Introduce gdb_argv, a class wrapper for buildargv
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void overlay_auto_command (char *, int);
97
98 static void overlay_manual_command (char *, int);
99
100 static void overlay_off_command (char *, int);
101
102 static void overlay_load_command (char *, int);
103
104 static void overlay_command (char *, int);
105
106 static void simple_free_overlay_table (void);
107
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
110
111 static int simple_read_overlay_table (void);
112
113 static int simple_overlay_update_1 (struct obj_section *);
114
115 static void info_ext_lang_command (char *args, int from_tty);
116
117 static void symfile_find_segment_sections (struct objfile *objfile);
118
119 void _initialize_symfile (void);
120
121 /* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
123 prepared to read. */
124
125 typedef struct
126 {
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132 } registered_sym_fns;
133
134 DEF_VEC_O (registered_sym_fns);
135
136 static VEC (registered_sym_fns) *symtab_fns = NULL;
137
138 /* Values for "set print symbol-loading". */
139
140 const char print_symbol_loading_off[] = "off";
141 const char print_symbol_loading_brief[] = "brief";
142 const char print_symbol_loading_full[] = "full";
143 static const char *print_symbol_loading_enums[] =
144 {
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149 };
150 static const char *print_symbol_loading = print_symbol_loading_full;
151
152 /* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
159 library symbols are not loaded, commands like "info fun" will *not*
160 report all the functions that are actually present. */
161
162 int auto_solib_add = 1;
163 \f
164
165 /* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173 int
174 print_symbol_loading_p (int from_tty, int exec, int full)
175 {
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188 }
189
190 /* True if we are reading a symbol table. */
191
192 int currently_reading_symtab = 0;
193
194 /* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
196
197 scoped_restore_tmpl<int>
198 increment_reading_symtab (void)
199 {
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
203 }
204
205 /* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214 void
215 find_lowest_section (bfd *abfd, asection *sect, void *obj)
216 {
217 asection **lowest = (asection **) obj;
218
219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229 }
230
231 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
234
235 struct section_addr_info *
236 alloc_section_addr_info (size_t num_sections)
237 {
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
245
246 return sap;
247 }
248
249 /* Build (allocate and populate) a section_addr_info struct from
250 an existing section table. */
251
252 extern struct section_addr_info *
253 build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
255 {
256 struct section_addr_info *sap;
257 const struct target_section *stp;
258 int oidx;
259
260 sap = alloc_section_addr_info (end - start);
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
268 && oidx < end - start)
269 {
270 sap->other[oidx].addr = stp->addr;
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
273 oidx++;
274 }
275 }
276
277 sap->num_sections = oidx;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in ABFD. */
283
284 static struct section_addr_info *
285 build_section_addr_info_from_bfd (bfd *abfd)
286 {
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
294 {
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
298 i++;
299 }
300
301 sap->num_sections = i;
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in OBJFILE. */
307
308 struct section_addr_info *
309 build_section_addr_info_from_objfile (const struct objfile *objfile)
310 {
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
318 for (i = 0; i < sap->num_sections; i++)
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325 }
326
327 /* Free all memory allocated by build_section_addr_info_from_section_table. */
328
329 extern void
330 free_section_addr_info (struct section_addr_info *sap)
331 {
332 int idx;
333
334 for (idx = 0; idx < sap->num_sections; idx++)
335 xfree (sap->other[idx].name);
336 xfree (sap);
337 }
338
339 /* Initialize OBJFILE's sect_index_* members. */
340
341 static void
342 init_objfile_sect_indices (struct objfile *objfile)
343 {
344 asection *sect;
345 int i;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
348 if (sect)
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
352 if (sect)
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
356 if (sect)
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
360 if (sect)
361 objfile->sect_index_rodata = sect->index;
362
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
398 }
399
400 /* The arguments to place_section. */
401
402 struct place_section_arg
403 {
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406 };
407
408 /* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
411 static void
412 place_section (bfd *abfd, asection *sect, void *obj)
413 {
414 struct place_section_arg *arg = (struct place_section_arg *) obj;
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
418
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
421 return;
422
423 /* If the user specified an offset, honor it. */
424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
428 start_addr = (arg->lowest + align - 1) & -align;
429
430 do {
431 asection *cur_sec;
432
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
460 break;
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
469 arg->lowest = start_addr + bfd_get_section_size (sect);
470 }
471
472 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
475
476 void
477 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
479 const struct section_addr_info *addrs)
480 {
481 int i;
482
483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
484
485 /* Now calculate offsets for section that were specified by the caller. */
486 for (i = 0; i < addrs->num_sections; i++)
487 {
488 const struct other_sections *osp;
489
490 osp = &addrs->other[i];
491 if (osp->sectindex == -1)
492 continue;
493
494 /* Record all sections in offsets. */
495 /* The section_offsets in the objfile are here filled in using
496 the BFD index. */
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499 }
500
501 /* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507 static const char *
508 addr_section_name (const char *s)
509 {
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516 }
517
518 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521 static int
522 addrs_section_compar (const void *ap, const void *bp)
523 {
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
526 int retval;
527
528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
529 if (retval)
530 return retval;
531
532 return a->sectindex - b->sectindex;
533 }
534
535 /* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538 static struct other_sections **
539 addrs_section_sort (struct section_addr_info *addrs)
540 {
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
546 for (i = 0; i < addrs->num_sections; i++)
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553 }
554
555 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
558
559 void
560 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561 {
562 asection *lower_sect;
563 CORE_ADDR lower_offset;
564 int i;
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
579 }
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
603
604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
610
611 while (*abfd_addrs_sorted
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
644 for (i = 0; i < addrs->num_sections; i++)
645 {
646 struct other_sections *sect = addrs_to_abfd_addrs[i];
647
648 if (sect)
649 {
650 /* This is the index used by BFD. */
651 addrs->other[i].sectindex = sect->sectindex;
652
653 if (addrs->other[i].addr != 0)
654 {
655 addrs->other[i].addr -= sect->addr;
656 lower_offset = addrs->other[i].addr;
657 }
658 else
659 addrs->other[i].addr = lower_offset;
660 }
661 else
662 {
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
681 || strcmp (sect_name, ".gnu.conflict") == 0
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
693 addrs->other[i].addr = 0;
694 addrs->other[i].sectindex = -1;
695 }
696 }
697
698 do_cleanups (my_cleanup);
699 }
700
701 /* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707 void
708 default_symfile_offsets (struct objfile *objfile,
709 const struct section_addr_info *addrs)
710 {
711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
717
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
780 offsets[cur_sec->index]);
781 offsets[cur_sec->index] = 0;
782 }
783 }
784 }
785
786 /* Remember the bfd indexes for the .text, .data, .bss and
787 .rodata sections. */
788 init_objfile_sect_indices (objfile);
789 }
790
791 /* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797 struct symfile_segment_data *
798 default_symfile_segments (bfd *abfd)
799 {
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
825 data = XCNEW (struct symfile_segment_data);
826 data->num_segments = 1;
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
829
830 num_sections = bfd_count_sections (abfd);
831 data->segment_info = XCNEWVEC (int, num_sections);
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853 }
854
855 /* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858 static void
859 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
860 {
861 (*objfile->sf->sym_read) (objfile, add_flags);
862 objfile->per_bfd->minsyms_read = true;
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
869 {
870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
871
872 if (abfd != NULL)
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
880 }
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884 }
885
886 /* Initialize entry point information for this objfile. */
887
888 static void
889 init_entry_point_info (struct objfile *objfile)
890 {
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
919 ei->entry_point_p = 0;
920 }
921
922 if (ei->entry_point_p)
923 {
924 struct obj_section *osect;
925 CORE_ADDR entry_point = ei->entry_point;
926 int found;
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
937 ei->entry_point
938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
949 ei->the_bfd_section_index
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
958 }
959 }
960
961 /* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
964 This function does not set the OBJFILE's entry-point info.
965
966 OBJFILE is where the symbols are to be read from.
967
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
977
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
981
982 static void
983 syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
985 symfile_add_flags add_flags)
986 {
987 struct section_addr_info *local_addr = NULL;
988 struct cleanup *old_chain;
989 const int mainline = add_flags & SYMFILE_MAINLINE;
990
991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
992
993 if (objfile->sf == NULL)
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
1007
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
1010 old_chain = make_cleanup_free_objfile (objfile);
1011
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
1014 no load address was specified. */
1015 if (! addrs)
1016 {
1017 local_addr = alloc_section_addr_info (1);
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
1022 if (mainline)
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
1025 will be cleaned up if an error occurs during symbol reading. */
1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
1033 gdb_assert (symfile_objfile == NULL);
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
1040
1041 (*objfile->sf->sym_new_init) (objfile);
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
1046 and assume that <addr> is where that got loaded.
1047
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
1050 if (addrs->num_sections > 0)
1051 addr_info_make_relative (addrs, objfile->obfd);
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
1055 initial symbol reading for this file. */
1056
1057 (*objfile->sf->sym_init) (objfile);
1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1059
1060 (*objfile->sf->sym_offsets) (objfile, addrs);
1061
1062 read_symbols (objfile, add_flags);
1063
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
1067 xfree (local_addr);
1068 }
1069
1070 /* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
1073 static void
1074 syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
1076 symfile_add_flags add_flags)
1077 {
1078 syms_from_objfile_1 (objfile, addrs, add_flags);
1079 init_entry_point_info (objfile);
1080 }
1081
1082 /* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1085
1086 static void
1087 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1088 {
1089 /* If this is the main symbol file we have to clean up all users of the
1090 old main symbol file. Otherwise it is sufficient to fixup all the
1091 breakpoints that may have been redefined by this symbol file. */
1092 if (add_flags & SYMFILE_MAINLINE)
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
1097 clear_symtab_users (add_flags);
1098 }
1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1100 {
1101 breakpoint_re_set ();
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1106 }
1107
1108 /* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1112 A new reference is acquired by this function.
