Move generic_load declaration to symfile.h
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1449
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1454
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1460 std::string drive;
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1462 {
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465 }
1466
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1468 {
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += drive;
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1481 {
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1484 else
1485 base_path = child_path (gdb_sysroot, canon_dir);
1486 }
1487 if (base_path != NULL)
1488 {
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1493 debugfile += "/";
1494 debugfile += base_path;
1495 debugfile += "/";
1496 debugfile += debuglink;
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1506 debugfile += "/";
1507 debugfile += base_path;
1508 debugfile += "/";
1509 debugfile += debuglink;
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 return debugfile;
1513 }
1514
1515 }
1516
1517 return std::string ();
1518 }
1519
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1523
1524 static void
1525 terminate_after_last_dir_separator (char *path)
1526 {
1527 int i;
1528
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1533 break;
1534
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1536 path[i + 1] = '\0';
1537 }
1538
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1541
1542 std::string
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544 {
1545 unsigned long crc32;
1546
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1555 }
1556
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1560
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1564
1565 if (debugfile.empty ())
1566 {
1567 /* For PR gdb/9538, try again with realpath (if different from the
1568 original). */
1569
1570 struct stat st_buf;
1571
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1574 {
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1578 {
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1581 {
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1584 symlink_dir.get (),
1585 debuglink.get (),
1586 crc32,
1587 objfile);
1588 }
1589 }
1590 }
1591 }
1592
1593 return debugfile;
1594 }
1595
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1597 simultaneously. */
1598
1599 static void
1600 validate_readnow_readnever (objfile_flags flags)
1601 {
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1636 int idx;
1637 char *arg;
1638
1639 if (from_tty)
1640 add_flags |= SYMFILE_VERBOSE;
1641
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1644 {
1645 if (stop_processing_options || *arg != '-')
1646 {
1647 if (name == NULL)
1648 name = arg;
1649 else
1650 error (_("Unrecognized argument \"%s\""), arg);
1651 }
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1657 {
1658 arg = built_argv[++idx];
1659 if (arg == NULL)
1660 error (_("Missing argument to -o"));
1661
1662 offset = parse_and_eval_address (arg);
1663 }
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1666 else
1667 error (_("Unrecognized argument \"%s\""), arg);
1668 }
1669
1670 if (name == NULL)
1671 error (_("no symbol file name was specified"));
1672
1673 validate_readnow_readnever (flags);
1674
1675 symbol_file_add_main_1 (name, add_flags, flags, offset);
1676 }
1677 }
1678
1679 /* Set the initial language.
1680
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
1689
1690 void
1691 set_initial_language (void)
1692 {
1693 enum language lang = main_language ();
1694
1695 if (lang == language_unknown)
1696 {
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1699
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
1702 }
1703
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
1708 }
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
1712 }
1713
1714 /* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
1718
1719 gdb_bfd_ref_ptr
1720 symfile_bfd_open (const char *name)
1721 {
1722 int desc = -1;
1723
1724 gdb::unique_xmalloc_ptr<char> absolute_name;
1725 if (!is_target_filename (name))
1726 {
1727 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1728
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1733 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1734 if (desc < 0)
1735 {
1736 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1737
1738 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 exename, O_RDONLY | O_BINARY, &absolute_name);
1742 }
1743 #endif
1744 if (desc < 0)
1745 perror_with_name (expanded_name.get ());
1746
1747 name = absolute_name.get ();
1748 }
1749
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
1757
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
1761
1762 return sym_bfd;
1763 }
1764
1765 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1766 the section was not found. */
1767
1768 int
1769 get_section_index (struct objfile *objfile, const char *section_name)
1770 {
1771 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1772
1773 if (sect)
1774 return sect->index;
1775 else
1776 return -1;
1777 }
1778
1779 /* Link SF into the global symtab_fns list.
1780 FLAVOUR is the file format that SF handles.
1781 Called on startup by the _initialize routine in each object file format
1782 reader, to register information about each format the reader is prepared
1783 to handle. */
1784
1785 void
1786 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1787 {
1788 symtab_fns.emplace_back (flavour, sf);
1789 }
1790
1791 /* Initialize OBJFILE to read symbols from its associated BFD. It
1792 either returns or calls error(). The result is an initialized
1793 struct sym_fns in the objfile structure, that contains cached
1794 information about the symbol file. */
1795
1796 static const struct sym_fns *
1797 find_sym_fns (bfd *abfd)
1798 {
1799 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1800
1801 if (our_flavour == bfd_target_srec_flavour
1802 || our_flavour == bfd_target_ihex_flavour
1803 || our_flavour == bfd_target_tekhex_flavour)
1804 return NULL; /* No symbols. */
1805
1806 for (const registered_sym_fns &rsf : symtab_fns)
1807 if (our_flavour == rsf.sym_flavour)
1808 return rsf.sym_fns;
1809
1810 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1811 bfd_get_target (abfd));
1812 }
1813 \f
1814
1815 /* This function runs the load command of our current target. */
1816
1817 static void
1818 load_command (const char *arg, int from_tty)
1819 {
1820 dont_repeat ();
1821
1822 /* The user might be reloading because the binary has changed. Take
1823 this opportunity to check. */
1824 reopen_exec_file ();
1825 reread_symbols ();
1826
1827 std::string temp;
1828 if (arg == NULL)
1829 {
1830 const char *parg, *prev;
1831
1832 arg = get_exec_file (1);
1833
1834 /* We may need to quote this string so buildargv can pull it
1835 apart. */
1836 prev = parg = arg;
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 {
1839 temp.append (prev, parg - prev);
1840 prev = parg++;
1841 temp.push_back ('\\');
1842 }
1843 /* If we have not copied anything yet, then we didn't see a
1844 character to quote, and we can just leave ARG unchanged. */
1845 if (!temp.empty ())
1846 {
1847 temp.append (prev);
1848 arg = temp.c_str ();
1849 }
1850 }
1851
1852 target_load (arg, from_tty);
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
1857 }
1858
1859 /* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
1867
1868 static int validate_download = 0;
1869
1870 /* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872 static void
1873 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874 {
1875 bfd_size_type *sum = (bfd_size_type *) data;
1876
1877 *sum += bfd_get_section_size (asec);
1878 }
1879
1880 /* Opaque data for load_progress. */
1881 struct load_progress_data
1882 {
1883 /* Cumulative data. */
1884 unsigned long write_count = 0;
1885 unsigned long data_count = 0;
1886 bfd_size_type total_size = 0;
1887 };
1888
1889 /* Opaque data for load_progress for a single section. */
1890 struct load_progress_section_data
1891 {
1892 load_progress_section_data (load_progress_data *cumulative_,
1893 const char *section_name_, ULONGEST section_size_,
1894 CORE_ADDR lma_, gdb_byte *buffer_)
1895 : cumulative (cumulative_), section_name (section_name_),
1896 section_size (section_size_), lma (lma_), buffer (buffer_)
1897 {}
1898
1899 struct load_progress_data *cumulative;
1900
1901 /* Per-section data. */
1902 const char *section_name;
1903 ULONGEST section_sent = 0;
1904 ULONGEST section_size;
1905 CORE_ADDR lma;
1906 gdb_byte *buffer;
1907 };
1908
1909 /* Opaque data for load_section_callback. */
1910 struct load_section_data
1911 {
1912 load_section_data (load_progress_data *progress_data_)
1913 : progress_data (progress_data_)
1914 {}
1915
1916 ~load_section_data ()
1917 {
1918 for (auto &&request : requests)
1919 {
1920 xfree (request.data);
1921 delete ((load_progress_section_data *) request.baton);
1922 }
1923 }
1924
1925 CORE_ADDR load_offset = 0;
1926 struct load_progress_data *progress_data;
1927 std::vector<struct memory_write_request> requests;
1928 };
1929
1930 /* Target write callback routine for progress reporting. */
1931
1932 static void
1933 load_progress (ULONGEST bytes, void *untyped_arg)
1934 {
1935 struct load_progress_section_data *args
1936 = (struct load_progress_section_data *) untyped_arg;
1937 struct load_progress_data *totals;
1938
1939 if (args == NULL)
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1942 return;
1943
1944 totals = args->cumulative;
1945
1946 if (bytes == 0 && args->section_sent == 0)
1947 {
1948 /* The write is just starting. Let the user know we've started
1949 this section. */
1950 current_uiout->message ("Loading section %s, size %s lma %s\n",
1951 args->section_name,
1952 hex_string (args->section_size),
1953 paddress (target_gdbarch (), args->lma));
1954 return;
1955 }
1956
1957 if (validate_download)
1958 {
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1961 downloads. */
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
1966 gdb::byte_vector check (bytes);
1967
1968 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1969 error (_("Download verify read failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 if (memcmp (args->buffer, check.data (), bytes) != 0)
1972 error (_("Download verify compare failed at %s"),
1973 paddress (target_gdbarch (), args->lma));
1974 }
1975 totals->data_count += bytes;
1976 args->lma += bytes;
1977 args->buffer += bytes;
1978 totals->write_count += 1;
1979 args->section_sent += bytes;
1980 if (check_quit_flag ()
