[gdb] Don't set initial language using previous language
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 struct symfile_segment_data *
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 struct symfile_segment_data *data;
726 CORE_ADDR low, high;
727
728 /* Relocatable files contain enough information to position each
729 loadable section independently; they should not be relocated
730 in segments. */
731 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
732 return NULL;
733
734 /* Make sure there is at least one loadable section in the file. */
735 for (sect = abfd->sections; sect != NULL; sect = sect->next)
736 {
737 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
738 continue;
739
740 break;
741 }
742 if (sect == NULL)
743 return NULL;
744
745 low = bfd_section_vma (sect);
746 high = low + bfd_section_size (sect);
747
748 data = XCNEW (struct symfile_segment_data);
749 data->num_segments = 1;
750 data->segment_bases = XCNEW (CORE_ADDR);
751 data->segment_sizes = XCNEW (CORE_ADDR);
752
753 num_sections = bfd_count_sections (abfd);
754 data->segment_info = XCNEWVEC (int, num_sections);
755
756 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
757 {
758 CORE_ADDR vma;
759
760 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
761 continue;
762
763 vma = bfd_section_vma (sect);
764 if (vma < low)
765 low = vma;
766 if (vma + bfd_section_size (sect) > high)
767 high = vma + bfd_section_size (sect);
768
769 data->segment_info[i] = 1;
770 }
771
772 data->segment_bases[0] = low;
773 data->segment_sizes[0] = high - low;
774
775 return data;
776 }
777
778 /* This is a convenience function to call sym_read for OBJFILE and
779 possibly force the partial symbols to be read. */
780
781 static void
782 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
783 {
784 (*objfile->sf->sym_read) (objfile, add_flags);
785 objfile->per_bfd->minsyms_read = true;
786
787 /* find_separate_debug_file_in_section should be called only if there is
788 single binary with no existing separate debug info file. */
789 if (!objfile_has_partial_symbols (objfile)
790 && objfile->separate_debug_objfile == NULL
791 && objfile->separate_debug_objfile_backlink == NULL)
792 {
793 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
794
795 if (abfd != NULL)
796 {
797 /* find_separate_debug_file_in_section uses the same filename for the
798 virtual section-as-bfd like the bfd filename containing the
799 section. Therefore use also non-canonical name form for the same
800 file containing the section. */
801 symbol_file_add_separate (abfd.get (),
802 bfd_get_filename (abfd.get ()),
803 add_flags | SYMFILE_NOT_FILENAME, objfile);
804 }
805 }
806 if ((add_flags & SYMFILE_NO_READ) == 0)
807 require_partial_symbols (objfile, false);
808 }
809
810 /* Initialize entry point information for this objfile. */
811
812 static void
813 init_entry_point_info (struct objfile *objfile)
814 {
815 struct entry_info *ei = &objfile->per_bfd->ei;
816
817 if (ei->initialized)
818 return;
819 ei->initialized = 1;
820
821 /* Save startup file's range of PC addresses to help blockframe.c
822 decide where the bottom of the stack is. */
823
824 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
825 {
826 /* Executable file -- record its entry point so we'll recognize
827 the startup file because it contains the entry point. */
828 ei->entry_point = bfd_get_start_address (objfile->obfd);
829 ei->entry_point_p = 1;
830 }
831 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
832 && bfd_get_start_address (objfile->obfd) != 0)
833 {
834 /* Some shared libraries may have entry points set and be
835 runnable. There's no clear way to indicate this, so just check
836 for values other than zero. */
837 ei->entry_point = bfd_get_start_address (objfile->obfd);
838 ei->entry_point_p = 1;
839 }
840 else
841 {
842 /* Examination of non-executable.o files. Short-circuit this stuff. */
843 ei->entry_point_p = 0;
844 }
845
846 if (ei->entry_point_p)
847 {
848 struct obj_section *osect;
849 CORE_ADDR entry_point = ei->entry_point;
850 int found;
851
852 /* Make certain that the address points at real code, and not a
853 function descriptor. */
854 entry_point
855 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
856 entry_point,
857 current_top_target ());
858
859 /* Remove any ISA markers, so that this matches entries in the
860 symbol table. */
861 ei->entry_point
862 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
863
864 found = 0;
865 ALL_OBJFILE_OSECTIONS (objfile, osect)
866 {
867 struct bfd_section *sect = osect->the_bfd_section;
868
869 if (entry_point >= bfd_section_vma (sect)
870 && entry_point < (bfd_section_vma (sect)
871 + bfd_section_size (sect)))
872 {
873 ei->the_bfd_section_index
874 = gdb_bfd_section_index (objfile->obfd, sect);
875 found = 1;
876 break;
877 }
878 }
879
880 if (!found)
881 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
882 }
883 }
884
885 /* Process a symbol file, as either the main file or as a dynamically
886 loaded file.
887
888 This function does not set the OBJFILE's entry-point info.
889
890 OBJFILE is where the symbols are to be read from.
891
892 ADDRS is the list of section load addresses. If the user has given
893 an 'add-symbol-file' command, then this is the list of offsets and
894 addresses he or she provided as arguments to the command; or, if
895 we're handling a shared library, these are the actual addresses the
896 sections are loaded at, according to the inferior's dynamic linker
897 (as gleaned by GDB's shared library code). We convert each address
898 into an offset from the section VMA's as it appears in the object
899 file, and then call the file's sym_offsets function to convert this
900 into a format-specific offset table --- a `section_offsets'.
901 The sectindex field is used to control the ordering of sections
902 with the same name. Upon return, it is updated to contain the
903 corresponding BFD section index, or -1 if the section was not found.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and whether
907 breakpoint reset should be deferred. */
908
909 static void
910 syms_from_objfile_1 (struct objfile *objfile,
911 section_addr_info *addrs,
912 symfile_add_flags add_flags)
913 {
914 section_addr_info local_addr;
915 const int mainline = add_flags & SYMFILE_MAINLINE;
916
917 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
918
919 if (objfile->sf == NULL)
920 {
921 /* No symbols to load, but we still need to make sure
922 that the section_offsets table is allocated. */
923 int num_sections = gdb_bfd_count_sections (objfile->obfd);
924
925 objfile->section_offsets.assign (num_sections, 0);
926 return;
927 }
928
929 /* Make sure that partially constructed symbol tables will be cleaned up
930 if an error occurs during symbol reading. */
931 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
932
933 objfile_up objfile_holder (objfile);
934
935 /* If ADDRS is NULL, put together a dummy address list.
936 We now establish the convention that an addr of zero means
937 no load address was specified. */
938 if (! addrs)
939 addrs = &local_addr;
940
941 if (mainline)
942 {
943 /* We will modify the main symbol table, make sure that all its users
944 will be cleaned up if an error occurs during symbol reading. */
945 defer_clear_users.emplace ((symfile_add_flag) 0);
946
947 /* Since no error yet, throw away the old symbol table. */
948
949 if (symfile_objfile != NULL)
950 {
951 symfile_objfile->unlink ();
952 gdb_assert (symfile_objfile == NULL);
953 }
954
955 /* Currently we keep symbols from the add-symbol-file command.
956 If the user wants to get rid of them, they should do "symbol-file"
957 without arguments first. Not sure this is the best behavior
958 (PR 2207). */
959
960 (*objfile->sf->sym_new_init) (objfile);
961 }
962
963 /* Convert addr into an offset rather than an absolute address.
964 We find the lowest address of a loaded segment in the objfile,
965 and assume that <addr> is where that got loaded.
966
967 We no longer warn if the lowest section is not a text segment (as
968 happens for the PA64 port. */
969 if (addrs->size () > 0)
970 addr_info_make_relative (addrs, objfile->obfd);
971
972 /* Initialize symbol reading routines for this objfile, allow complaints to
973 appear for this new file, and record how verbose to be, then do the
974 initial symbol reading for this file. */
975
976 (*objfile->sf->sym_init) (objfile);
977 clear_complaints ();
978
979 (*objfile->sf->sym_offsets) (objfile, *addrs);
980
981 read_symbols (objfile, add_flags);
982
983 /* Discard cleanups as symbol reading was successful. */
984
985 objfile_holder.release ();
986 if (defer_clear_users)
987 defer_clear_users->release ();
988 }
989
990 /* Same as syms_from_objfile_1, but also initializes the objfile
991 entry-point info. */
992
993 static void
994 syms_from_objfile (struct objfile *objfile,
995 section_addr_info *addrs,
996 symfile_add_flags add_flags)
997 {
998 syms_from_objfile_1 (objfile, addrs, add_flags);
999 init_entry_point_info (objfile);
1000 }
1001
1002 /* Perform required actions after either reading in the initial
1003 symbols for a new objfile, or mapping in the symbols from a reusable
1004 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1005
1006 static void
1007 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1008 {
1009 /* If this is the main symbol file we have to clean up all users of the
1010 old main symbol file. Otherwise it is sufficient to fixup all the
1011 breakpoints that may have been redefined by this symbol file. */
1012 if (add_flags & SYMFILE_MAINLINE)
1013 {
1014 /* OK, make it the "real" symbol file. */
1015 symfile_objfile = objfile;
1016
1017 clear_symtab_users (add_flags);
1018 }
1019 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1020 {
1021 breakpoint_re_set ();
1022 }
1023
1024 /* We're done reading the symbol file; finish off complaints. */
1025 clear_complaints ();
1026 }
1027
1028 /* Process a symbol file, as either the main file or as a dynamically
1029 loaded file.
1030
1031 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1032 A new reference is acquired by this function.
1033
1034 For NAME description see the objfile constructor.
1035
1036 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1037 extra, such as dynamically loaded code, and what to do with breakpoints.
1038
1039 ADDRS is as described for syms_from_objfile_1, above.
1040 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1041
1042 PARENT is the original objfile if ABFD is a separate debug info file.
1043 Otherwise PARENT is NULL.
1044
1045 Upon success, returns a pointer to the objfile that was added.
1046 Upon failure, jumps back to command level (never returns). */
1047
1048 static struct objfile *
1049 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1050 symfile_add_flags add_flags,
1051 section_addr_info *addrs,
1052 objfile_flags flags, struct objfile *parent)
1053 {
1054 struct objfile *objfile;
1055 const int from_tty = add_flags & SYMFILE_VERBOSE;
1056 const int mainline = add_flags & SYMFILE_MAINLINE;
1057 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1058 && (readnow_symbol_files
1059 || (add_flags & SYMFILE_NO_READ) == 0));
1060
1061 if (readnow_symbol_files)
1062 {
1063 flags |= OBJF_READNOW;
1064 add_flags &= ~SYMFILE_NO_READ;
1065 }
1066 else if (readnever_symbol_files
1067 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1068 {
1069 flags |= OBJF_READNEVER;
1070 add_flags |= SYMFILE_NO_READ;
1071 }
1072 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1073 flags |= OBJF_NOT_FILENAME;
1074
1075 /* Give user a chance to burp if we'd be
1076 interactively wiping out any existing symbols. */
1077
1078 if ((have_full_symbols () || have_partial_symbols ())
1079 && mainline
1080 && from_tty
1081 && !query (_("Load new symbol table from \"%s\"? "), name))
1082 error (_("Not confirmed."));
1083
1084 if (mainline)
1085 flags |= OBJF_MAINLINE;
1086 objfile = objfile::make (abfd, name, flags, parent);
1087
1088 /* We either created a new mapped symbol table, mapped an existing
1089 symbol table file which has not had initial symbol reading
1090 performed, or need to read an unmapped symbol table. */
1091 if (should_print)
1092 {
1093 if (deprecated_pre_add_symbol_hook)
1094 deprecated_pre_add_symbol_hook (name);
1095 else
1096 printf_filtered (_("Reading symbols from %ps...\n"),
1097 styled_string (file_name_style.style (), name));
1098 }
1099 syms_from_objfile (objfile, addrs, add_flags);
1100
1101 /* We now have at least a partial symbol table. Check to see if the
1102 user requested that all symbols be read on initial access via either
1103 the gdb startup command line or on a per symbol file basis. Expand
1104 all partial symbol tables for this objfile if so. */
1105
1106 if ((flags & OBJF_READNOW))
1107 {
1108 if (should_print)
1109 printf_filtered (_("Expanding full symbols from %ps...\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (objfile->sf)
1113 objfile->sf->qf->expand_all_symtabs (objfile);
1114 }
1115
1116 /* Note that we only print a message if we have no symbols and have
1117 no separate debug file. If there is a separate debug file which
1118 does not have symbols, we'll have emitted this message for that
1119 file, and so printing it twice is just redundant. */
1120 if (should_print && !objfile_has_symbols (objfile)
1121 && objfile->separate_debug_objfile == nullptr)
1122 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1123 styled_string (file_name_style.style (), name));
1124
1125 if (should_print)
1126 {
1127 if (deprecated_post_add_symbol_hook)
1128 deprecated_post_add_symbol_hook ();
1129 }
1130
1131 /* We print some messages regardless of whether 'from_tty ||
1132 info_verbose' is true, so make sure they go out at the right
1133 time. */
1134 gdb_flush (gdb_stdout);
1135
1136 if (objfile->sf == NULL)
1137 {
1138 gdb::observers::new_objfile.notify (objfile);
1139 return objfile; /* No symbols. */
1140 }
1141
1142 finish_new_objfile (objfile, add_flags);
1143
1144 gdb::observers::new_objfile.notify (objfile);
1145
1146 bfd_cache_close_all ();
1147 return (objfile);
1148 }
1149
1150 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1151 see the objfile constructor. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, const char *name,
1155 symfile_add_flags symfile_flags,
1156 struct objfile *objfile)
1157 {
1158 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1159 because sections of BFD may not match sections of OBJFILE and because
1160 vma may have been modified by tools such as prelink. */
1161 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1162
1163 symbol_file_add_with_addrs
1164 (bfd, name, symfile_flags, &sap,
1165 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1166 | OBJF_USERLOADED),
1167 objfile);
1168 }
1169
1170 /* Process the symbol file ABFD, as either the main file or as a
1171 dynamically loaded file.