1113
1114 For NAME description see allocate_objfile's definition.
1115
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
1118
1119 ADDRS is as described for syms_from_objfile_1, above.
1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1121
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
1125 Upon success, returns a pointer to the objfile that was added.
1126 Upon failure, jumps back to command level (never returns). */
1127
1128 static struct objfile *
1129 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
1131 struct section_addr_info *addrs,
1132 objfile_flags flags, struct objfile *parent)
1133 {
1134 struct objfile *objfile;
1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
1136 const int mainline = add_flags & SYMFILE_MAINLINE;
1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
1140
1141 if (readnow_symbol_files)
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
1146
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && mainline
1152 && from_tty
1153 && !query (_("Load new symbol table from \"%s\"? "), name))
1154 error (_("Not confirmed."));
1155
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
1159
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
1165 performed, or need to read an unmapped symbol table. */
1166 if (should_print)
1167 {
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
1170 else
1171 {
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
1175 }
1176 }
1177 syms_from_objfile (objfile, addrs, add_flags);
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
1182 all partial symbol tables for this objfile if so. */
1183
1184 if ((flags & OBJF_READNOW))
1185 {
1186 if (should_print)
1187 {
1188 printf_unfiltered (_("expanding to full symbols..."));
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
1195 }
1196
1197 if (should_print && !objfile_has_symbols (objfile))
1198 {
1199 wrap_here ("");
1200 printf_unfiltered (_("(no debugging symbols found)..."));
1201 wrap_here ("");
1202 }
1203
1204 if (should_print)
1205 {
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
1208 else
1209 printf_unfiltered (_("done.\n"));
1210 }
1211
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
1217 if (objfile->sf == NULL)
1218 {
1219 observer_notify_new_objfile (objfile);
1220 return objfile; /* No symbols. */
1221 }
1222
1223 finish_new_objfile (objfile, add_flags);
1224
1225 observer_notify_new_objfile (objfile);
1226
1227 bfd_cache_close_all ();
1228 return (objfile);
1229 }
1230
1231 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
1233
1234 void
1235 symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
1237 struct objfile *objfile)
1238 {
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
1247
1248 symbol_file_add_with_addrs
1249 (bfd, name, symfile_flags, sap,
1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1251 | OBJF_USERLOADED),
1252 objfile);
1253
1254 do_cleanups (my_cleanup);
1255 }
1256
1257 /* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
1259 See symbol_file_add_with_addrs's comments for details. */
1260
1261 struct objfile *
1262 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
1264 struct section_addr_info *addrs,
1265 objfile_flags flags, struct objfile *parent)
1266 {
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
1269 }
1270
1271 /* Process a symbol file, as either the main file or as a dynamically
1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
1277 {
1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1279
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
1282 }
1283
1284 /* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
1291
1292 void
1293 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1294 {
1295 symbol_file_add_main_1 (args, add_flags, 0);
1296 }
1297
1298 static void
1299 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
1301 {
1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1303
1304 symbol_file_add (args, add_flags, NULL, flags);
1305
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
1310 if ((add_flags & SYMFILE_NO_READ) == 0)
1311 set_initial_language ();
1312 }
1313
1314 void
1315 symbol_file_clear (int from_tty)
1316 {
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
1321 objfile_name (symfile_objfile))
1322 : !query (_("Discard symbol table? "))))
1323 error (_("Not confirmed."));
1324
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
1327 no_shared_libraries (NULL, from_tty);
1328
1329 free_all_objfiles ();
1330
1331 gdb_assert (symfile_objfile == NULL);
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1334 }
1335
1336 /* See symfile.h. */
1337
1338 int separate_debug_file_debug = 0;
1339
1340 static int
1341 separate_debug_file_exists (const char *name, unsigned long crc,
1342 struct objfile *parent_objfile)
1343 {
1344 unsigned long file_crc;
1345 int file_crc_p;
1346 struct stat parent_stat, abfd_stat;
1347 int verified_as_different;
1348
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1353 the separate debug infos with the same basename can exist. */
1354
1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1356 return 0;
1357
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1360
1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1362
1363 if (abfd == NULL)
1364 return 0;
1365
1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
1367
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
1376
1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1380 {
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
1383 return 0;
1384 verified_as_different = 1;
1385 }
1386 else
1387 verified_as_different = 0;
1388
1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1390
1391 if (!file_crc_p)
1392 return 0;
1393
1394 if (crc != file_crc)
1395 {
1396 unsigned long parent_crc;
1397
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
1401
1402 if (!verified_as_different)
1403 {
1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1405 return 0;
1406 }
1407
1408 if (verified_as_different || parent_crc != file_crc)
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
1411 name, objfile_name (parent_objfile));
1412
1413 return 0;
1414 }
1415
1416 return 1;
1417 }
1418
1419 char *debug_file_directory = NULL;
1420 static void
1421 show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423 {
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
1427 value);
1428 }
1429
1430 #if ! defined (DEBUG_SUBDIRECTORY)
1431 #define DEBUG_SUBDIRECTORY ".debug"
1432 #endif
1433
1434 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1440
1441 static char *
1442 find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
1446 {
1447 char *debugdir;
1448 char *debugfile;
1449 int i;
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1452 int ix;
1453
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1457
1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1459 i = strlen (dir);
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1462
1463 debugfile
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1465 + i
1466 + strlen (DEBUG_SUBDIRECTORY)
1467 + strlen ("/")
1468 + strlen (debuglink)
1469 + 1);
1470
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1473 strcat (debugfile, debuglink);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the global debugfile directories.
1488
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
1491
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1494
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1496 {
1497 strcpy (debugfile, debugdir);
1498 strcat (debugfile, "/");
1499 strcat (debugfile, dir);
1500 strcat (debugfile, debuglink);
1501
1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
1503 {
1504 do_cleanups (back_to);
1505 return debugfile;
1506 }
1507
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
1512 strlen (gdb_sysroot)) == 0
1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1514 {
1515 strcpy (debugfile, debugdir);
1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1517 strcat (debugfile, "/");
1518 strcat (debugfile, debuglink);
1519
1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
1521 {
1522 do_cleanups (back_to);
1523 return debugfile;
1524 }
1525 }
1526 }
1527
1528 do_cleanups (back_to);
1529 xfree (debugfile);
1530 return NULL;
1531 }
1532
1533 /* Modify PATH to contain only "[/]directory/" part of PATH.
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1536
1537 static void
1538 terminate_after_last_dir_separator (char *path)
1539 {
1540 int i;
1541
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1546 break;
1547
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1549 path[i + 1] = '\0';
1550 }
1551
1552 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1554
1555 char *
1556 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1557 {
1558 char *debuglink;
1559 char *dir, *canon_dir;
1560 char *debugfile;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1563
1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1565
1566 if (debuglink == NULL)
1567 {
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1570 return NULL;
1571 }
1572
1573 cleanups = make_cleanup (xfree, debuglink);
1574 dir = xstrdup (objfile_name (objfile));
1575 make_cleanup (xfree, dir);
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1578
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1580 crc32, objfile);
1581 xfree (canon_dir);
1582
1583 if (debugfile == NULL)
1584 {
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1592 {
1593 char *symlink_dir;
1594
1595 symlink_dir = lrealpath (objfile_name (objfile));
1596 if (symlink_dir != NULL)
1597 {
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1601 {
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1604 symlink_dir,
1605 debuglink,
1606 crc32,
1607 objfile);
1608 }
1609 }
1610 }
1611 }
1612
1613 do_cleanups (cleanups);
1614 return debugfile;
1615 }
1616
1617 /* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
1619 the command is rather bizarre:
1620
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1624
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1627
1628 3. The order of options matters, which is contrary to GNU
1629 conventions (because it is confusing and inconvenient). */
1630
1631 void
1632 symbol_file_command (char *args, int from_tty)
1633 {
1634 dont_repeat ();
1635
1636 if (args == NULL)
1637 {
1638 symbol_file_clear (from_tty);
1639 }
1640 else
1641 {
1642 objfile_flags flags = OBJF_USERLOADED;
1643 symfile_add_flags add_flags = 0;
1644 struct cleanup *cleanups;
1645 char *name = NULL;
1646
1647 if (from_tty)
1648 add_flags |= SYMFILE_VERBOSE;
1649
1650 gdb_argv built_argv (args);
1651 for (char *arg : built_argv)
1652 {
1653 if (strcmp (arg, "-readnow") == 0)
1654 flags |= OBJF_READNOW;
1655 else if (*arg == '-')
1656 error (_("unknown option `%s'"), arg);
1657 else
1658 {
1659 symbol_file_add_main_1 (arg, add_flags, flags);
1660 name = arg;
1661 }
1662 }
1663
1664 if (name == NULL)
1665 error (_("no symbol file name was specified"));
1666 }
1667 }
1668
1669 /* Set the initial language.
1670
1671 FIXME: A better solution would be to record the language in the
1672 psymtab when reading partial symbols, and then use it (if known) to
1673 set the language. This would be a win for formats that encode the
1674 language in an easily discoverable place, such as DWARF. For
1675 stabs, we can jump through hoops looking for specially named
1676 symbols or try to intuit the language from the specific type of
1677 stabs we find, but we can't do that until later when we read in
1678 full symbols. */
1679
1680 void
1681 set_initial_language (void)
1682 {
1683 enum language lang = main_language ();
1684
1685 if (lang == language_unknown)
1686 {
1687 char *name = main_name ();
1688 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1689
1690 if (sym != NULL)
1691 lang = SYMBOL_LANGUAGE (sym);
1692 }
1693
1694 if (lang == language_unknown)
1695 {
1696 /* Make C the default language */
1697 lang = language_c;
1698 }
1699
1700 set_language (lang);
1701 expected_language = current_language; /* Don't warn the user. */
1702 }
1703
1704 /* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
1708
1709 gdb_bfd_ref_ptr
1710 symfile_bfd_open (const char *name)
1711 {
1712 int desc = -1;
1713 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1714
1715 if (!is_target_filename (name))
1716 {
1717 char *expanded_name, *absolute_name;
1718
1719 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1720
1721 /* Look down path for it, allocate 2nd new malloc'd copy. */
1722 desc = openp (getenv ("PATH"),
1723 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1724 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1725 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1726 if (desc < 0)
1727 {
1728 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1729
1730 strcat (strcpy (exename, expanded_name), ".exe");
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 exename, O_RDONLY | O_BINARY, &absolute_name);
1734 }
1735 #endif
1736 if (desc < 0)
1737 {
1738 make_cleanup (xfree, expanded_name);
1739 perror_with_name (expanded_name);
1740 }
1741
1742 xfree (expanded_name);
1743 make_cleanup (xfree, absolute_name);
1744 name = absolute_name;
1745 }
1746
1747 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1748 if (sym_bfd == NULL)
1749 error (_("`%s': can't open to read symbols: %s."), name,
1750 bfd_errmsg (bfd_get_error ()));
1751
1752 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1753 bfd_set_cacheable (sym_bfd.get (), 1);
1754
1755 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1756 error (_("`%s': can't read symbols: %s."), name,
1757 bfd_errmsg (bfd_get_error ()));
1758
1759 do_cleanups (back_to);
1760
1761 return sym_bfd;
1762 }
1763
1764 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
1767 int
1768 get_section_index (struct objfile *objfile, const char *section_name)
1769 {
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1771
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776 }
1777
1778 /* Link SF into the global symtab_fns list.
1779 FLAVOUR is the file format that SF handles.
1780 Called on startup by the _initialize routine in each object file format
1781 reader, to register information about each format the reader is prepared
1782 to handle. */
1783
1784 void
1785 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1786 {
1787 registered_sym_fns fns = { flavour, sf };
1788
1789 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1790 }
1791
1792 /* Initialize OBJFILE to read symbols from its associated BFD. It
1793 either returns or calls error(). The result is an initialized
1794 struct sym_fns in the objfile structure, that contains cached
1795 information about the symbol file. */
1796
1797 static const struct sym_fns *
1798 find_sym_fns (bfd *abfd)
1799 {
1800 registered_sym_fns *rsf;
1801 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1802 int i;
1803
1804 if (our_flavour == bfd_target_srec_flavour
1805 || our_flavour == bfd_target_ihex_flavour
1806 || our_flavour == bfd_target_tekhex_flavour)
1807 return NULL; /* No symbols. */
1808
1809 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1810 if (our_flavour == rsf->sym_flavour)
1811 return rsf->sym_fns;
1812
1813 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1814 bfd_get_target (abfd));
1815 }
1816 \f
1817
1818 /* This function runs the load command of our current target. */
1819
1820 static void
1821 load_command (char *arg, int from_tty)
1822 {
1823 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1824
1825 dont_repeat ();
1826
1827 /* The user might be reloading because the binary has changed. Take
1828 this opportunity to check. */
1829 reopen_exec_file ();
1830 reread_symbols ();
1831
1832 if (arg == NULL)
1833 {
1834 char *parg;
1835 int count = 0;
1836
1837 parg = arg = get_exec_file (1);
1838
1839 /* Count how many \ " ' tab space there are in the name. */
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 parg++;
1843 count++;
1844 }
1845
1846 if (count)
1847 {
1848 /* We need to quote this string so buildargv can pull it apart. */
1849 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1850 char *ptemp = temp;
1851 char *prev;
1852
1853 make_cleanup (xfree, temp);
1854
1855 prev = parg = arg;
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 strncpy (ptemp, prev, parg - prev);
1859 ptemp += parg - prev;
1860 prev = parg++;
1861 *ptemp++ = '\\';
1862 }
1863 strcpy (ptemp, prev);
1864
1865 arg = temp;
1866 }
1867 }
1868
1869 target_load (arg, from_tty);
1870
1871 /* After re-loading the executable, we don't really know which
1872 overlays are mapped any more. */
1873 overlay_cache_invalid = 1;
1874
1875 do_cleanups (cleanup);
1876 }
1877
1878 /* This version of "load" should be usable for any target. Currently
1879 it is just used for remote targets, not inftarg.c or core files,
1880 on the theory that only in that case is it useful.
