, breakpoints may have been set (or reset, by
2107 post_create_inferior) while connected to the target but before we
2108 loaded the program. In that case, the prologue analyzer could
2109 have read instructions from the target to find the right
2110 breakpoint locations. Loading has changed the contents of that
2111 memory. */
2112
2113 breakpoint_re_set ();
2114
2115 print_transfer_performance (gdb_stdout, total_progress.data_count,
2116 total_progress.write_count,
2117 end_time - start_time);
2118 }
2119
2120 /* Report on STREAM the performance of a memory transfer operation,
2121 such as 'load'. DATA_COUNT is the number of bytes transferred.
2122 WRITE_COUNT is the number of separate write operations, or 0, if
2123 that information is not available. TIME is how long the operation
2124 lasted. */
2125
2126 static void
2127 print_transfer_performance (struct ui_file *stream,
2128 unsigned long data_count,
2129 unsigned long write_count,
2130 std::chrono::steady_clock::duration time)
2131 {
2132 using namespace std::chrono;
2133 struct ui_out *uiout = current_uiout;
2134
2135 milliseconds ms = duration_cast<milliseconds> (time);
2136
2137 uiout->text ("Transfer rate: ");
2138 if (ms.count () > 0)
2139 {
2140 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2141
2142 if (uiout->is_mi_like_p ())
2143 {
2144 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2145 uiout->text (" bits/sec");
2146 }
2147 else if (rate < 1024)
2148 {
2149 uiout->field_fmt ("transfer-rate", "%lu", rate);
2150 uiout->text (" bytes/sec");
2151 }
2152 else
2153 {
2154 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2155 uiout->text (" KB/sec");
2156 }
2157 }
2158 else
2159 {
2160 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2161 uiout->text (" bits in <1 sec");
2162 }
2163 if (write_count > 0)
2164 {
2165 uiout->text (", ");
2166 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2167 uiout->text (" bytes/write");
2168 }
2169 uiout->text (".\n");
2170 }
2171
2172 /* This function allows the addition of incrementally linked object files.
2173 It does not modify any state in the target, only in the debugger. */
2174 /* Note: ezannoni 2000-04-13 This function/command used to have a
2175 special case syntax for the rombug target (Rombug is the boot
2176 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2177 rombug case, the user doesn't need to supply a text address,
2178 instead a call to target_link() (in target.c) would supply the
2179 value to use. We are now discontinuing this type of ad hoc syntax. */
2180
2181 static void
2182 add_symbol_file_command (const char *args, int from_tty)
2183 {
2184 struct gdbarch *gdbarch = get_current_arch ();
2185 gdb::unique_xmalloc_ptr<char> filename;
2186 char *arg;
2187 int argcnt = 0;
2188 int sec_num = 0;
2189 struct objfile *objf;
2190 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2191 symfile_add_flags add_flags = 0;
2192
2193 if (from_tty)
2194 add_flags |= SYMFILE_VERBOSE;
2195
2196 struct sect_opt
2197 {
2198 const char *name;
2199 const char *value;
2200 };
2201
2202 struct section_addr_info *section_addrs;
2203 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2204 bool stop_processing_options = false;
2205 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2206
2207 dont_repeat ();
2208
2209 if (args == NULL)
2210 error (_("add-symbol-file takes a file name and an address"));
2211
2212 bool seen_addr = false;
2213 gdb_argv argv (args);
2214
2215 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2216 {
2217 if (stop_processing_options || *arg != '-')
2218 {
2219 if (filename == NULL)
2220 {
2221 /* First non-option argument is always the filename. */
2222 filename.reset (tilde_expand (arg));
2223 }
2224 else if (!seen_addr)
2225 {
2226 /* The second non-option argument is always the text
2227 address at which to load the program. */
2228 sect_opts[0].value = arg;
2229 seen_addr = true;
2230 }
2231 else
2232 error (_("Unrecognized argument \"%s\""), arg);
2233 }
2234 else if (strcmp (arg, "-readnow") == 0)
2235 flags |= OBJF_READNOW;
2236 else if (strcmp (arg, "-readnever") == 0)
2237 flags |= OBJF_READNEVER;
2238 else if (strcmp (arg, "-s") == 0)
2239 {
2240 if (argv[argcnt + 1] == NULL)
2241 error (_("Missing section name after \"-s\""));
2242 else if (argv[argcnt + 2] == NULL)
2243 error (_("Missing section address after \"-s\""));
2244
2245 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2246
2247 sect_opts.push_back (sect);
2248 argcnt += 2;
2249 }
2250 else if (strcmp (arg, "--") == 0)
2251 stop_processing_options = true;
2252 else
2253 error (_("Unrecognized argument \"%s\""), arg);
2254 }
2255
2256 if (filename == NULL)
2257 error (_("You must provide a filename to be loaded."));
2258
2259 validate_readnow_readnever (flags);
2260
2261 /* This command takes at least two arguments. The first one is a
2262 filename, and the second is the address where this file has been
2263 loaded. Abort now if this address hasn't been provided by the
2264 user. */
2265 if (!seen_addr)
2266 error (_("The address where %s has been loaded is missing"),
2267 filename.get ());
2268
2269 /* Print the prompt for the query below. And save the arguments into
2270 a sect_addr_info structure to be passed around to other
2271 functions. We have to split this up into separate print
2272 statements because hex_string returns a local static
2273 string. */
2274
2275 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2276 filename.get ());
2277 section_addrs = alloc_section_addr_info (sect_opts.size ());
2278 make_cleanup (xfree, section_addrs);
2279 for (sect_opt &sect : sect_opts)
2280 {
2281 CORE_ADDR addr;
2282 const char *val = sect.value;
2283 const char *sec = sect.name;
2284
2285 addr = parse_and_eval_address (val);
2286
2287 /* Here we store the section offsets in the order they were
2288 entered on the command line. */
2289 section_addrs->other[sec_num].name = (char *) sec;
2290 section_addrs->other[sec_num].addr = addr;
2291 printf_unfiltered ("\t%s_addr = %s\n", sec,
2292 paddress (gdbarch, addr));
2293 sec_num++;
2294
2295 /* The object's sections are initialized when a
2296 call is made to build_objfile_section_table (objfile).