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1985
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1988 args->section_sent,
1989 args->section_size,
1990 totals->data_count,
1991 totals->total_size);
1992 }
1993
1994 /* Callback service function for generic_load (bfd_map_over_sections). */
1995
1996 static void
1997 load_section_callback (bfd *abfd, asection *asec, void *data)
1998 {
1999 struct load_section_data *args = (struct load_section_data *) data;
2000 bfd_size_type size = bfd_get_section_size (asec);
2001 const char *sect_name = bfd_get_section_name (abfd, asec);
2002
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004 return;
2005
2006 if (size == 0)
2007 return;
2008
2009 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2010 ULONGEST end = begin + size;
2011 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2013
2014 load_progress_section_data *section_data
2015 = new load_progress_section_data (args->progress_data, sect_name, size,
2016 begin, buffer);
2017
2018 args->requests.emplace_back (begin, end, buffer, section_data);
2019 }
2020
2021 static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
2026 /* See symfile.h. */
2027
2028 void
2029 generic_load (const char *args, int from_tty)
2030 {
2031 struct load_progress_data total_progress;
2032 struct load_section_data cbdata (&total_progress);
2033 struct ui_out *uiout = current_uiout;
2034
2035 if (args == NULL)
2036 error_no_arg (_("file to load"));
2037
2038 gdb_argv argv (args);
2039
2040 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2041
2042 if (argv[1] != NULL)
2043 {
2044 const char *endptr;
2045
2046 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2047
2048 /* If the last word was not a valid number then
2049 treat it as a file name with spaces in. */
2050 if (argv[1] == endptr)
2051 error (_("Invalid download offset:%s."), argv[1]);
2052
2053 if (argv[2] != NULL)
2054 error (_("Too many parameters."));
2055 }
2056
2057 /* Open the file for loading. */
2058 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2059 if (loadfile_bfd == NULL)
2060 perror_with_name (filename.get ());
2061
2062 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2063 {
2064 error (_("\"%s\" is not an object file: %s"), filename.get (),
2065 bfd_errmsg (bfd_get_error ()));
2066 }
2067
2068 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2069 (void *) &total_progress.total_size);
2070
2071 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2072
2073 using namespace std::chrono;
2074
2075 steady_clock::time_point start_time = steady_clock::now ();
2076
2077 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2078 load_progress) != 0)
2079 error (_("Load failed"));
2080
2081 steady_clock::time_point end_time = steady_clock::now ();
2082
2083 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2084 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2085 uiout->text ("Start address ");
2086 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2087 uiout->text (", load size ");
2088 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2089 uiout->text ("\n");
2090 regcache_write_pc (get_current_regcache (), entry);
2091
2092 /* Reset breakpoints, now that we have changed the load image. For
2093 instance, breakpoints may have been set (or reset, by
2094 post_create_inferior) while connected to the target but before we
2095 loaded the program. In that case, the prologue analyzer could
2096 have read instructions from the target to find the right
2097 breakpoint locations. Loading has changed the contents of that
2098 memory. */
2099
2100 breakpoint_re_set ();
2101
2102 print_transfer_performance (gdb_stdout, total_progress.data_count,
2103 total_progress.write_count,
2104 end_time - start_time);
2105 }
2106
2107 /* Report on STREAM the performance of a memory transfer operation,
2108 such as 'load'. DATA_COUNT is the number of bytes transferred.
2109 WRITE_COUNT is the number of separate write operations, or 0, if
2110 that information is not available. TIME is how long the operation
2111 lasted. */
2112
2113 static void
2114 print_transfer_performance (struct ui_file *stream,
2115 unsigned long data_count,
2116 unsigned long write_count,
2117 std::chrono::steady_clock::duration time)
2118 {
2119 using namespace std::chrono;
2120 struct ui_out *uiout = current_uiout;
2121
2122 milliseconds ms = duration_cast<milliseconds> (time);
2123
2124 uiout->text ("Transfer rate: ");
2125 if (ms.count () > 0)
2126 {
2127 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2128
2129 if (uiout->is_mi_like_p ())
2130 {
2131 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2132 uiout->text (" bits/sec");
2133 }
2134 else if (rate < 1024)
2135 {
2136 uiout->field_fmt ("transfer-rate", "%lu", rate);
2137 uiout->text (" bytes/sec");
2138 }
2139 else
2140 {
2141 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2142 uiout->text (" KB/sec");
2143 }
2144 }
2145 else
2146 {
2147 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2148 uiout->text (" bits in <1 sec");
2149 }
2150 if (write_count > 0)
2151 {
2152 uiout->text (", ");
2153 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2154 uiout->text (" bytes/write");
2155 }
2156 uiout->text (".\n");
2157 }
2158
2159 /* Add an OFFSET to the start address of each section in OBJF, except
2160 sections that were specified in ADDRS. */
2161
2162 static void
2163 set_objfile_default_section_offset (struct objfile *objf,
2164 const section_addr_info &addrs,
2165 CORE_ADDR offset)
2166 {
2167 /* Add OFFSET to all sections by default. */
2168 std::vector<struct section_offsets> offsets (objf->num_sections,
2169 { { offset } });
2170
2171 /* Create sorted lists of all sections in ADDRS as well as all
2172 sections in OBJF. */
2173
2174 std::vector<const struct other_sections *> addrs_sorted
2175 = addrs_section_sort (addrs);
2176
2177 section_addr_info objf_addrs
2178 = build_section_addr_info_from_objfile (objf);
2179 std::vector<const struct other_sections *> objf_addrs_sorted
2180 = addrs_section_sort (objf_addrs);
2181
2182 /* Walk the BFD section list, and if a matching section is found in
2183 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2184 unchanged.
2185
2186 Note that both lists may contain multiple sections with the same
2187 name, and then the sections from ADDRS are matched in BFD order
2188 (thanks to sectindex). */
2189
2190 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2191 = addrs_sorted.begin ();
2192 for (const other_sections *objf_sect : objf_addrs_sorted)
2193 {
2194 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2195 int cmp = -1;
2196
2197 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2198 {
2199 const struct other_sections *sect = *addrs_sorted_iter;
2200 const char *sect_name = addr_section_name (sect->name.c_str ());
2201 cmp = strcmp (sect_name, objf_name);
2202 if (cmp <= 0)
2203 ++addrs_sorted_iter;
2204 }
2205
2206 if (cmp == 0)
2207 offsets[objf_sect->sectindex].offsets[0] = 0;
2208 }
2209
2210 /* Apply the new section offsets. */
2211 objfile_relocate (objf, offsets.data ());
2212 }
2213
2214 /* This function allows the addition of incrementally linked object files.
2215 It does not modify any state in the target, only in the debugger. */
2216
2217 static void
2218 add_symbol_file_command (const char *args, int from_tty)
2219 {
2220 struct gdbarch *gdbarch = get_current_arch ();
2221 gdb::unique_xmalloc_ptr<char> filename;
2222 char *arg;
2223 int argcnt = 0;
2224 struct objfile *objf;
2225 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2226 symfile_add_flags add_flags = 0;
2227
2228 if (from_tty)
2229 add_flags |= SYMFILE_VERBOSE;
2230
2231 struct sect_opt
2232 {
2233 const char *name;
2234 const char *value;
2235 };
2236
2237 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2238 bool stop_processing_options = false;
2239 CORE_ADDR offset = 0;
2240
2241 dont_repeat ();
2242
2243 if (args == NULL)
2244 error (_("add-symbol-file takes a file name and an address"));
2245
2246 bool seen_addr = false;
2247 bool seen_offset = false;
2248 gdb_argv argv (args);
2249
2250 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2251 {
2252 if (stop_processing_options || *arg != '-')
2253 {
2254 if (filename == NULL)
2255 {
2256 /* First non-option argument is always the filename. */
2257 filename.reset (tilde_expand (arg));
2258 }
2259 else if (!seen_addr)
2260 {
2261 /* The second non-option argument is always the text
2262 address at which to load the program. */
2263 sect_opts[0].value = arg;
2264 seen_addr = true;
2265 }
2266 else
2267 error (_("Unrecognized argument \"%s\""), arg);
2268 }
2269 else if (strcmp (arg, "-readnow") == 0)
2270 flags |= OBJF_READNOW;
2271 else if (strcmp (arg, "-readnever") == 0)
2272 flags |= OBJF_READNEVER;
2273 else if (strcmp (arg, "-s") == 0)
2274 {
2275 if (argv[argcnt + 1] == NULL)
2276 error (_("Missing section name after \"-s\""));
2277 else if (argv[argcnt + 2] == NULL)
2278 error (_("Missing section address after \"-s\""));
2279
2280 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2281
2282 sect_opts.push_back (sect);
2283 argcnt += 2;
2284 }
2285 else if (strcmp (arg, "-o") == 0)
2286 {
2287 arg = argv[++argcnt];
2288 if (arg == NULL)
2289 error (_("Missing argument to -o"));
2290
2291 offset = parse_and_eval_address (arg);
2292 seen_offset = true;
2293 }
2294 else if (strcmp (arg, "--") == 0)
2295 stop_processing_options = true;
2296 else
2297 error (_("Unrecognized argument \"%s\""), arg);
2298 }
2299
2300 if (filename == NULL)
2301 error (_("You must provide a filename to be loaded."));
2302
2303 validate_readnow_readnever (flags);
2304
2305 /* Print the prompt for the query below. And save the arguments into
2306 a sect_addr_info structure to be passed around to other
2307 functions. We have to split this up into separate print
2308 statements because hex_string returns a local static
2309 string. */
2310
2311 printf_unfiltered (_("add symbol table from file \"%s\""),
2312 filename.get ());
2313 section_addr_info section_addrs;
2314 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2315 if (!seen_addr)
2316 ++it;
2317 for (; it != sect_opts.end (); ++it)
2318 {
2319 CORE_ADDR addr;
2320 const char *val = it->value;
2321 const char *sec = it->name;
2322
2323 if (section_addrs.empty ())
2324 printf_unfiltered (_(" at\n"));
2325 addr = parse_and_eval_address (val);
2326
2327 /* Here we store the section offsets in the order they were
2328 entered on the command line. Every array element is
2329 assigned an ascending section index to preserve the above
2330 order over an unstable sorting algorithm. This dummy
2331 index is not used for any other purpose.