1881
1882 Avoiding xmodem and the like seems like a win (a) because we don't have
1883 to worry about finding it, and (b) On VMS, fork() is very slow and so
1884 we don't want to run a subprocess. On the other hand, I'm not sure how
1885 performance compares. */
1886
1887 static int validate_download = 0;
1888
1889 /* Callback service function for generic_load (bfd_map_over_sections). */
1890
1891 static void
1892 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1893 {
1894 bfd_size_type *sum = (bfd_size_type *) data;
1895
1896 *sum += bfd_get_section_size (asec);
1897 }
1898
1899 /* Opaque data for load_section_callback. */
1900 struct load_section_data {
1901 CORE_ADDR load_offset;
1902 struct load_progress_data *progress_data;
1903 VEC(memory_write_request_s) *requests;
1904 };
1905
1906 /* Opaque data for load_progress. */
1907 struct load_progress_data {
1908 /* Cumulative data. */
1909 unsigned long write_count;
1910 unsigned long data_count;
1911 bfd_size_type total_size;
1912 };
1913
1914 /* Opaque data for load_progress for a single section. */
1915 struct load_progress_section_data {
1916 struct load_progress_data *cumulative;
1917
1918 /* Per-section data. */
1919 const char *section_name;
1920 ULONGEST section_sent;
1921 ULONGEST section_size;
1922 CORE_ADDR lma;
1923 gdb_byte *buffer;
1924 };
1925
1926 /* Target write callback routine for progress reporting. */
1927
1928 static void
1929 load_progress (ULONGEST bytes, void *untyped_arg)
1930 {
1931 struct load_progress_section_data *args
1932 = (struct load_progress_section_data *) untyped_arg;
1933 struct load_progress_data *totals;
1934
1935 if (args == NULL)
1936 /* Writing padding data. No easy way to get at the cumulative
1937 stats, so just ignore this. */
1938 return;
1939
1940 totals = args->cumulative;
1941
1942 if (bytes == 0 && args->section_sent == 0)
1943 {
1944 /* The write is just starting. Let the user know we've started
1945 this section. */
1946 current_uiout->message ("Loading section %s, size %s lma %s\n",
1947 args->section_name,
1948 hex_string (args->section_size),
1949 paddress (target_gdbarch (), args->lma));
1950 return;
1951 }
1952
1953 if (validate_download)
1954 {
1955 /* Broken memories and broken monitors manifest themselves here
1956 when bring new computers to life. This doubles already slow
1957 downloads. */
1958 /* NOTE: cagney/1999-10-18: A more efficient implementation
1959 might add a verify_memory() method to the target vector and
1960 then use that. remote.c could implement that method using
1961 the ``qCRC'' packet. */
1962 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1963 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1964
1965 if (target_read_memory (args->lma, check, bytes) != 0)
1966 error (_("Download verify read failed at %s"),
1967 paddress (target_gdbarch (), args->lma));
1968 if (memcmp (args->buffer, check, bytes) != 0)
1969 error (_("Download verify compare failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 do_cleanups (verify_cleanups);
1972 }
1973 totals->data_count += bytes;
1974 args->lma += bytes;
1975 args->buffer += bytes;
1976 totals->write_count += 1;
1977 args->section_sent += bytes;
1978 if (check_quit_flag ()
1979 || (deprecated_ui_load_progress_hook != NULL
1980 && deprecated_ui_load_progress_hook (args->section_name,
1981 args->section_sent)))
1982 error (_("Canceled the download"));
1983
1984 if (deprecated_show_load_progress != NULL)
1985 deprecated_show_load_progress (args->section_name,
1986 args->section_sent,
1987 args->section_size,
1988 totals->data_count,
1989 totals->total_size);
1990 }
1991
1992 /* Callback service function for generic_load (bfd_map_over_sections). */
1993
1994 static void
1995 load_section_callback (bfd *abfd, asection *asec, void *data)
1996 {
1997 struct memory_write_request *new_request;
1998 struct load_section_data *args = (struct load_section_data *) data;
1999 struct load_progress_section_data *section_data;
2000 bfd_size_type size = bfd_get_section_size (asec);
2001 gdb_byte *buffer;
2002 const char *sect_name = bfd_get_section_name (abfd, asec);
2003
2004 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2005 return;
2006
2007 if (size == 0)
2008 return;
2009
2010 new_request = VEC_safe_push (memory_write_request_s,
2011 args->requests, NULL);
2012 memset (new_request, 0, sizeof (struct memory_write_request));
2013 section_data = XCNEW (struct load_progress_section_data);
2014 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2015 new_request->end = new_request->begin + size; /* FIXME Should size
2016 be in instead? */
2017 new_request->data = (gdb_byte *) xmalloc (size);
2018 new_request->baton = section_data;
2019
2020 buffer = new_request->data;
2021
2022 section_data->cumulative = args->progress_data;
2023 section_data->section_name = sect_name;
2024 section_data->section_size = size;
2025 section_data->lma = new_request->begin;
2026 section_data->buffer = buffer;
2027
2028 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2029 }
2030
2031 /* Clean up an entire memory request vector, including load
2032 data and progress records. */
2033
2034 static void
2035 clear_memory_write_data (void *arg)
2036 {
2037 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2038 VEC(memory_write_request_s) *vec = *vec_p;
2039 int i;
2040 struct memory_write_request *mr;
2041
2042 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2043 {
2044 xfree (mr->data);
2045 xfree (mr->baton);
2046 }
2047 VEC_free (memory_write_request_s, vec);
2048 }
2049
2050 static void print_transfer_performance (struct ui_file *stream,
2051 unsigned long data_count,
2052 unsigned long write_count,
2053 std::chrono::steady_clock::duration d);
2054
2055 void
2056 generic_load (const char *args, int from_tty)
2057 {
2058 char *filename;
2059 struct cleanup *old_cleanups;
2060 struct load_section_data cbdata;
2061 struct load_progress_data total_progress;
2062 struct ui_out *uiout = current_uiout;
2063
2064 CORE_ADDR entry;
2065
2066 memset (&cbdata, 0, sizeof (cbdata));
2067 memset (&total_progress, 0, sizeof (total_progress));
2068 cbdata.progress_data = &total_progress;
2069
2070 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2071
2072 if (args == NULL)
2073 error_no_arg (_("file to load"));
2074
2075 gdb_argv argv (args);
2076
2077 filename = tilde_expand (argv[0]);
2078 make_cleanup (xfree, filename);
2079
2080 if (argv[1] != NULL)
2081 {
2082 const char *endptr;
2083
2084 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2085
2086 /* If the last word was not a valid number then
2087 treat it as a file name with spaces in. */
2088 if (argv[1] == endptr)
2089 error (_("Invalid download offset:%s."), argv[1]);
2090
2091 if (argv[2] != NULL)
2092 error (_("Too many parameters."));
2093 }
2094
2095 /* Open the file for loading. */
2096 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
2097 if (loadfile_bfd == NULL)
2098 {
2099 perror_with_name (filename);
2100 return;
2101 }
2102
2103 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2104 {
2105 error (_("\"%s\" is not an object file: %s"), filename,
2106 bfd_errmsg (bfd_get_error ()));
2107 }
2108
2109 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2110 (void *) &total_progress.total_size);
2111
2112 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2113
2114 using namespace std::chrono;
2115
2116 steady_clock::time_point start_time = steady_clock::now ();
2117
2118 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2119 load_progress) != 0)
2120 error (_("Load failed"));
2121
2122 steady_clock::time_point end_time = steady_clock::now ();
2123
2124 entry = bfd_get_start_address (loadfile_bfd.get ());
2125 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2126 uiout->text ("Start address ");
2127 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2128 uiout->text (", load size ");
2129 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2130 uiout->text ("\n");
2131 regcache_write_pc (get_current_regcache (), entry);
2132
2133 /* Reset breakpoints, now that we have changed the load image. For
2134 instance, breakpoints may have been set (or reset, by
2135 post_create_inferior) while connected to the target but before we
2136 loaded the program. In that case, the prologue analyzer could
2137 have read instructions from the target to find the right
2138 breakpoint locations. Loading has changed the contents of that
2139 memory. */
2140
2141 breakpoint_re_set ();
2142
2143 print_transfer_performance (gdb_stdout, total_progress.data_count,
2144 total_progress.write_count,
2145 end_time - start_time);
2146
2147 do_cleanups (old_cleanups);
2148 }
2149
2150 /* Report on STREAM the performance of a memory transfer operation,
2151 such as 'load'. DATA_COUNT is the number of bytes transferred.
2152 WRITE_COUNT is the number of separate write operations, or 0, if
2153 that information is not available. TIME is how long the operation
2154 lasted. */
2155
2156 static void
2157 print_transfer_performance (struct ui_file *stream,
2158 unsigned long data_count,
2159 unsigned long write_count,
2160 std::chrono::steady_clock::duration time)
2161 {
2162 using namespace std::chrono;
2163 struct ui_out *uiout = current_uiout;
2164
2165 milliseconds ms = duration_cast<milliseconds> (time);
2166
2167 uiout->text ("Transfer rate: ");
2168 if (ms.count () > 0)
2169 {
2170 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2171
2172 if (uiout->is_mi_like_p ())
2173 {
2174 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2175 uiout->text (" bits/sec");
2176 }
2177 else if (rate < 1024)
2178 {
2179 uiout->field_fmt ("transfer-rate", "%lu", rate);
2180 uiout->text (" bytes/sec");
2181 }
2182 else
2183 {
2184 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2185 uiout->text (" KB/sec");
2186 }
2187 }
2188 else
2189 {
2190 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2191 uiout->text (" bits in <1 sec");
2192 }
2193 if (write_count > 0)
2194 {
2195 uiout->text (", ");
2196 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2197 uiout->text (" bytes/write");
2198 }
2199 uiout->text (".\n");
2200 }
2201
2202 /* This function allows the addition of incrementally linked object files.