2297 This happens in reread_symbols.
2298 At this point, we don't know what file type this is,
2299 so we can't determine what section names are valid. */
2300 }
2301 section_addrs->num_sections = sec_num;
2302
2303 if (from_tty && (!query ("%s", "")))
2304 error (_("Not confirmed."));
2305
2306 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2307
2308 add_target_sections_of_objfile (objf);
2309
2310 /* Getting new symbols may change our opinion about what is
2311 frameless. */
2312 reinit_frame_cache ();
2313 do_cleanups (my_cleanups);
2314 }
2315 \f
2316
2317 /* This function removes a symbol file that was added via add-symbol-file. */
2318
2319 static void
2320 remove_symbol_file_command (const char *args, int from_tty)
2321 {
2322 struct objfile *objf = NULL;
2323 struct program_space *pspace = current_program_space;
2324
2325 dont_repeat ();
2326
2327 if (args == NULL)
2328 error (_("remove-symbol-file: no symbol file provided"));
2329
2330 gdb_argv argv (args);
2331
2332 if (strcmp (argv[0], "-a") == 0)
2333 {
2334 /* Interpret the next argument as an address. */
2335 CORE_ADDR addr;
2336
2337 if (argv[1] == NULL)
2338 error (_("Missing address argument"));
2339
2340 if (argv[2] != NULL)
2341 error (_("Junk after %s"), argv[1]);
2342
2343 addr = parse_and_eval_address (argv[1]);
2344
2345 ALL_OBJFILES (objf)
2346 {
2347 if ((objf->flags & OBJF_USERLOADED) != 0
2348 && (objf->flags & OBJF_SHARED) != 0
2349 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2350 break;
2351 }
2352 }
2353 else if (argv[0] != NULL)
2354 {
2355 /* Interpret the current argument as a file name. */
2356
2357 if (argv[1] != NULL)
2358 error (_("Junk after %s"), argv[0]);
2359
2360 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2361
2362 ALL_OBJFILES (objf)
2363 {
2364 if ((objf->flags & OBJF_USERLOADED) != 0
2365 && (objf->flags & OBJF_SHARED) != 0
2366 && objf->pspace == pspace
2367 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2368 break;
2369 }
2370 }
2371
2372 if (objf == NULL)
2373 error (_("No symbol file found"));
2374
2375 if (from_tty
2376 && !query (_("Remove symbol table from file \"%s\"? "),
2377 objfile_name (objf)))
2378 error (_("Not confirmed."));
2379
2380 delete objf;
2381 clear_symtab_users (0);
2382 }
2383
2384 /* Re-read symbols if a symbol-file has changed. */
2385
2386 void
2387 reread_symbols (void)
2388 {
2389 struct objfile *objfile;
2390 long new_modtime;
2391 struct stat new_statbuf;
2392 int res;
2393 std::vector<struct objfile *> new_objfiles;
2394
2395 /* With the addition of shared libraries, this should be modified,
2396 the load time should be saved in the partial symbol tables, since
2397 different tables may come from different source files. FIXME.
2398 This routine should then walk down each partial symbol table
2399 and see if the symbol table that it originates from has been changed. */
2400
2401 for (objfile = object_files; objfile; objfile = objfile->next)
2402 {
2403 if (objfile->obfd == NULL)
2404 continue;
2405
2406 /* Separate debug objfiles are handled in the main objfile. */
2407 if (objfile->separate_debug_objfile_backlink)
2408 continue;
2409
2410 /* If this object is from an archive (what you usually create with
2411 `ar', often called a `static library' on most systems, though
2412 a `shared library' on AIX is also an archive), then you should
2413 stat on the archive name, not member name. */
2414 if (objfile->obfd->my_archive)
2415 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2416 else
2417 res = stat (objfile_name (objfile), &new_statbuf);
2418 if (res != 0)
2419 {
2420 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2421 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2422 objfile_name (objfile));
2423 continue;
2424 }
2425 new_modtime = new_statbuf.st_mtime;
2426 if (new_modtime != objfile->mtime)
2427 {
2428 struct cleanup *old_cleanups;
2429 struct section_offsets *offsets;
2430 int num_offsets;
2431 char *original_name;
2432
2433 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2434 objfile_name (objfile));
2435
2436 /* There are various functions like symbol_file_add,
2437 symfile_bfd_open, syms_from_objfile, etc., which might
2438 appear to do what we want. But they have various other
2439 effects which we *don't* want. So we just do stuff
2440 ourselves. We don't worry about mapped files (for one thing,
2441 any mapped file will be out of date). */
2442
2443 /* If we get an error, blow away this objfile (not sure if
2444 that is the correct response for things like shared
2445 libraries). */
2446 std::unique_ptr<struct objfile> objfile_holder (objfile);
2447
2448 /* We need to do this whenever any symbols go away. */
2449 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2450
2451 if (exec_bfd != NULL
2452 && filename_cmp (bfd_get_filename (objfile->obfd),
2453 bfd_get_filename (exec_bfd)) == 0)
2454 {
2455 /* Reload EXEC_BFD without asking anything. */
2456
2457 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2458 }
2459
2460 /* Keep the calls order approx. the same as in free_objfile. */
2461
2462 /* Free the separate debug objfiles. It will be
2463 automatically recreated by sym_read. */
2464 free_objfile_separate_debug (objfile);
2465
2466 /* Remove any references to this objfile in the global
2467 value lists. */
2468 preserve_values (objfile);
2469
2470 /* Nuke all the state that we will re-read. Much of the following
2471 code which sets things to NULL really is necessary to tell
2472 other parts of GDB that there is nothing currently there.
2473
2474 Try to keep the freeing order compatible with free_objfile. */
2475
2476 if (objfile->sf != NULL)
2477 {
2478 (*objfile->sf->sym_finish) (objfile);
2479 }
2480
2481 clear_objfile_data (objfile);
2482
2483 /* Clean up any state BFD has sitting around. */
2484 {
2485 gdb_bfd_ref_ptr obfd (objfile->obfd);
2486 char *obfd_filename;
2487
2488 obfd_filename = bfd_get_filename (objfile->obfd);
2489 /* Open the new BFD before freeing the old one, so that
2490 the filename remains live. */
2491 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2492 objfile->obfd = temp.release ();
2493 if (objfile->obfd == NULL)
2494 error (_("Can't open %s to read symbols."), obfd_filename);
2495 }
2496
2497 original_name = xstrdup (objfile->original_name);
2498 make_cleanup (xfree, original_name);
2499
2500 /* bfd_openr sets cacheable to true, which is what we want. */
2501 if (!bfd_check_format (objfile->obfd, bfd_object))
2502 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2503 bfd_errmsg (bfd_get_error ()));
2504
2505 /* Save the offsets, we will nuke them with the rest of the
2506 objfile_obstack. */
2507 num_offsets = objfile->num_sections;
2508 offsets = ((struct section_offsets *)
2509 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2510 memcpy (offsets, objfile->section_offsets,
2511 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2512
2513 /* FIXME: Do we have to free a whole linked list, or is this
2514 enough? */
2515 objfile->global_psymbols.clear ();
2516 objfile->static_psymbols.clear ();
2517
2518 /* Free the obstacks for non-reusable objfiles. */
2519 psymbol_bcache_free (objfile->psymbol_cache);
2520 objfile->psymbol_cache = psymbol_bcache_init ();
2521
2522 /* NB: after this call to obstack_free, objfiles_changed
2523 will need to be called (see discussion below). */
2524 obstack_free (&objfile->objfile_obstack, 0);
2525 objfile->sections = NULL;
2526 objfile->compunit_symtabs = NULL;
2527 objfile->psymtabs = NULL;
2528 objfile->psymtabs_addrmap = NULL;
2529 objfile->free_psymtabs = NULL;
2530 objfile->template_symbols = NULL;
2531
2532 /* obstack_init also initializes the obstack so it is
2533 empty. We could use obstack_specify_allocation but
2534 gdb_obstack.h specifies the alloc/dealloc functions. */
2535 obstack_init (&objfile->objfile_obstack);
2536
2537 /* set_objfile_per_bfd potentially allocates the per-bfd
2538 data on the objfile's obstack (if sharing data across
2539 multiple users is not possible), so it's important to
2540 do it *after* the obstack has been initialized. */
2541 set_objfile_per_bfd (objfile);
2542
2543 objfile->original_name
2544 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2545 strlen (original_name));
2546
2547 /* Reset the sym_fns pointer. The ELF reader can change it
2548 based on whether .gdb_index is present, and we need it to
2549 start over. PR symtab/15885 */
2550 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2551
2552 build_objfile_section_table (objfile);
2553 terminate_minimal_symbol_table (objfile);
2554
2555 /* We use the same section offsets as from last time. I'm not
2556 sure whether that is always correct for shared libraries. */
2557 objfile->section_offsets = (struct section_offsets *)
2558 obstack_alloc (&objfile->objfile_obstack,
2559 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2560 memcpy (objfile->section_offsets, offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562 objfile->num_sections = num_offsets;
2563
2564 /* What the hell is sym_new_init for, anyway? The concept of
2565 distinguishing between the main file and additional files
2566 in this way seems rather dubious. */
2567 if (objfile == symfile_objfile)
2568 {
2569 (*objfile->sf->sym_new_init) (objfile);
2570 }
2571
2572 (*objfile->sf->sym_init) (objfile);
2573 clear_complaints (&symfile_complaints, 1, 1);
2574
2575 objfile->flags &= ~OBJF_PSYMTABS_READ;
2576
2577 /* We are about to read new symbols and potentially also
2578 DWARF information. Some targets may want to pass addresses
2579 read from DWARF DIE's through an adjustment function before
2580 saving them, like MIPS, which may call into
2581 "find_pc_section". When called, that function will make
2582 use of per-objfile program space data.