2332 */
2333 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2334 printf_filtered ("\t%s_addr = %s\n", sec,
2335 paddress (gdbarch, addr));
2336
2337 /* The object's sections are initialized when a
2338 call is made to build_objfile_section_table (objfile).
2339 This happens in reread_symbols.
2340 At this point, we don't know what file type this is,
2341 so we can't determine what section names are valid. */
2342 }
2343 if (seen_offset)
2344 printf_unfiltered (_("%s offset by %s\n"),
2345 (section_addrs.empty ()
2346 ? _(" with all sections")
2347 : _("with other sections")),
2348 paddress (gdbarch, offset));
2349 else if (section_addrs.empty ())
2350 printf_unfiltered ("\n");
2351
2352 if (from_tty && (!query ("%s", "")))
2353 error (_("Not confirmed."));
2354
2355 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2356 flags);
2357 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2358 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2359 filename.get ());
2360
2361 if (seen_offset)
2362 set_objfile_default_section_offset (objf, section_addrs, offset);
2363
2364 add_target_sections_of_objfile (objf);
2365
2366 /* Getting new symbols may change our opinion about what is
2367 frameless. */
2368 reinit_frame_cache ();
2369 }
2370 \f
2371
2372 /* This function removes a symbol file that was added via add-symbol-file. */
2373
2374 static void
2375 remove_symbol_file_command (const char *args, int from_tty)
2376 {
2377 struct objfile *objf = NULL;
2378 struct program_space *pspace = current_program_space;
2379
2380 dont_repeat ();
2381
2382 if (args == NULL)
2383 error (_("remove-symbol-file: no symbol file provided"));
2384
2385 gdb_argv argv (args);
2386
2387 if (strcmp (argv[0], "-a") == 0)
2388 {
2389 /* Interpret the next argument as an address. */
2390 CORE_ADDR addr;
2391
2392 if (argv[1] == NULL)
2393 error (_("Missing address argument"));
2394
2395 if (argv[2] != NULL)
2396 error (_("Junk after %s"), argv[1]);
2397
2398 addr = parse_and_eval_address (argv[1]);
2399
2400 for (objfile *objfile : current_program_space->objfiles ())
2401 {
2402 if ((objfile->flags & OBJF_USERLOADED) != 0
2403 && (objfile->flags & OBJF_SHARED) != 0
2404 && objfile->pspace == pspace
2405 && is_addr_in_objfile (addr, objfile))
2406 {
2407 objf = objfile;
2408 break;
2409 }
2410 }
2411 }
2412 else if (argv[0] != NULL)
2413 {
2414 /* Interpret the current argument as a file name. */
2415
2416 if (argv[1] != NULL)
2417 error (_("Junk after %s"), argv[0]);
2418
2419 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2420
2421 for (objfile *objfile : current_program_space->objfiles ())
2422 {
2423 if ((objfile->flags & OBJF_USERLOADED) != 0
2424 && (objfile->flags & OBJF_SHARED) != 0
2425 && objfile->pspace == pspace
2426 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2427 {
2428 objf = objfile;
2429 break;
2430 }
2431 }
2432 }
2433
2434 if (objf == NULL)
2435 error (_("No symbol file found"));
2436
2437 if (from_tty
2438 && !query (_("Remove symbol table from file \"%s\"? "),
2439 objfile_name (objf)))
2440 error (_("Not confirmed."));
2441
2442 delete objf;
2443 clear_symtab_users (0);
2444 }
2445
2446 /* Re-read symbols if a symbol-file has changed. */
2447
2448 void
2449 reread_symbols (void)
2450 {
2451 long new_modtime;
2452 struct stat new_statbuf;
2453 int res;
2454 std::vector<struct objfile *> new_objfiles;
2455
2456 for (objfile *objfile : current_program_space->objfiles ())
2457 {
2458 if (objfile->obfd == NULL)
2459 continue;
2460
2461 /* Separate debug objfiles are handled in the main objfile. */
2462 if (objfile->separate_debug_objfile_backlink)
2463 continue;
2464
2465 /* If this object is from an archive (what you usually create with
2466 `ar', often called a `static library' on most systems, though
2467 a `shared library' on AIX is also an archive), then you should
2468 stat on the archive name, not member name. */
2469 if (objfile->obfd->my_archive)
2470 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2471 else
2472 res = stat (objfile_name (objfile), &new_statbuf);
2473 if (res != 0)
2474 {
2475 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2476 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2477 objfile_name (objfile));
2478 continue;
2479 }
2480 new_modtime = new_statbuf.st_mtime;
2481 if (new_modtime != objfile->mtime)
2482 {
2483 struct section_offsets *offsets;
2484 int num_offsets;
2485
2486 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2487 objfile_name (objfile));
2488
2489 /* There are various functions like symbol_file_add,
2490 symfile_bfd_open, syms_from_objfile, etc., which might
2491 appear to do what we want. But they have various other
2492 effects which we *don't* want. So we just do stuff
2493 ourselves. We don't worry about mapped files (for one thing,
2494 any mapped file will be out of date). */
2495
2496 /* If we get an error, blow away this objfile (not sure if
2497 that is the correct response for things like shared
2498 libraries). */
2499 std::unique_ptr<struct objfile> objfile_holder (objfile);
2500
2501 /* We need to do this whenever any symbols go away. */
2502 clear_symtab_users_cleanup defer_clear_users (0);
2503
2504 if (exec_bfd != NULL
2505 && filename_cmp (bfd_get_filename (objfile->obfd),
2506 bfd_get_filename (exec_bfd)) == 0)
2507 {
2508 /* Reload EXEC_BFD without asking anything. */
2509
2510 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2511 }
2512
2513 /* Keep the calls order approx. the same as in free_objfile. */
2514
2515 /* Free the separate debug objfiles. It will be
2516 automatically recreated by sym_read. */
2517 free_objfile_separate_debug (objfile);
2518
2519 /* Remove any references to this objfile in the global
2520 value lists. */
2521 preserve_values (objfile);
2522
2523 /* Nuke all the state that we will re-read. Much of the following
2524 code which sets things to NULL really is necessary to tell
2525 other parts of GDB that there is nothing currently there.
2526
2527 Try to keep the freeing order compatible with free_objfile. */
2528
2529 if (objfile->sf != NULL)
2530 {
2531 (*objfile->sf->sym_finish) (objfile);
2532 }
2533
2534 clear_objfile_data (objfile);
2535
2536 /* Clean up any state BFD has sitting around. */
2537 {
2538 gdb_bfd_ref_ptr obfd (objfile->obfd);
2539 char *obfd_filename;
2540
2541 obfd_filename = bfd_get_filename (objfile->obfd);
2542 /* Open the new BFD before freeing the old one, so that
2543 the filename remains live. */
2544 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2545 objfile->obfd = temp.release ();
2546 if (objfile->obfd == NULL)
2547 error (_("Can't open %s to read symbols."), obfd_filename);
2548 }
2549
2550 std::string original_name = objfile->original_name;
2551
2552 /* bfd_openr sets cacheable to true, which is what we want. */
2553 if (!bfd_check_format (objfile->obfd, bfd_object))
2554 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2555 bfd_errmsg (bfd_get_error ()));
2556
2557 /* Save the offsets, we will nuke them with the rest of the
2558 objfile_obstack. */
2559 num_offsets = objfile->num_sections;
2560 offsets = ((struct section_offsets *)
2561 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2562 memcpy (offsets, objfile->section_offsets,
2563 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2564
2565 objfile->reset_psymtabs ();
2566
2567 /* NB: after this call to obstack_free, objfiles_changed
2568 will need to be called (see discussion below). */
2569 obstack_free (&objfile->objfile_obstack, 0);
2570 objfile->sections = NULL;
2571 objfile->compunit_symtabs = NULL;
2572 objfile->template_symbols = NULL;
2573 objfile->static_links.reset (nullptr);
2574
2575 /* obstack_init also initializes the obstack so it is
2576 empty. We could use obstack_specify_allocation but
2577 gdb_obstack.h specifies the alloc/dealloc functions. */
2578 obstack_init (&objfile->objfile_obstack);
2579
2580 /* set_objfile_per_bfd potentially allocates the per-bfd
2581 data on the objfile's obstack (if sharing data across
2582 multiple users is not possible), so it's important to
2583 do it *after* the obstack has been initialized. */
2584 set_objfile_per_bfd (objfile);
2585
2586 objfile->original_name
2587 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2588 original_name.c_str (),
2589 original_name.size ());
2590
2591 /* Reset the sym_fns pointer. The ELF reader can change it
2592 based on whether .gdb_index is present, and we need it to
2593 start over. PR symtab/15885 */
2594 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2595
2596 build_objfile_section_table (objfile);
2597
2598 /* We use the same section offsets as from last time. I'm not
2599 sure whether that is always correct for shared libraries. */
2600 objfile->section_offsets = (struct section_offsets *)
2601 obstack_alloc (&objfile->objfile_obstack,
2602 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2603 memcpy (objfile->section_offsets, offsets,
2604 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2605 objfile->num_sections = num_offsets;
2606
2607 /* What the hell is sym_new_init for, anyway? The concept of
2608 distinguishing between the main file and additional files
2609 in this way seems rather dubious. */
2610 if (objfile == symfile_objfile)
2611 {
2612 (*objfile->sf->sym_new_init) (objfile);
2613 }
2614
2615 (*objfile->sf->sym_init) (objfile);
2616 clear_complaints ();
2617
2618 objfile->flags &= ~OBJF_PSYMTABS_READ;
2619
2620 /* We are about to read new symbols and potentially also
2621 DWARF information. Some targets may want to pass addresses
2622 read from DWARF DIE's through an adjustment function before
2623 saving them, like MIPS, which may call into
2624 "find_pc_section". When called, that function will make
2625 use of per-objfile program space data.