2203 It does not modify any state in the target, only in the debugger. */
2204 /* Note: ezannoni 2000-04-13 This function/command used to have a
2205 special case syntax for the rombug target (Rombug is the boot
2206 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2207 rombug case, the user doesn't need to supply a text address,
2208 instead a call to target_link() (in target.c) would supply the
2209 value to use. We are now discontinuing this type of ad hoc syntax. */
2210
2211 static void
2212 add_symbol_file_command (char *args, int from_tty)
2213 {
2214 struct gdbarch *gdbarch = get_current_arch ();
2215 char *filename = NULL;
2216 char *arg;
2217 int section_index = 0;
2218 int argcnt = 0;
2219 int sec_num = 0;
2220 int i;
2221 int expecting_sec_name = 0;
2222 int expecting_sec_addr = 0;
2223 struct objfile *objf;
2224 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2225 symfile_add_flags add_flags = 0;
2226
2227 if (from_tty)
2228 add_flags |= SYMFILE_VERBOSE;
2229
2230 struct sect_opt
2231 {
2232 const char *name;
2233 const char *value;
2234 };
2235
2236 struct section_addr_info *section_addrs;
2237 struct sect_opt *sect_opts = NULL;
2238 size_t num_sect_opts = 0;
2239 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2240
2241 num_sect_opts = 16;
2242 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2243
2244 dont_repeat ();
2245
2246 if (args == NULL)
2247 error (_("add-symbol-file takes a file name and an address"));
2248
2249 gdb_argv argv (args);
2250
2251 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2252 {
2253 /* Process the argument. */
2254 if (argcnt == 0)
2255 {
2256 /* The first argument is the file name. */
2257 filename = tilde_expand (arg);
2258 make_cleanup (xfree, filename);
2259 }
2260 else if (argcnt == 1)
2261 {
2262 /* The second argument is always the text address at which
2263 to load the program. */
2264 sect_opts[section_index].name = ".text";
2265 sect_opts[section_index].value = arg;
2266 if (++section_index >= num_sect_opts)
2267 {
2268 num_sect_opts *= 2;
2269 sect_opts = ((struct sect_opt *)
2270 xrealloc (sect_opts,
2271 num_sect_opts
2272 * sizeof (struct sect_opt)));
2273 }
2274 }
2275 else
2276 {
2277 /* It's an option (starting with '-') or it's an argument
2278 to an option. */
2279 if (expecting_sec_name)
2280 {
2281 sect_opts[section_index].name = arg;
2282 expecting_sec_name = 0;
2283 }
2284 else if (expecting_sec_addr)
2285 {
2286 sect_opts[section_index].value = arg;
2287 expecting_sec_addr = 0;
2288 if (++section_index >= num_sect_opts)
2289 {
2290 num_sect_opts *= 2;
2291 sect_opts = ((struct sect_opt *)
2292 xrealloc (sect_opts,
2293 num_sect_opts
2294 * sizeof (struct sect_opt)));
2295 }
2296 }
2297 else if (strcmp (arg, "-readnow") == 0)
2298 flags |= OBJF_READNOW;
2299 else if (strcmp (arg, "-s") == 0)
2300 {
2301 expecting_sec_name = 1;
2302 expecting_sec_addr = 1;
2303 }
2304 else
2305 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2306 " [-readnow] [-s <secname> <addr>]*"));
2307 }
2308 }
2309
2310 /* This command takes at least two arguments. The first one is a
2311 filename, and the second is the address where this file has been
2312 loaded. Abort now if this address hasn't been provided by the
2313 user. */
2314 if (section_index < 1)
2315 error (_("The address where %s has been loaded is missing"), filename);
2316
2317 /* Print the prompt for the query below. And save the arguments into
2318 a sect_addr_info structure to be passed around to other
2319 functions. We have to split this up into separate print
2320 statements because hex_string returns a local static
2321 string. */
2322
2323 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2324 section_addrs = alloc_section_addr_info (section_index);
2325 make_cleanup (xfree, section_addrs);
2326 for (i = 0; i < section_index; i++)
2327 {
2328 CORE_ADDR addr;
2329 const char *val = sect_opts[i].value;
2330 const char *sec = sect_opts[i].name;
2331
2332 addr = parse_and_eval_address (val);
2333
2334 /* Here we store the section offsets in the order they were
2335 entered on the command line. */
2336 section_addrs->other[sec_num].name = (char *) sec;
2337 section_addrs->other[sec_num].addr = addr;
2338 printf_unfiltered ("\t%s_addr = %s\n", sec,
2339 paddress (gdbarch, addr));
2340 sec_num++;
2341
2342 /* The object's sections are initialized when a
2343 call is made to build_objfile_section_table (objfile).
2344 This happens in reread_symbols.
2345 At this point, we don't know what file type this is,
2346 so we can't determine what section names are valid. */
2347 }
2348 section_addrs->num_sections = sec_num;
2349
2350 if (from_tty && (!query ("%s", "")))
2351 error (_("Not confirmed."));
2352
2353 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2354
2355 add_target_sections_of_objfile (objf);
2356
2357 /* Getting new symbols may change our opinion about what is
2358 frameless. */
2359 reinit_frame_cache ();
2360 do_cleanups (my_cleanups);
2361 }
2362 \f
2363
2364 /* This function removes a symbol file that was added via add-symbol-file. */
2365
2366 static void
2367 remove_symbol_file_command (char *args, int from_tty)
2368 {
2369 struct objfile *objf = NULL;
2370 struct cleanup *my_cleanups;
2371 struct program_space *pspace = current_program_space;
2372
2373 dont_repeat ();
2374
2375 if (args == NULL)
2376 error (_("remove-symbol-file: no symbol file provided"));
2377
2378 my_cleanups = make_cleanup (null_cleanup, NULL);
2379
2380 gdb_argv argv (args);
2381
2382 if (strcmp (argv[0], "-a") == 0)
2383 {
2384 /* Interpret the next argument as an address. */
2385 CORE_ADDR addr;
2386
2387 if (argv[1] == NULL)
2388 error (_("Missing address argument"));
2389
2390 if (argv[2] != NULL)
2391 error (_("Junk after %s"), argv[1]);
2392
2393 addr = parse_and_eval_address (argv[1]);
2394
2395 ALL_OBJFILES (objf)
2396 {
2397 if ((objf->flags & OBJF_USERLOADED) != 0
2398 && (objf->flags & OBJF_SHARED) != 0
2399 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2400 break;
2401 }
2402 }
2403 else if (argv[0] != NULL)
2404 {
2405 /* Interpret the current argument as a file name. */
2406 char *filename;
2407
2408 if (argv[1] != NULL)
2409 error (_("Junk after %s"), argv[0]);
2410
2411 filename = tilde_expand (argv[0]);
2412 make_cleanup (xfree, filename);
2413
2414 ALL_OBJFILES (objf)
2415 {
2416 if ((objf->flags & OBJF_USERLOADED) != 0
2417 && (objf->flags & OBJF_SHARED) != 0
2418 && objf->pspace == pspace
2419 && filename_cmp (filename, objfile_name (objf)) == 0)
2420 break;
2421 }
2422 }
2423
2424 if (objf == NULL)
2425 error (_("No symbol file found"));
2426
2427 if (from_tty
2428 && !query (_("Remove symbol table from file \"%s\"? "),
2429 objfile_name (objf)))
2430 error (_("Not confirmed."));
2431
2432 free_objfile (objf);
2433 clear_symtab_users (0);
2434
2435 do_cleanups (my_cleanups);
2436 }
2437
2438 /* Re-read symbols if a symbol-file has changed. */
2439
2440 void
2441 reread_symbols (void)
2442 {
2443 struct objfile *objfile;
2444 long new_modtime;
2445 struct stat new_statbuf;
2446 int res;
2447 std::vector<struct objfile *> new_objfiles;
2448
2449 /* With the addition of shared libraries, this should be modified,
2450 the load time should be saved in the partial symbol tables, since
2451 different tables may come from different source files. FIXME.
2452 This routine should then walk down each partial symbol table
2453 and see if the symbol table that it originates from has been changed. */
2454
2455 for (objfile = object_files; objfile; objfile = objfile->next)
2456 {
2457 if (objfile->obfd == NULL)
2458 continue;
2459
2460 /* Separate debug objfiles are handled in the main objfile. */
2461 if (objfile->separate_debug_objfile_backlink)
2462 continue;
2463
2464 /* If this object is from an archive (what you usually create with
2465 `ar', often called a `static library' on most systems, though
2466 a `shared library' on AIX is also an archive), then you should
2467 stat on the archive name, not member name. */
2468 if (objfile->obfd->my_archive)
2469 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2470 else
2471 res = stat (objfile_name (objfile), &new_statbuf);
2472 if (res != 0)
2473 {
2474 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2475 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2476 objfile_name (objfile));
2477 continue;
2478 }
2479 new_modtime = new_statbuf.st_mtime;
2480 if (new_modtime != objfile->mtime)
2481 {
2482 struct cleanup *old_cleanups;
2483 struct section_offsets *offsets;
2484 int num_offsets;
2485 char *original_name;
2486
2487 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2488 objfile_name (objfile));
2489
2490 /* There are various functions like symbol_file_add,
2491 symfile_bfd_open, syms_from_objfile, etc., which might
2492 appear to do what we want. But they have various other
2493 effects which we *don't* want. So we just do stuff
2494 ourselves. We don't worry about mapped files (for one thing,
2495 any mapped file will be out of date). */
2496
2497 /* If we get an error, blow away this objfile (not sure if
2498 that is the correct response for things like shared
2499 libraries). */
2500 old_cleanups = make_cleanup_free_objfile (objfile);
2501 /* We need to do this whenever any symbols go away. */
2502 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2503
2504 if (exec_bfd != NULL
2505 && filename_cmp (bfd_get_filename (objfile->obfd),
2506 bfd_get_filename (exec_bfd)) == 0)
2507 {
2508 /* Reload EXEC_BFD without asking anything. */
2509
2510 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2511 }
2512
2513 /* Keep the calls order approx. the same as in free_objfile. */
2514
2515 /* Free the separate debug objfiles. It will be
2516 automatically recreated by sym_read. */
2517 free_objfile_separate_debug (objfile);
2518
2519 /* Remove any references to this objfile in the global
2520 value lists. */
2521 preserve_values (objfile);
2522
2523 /* Nuke all the state that we will re-read. Much of the following
2524 code which sets things to NULL really is necessary to tell
2525 other parts of GDB that there is nothing currently there.
