[gdb] Fix more typos in comments
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets->offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->num_sections; i++)
319 {
320 if (ANOFFSET (objfile->section_offsets, i) != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->num_sections)
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 struct section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
354 int done;
355 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
356
357 /* We are only interested in allocated sections. */
358 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
359 return;
360
361 /* If the user specified an offset, honor it. */
362 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
363 return;
364
365 /* Otherwise, let's try to find a place for the section. */
366 start_addr = (arg->lowest + align - 1) & -align;
367
368 do {
369 asection *cur_sec;
370
371 done = 1;
372
373 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
374 {
375 int indx = cur_sec->index;
376
377 /* We don't need to compare against ourself. */
378 if (cur_sec == sect)
379 continue;
380
381 /* We can only conflict with allocated sections. */
382 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
383 continue;
384
385 /* If the section offset is 0, either the section has not been placed
386 yet, or it was the lowest section placed (in which case LOWEST
387 will be past its end). */
388 if (offsets[indx] == 0)
389 continue;
390
391 /* If this section would overlap us, then we must move up. */
392 if (start_addr + bfd_section_size (sect) > offsets[indx]
393 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
394 {
395 start_addr = offsets[indx] + bfd_section_size (cur_sec);
396 start_addr = (start_addr + align - 1) & -align;
397 done = 0;
398 break;
399 }
400
401 /* Otherwise, we appear to be OK. So far. */
402 }
403 }
404 while (!done);
405
406 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
407 arg->lowest = start_addr + bfd_section_size (sect);
408 }
409
410 /* Store section_addr_info as prepared (made relative and with SECTINDEX
411 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
412 entries. */
413
414 void
415 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
416 int num_sections,
417 const section_addr_info &addrs)
418 {
419 int i;
420
421 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
422
423 /* Now calculate offsets for section that were specified by the caller. */
424 for (i = 0; i < addrs.size (); i++)
425 {
426 const struct other_sections *osp;
427
428 osp = &addrs[i];
429 if (osp->sectindex == -1)
430 continue;
431
432 /* Record all sections in offsets. */
433 /* The section_offsets in the objfile are here filled in using
434 the BFD index. */
435 section_offsets->offsets[osp->sectindex] = osp->addr;
436 }
437 }
438
439 /* Transform section name S for a name comparison. prelink can split section
440 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
441 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
442 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
443 (`.sbss') section has invalid (increased) virtual address. */
444
445 static const char *
446 addr_section_name (const char *s)
447 {
448 if (strcmp (s, ".dynbss") == 0)
449 return ".bss";
450 if (strcmp (s, ".sdynbss") == 0)
451 return ".sbss";
452
453 return s;
454 }
455
456 /* std::sort comparator for addrs_section_sort. Sort entries in
457 ascending order by their (name, sectindex) pair. sectindex makes
458 the sort by name stable. */
459
460 static bool
461 addrs_section_compar (const struct other_sections *a,
462 const struct other_sections *b)
463 {
464 int retval;
465
466 retval = strcmp (addr_section_name (a->name.c_str ()),
467 addr_section_name (b->name.c_str ()));
468 if (retval != 0)
469 return retval < 0;
470
471 return a->sectindex < b->sectindex;
472 }
473
474 /* Provide sorted array of pointers to sections of ADDRS. */
475
476 static std::vector<const struct other_sections *>
477 addrs_section_sort (const section_addr_info &addrs)
478 {
479 int i;
480
481 std::vector<const struct other_sections *> array (addrs.size ());
482 for (i = 0; i < addrs.size (); i++)
483 array[i] = &addrs[i];
484
485 std::sort (array.begin (), array.end (), addrs_section_compar);
486
487 return array;
488 }
489
490 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
491 also SECTINDEXes specific to ABFD there. This function can be used to
492 rebase ADDRS to start referencing different BFD than before. */
493
494 void
495 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
496 {
497 asection *lower_sect;
498 CORE_ADDR lower_offset;
499 int i;
500
501 /* Find lowest loadable section to be used as starting point for
502 contiguous sections. */
503 lower_sect = NULL;
504 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
505 if (lower_sect == NULL)
506 {
507 warning (_("no loadable sections found in added symbol-file %s"),
508 bfd_get_filename (abfd));
509 lower_offset = 0;
510 }
511 else
512 lower_offset = bfd_section_vma (lower_sect);
513
514 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
515 in ABFD. Section names are not unique - there can be multiple sections of
516 the same name. Also the sections of the same name do not have to be
517 adjacent to each other. Some sections may be present only in one of the
518 files. Even sections present in both files do not have to be in the same
519 order.
520
521 Use stable sort by name for the sections in both files. Then linearly
522 scan both lists matching as most of the entries as possible. */
523
524 std::vector<const struct other_sections *> addrs_sorted
525 = addrs_section_sort (*addrs);
526
527 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
528 std::vector<const struct other_sections *> abfd_addrs_sorted
529 = addrs_section_sort (abfd_addrs);
530
531 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
532 ABFD_ADDRS_SORTED. */
533
534 std::vector<const struct other_sections *>
535 addrs_to_abfd_addrs (addrs->size (), nullptr);
536
537 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
538 = abfd_addrs_sorted.begin ();
539 for (const other_sections *sect : addrs_sorted)
540 {
541 const char *sect_name = addr_section_name (sect->name.c_str ());
542
543 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
544 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
545 sect_name) < 0)
546 abfd_sorted_iter++;
547
548 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) == 0)
551 {
552 int index_in_addrs;
553
554 /* Make the found item directly addressable from ADDRS. */
555 index_in_addrs = sect - addrs->data ();
556 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
557 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
558
559 /* Never use the same ABFD entry twice. */
560 abfd_sorted_iter++;
561 }
562 }
563
564 /* Calculate offsets for the loadable sections.
565 FIXME! Sections must be in order of increasing loadable section
566 so that contiguous sections can use the lower-offset!!!
567
568 Adjust offsets if the segments are not contiguous.
569 If the section is contiguous, its offset should be set to
570 the offset of the highest loadable section lower than it
571 (the loadable section directly below it in memory).
572 this_offset = lower_offset = lower_addr - lower_orig_addr */
573
574 for (i = 0; i < addrs->size (); i++)
575 {
576 const struct other_sections *sect = addrs_to_abfd_addrs[i];
577
578 if (sect)
579 {
580 /* This is the index used by BFD. */
581 (*addrs)[i].sectindex = sect->sectindex;
582
583 if ((*addrs)[i].addr != 0)
584 {
585 (*addrs)[i].addr -= sect->addr;
586 lower_offset = (*addrs)[i].addr;
587 }
588 else
589 (*addrs)[i].addr = lower_offset;
590 }
591 else
592 {
593 /* addr_section_name transformation is not used for SECT_NAME. */
594 const std::string &sect_name = (*addrs)[i].name;
595
596 /* This section does not exist in ABFD, which is normally
597 unexpected and we want to issue a warning.
598
599 However, the ELF prelinker does create a few sections which are
600 marked in the main executable as loadable (they are loaded in
601 memory from the DYNAMIC segment) and yet are not present in
602 separate debug info files. This is fine, and should not cause
603 a warning. Shared libraries contain just the section
604 ".gnu.liblist" but it is not marked as loadable there. There is
605 no other way to identify them than by their name as the sections
606 created by prelink have no special flags.
607
608 For the sections `.bss' and `.sbss' see addr_section_name. */
609
610 if (!(sect_name == ".gnu.liblist"
611 || sect_name == ".gnu.conflict"
612 || (sect_name == ".bss"
613 && i > 0
614 && (*addrs)[i - 1].name == ".dynbss"
615 && addrs_to_abfd_addrs[i - 1] != NULL)
616 || (sect_name == ".sbss"
617 && i > 0
618 && (*addrs)[i - 1].name == ".sdynbss"
619 && addrs_to_abfd_addrs[i - 1] != NULL)))
620 warning (_("section %s not found in %s"), sect_name.c_str (),
621 bfd_get_filename (abfd));
622
623 (*addrs)[i].addr = 0;
624 (*addrs)[i].sectindex = -1;
625 }
626 }
627 }
628
629 /* Parse the user's idea of an offset for dynamic linking, into our idea
630 of how to represent it for fast symbol reading. This is the default
631 version of the sym_fns.sym_offsets function for symbol readers that
632 don't need to do anything special. It allocates a section_offsets table
633 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
634
635 void
636 default_symfile_offsets (struct objfile *objfile,
637 const section_addr_info &addrs)
638 {
639 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
640 objfile->section_offsets = (struct section_offsets *)
641 obstack_alloc (&objfile->objfile_obstack,
642 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
643 relative_addr_info_to_section_offsets (objfile->section_offsets,
644 objfile->num_sections, addrs);
645
646 /* For relocatable files, all loadable sections will start at zero.
647 The zero is meaningless, so try to pick arbitrary addresses such
648 that no loadable sections overlap. This algorithm is quadratic,
649 but the number of sections in a single object file is generally
650 small. */
651 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
652 {
653 struct place_section_arg arg;
654 bfd *abfd = objfile->obfd;
655 asection *cur_sec;
656
657 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
658 /* We do not expect this to happen; just skip this step if the
659 relocatable file has a section with an assigned VMA. */
660 if (bfd_section_vma (cur_sec) != 0)
661 break;
662
663 if (cur_sec == NULL)
664 {
665 CORE_ADDR *offsets = objfile->section_offsets->offsets;
666
667 /* Pick non-overlapping offsets for sections the user did not
668 place explicitly. */
669 arg.offsets = objfile->section_offsets;
670 arg.lowest = 0;
671 bfd_map_over_sections (objfile->obfd, place_section, &arg);
672
673 /* Correctly filling in the section offsets is not quite
674 enough. Relocatable files have two properties that
675 (most) shared objects do not:
676
677 - Their debug information will contain relocations. Some
678 shared libraries do also, but many do not, so this can not
679 be assumed.
680
681 - If there are multiple code sections they will be loaded
682 at different relative addresses in memory than they are
683 in the objfile, since all sections in the file will start
684 at address zero.
685
686 Because GDB has very limited ability to map from an
687 address in debug info to the correct code section,
688 it relies on adding SECT_OFF_TEXT to things which might be
689 code. If we clear all the section offsets, and set the
690 section VMAs instead, then symfile_relocate_debug_section
691 will return meaningful debug information pointing at the
692 correct sections.
693
694 GDB has too many different data structures for section
695 addresses - a bfd, objfile, and so_list all have section
696 tables, as does exec_ops. Some of these could probably
697 be eliminated. */
698
699 for (cur_sec = abfd->sections; cur_sec != NULL;
700 cur_sec = cur_sec->next)
701 {
702 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
703 continue;
704
705 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
706 exec_set_section_address (bfd_get_filename (abfd),
707 cur_sec->index,
708 offsets[cur_sec->index]);
709 offsets[cur_sec->index] = 0;
710 }
711 }
712 }
713
714 /* Remember the bfd indexes for the .text, .data, .bss and
715 .rodata sections. */
716 init_objfile_sect_indices (objfile);
717 }
718
719 /* Divide the file into segments, which are individual relocatable units.
720 This is the default version of the sym_fns.sym_segments function for
721 symbol readers that do not have an explicit representation of segments.
722 It assumes that object files do not have segments, and fully linked
723 files have a single segment. */
724
725 struct symfile_segment_data *
726 default_symfile_segments (bfd *abfd)
727 {
728 int num_sections, i;
729 asection *sect;
730 struct symfile_segment_data *data;
731 CORE_ADDR low, high;
732
733 /* Relocatable files contain enough information to position each
734 loadable section independently; they should not be relocated
735 in segments. */
736 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
737 return NULL;
738
739 /* Make sure there is at least one loadable section in the file. */
740 for (sect = abfd->sections; sect != NULL; sect = sect->next)
741 {
742 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
743 continue;
744
745 break;
746 }
747 if (sect == NULL)
748 return NULL;
749
750 low = bfd_section_vma (sect);
751 high = low + bfd_section_size (sect);
752
753 data = XCNEW (struct symfile_segment_data);
754 data->num_segments = 1;
755 data->segment_bases = XCNEW (CORE_ADDR);
756 data->segment_sizes = XCNEW (CORE_ADDR);
757
758 num_sections = bfd_count_sections (abfd);
759 data->segment_info = XCNEWVEC (int, num_sections);
760
761 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
762 {
763 CORE_ADDR vma;
764
765 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
766 continue;
767
768 vma = bfd_section_vma (sect);
769 if (vma < low)
770 low = vma;
771 if (vma + bfd_section_size (sect) > high)
772 high = vma + bfd_section_size (sect);
773
774 data->segment_info[i] = 1;
775 }
776
777 data->segment_bases[0] = low;
778 data->segment_sizes[0] = high - low;
779
780 return data;
781 }
782
783 /* This is a convenience function to call sym_read for OBJFILE and
784 possibly force the partial symbols to be read. */
785
786 static void
787 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
788 {
789 (*objfile->sf->sym_read) (objfile, add_flags);
790 objfile->per_bfd->minsyms_read = true;
791
792 /* find_separate_debug_file_in_section should be called only if there is
793 single binary with no existing separate debug info file. */
794 if (!objfile_has_partial_symbols (objfile)
795 && objfile->separate_debug_objfile == NULL
796 && objfile->separate_debug_objfile_backlink == NULL)
797 {
798 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
799
800 if (abfd != NULL)
801 {
802 /* find_separate_debug_file_in_section uses the same filename for the
803 virtual section-as-bfd like the bfd filename containing the
804 section. Therefore use also non-canonical name form for the same
805 file containing the section. */
806 symbol_file_add_separate (abfd.get (),
807 bfd_get_filename (abfd.get ()),
808 add_flags | SYMFILE_NOT_FILENAME, objfile);
809 }
810 }
811 if ((add_flags & SYMFILE_NO_READ) == 0)
812 require_partial_symbols (objfile, 0);
813 }
814
815 /* Initialize entry point information for this objfile. */
816
817 static void
818 init_entry_point_info (struct objfile *objfile)
819 {
820 struct entry_info *ei = &objfile->per_bfd->ei;
821
822 if (ei->initialized)
823 return;
824 ei->initialized = 1;
825
826 /* Save startup file's range of PC addresses to help blockframe.c
827 decide where the bottom of the stack is. */
828
829 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
830 {
831 /* Executable file -- record its entry point so we'll recognize
832 the startup file because it contains the entry point. */
833 ei->entry_point = bfd_get_start_address (objfile->obfd);
834 ei->entry_point_p = 1;
835 }
836 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
837 && bfd_get_start_address (objfile->obfd) != 0)
838 {
839 /* Some shared libraries may have entry points set and be
840 runnable. There's no clear way to indicate this, so just check
841 for values other than zero. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else
846 {
847 /* Examination of non-executable.o files. Short-circuit this stuff. */
848 ei->entry_point_p = 0;
849 }
850
851 if (ei->entry_point_p)
852 {
853 struct obj_section *osect;
854 CORE_ADDR entry_point = ei->entry_point;
855 int found;
856
857 /* Make certain that the address points at real code, and not a
858 function descriptor. */
859 entry_point
860 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
861 entry_point,
862 current_top_target ());
863
864 /* Remove any ISA markers, so that this matches entries in the
865 symbol table. */
866 ei->entry_point
867 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
868
869 found = 0;
870 ALL_OBJFILE_OSECTIONS (objfile, osect)
871 {
872 struct bfd_section *sect = osect->the_bfd_section;
873
874 if (entry_point >= bfd_section_vma (sect)
875 && entry_point < (bfd_section_vma (sect)
876 + bfd_section_size (sect)))
877 {
878 ei->the_bfd_section_index
879 = gdb_bfd_section_index (objfile->obfd, sect);
880 found = 1;
881 break;
882 }
883 }
884
885 if (!found)
886 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
887 }
888 }
889
890 /* Process a symbol file, as either the main file or as a dynamically
891 loaded file.