2583
2584 Since we discarded our section information above, we have
2585 dangling pointers in the per-objfile program space data
2586 structure. Force GDB to update the section mapping
2587 information by letting it know the objfile has changed,
2588 making the dangling pointers point to correct data
2589 again. */
2590
2591 objfiles_changed ();
2592
2593 read_symbols (objfile, 0);
2594
2595 if (!objfile_has_symbols (objfile))
2596 {
2597 wrap_here ("");
2598 printf_unfiltered (_("(no debugging symbols found)\n"));
2599 wrap_here ("");
2600 }
2601
2602 /* We're done reading the symbol file; finish off complaints. */
2603 clear_complaints (&symfile_complaints, 0, 1);
2604
2605 /* Getting new symbols may change our opinion about what is
2606 frameless. */
2607
2608 reinit_frame_cache ();
2609
2610 /* Discard cleanups as symbol reading was successful. */
2611 objfile_holder.release ();
2612 discard_cleanups (old_cleanups);
2613
2614 /* If the mtime has changed between the time we set new_modtime
2615 and now, we *want* this to be out of date, so don't call stat
2616 again now. */
2617 objfile->mtime = new_modtime;
2618 init_entry_point_info (objfile);
2619
2620 new_objfiles.push_back (objfile);
2621 }
2622 }
2623
2624 if (!new_objfiles.empty ())
2625 {
2626 clear_symtab_users (0);
2627
2628 /* clear_objfile_data for each objfile was called before freeing it and
2629 observer_notify_new_objfile (NULL) has been called by
2630 clear_symtab_users above. Notify the new files now. */
2631 for (auto iter : new_objfiles)
2632 observer_notify_new_objfile (iter);
2633
2634 /* At least one objfile has changed, so we can consider that
2635 the executable we're debugging has changed too. */
2636 observer_notify_executable_changed ();
2637 }
2638 }
2639 \f
2640
2641 struct filename_language
2642 {
2643 filename_language (const std::string &ext_, enum language lang_)
2644 : ext (ext_), lang (lang_)
2645 {}
2646
2647 std::string ext;
2648 enum language lang;
2649 };
2650
2651 static std::vector<filename_language> filename_language_table;
2652
2653 /* See symfile.h. */
2654
2655 void
2656 add_filename_language (const char *ext, enum language lang)
2657 {
2658 filename_language_table.emplace_back (ext, lang);
2659 }
2660
2661 static char *ext_args;
2662 static void
2663 show_ext_args (struct ui_file *file, int from_tty,
2664 struct cmd_list_element *c, const char *value)
2665 {
2666 fprintf_filtered (file,
2667 _("Mapping between filename extension "
2668 "and source language is \"%s\".\n"),
2669 value);
2670 }
2671
2672 static void
2673 set_ext_lang_command (const char *args,
2674 int from_tty, struct cmd_list_element *e)
2675 {
2676 char *cp = ext_args;
2677 enum language lang;
2678
2679 /* First arg is filename extension, starting with '.' */
2680 if (*cp != '.')
2681 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2682
2683 /* Find end of first arg. */
2684 while (*cp && !isspace (*cp))
2685 cp++;
2686
2687 if (*cp == '\0')
2688 error (_("'%s': two arguments required -- "
2689 "filename extension and language"),
2690 ext_args);
2691
2692 /* Null-terminate first arg. */
2693 *cp++ = '\0';
2694
2695 /* Find beginning of second arg, which should be a source language. */
2696 cp = skip_spaces (cp);
2697
2698 if (*cp == '\0')
2699 error (_("'%s': two arguments required -- "
2700 "filename extension and language"),
2701 ext_args);
2702
2703 /* Lookup the language from among those we know. */
2704 lang = language_enum (cp);
2705
2706 auto it = filename_language_table.begin ();
2707 /* Now lookup the filename extension: do we already know it? */
2708 for (; it != filename_language_table.end (); it++)
2709 {
2710 if (it->ext == ext_args)
2711 break;
2712 }
2713
2714 if (it == filename_language_table.end ())
2715 {
2716 /* New file extension. */
2717 add_filename_language (ext_args, lang);
2718 }
2719 else
2720 {
2721 /* Redefining a previously known filename extension. */
2722
2723 /* if (from_tty) */
2724 /* query ("Really make files of type %s '%s'?", */
2725 /* ext_args, language_str (lang)); */
2726
2727 it->lang = lang;
2728 }
2729 }
2730
2731 static void
2732 info_ext_lang_command (const char *args, int from_tty)
2733 {
2734 printf_filtered (_("Filename extensions and the languages they represent:"));
2735 printf_filtered ("\n\n");
2736 for (const filename_language &entry : filename_language_table)
2737 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2738 language_str (entry.lang));
2739 }
2740
2741 enum language
2742 deduce_language_from_filename (const char *filename)
2743 {
2744 const char *cp;
2745
2746 if (filename != NULL)
2747 if ((cp = strrchr (filename, '.')) != NULL)
2748 {
2749 for (const filename_language &entry : filename_language_table)
2750 if (entry.ext == cp)
2751 return entry.lang;
2752 }
2753
2754 return language_unknown;
2755 }
2756 \f
2757 /* Allocate and initialize a new symbol table.
2758 CUST is from the result of allocate_compunit_symtab. */
2759
2760 struct symtab *
2761 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2762 {
2763 struct objfile *objfile = cust->objfile;
2764 struct symtab *symtab
2765 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2766
2767 symtab->filename
2768 = (const char *) bcache (filename, strlen (filename) + 1,
2769 objfile->per_bfd->filename_cache);
2770 symtab->fullname = NULL;
2771 symtab->language = deduce_language_from_filename (filename);
2772
2773 /* This can be very verbose with lots of headers.
2774 Only print at higher debug levels. */
2775 if (symtab_create_debug >= 2)
2776 {
2777 /* Be a bit clever with debugging messages, and don't print objfile
2778 every time, only when it changes. */
2779 static char *last_objfile_name = NULL;
2780
2781 if (last_objfile_name == NULL
2782 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2783 {
2784 xfree (last_objfile_name);
2785 last_objfile_name = xstrdup (objfile_name (objfile));
2786 fprintf_unfiltered (gdb_stdlog,
2787 "Creating one or more symtabs for objfile %s ...\n",
2788 last_objfile_name);
2789 }
2790 fprintf_unfiltered (gdb_stdlog,
2791 "Created symtab %s for module %s.\n",
2792 host_address_to_string (symtab), filename);
2793 }
2794
2795 /* Add it to CUST's list of symtabs. */
2796 if (cust->filetabs == NULL)
2797 {
2798 cust->filetabs = symtab;
2799 cust->last_filetab = symtab;
2800 }
2801 else
2802 {
2803 cust->last_filetab->next = symtab;
2804 cust->last_filetab = symtab;
2805 }
2806
2807 /* Backlink to the containing compunit symtab. */
2808 symtab->compunit_symtab = cust;
2809
2810 return symtab;
2811 }
2812
2813 /* Allocate and initialize a new compunit.