2526
2527 Try to keep the freeing order compatible with free_objfile. */
2528
2529 if (objfile->sf != NULL)
2530 {
2531 (*objfile->sf->sym_finish) (objfile);
2532 }
2533
2534 clear_objfile_data (objfile);
2535
2536 /* Clean up any state BFD has sitting around. */
2537 {
2538 gdb_bfd_ref_ptr obfd (objfile->obfd);
2539 char *obfd_filename;
2540
2541 obfd_filename = bfd_get_filename (objfile->obfd);
2542 /* Open the new BFD before freeing the old one, so that
2543 the filename remains live. */
2544 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2545 objfile->obfd = temp.release ();
2546 if (objfile->obfd == NULL)
2547 error (_("Can't open %s to read symbols."), obfd_filename);
2548 }
2549
2550 original_name = xstrdup (objfile->original_name);
2551 make_cleanup (xfree, original_name);
2552
2553 /* bfd_openr sets cacheable to true, which is what we want. */
2554 if (!bfd_check_format (objfile->obfd, bfd_object))
2555 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2556 bfd_errmsg (bfd_get_error ()));
2557
2558 /* Save the offsets, we will nuke them with the rest of the
2559 objfile_obstack. */
2560 num_offsets = objfile->num_sections;
2561 offsets = ((struct section_offsets *)
2562 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2563 memcpy (offsets, objfile->section_offsets,
2564 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2565
2566 /* FIXME: Do we have to free a whole linked list, or is this
2567 enough? */
2568 if (objfile->global_psymbols.list)
2569 xfree (objfile->global_psymbols.list);
2570 memset (&objfile->global_psymbols, 0,
2571 sizeof (objfile->global_psymbols));
2572 if (objfile->static_psymbols.list)
2573 xfree (objfile->static_psymbols.list);
2574 memset (&objfile->static_psymbols, 0,
2575 sizeof (objfile->static_psymbols));
2576
2577 /* Free the obstacks for non-reusable objfiles. */
2578 psymbol_bcache_free (objfile->psymbol_cache);
2579 objfile->psymbol_cache = psymbol_bcache_init ();
2580
2581 /* NB: after this call to obstack_free, objfiles_changed
2582 will need to be called (see discussion below). */
2583 obstack_free (&objfile->objfile_obstack, 0);
2584 objfile->sections = NULL;
2585 objfile->compunit_symtabs = NULL;
2586 objfile->psymtabs = NULL;
2587 objfile->psymtabs_addrmap = NULL;
2588 objfile->free_psymtabs = NULL;
2589 objfile->template_symbols = NULL;
2590
2591 /* obstack_init also initializes the obstack so it is
2592 empty. We could use obstack_specify_allocation but
2593 gdb_obstack.h specifies the alloc/dealloc functions. */
2594 obstack_init (&objfile->objfile_obstack);
2595
2596 /* set_objfile_per_bfd potentially allocates the per-bfd
2597 data on the objfile's obstack (if sharing data across
2598 multiple users is not possible), so it's important to
2599 do it *after* the obstack has been initialized. */
2600 set_objfile_per_bfd (objfile);
2601
2602 objfile->original_name
2603 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2604 strlen (original_name));
2605
2606 /* Reset the sym_fns pointer. The ELF reader can change it
2607 based on whether .gdb_index is present, and we need it to
2608 start over. PR symtab/15885 */
2609 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2610
2611 build_objfile_section_table (objfile);
2612 terminate_minimal_symbol_table (objfile);
2613
2614 /* We use the same section offsets as from last time. I'm not
2615 sure whether that is always correct for shared libraries. */
2616 objfile->section_offsets = (struct section_offsets *)
2617 obstack_alloc (&objfile->objfile_obstack,
2618 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2619 memcpy (objfile->section_offsets, offsets,
2620 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2621 objfile->num_sections = num_offsets;
2622
2623 /* What the hell is sym_new_init for, anyway? The concept of
2624 distinguishing between the main file and additional files
2625 in this way seems rather dubious. */
2626 if (objfile == symfile_objfile)
2627 {
2628 (*objfile->sf->sym_new_init) (objfile);
2629 }
2630
2631 (*objfile->sf->sym_init) (objfile);
2632 clear_complaints (&symfile_complaints, 1, 1);
2633
2634 objfile->flags &= ~OBJF_PSYMTABS_READ;
2635
2636 /* We are about to read new symbols and potentially also
2637 DWARF information. Some targets may want to pass addresses
2638 read from DWARF DIE's through an adjustment function before
2639 saving them, like MIPS, which may call into
2640 "find_pc_section". When called, that function will make
2641 use of per-objfile program space data.
2642
2643 Since we discarded our section information above, we have
2644 dangling pointers in the per-objfile program space data
2645 structure. Force GDB to update the section mapping
2646 information by letting it know the objfile has changed,
2647 making the dangling pointers point to correct data
2648 again. */
2649
2650 objfiles_changed ();
2651
2652 read_symbols (objfile, 0);
2653
2654 if (!objfile_has_symbols (objfile))
2655 {
2656 wrap_here ("");
2657 printf_unfiltered (_("(no debugging symbols found)\n"));
2658 wrap_here ("");
2659 }
2660
2661 /* We're done reading the symbol file; finish off complaints. */
2662 clear_complaints (&symfile_complaints, 0, 1);
2663
2664 /* Getting new symbols may change our opinion about what is
2665 frameless. */
2666
2667 reinit_frame_cache ();
2668
2669 /* Discard cleanups as symbol reading was successful. */
2670 discard_cleanups (old_cleanups);
2671
2672 /* If the mtime has changed between the time we set new_modtime
2673 and now, we *want* this to be out of date, so don't call stat
2674 again now. */
2675 objfile->mtime = new_modtime;
2676 init_entry_point_info (objfile);
2677
2678 new_objfiles.push_back (objfile);
2679 }
2680 }
2681
2682 if (!new_objfiles.empty ())
2683 {
2684 clear_symtab_users (0);
2685
2686 /* clear_objfile_data for each objfile was called before freeing it and
2687 observer_notify_new_objfile (NULL) has been called by
2688 clear_symtab_users above. Notify the new files now. */
2689 for (auto iter : new_objfiles)
2690 observer_notify_new_objfile (iter);
2691
2692 /* At least one objfile has changed, so we can consider that
2693 the executable we're debugging has changed too. */
2694 observer_notify_executable_changed ();
2695 }
2696 }
2697 \f
2698
2699 typedef struct
2700 {
2701 char *ext;
2702 enum language lang;
2703 } filename_language;
2704
2705 DEF_VEC_O (filename_language);
2706
2707 static VEC (filename_language) *filename_language_table;
2708
2709 /* See symfile.h. */
2710
2711 void
2712 add_filename_language (const char *ext, enum language lang)
2713 {
2714 filename_language entry;
2715
2716 entry.ext = xstrdup (ext);
2717 entry.lang = lang;
2718
2719 VEC_safe_push (filename_language, filename_language_table, &entry);
2720 }
2721
2722 static char *ext_args;
2723 static void
2724 show_ext_args (struct ui_file *file, int from_tty,
2725 struct cmd_list_element *c, const char *value)
2726 {
2727 fprintf_filtered (file,
2728 _("Mapping between filename extension "
2729 "and source language is \"%s\".\n"),
2730 value);
2731 }
2732
2733 static void
2734 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2735 {
2736 int i;
2737 char *cp = ext_args;
2738 enum language lang;
2739 filename_language *entry;
2740
2741 /* First arg is filename extension, starting with '.' */
2742 if (*cp != '.')
2743 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2744
2745 /* Find end of first arg. */
2746 while (*cp && !isspace (*cp))
2747 cp++;
2748
2749 if (*cp == '\0')
2750 error (_("'%s': two arguments required -- "
2751 "filename extension and language"),
2752 ext_args);
2753
2754 /* Null-terminate first arg. */
2755 *cp++ = '\0';
2756
2757 /* Find beginning of second arg, which should be a source language. */
2758 cp = skip_spaces (cp);
2759
2760 if (*cp == '\0')
2761 error (_("'%s': two arguments required -- "
2762 "filename extension and language"),
2763 ext_args);
2764
2765 /* Lookup the language from among those we know. */
2766 lang = language_enum (cp);
2767
2768 /* Now lookup the filename extension: do we already know it? */
2769 for (i = 0;
2770 VEC_iterate (filename_language, filename_language_table, i, entry);
2771 ++i)
2772 {
2773 if (0 == strcmp (ext_args, entry->ext))
2774 break;
2775 }
2776
2777 if (entry == NULL)
2778 {
2779 /* New file extension. */
2780 add_filename_language (ext_args, lang);
2781 }
2782 else
2783 {
2784 /* Redefining a previously known filename extension. */
2785
2786 /* if (from_tty) */
2787 /* query ("Really make files of type %s '%s'?", */
2788 /* ext_args, language_str (lang)); */
2789
2790 xfree (entry->ext);
2791 entry->ext = xstrdup (ext_args);
2792 entry->lang = lang;
2793 }
2794 }
2795
2796 static void
2797 info_ext_lang_command (char *args, int from_tty)
2798 {
2799 int i;
2800 filename_language *entry;
2801
2802 printf_filtered (_("Filename extensions and the languages they represent:"));
2803 printf_filtered ("\n\n");
2804 for (i = 0;
2805 VEC_iterate (filename_language, filename_language_table, i, entry);
2806 ++i)
2807 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2808 }
2809
2810 enum language
2811 deduce_language_from_filename (const char *filename)
2812 {
2813 int i;
2814 const char *cp;
2815
2816 if (filename != NULL)
2817 if ((cp = strrchr (filename, '.')) != NULL)
2818 {
2819 filename_language *entry;
2820
2821 for (i = 0;
2822 VEC_iterate (filename_language, filename_language_table, i, entry);
2823 ++i)
2824 if (strcmp (cp, entry->ext) == 0)
2825 return entry->lang;
2826 }
2827
2828 return language_unknown;
2829 }
2830 \f
2831 /* Allocate and initialize a new symbol table.
2832 CUST is from the result of allocate_compunit_symtab. */
2833
2834 struct symtab *
2835 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2836 {
2837 struct objfile *objfile = cust->objfile;
2838 struct symtab *symtab
2839 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2840
2841 symtab->filename
2842 = (const char *) bcache (filename, strlen (filename) + 1,
2843 objfile->per_bfd->filename_cache);
2844 symtab->fullname = NULL;
2845 symtab->language = deduce_language_from_filename (filename);
2846
2847 /* This can be very verbose with lots of headers.
2848 Only print at higher debug levels. */
2849 if (symtab_create_debug >= 2)
2850 {
2851 /* Be a bit clever with debugging messages, and don't print objfile
2852 every time, only when it changes. */
2853 static char *last_objfile_name = NULL;
2854
2855 if (last_objfile_name == NULL
2856 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2857 {
2858 xfree (last_objfile_name);
2859 last_objfile_name = xstrdup (objfile_name (objfile));
2860 fprintf_unfiltered (gdb_stdlog,
2861 "Creating one or more symtabs for objfile %s ...\n",
2862 last_objfile_name);
2863 }
2864 fprintf_unfiltered (gdb_stdlog,
2865 "Created symtab %s for module %s.\n",
2866 host_address_to_string (symtab), filename);
2867 }
2868
2869 /* Add it to CUST's list of symtabs. */
2870 if (cust->filetabs == NULL)
2871 {
2872 cust->filetabs = symtab;
2873 cust->last_filetab = symtab;
2874 }
2875 else
2876 {
2877 cust->last_filetab->next = symtab;
2878 cust->last_filetab = symtab;
2879 }
2880
2881 /* Backlink to the containing compunit symtab. */
2882 symtab->compunit_symtab = cust;
2883
2884 return symtab;
2885 }
2886
2887 /* Allocate and initialize a new compunit.
2888 NAME is the name of the main source file, if there is one, or some
2889 descriptive text if there are no source files. */
2890
2891 struct compunit_symtab *
2892 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2893 {
2894 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2895 struct compunit_symtab);
2896 const char *saved_name;
2897
2898 cu->objfile = objfile;
2899
2900 /* The name we record here is only for display/debugging purposes.
2901 Just save the basename to avoid path issues (too long for display,
2902 relative vs absolute, etc.). */
2903 saved_name = lbasename (name);
2904 cu->name
2905 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2906 strlen (saved_name));
2907
2908 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2909
2910 if (symtab_create_debug)
2911 {
2912 fprintf_unfiltered (gdb_stdlog,
2913 "Created compunit symtab %s for %s.\n",
2914 host_address_to_string (cu),
2915 cu->name);
2916 }
2917
2918 return cu;
2919 }
2920
2921 /* Hook CU to the objfile it comes from. */
2922
2923 void
2924 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2925 {
2926 cu->next = cu->objfile->compunit_symtabs;
2927 cu->objfile->compunit_symtabs = cu;
2928 }
2929 \f
2930
2931 /* Reset all data structures in gdb which may contain references to
2932 symbol table data. */
2933
2934 void
2935 clear_symtab_users (symfile_add_flags add_flags)
2936 {
2937 /* Someday, we should do better than this, by only blowing away
2938 the things that really need to be blown. */
2939
2940 /* Clear the "current" symtab first, because it is no longer valid.