892
893 This function does not set the OBJFILE's entry-point info.
894
895 OBJFILE is where the symbols are to be read from.
896
897 ADDRS is the list of section load addresses. If the user has given
898 an 'add-symbol-file' command, then this is the list of offsets and
899 addresses he or she provided as arguments to the command; or, if
900 we're handling a shared library, these are the actual addresses the
901 sections are loaded at, according to the inferior's dynamic linker
902 (as gleaned by GDB's shared library code). We convert each address
903 into an offset from the section VMA's as it appears in the object
904 file, and then call the file's sym_offsets function to convert this
905 into a format-specific offset table --- a `struct section_offsets'.
906 The sectindex field is used to control the ordering of sections
907 with the same name. Upon return, it is updated to contain the
908 corresponding BFD section index, or -1 if the section was not found.
909
910 ADD_FLAGS encodes verbosity level, whether this is main symbol or
911 an extra symbol file such as dynamically loaded code, and wether
912 breakpoint reset should be deferred. */
913
914 static void
915 syms_from_objfile_1 (struct objfile *objfile,
916 section_addr_info *addrs,
917 symfile_add_flags add_flags)
918 {
919 section_addr_info local_addr;
920 const int mainline = add_flags & SYMFILE_MAINLINE;
921
922 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
923
924 if (objfile->sf == NULL)
925 {
926 /* No symbols to load, but we still need to make sure
927 that the section_offsets table is allocated. */
928 int num_sections = gdb_bfd_count_sections (objfile->obfd);
929 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
930
931 objfile->num_sections = num_sections;
932 objfile->section_offsets
933 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
934 size);
935 memset (objfile->section_offsets, 0, size);
936 return;
937 }
938
939 /* Make sure that partially constructed symbol tables will be cleaned up
940 if an error occurs during symbol reading. */
941 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
942
943 std::unique_ptr<struct objfile> objfile_holder (objfile);
944
945 /* If ADDRS is NULL, put together a dummy address list.
946 We now establish the convention that an addr of zero means
947 no load address was specified. */
948 if (! addrs)
949 addrs = &local_addr;
950
951 if (mainline)
952 {
953 /* We will modify the main symbol table, make sure that all its users
954 will be cleaned up if an error occurs during symbol reading. */
955 defer_clear_users.emplace ((symfile_add_flag) 0);
956
957 /* Since no error yet, throw away the old symbol table. */
958
959 if (symfile_objfile != NULL)
960 {
961 delete symfile_objfile;
962 gdb_assert (symfile_objfile == NULL);
963 }
964
965 /* Currently we keep symbols from the add-symbol-file command.
966 If the user wants to get rid of them, they should do "symbol-file"
967 without arguments first. Not sure this is the best behavior
968 (PR 2207). */
969
970 (*objfile->sf->sym_new_init) (objfile);
971 }
972
973 /* Convert addr into an offset rather than an absolute address.
974 We find the lowest address of a loaded segment in the objfile,
975 and assume that <addr> is where that got loaded.
976
977 We no longer warn if the lowest section is not a text segment (as
978 happens for the PA64 port. */
979 if (addrs->size () > 0)
980 addr_info_make_relative (addrs, objfile->obfd);
981
982 /* Initialize symbol reading routines for this objfile, allow complaints to
983 appear for this new file, and record how verbose to be, then do the
984 initial symbol reading for this file. */
985
986 (*objfile->sf->sym_init) (objfile);
987 clear_complaints ();
988
989 (*objfile->sf->sym_offsets) (objfile, *addrs);
990
991 read_symbols (objfile, add_flags);
992
993 /* Discard cleanups as symbol reading was successful. */
994
995 objfile_holder.release ();
996 if (defer_clear_users)
997 defer_clear_users->release ();
998 }
999
1000 /* Same as syms_from_objfile_1, but also initializes the objfile
1001 entry-point info. */
1002
1003 static void
1004 syms_from_objfile (struct objfile *objfile,
1005 section_addr_info *addrs,
1006 symfile_add_flags add_flags)
1007 {
1008 syms_from_objfile_1 (objfile, addrs, add_flags);
1009 init_entry_point_info (objfile);
1010 }
1011
1012 /* Perform required actions after either reading in the initial
1013 symbols for a new objfile, or mapping in the symbols from a reusable
1014 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1015
1016 static void
1017 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1018 {
1019 /* If this is the main symbol file we have to clean up all users of the
1020 old main symbol file. Otherwise it is sufficient to fixup all the
1021 breakpoints that may have been redefined by this symbol file. */
1022 if (add_flags & SYMFILE_MAINLINE)
1023 {
1024 /* OK, make it the "real" symbol file. */
1025 symfile_objfile = objfile;
1026
1027 clear_symtab_users (add_flags);
1028 }
1029 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1030 {
1031 breakpoint_re_set ();
1032 }
1033
1034 /* We're done reading the symbol file; finish off complaints. */
1035 clear_complaints ();
1036 }
1037
1038 /* Process a symbol file, as either the main file or as a dynamically
1039 loaded file.
1040
1041 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1042 A new reference is acquired by this function.
1043
1044 For NAME description see the objfile constructor.
1045
1046 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1047 extra, such as dynamically loaded code, and what to do with breakpoins.
1048
1049 ADDRS is as described for syms_from_objfile_1, above.
1050 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1051
1052 PARENT is the original objfile if ABFD is a separate debug info file.
1053 Otherwise PARENT is NULL.
1054
1055 Upon success, returns a pointer to the objfile that was added.
1056 Upon failure, jumps back to command level (never returns). */
1057
1058 static struct objfile *
1059 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1060 symfile_add_flags add_flags,
1061 section_addr_info *addrs,
1062 objfile_flags flags, struct objfile *parent)
1063 {
1064 struct objfile *objfile;
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076 else if (readnever_symbol_files
1077 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1078 {
1079 flags |= OBJF_READNEVER;
1080 add_flags |= SYMFILE_NO_READ;
1081 }
1082 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1083 flags |= OBJF_NOT_FILENAME;
1084
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && mainline
1090 && from_tty
1091 && !query (_("Load new symbol table from \"%s\"? "), name))
1092 error (_("Not confirmed."));
1093
1094 if (mainline)
1095 flags |= OBJF_MAINLINE;
1096 objfile = new struct objfile (abfd, name, flags);
1097
1098 if (parent)
1099 add_separate_debug_objfile (objfile, parent);
1100
1101 /* We either created a new mapped symbol table, mapped an existing
1102 symbol table file which has not had initial symbol reading
1103 performed, or need to read an unmapped symbol table. */
1104 if (should_print)
1105 {
1106 if (deprecated_pre_add_symbol_hook)
1107 deprecated_pre_add_symbol_hook (name);
1108 else
1109 printf_filtered (_("Reading symbols from %ps...\n"),
1110 styled_string (file_name_style.style (), name));
1111 }
1112 syms_from_objfile (objfile, addrs, add_flags);
1113
1114 /* We now have at least a partial symbol table. Check to see if the
1115 user requested that all symbols be read on initial access via either
1116 the gdb startup command line or on a per symbol file basis. Expand
1117 all partial symbol tables for this objfile if so. */
1118
1119 if ((flags & OBJF_READNOW))
1120 {
1121 if (should_print)
1122 printf_filtered (_("Expanding full symbols from %ps...\n"),
1123 styled_string (file_name_style.style (), name));
1124
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
1127 }
1128
1129 /* Note that we only print a message if we have no symbols and have
1130 no separate debug file. If there is a separate debug file which
1131 does not have symbols, we'll have emitted this message for that
1132 file, and so printing it twice is just redundant. */
1133 if (should_print && !objfile_has_symbols (objfile)
1134 && objfile->separate_debug_objfile == nullptr)
1135 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1136 styled_string (file_name_style.style (), name));
1137
1138 if (should_print)
1139 {
1140 if (deprecated_post_add_symbol_hook)
1141 deprecated_post_add_symbol_hook ();
1142 }
1143
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
1149 if (objfile->sf == NULL)
1150 {
1151 gdb::observers::new_objfile.notify (objfile);
1152 return objfile; /* No symbols. */
1153 }
1154
1155 finish_new_objfile (objfile, add_flags);
1156
1157 gdb::observers::new_objfile.notify (objfile);
1158
1159 bfd_cache_close_all ();
1160 return (objfile);
1161 }
1162
1163 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1164 see the objfile constructor. */
1165
1166 void
1167 symbol_file_add_separate (bfd *bfd, const char *name,
1168 symfile_add_flags symfile_flags,
1169 struct objfile *objfile)
1170 {
1171 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1172 because sections of BFD may not match sections of OBJFILE and because
1173 vma may have been modified by tools such as prelink. */
1174 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1175
1176 symbol_file_add_with_addrs
1177 (bfd, name, symfile_flags, &sap,
1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1179 | OBJF_USERLOADED),
1180 objfile);
1181 }
1182
1183 /* Process the symbol file ABFD, as either the main file or as a
1184 dynamically loaded file.
1185 See symbol_file_add_with_addrs's comments for details. */
1186
1187 struct objfile *
1188 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1189 symfile_add_flags add_flags,
1190 section_addr_info *addrs,
1191 objfile_flags flags, struct objfile *parent)
1192 {
1193 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1194 parent);
1195 }
1196
1197 /* Process a symbol file, as either the main file or as a dynamically
1198 loaded file. See symbol_file_add_with_addrs's comments for details. */
1199
1200 struct objfile *
1201 symbol_file_add (const char *name, symfile_add_flags add_flags,
1202 section_addr_info *addrs, objfile_flags flags)
1203 {
1204 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1205
1206 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1207 flags, NULL);
1208 }
1209
1210 /* Call symbol_file_add() with default values and update whatever is
1211 affected by the loading of a new main().
1212 Used when the file is supplied in the gdb command line
1213 and by some targets with special loading requirements.
1214 The auxiliary function, symbol_file_add_main_1(), has the flags
1215 argument for the switches that can only be specified in the symbol_file
1216 command itself. */
1217
1218 void
1219 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1220 {
1221 symbol_file_add_main_1 (args, add_flags, 0, 0);
1222 }
1223
1224 static void
1225 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1226 objfile_flags flags, CORE_ADDR reloff)
1227 {
1228 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1229
1230 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1231 if (reloff != 0)
1232 objfile_rebase (objfile, reloff);
1233
1234 /* Getting new symbols may change our opinion about
1235 what is frameless. */
1236 reinit_frame_cache ();
1237
1238 if ((add_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
1240 }
1241
1242 void
1243 symbol_file_clear (int from_tty)
1244 {
1245 if ((have_full_symbols () || have_partial_symbols ())
1246 && from_tty
1247 && (symfile_objfile
1248 ? !query (_("Discard symbol table from `%s'? "),
1249 objfile_name (symfile_objfile))
1250 : !query (_("Discard symbol table? "))))
1251 error (_("Not confirmed."));
1252
1253 /* solib descriptors may have handles to objfiles. Wipe them before their
1254 objfiles get stale by free_all_objfiles. */
1255 no_shared_libraries (NULL, from_tty);
1256
1257 free_all_objfiles ();
1258
1259 gdb_assert (symfile_objfile == NULL);
1260 if (from_tty)
1261 printf_filtered (_("No symbol file now.\n"));
1262 }
1263
1264 /* See symfile.h. */
1265
1266 bool separate_debug_file_debug = false;
1267
1268 static int
1269 separate_debug_file_exists (const std::string &name, unsigned long crc,
1270 struct objfile *parent_objfile)
1271 {
1272 unsigned long file_crc;
1273 int file_crc_p;
1274 struct stat parent_stat, abfd_stat;
1275 int verified_as_different;
1276
1277 /* Find a separate debug info file as if symbols would be present in
1278 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1279 section can contain just the basename of PARENT_OBJFILE without any
1280 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1281 the separate debug infos with the same basename can exist. */
1282
1283 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1284 return 0;
1285
1286 if (separate_debug_file_debug)
1287 {
1288 printf_filtered (_(" Trying %s..."), name.c_str ());
1289 gdb_flush (gdb_stdout);
1290 }
1291
1292 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1293
1294 if (abfd == NULL)
1295 {
1296 if (separate_debug_file_debug)
1297 printf_filtered (_(" no, unable to open.\n"));
1298
1299 return 0;
1300 }
1301
1302 /* Verify symlinks were not the cause of filename_cmp name difference above.