1172 See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1176 symfile_add_flags add_flags,
1177 section_addr_info *addrs,
1178 objfile_flags flags, struct objfile *parent)
1179 {
1180 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1181 parent);
1182 }
1183
1184 /* Process a symbol file, as either the main file or as a dynamically
1185 loaded file. See symbol_file_add_with_addrs's comments for details. */
1186
1187 struct objfile *
1188 symbol_file_add (const char *name, symfile_add_flags add_flags,
1189 section_addr_info *addrs, objfile_flags flags)
1190 {
1191 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1192
1193 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1194 flags, NULL);
1195 }
1196
1197 /* Call symbol_file_add() with default values and update whatever is
1198 affected by the loading of a new main().
1199 Used when the file is supplied in the gdb command line
1200 and by some targets with special loading requirements.
1201 The auxiliary function, symbol_file_add_main_1(), has the flags
1202 argument for the switches that can only be specified in the symbol_file
1203 command itself. */
1204
1205 void
1206 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1207 {
1208 symbol_file_add_main_1 (args, add_flags, 0, 0);
1209 }
1210
1211 static void
1212 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1213 objfile_flags flags, CORE_ADDR reloff)
1214 {
1215 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1216
1217 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1218 if (reloff != 0)
1219 objfile_rebase (objfile, reloff);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 if ((add_flags & SYMFILE_NO_READ) == 0)
1226 set_initial_language ();
1227 }
1228
1229 void
1230 symbol_file_clear (int from_tty)
1231 {
1232 if ((have_full_symbols () || have_partial_symbols ())
1233 && from_tty
1234 && (symfile_objfile
1235 ? !query (_("Discard symbol table from `%s'? "),
1236 objfile_name (symfile_objfile))
1237 : !query (_("Discard symbol table? "))))
1238 error (_("Not confirmed."));
1239
1240 /* solib descriptors may have handles to objfiles. Wipe them before their
1241 objfiles get stale by free_all_objfiles. */
1242 no_shared_libraries (NULL, from_tty);
1243
1244 current_program_space->free_all_objfiles ();
1245
1246 clear_symtab_users (0);
1247
1248 gdb_assert (symfile_objfile == NULL);
1249 if (from_tty)
1250 printf_filtered (_("No symbol file now.\n"));
1251 }
1252
1253 /* See symfile.h. */
1254
1255 bool separate_debug_file_debug = false;
1256
1257 static int
1258 separate_debug_file_exists (const std::string &name, unsigned long crc,
1259 struct objfile *parent_objfile)
1260 {
1261 unsigned long file_crc;
1262 int file_crc_p;
1263 struct stat parent_stat, abfd_stat;
1264 int verified_as_different;
1265
1266 /* Find a separate debug info file as if symbols would be present in
1267 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1268 section can contain just the basename of PARENT_OBJFILE without any
1269 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1270 the separate debug infos with the same basename can exist. */
1271
1272 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1273 return 0;
1274
1275 if (separate_debug_file_debug)
1276 {
1277 printf_filtered (_(" Trying %s..."), name.c_str ());
1278 gdb_flush (gdb_stdout);
1279 }
1280
1281 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1282
1283 if (abfd == NULL)
1284 {
1285 if (separate_debug_file_debug)
1286 printf_filtered (_(" no, unable to open.\n"));
1287
1288 return 0;
1289 }
1290
1291 /* Verify symlinks were not the cause of filename_cmp name difference above.
1292
1293 Some operating systems, e.g. Windows, do not provide a meaningful
1294 st_ino; they always set it to zero. (Windows does provide a
1295 meaningful st_dev.) Files accessed from gdbservers that do not
1296 support the vFile:fstat packet will also have st_ino set to zero.
1297 Do not indicate a duplicate library in either case. While there
1298 is no guarantee that a system that provides meaningful inode
1299 numbers will never set st_ino to zero, this is merely an
1300 optimization, so we do not need to worry about false negatives. */
1301
1302 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1303 && abfd_stat.st_ino != 0
1304 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1305 {
1306 if (abfd_stat.st_dev == parent_stat.st_dev
1307 && abfd_stat.st_ino == parent_stat.st_ino)
1308 {
1309 if (separate_debug_file_debug)
1310 printf_filtered (_(" no, same file as the objfile.\n"));
1311
1312 return 0;
1313 }
1314 verified_as_different = 1;
1315 }
1316 else
1317 verified_as_different = 0;
1318
1319 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1320
1321 if (!file_crc_p)
1322 {
1323 if (separate_debug_file_debug)
1324 printf_filtered (_(" no, error computing CRC.\n"));
1325
1326 return 0;
1327 }
1328
1329 if (crc != file_crc)
1330 {
1331 unsigned long parent_crc;
1332
1333 /* If the files could not be verified as different with
1334 bfd_stat then we need to calculate the parent's CRC
1335 to verify whether the files are different or not. */
1336
1337 if (!verified_as_different)
1338 {
1339 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1340 {
1341 if (separate_debug_file_debug)
1342 printf_filtered (_(" no, error computing CRC.\n"));
1343
1344 return 0;
1345 }
1346 }
1347
1348 if (verified_as_different || parent_crc != file_crc)
1349 warning (_("the debug information found in \"%s\""
1350 " does not match \"%s\" (CRC mismatch).\n"),
1351 name.c_str (), objfile_name (parent_objfile));
1352
1353 if (separate_debug_file_debug)
1354 printf_filtered (_(" no, CRC doesn't match.\n"));
1355
1356 return 0;
1357 }
1358
1359 if (separate_debug_file_debug)
1360 printf_filtered (_(" yes!\n"));
1361
1362 return 1;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file,
1371 _("The directory where separate debug "
1372 "symbols are searched for is \"%s\".\n"),
1373 value);
1374 }
1375
1376 #if ! defined (DEBUG_SUBDIRECTORY)
1377 #define DEBUG_SUBDIRECTORY ".debug"
1378 #endif
1379
1380 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1381 where the original file resides (may not be the same as
1382 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1383 looking for. CANON_DIR is the "realpath" form of DIR.
1384 DIR must contain a trailing '/'.
1385 Returns the path of the file with separate debug info, or an empty
1386 string. */
1387
1388 static std::string
1389 find_separate_debug_file (const char *dir,
1390 const char *canon_dir,
1391 const char *debuglink,
1392 unsigned long crc32, struct objfile *objfile)
1393 {
1394 if (separate_debug_file_debug)
1395 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1396 "%s\n"), objfile_name (objfile));
1397
1398 /* First try in the same directory as the original file. */
1399 std::string debugfile = dir;
1400 debugfile += debuglink;
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 return debugfile;
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 debugfile = dir;
1407 debugfile += DEBUG_SUBDIRECTORY;
1408 debugfile += "/";
1409 debugfile += debuglink;
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 return debugfile;
1413
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1418
1419 bool target_prefix = startswith (dir, "target:");
1420 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1421 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1422 = dirnames_to_char_ptr_vec (debug_file_directory);
1423 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1424
1425 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1426 convert the drive letter into a one-letter directory, so that the
1427 file name resulting from splicing below will be valid.
1428
1429 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1430 There are various remote-debugging scenarios where such a
1431 transformation of the drive letter might be required when GDB runs
1432 on a Posix host, see
1433
1434 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1435
1436 If some of those scenarios need to be supported, we will need to
1437 use a different condition for HAS_DRIVE_SPEC and a different macro
1438 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1439 std::string drive;
1440 if (HAS_DRIVE_SPEC (dir_notarget))
1441 {
1442 drive = dir_notarget[0];
1443 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1444 }
1445
1446 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1447 {
1448 debugfile = target_prefix ? "target:" : "";
1449 debugfile += debugdir.get ();
1450 debugfile += "/";
1451 debugfile += drive;
1452 debugfile += dir_notarget;
1453 debugfile += debuglink;
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 const char *base_path = NULL;
1459 if (canon_dir != NULL)
1460 {
1461 if (canon_sysroot.get () != NULL)
1462 base_path = child_path (canon_sysroot.get (), canon_dir);
1463 else
1464 base_path = child_path (gdb_sysroot, canon_dir);
1465 }
1466 if (base_path != NULL)
1467 {
1468 /* If the file is in the sysroot, try using its base path in
1469 the global debugfile directory. */
1470 debugfile = target_prefix ? "target:" : "";
1471 debugfile += debugdir.get ();
1472 debugfile += "/";
1473 debugfile += base_path;
1474 debugfile += "/";
1475 debugfile += debuglink;
1476
1477 if (separate_debug_file_exists (debugfile, crc32, objfile))
1478 return debugfile;
1479
1480 /* If the file is in the sysroot, try using its base path in
1481 the sysroot's global debugfile directory. */
1482 debugfile = target_prefix ? "target:" : "";
1483 debugfile += gdb_sysroot;
1484 debugfile += debugdir.get ();
1485 debugfile += "/";
1486 debugfile += base_path;
1487 debugfile += "/";
1488 debugfile += debuglink;
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 return debugfile;
1492 }
1493
1494 }
1495
1496 return std::string ();
1497 }
1498
1499 /* Modify PATH to contain only "[/]directory/" part of PATH.
1500 If there were no directory separators in PATH, PATH will be empty
1501 string on return. */
1502
1503 static void
1504 terminate_after_last_dir_separator (char *path)
1505 {
1506 int i;
1507
1508 /* Strip off the final filename part, leaving the directory name,
1509 followed by a slash. The directory can be relative or absolute. */
1510 for (i = strlen(path) - 1; i >= 0; i--)
1511 if (IS_DIR_SEPARATOR (path[i]))
1512 break;
1513
1514 /* If I is -1 then no directory is present there and DIR will be "". */
1515 path[i + 1] = '\0';
1516 }
1517
1518 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1519 Returns pathname, or an empty string. */
1520
1521 std::string
1522 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1523 {
1524 unsigned long crc32;
1525
1526 gdb::unique_xmalloc_ptr<char> debuglink
1527 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return std::string ();
1534 }
1535
1536 std::string dir = objfile_name (objfile);
1537 terminate_after_last_dir_separator (&dir[0]);
1538 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1539
1540 std::string debugfile
1541 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1542 debuglink.get (), crc32, objfile);
1543
1544 if (debugfile.empty ())
1545 {
1546 /* For PR gdb/9538, try again with realpath (if different from the
1547 original). */
1548
1549 struct stat st_buf;
1550
1551 if (lstat (objfile_name (objfile), &st_buf) == 0
1552 && S_ISLNK (st_buf.st_mode))
1553 {
1554 gdb::unique_xmalloc_ptr<char> symlink_dir
1555 (lrealpath (objfile_name (objfile)));
1556 if (symlink_dir != NULL)
1557 {
1558 terminate_after_last_dir_separator (symlink_dir.get ());
1559 if (dir != symlink_dir.get ())
1560 {
1561 /* Different directory, so try using it. */
1562 debugfile = find_separate_debug_file (symlink_dir.get (),
1563 symlink_dir.get (),
1564 debuglink.get (),
1565 crc32,
1566 objfile);
1567 }
1568 }
1569 }
1570 }
1571
1572 return debugfile;
1573 }
1574
1575 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1576 simultaneously. */
1577
1578 static void
1579 validate_readnow_readnever (objfile_flags flags)
1580 {
1581 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1582 error (_("-readnow and -readnever cannot be used simultaneously"));
1583 }
1584
1585 /* This is the symbol-file command. Read the file, analyze its
1586 symbols, and add a struct symtab to a symtab list. The syntax of
1587 the command is rather bizarre:
1588
1589 1. The function buildargv implements various quoting conventions
1590 which are undocumented and have little or nothing in common with
1591 the way things are quoted (or not quoted) elsewhere in GDB.