2626
2627 Since we discarded our section information above, we have
2628 dangling pointers in the per-objfile program space data
2629 structure. Force GDB to update the section mapping
2630 information by letting it know the objfile has changed,
2631 making the dangling pointers point to correct data
2632 again. */
2633
2634 objfiles_changed ();
2635
2636 read_symbols (objfile, 0);
2637
2638 if (!objfile_has_symbols (objfile))
2639 {
2640 wrap_here ("");
2641 printf_filtered (_("(no debugging symbols found)\n"));
2642 wrap_here ("");
2643 }
2644
2645 /* We're done reading the symbol file; finish off complaints. */
2646 clear_complaints ();
2647
2648 /* Getting new symbols may change our opinion about what is
2649 frameless. */
2650
2651 reinit_frame_cache ();
2652
2653 /* Discard cleanups as symbol reading was successful. */
2654 objfile_holder.release ();
2655 defer_clear_users.release ();
2656
2657 /* If the mtime has changed between the time we set new_modtime
2658 and now, we *want* this to be out of date, so don't call stat
2659 again now. */
2660 objfile->mtime = new_modtime;
2661 init_entry_point_info (objfile);
2662
2663 new_objfiles.push_back (objfile);
2664 }
2665 }
2666
2667 if (!new_objfiles.empty ())
2668 {
2669 clear_symtab_users (0);
2670
2671 /* clear_objfile_data for each objfile was called before freeing it and
2672 gdb::observers::new_objfile.notify (NULL) has been called by
2673 clear_symtab_users above. Notify the new files now. */
2674 for (auto iter : new_objfiles)
2675 gdb::observers::new_objfile.notify (iter);
2676
2677 /* At least one objfile has changed, so we can consider that
2678 the executable we're debugging has changed too. */
2679 gdb::observers::executable_changed.notify ();
2680 }
2681 }
2682 \f
2683
2684 struct filename_language
2685 {
2686 filename_language (const std::string &ext_, enum language lang_)
2687 : ext (ext_), lang (lang_)
2688 {}
2689
2690 std::string ext;
2691 enum language lang;
2692 };
2693
2694 static std::vector<filename_language> filename_language_table;
2695
2696 /* See symfile.h. */
2697
2698 void
2699 add_filename_language (const char *ext, enum language lang)
2700 {
2701 filename_language_table.emplace_back (ext, lang);
2702 }
2703
2704 static char *ext_args;
2705 static void
2706 show_ext_args (struct ui_file *file, int from_tty,
2707 struct cmd_list_element *c, const char *value)
2708 {
2709 fprintf_filtered (file,
2710 _("Mapping between filename extension "
2711 "and source language is \"%s\".\n"),
2712 value);
2713 }
2714
2715 static void
2716 set_ext_lang_command (const char *args,
2717 int from_tty, struct cmd_list_element *e)
2718 {
2719 char *cp = ext_args;
2720 enum language lang;
2721
2722 /* First arg is filename extension, starting with '.' */
2723 if (*cp != '.')
2724 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2725
2726 /* Find end of first arg. */
2727 while (*cp && !isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
2733 ext_args);
2734
2735 /* Null-terminate first arg. */
2736 *cp++ = '\0';
2737
2738 /* Find beginning of second arg, which should be a source language. */
2739 cp = skip_spaces (cp);
2740
2741 if (*cp == '\0')
2742 error (_("'%s': two arguments required -- "
2743 "filename extension and language"),
2744 ext_args);
2745
2746 /* Lookup the language from among those we know. */
2747 lang = language_enum (cp);
2748
2749 auto it = filename_language_table.begin ();
2750 /* Now lookup the filename extension: do we already know it? */
2751 for (; it != filename_language_table.end (); it++)
2752 {
2753 if (it->ext == ext_args)
2754 break;
2755 }
2756
2757 if (it == filename_language_table.end ())
2758 {
2759 /* New file extension. */
2760 add_filename_language (ext_args, lang);
2761 }
2762 else
2763 {
2764 /* Redefining a previously known filename extension. */
2765
2766 /* if (from_tty) */
2767 /* query ("Really make files of type %s '%s'?", */
2768 /* ext_args, language_str (lang)); */
2769
2770 it->lang = lang;
2771 }
2772 }
2773
2774 static void
2775 info_ext_lang_command (const char *args, int from_tty)
2776 {
2777 printf_filtered (_("Filename extensions and the languages they represent:"));
2778 printf_filtered ("\n\n");
2779 for (const filename_language &entry : filename_language_table)
2780 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2781 language_str (entry.lang));
2782 }
2783
2784 enum language
2785 deduce_language_from_filename (const char *filename)
2786 {
2787 const char *cp;
2788
2789 if (filename != NULL)
2790 if ((cp = strrchr (filename, '.')) != NULL)
2791 {
2792 for (const filename_language &entry : filename_language_table)
2793 if (entry.ext == cp)
2794 return entry.lang;
2795 }
2796
2797 return language_unknown;
2798 }
2799 \f
2800 /* Allocate and initialize a new symbol table.
2801 CUST is from the result of allocate_compunit_symtab. */
2802
2803 struct symtab *
2804 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2805 {
2806 struct objfile *objfile = cust->objfile;
2807 struct symtab *symtab
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2809
2810 symtab->filename
2811 = ((const char *) objfile->per_bfd->filename_cache.insert
2812 (filename, strlen (filename) + 1));
2813 symtab->fullname = NULL;
2814 symtab->language = deduce_language_from_filename (filename);
2815
2816 /* This can be very verbose with lots of headers.
2817 Only print at higher debug levels. */
2818 if (symtab_create_debug >= 2)
2819 {
2820 /* Be a bit clever with debugging messages, and don't print objfile
2821 every time, only when it changes. */
2822 static char *last_objfile_name = NULL;
2823
2824 if (last_objfile_name == NULL
2825 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2826 {
2827 xfree (last_objfile_name);
2828 last_objfile_name = xstrdup (objfile_name (objfile));
2829 fprintf_filtered (gdb_stdlog,
2830 "Creating one or more symtabs for objfile %s ...\n",
2831 last_objfile_name);
2832 }
2833 fprintf_filtered (gdb_stdlog,
2834 "Created symtab %s for module %s.\n",
2835 host_address_to_string (symtab), filename);
2836 }
2837
2838 /* Add it to CUST's list of symtabs. */
2839 if (cust->filetabs == NULL)
2840 {
2841 cust->filetabs = symtab;
2842 cust->last_filetab = symtab;
2843 }
2844 else
2845 {
2846 cust->last_filetab->next = symtab;
2847 cust->last_filetab = symtab;
2848 }
2849
2850 /* Backlink to the containing compunit symtab. */
2851 symtab->compunit_symtab = cust;
2852
2853 return symtab;
2854 }
2855
2856 /* Allocate and initialize a new compunit.
2857 NAME is the name of the main source file, if there is one, or some
2858 descriptive text if there are no source files. */
2859
2860 struct compunit_symtab *
2861 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2862 {
2863 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2864 struct compunit_symtab);
2865 const char *saved_name;
2866
2867 cu->objfile = objfile;
2868
2869 /* The name we record here is only for display/debugging purposes.
2870 Just save the basename to avoid path issues (too long for display,
2871 relative vs absolute, etc.). */
2872 saved_name = lbasename (name);
2873 cu->name
2874 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2875 strlen (saved_name));
2876
2877 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2878
2879 if (symtab_create_debug)
2880 {
2881 fprintf_filtered (gdb_stdlog,
2882 "Created compunit symtab %s for %s.\n",
2883 host_address_to_string (cu),
2884 cu->name);
2885 }
2886
2887 return cu;
2888 }
2889
2890 /* Hook CU to the objfile it comes from. */
2891
2892 void
2893 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2894 {
2895 cu->next = cu->objfile->compunit_symtabs;
2896 cu->objfile->compunit_symtabs = cu;
2897 }
2898 \f
2899
2900 /* Reset all data structures in gdb which may contain references to
2901 symbol table data. */
2902
2903 void
2904 clear_symtab_users (symfile_add_flags add_flags)
2905 {
2906 /* Someday, we should do better than this, by only blowing away
2907 the things that really need to be blown. */
2908
2909 /* Clear the "current" symtab first, because it is no longer valid.