1303
1304 Some operating systems, e.g. Windows, do not provide a meaningful
1305 st_ino; they always set it to zero. (Windows does provide a
1306 meaningful st_dev.) Files accessed from gdbservers that do not
1307 support the vFile:fstat packet will also have st_ino set to zero.
1308 Do not indicate a duplicate library in either case. While there
1309 is no guarantee that a system that provides meaningful inode
1310 numbers will never set st_ino to zero, this is merely an
1311 optimization, so we do not need to worry about false negatives. */
1312
1313 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1314 && abfd_stat.st_ino != 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1316 {
1317 if (abfd_stat.st_dev == parent_stat.st_dev
1318 && abfd_stat.st_ino == parent_stat.st_ino)
1319 {
1320 if (separate_debug_file_debug)
1321 printf_filtered (_(" no, same file as the objfile.\n"));
1322
1323 return 0;
1324 }
1325 verified_as_different = 1;
1326 }
1327 else
1328 verified_as_different = 0;
1329
1330 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1331
1332 if (!file_crc_p)
1333 {
1334 if (separate_debug_file_debug)
1335 printf_filtered (_(" no, error computing CRC.\n"));
1336
1337 return 0;
1338 }
1339
1340 if (crc != file_crc)
1341 {
1342 unsigned long parent_crc;
1343
1344 /* If the files could not be verified as different with
1345 bfd_stat then we need to calculate the parent's CRC
1346 to verify whether the files are different or not. */
1347
1348 if (!verified_as_different)
1349 {
1350 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1351 {
1352 if (separate_debug_file_debug)
1353 printf_filtered (_(" no, error computing CRC.\n"));
1354
1355 return 0;
1356 }
1357 }
1358
1359 if (verified_as_different || parent_crc != file_crc)
1360 warning (_("the debug information found in \"%s\""
1361 " does not match \"%s\" (CRC mismatch).\n"),
1362 name.c_str (), objfile_name (parent_objfile));
1363
1364 if (separate_debug_file_debug)
1365 printf_filtered (_(" no, CRC doesn't match.\n"));
1366
1367 return 0;
1368 }
1369
1370 if (separate_debug_file_debug)
1371 printf_filtered (_(" yes!\n"));
1372
1373 return 1;
1374 }
1375
1376 char *debug_file_directory = NULL;
1377 static void
1378 show_debug_file_directory (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1380 {
1381 fprintf_filtered (file,
1382 _("The directory where separate debug "
1383 "symbols are searched for is \"%s\".\n"),
1384 value);
1385 }
1386
1387 #if ! defined (DEBUG_SUBDIRECTORY)
1388 #define DEBUG_SUBDIRECTORY ".debug"
1389 #endif
1390
1391 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1392 where the original file resides (may not be the same as
1393 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1394 looking for. CANON_DIR is the "realpath" form of DIR.
1395 DIR must contain a trailing '/'.
1396 Returns the path of the file with separate debug info, or an empty
1397 string. */
1398
1399 static std::string
1400 find_separate_debug_file (const char *dir,
1401 const char *canon_dir,
1402 const char *debuglink,
1403 unsigned long crc32, struct objfile *objfile)
1404 {
1405 if (separate_debug_file_debug)
1406 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1407 "%s\n"), objfile_name (objfile));
1408
1409 /* First try in the same directory as the original file. */
1410 std::string debugfile = dir;
1411 debugfile += debuglink;
1412
1413 if (separate_debug_file_exists (debugfile, crc32, objfile))
1414 return debugfile;
1415
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 debugfile = dir;
1418 debugfile += DEBUG_SUBDIRECTORY;
1419 debugfile += "/";
1420 debugfile += debuglink;
1421
1422 if (separate_debug_file_exists (debugfile, crc32, objfile))
1423 return debugfile;
1424
1425 /* Then try in the global debugfile directories.
1426
1427 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1428 cause "/..." lookups. */
1429
1430 bool target_prefix = startswith (dir, "target:");
1431 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1432 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1433 = dirnames_to_char_ptr_vec (debug_file_directory);
1434 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1435
1436 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1437 convert the drive letter into a one-letter directory, so that the
1438 file name resulting from splicing below will be valid.
1439
1440 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1441 There are various remote-debugging scenarios where such a
1442 transformation of the drive letter might be required when GDB runs
1443 on a Posix host, see
1444
1445 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1446
1447 If some of those scenarios need to be supported, we will need to
1448 use a different condition for HAS_DRIVE_SPEC and a different macro
1449 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1450 std::string drive;
1451 if (HAS_DRIVE_SPEC (dir_notarget))
1452 {
1453 drive = dir_notarget[0];
1454 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1455 }
1456
1457 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1458 {
1459 debugfile = target_prefix ? "target:" : "";
1460 debugfile += debugdir.get ();
1461 debugfile += "/";
1462 debugfile += drive;
1463 debugfile += dir_notarget;
1464 debugfile += debuglink;
1465
1466 if (separate_debug_file_exists (debugfile, crc32, objfile))
1467 return debugfile;
1468
1469 const char *base_path = NULL;
1470 if (canon_dir != NULL)
1471 {
1472 if (canon_sysroot.get () != NULL)
1473 base_path = child_path (canon_sysroot.get (), canon_dir);
1474 else
1475 base_path = child_path (gdb_sysroot, canon_dir);
1476 }
1477 if (base_path != NULL)
1478 {
1479 /* If the file is in the sysroot, try using its base path in
1480 the global debugfile directory. */
1481 debugfile = target_prefix ? "target:" : "";
1482 debugfile += debugdir.get ();
1483 debugfile += "/";
1484 debugfile += base_path;
1485 debugfile += "/";
1486 debugfile += debuglink;
1487
1488 if (separate_debug_file_exists (debugfile, crc32, objfile))
1489 return debugfile;
1490
1491 /* If the file is in the sysroot, try using its base path in
1492 the sysroot's global debugfile directory. */
1493 debugfile = target_prefix ? "target:" : "";
1494 debugfile += gdb_sysroot;
1495 debugfile += debugdir.get ();
1496 debugfile += "/";
1497 debugfile += base_path;
1498 debugfile += "/";
1499 debugfile += debuglink;
1500
1501 if (separate_debug_file_exists (debugfile, crc32, objfile))
1502 return debugfile;
1503 }
1504
1505 }
1506
1507 return std::string ();
1508 }
1509
1510 /* Modify PATH to contain only "[/]directory/" part of PATH.
1511 If there were no directory separators in PATH, PATH will be empty
1512 string on return. */
1513
1514 static void
1515 terminate_after_last_dir_separator (char *path)
1516 {
1517 int i;
1518
1519 /* Strip off the final filename part, leaving the directory name,
1520 followed by a slash. The directory can be relative or absolute. */
1521 for (i = strlen(path) - 1; i >= 0; i--)
1522 if (IS_DIR_SEPARATOR (path[i]))
1523 break;
1524
1525 /* If I is -1 then no directory is present there and DIR will be "". */
1526 path[i + 1] = '\0';
1527 }
1528
1529 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1530 Returns pathname, or an empty string. */
1531
1532 std::string
1533 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1534 {
1535 unsigned long crc32;
1536
1537 gdb::unique_xmalloc_ptr<char> debuglink
1538 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1539
1540 if (debuglink == NULL)
1541 {
1542 /* There's no separate debug info, hence there's no way we could
1543 load it => no warning. */
1544 return std::string ();
1545 }
1546
1547 std::string dir = objfile_name (objfile);
1548 terminate_after_last_dir_separator (&dir[0]);
1549 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1550
1551 std::string debugfile
1552 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1553 debuglink.get (), crc32, objfile);
1554
1555 if (debugfile.empty ())
1556 {
1557 /* For PR gdb/9538, try again with realpath (if different from the
1558 original). */
1559
1560 struct stat st_buf;
1561
1562 if (lstat (objfile_name (objfile), &st_buf) == 0
1563 && S_ISLNK (st_buf.st_mode))
1564 {
1565 gdb::unique_xmalloc_ptr<char> symlink_dir
1566 (lrealpath (objfile_name (objfile)));
1567 if (symlink_dir != NULL)
1568 {
1569 terminate_after_last_dir_separator (symlink_dir.get ());
1570 if (dir != symlink_dir.get ())
1571 {
1572 /* Different directory, so try using it. */
1573 debugfile = find_separate_debug_file (symlink_dir.get (),
1574 symlink_dir.get (),
1575 debuglink.get (),
1576 crc32,
1577 objfile);
1578 }
1579 }
1580 }
1581 }
1582
1583 return debugfile;
1584 }
1585
1586 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1587 simultaneously. */
1588
1589 static void
1590 validate_readnow_readnever (objfile_flags flags)
1591 {
1592 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1593 error (_("-readnow and -readnever cannot be used simultaneously"));
1594 }
1595
1596 /* This is the symbol-file command. Read the file, analyze its
1597 symbols, and add a struct symtab to a symtab list. The syntax of
1598 the command is rather bizarre:
1599
1600 1. The function buildargv implements various quoting conventions
1601 which are undocumented and have little or nothing in common with
1602 the way things are quoted (or not quoted) elsewhere in GDB.
1603
1604 2. Options are used, which are not generally used in GDB (perhaps
1605 "set mapped on", "set readnow on" would be better)
1606
1607 3. The order of options matters, which is contrary to GNU
1608 conventions (because it is confusing and inconvenient). */
1609
1610 void
1611 symbol_file_command (const char *args, int from_tty)
1612 {
1613 dont_repeat ();
1614
1615 if (args == NULL)
1616 {
1617 symbol_file_clear (from_tty);
1618 }
1619 else
1620 {
1621 objfile_flags flags = OBJF_USERLOADED;
1622 symfile_add_flags add_flags = 0;
1623 char *name = NULL;
1624 bool stop_processing_options = false;
1625 CORE_ADDR offset = 0;
1626 int idx;
1627 char *arg;
1628
1629 if (from_tty)
1630 add_flags |= SYMFILE_VERBOSE;
1631
1632 gdb_argv built_argv (args);
1633 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1634 {
1635 if (stop_processing_options || *arg != '-')
1636 {
1637 if (name == NULL)
1638 name = arg;
1639 else
1640 error (_("Unrecognized argument \"%s\""), arg);
1641 }
1642 else if (strcmp (arg, "-readnow") == 0)
1643 flags |= OBJF_READNOW;
1644 else if (strcmp (arg, "-readnever") == 0)
1645 flags |= OBJF_READNEVER;
1646 else if (strcmp (arg, "-o") == 0)
1647 {
1648 arg = built_argv[++idx];
1649 if (arg == NULL)
1650 error (_("Missing argument to -o"));
1651
1652 offset = parse_and_eval_address (arg);
1653 }
1654 else if (strcmp (arg, "--") == 0)
1655 stop_processing_options = true;
1656 else
1657 error (_("Unrecognized argument \"%s\""), arg);
1658 }
1659
1660 if (name == NULL)
1661 error (_("no symbol file name was specified"));
1662
1663 validate_readnow_readnever (flags);
1664
1665 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1666 (Position Independent Executable) main symbol file will only be
1667 computed by the solib_create_inferior_hook below. Without it,
1668 breakpoint_re_set would fail to insert the breakpoints with the zero
1669 displacement. */
1670 add_flags |= SYMFILE_DEFER_BP_RESET;
1671
1672 symbol_file_add_main_1 (name, add_flags, flags, offset);
1673
1674 solib_create_inferior_hook (from_tty);
1675
1676 /* Now it's safe to re-add the breakpoints. */
1677 breakpoint_re_set ();
1678 }
1679 }
1680
1681 /* Set the initial language.
1682
1683 FIXME: A better solution would be to record the language in the
1684 psymtab when reading partial symbols, and then use it (if known) to
1685 set the language. This would be a win for formats that encode the
1686 language in an easily discoverable place, such as DWARF. For
1687 stabs, we can jump through hoops looking for specially named
1688 symbols or try to intuit the language from the specific type of
1689 stabs we find, but we can't do that until later when we read in
1690 full symbols. */
1691
1692 void
1693 set_initial_language (void)
1694 {
1695 enum language lang = main_language ();
1696
1697 if (lang == language_unknown)
1698 {
1699 const char *name = main_name ();
1700 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1701
1702 if (sym != NULL)
1703 lang = SYMBOL_LANGUAGE (sym);
1704 }
1705
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
1710 }
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
1714 }
1715
1716 /* Open the file specified by NAME and hand it off to BFD for
1717 preliminary analysis. Return a newly initialized bfd *, which
1718 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1719 absolute). In case of trouble, error() is called. */
1720
1721 gdb_bfd_ref_ptr
1722 symfile_bfd_open (const char *name)
1723 {
1724 int desc = -1;
1725
1726 gdb::unique_xmalloc_ptr<char> absolute_name;
1727 if (!is_target_filename (name))
1728 {
1729 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1730
1731 /* Look down path for it, allocate 2nd new malloc'd copy. */
1732 desc = openp (getenv ("PATH"),
1733 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1734 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1735 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1736 if (desc < 0)
1737 {
1738 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1739
1740 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1741 desc = openp (getenv ("PATH"),
1742 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1743 exename, O_RDONLY | O_BINARY, &absolute_name);
1744 }
1745 #endif
1746 if (desc < 0)
1747 perror_with_name (expanded_name.get ());
1748
1749 name = absolute_name.get ();
1750 }
1751
1752 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1753 if (sym_bfd == NULL)
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1756
1757 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1758 bfd_set_cacheable (sym_bfd.get (), 1);
1759
1760 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1763
1764 return sym_bfd;
1765 }
1766
1767 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1768 the section was not found. */
1769
1770 int
1771 get_section_index (struct objfile *objfile, const char *section_name)
1772 {
1773 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1774
1775 if (sect)
1776 return sect->index;
1777 else
1778 return -1;
1779 }
1780
1781 /* Link SF into the global symtab_fns list.