1592
1593 2. Options are used, which are not generally used in GDB (perhaps
1594 "set mapped on", "set readnow on" would be better)
1595
1596 3. The order of options matters, which is contrary to GNU
1597 conventions (because it is confusing and inconvenient). */
1598
1599 void
1600 symbol_file_command (const char *args, int from_tty)
1601 {
1602 dont_repeat ();
1603
1604 if (args == NULL)
1605 {
1606 symbol_file_clear (from_tty);
1607 }
1608 else
1609 {
1610 objfile_flags flags = OBJF_USERLOADED;
1611 symfile_add_flags add_flags = 0;
1612 char *name = NULL;
1613 bool stop_processing_options = false;
1614 CORE_ADDR offset = 0;
1615 int idx;
1616 char *arg;
1617
1618 if (from_tty)
1619 add_flags |= SYMFILE_VERBOSE;
1620
1621 gdb_argv built_argv (args);
1622 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1623 {
1624 if (stop_processing_options || *arg != '-')
1625 {
1626 if (name == NULL)
1627 name = arg;
1628 else
1629 error (_("Unrecognized argument \"%s\""), arg);
1630 }
1631 else if (strcmp (arg, "-readnow") == 0)
1632 flags |= OBJF_READNOW;
1633 else if (strcmp (arg, "-readnever") == 0)
1634 flags |= OBJF_READNEVER;
1635 else if (strcmp (arg, "-o") == 0)
1636 {
1637 arg = built_argv[++idx];
1638 if (arg == NULL)
1639 error (_("Missing argument to -o"));
1640
1641 offset = parse_and_eval_address (arg);
1642 }
1643 else if (strcmp (arg, "--") == 0)
1644 stop_processing_options = true;
1645 else
1646 error (_("Unrecognized argument \"%s\""), arg);
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 validate_readnow_readnever (flags);
1653
1654 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1655 (Position Independent Executable) main symbol file will only be
1656 computed by the solib_create_inferior_hook below. Without it,
1657 breakpoint_re_set would fail to insert the breakpoints with the zero
1658 displacement. */
1659 add_flags |= SYMFILE_DEFER_BP_RESET;
1660
1661 symbol_file_add_main_1 (name, add_flags, flags, offset);
1662
1663 solib_create_inferior_hook (from_tty);
1664
1665 /* Now it's safe to re-add the breakpoints. */
1666 breakpoint_re_set ();
1667 }
1668 }
1669
1670 /* Set the initial language.
1671
1672 FIXME: A better solution would be to record the language in the
1673 psymtab when reading partial symbols, and then use it (if known) to
1674 set the language. This would be a win for formats that encode the
1675 language in an easily discoverable place, such as DWARF. For
1676 stabs, we can jump through hoops looking for specially named
1677 symbols or try to intuit the language from the specific type of
1678 stabs we find, but we can't do that until later when we read in
1679 full symbols. */
1680
1681 void
1682 set_initial_language (void)
1683 {
1684 if (language_mode == language_mode_manual)
1685 return;
1686 enum language lang = main_language ();
1687 /* Make C the default language. */
1688 enum language default_lang = language_c;
1689
1690 if (lang == language_unknown)
1691 {
1692 const char *name = main_name ();
1693 struct symbol *sym
1694 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1695 NULL).symbol;
1696
1697 if (sym != NULL)
1698 lang = sym->language ();
1699 }
1700
1701 if (lang == language_unknown)
1702 {
1703 lang = default_lang;
1704 }
1705
1706 set_language (lang);
1707 expected_language = current_language; /* Don't warn the user. */
1708 }
1709
1710 /* Open the file specified by NAME and hand it off to BFD for
1711 preliminary analysis. Return a newly initialized bfd *, which
1712 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1713 absolute). In case of trouble, error() is called. */
1714
1715 gdb_bfd_ref_ptr
1716 symfile_bfd_open (const char *name)
1717 {
1718 int desc = -1;
1719
1720 gdb::unique_xmalloc_ptr<char> absolute_name;
1721 if (!is_target_filename (name))
1722 {
1723 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1724
1725 /* Look down path for it, allocate 2nd new malloc'd copy. */
1726 desc = openp (getenv ("PATH"),
1727 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1728 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1729 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1730 if (desc < 0)
1731 {
1732 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1733
1734 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1735 desc = openp (getenv ("PATH"),
1736 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1737 exename, O_RDONLY | O_BINARY, &absolute_name);
1738 }
1739 #endif
1740 if (desc < 0)
1741 perror_with_name (expanded_name.get ());
1742
1743 name = absolute_name.get ();
1744 }
1745
1746 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1747 if (sym_bfd == NULL)
1748 error (_("`%s': can't open to read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750
1751 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1752 bfd_set_cacheable (sym_bfd.get (), 1);
1753
1754 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1755 error (_("`%s': can't read symbols: %s."), name,
1756 bfd_errmsg (bfd_get_error ()));
1757
1758 return sym_bfd;
1759 }
1760
1761 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1762 the section was not found. */
1763
1764 int
1765 get_section_index (struct objfile *objfile, const char *section_name)
1766 {
1767 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1768
1769 if (sect)
1770 return sect->index;
1771 else
1772 return -1;
1773 }
1774
1775 /* Link SF into the global symtab_fns list.
1776 FLAVOUR is the file format that SF handles.
1777 Called on startup by the _initialize routine in each object file format
1778 reader, to register information about each format the reader is prepared
1779 to handle. */
1780
1781 void
1782 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1783 {
1784 symtab_fns.emplace_back (flavour, sf);
1785 }
1786
1787 /* Initialize OBJFILE to read symbols from its associated BFD. It
1788 either returns or calls error(). The result is an initialized
1789 struct sym_fns in the objfile structure, that contains cached
1790 information about the symbol file. */
1791
1792 static const struct sym_fns *
1793 find_sym_fns (bfd *abfd)
1794 {
1795 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1796
1797 if (our_flavour == bfd_target_srec_flavour
1798 || our_flavour == bfd_target_ihex_flavour
1799 || our_flavour == bfd_target_tekhex_flavour)
1800 return NULL; /* No symbols. */
1801
1802 for (const registered_sym_fns &rsf : symtab_fns)
1803 if (our_flavour == rsf.sym_flavour)
1804 return rsf.sym_fns;
1805
1806 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1807 bfd_get_target (abfd));
1808 }
1809 \f
1810
1811 /* This function runs the load command of our current target. */
1812
1813 static void
1814 load_command (const char *arg, int from_tty)
1815 {
1816 dont_repeat ();
1817
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
1823 std::string temp;
1824 if (arg == NULL)
1825 {
1826 const char *parg, *prev;
1827
1828 arg = get_exec_file (1);
1829
1830 /* We may need to quote this string so buildargv can pull it
1831 apart. */
1832 prev = parg = arg;
1833 while ((parg = strpbrk (parg, "\\\"'\t ")))
1834 {
1835 temp.append (prev, parg - prev);
1836 prev = parg++;
1837 temp.push_back ('\\');
1838 }
1839 /* If we have not copied anything yet, then we didn't see a
1840 character to quote, and we can just leave ARG unchanged. */
1841 if (!temp.empty ())
1842 {
1843 temp.append (prev);
1844 arg = temp.c_str ();
1845 }
1846 }
1847
1848 target_load (arg, from_tty);
1849
1850 /* After re-loading the executable, we don't really know which
1851 overlays are mapped any more. */
1852 overlay_cache_invalid = 1;
1853 }
1854
1855 /* This version of "load" should be usable for any target. Currently
1856 it is just used for remote targets, not inftarg.c or core files,
1857 on the theory that only in that case is it useful.
1858
1859 Avoiding xmodem and the like seems like a win (a) because we don't have
1860 to worry about finding it, and (b) On VMS, fork() is very slow and so
1861 we don't want to run a subprocess. On the other hand, I'm not sure how
1862 performance compares. */
1863
1864 static int validate_download = 0;
1865
1866 /* Callback service function for generic_load (bfd_map_over_sections). */
1867
1868 static void
1869 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1870 {
1871 bfd_size_type *sum = (bfd_size_type *) data;
1872
1873 *sum += bfd_section_size (asec);
1874 }
1875
1876 /* Opaque data for load_progress. */
1877 struct load_progress_data
1878 {
1879 /* Cumulative data. */
1880 unsigned long write_count = 0;
1881 unsigned long data_count = 0;
1882 bfd_size_type total_size = 0;
1883 };
1884
1885 /* Opaque data for load_progress for a single section. */
1886 struct load_progress_section_data
1887 {
1888 load_progress_section_data (load_progress_data *cumulative_,
1889 const char *section_name_, ULONGEST section_size_,
1890 CORE_ADDR lma_, gdb_byte *buffer_)
1891 : cumulative (cumulative_), section_name (section_name_),
1892 section_size (section_size_), lma (lma_), buffer (buffer_)
1893 {}
1894
1895 struct load_progress_data *cumulative;
1896
1897 /* Per-section data. */
1898 const char *section_name;
1899 ULONGEST section_sent = 0;
1900 ULONGEST section_size;
1901 CORE_ADDR lma;
1902 gdb_byte *buffer;
1903 };
1904
1905 /* Opaque data for load_section_callback. */
1906 struct load_section_data
1907 {
1908 load_section_data (load_progress_data *progress_data_)
1909 : progress_data (progress_data_)
1910 {}
1911
1912 ~load_section_data ()
1913 {
1914 for (auto &&request : requests)
1915 {
1916 xfree (request.data);
1917 delete ((load_progress_section_data *) request.baton);
1918 }
1919 }
1920
1921 CORE_ADDR load_offset = 0;
1922 struct load_progress_data *progress_data;
1923 std::vector<struct memory_write_request> requests;
1924 };
1925
1926 /* Target write callback routine for progress reporting. */
1927
1928 static void
1929 load_progress (ULONGEST bytes, void *untyped_arg)
1930 {
1931 struct load_progress_section_data *args
1932 = (struct load_progress_section_data *) untyped_arg;
1933 struct load_progress_data *totals;
1934
1935 if (args == NULL)
1936 /* Writing padding data. No easy way to get at the cumulative
1937 stats, so just ignore this. */
1938 return;
1939
1940 totals = args->cumulative;
1941
1942 if (bytes == 0 && args->section_sent == 0)
1943 {
1944 /* The write is just starting. Let the user know we've started
1945 this section. */
1946 current_uiout->message ("Loading section %s, size %s lma %s\n",
1947 args->section_name,
1948 hex_string (args->section_size),
1949 paddress (target_gdbarch (), args->lma));
1950 return;
1951 }
1952
1953 if (validate_download)
1954 {
1955 /* Broken memories and broken monitors manifest themselves here
1956 when bring new computers to life. This doubles already slow
1957 downloads. */
1958 /* NOTE: cagney/1999-10-18: A more efficient implementation
1959 might add a verify_memory() method to the target vector and
1960 then use that. remote.c could implement that method using
1961 the ``qCRC'' packet. */
1962 gdb::byte_vector check (bytes);
1963
1964 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1965 error (_("Download verify read failed at %s"),
1966 paddress (target_gdbarch (), args->lma));
1967 if (memcmp (args->buffer, check.data (), bytes) != 0)
1968 error (_("Download verify compare failed at %s"),
1969 paddress (target_gdbarch (), args->lma));
1970 }
1971 totals->data_count += bytes;
1972 args->lma += bytes;
1973 args->buffer += bytes;
1974 totals->write_count += 1;
1975 args->section_sent += bytes;
1976 if (check_quit_flag ()
1977 || (deprecated_ui_load_progress_hook != NULL
1978 && deprecated_ui_load_progress_hook (args->section_name,
1979 args->section_sent)))
1980 error (_("Canceled the download"));
1981
1982 if (deprecated_show_load_progress != NULL)
1983 deprecated_show_load_progress (args->section_name,
1984 args->section_sent,
1985 args->section_size,
1986 totals->data_count,
1987 totals->total_size);
1988 }
1989
1990 /* Callback service function for generic_load (bfd_map_over_sections). */
1991
1992 static void
1993 load_section_callback (bfd *abfd, asection *asec, void *data)
1994 {
1995 struct load_section_data *args = (struct load_section_data *) data;
1996 bfd_size_type size = bfd_section_size (asec);
1997 const char *sect_name = bfd_section_name (asec);
1998
1999 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
2000 return;
2001
2002 if (size == 0)
2003 return;
2004
2005 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
2006 ULONGEST end = begin + size;
2007 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2008 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2009
2010 load_progress_section_data *section_data
2011 = new load_progress_section_data (args->progress_data, sect_name, size,
2012 begin, buffer);
2013
2014 args->requests.emplace_back (begin, end, buffer, section_data);
2015 }
2016
2017 static void print_transfer_performance (struct ui_file *stream,
2018 unsigned long data_count,
2019 unsigned long write_count,
2020 std::chrono::steady_clock::duration d);
2021
2022 /* See symfile.h. */
2023
2024 void
2025 generic_load (const char *args, int from_tty)
2026 {
2027 struct load_progress_data total_progress;
2028 struct load_section_data cbdata (&total_progress);
2029 struct ui_out *uiout = current_uiout;
2030
2031 if (args == NULL)
2032 error_no_arg (_("file to load"));
2033
2034 gdb_argv argv (args);
2035
2036 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2037
2038 if (argv[1] != NULL)
2039 {
2040 const char *endptr;
2041
2042 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2043
2044 /* If the last word was not a valid number then
2045 treat it as a file name with spaces in. */
2046 if (argv[1] == endptr)
2047 error (_("Invalid download offset:%s."), argv[1]);
2048
2049 if (argv[2] != NULL)
2050 error (_("Too many parameters."));
2051 }
2052
2053 /* Open the file for loading. */
2054 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2055 if (loadfile_bfd == NULL)
2056 perror_with_name (filename.get ());
2057
2058 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2059 {
2060 error (_("\"%s\" is not an object file: %s"), filename.get (),
2061 bfd_errmsg (bfd_get_error ()));
2062 }
2063
2064 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2065 (void *) &total_progress.total_size);
2066
2067 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2068
2069 using namespace std::chrono;
2070
2071 steady_clock::time_point start_time = steady_clock::now ();
2072
2073 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2074 load_progress) != 0)
2075 error (_("Load failed"));
2076
2077 steady_clock::time_point end_time = steady_clock::now ();
2078
2079 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2080 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2081 uiout->text ("Start address ");
2082 uiout->field_core_addr ("address", target_gdbarch (), entry);
2083 uiout->text (", load size ");
2084 uiout->field_unsigned ("load-size", total_progress.data_count);
2085 uiout->text ("\n");
2086 regcache_write_pc (get_current_regcache (), entry);
2087
2088 /* Reset breakpoints, now that we have changed the load image. For
2089 instance, breakpoints may have been set (or reset, by
2090 post_create_inferior) while connected to the target but before we
2091 loaded the program. In that case, the prologue analyzer could
2092 have read instructions from the target to find the right
2093 breakpoint locations. Loading has changed the contents of that
2094 memory. */
2095
2096 breakpoint_re_set ();
2097
2098 print_transfer_performance (gdb_stdout, total_progress.data_count,
2099 total_progress.write_count,
2100 end_time - start_time);
2101 }
2102
2103 /* Report on STREAM the performance of a memory transfer operation,
2104 such as 'load'. DATA_COUNT is the number of bytes transferred.