2910 breakpoint_re_set may try to access the current symtab. */
2911 clear_current_source_symtab_and_line ();
2912
2913 clear_displays ();
2914 clear_last_displayed_sal ();
2915 clear_pc_function_cache ();
2916 gdb::observers::new_objfile.notify (NULL);
2917
2918 /* Varobj may refer to old symbols, perform a cleanup. */
2919 varobj_invalidate ();
2920
2921 /* Now that the various caches have been cleared, we can re_set
2922 our breakpoints without risking it using stale data. */
2923 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2924 breakpoint_re_set ();
2925 }
2926 \f
2927 /* OVERLAYS:
2928 The following code implements an abstraction for debugging overlay sections.
2929
2930 The target model is as follows:
2931 1) The gnu linker will permit multiple sections to be mapped into the
2932 same VMA, each with its own unique LMA (or load address).
2933 2) It is assumed that some runtime mechanism exists for mapping the
2934 sections, one by one, from the load address into the VMA address.
2935 3) This code provides a mechanism for gdb to keep track of which
2936 sections should be considered to be mapped from the VMA to the LMA.
2937 This information is used for symbol lookup, and memory read/write.
2938 For instance, if a section has been mapped then its contents
2939 should be read from the VMA, otherwise from the LMA.
2940
2941 Two levels of debugger support for overlays are available. One is
2942 "manual", in which the debugger relies on the user to tell it which
2943 overlays are currently mapped. This level of support is
2944 implemented entirely in the core debugger, and the information about
2945 whether a section is mapped is kept in the objfile->obj_section table.
2946
2947 The second level of support is "automatic", and is only available if
2948 the target-specific code provides functionality to read the target's
2949 overlay mapping table, and translate its contents for the debugger
2950 (by updating the mapped state information in the obj_section tables).
2951
2952 The interface is as follows:
2953 User commands:
2954 overlay map <name> -- tell gdb to consider this section mapped
2955 overlay unmap <name> -- tell gdb to consider this section unmapped
2956 overlay list -- list the sections that GDB thinks are mapped
2957 overlay read-target -- get the target's state of what's mapped
2958 overlay off/manual/auto -- set overlay debugging state
2959 Functional interface:
2960 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2961 section, return that section.
2962 find_pc_overlay(pc): find any overlay section that contains
2963 the pc, either in its VMA or its LMA
2964 section_is_mapped(sect): true if overlay is marked as mapped
2965 section_is_overlay(sect): true if section's VMA != LMA
2966 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2967 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2968 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2969 overlay_mapped_address(...): map an address from section's LMA to VMA
2970 overlay_unmapped_address(...): map an address from section's VMA to LMA
2971 symbol_overlayed_address(...): Return a "current" address for symbol:
2972 either in VMA or LMA depending on whether
2973 the symbol's section is currently mapped. */
2974
2975 /* Overlay debugging state: */
2976
2977 enum overlay_debugging_state overlay_debugging = ovly_off;
2978 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2979
2980 /* Function: section_is_overlay (SECTION)
2981 Returns true if SECTION has VMA not equal to LMA, ie.
2982 SECTION is loaded at an address different from where it will "run". */
2983
2984 int
2985 section_is_overlay (struct obj_section *section)
2986 {
2987 if (overlay_debugging && section)
2988 {
2989 asection *bfd_section = section->the_bfd_section;
2990
2991 if (bfd_section_lma (abfd, bfd_section) != 0
2992 && bfd_section_lma (abfd, bfd_section)
2993 != bfd_section_vma (abfd, bfd_section))
2994 return 1;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /* Function: overlay_invalidate_all (void)
3001 Invalidate the mapped state of all overlay sections (mark it as stale). */
3002
3003 static void
3004 overlay_invalidate_all (void)
3005 {
3006 struct obj_section *sect;
3007
3008 for (objfile *objfile : current_program_space->objfiles ())
3009 ALL_OBJFILE_OSECTIONS (objfile, sect)
3010 if (section_is_overlay (sect))
3011 sect->ovly_mapped = -1;
3012 }
3013
3014 /* Function: section_is_mapped (SECTION)
3015 Returns true if section is an overlay, and is currently mapped.
3016
3017 Access to the ovly_mapped flag is restricted to this function, so
3018 that we can do automatic update. If the global flag
3019 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3020 overlay_invalidate_all. If the mapped state of the particular
3021 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3022
3023 int
3024 section_is_mapped (struct obj_section *osect)
3025 {
3026 struct gdbarch *gdbarch;
3027
3028 if (osect == 0 || !section_is_overlay (osect))
3029 return 0;
3030
3031 switch (overlay_debugging)
3032 {
3033 default:
3034 case ovly_off:
3035 return 0; /* overlay debugging off */
3036 case ovly_auto: /* overlay debugging automatic */
3037 /* Unles there is a gdbarch_overlay_update function,
3038 there's really nothing useful to do here (can't really go auto). */
3039 gdbarch = get_objfile_arch (osect->objfile);
3040 if (gdbarch_overlay_update_p (gdbarch))
3041 {
3042 if (overlay_cache_invalid)
3043 {
3044 overlay_invalidate_all ();
3045 overlay_cache_invalid = 0;
3046 }
3047 if (osect->ovly_mapped == -1)
3048 gdbarch_overlay_update (gdbarch, osect);
3049 }
3050 /* fall thru */
3051 case ovly_on: /* overlay debugging manual */
3052 return osect->ovly_mapped == 1;
3053 }
3054 }
3055
3056 /* Function: pc_in_unmapped_range
3057 If PC falls into the lma range of SECTION, return true, else false. */
3058
3059 CORE_ADDR
3060 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3061 {
3062 if (section_is_overlay (section))
3063 {
3064 bfd *abfd = section->objfile->obfd;
3065 asection *bfd_section = section->the_bfd_section;
3066
3067 /* We assume the LMA is relocated by the same offset as the VMA. */
3068 bfd_vma size = bfd_get_section_size (bfd_section);
3069 CORE_ADDR offset = obj_section_offset (section);
3070
3071 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3072 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3073 return 1;
3074 }
3075
3076 return 0;
3077 }
3078
3079 /* Function: pc_in_mapped_range
3080 If PC falls into the vma range of SECTION, return true, else false. */
3081
3082 CORE_ADDR
3083 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section))
3086 {
3087 if (obj_section_addr (section) <= pc
3088 && pc < obj_section_endaddr (section))
3089 return 1;
3090 }
3091
3092 return 0;
3093 }
3094
3095 /* Return true if the mapped ranges of sections A and B overlap, false
3096 otherwise. */
3097
3098 static int
3099 sections_overlap (struct obj_section *a, struct obj_section *b)
3100 {
3101 CORE_ADDR a_start = obj_section_addr (a);
3102 CORE_ADDR a_end = obj_section_endaddr (a);
3103 CORE_ADDR b_start = obj_section_addr (b);
3104 CORE_ADDR b_end = obj_section_endaddr (b);
3105
3106 return (a_start < b_end && b_start < a_end);
3107 }
3108
3109 /* Function: overlay_unmapped_address (PC, SECTION)
3110 Returns the address corresponding to PC in the unmapped (load) range.
3111 May be the same as PC. */
3112
3113 CORE_ADDR
3114 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3115 {
3116 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3117 {
3118 asection *bfd_section = section->the_bfd_section;
3119
3120 return pc + bfd_section_lma (abfd, bfd_section)
3121 - bfd_section_vma (abfd, bfd_section);
3122 }
3123
3124 return pc;
3125 }
3126
3127 /* Function: overlay_mapped_address (PC, SECTION)
3128 Returns the address corresponding to PC in the mapped (runtime) range.
3129 May be the same as PC. */
3130
3131 CORE_ADDR
3132 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3133 {
3134 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3135 {
3136 asection *bfd_section = section->the_bfd_section;
3137
3138 return pc + bfd_section_vma (abfd, bfd_section)
3139 - bfd_section_lma (abfd, bfd_section);
3140 }
3141
3142 return pc;
3143 }
3144
3145 /* Function: symbol_overlayed_address
3146 Return one of two addresses (relative to the VMA or to the LMA),
3147 depending on whether the section is mapped or not. */
3148
3149 CORE_ADDR
3150 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3151 {
3152 if (overlay_debugging)
3153 {
3154 /* If the symbol has no section, just return its regular address. */
3155 if (section == 0)
3156 return address;
3157 /* If the symbol's section is not an overlay, just return its
3158 address. */
3159 if (!section_is_overlay (section))
3160 return address;
3161 /* If the symbol's section is mapped, just return its address. */
3162 if (section_is_mapped (section))
3163 return address;
3164 /*
3165 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3166 * then return its LOADED address rather than its vma address!!