1782 FLAVOUR is the file format that SF handles.
1783 Called on startup by the _initialize routine in each object file format
1784 reader, to register information about each format the reader is prepared
1785 to handle. */
1786
1787 void
1788 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1789 {
1790 symtab_fns.emplace_back (flavour, sf);
1791 }
1792
1793 /* Initialize OBJFILE to read symbols from its associated BFD. It
1794 either returns or calls error(). The result is an initialized
1795 struct sym_fns in the objfile structure, that contains cached
1796 information about the symbol file. */
1797
1798 static const struct sym_fns *
1799 find_sym_fns (bfd *abfd)
1800 {
1801 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1802
1803 if (our_flavour == bfd_target_srec_flavour
1804 || our_flavour == bfd_target_ihex_flavour
1805 || our_flavour == bfd_target_tekhex_flavour)
1806 return NULL; /* No symbols. */
1807
1808 for (const registered_sym_fns &rsf : symtab_fns)
1809 if (our_flavour == rsf.sym_flavour)
1810 return rsf.sym_fns;
1811
1812 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1813 bfd_get_target (abfd));
1814 }
1815 \f
1816
1817 /* This function runs the load command of our current target. */
1818
1819 static void
1820 load_command (const char *arg, int from_tty)
1821 {
1822 dont_repeat ();
1823
1824 /* The user might be reloading because the binary has changed. Take
1825 this opportunity to check. */
1826 reopen_exec_file ();
1827 reread_symbols ();
1828
1829 std::string temp;
1830 if (arg == NULL)
1831 {
1832 const char *parg, *prev;
1833
1834 arg = get_exec_file (1);
1835
1836 /* We may need to quote this string so buildargv can pull it
1837 apart. */
1838 prev = parg = arg;
1839 while ((parg = strpbrk (parg, "\\\"'\t ")))
1840 {
1841 temp.append (prev, parg - prev);
1842 prev = parg++;
1843 temp.push_back ('\\');
1844 }
1845 /* If we have not copied anything yet, then we didn't see a
1846 character to quote, and we can just leave ARG unchanged. */
1847 if (!temp.empty ())
1848 {
1849 temp.append (prev);
1850 arg = temp.c_str ();
1851 }
1852 }
1853
1854 target_load (arg, from_tty);
1855
1856 /* After re-loading the executable, we don't really know which
1857 overlays are mapped any more. */
1858 overlay_cache_invalid = 1;
1859 }
1860
1861 /* This version of "load" should be usable for any target. Currently
1862 it is just used for remote targets, not inftarg.c or core files,
1863 on the theory that only in that case is it useful.
1864
1865 Avoiding xmodem and the like seems like a win (a) because we don't have
1866 to worry about finding it, and (b) On VMS, fork() is very slow and so
1867 we don't want to run a subprocess. On the other hand, I'm not sure how
1868 performance compares. */
1869
1870 static int validate_download = 0;
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 bfd_size_type *sum = (bfd_size_type *) data;
1878
1879 *sum += bfd_section_size (asec);
1880 }
1881
1882 /* Opaque data for load_progress. */
1883 struct load_progress_data
1884 {
1885 /* Cumulative data. */
1886 unsigned long write_count = 0;
1887 unsigned long data_count = 0;
1888 bfd_size_type total_size = 0;
1889 };
1890
1891 /* Opaque data for load_progress for a single section. */
1892 struct load_progress_section_data
1893 {
1894 load_progress_section_data (load_progress_data *cumulative_,
1895 const char *section_name_, ULONGEST section_size_,
1896 CORE_ADDR lma_, gdb_byte *buffer_)
1897 : cumulative (cumulative_), section_name (section_name_),
1898 section_size (section_size_), lma (lma_), buffer (buffer_)
1899 {}
1900
1901 struct load_progress_data *cumulative;
1902
1903 /* Per-section data. */
1904 const char *section_name;
1905 ULONGEST section_sent = 0;
1906 ULONGEST section_size;
1907 CORE_ADDR lma;
1908 gdb_byte *buffer;
1909 };
1910
1911 /* Opaque data for load_section_callback. */
1912 struct load_section_data
1913 {
1914 load_section_data (load_progress_data *progress_data_)
1915 : progress_data (progress_data_)
1916 {}
1917
1918 ~load_section_data ()
1919 {
1920 for (auto &&request : requests)
1921 {
1922 xfree (request.data);
1923 delete ((load_progress_section_data *) request.baton);
1924 }
1925 }
1926
1927 CORE_ADDR load_offset = 0;
1928 struct load_progress_data *progress_data;
1929 std::vector<struct memory_write_request> requests;
1930 };
1931
1932 /* Target write callback routine for progress reporting. */
1933
1934 static void
1935 load_progress (ULONGEST bytes, void *untyped_arg)
1936 {
1937 struct load_progress_section_data *args
1938 = (struct load_progress_section_data *) untyped_arg;
1939 struct load_progress_data *totals;
1940
1941 if (args == NULL)
1942 /* Writing padding data. No easy way to get at the cumulative
1943 stats, so just ignore this. */
1944 return;
1945
1946 totals = args->cumulative;
1947
1948 if (bytes == 0 && args->section_sent == 0)
1949 {
1950 /* The write is just starting. Let the user know we've started
1951 this section. */
1952 current_uiout->message ("Loading section %s, size %s lma %s\n",
1953 args->section_name,
1954 hex_string (args->section_size),
1955 paddress (target_gdbarch (), args->lma));
1956 return;
1957 }
1958
1959 if (validate_download)
1960 {
1961 /* Broken memories and broken monitors manifest themselves here
1962 when bring new computers to life. This doubles already slow
1963 downloads. */
1964 /* NOTE: cagney/1999-10-18: A more efficient implementation
1965 might add a verify_memory() method to the target vector and
1966 then use that. remote.c could implement that method using
1967 the ``qCRC'' packet. */
1968 gdb::byte_vector check (bytes);
1969
1970 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1971 error (_("Download verify read failed at %s"),
1972 paddress (target_gdbarch (), args->lma));
1973 if (memcmp (args->buffer, check.data (), bytes) != 0)
1974 error (_("Download verify compare failed at %s"),
1975 paddress (target_gdbarch (), args->lma));
1976 }
1977 totals->data_count += bytes;
1978 args->lma += bytes;
1979 args->buffer += bytes;
1980 totals->write_count += 1;
1981 args->section_sent += bytes;
1982 if (check_quit_flag ()
1983 || (deprecated_ui_load_progress_hook != NULL
1984 && deprecated_ui_load_progress_hook (args->section_name,
1985 args->section_sent)))
1986 error (_("Canceled the download"));
1987
1988 if (deprecated_show_load_progress != NULL)
1989 deprecated_show_load_progress (args->section_name,
1990 args->section_sent,
1991 args->section_size,
1992 totals->data_count,
1993 totals->total_size);
1994 }
1995
1996 /* Callback service function for generic_load (bfd_map_over_sections). */
1997
1998 static void
1999 load_section_callback (bfd *abfd, asection *asec, void *data)
2000 {
2001 struct load_section_data *args = (struct load_section_data *) data;
2002 bfd_size_type size = bfd_section_size (asec);
2003 const char *sect_name = bfd_section_name (asec);
2004
2005 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
2006 return;
2007
2008 if (size == 0)
2009 return;
2010
2011 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
2012 ULONGEST end = begin + size;
2013 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2014 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2015
2016 load_progress_section_data *section_data
2017 = new load_progress_section_data (args->progress_data, sect_name, size,
2018 begin, buffer);
2019
2020 args->requests.emplace_back (begin, end, buffer, section_data);
2021 }
2022
2023 static void print_transfer_performance (struct ui_file *stream,
2024 unsigned long data_count,
2025 unsigned long write_count,
2026 std::chrono::steady_clock::duration d);
2027
2028 /* See symfile.h. */
2029
2030 void
2031 generic_load (const char *args, int from_tty)
2032 {
2033 struct load_progress_data total_progress;
2034 struct load_section_data cbdata (&total_progress);
2035 struct ui_out *uiout = current_uiout;
2036
2037 if (args == NULL)
2038 error_no_arg (_("file to load"));
2039
2040 gdb_argv argv (args);
2041
2042 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2043
2044 if (argv[1] != NULL)
2045 {
2046 const char *endptr;
2047
2048 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2049
2050 /* If the last word was not a valid number then
2051 treat it as a file name with spaces in. */
2052 if (argv[1] == endptr)
2053 error (_("Invalid download offset:%s."), argv[1]);
2054
2055 if (argv[2] != NULL)
2056 error (_("Too many parameters."));
2057 }
2058
2059 /* Open the file for loading. */
2060 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2061 if (loadfile_bfd == NULL)
2062 perror_with_name (filename.get ());
2063
2064 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2065 {
2066 error (_("\"%s\" is not an object file: %s"), filename.get (),
2067 bfd_errmsg (bfd_get_error ()));
2068 }
2069
2070 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2071 (void *) &total_progress.total_size);
2072
2073 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2074
2075 using namespace std::chrono;
2076
2077 steady_clock::time_point start_time = steady_clock::now ();
2078
2079 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2080 load_progress) != 0)
2081 error (_("Load failed"));
2082
2083 steady_clock::time_point end_time = steady_clock::now ();
2084
2085 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2086 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2087 uiout->text ("Start address ");
2088 uiout->field_core_addr ("address", target_gdbarch (), entry);
2089 uiout->text (", load size ");
2090 uiout->field_unsigned ("load-size", total_progress.data_count);
2091 uiout->text ("\n");
2092 regcache_write_pc (get_current_regcache (), entry);
2093
2094 /* Reset breakpoints, now that we have changed the load image. For
2095 instance, breakpoints may have been set (or reset, by
2096 post_create_inferior) while connected to the target but before we
2097 loaded the program. In that case, the prologue analyzer could
2098 have read instructions from the target to find the right
2099 breakpoint locations. Loading has changed the contents of that
2100 memory. */
2101
2102 breakpoint_re_set ();
2103
2104 print_transfer_performance (gdb_stdout, total_progress.data_count,
2105 total_progress.write_count,
2106 end_time - start_time);
2107 }
2108
2109 /* Report on STREAM the performance of a memory transfer operation,
2110 such as 'load'. DATA_COUNT is the number of bytes transferred.
2111 WRITE_COUNT is the number of separate write operations, or 0, if
2112 that information is not available. TIME is how long the operation
2113 lasted. */
2114
2115 static void
2116 print_transfer_performance (struct ui_file *stream,
2117 unsigned long data_count,
2118 unsigned long write_count,
2119 std::chrono::steady_clock::duration time)
2120 {
2121 using namespace std::chrono;
2122 struct ui_out *uiout = current_uiout;
2123
2124 milliseconds ms = duration_cast<milliseconds> (time);
2125
2126 uiout->text ("Transfer rate: ");
2127 if (ms.count () > 0)
2128 {
2129 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2130
2131 if (uiout->is_mi_like_p ())
2132 {
2133 uiout->field_unsigned ("transfer-rate", rate * 8);
2134 uiout->text (" bits/sec");
2135 }
2136 else if (rate < 1024)
2137 {
2138 uiout->field_unsigned ("transfer-rate", rate);
2139 uiout->text (" bytes/sec");
2140 }
2141 else
2142 {
2143 uiout->field_unsigned ("transfer-rate", rate / 1024);
2144 uiout->text (" KB/sec");
2145 }
2146 }
2147 else
2148 {
2149 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2150 uiout->text (" bits in <1 sec");
2151 }
2152 if (write_count > 0)
2153 {
2154 uiout->text (", ");
2155 uiout->field_unsigned ("write-rate", data_count / write_count);
2156 uiout->text (" bytes/write");
2157 }
2158 uiout->text (".\n");
2159 }
2160
2161 /* Add an OFFSET to the start address of each section in OBJF, except
2162 sections that were specified in ADDRS. */
2163
2164 static void
2165 set_objfile_default_section_offset (struct objfile *objf,
2166 const section_addr_info &addrs,
2167 CORE_ADDR offset)
2168 {
2169 /* Add OFFSET to all sections by default. */
2170 std::vector<struct section_offsets> offsets (objf->num_sections,
2171 { { offset } });
2172
2173 /* Create sorted lists of all sections in ADDRS as well as all
2174 sections in OBJF. */
2175
2176 std::vector<const struct other_sections *> addrs_sorted
2177 = addrs_section_sort (addrs);
2178
2179 section_addr_info objf_addrs
2180 = build_section_addr_info_from_objfile (objf);
2181 std::vector<const struct other_sections *> objf_addrs_sorted
2182 = addrs_section_sort (objf_addrs);
2183
2184 /* Walk the BFD section list, and if a matching section is found in
2185 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2186 unchanged.
2187
2188 Note that both lists may contain multiple sections with the same
2189 name, and then the sections from ADDRS are matched in BFD order
2190 (thanks to sectindex). */
2191
2192 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2193 = addrs_sorted.begin ();
2194 for (const other_sections *objf_sect : objf_addrs_sorted)
2195 {
2196 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2197 int cmp = -1;
2198
2199 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2200 {
2201 const struct other_sections *sect = *addrs_sorted_iter;
2202 const char *sect_name = addr_section_name (sect->name.c_str ());
2203 cmp = strcmp (sect_name, objf_name);
2204 if (cmp <= 0)
2205 ++addrs_sorted_iter;
2206 }
2207
2208 if (cmp == 0)
2209 offsets[objf_sect->sectindex].offsets[0] = 0;
2210 }
2211
2212 /* Apply the new section offsets. */
2213 objfile_relocate (objf, offsets.data ());
2214 }
2215
2216 /* This function allows the addition of incrementally linked object files.