2105 WRITE_COUNT is the number of separate write operations, or 0, if
2106 that information is not available. TIME is how long the operation
2107 lasted. */
2108
2109 static void
2110 print_transfer_performance (struct ui_file *stream,
2111 unsigned long data_count,
2112 unsigned long write_count,
2113 std::chrono::steady_clock::duration time)
2114 {
2115 using namespace std::chrono;
2116 struct ui_out *uiout = current_uiout;
2117
2118 milliseconds ms = duration_cast<milliseconds> (time);
2119
2120 uiout->text ("Transfer rate: ");
2121 if (ms.count () > 0)
2122 {
2123 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2124
2125 if (uiout->is_mi_like_p ())
2126 {
2127 uiout->field_unsigned ("transfer-rate", rate * 8);
2128 uiout->text (" bits/sec");
2129 }
2130 else if (rate < 1024)
2131 {
2132 uiout->field_unsigned ("transfer-rate", rate);
2133 uiout->text (" bytes/sec");
2134 }
2135 else
2136 {
2137 uiout->field_unsigned ("transfer-rate", rate / 1024);
2138 uiout->text (" KB/sec");
2139 }
2140 }
2141 else
2142 {
2143 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2144 uiout->text (" bits in <1 sec");
2145 }
2146 if (write_count > 0)
2147 {
2148 uiout->text (", ");
2149 uiout->field_unsigned ("write-rate", data_count / write_count);
2150 uiout->text (" bytes/write");
2151 }
2152 uiout->text (".\n");
2153 }
2154
2155 /* Add an OFFSET to the start address of each section in OBJF, except
2156 sections that were specified in ADDRS. */
2157
2158 static void
2159 set_objfile_default_section_offset (struct objfile *objf,
2160 const section_addr_info &addrs,
2161 CORE_ADDR offset)
2162 {
2163 /* Add OFFSET to all sections by default. */
2164 section_offsets offsets (objf->section_offsets.size (), offset);
2165
2166 /* Create sorted lists of all sections in ADDRS as well as all
2167 sections in OBJF. */
2168
2169 std::vector<const struct other_sections *> addrs_sorted
2170 = addrs_section_sort (addrs);
2171
2172 section_addr_info objf_addrs
2173 = build_section_addr_info_from_objfile (objf);
2174 std::vector<const struct other_sections *> objf_addrs_sorted
2175 = addrs_section_sort (objf_addrs);
2176
2177 /* Walk the BFD section list, and if a matching section is found in
2178 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2179 unchanged.
2180
2181 Note that both lists may contain multiple sections with the same
2182 name, and then the sections from ADDRS are matched in BFD order
2183 (thanks to sectindex). */
2184
2185 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2186 = addrs_sorted.begin ();
2187 for (const other_sections *objf_sect : objf_addrs_sorted)
2188 {
2189 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2190 int cmp = -1;
2191
2192 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2193 {
2194 const struct other_sections *sect = *addrs_sorted_iter;
2195 const char *sect_name = addr_section_name (sect->name.c_str ());
2196 cmp = strcmp (sect_name, objf_name);
2197 if (cmp <= 0)
2198 ++addrs_sorted_iter;
2199 }
2200
2201 if (cmp == 0)
2202 offsets[objf_sect->sectindex] = 0;
2203 }
2204
2205 /* Apply the new section offsets. */
2206 objfile_relocate (objf, offsets);
2207 }
2208
2209 /* This function allows the addition of incrementally linked object files.
2210 It does not modify any state in the target, only in the debugger. */
2211
2212 static void
2213 add_symbol_file_command (const char *args, int from_tty)
2214 {
2215 struct gdbarch *gdbarch = get_current_arch ();
2216 gdb::unique_xmalloc_ptr<char> filename;
2217 char *arg;
2218 int argcnt = 0;
2219 struct objfile *objf;
2220 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2221 symfile_add_flags add_flags = 0;
2222
2223 if (from_tty)
2224 add_flags |= SYMFILE_VERBOSE;
2225
2226 struct sect_opt
2227 {
2228 const char *name;
2229 const char *value;
2230 };
2231
2232 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2233 bool stop_processing_options = false;
2234 CORE_ADDR offset = 0;
2235
2236 dont_repeat ();
2237
2238 if (args == NULL)
2239 error (_("add-symbol-file takes a file name and an address"));
2240
2241 bool seen_addr = false;
2242 bool seen_offset = false;
2243 gdb_argv argv (args);
2244
2245 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2246 {
2247 if (stop_processing_options || *arg != '-')
2248 {
2249 if (filename == NULL)
2250 {
2251 /* First non-option argument is always the filename. */
2252 filename.reset (tilde_expand (arg));
2253 }
2254 else if (!seen_addr)
2255 {
2256 /* The second non-option argument is always the text
2257 address at which to load the program. */
2258 sect_opts[0].value = arg;
2259 seen_addr = true;
2260 }
2261 else
2262 error (_("Unrecognized argument \"%s\""), arg);
2263 }
2264 else if (strcmp (arg, "-readnow") == 0)
2265 flags |= OBJF_READNOW;
2266 else if (strcmp (arg, "-readnever") == 0)
2267 flags |= OBJF_READNEVER;
2268 else if (strcmp (arg, "-s") == 0)
2269 {
2270 if (argv[argcnt + 1] == NULL)
2271 error (_("Missing section name after \"-s\""));
2272 else if (argv[argcnt + 2] == NULL)
2273 error (_("Missing section address after \"-s\""));
2274
2275 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2276
2277 sect_opts.push_back (sect);
2278 argcnt += 2;
2279 }
2280 else if (strcmp (arg, "-o") == 0)
2281 {
2282 arg = argv[++argcnt];
2283 if (arg == NULL)
2284 error (_("Missing argument to -o"));
2285
2286 offset = parse_and_eval_address (arg);
2287 seen_offset = true;
2288 }
2289 else if (strcmp (arg, "--") == 0)
2290 stop_processing_options = true;
2291 else
2292 error (_("Unrecognized argument \"%s\""), arg);
2293 }
2294
2295 if (filename == NULL)
2296 error (_("You must provide a filename to be loaded."));
2297
2298 validate_readnow_readnever (flags);
2299
2300 /* Print the prompt for the query below. And save the arguments into
2301 a sect_addr_info structure to be passed around to other
2302 functions. We have to split this up into separate print
2303 statements because hex_string returns a local static
2304 string. */
2305
2306 printf_unfiltered (_("add symbol table from file \"%s\""),
2307 filename.get ());
2308 section_addr_info section_addrs;
2309 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2310 if (!seen_addr)
2311 ++it;
2312 for (; it != sect_opts.end (); ++it)
2313 {
2314 CORE_ADDR addr;
2315 const char *val = it->value;
2316 const char *sec = it->name;
2317
2318 if (section_addrs.empty ())
2319 printf_unfiltered (_(" at\n"));
2320 addr = parse_and_eval_address (val);
2321
2322 /* Here we store the section offsets in the order they were
2323 entered on the command line. Every array element is
2324 assigned an ascending section index to preserve the above
2325 order over an unstable sorting algorithm. This dummy
2326 index is not used for any other purpose.
2327 */
2328 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2329 printf_filtered ("\t%s_addr = %s\n", sec,
2330 paddress (gdbarch, addr));
2331
2332 /* The object's sections are initialized when a
2333 call is made to build_objfile_section_table (objfile).