3167 */
3168 return overlay_unmapped_address (address, section);
3169 }
3170 return address;
3171 }
3172
3173 /* Function: find_pc_overlay (PC)
3174 Return the best-match overlay section for PC:
3175 If PC matches a mapped overlay section's VMA, return that section.
3176 Else if PC matches an unmapped section's VMA, return that section.
3177 Else if PC matches an unmapped section's LMA, return that section. */
3178
3179 struct obj_section *
3180 find_pc_overlay (CORE_ADDR pc)
3181 {
3182 struct obj_section *osect, *best_match = NULL;
3183
3184 if (overlay_debugging)
3185 {
3186 for (objfile *objfile : current_program_space->objfiles ())
3187 ALL_OBJFILE_OSECTIONS (objfile, osect)
3188 if (section_is_overlay (osect))
3189 {
3190 if (pc_in_mapped_range (pc, osect))
3191 {
3192 if (section_is_mapped (osect))
3193 return osect;
3194 else
3195 best_match = osect;
3196 }
3197 else if (pc_in_unmapped_range (pc, osect))
3198 best_match = osect;
3199 }
3200 }
3201 return best_match;
3202 }
3203
3204 /* Function: find_pc_mapped_section (PC)
3205 If PC falls into the VMA address range of an overlay section that is
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
3208 struct obj_section *
3209 find_pc_mapped_section (CORE_ADDR pc)
3210 {
3211 struct obj_section *osect;
3212
3213 if (overlay_debugging)
3214 {
3215 for (objfile *objfile : current_program_space->objfiles ())
3216 ALL_OBJFILE_OSECTIONS (objfile, osect)
3217 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3218 return osect;
3219 }
3220
3221 return NULL;
3222 }
3223
3224 /* Function: list_overlays_command
3225 Print a list of mapped sections and their PC ranges. */
3226
3227 static void
3228 list_overlays_command (const char *args, int from_tty)
3229 {
3230 int nmapped = 0;
3231 struct obj_section *osect;
3232
3233 if (overlay_debugging)
3234 {
3235 for (objfile *objfile : current_program_space->objfiles ())
3236 ALL_OBJFILE_OSECTIONS (objfile, osect)
3237 if (section_is_mapped (osect))
3238 {
3239 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3240 const char *name;
3241 bfd_vma lma, vma;
3242 int size;
3243
3244 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3245 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3246 size = bfd_get_section_size (osect->the_bfd_section);
3247 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3248
3249 printf_filtered ("Section %s, loaded at ", name);
3250 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3251 puts_filtered (" - ");
3252 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3253 printf_filtered (", mapped at ");
3254 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3255 puts_filtered (" - ");
3256 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3257 puts_filtered ("\n");
3258
3259 nmapped++;
3260 }
3261 }
3262 if (nmapped == 0)
3263 printf_filtered (_("No sections are mapped.\n"));
3264 }
3265
3266 /* Function: map_overlay_command
3267 Mark the named section as mapped (ie. residing at its VMA address). */
3268
3269 static void
3270 map_overlay_command (const char *args, int from_tty)
3271 {
3272 struct obj_section *sec, *sec2;
3273
3274 if (!overlay_debugging)
3275 error (_("Overlay debugging not enabled. Use "
3276 "either the 'overlay auto' or\n"
3277 "the 'overlay manual' command."));
3278
3279 if (args == 0 || *args == 0)
3280 error (_("Argument required: name of an overlay section"));
3281
3282 /* First, find a section matching the user supplied argument. */
3283 for (objfile *obj_file : current_program_space->objfiles ())
3284 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3285 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3286 args))
3287 {
3288 /* Now, check to see if the section is an overlay. */
3289 if (!section_is_overlay (sec))
3290 continue; /* not an overlay section */
3291
3292 /* Mark the overlay as "mapped". */
3293 sec->ovly_mapped = 1;
3294
3295 /* Next, make a pass and unmap any sections that are
3296 overlapped by this new section: */
3297 for (objfile *objfile2 : current_program_space->objfiles ())
3298 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3299 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3300 sec2))
3301 {
3302 if (info_verbose)
3303 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3304 bfd_section_name (obj_file->obfd,
3305 sec2->the_bfd_section));
3306 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3307 }
3308 return;
3309 }
3310 error (_("No overlay section called %s"), args);
3311 }
3312
3313 /* Function: unmap_overlay_command
3314 Mark the overlay section as unmapped
3315 (ie. resident in its LMA address range, rather than the VMA range). */
3316
3317 static void
3318 unmap_overlay_command (const char *args, int from_tty)
3319 {
3320 struct obj_section *sec = NULL;
3321
3322 if (!overlay_debugging)
3323 error (_("Overlay debugging not enabled. "
3324 "Use either the 'overlay auto' or\n"
3325 "the 'overlay manual' command."));
3326
3327 if (args == 0 || *args == 0)
3328 error (_("Argument required: name of an overlay section"));
3329
3330 /* First, find a section matching the user supplied argument. */
3331 for (objfile *objfile : current_program_space->objfiles ())
3332 ALL_OBJFILE_OSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3334 {
3335 if (!sec->ovly_mapped)
3336 error (_("Section %s is not mapped"), args);
3337 sec->ovly_mapped = 0;
3338 return;
3339 }
3340 error (_("No overlay section called %s"), args);
3341 }
3342
3343 /* Function: overlay_auto_command
3344 A utility command to turn on overlay debugging.
3345 Possibly this should be done via a set/show command. */
3346
3347 static void
3348 overlay_auto_command (const char *args, int from_tty)
3349 {
3350 overlay_debugging = ovly_auto;
3351 enable_overlay_breakpoints ();
3352 if (info_verbose)
3353 printf_unfiltered (_("Automatic overlay debugging enabled."));
3354 }
3355
3356 /* Function: overlay_manual_command
3357 A utility command to turn on overlay debugging.
3358 Possibly this should be done via a set/show command. */
3359
3360 static void
3361 overlay_manual_command (const char *args, int from_tty)
3362 {
3363 overlay_debugging = ovly_on;
3364 disable_overlay_breakpoints ();
3365 if (info_verbose)
3366 printf_unfiltered (_("Overlay debugging enabled."));
3367 }
3368
3369 /* Function: overlay_off_command
3370 A utility command to turn on overlay debugging.
3371 Possibly this should be done via a set/show command. */
3372
3373 static void
3374 overlay_off_command (const char *args, int from_tty)
3375 {
3376 overlay_debugging = ovly_off;
3377 disable_overlay_breakpoints ();
3378 if (info_verbose)
3379 printf_unfiltered (_("Overlay debugging disabled."));
3380 }
3381
3382 static void
3383 overlay_load_command (const char *args, int from_tty)
3384 {
3385 struct gdbarch *gdbarch = get_current_arch ();
3386
3387 if (gdbarch_overlay_update_p (gdbarch))
3388 gdbarch_overlay_update (gdbarch, NULL);
3389 else
3390 error (_("This target does not know how to read its overlay state."));
3391 }
3392
3393 /* Function: overlay_command
3394 A place-holder for a mis-typed command. */
3395
3396 /* Command list chain containing all defined "overlay" subcommands. */
3397 static struct cmd_list_element *overlaylist;
3398
3399 static void
3400 overlay_command (const char *args, int from_tty)
3401 {
3402 printf_unfiltered
3403 ("\"overlay\" must be followed by the name of an overlay command.\n");
3404 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3405 }
3406
3407 /* Target Overlays for the "Simplest" overlay manager:
3408
3409 This is GDB's default target overlay layer. It works with the
3410 minimal overlay manager supplied as an example by Cygnus. The
3411 entry point is via a function pointer "gdbarch_overlay_update",
3412 so targets that use a different runtime overlay manager can
3413 substitute their own overlay_update function and take over the
3414 function pointer.
3415
3416 The overlay_update function pokes around in the target's data structures
3417 to see what overlays are mapped, and updates GDB's overlay mapping with
3418 this information.
3419
3420 In this simple implementation, the target data structures are as follows:
3421 unsigned _novlys; /# number of overlay sections #/
3422 unsigned _ovly_table[_novlys][4] = {
3423 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3424 {..., ..., ..., ...},
3425 }
3426 unsigned _novly_regions; /# number of overlay regions #/
3427 unsigned _ovly_region_table[_novly_regions][3] = {
3428 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3429 {..., ..., ...},
3430 }
3431 These functions will attempt to update GDB's mappedness state in the
3432 symbol section table, based on the target's mappedness state.
3433
3434 To do this, we keep a cached copy of the target's _ovly_table, and
3435 attempt to detect when the cached copy is invalidated. The main
3436 entry point is "simple_overlay_update(SECT), which looks up SECT in
3437 the cached table and re-reads only the entry for that section from
3438 the target (whenever possible). */
3439
3440 /* Cached, dynamically allocated copies of the target data structures: */
3441 static unsigned (*cache_ovly_table)[4] = 0;
3442 static unsigned cache_novlys = 0;
3443 static CORE_ADDR cache_ovly_table_base = 0;
3444 enum ovly_index
3445 {
3446 VMA, OSIZE, LMA, MAPPED
3447 };
3448
3449 /* Throw away the cached copy of _ovly_table. */
3450
3451 static void
3452 simple_free_overlay_table (void)
3453 {
3454 if (cache_ovly_table)
3455 xfree (cache_ovly_table);
3456 cache_novlys = 0;
3457 cache_ovly_table = NULL;
3458 cache_ovly_table_base = 0;
3459 }
3460
3461 /* Read an array of ints of size SIZE from the target into a local buffer.