2217 It does not modify any state in the target, only in the debugger. */
2218
2219 static void
2220 add_symbol_file_command (const char *args, int from_tty)
2221 {
2222 struct gdbarch *gdbarch = get_current_arch ();
2223 gdb::unique_xmalloc_ptr<char> filename;
2224 char *arg;
2225 int argcnt = 0;
2226 struct objfile *objf;
2227 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2228 symfile_add_flags add_flags = 0;
2229
2230 if (from_tty)
2231 add_flags |= SYMFILE_VERBOSE;
2232
2233 struct sect_opt
2234 {
2235 const char *name;
2236 const char *value;
2237 };
2238
2239 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2240 bool stop_processing_options = false;
2241 CORE_ADDR offset = 0;
2242
2243 dont_repeat ();
2244
2245 if (args == NULL)
2246 error (_("add-symbol-file takes a file name and an address"));
2247
2248 bool seen_addr = false;
2249 bool seen_offset = false;
2250 gdb_argv argv (args);
2251
2252 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2253 {
2254 if (stop_processing_options || *arg != '-')
2255 {
2256 if (filename == NULL)
2257 {
2258 /* First non-option argument is always the filename. */
2259 filename.reset (tilde_expand (arg));
2260 }
2261 else if (!seen_addr)
2262 {
2263 /* The second non-option argument is always the text
2264 address at which to load the program. */
2265 sect_opts[0].value = arg;
2266 seen_addr = true;
2267 }
2268 else
2269 error (_("Unrecognized argument \"%s\""), arg);
2270 }
2271 else if (strcmp (arg, "-readnow") == 0)
2272 flags |= OBJF_READNOW;
2273 else if (strcmp (arg, "-readnever") == 0)
2274 flags |= OBJF_READNEVER;
2275 else if (strcmp (arg, "-s") == 0)
2276 {
2277 if (argv[argcnt + 1] == NULL)
2278 error (_("Missing section name after \"-s\""));
2279 else if (argv[argcnt + 2] == NULL)
2280 error (_("Missing section address after \"-s\""));
2281
2282 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2283
2284 sect_opts.push_back (sect);
2285 argcnt += 2;
2286 }
2287 else if (strcmp (arg, "-o") == 0)
2288 {
2289 arg = argv[++argcnt];
2290 if (arg == NULL)
2291 error (_("Missing argument to -o"));
2292
2293 offset = parse_and_eval_address (arg);
2294 seen_offset = true;
2295 }
2296 else if (strcmp (arg, "--") == 0)
2297 stop_processing_options = true;
2298 else
2299 error (_("Unrecognized argument \"%s\""), arg);
2300 }
2301
2302 if (filename == NULL)
2303 error (_("You must provide a filename to be loaded."));
2304
2305 validate_readnow_readnever (flags);
2306
2307 /* Print the prompt for the query below. And save the arguments into
2308 a sect_addr_info structure to be passed around to other
2309 functions. We have to split this up into separate print
2310 statements because hex_string returns a local static
2311 string. */
2312
2313 printf_unfiltered (_("add symbol table from file \"%s\""),
2314 filename.get ());
2315 section_addr_info section_addrs;
2316 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2317 if (!seen_addr)
2318 ++it;
2319 for (; it != sect_opts.end (); ++it)
2320 {
2321 CORE_ADDR addr;
2322 const char *val = it->value;
2323 const char *sec = it->name;
2324
2325 if (section_addrs.empty ())
2326 printf_unfiltered (_(" at\n"));
2327 addr = parse_and_eval_address (val);
2328
2329 /* Here we store the section offsets in the order they were
2330 entered on the command line. Every array element is
2331 assigned an ascending section index to preserve the above
2332 order over an unstable sorting algorithm. This dummy
2333 index is not used for any other purpose.
2334 */
2335 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2336 printf_filtered ("\t%s_addr = %s\n", sec,
2337 paddress (gdbarch, addr));
2338
2339 /* The object's sections are initialized when a
2340 call is made to build_objfile_section_table (objfile).
2341 This happens in reread_symbols.
2342 At this point, we don't know what file type this is,
2343 so we can't determine what section names are valid. */
2344 }
2345 if (seen_offset)
2346 printf_unfiltered (_("%s offset by %s\n"),
2347 (section_addrs.empty ()
2348 ? _(" with all sections")
2349 : _("with other sections")),
2350 paddress (gdbarch, offset));
2351 else if (section_addrs.empty ())
2352 printf_unfiltered ("\n");
2353
2354 if (from_tty && (!query ("%s", "")))
2355 error (_("Not confirmed."));
2356
2357 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2358 flags);
2359 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2360 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2361 filename.get ());
2362
2363 if (seen_offset)
2364 set_objfile_default_section_offset (objf, section_addrs, offset);
2365
2366 add_target_sections_of_objfile (objf);
2367
2368 /* Getting new symbols may change our opinion about what is
2369 frameless. */
2370 reinit_frame_cache ();
2371 }
2372 \f
2373
2374 /* This function removes a symbol file that was added via add-symbol-file. */
2375
2376 static void
2377 remove_symbol_file_command (const char *args, int from_tty)
2378 {
2379 struct objfile *objf = NULL;
2380 struct program_space *pspace = current_program_space;
2381
2382 dont_repeat ();
2383
2384 if (args == NULL)
2385 error (_("remove-symbol-file: no symbol file provided"));
2386
2387 gdb_argv argv (args);
2388
2389 if (strcmp (argv[0], "-a") == 0)
2390 {
2391 /* Interpret the next argument as an address. */
2392 CORE_ADDR addr;
2393
2394 if (argv[1] == NULL)
2395 error (_("Missing address argument"));
2396
2397 if (argv[2] != NULL)
2398 error (_("Junk after %s"), argv[1]);
2399
2400 addr = parse_and_eval_address (argv[1]);
2401
2402 for (objfile *objfile : current_program_space->objfiles ())
2403 {
2404 if ((objfile->flags & OBJF_USERLOADED) != 0
2405 && (objfile->flags & OBJF_SHARED) != 0
2406 && objfile->pspace == pspace
2407 && is_addr_in_objfile (addr, objfile))
2408 {
2409 objf = objfile;
2410 break;
2411 }
2412 }
2413 }
2414 else if (argv[0] != NULL)
2415 {
2416 /* Interpret the current argument as a file name. */
2417
2418 if (argv[1] != NULL)
2419 error (_("Junk after %s"), argv[0]);
2420
2421 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2422
2423 for (objfile *objfile : current_program_space->objfiles ())
2424 {
2425 if ((objfile->flags & OBJF_USERLOADED) != 0
2426 && (objfile->flags & OBJF_SHARED) != 0
2427 && objfile->pspace == pspace
2428 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2429 {
2430 objf = objfile;
2431 break;
2432 }
2433 }
2434 }
2435
2436 if (objf == NULL)
2437 error (_("No symbol file found"));
2438
2439 if (from_tty
2440 && !query (_("Remove symbol table from file \"%s\"? "),
2441 objfile_name (objf)))
2442 error (_("Not confirmed."));
2443
2444 delete objf;
2445 clear_symtab_users (0);
2446 }
2447
2448 /* Re-read symbols if a symbol-file has changed. */
2449
2450 void
2451 reread_symbols (void)
2452 {
2453 long new_modtime;
2454 struct stat new_statbuf;
2455 int res;
2456 std::vector<struct objfile *> new_objfiles;
2457
2458 for (objfile *objfile : current_program_space->objfiles ())
2459 {
2460 if (objfile->obfd == NULL)
2461 continue;
2462
2463 /* Separate debug objfiles are handled in the main objfile. */
2464 if (objfile->separate_debug_objfile_backlink)
2465 continue;
2466
2467 /* If this object is from an archive (what you usually create with
2468 `ar', often called a `static library' on most systems, though
2469 a `shared library' on AIX is also an archive), then you should
2470 stat on the archive name, not member name. */
2471 if (objfile->obfd->my_archive)
2472 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2473 else
2474 res = stat (objfile_name (objfile), &new_statbuf);
2475 if (res != 0)
2476 {
2477 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2478 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2479 objfile_name (objfile));
2480 continue;
2481 }
2482 new_modtime = new_statbuf.st_mtime;
2483 if (new_modtime != objfile->mtime)
2484 {
2485 struct section_offsets *offsets;
2486 int num_offsets;
2487
2488 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2489 objfile_name (objfile));
2490
2491 /* There are various functions like symbol_file_add,
2492 symfile_bfd_open, syms_from_objfile, etc., which might
2493 appear to do what we want. But they have various other
2494 effects which we *don't* want. So we just do stuff
2495 ourselves. We don't worry about mapped files (for one thing,
2496 any mapped file will be out of date). */
2497
2498 /* If we get an error, blow away this objfile (not sure if
2499 that is the correct response for things like shared
2500 libraries). */
2501 std::unique_ptr<struct objfile> objfile_holder (objfile);
2502
2503 /* We need to do this whenever any symbols go away. */
2504 clear_symtab_users_cleanup defer_clear_users (0);
2505
2506 if (exec_bfd != NULL
2507 && filename_cmp (bfd_get_filename (objfile->obfd),
2508 bfd_get_filename (exec_bfd)) == 0)
2509 {
2510 /* Reload EXEC_BFD without asking anything. */
2511
2512 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2513 }
2514
2515 /* Keep the calls order approx. the same as in free_objfile. */
2516
2517 /* Free the separate debug objfiles. It will be
2518 automatically recreated by sym_read. */
2519 free_objfile_separate_debug (objfile);
2520
2521 /* Remove any references to this objfile in the global
2522 value lists. */
2523 preserve_values (objfile);
2524
2525 /* Nuke all the state that we will re-read. Much of the following
2526 code which sets things to NULL really is necessary to tell
2527 other parts of GDB that there is nothing currently there.
2528
2529 Try to keep the freeing order compatible with free_objfile. */
2530
2531 if (objfile->sf != NULL)
2532 {
2533 (*objfile->sf->sym_finish) (objfile);
2534 }
2535
2536 clear_objfile_data (objfile);
2537
2538 /* Clean up any state BFD has sitting around. */
2539 {
2540 gdb_bfd_ref_ptr obfd (objfile->obfd);
2541 const char *obfd_filename;
2542
2543 obfd_filename = bfd_get_filename (objfile->obfd);
2544 /* Open the new BFD before freeing the old one, so that
2545 the filename remains live. */
2546 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2547 objfile->obfd = temp.release ();
2548 if (objfile->obfd == NULL)
2549 error (_("Can't open %s to read symbols."), obfd_filename);
2550 }
2551
2552 std::string original_name = objfile->original_name;
2553
2554 /* bfd_openr sets cacheable to true, which is what we want. */
2555 if (!bfd_check_format (objfile->obfd, bfd_object))
2556 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2557 bfd_errmsg (bfd_get_error ()));
2558
2559 /* Save the offsets, we will nuke them with the rest of the
2560 objfile_obstack. */
2561 num_offsets = objfile->num_sections;
2562 offsets = ((struct section_offsets *)
2563 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2564 memcpy (offsets, objfile->section_offsets,
2565 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2566
2567 objfile->reset_psymtabs ();
2568
2569 /* NB: after this call to obstack_free, objfiles_changed
2570 will need to be called (see discussion below). */
2571 obstack_free (&objfile->objfile_obstack, 0);
2572 objfile->sections = NULL;
2573 objfile->compunit_symtabs = NULL;
2574 objfile->template_symbols = NULL;
2575 objfile->static_links.reset (nullptr);
2576
2577 /* obstack_init also initializes the obstack so it is
2578 empty. We could use obstack_specify_allocation but
2579 gdb_obstack.h specifies the alloc/dealloc functions. */
2580 obstack_init (&objfile->objfile_obstack);
2581
2582 /* set_objfile_per_bfd potentially allocates the per-bfd
2583 data on the objfile's obstack (if sharing data across
2584 multiple users is not possible), so it's important to
2585 do it *after* the obstack has been initialized. */
2586 set_objfile_per_bfd (objfile);
2587
2588 objfile->original_name
2589 = obstack_strdup (&objfile->objfile_obstack, original_name);
2590
2591 /* Reset the sym_fns pointer. The ELF reader can change it
2592 based on whether .gdb_index is present, and we need it to
2593 start over. PR symtab/15885 */
2594 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2595
2596 build_objfile_section_table (objfile);
2597
2598 /* We use the same section offsets as from last time. I'm not
2599 sure whether that is always correct for shared libraries. */
2600 objfile->section_offsets = (struct section_offsets *)
2601 obstack_alloc (&objfile->objfile_obstack,
2602 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2603 memcpy (objfile->section_offsets, offsets,
2604 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2605 objfile->num_sections = num_offsets;
2606
2607 /* What the hell is sym_new_init for, anyway? The concept of
2608 distinguishing between the main file and additional files
2609 in this way seems rather dubious. */
2610 if (objfile == symfile_objfile)
2611 {
2612 (*objfile->sf->sym_new_init) (objfile);
2613 }
2614
2615 (*objfile->sf->sym_init) (objfile);
2616 clear_complaints ();
2617
2618 objfile->flags &= ~OBJF_PSYMTABS_READ;
2619
2620 /* We are about to read new symbols and potentially also
2621 DWARF information. Some targets may want to pass addresses
2622 read from DWARF DIE's through an adjustment function before
2623 saving them, like MIPS, which may call into
2624 "find_pc_section". When called, that function will make
2625 use of per-objfile program space data.