2334 This happens in reread_symbols.
2335 At this point, we don't know what file type this is,
2336 so we can't determine what section names are valid. */
2337 }
2338 if (seen_offset)
2339 printf_unfiltered (_("%s offset by %s\n"),
2340 (section_addrs.empty ()
2341 ? _(" with all sections")
2342 : _("with other sections")),
2343 paddress (gdbarch, offset));
2344 else if (section_addrs.empty ())
2345 printf_unfiltered ("\n");
2346
2347 if (from_tty && (!query ("%s", "")))
2348 error (_("Not confirmed."));
2349
2350 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2351 flags);
2352 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2353 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2354 filename.get ());
2355
2356 if (seen_offset)
2357 set_objfile_default_section_offset (objf, section_addrs, offset);
2358
2359 add_target_sections_of_objfile (objf);
2360
2361 /* Getting new symbols may change our opinion about what is
2362 frameless. */
2363 reinit_frame_cache ();
2364 }
2365 \f
2366
2367 /* This function removes a symbol file that was added via add-symbol-file. */
2368
2369 static void
2370 remove_symbol_file_command (const char *args, int from_tty)
2371 {
2372 struct objfile *objf = NULL;
2373 struct program_space *pspace = current_program_space;
2374
2375 dont_repeat ();
2376
2377 if (args == NULL)
2378 error (_("remove-symbol-file: no symbol file provided"));
2379
2380 gdb_argv argv (args);
2381
2382 if (strcmp (argv[0], "-a") == 0)
2383 {
2384 /* Interpret the next argument as an address. */
2385 CORE_ADDR addr;
2386
2387 if (argv[1] == NULL)
2388 error (_("Missing address argument"));
2389
2390 if (argv[2] != NULL)
2391 error (_("Junk after %s"), argv[1]);
2392
2393 addr = parse_and_eval_address (argv[1]);
2394
2395 for (objfile *objfile : current_program_space->objfiles ())
2396 {
2397 if ((objfile->flags & OBJF_USERLOADED) != 0
2398 && (objfile->flags & OBJF_SHARED) != 0
2399 && objfile->pspace == pspace
2400 && is_addr_in_objfile (addr, objfile))
2401 {
2402 objf = objfile;
2403 break;
2404 }
2405 }
2406 }
2407 else if (argv[0] != NULL)
2408 {
2409 /* Interpret the current argument as a file name. */
2410
2411 if (argv[1] != NULL)
2412 error (_("Junk after %s"), argv[0]);
2413
2414 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2415
2416 for (objfile *objfile : current_program_space->objfiles ())
2417 {
2418 if ((objfile->flags & OBJF_USERLOADED) != 0
2419 && (objfile->flags & OBJF_SHARED) != 0
2420 && objfile->pspace == pspace
2421 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2422 {
2423 objf = objfile;
2424 break;
2425 }
2426 }
2427 }
2428
2429 if (objf == NULL)
2430 error (_("No symbol file found"));
2431
2432 if (from_tty
2433 && !query (_("Remove symbol table from file \"%s\"? "),
2434 objfile_name (objf)))
2435 error (_("Not confirmed."));
2436
2437 objf->unlink ();
2438 clear_symtab_users (0);
2439 }
2440
2441 /* Re-read symbols if a symbol-file has changed. */
2442
2443 void
2444 reread_symbols (void)
2445 {
2446 long new_modtime;
2447 struct stat new_statbuf;
2448 int res;
2449 std::vector<struct objfile *> new_objfiles;
2450
2451 for (objfile *objfile : current_program_space->objfiles ())
2452 {
2453 if (objfile->obfd == NULL)
2454 continue;
2455
2456 /* Separate debug objfiles are handled in the main objfile. */
2457 if (objfile->separate_debug_objfile_backlink)
2458 continue;
2459
2460 /* If this object is from an archive (what you usually create with
2461 `ar', often called a `static library' on most systems, though
2462 a `shared library' on AIX is also an archive), then you should
2463 stat on the archive name, not member name. */
2464 if (objfile->obfd->my_archive)
2465 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2466 else
2467 res = stat (objfile_name (objfile), &new_statbuf);
2468 if (res != 0)
2469 {
2470 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2471 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2472 objfile_name (objfile));
2473 continue;
2474 }
2475 new_modtime = new_statbuf.st_mtime;
2476 if (new_modtime != objfile->mtime)
2477 {
2478 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2479 objfile_name (objfile));
2480
2481 /* There are various functions like symbol_file_add,
2482 symfile_bfd_open, syms_from_objfile, etc., which might
2483 appear to do what we want. But they have various other
2484 effects which we *don't* want. So we just do stuff
2485 ourselves. We don't worry about mapped files (for one thing,
2486 any mapped file will be out of date). */
2487
2488 /* If we get an error, blow away this objfile (not sure if
2489 that is the correct response for things like shared
2490 libraries). */
2491 objfile_up objfile_holder (objfile);
2492
2493 /* We need to do this whenever any symbols go away. */
2494 clear_symtab_users_cleanup defer_clear_users (0);
2495
2496 if (exec_bfd != NULL
2497 && filename_cmp (bfd_get_filename (objfile->obfd),
2498 bfd_get_filename (exec_bfd)) == 0)
2499 {
2500 /* Reload EXEC_BFD without asking anything. */
2501
2502 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2503 }
2504
2505 /* Keep the calls order approx. the same as in free_objfile. */
2506
2507 /* Free the separate debug objfiles. It will be
2508 automatically recreated by sym_read. */
2509 free_objfile_separate_debug (objfile);
2510
2511 /* Clear the stale source cache. */
2512 forget_cached_source_info ();
2513
2514 /* Remove any references to this objfile in the global
2515 value lists. */
2516 preserve_values (objfile);
2517
2518 /* Nuke all the state that we will re-read. Much of the following
2519 code which sets things to NULL really is necessary to tell
2520 other parts of GDB that there is nothing currently there.
2521
2522 Try to keep the freeing order compatible with free_objfile. */
2523
2524 if (objfile->sf != NULL)
2525 {
2526 (*objfile->sf->sym_finish) (objfile);
2527 }
2528
2529 clear_objfile_data (objfile);
2530
2531 /* Clean up any state BFD has sitting around. */
2532 {
2533 gdb_bfd_ref_ptr obfd (objfile->obfd);
2534 const char *obfd_filename;
2535
2536 obfd_filename = bfd_get_filename (objfile->obfd);
2537 /* Open the new BFD before freeing the old one, so that
2538 the filename remains live. */
2539 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2540 objfile->obfd = temp.release ();
2541 if (objfile->obfd == NULL)
2542 error (_("Can't open %s to read symbols."), obfd_filename);
2543 }
2544
2545 std::string original_name = objfile->original_name;
2546
2547 /* bfd_openr sets cacheable to true, which is what we want. */
2548 if (!bfd_check_format (objfile->obfd, bfd_object))
2549 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2550 bfd_errmsg (bfd_get_error ()));
2551
2552 objfile->reset_psymtabs ();
2553
2554 /* NB: after this call to obstack_free, objfiles_changed
2555 will need to be called (see discussion below). */
2556 obstack_free (&objfile->objfile_obstack, 0);
2557 objfile->sections = NULL;
2558 objfile->compunit_symtabs = NULL;
2559 objfile->template_symbols = NULL;
2560 objfile->static_links.reset (nullptr);
2561
2562 /* obstack_init also initializes the obstack so it is
2563 empty. We could use obstack_specify_allocation but
2564 gdb_obstack.h specifies the alloc/dealloc functions. */
2565 obstack_init (&objfile->objfile_obstack);
2566
2567 /* set_objfile_per_bfd potentially allocates the per-bfd
2568 data on the objfile's obstack (if sharing data across
2569 multiple users is not possible), so it's important to
2570 do it *after* the obstack has been initialized. */
2571 set_objfile_per_bfd (objfile);
2572
2573 objfile->original_name
2574 = obstack_strdup (&objfile->objfile_obstack, original_name);
2575
2576 /* Reset the sym_fns pointer. The ELF reader can change it
2577 based on whether .gdb_index is present, and we need it to
2578 start over. PR symtab/15885 */
2579 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2580
2581 build_objfile_section_table (objfile);
2582
2583 /* What the hell is sym_new_init for, anyway? The concept of
2584 distinguishing between the main file and additional files
2585 in this way seems rather dubious. */
2586 if (objfile == symfile_objfile)
2587 {
2588 (*objfile->sf->sym_new_init) (objfile);
2589 }
2590
2591 (*objfile->sf->sym_init) (objfile);
2592 clear_complaints ();
2593
2594 objfile->flags &= ~OBJF_PSYMTABS_READ;
2595
2596 /* We are about to read new symbols and potentially also
2597 DWARF information. Some targets may want to pass addresses
2598 read from DWARF DIE's through an adjustment function before
2599 saving them, like MIPS, which may call into
2600 "find_pc_section". When called, that function will make
2601 use of per-objfile program space data.
2602
2603 Since we discarded our section information above, we have
2604 dangling pointers in the per-objfile program space data
2605 structure. Force GDB to update the section mapping
2606 information by letting it know the objfile has changed,
2607 making the dangling pointers point to correct data
2608 again. */
2609
2610 objfiles_changed ();
2611
2612 read_symbols (objfile, 0);
2613
2614 if (!objfile_has_symbols (objfile))
2615 {
2616 wrap_here ("");
2617 printf_filtered (_("(no debugging symbols found)\n"));
2618 wrap_here ("");
2619 }
2620
2621 /* We're done reading the symbol file; finish off complaints. */
2622 clear_complaints ();
2623
2624 /* Getting new symbols may change our opinion about what is
2625 frameless. */
2626
2627 reinit_frame_cache ();
2628
2629 /* Discard cleanups as symbol reading was successful. */
2630 objfile_holder.release ();
2631 defer_clear_users.release ();
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
2637 init_entry_point_info (objfile);
2638
2639 new_objfiles.push_back (objfile);
2640 }
2641 }
2642
2643 if (!new_objfiles.empty ())
2644 {
2645 clear_symtab_users (0);
2646
2647 /* clear_objfile_data for each objfile was called before freeing it and
2648 gdb::observers::new_objfile.notify (NULL) has been called by
2649 clear_symtab_users above. Notify the new files now. */
2650 for (auto iter : new_objfiles)
2651 gdb::observers::new_objfile.notify (iter);
2652
2653 /* At least one objfile has changed, so we can consider that
2654 the executable we're debugging has changed too. */
2655 gdb::observers::executable_changed.notify ();
2656 }
2657 }
2658 \f
2659
2660 struct filename_language
2661 {
2662 filename_language (const std::string &ext_, enum language lang_)
2663 : ext (ext_), lang (lang_)
2664 {}
2665
2666 std::string ext;
2667 enum language lang;
2668 };
2669
2670 static std::vector<filename_language> filename_language_table;
2671
2672 /* See symfile.h. */
2673
2674 void
2675 add_filename_language (const char *ext, enum language lang)
2676 {
2677 filename_language_table.emplace_back (ext, lang);
2678 }
2679
2680 static char *ext_args;
2681 static void
2682 show_ext_args (struct ui_file *file, int from_tty,
2683 struct cmd_list_element *c, const char *value)
2684 {
2685 fprintf_filtered (file,
2686 _("Mapping between filename extension "
2687 "and source language is \"%s\".\n"),
2688 value);
2689 }
2690
2691 static void
2692 set_ext_lang_command (const char *args,
2693 int from_tty, struct cmd_list_element *e)
2694 {
2695 char *cp = ext_args;
2696 enum language lang;
2697
2698 /* First arg is filename extension, starting with '.' */
2699 if (*cp != '.')
2700 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2701
2702 /* Find end of first arg. */
2703 while (*cp && !isspace (*cp))
2704 cp++;
2705
2706 if (*cp == '\0')
2707 error (_("'%s': two arguments required -- "
2708 "filename extension and language"),
2709 ext_args);
2710
2711 /* Null-terminate first arg. */
2712 *cp++ = '\0';
2713
2714 /* Find beginning of second arg, which should be a source language. */
2715 cp = skip_spaces (cp);
2716
2717 if (*cp == '\0')
2718 error (_("'%s': two arguments required -- "
2719 "filename extension and language"),
2720 ext_args);
2721
2722 /* Lookup the language from among those we know. */
2723 lang = language_enum (cp);
2724
2725 auto it = filename_language_table.begin ();
2726 /* Now lookup the filename extension: do we already know it? */
2727 for (; it != filename_language_table.end (); it++)
2728 {
2729 if (it->ext == ext_args)
2730 break;
2731 }
2732
2733 if (it == filename_language_table.end ())
2734 {
2735 /* New file extension. */
2736 add_filename_language (ext_args, lang);
2737 }
2738 else
2739 {
2740 /* Redefining a previously known filename extension. */
2741
2742 /* if (from_tty) */
2743 /* query ("Really make files of type %s '%s'?", */
2744 /* ext_args, language_str (lang)); */
2745
2746 it->lang = lang;
2747 }
2748 }
2749
2750 static void
2751 info_ext_lang_command (const char *args, int from_tty)
2752 {
2753 printf_filtered (_("Filename extensions and the languages they represent:"));
2754 printf_filtered ("\n\n");
2755 for (const filename_language &entry : filename_language_table)
2756 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2757 language_str (entry.lang));
2758 }
2759
2760 enum language
2761 deduce_language_from_filename (const char *filename)
2762 {
2763 const char *cp;
2764
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
2767 {
2768 for (const filename_language &entry : filename_language_table)
2769 if (entry.ext == cp)
2770 return entry.lang;
2771 }
2772
2773 return language_unknown;
2774 }
2775 \f
2776 /* Allocate and initialize a new symbol table.
2777 CUST is from the result of allocate_compunit_symtab. */
2778
2779 struct symtab *
2780 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2781 {
2782 struct objfile *objfile = cust->objfile;
2783 struct symtab *symtab
2784 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2785
2786 symtab->filename
2787 = ((const char *) objfile->per_bfd->filename_cache.insert
2788 (filename, strlen (filename) + 1));
2789 symtab->fullname = NULL;
2790 symtab->language = deduce_language_from_filename (filename);
2791
2792 /* This can be very verbose with lots of headers.
2793 Only print at higher debug levels. */
2794 if (symtab_create_debug >= 2)
2795 {
2796 /* Be a bit clever with debugging messages, and don't print objfile
2797 every time, only when it changes. */
2798 static char *last_objfile_name = NULL;
2799
2800 if (last_objfile_name == NULL
2801 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2802 {
2803 xfree (last_objfile_name);
2804 last_objfile_name = xstrdup (objfile_name (objfile));
2805 fprintf_filtered (gdb_stdlog,
2806 "Creating one or more symtabs for objfile %s ...\n",
2807 last_objfile_name);
2808 }
2809 fprintf_filtered (gdb_stdlog,
2810 "Created symtab %s for module %s.\n",
2811 host_address_to_string (symtab), filename);
2812 }
2813
2814 /* Add it to CUST's list of symtabs. */
2815 if (cust->filetabs == NULL)
2816 {
2817 cust->filetabs = symtab;
2818 cust->last_filetab = symtab;
2819 }
2820 else
2821 {
2822 cust->last_filetab->next = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825
2826 /* Backlink to the containing compunit symtab. */
2827 symtab->compunit_symtab = cust;
2828
2829 return symtab;
2830 }
2831
2832 /* Allocate and initialize a new compunit.
2833 NAME is the name of the main source file, if there is one, or some
2834 descriptive text if there are no source files. */
2835
2836 struct compunit_symtab *
2837 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2838 {
2839 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2840 struct compunit_symtab);
2841 const char *saved_name;
2842
2843 cu->objfile = objfile;
2844
2845 /* The name we record here is only for display/debugging purposes.