2814 NAME is the name of the main source file, if there is one, or some
2815 descriptive text if there are no source files. */
2816
2817 struct compunit_symtab *
2818 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2819 {
2820 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct compunit_symtab);
2822 const char *saved_name;
2823
2824 cu->objfile = objfile;
2825
2826 /* The name we record here is only for display/debugging purposes.
2827 Just save the basename to avoid path issues (too long for display,
2828 relative vs absolute, etc.). */
2829 saved_name = lbasename (name);
2830 cu->name
2831 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2832 strlen (saved_name));
2833
2834 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2835
2836 if (symtab_create_debug)
2837 {
2838 fprintf_unfiltered (gdb_stdlog,
2839 "Created compunit symtab %s for %s.\n",
2840 host_address_to_string (cu),
2841 cu->name);
2842 }
2843
2844 return cu;
2845 }
2846
2847 /* Hook CU to the objfile it comes from. */
2848
2849 void
2850 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2851 {
2852 cu->next = cu->objfile->compunit_symtabs;
2853 cu->objfile->compunit_symtabs = cu;
2854 }
2855 \f
2856
2857 /* Reset all data structures in gdb which may contain references to
2858 symbol table data. */
2859
2860 void
2861 clear_symtab_users (symfile_add_flags add_flags)
2862 {
2863 /* Someday, we should do better than this, by only blowing away
2864 the things that really need to be blown. */
2865
2866 /* Clear the "current" symtab first, because it is no longer valid.
2867 breakpoint_re_set may try to access the current symtab. */
2868 clear_current_source_symtab_and_line ();
2869
2870 clear_displays ();
2871 clear_last_displayed_sal ();
2872 clear_pc_function_cache ();
2873 observer_notify_new_objfile (NULL);
2874
2875 /* Clear globals which might have pointed into a removed objfile.
2876 FIXME: It's not clear which of these are supposed to persist
2877 between expressions and which ought to be reset each time. */
2878 expression_context_block = NULL;
2879 innermost_block.reset ();
2880
2881 /* Varobj may refer to old symbols, perform a cleanup. */
2882 varobj_invalidate ();
2883
2884 /* Now that the various caches have been cleared, we can re_set
2885 our breakpoints without risking it using stale data. */
2886 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2887 breakpoint_re_set ();
2888 }
2889
2890 static void
2891 clear_symtab_users_cleanup (void *ignore)
2892 {
2893 clear_symtab_users (0);
2894 }
2895 \f
2896 /* OVERLAYS:
2897 The following code implements an abstraction for debugging overlay sections.
2898
2899 The target model is as follows:
2900 1) The gnu linker will permit multiple sections to be mapped into the
2901 same VMA, each with its own unique LMA (or load address).
2902 2) It is assumed that some runtime mechanism exists for mapping the
2903 sections, one by one, from the load address into the VMA address.
2904 3) This code provides a mechanism for gdb to keep track of which
2905 sections should be considered to be mapped from the VMA to the LMA.
2906 This information is used for symbol lookup, and memory read/write.
2907 For instance, if a section has been mapped then its contents
2908 should be read from the VMA, otherwise from the LMA.
2909
2910 Two levels of debugger support for overlays are available. One is
2911 "manual", in which the debugger relies on the user to tell it which
2912 overlays are currently mapped. This level of support is
2913 implemented entirely in the core debugger, and the information about
2914 whether a section is mapped is kept in the objfile->obj_section table.
2915
2916 The second level of support is "automatic", and is only available if
2917 the target-specific code provides functionality to read the target's
2918 overlay mapping table, and translate its contents for the debugger
2919 (by updating the mapped state information in the obj_section tables).
2920
2921 The interface is as follows:
2922 User commands:
2923 overlay map <name> -- tell gdb to consider this section mapped
2924 overlay unmap <name> -- tell gdb to consider this section unmapped
2925 overlay list -- list the sections that GDB thinks are mapped
2926 overlay read-target -- get the target's state of what's mapped
2927 overlay off/manual/auto -- set overlay debugging state
2928 Functional interface:
2929 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2930 section, return that section.
2931 find_pc_overlay(pc): find any overlay section that contains
2932 the pc, either in its VMA or its LMA
2933 section_is_mapped(sect): true if overlay is marked as mapped
2934 section_is_overlay(sect): true if section's VMA != LMA
2935 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2936 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2937 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2938 overlay_mapped_address(...): map an address from section's LMA to VMA
2939 overlay_unmapped_address(...): map an address from section's VMA to LMA
2940 symbol_overlayed_address(...): Return a "current" address for symbol:
2941 either in VMA or LMA depending on whether
2942 the symbol's section is currently mapped. */
2943
2944 /* Overlay debugging state: */
2945
2946 enum overlay_debugging_state overlay_debugging = ovly_off;
2947 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2948
2949 /* Function: section_is_overlay (SECTION)
2950 Returns true if SECTION has VMA not equal to LMA, ie.
2951 SECTION is loaded at an address different from where it will "run". */
2952
2953 int
2954 section_is_overlay (struct obj_section *section)
2955 {
2956 if (overlay_debugging && section)
2957 {
2958 asection *bfd_section = section->the_bfd_section;
2959
2960 if (bfd_section_lma (abfd, bfd_section) != 0
2961 && bfd_section_lma (abfd, bfd_section)
2962 != bfd_section_vma (abfd, bfd_section))
2963 return 1;
2964 }
2965
2966 return 0;
2967 }
2968
2969 /* Function: overlay_invalidate_all (void)
2970 Invalidate the mapped state of all overlay sections (mark it as stale). */
2971
2972 static void
2973 overlay_invalidate_all (void)
2974 {
2975 struct objfile *objfile;
2976 struct obj_section *sect;
2977
2978 ALL_OBJSECTIONS (objfile, sect)
2979 if (section_is_overlay (sect))
2980 sect->ovly_mapped = -1;
2981 }
2982
2983 /* Function: section_is_mapped (SECTION)