2626
2627 Since we discarded our section information above, we have
2628 dangling pointers in the per-objfile program space data
2629 structure. Force GDB to update the section mapping
2630 information by letting it know the objfile has changed,
2631 making the dangling pointers point to correct data
2632 again. */
2633
2634 objfiles_changed ();
2635
2636 read_symbols (objfile, 0);
2637
2638 if (!objfile_has_symbols (objfile))
2639 {
2640 wrap_here ("");
2641 printf_filtered (_("(no debugging symbols found)\n"));
2642 wrap_here ("");
2643 }
2644
2645 /* We're done reading the symbol file; finish off complaints. */
2646 clear_complaints ();
2647
2648 /* Getting new symbols may change our opinion about what is
2649 frameless. */
2650
2651 reinit_frame_cache ();
2652
2653 /* Discard cleanups as symbol reading was successful. */
2654 objfile_holder.release ();
2655 defer_clear_users.release ();
2656
2657 /* If the mtime has changed between the time we set new_modtime
2658 and now, we *want* this to be out of date, so don't call stat
2659 again now. */
2660 objfile->mtime = new_modtime;
2661 init_entry_point_info (objfile);
2662
2663 new_objfiles.push_back (objfile);
2664 }
2665 }
2666
2667 if (!new_objfiles.empty ())
2668 {
2669 clear_symtab_users (0);
2670
2671 /* clear_objfile_data for each objfile was called before freeing it and
2672 gdb::observers::new_objfile.notify (NULL) has been called by
2673 clear_symtab_users above. Notify the new files now. */
2674 for (auto iter : new_objfiles)
2675 gdb::observers::new_objfile.notify (iter);
2676
2677 /* At least one objfile has changed, so we can consider that
2678 the executable we're debugging has changed too. */
2679 gdb::observers::executable_changed.notify ();
2680 }
2681 }
2682 \f
2683
2684 struct filename_language
2685 {
2686 filename_language (const std::string &ext_, enum language lang_)
2687 : ext (ext_), lang (lang_)
2688 {}
2689
2690 std::string ext;
2691 enum language lang;
2692 };
2693
2694 static std::vector<filename_language> filename_language_table;
2695
2696 /* See symfile.h. */
2697
2698 void
2699 add_filename_language (const char *ext, enum language lang)
2700 {
2701 filename_language_table.emplace_back (ext, lang);
2702 }
2703
2704 static char *ext_args;
2705 static void
2706 show_ext_args (struct ui_file *file, int from_tty,
2707 struct cmd_list_element *c, const char *value)
2708 {
2709 fprintf_filtered (file,
2710 _("Mapping between filename extension "
2711 "and source language is \"%s\".\n"),
2712 value);
2713 }
2714
2715 static void
2716 set_ext_lang_command (const char *args,
2717 int from_tty, struct cmd_list_element *e)
2718 {
2719 char *cp = ext_args;
2720 enum language lang;
2721
2722 /* First arg is filename extension, starting with '.' */
2723 if (*cp != '.')
2724 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2725
2726 /* Find end of first arg. */
2727 while (*cp && !isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
2733 ext_args);
2734
2735 /* Null-terminate first arg. */
2736 *cp++ = '\0';
2737
2738 /* Find beginning of second arg, which should be a source language. */
2739 cp = skip_spaces (cp);
2740
2741 if (*cp == '\0')
2742 error (_("'%s': two arguments required -- "
2743 "filename extension and language"),
2744 ext_args);
2745
2746 /* Lookup the language from among those we know. */
2747 lang = language_enum (cp);
2748
2749 auto it = filename_language_table.begin ();
2750 /* Now lookup the filename extension: do we already know it? */
2751 for (; it != filename_language_table.end (); it++)
2752 {
2753 if (it->ext == ext_args)
2754 break;
2755 }
2756
2757 if (it == filename_language_table.end ())
2758 {
2759 /* New file extension. */
2760 add_filename_language (ext_args, lang);
2761 }
2762 else
2763 {
2764 /* Redefining a previously known filename extension. */
2765
2766 /* if (from_tty) */
2767 /* query ("Really make files of type %s '%s'?", */
2768 /* ext_args, language_str (lang)); */
2769
2770 it->lang = lang;
2771 }
2772 }
2773
2774 static void
2775 info_ext_lang_command (const char *args, int from_tty)
2776 {
2777 printf_filtered (_("Filename extensions and the languages they represent:"));
2778 printf_filtered ("\n\n");
2779 for (const filename_language &entry : filename_language_table)
2780 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2781 language_str (entry.lang));
2782 }
2783
2784 enum language
2785 deduce_language_from_filename (const char *filename)
2786 {
2787 const char *cp;
2788
2789 if (filename != NULL)
2790 if ((cp = strrchr (filename, '.')) != NULL)
2791 {
2792 for (const filename_language &entry : filename_language_table)
2793 if (entry.ext == cp)
2794 return entry.lang;
2795 }
2796
2797 return language_unknown;
2798 }
2799 \f
2800 /* Allocate and initialize a new symbol table.
2801 CUST is from the result of allocate_compunit_symtab. */
2802
2803 struct symtab *
2804 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2805 {
2806 struct objfile *objfile = cust->objfile;
2807 struct symtab *symtab
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2809
2810 symtab->filename
2811 = ((const char *) objfile->per_bfd->filename_cache.insert
2812 (filename, strlen (filename) + 1));
2813 symtab->fullname = NULL;
2814 symtab->language = deduce_language_from_filename (filename);
2815
2816 /* This can be very verbose with lots of headers.
2817 Only print at higher debug levels. */
2818 if (symtab_create_debug >= 2)
2819 {
2820 /* Be a bit clever with debugging messages, and don't print objfile
2821 every time, only when it changes. */
2822 static char *last_objfile_name = NULL;
2823
2824 if (last_objfile_name == NULL
2825 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2826 {
2827 xfree (last_objfile_name);
2828 last_objfile_name = xstrdup (objfile_name (objfile));
2829 fprintf_filtered (gdb_stdlog,
2830 "Creating one or more symtabs for objfile %s ...\n",
2831 last_objfile_name);
2832 }
2833 fprintf_filtered (gdb_stdlog,
2834 "Created symtab %s for module %s.\n",
2835 host_address_to_string (symtab), filename);
2836 }
2837
2838 /* Add it to CUST's list of symtabs. */
2839 if (cust->filetabs == NULL)
2840 {
2841 cust->filetabs = symtab;
2842 cust->last_filetab = symtab;
2843 }
2844 else
2845 {
2846 cust->last_filetab->next = symtab;
2847 cust->last_filetab = symtab;
2848 }
2849
2850 /* Backlink to the containing compunit symtab. */
2851 symtab->compunit_symtab = cust;
2852
2853 return symtab;
2854 }
2855
2856 /* Allocate and initialize a new compunit.
2857 NAME is the name of the main source file, if there is one, or some
2858 descriptive text if there are no source files. */
2859
2860 struct compunit_symtab *
2861 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2862 {
2863 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2864 struct compunit_symtab);
2865 const char *saved_name;
2866
2867 cu->objfile = objfile;
2868
2869 /* The name we record here is only for display/debugging purposes.
2870 Just save the basename to avoid path issues (too long for display,
2871 relative vs absolute, etc.). */
2872 saved_name = lbasename (name);
2873 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2874
2875 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2876
2877 if (symtab_create_debug)
2878 {
2879 fprintf_filtered (gdb_stdlog,
2880 "Created compunit symtab %s for %s.\n",
2881 host_address_to_string (cu),
2882 cu->name);
2883 }
2884
2885 return cu;
2886 }
2887
2888 /* Hook CU to the objfile it comes from. */
2889
2890 void
2891 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2892 {
2893 cu->next = cu->objfile->compunit_symtabs;
2894 cu->objfile->compunit_symtabs = cu;
2895 }
2896 \f
2897
2898 /* Reset all data structures in gdb which may contain references to
2899 symbol table data. */
2900
2901 void
2902 clear_symtab_users (symfile_add_flags add_flags)
2903 {
2904 /* Someday, we should do better than this, by only blowing away
2905 the things that really need to be blown. */
2906
2907 /* Clear the "current" symtab first, because it is no longer valid.
2908 breakpoint_re_set may try to access the current symtab. */
2909 clear_current_source_symtab_and_line ();
2910
2911 clear_displays ();
2912 clear_last_displayed_sal ();
2913 clear_pc_function_cache ();
2914 gdb::observers::new_objfile.notify (NULL);
2915
2916 /* Varobj may refer to old symbols, perform a cleanup. */
2917 varobj_invalidate ();
2918
2919 /* Now that the various caches have been cleared, we can re_set
2920 our breakpoints without risking it using stale data. */
2921 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2922 breakpoint_re_set ();
2923 }
2924 \f
2925 /* OVERLAYS:
2926 The following code implements an abstraction for debugging overlay sections.
2927
2928 The target model is as follows:
2929 1) The gnu linker will permit multiple sections to be mapped into the
2930 same VMA, each with its own unique LMA (or load address).
2931 2) It is assumed that some runtime mechanism exists for mapping the
2932 sections, one by one, from the load address into the VMA address.
2933 3) This code provides a mechanism for gdb to keep track of which
2934 sections should be considered to be mapped from the VMA to the LMA.
2935 This information is used for symbol lookup, and memory read/write.
2936 For instance, if a section has been mapped then its contents
2937 should be read from the VMA, otherwise from the LMA.
2938
2939 Two levels of debugger support for overlays are available. One is
2940 "manual", in which the debugger relies on the user to tell it which
2941 overlays are currently mapped. This level of support is
2942 implemented entirely in the core debugger, and the information about
2943 whether a section is mapped is kept in the objfile->obj_section table.
2944
2945 The second level of support is "automatic", and is only available if
2946 the target-specific code provides functionality to read the target's
2947 overlay mapping table, and translate its contents for the debugger
2948 (by updating the mapped state information in the obj_section tables).
2949
2950 The interface is as follows:
2951 User commands:
2952 overlay map <name> -- tell gdb to consider this section mapped
2953 overlay unmap <name> -- tell gdb to consider this section unmapped
2954 overlay list -- list the sections that GDB thinks are mapped
2955 overlay read-target -- get the target's state of what's mapped
2956 overlay off/manual/auto -- set overlay debugging state
2957 Functional interface:
2958 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2959 section, return that section.
2960 find_pc_overlay(pc): find any overlay section that contains
2961 the pc, either in its VMA or its LMA
2962 section_is_mapped(sect): true if overlay is marked as mapped
2963 section_is_overlay(sect): true if section's VMA != LMA
2964 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2965 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2966 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2967 overlay_mapped_address(...): map an address from section's LMA to VMA
2968 overlay_unmapped_address(...): map an address from section's VMA to LMA
2969 symbol_overlayed_address(...): Return a "current" address for symbol:
2970 either in VMA or LMA depending on whether
2971 the symbol's section is currently mapped. */
2972
2973 /* Overlay debugging state: */
2974
2975 enum overlay_debugging_state overlay_debugging = ovly_off;
2976 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2977
2978 /* Function: section_is_overlay (SECTION)
2979 Returns true if SECTION has VMA not equal to LMA, ie.
2980 SECTION is loaded at an address different from where it will "run". */
2981
2982 int
2983 section_is_overlay (struct obj_section *section)
2984 {
2985 if (overlay_debugging && section)
2986 {
2987 asection *bfd_section = section->the_bfd_section;
2988
2989 if (bfd_section_lma (bfd_section) != 0
2990 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2991 return 1;
2992 }
2993
2994 return 0;
2995 }
2996
2997 /* Function: overlay_invalidate_all (void)
2998 Invalidate the mapped state of all overlay sections (mark it as stale). */
2999
3000 static void
3001 overlay_invalidate_all (void)
3002 {
3003 struct obj_section *sect;
3004
3005 for (objfile *objfile : current_program_space->objfiles ())
3006 ALL_OBJFILE_OSECTIONS (objfile, sect)
3007 if (section_is_overlay (sect))
3008 sect->ovly_mapped = -1;
3009 }
3010
3011 /* Function: section_is_mapped (SECTION)
3012 Returns true if section is an overlay, and is currently mapped.
3013
3014 Access to the ovly_mapped flag is restricted to this function, so
3015 that we can do automatic update. If the global flag
3016 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3017 overlay_invalidate_all. If the mapped state of the particular
3018 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3019
3020 int
3021 section_is_mapped (struct obj_section *osect)
3022 {
3023 struct gdbarch *gdbarch;
3024
3025 if (osect == 0 || !section_is_overlay (osect))
3026 return 0;
3027
3028 switch (overlay_debugging)
3029 {
3030 default:
3031 case ovly_off:
3032 return 0; /* overlay debugging off */
3033 case ovly_auto: /* overlay debugging automatic */
3034 /* Unles there is a gdbarch_overlay_update function,
3035 there's really nothing useful to do here (can't really go auto). */
3036 gdbarch = get_objfile_arch (osect->objfile);
3037 if (gdbarch_overlay_update_p (gdbarch))
3038 {
3039 if (overlay_cache_invalid)
3040 {
3041 overlay_invalidate_all ();
3042 overlay_cache_invalid = 0;
3043 }
3044 if (osect->ovly_mapped == -1)
3045 gdbarch_overlay_update (gdbarch, osect);
3046 }
3047 /* fall thru */
3048 case ovly_on: /* overlay debugging manual */
3049 return osect->ovly_mapped == 1;
3050 }
3051 }
3052
3053 /* Function: pc_in_unmapped_range
3054 If PC falls into the lma range of SECTION, return true, else false. */
3055
3056 CORE_ADDR
3057 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3058 {
3059 if (section_is_overlay (section))
3060 {
3061 asection *bfd_section = section->the_bfd_section;
3062
3063 /* We assume the LMA is relocated by the same offset as the VMA. */
3064 bfd_vma size = bfd_section_size (bfd_section);
3065 CORE_ADDR offset = obj_section_offset (section);
3066
3067 if (bfd_section_lma (bfd_section) + offset <= pc
3068 && pc < bfd_section_lma (bfd_section) + offset + size)
3069 return 1;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Function: pc_in_mapped_range
3076 If PC falls into the vma range of SECTION, return true, else false. */
3077
3078 CORE_ADDR
3079 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3080 {
3081 if (section_is_overlay (section))
3082 {
3083 if (obj_section_addr (section) <= pc
3084 && pc < obj_section_endaddr (section))
3085 return 1;
3086 }
3087
3088 return 0;
3089 }
3090
3091 /* Return true if the mapped ranges of sections A and B overlap, false
3092 otherwise. */
3093
3094 static int
3095 sections_overlap (struct obj_section *a, struct obj_section *b)
3096 {
3097 CORE_ADDR a_start = obj_section_addr (a);
3098 CORE_ADDR a_end = obj_section_endaddr (a);
3099 CORE_ADDR b_start = obj_section_addr (b);
3100 CORE_ADDR b_end = obj_section_endaddr (b);
3101
3102 return (a_start < b_end && b_start < a_end);
3103 }
3104
3105 /* Function: overlay_unmapped_address (PC, SECTION)
3106 Returns the address corresponding to PC in the unmapped (load) range.
3107 May be the same as PC. */
3108
3109 CORE_ADDR
3110 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3111 {
3112 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3113 {
3114 asection *bfd_section = section->the_bfd_section;
3115
3116 return (pc + bfd_section_lma (bfd_section)
3117 - bfd_section_vma (bfd_section));
3118 }
3119
3120 return pc;
3121 }
3122
3123 /* Function: overlay_mapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the mapped (runtime) range.