3462 Convert to host order. int LEN is number of ints. */
3463
3464 static void
3465 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3466 int len, int size, enum bfd_endian byte_order)
3467 {
3468 /* FIXME (alloca): Not safe if array is very large. */
3469 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3470 int i;
3471
3472 read_memory (memaddr, buf, len * size);
3473 for (i = 0; i < len; i++)
3474 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3475 }
3476
3477 /* Find and grab a copy of the target _ovly_table
3478 (and _novlys, which is needed for the table's size). */
3479
3480 static int
3481 simple_read_overlay_table (void)
3482 {
3483 struct bound_minimal_symbol novlys_msym;
3484 struct bound_minimal_symbol ovly_table_msym;
3485 struct gdbarch *gdbarch;
3486 int word_size;
3487 enum bfd_endian byte_order;
3488
3489 simple_free_overlay_table ();
3490 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3491 if (! novlys_msym.minsym)
3492 {
3493 error (_("Error reading inferior's overlay table: "
3494 "couldn't find `_novlys' variable\n"
3495 "in inferior. Use `overlay manual' mode."));
3496 return 0;
3497 }
3498
3499 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3500 if (! ovly_table_msym.minsym)
3501 {
3502 error (_("Error reading inferior's overlay table: couldn't find "
3503 "`_ovly_table' array\n"
3504 "in inferior. Use `overlay manual' mode."));
3505 return 0;
3506 }
3507
3508 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3509 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3510 byte_order = gdbarch_byte_order (gdbarch);
3511
3512 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3513 4, byte_order);
3514 cache_ovly_table
3515 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3516 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3517 read_target_long_array (cache_ovly_table_base,
3518 (unsigned int *) cache_ovly_table,
3519 cache_novlys * 4, word_size, byte_order);
3520
3521 return 1; /* SUCCESS */
3522 }
3523
3524 /* Function: simple_overlay_update_1
3525 A helper function for simple_overlay_update. Assuming a cached copy
3526 of _ovly_table exists, look through it to find an entry whose vma,
3527 lma and size match those of OSECT. Re-read the entry and make sure
3528 it still matches OSECT (else the table may no longer be valid).
3529 Set OSECT's mapped state to match the entry. Return: 1 for
3530 success, 0 for failure. */
3531
3532 static int
3533 simple_overlay_update_1 (struct obj_section *osect)
3534 {
3535 int i;
3536 asection *bsect = osect->the_bfd_section;
3537 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3538 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3540
3541 for (i = 0; i < cache_novlys; i++)
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3544 {
3545 read_target_long_array (cache_ovly_table_base + i * word_size,
3546 (unsigned int *) cache_ovly_table[i],
3547 4, word_size, byte_order);
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3550 {
3551 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3552 return 1;
3553 }
3554 else /* Warning! Warning! Target's ovly table has changed! */
3555 return 0;
3556 }
3557 return 0;
3558 }
3559
3560 /* Function: simple_overlay_update
3561 If OSECT is NULL, then update all sections' mapped state
3562 (after re-reading the entire target _ovly_table).
3563 If OSECT is non-NULL, then try to find a matching entry in the
3564 cached ovly_table and update only OSECT's mapped state.
3565 If a cached entry can't be found or the cache isn't valid, then
3566 re-read the entire cache, and go ahead and update all sections. */
3567
3568 void
3569 simple_overlay_update (struct obj_section *osect)
3570 {
3571 /* Were we given an osect to look up? NULL means do all of them. */
3572 if (osect)
3573 /* Have we got a cached copy of the target's overlay table? */
3574 if (cache_ovly_table != NULL)
3575 {
3576 /* Does its cached location match what's currently in the
3577 symtab? */
3578 struct bound_minimal_symbol minsym
3579 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3580
3581 if (minsym.minsym == NULL)
3582 error (_("Error reading inferior's overlay table: couldn't "
3583 "find `_ovly_table' array\n"
3584 "in inferior. Use `overlay manual' mode."));
3585
3586 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3587 /* Then go ahead and try to look up this single section in
3588 the cache. */
3589 if (simple_overlay_update_1 (osect))
3590 /* Found it! We're done. */
3591 return;
3592 }
3593
3594 /* Cached table no good: need to read the entire table anew.
3595 Or else we want all the sections, in which case it's actually
3596 more efficient to read the whole table in one block anyway. */
3597
3598 if (! simple_read_overlay_table ())
3599 return;
3600
3601 /* Now may as well update all sections, even if only one was requested. */
3602 for (objfile *objfile : current_program_space->objfiles ())
3603 ALL_OBJFILE_OSECTIONS (objfile, osect)
3604 if (section_is_overlay (osect))
3605 {
3606 int i;
3607 asection *bsect = osect->the_bfd_section;
3608
3609 for (i = 0; i < cache_novlys; i++)
3610 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3611 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3612 { /* obj_section matches i'th entry in ovly_table. */
3613 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3614 break; /* finished with inner for loop: break out. */
3615 }
3616 }
3617 }
3618
3619 /* Set the output sections and output offsets for section SECTP in
3620 ABFD. The relocation code in BFD will read these offsets, so we
3621 need to be sure they're initialized. We map each section to itself,
3622 with no offset; this means that SECTP->vma will be honored. */
3623
3624 static void
3625 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3626 {
3627 sectp->output_section = sectp;
3628 sectp->output_offset = 0;
3629 }
3630
3631 /* Default implementation for sym_relocate. */
3632
3633 bfd_byte *
3634 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3635 bfd_byte *buf)
3636 {
3637 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3638 DWO file. */
3639 bfd *abfd = sectp->owner;
3640
3641 /* We're only interested in sections with relocation
3642 information. */
3643 if ((sectp->flags & SEC_RELOC) == 0)
3644 return NULL;
3645
3646 /* We will handle section offsets properly elsewhere, so relocate as if
3647 all sections begin at 0. */
3648 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3649
3650 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3651 }
3652
3653 /* Relocate the contents of a debug section SECTP in ABFD. The
3654 contents are stored in BUF if it is non-NULL, or returned in a
3655 malloc'd buffer otherwise.
3656
3657 For some platforms and debug info formats, shared libraries contain
3658 relocations against the debug sections (particularly for DWARF-2;
3659 one affected platform is PowerPC GNU/Linux, although it depends on
3660 the version of the linker in use). Also, ELF object files naturally
3661 have unresolved relocations for their debug sections. We need to apply
3662 the relocations in order to get the locations of symbols correct.
3663 Another example that may require relocation processing, is the
3664 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3665 debug section. */
3666
3667 bfd_byte *
3668 symfile_relocate_debug_section (struct objfile *objfile,
3669 asection *sectp, bfd_byte *buf)
3670 {
3671 gdb_assert (objfile->sf->sym_relocate);
3672
3673 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3674 }
3675
3676 struct symfile_segment_data *
3677 get_symfile_segment_data (bfd *abfd)
3678 {
3679 const struct sym_fns *sf = find_sym_fns (abfd);
3680
3681 if (sf == NULL)
3682 return NULL;
3683
3684 return sf->sym_segments (abfd);
3685 }
3686
3687 void
3688 free_symfile_segment_data (struct symfile_segment_data *data)
3689 {
3690 xfree (data->segment_bases);
3691 xfree (data->segment_sizes);
3692 xfree (data->segment_info);
3693 xfree (data);
3694 }
3695
3696 /* Given:
3697 - DATA, containing segment addresses from the object file ABFD, and
3698 the mapping from ABFD's sections onto the segments that own them,
3699 and
3700 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3701 segment addresses reported by the target,
3702 store the appropriate offsets for each section in OFFSETS.
3703
3704 If there are fewer entries in SEGMENT_BASES than there are segments
3705 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3706
3707 If there are more entries, then ignore the extra. The target may
3708 not be able to distinguish between an empty data segment and a
3709 missing data segment; a missing text segment is less plausible. */
3710
3711 int
3712 symfile_map_offsets_to_segments (bfd *abfd,
3713 const struct symfile_segment_data *data,
3714 struct section_offsets *offsets,
3715 int num_segment_bases,
3716 const CORE_ADDR *segment_bases)
3717 {
3718 int i;
3719 asection *sect;
3720
3721 /* It doesn't make sense to call this function unless you have some
3722 segment base addresses. */
3723 gdb_assert (num_segment_bases > 0);
3724
3725 /* If we do not have segment mappings for the object file, we
3726 can not relocate it by segments. */
3727 gdb_assert (data != NULL);
3728 gdb_assert (data->num_segments > 0);
3729
3730 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3731 {
3732 int which = data->segment_info[i];
3733
3734 gdb_assert (0 <= which && which <= data->num_segments);
3735
3736 /* Don't bother computing offsets for sections that aren't
3737 loaded as part of any segment. */
3738 if (! which)
3739 continue;
3740
3741 /* Use the last SEGMENT_BASES entry as the address of any extra
3742 segments mentioned in DATA->segment_info. */
3743 if (which > num_segment_bases)
3744 which = num_segment_bases;
3745
3746 offsets->offsets[i] = (segment_bases[which - 1]
3747 - data->segment_bases[which - 1]);
3748 }
3749
3750 return 1;
3751 }
3752
3753 static void
3754 symfile_find_segment_sections (struct objfile *objfile)
3755 {
3756 bfd *abfd = objfile->obfd;
3757 int i;
3758 asection *sect;
3759 struct symfile_segment_data *data;
3760
3761 data = get_symfile_segment_data (objfile->obfd);
3762 if (data == NULL)
3763 return;
3764
3765 if (data->num_segments != 1 && data->num_segments != 2)
3766 {
3767 free_symfile_segment_data (data);
3768 return;
3769 }
3770
3771 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3772 {
3773 int which = data->segment_info[i];
3774
3775 if (which == 1)
3776 {
3777 if (objfile->sect_index_text == -1)
3778 objfile->sect_index_text = sect->index;
3779
3780 if (objfile->sect_index_rodata == -1)
3781 objfile->sect_index_rodata = sect->index;
3782 }
3783 else if (which == 2)
3784 {
3785 if (objfile->sect_index_data == -1)
3786 objfile->sect_index_data = sect->index;
3787
3788 if (objfile->sect_index_bss == -1)
3789 objfile->sect_index_bss = sect->index;
3790 }
3791 }
3792
3793 free_symfile_segment_data (data);
3794 }
3795
3796 /* Listen for free_objfile events. */
3797
3798 static void
3799 symfile_free_objfile (struct objfile *objfile)
3800 {
3801 /* Remove the target sections owned by this objfile. */
3802 if (objfile != NULL)
3803 remove_target_sections ((void *) objfile);
3804 }
3805
3806 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3807 Expand all symtabs that match the specified criteria.