2984 Returns true if section is an overlay, and is currently mapped.
2985
2986 Access to the ovly_mapped flag is restricted to this function, so
2987 that we can do automatic update. If the global flag
2988 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2989 overlay_invalidate_all. If the mapped state of the particular
2990 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2991
2992 int
2993 section_is_mapped (struct obj_section *osect)
2994 {
2995 struct gdbarch *gdbarch;
2996
2997 if (osect == 0 || !section_is_overlay (osect))
2998 return 0;
2999
3000 switch (overlay_debugging)
3001 {
3002 default:
3003 case ovly_off:
3004 return 0; /* overlay debugging off */
3005 case ovly_auto: /* overlay debugging automatic */
3006 /* Unles there is a gdbarch_overlay_update function,
3007 there's really nothing useful to do here (can't really go auto). */
3008 gdbarch = get_objfile_arch (osect->objfile);
3009 if (gdbarch_overlay_update_p (gdbarch))
3010 {
3011 if (overlay_cache_invalid)
3012 {
3013 overlay_invalidate_all ();
3014 overlay_cache_invalid = 0;
3015 }
3016 if (osect->ovly_mapped == -1)
3017 gdbarch_overlay_update (gdbarch, osect);
3018 }
3019 /* fall thru to manual case */
3020 case ovly_on: /* overlay debugging manual */
3021 return osect->ovly_mapped == 1;
3022 }
3023 }
3024
3025 /* Function: pc_in_unmapped_range
3026 If PC falls into the lma range of SECTION, return true, else false. */
3027
3028 CORE_ADDR
3029 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3030 {
3031 if (section_is_overlay (section))
3032 {
3033 bfd *abfd = section->objfile->obfd;
3034 asection *bfd_section = section->the_bfd_section;
3035
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_get_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3041 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066
3067 static int
3068 sections_overlap (struct obj_section *a, struct obj_section *b)
3069 {
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
3074
3075 return (a_start < b_end && b_start < a_end);
3076 }
3077
3078 /* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082 CORE_ADDR
3083 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return pc + bfd_section_lma (abfd, bfd_section)
3090 - bfd_section_vma (abfd, bfd_section);
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3102 {
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 asection *bfd_section = section->the_bfd_section;
3106
3107 return pc + bfd_section_vma (abfd, bfd_section)
3108 - bfd_section_lma (abfd, bfd_section);
3109 }
3110
3111 return pc;
3112 }
3113
3114 /* Function: symbol_overlayed_address
3115 Return one of two addresses (relative to the VMA or to the LMA),
3116 depending on whether the section is mapped or not. */
3117
3118 CORE_ADDR
3119 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3120 {
3121 if (overlay_debugging)
3122 {
3123 /* If the symbol has no section, just return its regular address. */
3124 if (section == 0)
3125 return address;
3126 /* If the symbol's section is not an overlay, just return its
3127 address. */
3128 if (!section_is_overlay (section))
3129 return address;
3130 /* If the symbol's section is mapped, just return its address. */
3131 if (section_is_mapped (section))
3132 return address;
3133 /*
3134 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3135 * then return its LOADED address rather than its vma address!!
3136 */
3137 return overlay_unmapped_address (address, section);
3138 }
3139 return address;
3140 }
3141
3142 /* Function: find_pc_overlay (PC)
3143 Return the best-match overlay section for PC:
3144 If PC matches a mapped overlay section's VMA, return that section.
3145 Else if PC matches an unmapped section's VMA, return that section.
3146 Else if PC matches an unmapped section's LMA, return that section. */
3147
3148 struct obj_section *
3149 find_pc_overlay (CORE_ADDR pc)
3150 {
3151 struct objfile *objfile;
3152 struct obj_section *osect, *best_match = NULL;
3153
3154 if (overlay_debugging)
3155 {
3156 ALL_OBJSECTIONS (objfile, osect)
3157 if (section_is_overlay (osect))
3158 {
3159 if (pc_in_mapped_range (pc, osect))
3160 {
3161 if (section_is_mapped (osect))
3162 return osect;
3163 else
3164 best_match = osect;
3165 }
3166 else if (pc_in_unmapped_range (pc, osect))
3167 best_match = osect;
3168 }
3169 }
3170 return best_match;
3171 }
3172
3173 /* Function: find_pc_mapped_section (PC)
3174 If PC falls into the VMA address range of an overlay section that is
3175 currently marked as MAPPED, return that section. Else return NULL. */
3176
3177 struct obj_section *
3178 find_pc_mapped_section (CORE_ADDR pc)
3179 {
3180 struct objfile *objfile;
3181 struct obj_section *osect;
3182
3183 if (overlay_debugging)
3184 {
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3187 return osect;
3188 }
3189
3190 return NULL;
3191 }
3192
3193 /* Function: list_overlays_command
3194 Print a list of mapped sections and their PC ranges. */
3195
3196 static void
3197 list_overlays_command (const char *args, int from_tty)
3198 {
3199 int nmapped = 0;
3200 struct objfile *objfile;
3201 struct obj_section *osect;
3202
3203 if (overlay_debugging)
3204 {
3205 ALL_OBJSECTIONS (objfile, osect)
3206 if (section_is_mapped (osect))
3207 {
3208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3209 const char *name;
3210 bfd_vma lma, vma;
3211 int size;
3212
3213 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3214 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3215 size = bfd_get_section_size (osect->the_bfd_section);
3216 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3217
3218 printf_filtered ("Section %s, loaded at ", name);
3219 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3220 puts_filtered (" - ");
3221 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3222 printf_filtered (", mapped at ");
3223 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3224 puts_filtered (" - ");
3225 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3226 puts_filtered ("\n");
3227
3228 nmapped++;
3229 }
3230 }
3231 if (nmapped == 0)
3232 printf_filtered (_("No sections are mapped.\n"));
3233 }
3234
3235 /* Function: map_overlay_command
3236 Mark the named section as mapped (ie. residing at its VMA address). */
3237
3238 static void
3239 map_overlay_command (const char *args, int from_tty)
3240 {
3241 struct objfile *objfile, *objfile2;
3242 struct obj_section *sec, *sec2;
3243
3244 if (!overlay_debugging)
3245 error (_("Overlay debugging not enabled. Use "
3246 "either the 'overlay auto' or\n"
3247 "the 'overlay manual' command."));
3248
3249 if (args == 0 || *args == 0)
3250 error (_("Argument required: name of an overlay section"));
3251
3252 /* First, find a section matching the user supplied argument. */
3253 ALL_OBJSECTIONS (objfile, sec)
3254 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3255 {
3256 /* Now, check to see if the section is an overlay. */
3257 if (!section_is_overlay (sec))
3258 continue; /* not an overlay section */
3259
3260 /* Mark the overlay as "mapped". */
3261 sec->ovly_mapped = 1;
3262
3263 /* Next, make a pass and unmap any sections that are
3264 overlapped by this new section: */
3265 ALL_OBJSECTIONS (objfile2, sec2)
3266 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3267 {
3268 if (info_verbose)
3269 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3270 bfd_section_name (objfile->obfd,
3271 sec2->the_bfd_section));
3272 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3273 }
3274 return;
3275 }
3276 error (_("No overlay section called %s"), args);
3277 }
3278
3279 /* Function: unmap_overlay_command
3280 Mark the overlay section as unmapped
3281 (ie. resident in its LMA address range, rather than the VMA range). */
3282
3283 static void
3284 unmap_overlay_command (const char *args, int from_tty)
3285 {
3286 struct objfile *objfile;
3287 struct obj_section *sec = NULL;
3288
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. "
3291 "Use either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3293
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3296
3297 /* First, find a section matching the user supplied argument. */
3298 ALL_OBJSECTIONS (objfile, sec)
3299 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3300 {
3301 if (!sec->ovly_mapped)
3302 error (_("Section %s is not mapped"), args);
3303 sec->ovly_mapped = 0;
3304 return;
3305 }
3306 error (_("No overlay section called %s"), args);
3307 }
3308
3309 /* Function: overlay_auto_command
3310 A utility command to turn on overlay debugging.
3311 Possibly this should be done via a set/show command. */
3312
3313 static void
3314 overlay_auto_command (const char *args, int from_tty)
3315 {
3316 overlay_debugging = ovly_auto;
3317 enable_overlay_breakpoints ();
3318 if (info_verbose)
3319 printf_unfiltered (_("Automatic overlay debugging enabled."));