3125 May be the same as PC. */
3126
3127 CORE_ADDR
3128 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3129 {
3130 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3131 {
3132 asection *bfd_section = section->the_bfd_section;
3133
3134 return (pc + bfd_section_vma (bfd_section)
3135 - bfd_section_lma (bfd_section));
3136 }
3137
3138 return pc;
3139 }
3140
3141 /* Function: symbol_overlayed_address
3142 Return one of two addresses (relative to the VMA or to the LMA),
3143 depending on whether the section is mapped or not. */
3144
3145 CORE_ADDR
3146 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3147 {
3148 if (overlay_debugging)
3149 {
3150 /* If the symbol has no section, just return its regular address. */
3151 if (section == 0)
3152 return address;
3153 /* If the symbol's section is not an overlay, just return its
3154 address. */
3155 if (!section_is_overlay (section))
3156 return address;
3157 /* If the symbol's section is mapped, just return its address. */
3158 if (section_is_mapped (section))
3159 return address;
3160 /*
3161 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3162 * then return its LOADED address rather than its vma address!!
3163 */
3164 return overlay_unmapped_address (address, section);
3165 }
3166 return address;
3167 }
3168
3169 /* Function: find_pc_overlay (PC)
3170 Return the best-match overlay section for PC:
3171 If PC matches a mapped overlay section's VMA, return that section.
3172 Else if PC matches an unmapped section's VMA, return that section.
3173 Else if PC matches an unmapped section's LMA, return that section. */
3174
3175 struct obj_section *
3176 find_pc_overlay (CORE_ADDR pc)
3177 {
3178 struct obj_section *osect, *best_match = NULL;
3179
3180 if (overlay_debugging)
3181 {
3182 for (objfile *objfile : current_program_space->objfiles ())
3183 ALL_OBJFILE_OSECTIONS (objfile, osect)
3184 if (section_is_overlay (osect))
3185 {
3186 if (pc_in_mapped_range (pc, osect))
3187 {
3188 if (section_is_mapped (osect))
3189 return osect;
3190 else
3191 best_match = osect;
3192 }
3193 else if (pc_in_unmapped_range (pc, osect))
3194 best_match = osect;
3195 }
3196 }
3197 return best_match;
3198 }
3199
3200 /* Function: find_pc_mapped_section (PC)
3201 If PC falls into the VMA address range of an overlay section that is
3202 currently marked as MAPPED, return that section. Else return NULL. */
3203
3204 struct obj_section *
3205 find_pc_mapped_section (CORE_ADDR pc)
3206 {
3207 struct obj_section *osect;
3208
3209 if (overlay_debugging)
3210 {
3211 for (objfile *objfile : current_program_space->objfiles ())
3212 ALL_OBJFILE_OSECTIONS (objfile, osect)
3213 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3214 return osect;
3215 }
3216
3217 return NULL;
3218 }
3219
3220 /* Function: list_overlays_command
3221 Print a list of mapped sections and their PC ranges. */
3222
3223 static void
3224 list_overlays_command (const char *args, int from_tty)
3225 {
3226 int nmapped = 0;
3227 struct obj_section *osect;
3228
3229 if (overlay_debugging)
3230 {
3231 for (objfile *objfile : current_program_space->objfiles ())
3232 ALL_OBJFILE_OSECTIONS (objfile, osect)
3233 if (section_is_mapped (osect))
3234 {
3235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3236 const char *name;
3237 bfd_vma lma, vma;
3238 int size;
3239
3240 vma = bfd_section_vma (osect->the_bfd_section);
3241 lma = bfd_section_lma (osect->the_bfd_section);
3242 size = bfd_section_size (osect->the_bfd_section);
3243 name = bfd_section_name (osect->the_bfd_section);
3244
3245 printf_filtered ("Section %s, loaded at ", name);
3246 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3247 puts_filtered (" - ");
3248 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3249 printf_filtered (", mapped at ");
3250 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3251 puts_filtered (" - ");
3252 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3253 puts_filtered ("\n");
3254
3255 nmapped++;
3256 }
3257 }
3258 if (nmapped == 0)
3259 printf_filtered (_("No sections are mapped.\n"));
3260 }
3261
3262 /* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265 static void
3266 map_overlay_command (const char *args, int from_tty)
3267 {
3268 struct obj_section *sec, *sec2;
3269
3270 if (!overlay_debugging)
3271 error (_("Overlay debugging not enabled. Use "
3272 "either the 'overlay auto' or\n"
3273 "the 'overlay manual' command."));
3274
3275 if (args == 0 || *args == 0)
3276 error (_("Argument required: name of an overlay section"));
3277
3278 /* First, find a section matching the user supplied argument. */
3279 for (objfile *obj_file : current_program_space->objfiles ())
3280 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3281 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3282 {
3283 /* Now, check to see if the section is an overlay. */
3284 if (!section_is_overlay (sec))
3285 continue; /* not an overlay section */
3286
3287 /* Mark the overlay as "mapped". */
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 for (objfile *objfile2 : current_program_space->objfiles ())
3293 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3294 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3295 sec2))
3296 {
3297 if (info_verbose)
3298 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3299 bfd_section_name (sec2->the_bfd_section));
3300 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3301 }
3302 return;
3303 }
3304 error (_("No overlay section called %s"), args);
3305 }
3306
3307 /* Function: unmap_overlay_command
3308 Mark the overlay section as unmapped
3309 (ie. resident in its LMA address range, rather than the VMA range). */
3310
3311 static void
3312 unmap_overlay_command (const char *args, int from_tty)
3313 {
3314 struct obj_section *sec = NULL;
3315
3316 if (!overlay_debugging)
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
3320
3321 if (args == 0 || *args == 0)
3322 error (_("Argument required: name of an overlay section"));
3323
3324 /* First, find a section matching the user supplied argument. */
3325 for (objfile *objfile : current_program_space->objfiles ())
3326 ALL_OBJFILE_OSECTIONS (objfile, sec)
3327 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3328 {
3329 if (!sec->ovly_mapped)
3330 error (_("Section %s is not mapped"), args);
3331 sec->ovly_mapped = 0;
3332 return;
3333 }
3334 error (_("No overlay section called %s"), args);
3335 }
3336
3337 /* Function: overlay_auto_command
3338 A utility command to turn on overlay debugging.
3339 Possibly this should be done via a set/show command. */
3340
3341 static void
3342 overlay_auto_command (const char *args, int from_tty)
3343 {
3344 overlay_debugging = ovly_auto;
3345 enable_overlay_breakpoints ();
3346 if (info_verbose)
3347 printf_unfiltered (_("Automatic overlay debugging enabled."));
3348 }
3349
3350 /* Function: overlay_manual_command
3351 A utility command to turn on overlay debugging.
3352 Possibly this should be done via a set/show command. */
3353
3354 static void
3355 overlay_manual_command (const char *args, int from_tty)
3356 {
3357 overlay_debugging = ovly_on;
3358 disable_overlay_breakpoints ();
3359 if (info_verbose)
3360 printf_unfiltered (_("Overlay debugging enabled."));
3361 }
3362
3363 /* Function: overlay_off_command
3364 A utility command to turn on overlay debugging.
3365 Possibly this should be done via a set/show command. */
3366
3367 static void
3368 overlay_off_command (const char *args, int from_tty)
3369 {
3370 overlay_debugging = ovly_off;
3371 disable_overlay_breakpoints ();
3372 if (info_verbose)
3373 printf_unfiltered (_("Overlay debugging disabled."));
3374 }
3375
3376 static void
3377 overlay_load_command (const char *args, int from_tty)
3378 {
3379 struct gdbarch *gdbarch = get_current_arch ();
3380
3381 if (gdbarch_overlay_update_p (gdbarch))
3382 gdbarch_overlay_update (gdbarch, NULL);
3383 else
3384 error (_("This target does not know how to read its overlay state."));
3385 }
3386
3387 /* Function: overlay_command
3388 A place-holder for a mis-typed command. */
3389
3390 /* Command list chain containing all defined "overlay" subcommands. */
3391 static struct cmd_list_element *overlaylist;
3392
3393 static void
3394 overlay_command (const char *args, int from_tty)
3395 {
3396 printf_unfiltered
3397 ("\"overlay\" must be followed by the name of an overlay command.\n");
3398 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3399 }
3400
3401 /* Target Overlays for the "Simplest" overlay manager:
3402
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
3405 entry point is via a function pointer "gdbarch_overlay_update",
3406 so targets that use a different runtime overlay manager can
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
3417 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
3422 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3423 {..., ..., ...},
3424 }
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
3432 the target (whenever possible). */
3433
3434 /* Cached, dynamically allocated copies of the target data structures: */
3435 static unsigned (*cache_ovly_table)[4] = 0;
3436 static unsigned cache_novlys = 0;
3437 static CORE_ADDR cache_ovly_table_base = 0;
3438 enum ovly_index
3439 {
3440 VMA, OSIZE, LMA, MAPPED
3441 };
3442
3443 /* Throw away the cached copy of _ovly_table. */
3444
3445 static void
3446 simple_free_overlay_table (void)
3447 {
3448 if (cache_ovly_table)
3449 xfree (cache_ovly_table);
3450 cache_novlys = 0;
3451 cache_ovly_table = NULL;
3452 cache_ovly_table_base = 0;
3453 }
3454
3455 /* Read an array of ints of size SIZE from the target into a local buffer.
3456 Convert to host order. int LEN is number of ints. */
3457
3458 static void
3459 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3460 int len, int size, enum bfd_endian byte_order)
3461 {
3462 /* FIXME (alloca): Not safe if array is very large. */
3463 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3464 int i;
3465
3466 read_memory (memaddr, buf, len * size);
3467 for (i = 0; i < len; i++)
3468 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3469 }
3470
3471 /* Find and grab a copy of the target _ovly_table
3472 (and _novlys, which is needed for the table's size). */
3473
3474 static int
3475 simple_read_overlay_table (void)
3476 {
3477 struct bound_minimal_symbol novlys_msym;
3478 struct bound_minimal_symbol ovly_table_msym;
3479 struct gdbarch *gdbarch;
3480 int word_size;
3481 enum bfd_endian byte_order;
3482
3483 simple_free_overlay_table ();
3484 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3485 if (! novlys_msym.minsym)
3486 {
3487 error (_("Error reading inferior's overlay table: "
3488 "couldn't find `_novlys' variable\n"
3489 "in inferior. Use `overlay manual' mode."));
3490 return 0;
3491 }
3492
3493 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3494 if (! ovly_table_msym.minsym)
3495 {
3496 error (_("Error reading inferior's overlay table: couldn't find "
3497 "`_ovly_table' array\n"
3498 "in inferior. Use `overlay manual' mode."));
3499 return 0;
3500 }
3501
3502 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3503 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3504 byte_order = gdbarch_byte_order (gdbarch);
3505
3506 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3507 4, byte_order);
3508 cache_ovly_table
3509 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3510 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3511 read_target_long_array (cache_ovly_table_base,
3512 (unsigned int *) cache_ovly_table,
3513 cache_novlys * 4, word_size, byte_order);
3514
3515 return 1; /* SUCCESS */
3516 }
3517
3518 /* Function: simple_overlay_update_1
3519 A helper function for simple_overlay_update. Assuming a cached copy
3520 of _ovly_table exists, look through it to find an entry whose vma,
3521 lma and size match those of OSECT. Re-read the entry and make sure
3522 it still matches OSECT (else the table may no longer be valid).
3523 Set OSECT's mapped state to match the entry. Return: 1 for
3524 success, 0 for failure. */
3525
3526 static int
3527 simple_overlay_update_1 (struct obj_section *osect)
3528 {
3529 int i;
3530 asection *bsect = osect->the_bfd_section;
3531 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3532 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3534
3535 for (i = 0; i < cache_novlys; i++)
3536 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3537 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3538 {
3539 read_target_long_array (cache_ovly_table_base + i * word_size,
3540 (unsigned int *) cache_ovly_table[i],
3541 4, word_size, byte_order);
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
3548 else /* Warning! Warning! Target's ovly table has changed! */
3549 return 0;
3550 }
3551 return 0;
3552 }
3553
3554 /* Function: simple_overlay_update
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
3558 cached ovly_table and update only OSECT's mapped state.
3559 If a cached entry can't be found or the cache isn't valid, then
3560 re-read the entire cache, and go ahead and update all sections. */
3561
3562 void
3563 simple_overlay_update (struct obj_section *osect)
3564 {
3565 /* Were we given an osect to look up? NULL means do all of them. */
3566 if (osect)
3567 /* Have we got a cached copy of the target's overlay table? */
3568 if (cache_ovly_table != NULL)
3569 {
3570 /* Does its cached location match what's currently in the
3571 symtab? */
3572 struct bound_minimal_symbol minsym
3573 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3574
3575 if (minsym.minsym == NULL)
3576 error (_("Error reading inferior's overlay table: couldn't "
3577 "find `_ovly_table' array\n"
3578 "in inferior. Use `overlay manual' mode."));
3579
3580 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3581 /* Then go ahead and try to look up this single section in
3582 the cache. */
3583 if (simple_overlay_update_1 (osect))
3584 /* Found it! We're done. */
3585 return;
3586 }
3587
3588 /* Cached table no good: need to read the entire table anew.