2941 breakpoint_re_set may try to access the current symtab. */
2942 clear_current_source_symtab_and_line ();
2943
2944 clear_displays ();
2945 clear_last_displayed_sal ();
2946 clear_pc_function_cache ();
2947 observer_notify_new_objfile (NULL);
2948
2949 /* Clear globals which might have pointed into a removed objfile.
2950 FIXME: It's not clear which of these are supposed to persist
2951 between expressions and which ought to be reset each time. */
2952 expression_context_block = NULL;
2953 innermost_block = NULL;
2954
2955 /* Varobj may refer to old symbols, perform a cleanup. */
2956 varobj_invalidate ();
2957
2958 /* Now that the various caches have been cleared, we can re_set
2959 our breakpoints without risking it using stale data. */
2960 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2961 breakpoint_re_set ();
2962 }
2963
2964 static void
2965 clear_symtab_users_cleanup (void *ignore)
2966 {
2967 clear_symtab_users (0);
2968 }
2969 \f
2970 /* OVERLAYS:
2971 The following code implements an abstraction for debugging overlay sections.
2972
2973 The target model is as follows:
2974 1) The gnu linker will permit multiple sections to be mapped into the
2975 same VMA, each with its own unique LMA (or load address).
2976 2) It is assumed that some runtime mechanism exists for mapping the
2977 sections, one by one, from the load address into the VMA address.
2978 3) This code provides a mechanism for gdb to keep track of which
2979 sections should be considered to be mapped from the VMA to the LMA.
2980 This information is used for symbol lookup, and memory read/write.
2981 For instance, if a section has been mapped then its contents
2982 should be read from the VMA, otherwise from the LMA.
2983
2984 Two levels of debugger support for overlays are available. One is
2985 "manual", in which the debugger relies on the user to tell it which
2986 overlays are currently mapped. This level of support is
2987 implemented entirely in the core debugger, and the information about
2988 whether a section is mapped is kept in the objfile->obj_section table.
2989
2990 The second level of support is "automatic", and is only available if
2991 the target-specific code provides functionality to read the target's
2992 overlay mapping table, and translate its contents for the debugger
2993 (by updating the mapped state information in the obj_section tables).
2994
2995 The interface is as follows:
2996 User commands:
2997 overlay map <name> -- tell gdb to consider this section mapped
2998 overlay unmap <name> -- tell gdb to consider this section unmapped
2999 overlay list -- list the sections that GDB thinks are mapped
3000 overlay read-target -- get the target's state of what's mapped
3001 overlay off/manual/auto -- set overlay debugging state
3002 Functional interface:
3003 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3004 section, return that section.
3005 find_pc_overlay(pc): find any overlay section that contains
3006 the pc, either in its VMA or its LMA
3007 section_is_mapped(sect): true if overlay is marked as mapped
3008 section_is_overlay(sect): true if section's VMA != LMA
3009 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3010 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3011 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3012 overlay_mapped_address(...): map an address from section's LMA to VMA
3013 overlay_unmapped_address(...): map an address from section's VMA to LMA
3014 symbol_overlayed_address(...): Return a "current" address for symbol:
3015 either in VMA or LMA depending on whether
3016 the symbol's section is currently mapped. */
3017
3018 /* Overlay debugging state: */
3019
3020 enum overlay_debugging_state overlay_debugging = ovly_off;
3021 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3022
3023 /* Function: section_is_overlay (SECTION)
3024 Returns true if SECTION has VMA not equal to LMA, ie.
3025 SECTION is loaded at an address different from where it will "run". */
3026
3027 int
3028 section_is_overlay (struct obj_section *section)
3029 {
3030 if (overlay_debugging && section)
3031 {
3032 bfd *abfd = section->objfile->obfd;
3033 asection *bfd_section = section->the_bfd_section;
3034
3035 if (bfd_section_lma (abfd, bfd_section) != 0
3036 && bfd_section_lma (abfd, bfd_section)
3037 != bfd_section_vma (abfd, bfd_section))
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /* Function: overlay_invalidate_all (void)
3045 Invalidate the mapped state of all overlay sections (mark it as stale). */
3046
3047 static void
3048 overlay_invalidate_all (void)
3049 {
3050 struct objfile *objfile;
3051 struct obj_section *sect;
3052
3053 ALL_OBJSECTIONS (objfile, sect)
3054 if (section_is_overlay (sect))
3055 sect->ovly_mapped = -1;
3056 }
3057
3058 /* Function: section_is_mapped (SECTION)
3059 Returns true if section is an overlay, and is currently mapped.
3060
3061 Access to the ovly_mapped flag is restricted to this function, so
3062 that we can do automatic update. If the global flag
3063 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3064 overlay_invalidate_all. If the mapped state of the particular
3065 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3066
3067 int
3068 section_is_mapped (struct obj_section *osect)
3069 {
3070 struct gdbarch *gdbarch;
3071
3072 if (osect == 0 || !section_is_overlay (osect))
3073 return 0;
3074
3075 switch (overlay_debugging)
3076 {
3077 default:
3078 case ovly_off:
3079 return 0; /* overlay debugging off */
3080 case ovly_auto: /* overlay debugging automatic */
3081 /* Unles there is a gdbarch_overlay_update function,
3082 there's really nothing useful to do here (can't really go auto). */
3083 gdbarch = get_objfile_arch (osect->objfile);
3084 if (gdbarch_overlay_update_p (gdbarch))
3085 {
3086 if (overlay_cache_invalid)
3087 {
3088 overlay_invalidate_all ();
3089 overlay_cache_invalid = 0;
3090 }
3091 if (osect->ovly_mapped == -1)
3092 gdbarch_overlay_update (gdbarch, osect);
3093 }
3094 /* fall thru to manual case */
3095 case ovly_on: /* overlay debugging manual */
3096 return osect->ovly_mapped == 1;
3097 }
3098 }
3099
3100 /* Function: pc_in_unmapped_range
3101 If PC falls into the lma range of SECTION, return true, else false. */
3102
3103 CORE_ADDR
3104 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3105 {
3106 if (section_is_overlay (section))
3107 {
3108 bfd *abfd = section->objfile->obfd;
3109 asection *bfd_section = section->the_bfd_section;
3110
3111 /* We assume the LMA is relocated by the same offset as the VMA. */
3112 bfd_vma size = bfd_get_section_size (bfd_section);
3113 CORE_ADDR offset = obj_section_offset (section);
3114
3115 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3116 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3117 return 1;
3118 }
3119
3120 return 0;
3121 }
3122
3123 /* Function: pc_in_mapped_range
3124 If PC falls into the vma range of SECTION, return true, else false. */
3125
3126 CORE_ADDR
3127 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3128 {
3129 if (section_is_overlay (section))
3130 {
3131 if (obj_section_addr (section) <= pc
3132 && pc < obj_section_endaddr (section))
3133 return 1;
3134 }
3135
3136 return 0;
3137 }
3138
3139 /* Return true if the mapped ranges of sections A and B overlap, false
3140 otherwise. */
3141
3142 static int
3143 sections_overlap (struct obj_section *a, struct obj_section *b)
3144 {
3145 CORE_ADDR a_start = obj_section_addr (a);
3146 CORE_ADDR a_end = obj_section_endaddr (a);
3147 CORE_ADDR b_start = obj_section_addr (b);
3148 CORE_ADDR b_end = obj_section_endaddr (b);
3149
3150 return (a_start < b_end && b_start < a_end);
3151 }
3152
3153 /* Function: overlay_unmapped_address (PC, SECTION)
3154 Returns the address corresponding to PC in the unmapped (load) range.
3155 May be the same as PC. */
3156
3157 CORE_ADDR
3158 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3159 {
3160 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3161 {
3162 bfd *abfd = section->objfile->obfd;
3163 asection *bfd_section = section->the_bfd_section;
3164
3165 return pc + bfd_section_lma (abfd, bfd_section)
3166 - bfd_section_vma (abfd, bfd_section);
3167 }
3168
3169 return pc;
3170 }
3171
3172 /* Function: overlay_mapped_address (PC, SECTION)
3173 Returns the address corresponding to PC in the mapped (runtime) range.
3174 May be the same as PC. */
3175
3176 CORE_ADDR
3177 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3178 {
3179 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3180 {
3181 bfd *abfd = section->objfile->obfd;
3182 asection *bfd_section = section->the_bfd_section;
3183
3184 return pc + bfd_section_vma (abfd, bfd_section)
3185 - bfd_section_lma (abfd, bfd_section);
3186 }
3187
3188 return pc;
3189 }
3190
3191 /* Function: symbol_overlayed_address
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3194
3195 CORE_ADDR
3196 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3197 {
3198 if (overlay_debugging)
3199 {
3200 /* If the symbol has no section, just return its regular address. */
3201 if (section == 0)
3202 return address;
3203 /* If the symbol's section is not an overlay, just return its
3204 address. */
3205 if (!section_is_overlay (section))
3206 return address;
3207 /* If the symbol's section is mapped, just return its address. */
3208 if (section_is_mapped (section))
3209 return address;
3210 /*
3211 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3212 * then return its LOADED address rather than its vma address!!
3213 */
3214 return overlay_unmapped_address (address, section);
3215 }
3216 return address;
3217 }
3218
3219 /* Function: find_pc_overlay (PC)