3808 See quick_symbol_functions.expand_symtabs_matching for details. */
3809
3810 void
3811 expand_symtabs_matching
3812 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3813 const lookup_name_info &lookup_name,
3814 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3815 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3816 enum search_domain kind)
3817 {
3818 for (objfile *objfile : current_program_space->objfiles ())
3819 {
3820 if (objfile->sf)
3821 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3822 lookup_name,
3823 symbol_matcher,
3824 expansion_notify, kind);
3825 }
3826 }
3827
3828 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3829 Map function FUN over every file.
3830 See quick_symbol_functions.map_symbol_filenames for details. */
3831
3832 void
3833 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3834 int need_fullname)
3835 {
3836 for (objfile *objfile : current_program_space->objfiles ())
3837 {
3838 if (objfile->sf)
3839 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3840 need_fullname);
3841 }
3842 }
3843
3844 #if GDB_SELF_TEST
3845
3846 namespace selftests {
3847 namespace filename_language {
3848
3849 static void test_filename_language ()
3850 {
3851 /* This test messes up the filename_language_table global. */
3852 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3853
3854 /* Test deducing an unknown extension. */
3855 language lang = deduce_language_from_filename ("myfile.blah");
3856 SELF_CHECK (lang == language_unknown);
3857
3858 /* Test deducing a known extension. */
3859 lang = deduce_language_from_filename ("myfile.c");
3860 SELF_CHECK (lang == language_c);
3861
3862 /* Test adding a new extension using the internal API. */
3863 add_filename_language (".blah", language_pascal);
3864 lang = deduce_language_from_filename ("myfile.blah");
3865 SELF_CHECK (lang == language_pascal);
3866 }
3867
3868 static void
3869 test_set_ext_lang_command ()
3870 {
3871 /* This test messes up the filename_language_table global. */
3872 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3873
3874 /* Confirm that the .hello extension is not known. */
3875 language lang = deduce_language_from_filename ("cake.hello");
3876 SELF_CHECK (lang == language_unknown);
3877
3878 /* Test adding a new extension using the CLI command. */
3879 auto args_holder = make_unique_xstrdup (".hello rust");
3880 ext_args = args_holder.get ();
3881 set_ext_lang_command (NULL, 1, NULL);
3882
3883 lang = deduce_language_from_filename ("cake.hello");
3884 SELF_CHECK (lang == language_rust);
3885
3886 /* Test overriding an existing extension using the CLI command. */
3887 int size_before = filename_language_table.size ();
3888 args_holder.reset (xstrdup (".hello pascal"));
3889 ext_args = args_holder.get ();
3890 set_ext_lang_command (NULL, 1, NULL);
3891 int size_after = filename_language_table.size ();
3892
3893 lang = deduce_language_from_filename ("cake.hello");
3894 SELF_CHECK (lang == language_pascal);
3895 SELF_CHECK (size_before == size_after);
3896 }
3897
3898 } /* namespace filename_language */
3899 } /* namespace selftests */
3900
3901 #endif /* GDB_SELF_TEST */
3902
3903 void
3904 _initialize_symfile (void)
3905 {
3906 struct cmd_list_element *c;
3907
3908 gdb::observers::free_objfile.attach (symfile_free_objfile);
3909
3910 #define READNOW_READNEVER_HELP \
3911 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3912 immediately. This makes the command slower, but may make future operations\n\
3913 faster.\n\
3914 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3915 symbolic debug information."
3916
3917 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3918 Load symbol table from executable file FILE.\n\
3919 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3920 OFF is an optional offset which is added to each section address.\n\
3921 The `file' command can also load symbol tables, as well as setting the file\n\
3922 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3923 set_cmd_completer (c, filename_completer);
3924
3925 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3926 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3927 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3928 [-s SECT-NAME SECT-ADDR]...\n\
3929 ADDR is the starting address of the file's text.\n\
3930 Each '-s' argument provides a section name and address, and\n\
3931 should be specified if the data and bss segments are not contiguous\n\
3932 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3933 OFF is an optional offset which is added to the default load addresses\n\
3934 of all sections for which no other address was specified.\n"
3935 READNOW_READNEVER_HELP),
3936 &cmdlist);
3937 set_cmd_completer (c, filename_completer);
3938
3939 c = add_cmd ("remove-symbol-file", class_files,
3940 remove_symbol_file_command, _("\
3941 Remove a symbol file added via the add-symbol-file command.\n\
3942 Usage: remove-symbol-file FILENAME\n\
3943 remove-symbol-file -a ADDRESS\n\
3944 The file to remove can be identified by its filename or by an address\n\
3945 that lies within the boundaries of this symbol file in memory."),
3946 &cmdlist);
3947
3948 c = add_cmd ("load", class_files, load_command, _("\
3949 Dynamically load FILE into the running program, and record its symbols\n\
3950 for access from GDB.\n\
3951 Usage: load [FILE] [OFFSET]\n\
3952 An optional load OFFSET may also be given as a literal address.\n\
3953 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3954 on its own."), &cmdlist);
3955 set_cmd_completer (c, filename_completer);
3956
3957 add_prefix_cmd ("overlay", class_support, overlay_command,
3958 _("Commands for debugging overlays."), &overlaylist,
3959 "overlay ", 0, &cmdlist);
3960
3961 add_com_alias ("ovly", "overlay", class_alias, 1);
3962 add_com_alias ("ov", "overlay", class_alias, 1);
3963
3964 add_cmd ("map-overlay", class_support, map_overlay_command,
3965 _("Assert that an overlay section is mapped."), &overlaylist);
3966
3967 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3968 _("Assert that an overlay section is unmapped."), &overlaylist);
3969
3970 add_cmd ("list-overlays", class_support, list_overlays_command,
3971 _("List mappings of overlay sections."), &overlaylist);
3972
3973 add_cmd ("manual", class_support, overlay_manual_command,
3974 _("Enable overlay debugging."), &overlaylist);
3975 add_cmd ("off", class_support, overlay_off_command,
3976 _("Disable overlay debugging."), &overlaylist);
3977 add_cmd ("auto", class_support, overlay_auto_command,
3978 _("Enable automatic overlay debugging."), &overlaylist);
3979 add_cmd ("load-target", class_support, overlay_load_command,
3980 _("Read the overlay mapping state from the target."), &overlaylist);
3981
3982 /* Filename extension to source language lookup table: */
3983 add_setshow_string_noescape_cmd ("extension-language", class_files,
3984 &ext_args, _("\
3985 Set mapping between filename extension and source language."), _("\
3986 Show mapping between filename extension and source language."), _("\
3987 Usage: set extension-language .foo bar"),
3988 set_ext_lang_command,
3989 show_ext_args,
3990 &setlist, &showlist);
3991
3992 add_info ("extensions", info_ext_lang_command,
3993 _("All filename extensions associated with a source language."));
3994
3995 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3996 &debug_file_directory, _("\
3997 Set the directories where separate debug symbols are searched for."), _("\
3998 Show the directories where separate debug symbols are searched for."), _("\
3999 Separate debug symbols are first searched for in the same\n\
4000 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4001 and lastly at the path of the directory of the binary with\n\
4002 each global debug-file-directory component prepended."),
4003 NULL,
4004 show_debug_file_directory,
4005 &setlist, &showlist);
4006
4007 add_setshow_enum_cmd ("symbol-loading", no_class,
4008 print_symbol_loading_enums, &print_symbol_loading,
4009 _("\
4010 Set printing of symbol loading messages."), _("\
4011 Show printing of symbol loading messages."), _("\
4012 off == turn all messages off\n\
4013 brief == print messages for the executable,\n\
4014 and brief messages for shared libraries\n\
4015 full == print messages for the executable,\n\
4016 and messages for each shared library."),
4017 NULL,
4018 NULL,
4019 &setprintlist, &showprintlist);
4020
4021 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4022 &separate_debug_file_debug, _("\
4023 Set printing of separate debug info file search debug."), _("\
4024 Show printing of separate debug info file search debug."), _("\
4025 When on, GDB prints the searched locations while looking for separate debug \
4026 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4027
4028 #if GDB_SELF_TEST
4029 selftests::register_test
4030 ("filename_language", selftests::filename_language::test_filename_language);
4031 selftests::register_test
4032 ("set_ext_lang_command",
4033 selftests::filename_language::test_set_ext_lang_command);
4034 #endif
4035 }
This page took 0.13106 seconds and 5 git commands to generate.