3589 Or else we want all the sections, in which case it's actually
3590 more efficient to read the whole table in one block anyway. */
3591
3592 if (! simple_read_overlay_table ())
3593 return;
3594
3595 /* Now may as well update all sections, even if only one was requested. */
3596 for (objfile *objfile : current_program_space->objfiles ())
3597 ALL_OBJFILE_OSECTIONS (objfile, osect)
3598 if (section_is_overlay (osect))
3599 {
3600 int i;
3601 asection *bsect = osect->the_bfd_section;
3602
3603 for (i = 0; i < cache_novlys; i++)
3604 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3605 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3606 { /* obj_section matches i'th entry in ovly_table. */
3607 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3608 break; /* finished with inner for loop: break out. */
3609 }
3610 }
3611 }
3612
3613 /* Set the output sections and output offsets for section SECTP in
3614 ABFD. The relocation code in BFD will read these offsets, so we
3615 need to be sure they're initialized. We map each section to itself,
3616 with no offset; this means that SECTP->vma will be honored. */
3617
3618 static void
3619 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3620 {
3621 sectp->output_section = sectp;
3622 sectp->output_offset = 0;
3623 }
3624
3625 /* Default implementation for sym_relocate. */
3626
3627 bfd_byte *
3628 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3629 bfd_byte *buf)
3630 {
3631 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3632 DWO file. */
3633 bfd *abfd = sectp->owner;
3634
3635 /* We're only interested in sections with relocation
3636 information. */
3637 if ((sectp->flags & SEC_RELOC) == 0)
3638 return NULL;
3639
3640 /* We will handle section offsets properly elsewhere, so relocate as if
3641 all sections begin at 0. */
3642 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3643
3644 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3645 }
3646
3647 /* Relocate the contents of a debug section SECTP in ABFD. The
3648 contents are stored in BUF if it is non-NULL, or returned in a
3649 malloc'd buffer otherwise.
3650
3651 For some platforms and debug info formats, shared libraries contain
3652 relocations against the debug sections (particularly for DWARF-2;
3653 one affected platform is PowerPC GNU/Linux, although it depends on
3654 the version of the linker in use). Also, ELF object files naturally
3655 have unresolved relocations for their debug sections. We need to apply
3656 the relocations in order to get the locations of symbols correct.
3657 Another example that may require relocation processing, is the
3658 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3659 debug section. */
3660
3661 bfd_byte *
3662 symfile_relocate_debug_section (struct objfile *objfile,
3663 asection *sectp, bfd_byte *buf)
3664 {
3665 gdb_assert (objfile->sf->sym_relocate);
3666
3667 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3668 }
3669
3670 struct symfile_segment_data *
3671 get_symfile_segment_data (bfd *abfd)
3672 {
3673 const struct sym_fns *sf = find_sym_fns (abfd);
3674
3675 if (sf == NULL)
3676 return NULL;
3677
3678 return sf->sym_segments (abfd);
3679 }
3680
3681 void
3682 free_symfile_segment_data (struct symfile_segment_data *data)
3683 {
3684 xfree (data->segment_bases);
3685 xfree (data->segment_sizes);
3686 xfree (data->segment_info);
3687 xfree (data);
3688 }
3689
3690 /* Given:
3691 - DATA, containing segment addresses from the object file ABFD, and
3692 the mapping from ABFD's sections onto the segments that own them,
3693 and
3694 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3695 segment addresses reported by the target,
3696 store the appropriate offsets for each section in OFFSETS.
3697
3698 If there are fewer entries in SEGMENT_BASES than there are segments
3699 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3700
3701 If there are more entries, then ignore the extra. The target may
3702 not be able to distinguish between an empty data segment and a
3703 missing data segment; a missing text segment is less plausible. */
3704
3705 int
3706 symfile_map_offsets_to_segments (bfd *abfd,
3707 const struct symfile_segment_data *data,
3708 struct section_offsets *offsets,
3709 int num_segment_bases,
3710 const CORE_ADDR *segment_bases)
3711 {
3712 int i;
3713 asection *sect;
3714
3715 /* It doesn't make sense to call this function unless you have some
3716 segment base addresses. */
3717 gdb_assert (num_segment_bases > 0);
3718
3719 /* If we do not have segment mappings for the object file, we
3720 can not relocate it by segments. */
3721 gdb_assert (data != NULL);
3722 gdb_assert (data->num_segments > 0);
3723
3724 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3725 {
3726 int which = data->segment_info[i];
3727
3728 gdb_assert (0 <= which && which <= data->num_segments);
3729
3730 /* Don't bother computing offsets for sections that aren't
3731 loaded as part of any segment. */
3732 if (! which)
3733 continue;
3734
3735 /* Use the last SEGMENT_BASES entry as the address of any extra
3736 segments mentioned in DATA->segment_info. */
3737 if (which > num_segment_bases)
3738 which = num_segment_bases;
3739
3740 offsets->offsets[i] = (segment_bases[which - 1]
3741 - data->segment_bases[which - 1]);
3742 }
3743
3744 return 1;
3745 }
3746
3747 static void
3748 symfile_find_segment_sections (struct objfile *objfile)
3749 {
3750 bfd *abfd = objfile->obfd;
3751 int i;
3752 asection *sect;
3753 struct symfile_segment_data *data;
3754
3755 data = get_symfile_segment_data (objfile->obfd);
3756 if (data == NULL)
3757 return;
3758
3759 if (data->num_segments != 1 && data->num_segments != 2)
3760 {
3761 free_symfile_segment_data (data);
3762 return;
3763 }
3764
3765 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3766 {
3767 int which = data->segment_info[i];
3768
3769 if (which == 1)
3770 {
3771 if (objfile->sect_index_text == -1)
3772 objfile->sect_index_text = sect->index;
3773
3774 if (objfile->sect_index_rodata == -1)
3775 objfile->sect_index_rodata = sect->index;
3776 }
3777 else if (which == 2)
3778 {
3779 if (objfile->sect_index_data == -1)
3780 objfile->sect_index_data = sect->index;
3781
3782 if (objfile->sect_index_bss == -1)
3783 objfile->sect_index_bss = sect->index;
3784 }
3785 }
3786
3787 free_symfile_segment_data (data);
3788 }
3789
3790 /* Listen for free_objfile events. */
3791
3792 static void
3793 symfile_free_objfile (struct objfile *objfile)
3794 {
3795 /* Remove the target sections owned by this objfile. */
3796 if (objfile != NULL)
3797 remove_target_sections ((void *) objfile);
3798 }
3799
3800 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3801 Expand all symtabs that match the specified criteria.
3802 See quick_symbol_functions.expand_symtabs_matching for details. */
3803
3804 void
3805 expand_symtabs_matching
3806 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3807 const lookup_name_info &lookup_name,
3808 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3809 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3810 enum search_domain kind)
3811 {
3812 for (objfile *objfile : current_program_space->objfiles ())
3813 {
3814 if (objfile->sf)
3815 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3816 lookup_name,
3817 symbol_matcher,
3818 expansion_notify, kind);
3819 }
3820 }
3821
3822 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3823 Map function FUN over every file.
3824 See quick_symbol_functions.map_symbol_filenames for details. */
3825
3826 void
3827 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3828 int need_fullname)
3829 {
3830 for (objfile *objfile : current_program_space->objfiles ())
3831 {
3832 if (objfile->sf)
3833 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3834 need_fullname);
3835 }
3836 }
3837
3838 #if GDB_SELF_TEST
3839
3840 namespace selftests {
3841 namespace filename_language {
3842
3843 static void test_filename_language ()
3844 {
3845 /* This test messes up the filename_language_table global. */
3846 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3847
3848 /* Test deducing an unknown extension. */
3849 language lang = deduce_language_from_filename ("myfile.blah");
3850 SELF_CHECK (lang == language_unknown);
3851
3852 /* Test deducing a known extension. */
3853 lang = deduce_language_from_filename ("myfile.c");
3854 SELF_CHECK (lang == language_c);
3855
3856 /* Test adding a new extension using the internal API. */
3857 add_filename_language (".blah", language_pascal);
3858 lang = deduce_language_from_filename ("myfile.blah");
3859 SELF_CHECK (lang == language_pascal);
3860 }
3861
3862 static void
3863 test_set_ext_lang_command ()
3864 {
3865 /* This test messes up the filename_language_table global. */
3866 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3867
3868 /* Confirm that the .hello extension is not known. */
3869 language lang = deduce_language_from_filename ("cake.hello");
3870 SELF_CHECK (lang == language_unknown);
3871
3872 /* Test adding a new extension using the CLI command. */
3873 auto args_holder = make_unique_xstrdup (".hello rust");
3874 ext_args = args_holder.get ();
3875 set_ext_lang_command (NULL, 1, NULL);
3876
3877 lang = deduce_language_from_filename ("cake.hello");
3878 SELF_CHECK (lang == language_rust);
3879
3880 /* Test overriding an existing extension using the CLI command. */
3881 int size_before = filename_language_table.size ();
3882 args_holder.reset (xstrdup (".hello pascal"));
3883 ext_args = args_holder.get ();
3884 set_ext_lang_command (NULL, 1, NULL);
3885 int size_after = filename_language_table.size ();
3886
3887 lang = deduce_language_from_filename ("cake.hello");
3888 SELF_CHECK (lang == language_pascal);
3889 SELF_CHECK (size_before == size_after);
3890 }
3891
3892 } /* namespace filename_language */
3893 } /* namespace selftests */
3894
3895 #endif /* GDB_SELF_TEST */
3896
3897 void
3898 _initialize_symfile (void)
3899 {
3900 struct cmd_list_element *c;
3901
3902 gdb::observers::free_objfile.attach (symfile_free_objfile);
3903
3904 #define READNOW_READNEVER_HELP \
3905 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3906 immediately. This makes the command slower, but may make future operations\n\
3907 faster.\n\
3908 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3909 symbolic debug information."
3910
3911 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3912 Load symbol table from executable file FILE.\n\
3913 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3914 OFF is an optional offset which is added to each section address.\n\
3915 The `file' command can also load symbol tables, as well as setting the file\n\
3916 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3917 set_cmd_completer (c, filename_completer);
3918
3919 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3920 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3921 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3922 [-s SECT-NAME SECT-ADDR]...\n\
3923 ADDR is the starting address of the file's text.\n\
3924 Each '-s' argument provides a section name and address, and\n\
3925 should be specified if the data and bss segments are not contiguous\n\
3926 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3927 OFF is an optional offset which is added to the default load addresses\n\
3928 of all sections for which no other address was specified.\n"
3929 READNOW_READNEVER_HELP),
3930 &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3932
3933 c = add_cmd ("remove-symbol-file", class_files,
3934 remove_symbol_file_command, _("\
3935 Remove a symbol file added via the add-symbol-file command.\n\
3936 Usage: remove-symbol-file FILENAME\n\
3937 remove-symbol-file -a ADDRESS\n\
3938 The file to remove can be identified by its filename or by an address\n\
3939 that lies within the boundaries of this symbol file in memory."),
3940 &cmdlist);
3941
3942 c = add_cmd ("load", class_files, load_command, _("\
3943 Dynamically load FILE into the running program.\n\
3944 FILE symbols are recorded for access from GDB.\n\
3945 Usage: load [FILE] [OFFSET]\n\
3946 An optional load OFFSET may also be given as a literal address.\n\
3947 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3948 on its own."), &cmdlist);
3949 set_cmd_completer (c, filename_completer);
3950
3951 add_prefix_cmd ("overlay", class_support, overlay_command,
3952 _("Commands for debugging overlays."), &overlaylist,
3953 "overlay ", 0, &cmdlist);
3954
3955 add_com_alias ("ovly", "overlay", class_alias, 1);
3956 add_com_alias ("ov", "overlay", class_alias, 1);
3957
3958 add_cmd ("map-overlay", class_support, map_overlay_command,
3959 _("Assert that an overlay section is mapped."), &overlaylist);
3960
3961 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3962 _("Assert that an overlay section is unmapped."), &overlaylist);
3963
3964 add_cmd ("list-overlays", class_support, list_overlays_command,
3965 _("List mappings of overlay sections."), &overlaylist);
3966
3967 add_cmd ("manual", class_support, overlay_manual_command,
3968 _("Enable overlay debugging."), &overlaylist);
3969 add_cmd ("off", class_support, overlay_off_command,
3970 _("Disable overlay debugging."), &overlaylist);
3971 add_cmd ("auto", class_support, overlay_auto_command,
3972 _("Enable automatic overlay debugging."), &overlaylist);
3973 add_cmd ("load-target", class_support, overlay_load_command,
3974 _("Read the overlay mapping state from the target."), &overlaylist);
3975
3976 /* Filename extension to source language lookup table: */
3977 add_setshow_string_noescape_cmd ("extension-language", class_files,
3978 &ext_args, _("\
3979 Set mapping between filename extension and source language."), _("\
3980 Show mapping between filename extension and source language."), _("\
3981 Usage: set extension-language .foo bar"),
3982 set_ext_lang_command,
3983 show_ext_args,
3984 &setlist, &showlist);
3985
3986 add_info ("extensions", info_ext_lang_command,
3987 _("All filename extensions associated with a source language."));
3988
3989 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3990 &debug_file_directory, _("\
3991 Set the directories where separate debug symbols are searched for."), _("\
3992 Show the directories where separate debug symbols are searched for."), _("\
3993 Separate debug symbols are first searched for in the same\n\
3994 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3995 and lastly at the path of the directory of the binary with\n\
3996 each global debug-file-directory component prepended."),
3997 NULL,
3998 show_debug_file_directory,
3999 &setlist, &showlist);
4000
4001 add_setshow_enum_cmd ("symbol-loading", no_class,
4002 print_symbol_loading_enums, &print_symbol_loading,
4003 _("\
4004 Set printing of symbol loading messages."), _("\
4005 Show printing of symbol loading messages."), _("\
4006 off == turn all messages off\n\
4007 brief == print messages for the executable,\n\
4008 and brief messages for shared libraries\n\
4009 full == print messages for the executable,\n\
4010 and messages for each shared library."),
4011 NULL,
4012 NULL,
4013 &setprintlist, &showprintlist);
4014
4015 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4016 &separate_debug_file_debug, _("\
4017 Set printing of separate debug info file search debug."), _("\
4018 Show printing of separate debug info file search debug."), _("\
4019 When on, GDB prints the searched locations while looking for separate debug \
4020 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4021
4022 #if GDB_SELF_TEST
4023 selftests::register_test
4024 ("filename_language", selftests::filename_language::test_filename_language);
4025 selftests::register_test
4026 ("set_ext_lang_command",
4027 selftests::filename_language::test_set_ext_lang_command);
4028 #endif
4029 }
This page took 0.144756 seconds and 5 git commands to generate.