2846 Just save the basename to avoid path issues (too long for display,
2847 relative vs absolute, etc.). */
2848 saved_name = lbasename (name);
2849 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2850
2851 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2852
2853 if (symtab_create_debug)
2854 {
2855 fprintf_filtered (gdb_stdlog,
2856 "Created compunit symtab %s for %s.\n",
2857 host_address_to_string (cu),
2858 cu->name);
2859 }
2860
2861 return cu;
2862 }
2863
2864 /* Hook CU to the objfile it comes from. */
2865
2866 void
2867 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2868 {
2869 cu->next = cu->objfile->compunit_symtabs;
2870 cu->objfile->compunit_symtabs = cu;
2871 }
2872 \f
2873
2874 /* Reset all data structures in gdb which may contain references to
2875 symbol table data. */
2876
2877 void
2878 clear_symtab_users (symfile_add_flags add_flags)
2879 {
2880 /* Someday, we should do better than this, by only blowing away
2881 the things that really need to be blown. */
2882
2883 /* Clear the "current" symtab first, because it is no longer valid.
2884 breakpoint_re_set may try to access the current symtab. */
2885 clear_current_source_symtab_and_line ();
2886
2887 clear_displays ();
2888 clear_last_displayed_sal ();
2889 clear_pc_function_cache ();
2890 gdb::observers::new_objfile.notify (NULL);
2891
2892 /* Varobj may refer to old symbols, perform a cleanup. */
2893 varobj_invalidate ();
2894
2895 /* Now that the various caches have been cleared, we can re_set
2896 our breakpoints without risking it using stale data. */
2897 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2898 breakpoint_re_set ();
2899 }
2900 \f
2901 /* OVERLAYS:
2902 The following code implements an abstraction for debugging overlay sections.
2903
2904 The target model is as follows:
2905 1) The gnu linker will permit multiple sections to be mapped into the
2906 same VMA, each with its own unique LMA (or load address).
2907 2) It is assumed that some runtime mechanism exists for mapping the
2908 sections, one by one, from the load address into the VMA address.
2909 3) This code provides a mechanism for gdb to keep track of which
2910 sections should be considered to be mapped from the VMA to the LMA.
2911 This information is used for symbol lookup, and memory read/write.
2912 For instance, if a section has been mapped then its contents
2913 should be read from the VMA, otherwise from the LMA.
2914
2915 Two levels of debugger support for overlays are available. One is
2916 "manual", in which the debugger relies on the user to tell it which
2917 overlays are currently mapped. This level of support is
2918 implemented entirely in the core debugger, and the information about
2919 whether a section is mapped is kept in the objfile->obj_section table.
2920
2921 The second level of support is "automatic", and is only available if
2922 the target-specific code provides functionality to read the target's
2923 overlay mapping table, and translate its contents for the debugger
2924 (by updating the mapped state information in the obj_section tables).
2925
2926 The interface is as follows:
2927 User commands:
2928 overlay map <name> -- tell gdb to consider this section mapped
2929 overlay unmap <name> -- tell gdb to consider this section unmapped
2930 overlay list -- list the sections that GDB thinks are mapped
2931 overlay read-target -- get the target's state of what's mapped
2932 overlay off/manual/auto -- set overlay debugging state
2933 Functional interface:
2934 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2935 section, return that section.
2936 find_pc_overlay(pc): find any overlay section that contains
2937 the pc, either in its VMA or its LMA
2938 section_is_mapped(sect): true if overlay is marked as mapped
2939 section_is_overlay(sect): true if section's VMA != LMA
2940 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2941 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2942 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2943 overlay_mapped_address(...): map an address from section's LMA to VMA
2944 overlay_unmapped_address(...): map an address from section's VMA to LMA
2945 symbol_overlayed_address(...): Return a "current" address for symbol:
2946 either in VMA or LMA depending on whether
2947 the symbol's section is currently mapped. */
2948
2949 /* Overlay debugging state: */
2950
2951 enum overlay_debugging_state overlay_debugging = ovly_off;
2952 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2953
2954 /* Function: section_is_overlay (SECTION)
2955 Returns true if SECTION has VMA not equal to LMA, ie.
2956 SECTION is loaded at an address different from where it will "run". */
2957
2958 int
2959 section_is_overlay (struct obj_section *section)
2960 {
2961 if (overlay_debugging && section)
2962 {
2963 asection *bfd_section = section->the_bfd_section;
2964
2965 if (bfd_section_lma (bfd_section) != 0
2966 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2967 return 1;
2968 }
2969
2970 return 0;
2971 }
2972
2973 /* Function: overlay_invalidate_all (void)
2974 Invalidate the mapped state of all overlay sections (mark it as stale). */
2975
2976 static void
2977 overlay_invalidate_all (void)
2978 {
2979 struct obj_section *sect;
2980
2981 for (objfile *objfile : current_program_space->objfiles ())
2982 ALL_OBJFILE_OSECTIONS (objfile, sect)
2983 if (section_is_overlay (sect))
2984 sect->ovly_mapped = -1;
2985 }
2986
2987 /* Function: section_is_mapped (SECTION)
2988 Returns true if section is an overlay, and is currently mapped.
2989
2990 Access to the ovly_mapped flag is restricted to this function, so
2991 that we can do automatic update. If the global flag
2992 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2993 overlay_invalidate_all. If the mapped state of the particular
2994 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2995
2996 int
2997 section_is_mapped (struct obj_section *osect)
2998 {
2999 struct gdbarch *gdbarch;
3000
3001 if (osect == 0 || !section_is_overlay (osect))
3002 return 0;
3003
3004 switch (overlay_debugging)
3005 {
3006 default:
3007 case ovly_off:
3008 return 0; /* overlay debugging off */
3009 case ovly_auto: /* overlay debugging automatic */
3010 /* Unles there is a gdbarch_overlay_update function,
3011 there's really nothing useful to do here (can't really go auto). */
3012 gdbarch = get_objfile_arch (osect->objfile);
3013 if (gdbarch_overlay_update_p (gdbarch))
3014 {
3015 if (overlay_cache_invalid)
3016 {
3017 overlay_invalidate_all ();
3018 overlay_cache_invalid = 0;
3019 }
3020 if (osect->ovly_mapped == -1)
3021 gdbarch_overlay_update (gdbarch, osect);
3022 }
3023 /* fall thru */
3024 case ovly_on: /* overlay debugging manual */
3025 return osect->ovly_mapped == 1;
3026 }
3027 }
3028
3029 /* Function: pc_in_unmapped_range
3030 If PC falls into the lma range of SECTION, return true, else false. */
3031
3032 CORE_ADDR
3033 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3034 {
3035 if (section_is_overlay (section))
3036 {
3037 asection *bfd_section = section->the_bfd_section;
3038
3039 /* We assume the LMA is relocated by the same offset as the VMA. */
3040 bfd_vma size = bfd_section_size (bfd_section);
3041 CORE_ADDR offset = obj_section_offset (section);
3042
3043 if (bfd_section_lma (bfd_section) + offset <= pc
3044 && pc < bfd_section_lma (bfd_section) + offset + size)
3045 return 1;
3046 }
3047
3048 return 0;
3049 }
3050
3051 /* Function: pc_in_mapped_range
3052 If PC falls into the vma range of SECTION, return true, else false. */
3053
3054 CORE_ADDR
3055 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3056 {
3057 if (section_is_overlay (section))
3058 {
3059 if (obj_section_addr (section) <= pc
3060 && pc < obj_section_endaddr (section))
3061 return 1;
3062 }
3063
3064 return 0;
3065 }
3066
3067 /* Return true if the mapped ranges of sections A and B overlap, false
3068 otherwise. */
3069
3070 static int
3071 sections_overlap (struct obj_section *a, struct obj_section *b)
3072 {
3073 CORE_ADDR a_start = obj_section_addr (a);
3074 CORE_ADDR a_end = obj_section_endaddr (a);
3075 CORE_ADDR b_start = obj_section_addr (b);
3076 CORE_ADDR b_end = obj_section_endaddr (b);
3077
3078 return (a_start < b_end && b_start < a_end);
3079 }
3080
3081 /* Function: overlay_unmapped_address (PC, SECTION)
3082 Returns the address corresponding to PC in the unmapped (load) range.
3083 May be the same as PC. */
3084
3085 CORE_ADDR
3086 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3087 {
3088 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3089 {
3090 asection *bfd_section = section->the_bfd_section;
3091
3092 return (pc + bfd_section_lma (bfd_section)
3093 - bfd_section_vma (bfd_section));
3094 }
3095
3096 return pc;
3097 }
3098
3099 /* Function: overlay_mapped_address (PC, SECTION)
3100 Returns the address corresponding to PC in the mapped (runtime) range.
3101 May be the same as PC. */
3102
3103 CORE_ADDR
3104 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3105 {
3106 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3107 {
3108 asection *bfd_section = section->the_bfd_section;
3109
3110 return (pc + bfd_section_vma (bfd_section)
3111 - bfd_section_lma (bfd_section));
3112 }
3113
3114 return pc;
3115 }
3116
3117 /* Function: symbol_overlayed_address
3118 Return one of two addresses (relative to the VMA or to the LMA),
3119 depending on whether the section is mapped or not. */
3120
3121 CORE_ADDR
3122 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3123 {
3124 if (overlay_debugging)
3125 {
3126 /* If the symbol has no section, just return its regular address. */
3127 if (section == 0)
3128 return address;
3129 /* If the symbol's section is not an overlay, just return its
3130 address. */
3131 if (!section_is_overlay (section))
3132 return address;
3133 /* If the symbol's section is mapped, just return its address. */
3134 if (section_is_mapped (section))
3135 return address;
3136 /*
3137 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3138 * then return its LOADED address rather than its vma address!!
3139 */
3140 return overlay_unmapped_address (address, section);
3141 }
3142 return address;
3143 }
3144
3145 /* Function: find_pc_overlay (PC)
3146 Return the best-match overlay section for PC:
3147 If PC matches a mapped overlay section's VMA, return that section.
3148 Else if PC matches an unmapped section's VMA, return that section.
3149 Else if PC matches an unmapped section's LMA, return that section. */
3150
3151 struct obj_section *
3152 find_pc_overlay (CORE_ADDR pc)
3153 {
3154 struct obj_section *osect, *best_match = NULL;
3155
3156 if (overlay_debugging)
3157 {
3158 for (objfile *objfile : current_program_space->objfiles ())
3159 ALL_OBJFILE_OSECTIONS (objfile, osect)
3160 if (section_is_overlay (osect))
3161 {
3162 if (pc_in_mapped_range (pc, osect))
3163 {
3164 if (section_is_mapped (osect))
3165 return osect;
3166 else
3167 best_match = osect;
3168 }
3169 else if (pc_in_unmapped_range (pc, osect))
3170 best_match = osect;
3171 }
3172 }
3173 return best_match;
3174 }
3175
3176 /* Function: find_pc_mapped_section (PC)
3177 If PC falls into the VMA address range of an overlay section that is
3178 currently marked as MAPPED, return that section. Else return NULL. */
3179
3180 struct obj_section *
3181 find_pc_mapped_section (CORE_ADDR pc)
3182 {
3183 struct obj_section *osect;
3184
3185 if (overlay_debugging)
3186 {
3187 for (objfile *objfile : current_program_space->objfiles ())
3188 ALL_OBJFILE_OSECTIONS (objfile, osect)
3189 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3190 return osect;
3191 }
3192
3193 return NULL;
3194 }
3195
3196 /* Function: list_overlays_command
3197 Print a list of mapped sections and their PC ranges. */
3198
3199 static void
3200 list_overlays_command (const char *args, int from_tty)
3201 {
3202 int nmapped = 0;
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 {
3207 for (objfile *objfile : current_program_space->objfiles ())
3208 ALL_OBJFILE_OSECTIONS (objfile, osect)
3209 if (section_is_mapped (osect))
3210 {
3211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3212 const char *name;
3213 bfd_vma lma, vma;
3214 int size;
3215
3216 vma = bfd_section_vma (osect->the_bfd_section);
3217 lma = bfd_section_lma (osect->the_bfd_section);
3218 size = bfd_section_size (osect->the_bfd_section);
3219 name = bfd_section_name (osect->the_bfd_section);
3220
3221 printf_filtered ("Section %s, loaded at ", name);
3222 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3223 puts_filtered (" - ");
3224 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3225 printf_filtered (", mapped at ");
3226 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3227 puts_filtered (" - ");
3228 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3229 puts_filtered ("\n");
3230
3231 nmapped++;
3232 }
3233 }
3234 if (nmapped == 0)
3235 printf_filtered (_("No sections are mapped.\n"));
3236 }
3237
3238 /* Function: map_overlay_command
3239 Mark the named section as mapped (ie. residing at its VMA address). */
3240
3241 static void
3242 map_overlay_command (const char *args, int from_tty)
3243 {
3244 struct obj_section *sec, *sec2;
3245
3246 if (!overlay_debugging)
3247 error (_("Overlay debugging not enabled. Use "
3248 "either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
3250
3251 if (args == 0 || *args == 0)
3252 error (_("Argument required: name of an overlay section"));
3253
3254 /* First, find a section matching the user supplied argument. */
3255 for (objfile *obj_file : current_program_space->objfiles ())
3256 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3257 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3258 {
3259 /* Now, check to see if the section is an overlay. */
3260 if (!section_is_overlay (sec))
3261 continue; /* not an overlay section */
3262
3263 /* Mark the overlay as "mapped". */
3264 sec->ovly_mapped = 1;
3265
3266 /* Next, make a pass and unmap any sections that are
3267 overlapped by this new section: */
3268 for (objfile *objfile2 : current_program_space->objfiles ())
3269 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3270 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3271 sec2))
3272 {
3273 if (info_verbose)
3274 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3275 bfd_section_name (sec2->the_bfd_section));
3276 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3277 }
3278 return;
3279 }
3280 error (_("No overlay section called %s"), args);
3281 }
3282
3283 /* Function: unmap_overlay_command
3284 Mark the overlay section as unmapped
3285 (ie. resident in its LMA address range, rather than the VMA range). */
3286
3287 static void
3288 unmap_overlay_command (const char *args, int from_tty)
3289 {
3290 struct obj_section *sec = NULL;
3291
3292 if (!overlay_debugging)
3293 error (_("Overlay debugging not enabled. "
3294 "Use either the 'overlay auto' or\n"
3295 "the 'overlay manual' command."));
3296
3297 if (args == 0 || *args == 0)
3298 error (_("Argument required: name of an overlay section"));
3299
3300 /* First, find a section matching the user supplied argument. */
3301 for (objfile *objfile : current_program_space->objfiles ())
3302 ALL_OBJFILE_OSECTIONS (objfile, sec)
3303 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3304 {
3305 if (!sec->ovly_mapped)
3306 error (_("Section %s is not mapped"), args);
3307 sec->ovly_mapped = 0;
3308 return;
3309 }
3310 error (_("No overlay section called %s"), args);