3320 }
3321
3322 /* Function: overlay_manual_command
3323 A utility command to turn on overlay debugging.
3324 Possibly this should be done via a set/show command. */
3325
3326 static void
3327 overlay_manual_command (const char *args, int from_tty)
3328 {
3329 overlay_debugging = ovly_on;
3330 disable_overlay_breakpoints ();
3331 if (info_verbose)
3332 printf_unfiltered (_("Overlay debugging enabled."));
3333 }
3334
3335 /* Function: overlay_off_command
3336 A utility command to turn on overlay debugging.
3337 Possibly this should be done via a set/show command. */
3338
3339 static void
3340 overlay_off_command (const char *args, int from_tty)
3341 {
3342 overlay_debugging = ovly_off;
3343 disable_overlay_breakpoints ();
3344 if (info_verbose)
3345 printf_unfiltered (_("Overlay debugging disabled."));
3346 }
3347
3348 static void
3349 overlay_load_command (const char *args, int from_tty)
3350 {
3351 struct gdbarch *gdbarch = get_current_arch ();
3352
3353 if (gdbarch_overlay_update_p (gdbarch))
3354 gdbarch_overlay_update (gdbarch, NULL);
3355 else
3356 error (_("This target does not know how to read its overlay state."));
3357 }
3358
3359 /* Function: overlay_command
3360 A place-holder for a mis-typed command. */
3361
3362 /* Command list chain containing all defined "overlay" subcommands. */
3363 static struct cmd_list_element *overlaylist;
3364
3365 static void
3366 overlay_command (const char *args, int from_tty)
3367 {
3368 printf_unfiltered
3369 ("\"overlay\" must be followed by the name of an overlay command.\n");
3370 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3371 }
3372
3373 /* Target Overlays for the "Simplest" overlay manager:
3374
3375 This is GDB's default target overlay layer. It works with the
3376 minimal overlay manager supplied as an example by Cygnus. The
3377 entry point is via a function pointer "gdbarch_overlay_update",
3378 so targets that use a different runtime overlay manager can
3379 substitute their own overlay_update function and take over the
3380 function pointer.
3381
3382 The overlay_update function pokes around in the target's data structures
3383 to see what overlays are mapped, and updates GDB's overlay mapping with
3384 this information.
3385
3386 In this simple implementation, the target data structures are as follows:
3387 unsigned _novlys; /# number of overlay sections #/
3388 unsigned _ovly_table[_novlys][4] = {
3389 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3390 {..., ..., ..., ...},
3391 }
3392 unsigned _novly_regions; /# number of overlay regions #/
3393 unsigned _ovly_region_table[_novly_regions][3] = {
3394 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3395 {..., ..., ...},
3396 }
3397 These functions will attempt to update GDB's mappedness state in the
3398 symbol section table, based on the target's mappedness state.
3399
3400 To do this, we keep a cached copy of the target's _ovly_table, and
3401 attempt to detect when the cached copy is invalidated. The main
3402 entry point is "simple_overlay_update(SECT), which looks up SECT in
3403 the cached table and re-reads only the entry for that section from
3404 the target (whenever possible). */
3405
3406 /* Cached, dynamically allocated copies of the target data structures: */
3407 static unsigned (*cache_ovly_table)[4] = 0;
3408 static unsigned cache_novlys = 0;
3409 static CORE_ADDR cache_ovly_table_base = 0;
3410 enum ovly_index
3411 {
3412 VMA, OSIZE, LMA, MAPPED
3413 };
3414
3415 /* Throw away the cached copy of _ovly_table. */
3416
3417 static void
3418 simple_free_overlay_table (void)
3419 {
3420 if (cache_ovly_table)
3421 xfree (cache_ovly_table);
3422 cache_novlys = 0;
3423 cache_ovly_table = NULL;
3424 cache_ovly_table_base = 0;
3425 }
3426
3427 /* Read an array of ints of size SIZE from the target into a local buffer.
3428 Convert to host order. int LEN is number of ints. */
3429
3430 static void
3431 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3432 int len, int size, enum bfd_endian byte_order)
3433 {
3434 /* FIXME (alloca): Not safe if array is very large. */
3435 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3436 int i;
3437
3438 read_memory (memaddr, buf, len * size);
3439 for (i = 0; i < len; i++)
3440 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3441 }
3442
3443 /* Find and grab a copy of the target _ovly_table
3444 (and _novlys, which is needed for the table's size). */
3445
3446 static int
3447 simple_read_overlay_table (void)
3448 {
3449 struct bound_minimal_symbol novlys_msym;
3450 struct bound_minimal_symbol ovly_table_msym;
3451 struct gdbarch *gdbarch;
3452 int word_size;
3453 enum bfd_endian byte_order;
3454
3455 simple_free_overlay_table ();
3456 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3457 if (! novlys_msym.minsym)
3458 {
3459 error (_("Error reading inferior's overlay table: "
3460 "couldn't find `_novlys' variable\n"
3461 "in inferior. Use `overlay manual' mode."));
3462 return 0;
3463 }
3464
3465 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3466 if (! ovly_table_msym.minsym)
3467 {
3468 error (_("Error reading inferior's overlay table: couldn't find "
3469 "`_ovly_table' array\n"
3470 "in inferior. Use `overlay manual' mode."));
3471 return 0;
3472 }
3473
3474 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3475 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3476 byte_order = gdbarch_byte_order (gdbarch);
3477
3478 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3479 4, byte_order);
3480 cache_ovly_table
3481 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3482 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3483 read_target_long_array (cache_ovly_table_base,
3484 (unsigned int *) cache_ovly_table,
3485 cache_novlys * 4, word_size, byte_order);
3486
3487 return 1; /* SUCCESS */
3488 }
3489
3490 /* Function: simple_overlay_update_1
3491 A helper function for simple_overlay_update. Assuming a cached copy
3492 of _ovly_table exists, look through it to find an entry whose vma,
3493 lma and size match those of OSECT. Re-read the entry and make sure
3494 it still matches OSECT (else the table may no longer be valid).
3495 Set OSECT's mapped state to match the entry. Return: 1 for
3496 success, 0 for failure. */
3497
3498 static int
3499 simple_overlay_update_1 (struct obj_section *osect)
3500 {
3501 int i;
3502 asection *bsect = osect->the_bfd_section;
3503 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3504 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3506
3507 for (i = 0; i < cache_novlys; i++)
3508 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3509 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3510 {
3511 read_target_long_array (cache_ovly_table_base + i * word_size,
3512 (unsigned int *) cache_ovly_table[i],
3513 4, word_size, byte_order);
3514 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3515 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3516 {
3517 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3518 return 1;
3519 }
3520 else /* Warning! Warning! Target's ovly table has changed! */
3521 return 0;
3522 }
3523 return 0;
3524 }
3525
3526 /* Function: simple_overlay_update
3527 If OSECT is NULL, then update all sections' mapped state
3528 (after re-reading the entire target _ovly_table).
3529 If OSECT is non-NULL, then try to find a matching entry in the
3530 cached ovly_table and update only OSECT's mapped state.
3531 If a cached entry can't be found or the cache isn't valid, then
3532 re-read the entire cache, and go ahead and update all sections. */
3533
3534 void
3535 simple_overlay_update (struct obj_section *osect)
3536 {
3537 struct objfile *objfile;
3538
3539 /* Were we given an osect to look up? NULL means do all of them. */
3540 if (osect)
3541 /* Have we got a cached copy of the target's overlay table? */
3542 if (cache_ovly_table != NULL)
3543 {
3544 /* Does its cached location match what's currently in the
3545 symtab? */
3546 struct bound_minimal_symbol minsym
3547 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3548
3549 if (minsym.minsym == NULL)
3550 error (_("Error reading inferior's overlay table: couldn't "
3551 "find `_ovly_table' array\n"
3552 "in inferior. Use `overlay manual' mode."));
3553
3554 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3555 /* Then go ahead and try to look up this single section in
3556 the cache. */
3557 if (simple_overlay_update_1 (osect))
3558 /* Found it! We're done. */
3559 return;
3560 }
3561
3562 /* Cached table no good: need to read the entire table anew.