3220 Return the best-match overlay section for PC:
3221 If PC matches a mapped overlay section's VMA, return that section.
3222 Else if PC matches an unmapped section's VMA, return that section.
3223 Else if PC matches an unmapped section's LMA, return that section. */
3224
3225 struct obj_section *
3226 find_pc_overlay (CORE_ADDR pc)
3227 {
3228 struct objfile *objfile;
3229 struct obj_section *osect, *best_match = NULL;
3230
3231 if (overlay_debugging)
3232 {
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_overlay (osect))
3235 {
3236 if (pc_in_mapped_range (pc, osect))
3237 {
3238 if (section_is_mapped (osect))
3239 return osect;
3240 else
3241 best_match = osect;
3242 }
3243 else if (pc_in_unmapped_range (pc, osect))
3244 best_match = osect;
3245 }
3246 }
3247 return best_match;
3248 }
3249
3250 /* Function: find_pc_mapped_section (PC)
3251 If PC falls into the VMA address range of an overlay section that is
3252 currently marked as MAPPED, return that section. Else return NULL. */
3253
3254 struct obj_section *
3255 find_pc_mapped_section (CORE_ADDR pc)
3256 {
3257 struct objfile *objfile;
3258 struct obj_section *osect;
3259
3260 if (overlay_debugging)
3261 {
3262 ALL_OBJSECTIONS (objfile, osect)
3263 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3264 return osect;
3265 }
3266
3267 return NULL;
3268 }
3269
3270 /* Function: list_overlays_command
3271 Print a list of mapped sections and their PC ranges. */
3272
3273 static void
3274 list_overlays_command (char *args, int from_tty)
3275 {
3276 int nmapped = 0;
3277 struct objfile *objfile;
3278 struct obj_section *osect;
3279
3280 if (overlay_debugging)
3281 {
3282 ALL_OBJSECTIONS (objfile, osect)
3283 if (section_is_mapped (osect))
3284 {
3285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3286 const char *name;
3287 bfd_vma lma, vma;
3288 int size;
3289
3290 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3291 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3292 size = bfd_get_section_size (osect->the_bfd_section);
3293 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3294
3295 printf_filtered ("Section %s, loaded at ", name);
3296 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3297 puts_filtered (" - ");
3298 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3299 printf_filtered (", mapped at ");
3300 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3301 puts_filtered (" - ");
3302 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3303 puts_filtered ("\n");
3304
3305 nmapped++;
3306 }
3307 }
3308 if (nmapped == 0)
3309 printf_filtered (_("No sections are mapped.\n"));
3310 }
3311
3312 /* Function: map_overlay_command
3313 Mark the named section as mapped (ie. residing at its VMA address). */
3314
3315 static void
3316 map_overlay_command (char *args, int from_tty)
3317 {
3318 struct objfile *objfile, *objfile2;
3319 struct obj_section *sec, *sec2;
3320
3321 if (!overlay_debugging)
3322 error (_("Overlay debugging not enabled. Use "
3323 "either the 'overlay auto' or\n"
3324 "the 'overlay manual' command."));
3325
3326 if (args == 0 || *args == 0)
3327 error (_("Argument required: name of an overlay section"));
3328
3329 /* First, find a section matching the user supplied argument. */
3330 ALL_OBJSECTIONS (objfile, sec)
3331 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3332 {
3333 /* Now, check to see if the section is an overlay. */
3334 if (!section_is_overlay (sec))
3335 continue; /* not an overlay section */
3336
3337 /* Mark the overlay as "mapped". */
3338 sec->ovly_mapped = 1;
3339
3340 /* Next, make a pass and unmap any sections that are
3341 overlapped by this new section: */
3342 ALL_OBJSECTIONS (objfile2, sec2)
3343 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3344 {
3345 if (info_verbose)
3346 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3347 bfd_section_name (objfile->obfd,
3348 sec2->the_bfd_section));
3349 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3350 }
3351 return;
3352 }
3353 error (_("No overlay section called %s"), args);
3354 }
3355
3356 /* Function: unmap_overlay_command
3357 Mark the overlay section as unmapped
3358 (ie. resident in its LMA address range, rather than the VMA range). */
3359
3360 static void
3361 unmap_overlay_command (char *args, int from_tty)
3362 {
3363 struct objfile *objfile;
3364 struct obj_section *sec = NULL;
3365
3366 if (!overlay_debugging)
3367 error (_("Overlay debugging not enabled. "
3368 "Use either the 'overlay auto' or\n"
3369 "the 'overlay manual' command."));
3370
3371 if (args == 0 || *args == 0)
3372 error (_("Argument required: name of an overlay section"));
3373
3374 /* First, find a section matching the user supplied argument. */
3375 ALL_OBJSECTIONS (objfile, sec)
3376 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3377 {
3378 if (!sec->ovly_mapped)
3379 error (_("Section %s is not mapped"), args);
3380 sec->ovly_mapped = 0;
3381 return;
3382 }
3383 error (_("No overlay section called %s"), args);
3384 }
3385
3386 /* Function: overlay_auto_command
3387 A utility command to turn on overlay debugging.
3388 Possibly this should be done via a set/show command. */
3389
3390 static void
3391 overlay_auto_command (char *args, int from_tty)
3392 {
3393 overlay_debugging = ovly_auto;
3394 enable_overlay_breakpoints ();
3395 if (info_verbose)
3396 printf_unfiltered (_("Automatic overlay debugging enabled."));
3397 }
3398
3399 /* Function: overlay_manual_command
3400 A utility command to turn on overlay debugging.
3401 Possibly this should be done via a set/show command. */
3402
3403 static void
3404 overlay_manual_command (char *args, int from_tty)
3405 {
3406 overlay_debugging = ovly_on;
3407 disable_overlay_breakpoints ();
3408 if (info_verbose)
3409 printf_unfiltered (_("Overlay debugging enabled."));
3410 }
3411
3412 /* Function: overlay_off_command
3413 A utility command to turn on overlay debugging.
3414 Possibly this should be done via a set/show command. */
3415
3416 static void
3417 overlay_off_command (char *args, int from_tty)
3418 {
3419 overlay_debugging = ovly_off;
3420 disable_overlay_breakpoints ();
3421 if (info_verbose)
3422 printf_unfiltered (_("Overlay debugging disabled."));
3423 }
3424
3425 static void
3426 overlay_load_command (char *args, int from_tty)
3427 {
3428 struct gdbarch *gdbarch = get_current_arch ();
3429
3430 if (gdbarch_overlay_update_p (gdbarch))
3431 gdbarch_overlay_update (gdbarch, NULL);
3432 else
3433 error (_("This target does not know how to read its overlay state."));
3434 }
3435
3436 /* Function: overlay_command
3437 A place-holder for a mis-typed command. */
3438
3439 /* Command list chain containing all defined "overlay" subcommands. */
3440 static struct cmd_list_element *overlaylist;
3441
3442 static void
3443 overlay_command (char *args, int from_tty)
3444 {
3445 printf_unfiltered
3446 ("\"overlay\" must be followed by the name of an overlay command.\n");
3447 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3448 }
3449
3450 /* Target Overlays for the "Simplest" overlay manager:
3451
3452 This is GDB's default target overlay layer. It works with the
3453 minimal overlay manager supplied as an example by Cygnus. The
3454 entry point is via a function pointer "gdbarch_overlay_update",
3455 so targets that use a different runtime overlay manager can
3456 substitute their own overlay_update function and take over the
3457 function pointer.
3458
3459 The overlay_update function pokes around in the target's data structures
3460 to see what overlays are mapped, and updates GDB's overlay mapping with
3461 this information.
3462
3463 In this simple implementation, the target data structures are as follows:
3464 unsigned _novlys; /# number of overlay sections #/
3465 unsigned _ovly_table[_novlys][4] = {
3466 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3467 {..., ..., ..., ...},
3468 }
3469 unsigned _novly_regions; /# number of overlay regions #/
3470 unsigned _ovly_region_table[_novly_regions][3] = {
3471 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3472 {..., ..., ...},
3473 }
3474 These functions will attempt to update GDB's mappedness state in the
3475 symbol section table, based on the target's mappedness state.
3476
3477 To do this, we keep a cached copy of the target's _ovly_table, and
3478 attempt to detect when the cached copy is invalidated. The main
3479 entry point is "simple_overlay_update(SECT), which looks up SECT in
3480 the cached table and re-reads only the entry for that section from
3481 the target (whenever possible). */
3482
3483 /* Cached, dynamically allocated copies of the target data structures: */
3484 static unsigned (*cache_ovly_table)[4] = 0;
3485 static unsigned cache_novlys = 0;
3486 static CORE_ADDR cache_ovly_table_base = 0;
3487 enum ovly_index
3488 {
3489 VMA, OSIZE, LMA, MAPPED
3490 };
3491
3492 /* Throw away the cached copy of _ovly_table. */
3493
3494 static void
3495 simple_free_overlay_table (void)
3496 {
3497 if (cache_ovly_table)
3498 xfree (cache_ovly_table);
3499 cache_novlys = 0;
3500 cache_ovly_table = NULL;
3501 cache_ovly_table_base = 0;
3502 }
3503
3504 /* Read an array of ints of size SIZE from the target into a local buffer.
3505 Convert to host order. int LEN is number of ints. */
3506
3507 static void
3508 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3509 int len, int size, enum bfd_endian byte_order)
3510 {
3511 /* FIXME (alloca): Not safe if array is very large. */
3512 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3513 int i;
3514
3515 read_memory (memaddr, buf, len * size);
3516 for (i = 0; i < len; i++)
3517 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3518 }
3519
3520 /* Find and grab a copy of the target _ovly_table
3521 (and _novlys, which is needed for the table's size). */
3522
3523 static int
3524 simple_read_overlay_table (void)
3525 {
3526 struct bound_minimal_symbol novlys_msym;
3527 struct bound_minimal_symbol ovly_table_msym;
3528 struct gdbarch *gdbarch;
3529 int word_size;
3530 enum bfd_endian byte_order;
3531
3532 simple_free_overlay_table ();
3533 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3534 if (! novlys_msym.minsym)
3535 {
3536 error (_("Error reading inferior's overlay table: "
3537 "couldn't find `_novlys' variable\n"
3538 "in inferior. Use `overlay manual' mode."));
3539 return 0;
3540 }
3541
3542 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3543 if (! ovly_table_msym.minsym)
3544 {
3545 error (_("Error reading inferior's overlay table: couldn't find "
3546 "`_ovly_table' array\n"
3547 "in inferior. Use `overlay manual' mode."));
3548 return 0;
3549 }
3550
3551 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3552 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3553 byte_order = gdbarch_byte_order (gdbarch);
3554
3555 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3556 4, byte_order);
3557 cache_ovly_table
3558 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3559 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3560 read_target_long_array (cache_ovly_table_base,
3561 (unsigned int *) cache_ovly_table,
3562 cache_novlys * 4, word_size, byte_order);
3563
3564 return 1; /* SUCCESS */
3565 }
3566
3567 /* Function: simple_overlay_update_1
3568 A helper function for simple_overlay_update. Assuming a cached copy
3569 of _ovly_table exists, look through it to find an entry whose vma,
3570 lma and size match those of OSECT. Re-read the entry and make sure
3571 it still matches OSECT (else the table may no longer be valid).
3572 Set OSECT's mapped state to match the entry. Return: 1 for
3573 success, 0 for failure. */
3574
3575 static int
3576 simple_overlay_update_1 (struct obj_section *osect)
3577 {
3578 int i;
3579 bfd *obfd = osect->objfile->obfd;
3580 asection *bsect = osect->the_bfd_section;
3581 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3582 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3584
3585 for (i = 0; i < cache_novlys; i++)
3586 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3587 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3588 {
3589 read_target_long_array (cache_ovly_table_base + i * word_size,
3590 (unsigned int *) cache_ovly_table[i],
3591 4, word_size, byte_order);
3592 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3593 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3594 {
3595 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3596 return 1;
3597 }
3598 else /* Warning! Warning! Target's ovly table has changed! */
3599 return 0;
3600 }
3601 return 0;
3602 }
3603
3604 /* Function: simple_overlay_update
3605 If OSECT is NULL, then update all sections' mapped state
3606 (after re-reading the entire target _ovly_table).
3607 If OSECT is non-NULL, then try to find a matching entry in the
3608 cached ovly_table and update only OSECT's mapped state.
3609 If a cached entry can't be found or the cache isn't valid, then
3610 re-read the entire cache, and go ahead and update all sections. */
3611
3612 void
3613 simple_overlay_update (struct obj_section *osect)
3614 {
3615 struct objfile *objfile;
3616
3617 /* Were we given an osect to look up? NULL means do all of them. */
3618 if (osect)
3619 /* Have we got a cached copy of the target's overlay table? */
3620 if (cache_ovly_table != NULL)
3621 {
3622 /* Does its cached location match what's currently in the
3623 symtab? */
3624 struct bound_minimal_symbol minsym
3625 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3626
3627 if (minsym.minsym == NULL)
3628 error (_("Error reading inferior's overlay table: couldn't "
3629 "find `_ovly_table' array\n"
3630 "in inferior. Use `overlay manual' mode."));
3631
3632 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3633 /* Then go ahead and try to look up this single section in
3634 the cache. */
3635 if (simple_overlay_update_1 (osect))
3636 /* Found it! We're done. */
3637 return;
3638 }
3639
3640 /* Cached table no good: need to read the entire table anew.