3311 }
3312
3313 /* Function: overlay_auto_command
3314 A utility command to turn on overlay debugging.
3315 Possibly this should be done via a set/show command. */
3316
3317 static void
3318 overlay_auto_command (const char *args, int from_tty)
3319 {
3320 overlay_debugging = ovly_auto;
3321 enable_overlay_breakpoints ();
3322 if (info_verbose)
3323 printf_unfiltered (_("Automatic overlay debugging enabled."));
3324 }
3325
3326 /* Function: overlay_manual_command
3327 A utility command to turn on overlay debugging.
3328 Possibly this should be done via a set/show command. */
3329
3330 static void
3331 overlay_manual_command (const char *args, int from_tty)
3332 {
3333 overlay_debugging = ovly_on;
3334 disable_overlay_breakpoints ();
3335 if (info_verbose)
3336 printf_unfiltered (_("Overlay debugging enabled."));
3337 }
3338
3339 /* Function: overlay_off_command
3340 A utility command to turn on overlay debugging.
3341 Possibly this should be done via a set/show command. */
3342
3343 static void
3344 overlay_off_command (const char *args, int from_tty)
3345 {
3346 overlay_debugging = ovly_off;
3347 disable_overlay_breakpoints ();
3348 if (info_verbose)
3349 printf_unfiltered (_("Overlay debugging disabled."));
3350 }
3351
3352 static void
3353 overlay_load_command (const char *args, int from_tty)
3354 {
3355 struct gdbarch *gdbarch = get_current_arch ();
3356
3357 if (gdbarch_overlay_update_p (gdbarch))
3358 gdbarch_overlay_update (gdbarch, NULL);
3359 else
3360 error (_("This target does not know how to read its overlay state."));
3361 }
3362
3363 /* Function: overlay_command
3364 A place-holder for a mis-typed command. */
3365
3366 /* Command list chain containing all defined "overlay" subcommands. */
3367 static struct cmd_list_element *overlaylist;
3368
3369 static void
3370 overlay_command (const char *args, int from_tty)
3371 {
3372 printf_unfiltered
3373 ("\"overlay\" must be followed by the name of an overlay command.\n");
3374 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3375 }
3376
3377 /* Target Overlays for the "Simplest" overlay manager:
3378
3379 This is GDB's default target overlay layer. It works with the
3380 minimal overlay manager supplied as an example by Cygnus. The
3381 entry point is via a function pointer "gdbarch_overlay_update",
3382 so targets that use a different runtime overlay manager can
3383 substitute their own overlay_update function and take over the
3384 function pointer.
3385
3386 The overlay_update function pokes around in the target's data structures
3387 to see what overlays are mapped, and updates GDB's overlay mapping with
3388 this information.
3389
3390 In this simple implementation, the target data structures are as follows:
3391 unsigned _novlys; /# number of overlay sections #/
3392 unsigned _ovly_table[_novlys][4] = {
3393 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3394 {..., ..., ..., ...},
3395 }
3396 unsigned _novly_regions; /# number of overlay regions #/
3397 unsigned _ovly_region_table[_novly_regions][3] = {
3398 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3399 {..., ..., ...},
3400 }
3401 These functions will attempt to update GDB's mappedness state in the
3402 symbol section table, based on the target's mappedness state.
3403
3404 To do this, we keep a cached copy of the target's _ovly_table, and
3405 attempt to detect when the cached copy is invalidated. The main
3406 entry point is "simple_overlay_update(SECT), which looks up SECT in
3407 the cached table and re-reads only the entry for that section from
3408 the target (whenever possible). */
3409
3410 /* Cached, dynamically allocated copies of the target data structures: */
3411 static unsigned (*cache_ovly_table)[4] = 0;
3412 static unsigned cache_novlys = 0;
3413 static CORE_ADDR cache_ovly_table_base = 0;
3414 enum ovly_index
3415 {
3416 VMA, OSIZE, LMA, MAPPED
3417 };
3418
3419 /* Throw away the cached copy of _ovly_table. */
3420
3421 static void
3422 simple_free_overlay_table (void)
3423 {
3424 if (cache_ovly_table)
3425 xfree (cache_ovly_table);
3426 cache_novlys = 0;
3427 cache_ovly_table = NULL;
3428 cache_ovly_table_base = 0;
3429 }
3430
3431 /* Read an array of ints of size SIZE from the target into a local buffer.
3432 Convert to host order. int LEN is number of ints. */
3433
3434 static void
3435 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3436 int len, int size, enum bfd_endian byte_order)
3437 {
3438 /* FIXME (alloca): Not safe if array is very large. */
3439 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3440 int i;
3441
3442 read_memory (memaddr, buf, len * size);
3443 for (i = 0; i < len; i++)
3444 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3445 }
3446
3447 /* Find and grab a copy of the target _ovly_table
3448 (and _novlys, which is needed for the table's size). */
3449
3450 static int
3451 simple_read_overlay_table (void)
3452 {
3453 struct bound_minimal_symbol novlys_msym;
3454 struct bound_minimal_symbol ovly_table_msym;
3455 struct gdbarch *gdbarch;
3456 int word_size;
3457 enum bfd_endian byte_order;
3458
3459 simple_free_overlay_table ();
3460 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3461 if (! novlys_msym.minsym)
3462 {
3463 error (_("Error reading inferior's overlay table: "
3464 "couldn't find `_novlys' variable\n"
3465 "in inferior. Use `overlay manual' mode."));
3466 return 0;
3467 }
3468
3469 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3470 if (! ovly_table_msym.minsym)
3471 {
3472 error (_("Error reading inferior's overlay table: couldn't find "
3473 "`_ovly_table' array\n"
3474 "in inferior. Use `overlay manual' mode."));
3475 return 0;
3476 }
3477
3478 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3479 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3480 byte_order = gdbarch_byte_order (gdbarch);
3481
3482 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3483 4, byte_order);
3484 cache_ovly_table
3485 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3486 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3487 read_target_long_array (cache_ovly_table_base,
3488 (unsigned int *) cache_ovly_table,
3489 cache_novlys * 4, word_size, byte_order);
3490
3491 return 1; /* SUCCESS */
3492 }
3493
3494 /* Function: simple_overlay_update_1
3495 A helper function for simple_overlay_update. Assuming a cached copy
3496 of _ovly_table exists, look through it to find an entry whose vma,
3497 lma and size match those of OSECT. Re-read the entry and make sure
3498 it still matches OSECT (else the table may no longer be valid).
3499 Set OSECT's mapped state to match the entry. Return: 1 for
3500 success, 0 for failure. */
3501
3502 static int
3503 simple_overlay_update_1 (struct obj_section *osect)
3504 {
3505 int i;
3506 asection *bsect = osect->the_bfd_section;
3507 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3508 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3510
3511 for (i = 0; i < cache_novlys; i++)
3512 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3513 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3514 {
3515 read_target_long_array (cache_ovly_table_base + i * word_size,
3516 (unsigned int *) cache_ovly_table[i],
3517 4, word_size, byte_order);
3518 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3519 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3520 {
3521 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3522 return 1;
3523 }
3524 else /* Warning! Warning! Target's ovly table has changed! */
3525 return 0;
3526 }
3527 return 0;
3528 }
3529
3530 /* Function: simple_overlay_update
3531 If OSECT is NULL, then update all sections' mapped state
3532 (after re-reading the entire target _ovly_table).
3533 If OSECT is non-NULL, then try to find a matching entry in the
3534 cached ovly_table and update only OSECT's mapped state.
3535 If a cached entry can't be found or the cache isn't valid, then
3536 re-read the entire cache, and go ahead and update all sections. */
3537
3538 void
3539 simple_overlay_update (struct obj_section *osect)
3540 {
3541 /* Were we given an osect to look up? NULL means do all of them. */
3542 if (osect)
3543 /* Have we got a cached copy of the target's overlay table? */
3544 if (cache_ovly_table != NULL)
3545 {
3546 /* Does its cached location match what's currently in the
3547 symtab? */
3548 struct bound_minimal_symbol minsym
3549 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3550
3551 if (minsym.minsym == NULL)
3552 error (_("Error reading inferior's overlay table: couldn't "
3553 "find `_ovly_table' array\n"
3554 "in inferior. Use `overlay manual' mode."));
3555
3556 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3557 /* Then go ahead and try to look up this single section in
3558 the cache. */
3559 if (simple_overlay_update_1 (osect))
3560 /* Found it! We're done. */
3561 return;
3562 }
3563
3564 /* Cached table no good: need to read the entire table anew.
3565 Or else we want all the sections, in which case it's actually
3566 more efficient to read the whole table in one block anyway. */
3567
3568 if (! simple_read_overlay_table ())
3569 return;
3570
3571 /* Now may as well update all sections, even if only one was requested. */
3572 for (objfile *objfile : current_program_space->objfiles ())
3573 ALL_OBJFILE_OSECTIONS (objfile, osect)
3574 if (section_is_overlay (osect))
3575 {
3576 int i;
3577 asection *bsect = osect->the_bfd_section;
3578
3579 for (i = 0; i < cache_novlys; i++)
3580 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3581 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3582 { /* obj_section matches i'th entry in ovly_table. */
3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3584 break; /* finished with inner for loop: break out. */
3585 }
3586 }
3587 }
3588
3589 /* Set the output sections and output offsets for section SECTP in
3590 ABFD. The relocation code in BFD will read these offsets, so we
3591 need to be sure they're initialized. We map each section to itself,
3592 with no offset; this means that SECTP->vma will be honored. */
3593
3594 static void
3595 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3596 {
3597 sectp->output_section = sectp;
3598 sectp->output_offset = 0;
3599 }
3600
3601 /* Default implementation for sym_relocate. */
3602
3603 bfd_byte *
3604 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3605 bfd_byte *buf)
3606 {
3607 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3608 DWO file. */
3609 bfd *abfd = sectp->owner;
3610
3611 /* We're only interested in sections with relocation
3612 information. */
3613 if ((sectp->flags & SEC_RELOC) == 0)
3614 return NULL;
3615
3616 /* We will handle section offsets properly elsewhere, so relocate as if
3617 all sections begin at 0. */
3618 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3619
3620 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3621 }
3622
3623 /* Relocate the contents of a debug section SECTP in ABFD. The
3624 contents are stored in BUF if it is non-NULL, or returned in a
3625 malloc'd buffer otherwise.