3563 Or else we want all the sections, in which case it's actually
3564 more efficient to read the whole table in one block anyway. */
3565
3566 if (! simple_read_overlay_table ())
3567 return;
3568
3569 /* Now may as well update all sections, even if only one was requested. */
3570 ALL_OBJSECTIONS (objfile, osect)
3571 if (section_is_overlay (osect))
3572 {
3573 int i;
3574 asection *bsect = osect->the_bfd_section;
3575
3576 for (i = 0; i < cache_novlys; i++)
3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3578 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3579 { /* obj_section matches i'th entry in ovly_table. */
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 break; /* finished with inner for loop: break out. */
3582 }
3583 }
3584 }
3585
3586 /* Set the output sections and output offsets for section SECTP in
3587 ABFD. The relocation code in BFD will read these offsets, so we
3588 need to be sure they're initialized. We map each section to itself,
3589 with no offset; this means that SECTP->vma will be honored. */
3590
3591 static void
3592 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3593 {
3594 sectp->output_section = sectp;
3595 sectp->output_offset = 0;
3596 }
3597
3598 /* Default implementation for sym_relocate. */
3599
3600 bfd_byte *
3601 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3602 bfd_byte *buf)
3603 {
3604 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3605 DWO file. */
3606 bfd *abfd = sectp->owner;
3607
3608 /* We're only interested in sections with relocation
3609 information. */
3610 if ((sectp->flags & SEC_RELOC) == 0)
3611 return NULL;
3612
3613 /* We will handle section offsets properly elsewhere, so relocate as if
3614 all sections begin at 0. */
3615 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3616
3617 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3618 }
3619
3620 /* Relocate the contents of a debug section SECTP in ABFD. The
3621 contents are stored in BUF if it is non-NULL, or returned in a
3622 malloc'd buffer otherwise.
3623
3624 For some platforms and debug info formats, shared libraries contain
3625 relocations against the debug sections (particularly for DWARF-2;
3626 one affected platform is PowerPC GNU/Linux, although it depends on
3627 the version of the linker in use). Also, ELF object files naturally
3628 have unresolved relocations for their debug sections. We need to apply
3629 the relocations in order to get the locations of symbols correct.
3630 Another example that may require relocation processing, is the
3631 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3632 debug section. */
3633
3634 bfd_byte *
3635 symfile_relocate_debug_section (struct objfile *objfile,
3636 asection *sectp, bfd_byte *buf)
3637 {
3638 gdb_assert (objfile->sf->sym_relocate);
3639
3640 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3641 }
3642
3643 struct symfile_segment_data *
3644 get_symfile_segment_data (bfd *abfd)
3645 {
3646 const struct sym_fns *sf = find_sym_fns (abfd);
3647
3648 if (sf == NULL)
3649 return NULL;
3650
3651 return sf->sym_segments (abfd);
3652 }
3653
3654 void
3655 free_symfile_segment_data (struct symfile_segment_data *data)
3656 {
3657 xfree (data->segment_bases);
3658 xfree (data->segment_sizes);
3659 xfree (data->segment_info);
3660 xfree (data);
3661 }
3662
3663 /* Given:
3664 - DATA, containing segment addresses from the object file ABFD, and
3665 the mapping from ABFD's sections onto the segments that own them,
3666 and
3667 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3668 segment addresses reported by the target,
3669 store the appropriate offsets for each section in OFFSETS.
3670
3671 If there are fewer entries in SEGMENT_BASES than there are segments
3672 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3673
3674 If there are more entries, then ignore the extra. The target may
3675 not be able to distinguish between an empty data segment and a
3676 missing data segment; a missing text segment is less plausible. */
3677
3678 int
3679 symfile_map_offsets_to_segments (bfd *abfd,
3680 const struct symfile_segment_data *data,
3681 struct section_offsets *offsets,
3682 int num_segment_bases,
3683 const CORE_ADDR *segment_bases)
3684 {
3685 int i;
3686 asection *sect;
3687
3688 /* It doesn't make sense to call this function unless you have some
3689 segment base addresses. */
3690 gdb_assert (num_segment_bases > 0);
3691
3692 /* If we do not have segment mappings for the object file, we
3693 can not relocate it by segments. */
3694 gdb_assert (data != NULL);
3695 gdb_assert (data->num_segments > 0);
3696
3697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3698 {
3699 int which = data->segment_info[i];
3700
3701 gdb_assert (0 <= which && which <= data->num_segments);
3702
3703 /* Don't bother computing offsets for sections that aren't
3704 loaded as part of any segment. */
3705 if (! which)
3706 continue;
3707
3708 /* Use the last SEGMENT_BASES entry as the address of any extra
3709 segments mentioned in DATA->segment_info. */
3710 if (which > num_segment_bases)
3711 which = num_segment_bases;
3712
3713 offsets->offsets[i] = (segment_bases[which - 1]
3714 - data->segment_bases[which - 1]);
3715 }
3716
3717 return 1;
3718 }
3719
3720 static void
3721 symfile_find_segment_sections (struct objfile *objfile)
3722 {
3723 bfd *abfd = objfile->obfd;
3724 int i;
3725 asection *sect;
3726 struct symfile_segment_data *data;
3727
3728 data = get_symfile_segment_data (objfile->obfd);
3729 if (data == NULL)
3730 return;
3731
3732 if (data->num_segments != 1 && data->num_segments != 2)
3733 {
3734 free_symfile_segment_data (data);
3735 return;
3736 }
3737
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
3740 int which = data->segment_info[i];
3741
3742 if (which == 1)
3743 {
3744 if (objfile->sect_index_text == -1)
3745 objfile->sect_index_text = sect->index;
3746
3747 if (objfile->sect_index_rodata == -1)
3748 objfile->sect_index_rodata = sect->index;
3749 }
3750 else if (which == 2)
3751 {
3752 if (objfile->sect_index_data == -1)
3753 objfile->sect_index_data = sect->index;
3754
3755 if (objfile->sect_index_bss == -1)
3756 objfile->sect_index_bss = sect->index;
3757 }
3758 }
3759
3760 free_symfile_segment_data (data);
3761 }
3762
3763 /* Listen for free_objfile events. */
3764
3765 static void
3766 symfile_free_objfile (struct objfile *objfile)
3767 {
3768 /* Remove the target sections owned by this objfile. */
3769 if (objfile != NULL)
3770 remove_target_sections ((void *) objfile);
3771 }
3772
3773 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3774 Expand all symtabs that match the specified criteria.
3775 See quick_symbol_functions.expand_symtabs_matching for details. */
3776
3777 void
3778 expand_symtabs_matching
3779 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3780 const lookup_name_info &lookup_name,
3781 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3782 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3783 enum search_domain kind)
3784 {
3785 struct objfile *objfile;
3786
3787 ALL_OBJFILES (objfile)
3788 {
3789 if (objfile->sf)
3790 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3791 lookup_name,
3792 symbol_matcher,
3793 expansion_notify, kind);
3794 }
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3798 Map function FUN over every file.