3641 Or else we want all the sections, in which case it's actually
3642 more efficient to read the whole table in one block anyway. */
3643
3644 if (! simple_read_overlay_table ())
3645 return;
3646
3647 /* Now may as well update all sections, even if only one was requested. */
3648 ALL_OBJSECTIONS (objfile, osect)
3649 if (section_is_overlay (osect))
3650 {
3651 int i;
3652 bfd *obfd = osect->objfile->obfd;
3653 asection *bsect = osect->the_bfd_section;
3654
3655 for (i = 0; i < cache_novlys; i++)
3656 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3657 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3658 { /* obj_section matches i'th entry in ovly_table. */
3659 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3660 break; /* finished with inner for loop: break out. */
3661 }
3662 }
3663 }
3664
3665 /* Set the output sections and output offsets for section SECTP in
3666 ABFD. The relocation code in BFD will read these offsets, so we
3667 need to be sure they're initialized. We map each section to itself,
3668 with no offset; this means that SECTP->vma will be honored. */
3669
3670 static void
3671 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3672 {
3673 sectp->output_section = sectp;
3674 sectp->output_offset = 0;
3675 }
3676
3677 /* Default implementation for sym_relocate. */
3678
3679 bfd_byte *
3680 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3681 bfd_byte *buf)
3682 {
3683 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3684 DWO file. */
3685 bfd *abfd = sectp->owner;
3686
3687 /* We're only interested in sections with relocation
3688 information. */
3689 if ((sectp->flags & SEC_RELOC) == 0)
3690 return NULL;
3691
3692 /* We will handle section offsets properly elsewhere, so relocate as if
3693 all sections begin at 0. */
3694 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3695
3696 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3697 }
3698
3699 /* Relocate the contents of a debug section SECTP in ABFD. The
3700 contents are stored in BUF if it is non-NULL, or returned in a
3701 malloc'd buffer otherwise.
3702
3703 For some platforms and debug info formats, shared libraries contain
3704 relocations against the debug sections (particularly for DWARF-2;
3705 one affected platform is PowerPC GNU/Linux, although it depends on
3706 the version of the linker in use). Also, ELF object files naturally
3707 have unresolved relocations for their debug sections. We need to apply
3708 the relocations in order to get the locations of symbols correct.
3709 Another example that may require relocation processing, is the
3710 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3711 debug section. */
3712
3713 bfd_byte *
3714 symfile_relocate_debug_section (struct objfile *objfile,
3715 asection *sectp, bfd_byte *buf)
3716 {
3717 gdb_assert (objfile->sf->sym_relocate);
3718
3719 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3720 }
3721
3722 struct symfile_segment_data *
3723 get_symfile_segment_data (bfd *abfd)
3724 {
3725 const struct sym_fns *sf = find_sym_fns (abfd);
3726
3727 if (sf == NULL)
3728 return NULL;
3729
3730 return sf->sym_segments (abfd);
3731 }
3732
3733 void
3734 free_symfile_segment_data (struct symfile_segment_data *data)
3735 {
3736 xfree (data->segment_bases);
3737 xfree (data->segment_sizes);
3738 xfree (data->segment_info);
3739 xfree (data);
3740 }
3741
3742 /* Given:
3743 - DATA, containing segment addresses from the object file ABFD, and
3744 the mapping from ABFD's sections onto the segments that own them,
3745 and
3746 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3747 segment addresses reported by the target,
3748 store the appropriate offsets for each section in OFFSETS.
3749
3750 If there are fewer entries in SEGMENT_BASES than there are segments
3751 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3752
3753 If there are more entries, then ignore the extra. The target may
3754 not be able to distinguish between an empty data segment and a
3755 missing data segment; a missing text segment is less plausible. */
3756
3757 int
3758 symfile_map_offsets_to_segments (bfd *abfd,
3759 const struct symfile_segment_data *data,
3760 struct section_offsets *offsets,
3761 int num_segment_bases,
3762 const CORE_ADDR *segment_bases)
3763 {
3764 int i;
3765 asection *sect;
3766
3767 /* It doesn't make sense to call this function unless you have some
3768 segment base addresses. */
3769 gdb_assert (num_segment_bases > 0);
3770
3771 /* If we do not have segment mappings for the object file, we
3772 can not relocate it by segments. */
3773 gdb_assert (data != NULL);
3774 gdb_assert (data->num_segments > 0);
3775
3776 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3777 {
3778 int which = data->segment_info[i];
3779
3780 gdb_assert (0 <= which && which <= data->num_segments);
3781
3782 /* Don't bother computing offsets for sections that aren't
3783 loaded as part of any segment. */
3784 if (! which)
3785 continue;
3786
3787 /* Use the last SEGMENT_BASES entry as the address of any extra
3788 segments mentioned in DATA->segment_info. */
3789 if (which > num_segment_bases)
3790 which = num_segment_bases;
3791
3792 offsets->offsets[i] = (segment_bases[which - 1]
3793 - data->segment_bases[which - 1]);
3794 }
3795
3796 return 1;
3797 }
3798
3799 static void
3800 symfile_find_segment_sections (struct objfile *objfile)
3801 {
3802 bfd *abfd = objfile->obfd;
3803 int i;
3804 asection *sect;
3805 struct symfile_segment_data *data;
3806
3807 data = get_symfile_segment_data (objfile->obfd);
3808 if (data == NULL)
3809 return;
3810
3811 if (data->num_segments != 1 && data->num_segments != 2)
3812 {
3813 free_symfile_segment_data (data);
3814 return;
3815 }
3816
3817 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3818 {
3819 int which = data->segment_info[i];
3820
3821 if (which == 1)
3822 {
3823 if (objfile->sect_index_text == -1)
3824 objfile->sect_index_text = sect->index;
3825
3826 if (objfile->sect_index_rodata == -1)
3827 objfile->sect_index_rodata = sect->index;
3828 }
3829 else if (which == 2)
3830 {
3831 if (objfile->sect_index_data == -1)
3832 objfile->sect_index_data = sect->index;
3833
3834 if (objfile->sect_index_bss == -1)
3835 objfile->sect_index_bss = sect->index;
3836 }
3837 }
3838
3839 free_symfile_segment_data (data);
3840 }
3841
3842 /* Listen for free_objfile events. */
3843
3844 static void
3845 symfile_free_objfile (struct objfile *objfile)
3846 {
3847 /* Remove the target sections owned by this objfile. */
3848 if (objfile != NULL)
3849 remove_target_sections ((void *) objfile);
3850 }
3851
3852 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3853 Expand all symtabs that match the specified criteria.
3854 See quick_symbol_functions.expand_symtabs_matching for details. */
3855
3856 void
3857 expand_symtabs_matching
3858 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3859 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3860 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3861 enum search_domain kind)
3862 {
3863 struct objfile *objfile;
3864
3865 ALL_OBJFILES (objfile)
3866 {
3867 if (objfile->sf)
3868 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3869 symbol_matcher,
3870 expansion_notify, kind);
3871 }
3872 }
3873
3874 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3875 Map function FUN over every file.
3876 See quick_symbol_functions.map_symbol_filenames for details. */
3877
3878 void
3879 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3880 int need_fullname)
3881 {
3882 struct objfile *objfile;
3883
3884 ALL_OBJFILES (objfile)
3885 {
3886 if (objfile->sf)
3887 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3888 need_fullname);
3889 }
3890 }
3891
3892 void
3893 _initialize_symfile (void)
3894 {
3895 struct cmd_list_element *c;
3896
3897 observer_attach_free_objfile (symfile_free_objfile);
3898
3899 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3900 Load symbol table from executable file FILE.\n\
3901 The `file' command can also load symbol tables, as well as setting the file\n\
3902 to execute."), &cmdlist);
3903 set_cmd_completer (c, filename_completer);
3904
3905 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3906 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3907 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3908 ...]\nADDR is the starting address of the file's text.\n\
3909 The optional arguments are section-name section-address pairs and\n\
3910 should be specified if the data and bss segments are not contiguous\n\
3911 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3912 &cmdlist);
3913 set_cmd_completer (c, filename_completer);
3914
3915 c = add_cmd ("remove-symbol-file", class_files,
3916 remove_symbol_file_command, _("\
3917 Remove a symbol file added via the add-symbol-file command.\n\
3918 Usage: remove-symbol-file FILENAME\n\
3919 remove-symbol-file -a ADDRESS\n\
3920 The file to remove can be identified by its filename or by an address\n\
3921 that lies within the boundaries of this symbol file in memory."),
3922 &cmdlist);
3923
3924 c = add_cmd ("load", class_files, load_command, _("\
3925 Dynamically load FILE into the running program, and record its symbols\n\
3926 for access from GDB.\n\
3927 An optional load OFFSET may also be given as a literal address.\n\
3928 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3929 on its own.\n\
3930 Usage: load [FILE] [OFFSET]"), &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3932
3933 add_prefix_cmd ("overlay", class_support, overlay_command,
3934 _("Commands for debugging overlays."), &overlaylist,
3935 "overlay ", 0, &cmdlist);
3936
3937 add_com_alias ("ovly", "overlay", class_alias, 1);
3938 add_com_alias ("ov", "overlay", class_alias, 1);
3939
3940 add_cmd ("map-overlay", class_support, map_overlay_command,
3941 _("Assert that an overlay section is mapped."), &overlaylist);
3942
3943 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3944 _("Assert that an overlay section is unmapped."), &overlaylist);
3945
3946 add_cmd ("list-overlays", class_support, list_overlays_command,
3947 _("List mappings of overlay sections."), &overlaylist);
3948
3949 add_cmd ("manual", class_support, overlay_manual_command,
3950 _("Enable overlay debugging."), &overlaylist);
3951 add_cmd ("off", class_support, overlay_off_command,
3952 _("Disable overlay debugging."), &overlaylist);
3953 add_cmd ("auto", class_support, overlay_auto_command,
3954 _("Enable automatic overlay debugging."), &overlaylist);
3955 add_cmd ("load-target", class_support, overlay_load_command,
3956 _("Read the overlay mapping state from the target."), &overlaylist);
3957
3958 /* Filename extension to source language lookup table: */
3959 add_setshow_string_noescape_cmd ("extension-language", class_files,
3960 &ext_args, _("\
3961 Set mapping between filename extension and source language."), _("\
3962 Show mapping between filename extension and source language."), _("\
3963 Usage: set extension-language .foo bar"),
3964 set_ext_lang_command,
3965 show_ext_args,
3966 &setlist, &showlist);
3967
3968 add_info ("extensions", info_ext_lang_command,
3969 _("All filename extensions associated with a source language."));
3970
3971 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3972 &debug_file_directory, _("\
3973 Set the directories where separate debug symbols are searched for."), _("\
3974 Show the directories where separate debug symbols are searched for."), _("\
3975 Separate debug symbols are first searched for in the same\n\
3976 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3977 and lastly at the path of the directory of the binary with\n\
3978 each global debug-file-directory component prepended."),
3979 NULL,
3980 show_debug_file_directory,
3981 &setlist, &showlist);
3982
3983 add_setshow_enum_cmd ("symbol-loading", no_class,
3984 print_symbol_loading_enums, &print_symbol_loading,
3985 _("\
3986 Set printing of symbol loading messages."), _("\
3987 Show printing of symbol loading messages."), _("\
3988 off == turn all messages off\n\
3989 brief == print messages for the executable,\n\
3990 and brief messages for shared libraries\n\
3991 full == print messages for the executable,\n\
3992 and messages for each shared library."),
3993 NULL,
3994 NULL,
3995 &setprintlist, &showprintlist);
3996
3997 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3998 &separate_debug_file_debug, _("\
3999 Set printing of separate debug info file search debug."), _("\
4000 Show printing of separate debug info file search debug."), _("\
4001 When on, GDB prints the searched locations while looking for separate debug \
4002 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4003 }
This page took 0.108739 seconds and 5 git commands to generate.