3626
3627 For some platforms and debug info formats, shared libraries contain
3628 relocations against the debug sections (particularly for DWARF-2;
3629 one affected platform is PowerPC GNU/Linux, although it depends on
3630 the version of the linker in use). Also, ELF object files naturally
3631 have unresolved relocations for their debug sections. We need to apply
3632 the relocations in order to get the locations of symbols correct.
3633 Another example that may require relocation processing, is the
3634 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3635 debug section. */
3636
3637 bfd_byte *
3638 symfile_relocate_debug_section (struct objfile *objfile,
3639 asection *sectp, bfd_byte *buf)
3640 {
3641 gdb_assert (objfile->sf->sym_relocate);
3642
3643 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3644 }
3645
3646 struct symfile_segment_data *
3647 get_symfile_segment_data (bfd *abfd)
3648 {
3649 const struct sym_fns *sf = find_sym_fns (abfd);
3650
3651 if (sf == NULL)
3652 return NULL;
3653
3654 return sf->sym_segments (abfd);
3655 }
3656
3657 void
3658 free_symfile_segment_data (struct symfile_segment_data *data)
3659 {
3660 xfree (data->segment_bases);
3661 xfree (data->segment_sizes);
3662 xfree (data->segment_info);
3663 xfree (data);
3664 }
3665
3666 /* Given:
3667 - DATA, containing segment addresses from the object file ABFD, and
3668 the mapping from ABFD's sections onto the segments that own them,
3669 and
3670 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3671 segment addresses reported by the target,
3672 store the appropriate offsets for each section in OFFSETS.
3673
3674 If there are fewer entries in SEGMENT_BASES than there are segments
3675 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3676
3677 If there are more entries, then ignore the extra. The target may
3678 not be able to distinguish between an empty data segment and a
3679 missing data segment; a missing text segment is less plausible. */
3680
3681 int
3682 symfile_map_offsets_to_segments (bfd *abfd,
3683 const struct symfile_segment_data *data,
3684 section_offsets &offsets,
3685 int num_segment_bases,
3686 const CORE_ADDR *segment_bases)
3687 {
3688 int i;
3689 asection *sect;
3690
3691 /* It doesn't make sense to call this function unless you have some
3692 segment base addresses. */
3693 gdb_assert (num_segment_bases > 0);
3694
3695 /* If we do not have segment mappings for the object file, we
3696 can not relocate it by segments. */
3697 gdb_assert (data != NULL);
3698 gdb_assert (data->num_segments > 0);
3699
3700 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3701 {
3702 int which = data->segment_info[i];
3703
3704 gdb_assert (0 <= which && which <= data->num_segments);
3705
3706 /* Don't bother computing offsets for sections that aren't
3707 loaded as part of any segment. */
3708 if (! which)
3709 continue;
3710
3711 /* Use the last SEGMENT_BASES entry as the address of any extra
3712 segments mentioned in DATA->segment_info. */
3713 if (which > num_segment_bases)
3714 which = num_segment_bases;
3715
3716 offsets[i] = segment_bases[which - 1] - data->segment_bases[which - 1];
3717 }
3718
3719 return 1;
3720 }
3721
3722 static void
3723 symfile_find_segment_sections (struct objfile *objfile)
3724 {
3725 bfd *abfd = objfile->obfd;
3726 int i;
3727 asection *sect;
3728 struct symfile_segment_data *data;
3729
3730 data = get_symfile_segment_data (objfile->obfd);
3731 if (data == NULL)
3732 return;
3733
3734 if (data->num_segments != 1 && data->num_segments != 2)
3735 {
3736 free_symfile_segment_data (data);
3737 return;
3738 }
3739
3740 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3741 {
3742 int which = data->segment_info[i];
3743
3744 if (which == 1)
3745 {
3746 if (objfile->sect_index_text == -1)
3747 objfile->sect_index_text = sect->index;
3748
3749 if (objfile->sect_index_rodata == -1)
3750 objfile->sect_index_rodata = sect->index;
3751 }
3752 else if (which == 2)
3753 {
3754 if (objfile->sect_index_data == -1)
3755 objfile->sect_index_data = sect->index;
3756
3757 if (objfile->sect_index_bss == -1)
3758 objfile->sect_index_bss = sect->index;
3759 }
3760 }
3761
3762 free_symfile_segment_data (data);
3763 }
3764
3765 /* Listen for free_objfile events. */
3766
3767 static void
3768 symfile_free_objfile (struct objfile *objfile)
3769 {
3770 /* Remove the target sections owned by this objfile. */
3771 if (objfile != NULL)
3772 remove_target_sections ((void *) objfile);
3773 }
3774
3775 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3776 Expand all symtabs that match the specified criteria.
3777 See quick_symbol_functions.expand_symtabs_matching for details. */
3778
3779 void
3780 expand_symtabs_matching
3781 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3782 const lookup_name_info &lookup_name,
3783 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3784 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3785 enum search_domain kind)
3786 {
3787 for (objfile *objfile : current_program_space->objfiles ())
3788 {
3789 if (objfile->sf)
3790 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3791 lookup_name,
3792 symbol_matcher,
3793 expansion_notify, kind);
3794 }
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3798 Map function FUN over every file.
3799 See quick_symbol_functions.map_symbol_filenames for details. */
3800
3801 void
3802 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3803 int need_fullname)
3804 {
3805 for (objfile *objfile : current_program_space->objfiles ())
3806 {
3807 if (objfile->sf)
3808 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3809 need_fullname);
3810 }
3811 }
3812
3813 #if GDB_SELF_TEST
3814
3815 namespace selftests {
3816 namespace filename_language {
3817
3818 static void test_filename_language ()
3819 {
3820 /* This test messes up the filename_language_table global. */
3821 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3822
3823 /* Test deducing an unknown extension. */
3824 language lang = deduce_language_from_filename ("myfile.blah");
3825 SELF_CHECK (lang == language_unknown);
3826
3827 /* Test deducing a known extension. */
3828 lang = deduce_language_from_filename ("myfile.c");
3829 SELF_CHECK (lang == language_c);
3830
3831 /* Test adding a new extension using the internal API. */
3832 add_filename_language (".blah", language_pascal);
3833 lang = deduce_language_from_filename ("myfile.blah");
3834 SELF_CHECK (lang == language_pascal);
3835 }
3836
3837 static void
3838 test_set_ext_lang_command ()
3839 {
3840 /* This test messes up the filename_language_table global. */
3841 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3842
3843 /* Confirm that the .hello extension is not known. */
3844 language lang = deduce_language_from_filename ("cake.hello");
3845 SELF_CHECK (lang == language_unknown);
3846
3847 /* Test adding a new extension using the CLI command. */
3848 auto args_holder = make_unique_xstrdup (".hello rust");
3849 ext_args = args_holder.get ();
3850 set_ext_lang_command (NULL, 1, NULL);
3851
3852 lang = deduce_language_from_filename ("cake.hello");
3853 SELF_CHECK (lang == language_rust);
3854
3855 /* Test overriding an existing extension using the CLI command. */
3856 int size_before = filename_language_table.size ();
3857 args_holder.reset (xstrdup (".hello pascal"));
3858 ext_args = args_holder.get ();
3859 set_ext_lang_command (NULL, 1, NULL);
3860 int size_after = filename_language_table.size ();
3861
3862 lang = deduce_language_from_filename ("cake.hello");
3863 SELF_CHECK (lang == language_pascal);
3864 SELF_CHECK (size_before == size_after);
3865 }
3866
3867 } /* namespace filename_language */
3868 } /* namespace selftests */
3869
3870 #endif /* GDB_SELF_TEST */
3871
3872 void _initialize_symfile ();
3873 void
3874 _initialize_symfile ()
3875 {
3876 struct cmd_list_element *c;
3877
3878 gdb::observers::free_objfile.attach (symfile_free_objfile);
3879
3880 #define READNOW_READNEVER_HELP \
3881 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3882 immediately. This makes the command slower, but may make future operations\n\
3883 faster.\n\
3884 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3885 symbolic debug information."
3886
3887 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3888 Load symbol table from executable file FILE.\n\
3889 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3890 OFF is an optional offset which is added to each section address.\n\
3891 The `file' command can also load symbol tables, as well as setting the file\n\
3892 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3893 set_cmd_completer (c, filename_completer);
3894
3895 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3896 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3897 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3898 [-s SECT-NAME SECT-ADDR]...\n\
3899 ADDR is the starting address of the file's text.\n\
3900 Each '-s' argument provides a section name and address, and\n\
3901 should be specified if the data and bss segments are not contiguous\n\
3902 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3903 OFF is an optional offset which is added to the default load addresses\n\
3904 of all sections for which no other address was specified.\n"
3905 READNOW_READNEVER_HELP),
3906 &cmdlist);
3907 set_cmd_completer (c, filename_completer);
3908
3909 c = add_cmd ("remove-symbol-file", class_files,
3910 remove_symbol_file_command, _("\
3911 Remove a symbol file added via the add-symbol-file command.\n\
3912 Usage: remove-symbol-file FILENAME\n\
3913 remove-symbol-file -a ADDRESS\n\
3914 The file to remove can be identified by its filename or by an address\n\
3915 that lies within the boundaries of this symbol file in memory."),
3916 &cmdlist);
3917
3918 c = add_cmd ("load", class_files, load_command, _("\
3919 Dynamically load FILE into the running program.\n\
3920 FILE symbols are recorded for access from GDB.\n\
3921 Usage: load [FILE] [OFFSET]\n\
3922 An optional load OFFSET may also be given as a literal address.\n\
3923 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3924 on its own."), &cmdlist);
3925 set_cmd_completer (c, filename_completer);
3926
3927 add_prefix_cmd ("overlay", class_support, overlay_command,
3928 _("Commands for debugging overlays."), &overlaylist,
3929 "overlay ", 0, &cmdlist);
3930
3931 add_com_alias ("ovly", "overlay", class_alias, 1);
3932 add_com_alias ("ov", "overlay", class_alias, 1);
3933
3934 add_cmd ("map-overlay", class_support, map_overlay_command,
3935 _("Assert that an overlay section is mapped."), &overlaylist);
3936
3937 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3938 _("Assert that an overlay section is unmapped."), &overlaylist);
3939
3940 add_cmd ("list-overlays", class_support, list_overlays_command,
3941 _("List mappings of overlay sections."), &overlaylist);
3942
3943 add_cmd ("manual", class_support, overlay_manual_command,
3944 _("Enable overlay debugging."), &overlaylist);
3945 add_cmd ("off", class_support, overlay_off_command,
3946 _("Disable overlay debugging."), &overlaylist);
3947 add_cmd ("auto", class_support, overlay_auto_command,
3948 _("Enable automatic overlay debugging."), &overlaylist);
3949 add_cmd ("load-target", class_support, overlay_load_command,
3950 _("Read the overlay mapping state from the target."), &overlaylist);
3951
3952 /* Filename extension to source language lookup table: */
3953 add_setshow_string_noescape_cmd ("extension-language", class_files,
3954 &ext_args, _("\
3955 Set mapping between filename extension and source language."), _("\
3956 Show mapping between filename extension and source language."), _("\
3957 Usage: set extension-language .foo bar"),
3958 set_ext_lang_command,
3959 show_ext_args,
3960 &setlist, &showlist);
3961
3962 add_info ("extensions", info_ext_lang_command,
3963 _("All filename extensions associated with a source language."));
3964
3965 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3966 &debug_file_directory, _("\
3967 Set the directories where separate debug symbols are searched for."), _("\
3968 Show the directories where separate debug symbols are searched for."), _("\
3969 Separate debug symbols are first searched for in the same\n\
3970 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3971 and lastly at the path of the directory of the binary with\n\
3972 each global debug-file-directory component prepended."),
3973 NULL,
3974 show_debug_file_directory,
3975 &setlist, &showlist);
3976
3977 add_setshow_enum_cmd ("symbol-loading", no_class,
3978 print_symbol_loading_enums, &print_symbol_loading,
3979 _("\
3980 Set printing of symbol loading messages."), _("\
3981 Show printing of symbol loading messages."), _("\
3982 off == turn all messages off\n\
3983 brief == print messages for the executable,\n\
3984 and brief messages for shared libraries\n\
3985 full == print messages for the executable,\n\
3986 and messages for each shared library."),
3987 NULL,
3988 NULL,
3989 &setprintlist, &showprintlist);
3990
3991 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3992 &separate_debug_file_debug, _("\
3993 Set printing of separate debug info file search debug."), _("\
3994 Show printing of separate debug info file search debug."), _("\
3995 When on, GDB prints the searched locations while looking for separate debug \
3996 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3997
3998 #if GDB_SELF_TEST
3999 selftests::register_test
4000 ("filename_language", selftests::filename_language::test_filename_language);
4001 selftests::register_test
4002 ("set_ext_lang_command",
4003 selftests::filename_language::test_set_ext_lang_command);
4004 #endif
4005 }
This page took 0.142804 seconds and 5 git commands to generate.