3799 See quick_symbol_functions.map_symbol_filenames for details. */
3800
3801 void
3802 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3803 int need_fullname)
3804 {
3805 struct objfile *objfile;
3806
3807 ALL_OBJFILES (objfile)
3808 {
3809 if (objfile->sf)
3810 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3811 need_fullname);
3812 }
3813 }
3814
3815 #if GDB_SELF_TEST
3816
3817 namespace selftests {
3818 namespace filename_language {
3819
3820 static void test_filename_language ()
3821 {
3822 /* This test messes up the filename_language_table global. */
3823 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3824
3825 /* Test deducing an unknown extension. */
3826 language lang = deduce_language_from_filename ("myfile.blah");
3827 SELF_CHECK (lang == language_unknown);
3828
3829 /* Test deducing a known extension. */
3830 lang = deduce_language_from_filename ("myfile.c");
3831 SELF_CHECK (lang == language_c);
3832
3833 /* Test adding a new extension using the internal API. */
3834 add_filename_language (".blah", language_pascal);
3835 lang = deduce_language_from_filename ("myfile.blah");
3836 SELF_CHECK (lang == language_pascal);
3837 }
3838
3839 static void
3840 test_set_ext_lang_command ()
3841 {
3842 /* This test messes up the filename_language_table global. */
3843 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3844
3845 /* Confirm that the .hello extension is not known. */
3846 language lang = deduce_language_from_filename ("cake.hello");
3847 SELF_CHECK (lang == language_unknown);
3848
3849 /* Test adding a new extension using the CLI command. */
3850 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3851 ext_args = args_holder.get ();
3852 set_ext_lang_command (NULL, 1, NULL);
3853
3854 lang = deduce_language_from_filename ("cake.hello");
3855 SELF_CHECK (lang == language_rust);
3856
3857 /* Test overriding an existing extension using the CLI command. */
3858 int size_before = filename_language_table.size ();
3859 args_holder.reset (xstrdup (".hello pascal"));
3860 ext_args = args_holder.get ();
3861 set_ext_lang_command (NULL, 1, NULL);
3862 int size_after = filename_language_table.size ();
3863
3864 lang = deduce_language_from_filename ("cake.hello");
3865 SELF_CHECK (lang == language_pascal);
3866 SELF_CHECK (size_before == size_after);
3867 }
3868
3869 } /* namespace filename_language */
3870 } /* namespace selftests */
3871
3872 #endif /* GDB_SELF_TEST */
3873
3874 void
3875 _initialize_symfile (void)
3876 {
3877 struct cmd_list_element *c;
3878
3879 observer_attach_free_objfile (symfile_free_objfile);
3880
3881 #define READNOW_READNEVER_HELP \
3882 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3883 immediately. This makes the command slower, but may make future operations\n\
3884 faster.\n\
3885 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3886 symbolic debug information."
3887
3888 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3889 Load symbol table from executable file FILE.\n\
3890 Usage: symbol-file [-readnow | -readnever] FILE\n\
3891 The `file' command can also load symbol tables, as well as setting the file\n\
3892 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3893 set_cmd_completer (c, filename_completer);
3894
3895 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3896 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3897 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3898 -s SECT-NAME SECT-ADDR]...\n\
3899 ADDR is the starting address of the file's text.\n\
3900 Each '-s' argument provides a section name and address, and\n\
3901 should be specified if the data and bss segments are not contiguous\n\
3902 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3903 READNOW_READNEVER_HELP),
3904 &cmdlist);
3905 set_cmd_completer (c, filename_completer);
3906
3907 c = add_cmd ("remove-symbol-file", class_files,
3908 remove_symbol_file_command, _("\
3909 Remove a symbol file added via the add-symbol-file command.\n\
3910 Usage: remove-symbol-file FILENAME\n\
3911 remove-symbol-file -a ADDRESS\n\
3912 The file to remove can be identified by its filename or by an address\n\
3913 that lies within the boundaries of this symbol file in memory."),
3914 &cmdlist);
3915
3916 c = add_cmd ("load", class_files, load_command, _("\
3917 Dynamically load FILE into the running program, and record its symbols\n\
3918 for access from GDB.\n\
3919 Usage: load [FILE] [OFFSET]\n\
3920 An optional load OFFSET may also be given as a literal address.\n\
3921 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3922 on its own."), &cmdlist);
3923 set_cmd_completer (c, filename_completer);
3924
3925 add_prefix_cmd ("overlay", class_support, overlay_command,
3926 _("Commands for debugging overlays."), &overlaylist,
3927 "overlay ", 0, &cmdlist);
3928
3929 add_com_alias ("ovly", "overlay", class_alias, 1);
3930 add_com_alias ("ov", "overlay", class_alias, 1);
3931
3932 add_cmd ("map-overlay", class_support, map_overlay_command,
3933 _("Assert that an overlay section is mapped."), &overlaylist);
3934
3935 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3936 _("Assert that an overlay section is unmapped."), &overlaylist);
3937
3938 add_cmd ("list-overlays", class_support, list_overlays_command,
3939 _("List mappings of overlay sections."), &overlaylist);
3940
3941 add_cmd ("manual", class_support, overlay_manual_command,
3942 _("Enable overlay debugging."), &overlaylist);
3943 add_cmd ("off", class_support, overlay_off_command,
3944 _("Disable overlay debugging."), &overlaylist);
3945 add_cmd ("auto", class_support, overlay_auto_command,
3946 _("Enable automatic overlay debugging."), &overlaylist);
3947 add_cmd ("load-target", class_support, overlay_load_command,
3948 _("Read the overlay mapping state from the target."), &overlaylist);
3949
3950 /* Filename extension to source language lookup table: */
3951 add_setshow_string_noescape_cmd ("extension-language", class_files,
3952 &ext_args, _("\
3953 Set mapping between filename extension and source language."), _("\
3954 Show mapping between filename extension and source language."), _("\
3955 Usage: set extension-language .foo bar"),
3956 set_ext_lang_command,
3957 show_ext_args,
3958 &setlist, &showlist);
3959
3960 add_info ("extensions", info_ext_lang_command,
3961 _("All filename extensions associated with a source language."));
3962
3963 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3964 &debug_file_directory, _("\
3965 Set the directories where separate debug symbols are searched for."), _("\
3966 Show the directories where separate debug symbols are searched for."), _("\
3967 Separate debug symbols are first searched for in the same\n\
3968 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3969 and lastly at the path of the directory of the binary with\n\
3970 each global debug-file-directory component prepended."),
3971 NULL,
3972 show_debug_file_directory,
3973 &setlist, &showlist);
3974
3975 add_setshow_enum_cmd ("symbol-loading", no_class,
3976 print_symbol_loading_enums, &print_symbol_loading,
3977 _("\
3978 Set printing of symbol loading messages."), _("\
3979 Show printing of symbol loading messages."), _("\
3980 off == turn all messages off\n\
3981 brief == print messages for the executable,\n\
3982 and brief messages for shared libraries\n\
3983 full == print messages for the executable,\n\
3984 and messages for each shared library."),
3985 NULL,
3986 NULL,
3987 &setprintlist, &showprintlist);
3988
3989 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3990 &separate_debug_file_debug, _("\
3991 Set printing of separate debug info file search debug."), _("\
3992 Show printing of separate debug info file search debug."), _("\
3993 When on, GDB prints the searched locations while looking for separate debug \
3994 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3995
3996 #if GDB_SELF_TEST
3997 selftests::register_test
3998 ("filename_language", selftests::filename_language::test_filename_language);
3999 selftests::register_test
4000 ("set_ext_lang_command",
4001 selftests::filename_language::test_set_ext_lang_command);
4002 #endif
4003 }
This page took 0.198087 seconds and 5 git commands to generate.