Make find_separate_debug_file* return std::string
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const std::string &name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name.c_str (), objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, or an empty
1435 string. */
1436
1437 static std::string
1438 find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
1442 {
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
1447 /* First try in the same directory as the original file. */
1448 std::string debugfile = dir;
1449 debugfile += debuglink;
1450
1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1452 return debugfile;
1453
1454 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1455 debugfile = dir;
1456 debugfile += DEBUG_SUBDIRECTORY;
1457 debugfile += "/";
1458 debugfile += debuglink;
1459
1460 if (separate_debug_file_exists (debugfile, crc32, objfile))
1461 return debugfile;
1462
1463 /* Then try in the global debugfile directories.
1464
1465 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1466 cause "/..." lookups. */
1467
1468 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1469 = dirnames_to_char_ptr_vec (debug_file_directory);
1470
1471 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1472 {
1473 debugfile = debugdir.get ();
1474 debugfile += "/";
1475 debugfile += dir;
1476 debugfile += debuglink;
1477
1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 return debugfile;
1480
1481 /* If the file is in the sysroot, try using its base path in the
1482 global debugfile directory. */
1483 if (canon_dir != NULL
1484 && filename_ncmp (canon_dir, gdb_sysroot,
1485 strlen (gdb_sysroot)) == 0
1486 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1487 {
1488 debugfile = debugdir.get ();
1489 debugfile += (canon_dir + strlen (gdb_sysroot));
1490 debugfile += "/";
1491 debugfile += debuglink;
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495 }
1496 }
1497
1498 return std::string ();
1499 }
1500
1501 /* Modify PATH to contain only "[/]directory/" part of PATH.
1502 If there were no directory separators in PATH, PATH will be empty
1503 string on return. */
1504
1505 static void
1506 terminate_after_last_dir_separator (char *path)
1507 {
1508 int i;
1509
1510 /* Strip off the final filename part, leaving the directory name,
1511 followed by a slash. The directory can be relative or absolute. */
1512 for (i = strlen(path) - 1; i >= 0; i--)
1513 if (IS_DIR_SEPARATOR (path[i]))
1514 break;
1515
1516 /* If I is -1 then no directory is present there and DIR will be "". */
1517 path[i + 1] = '\0';
1518 }
1519
1520 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1521 Returns pathname, or an empty string. */
1522
1523 std::string
1524 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1525 {
1526 unsigned long crc32;
1527
1528 gdb::unique_xmalloc_ptr<char> debuglink
1529 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
1535 return std::string ();
1536 }
1537
1538 std::string dir = objfile_name (objfile);
1539 terminate_after_last_dir_separator (&dir[0]);
1540 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1541
1542 std::string debugfile
1543 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1544 debuglink.get (), crc32, objfile);
1545
1546 if (debugfile.empty ())
1547 {
1548 /* For PR gdb/9538, try again with realpath (if different from the
1549 original). */
1550
1551 struct stat st_buf;
1552
1553 if (lstat (objfile_name (objfile), &st_buf) == 0
1554 && S_ISLNK (st_buf.st_mode))
1555 {
1556 gdb::unique_xmalloc_ptr<char> symlink_dir
1557 (lrealpath (objfile_name (objfile)));
1558 if (symlink_dir != NULL)
1559 {
1560 terminate_after_last_dir_separator (symlink_dir.get ());
1561 if (dir != symlink_dir.get ())
1562 {
1563 /* Different directory, so try using it. */
1564 debugfile = find_separate_debug_file (symlink_dir.get (),
1565 symlink_dir.get (),
1566 debuglink.get (),
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1572 }
1573
1574 return debugfile;
1575 }
1576
1577 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1578 simultaneously. */
1579
1580 static void
1581 validate_readnow_readnever (objfile_flags flags)
1582 {
1583 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1584 error (_("-readnow and -readnever cannot be used simultaneously"));
1585 }
1586
1587 /* This is the symbol-file command. Read the file, analyze its
1588 symbols, and add a struct symtab to a symtab list. The syntax of
1589 the command is rather bizarre:
1590
1591 1. The function buildargv implements various quoting conventions
1592 which are undocumented and have little or nothing in common with
1593 the way things are quoted (or not quoted) elsewhere in GDB.
1594
1595 2. Options are used, which are not generally used in GDB (perhaps
1596 "set mapped on", "set readnow on" would be better)
1597
1598 3. The order of options matters, which is contrary to GNU
1599 conventions (because it is confusing and inconvenient). */
1600
1601 void
1602 symbol_file_command (const char *args, int from_tty)
1603 {
1604 dont_repeat ();
1605
1606 if (args == NULL)
1607 {
1608 symbol_file_clear (from_tty);
1609 }
1610 else
1611 {
1612 objfile_flags flags = OBJF_USERLOADED;
1613 symfile_add_flags add_flags = 0;
1614 char *name = NULL;
1615 bool stop_processing_options = false;
1616 int idx;
1617 char *arg;
1618
1619 if (from_tty)
1620 add_flags |= SYMFILE_VERBOSE;
1621
1622 gdb_argv built_argv (args);
1623 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1624 {
1625 if (stop_processing_options || *arg != '-')
1626 {
1627 if (name == NULL)
1628 name = arg;
1629 else
1630 error (_("Unrecognized argument \"%s\""), arg);
1631 }
1632 else if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
1634 else if (strcmp (arg, "-readnever") == 0)
1635 flags |= OBJF_READNEVER;
1636 else if (strcmp (arg, "--") == 0)
1637 stop_processing_options = true;
1638 else
1639 error (_("Unrecognized argument \"%s\""), arg);
1640 }
1641
1642 if (name == NULL)
1643 error (_("no symbol file name was specified"));
1644
1645 validate_readnow_readnever (flags);
1646
1647 symbol_file_add_main_1 (name, add_flags, flags);
1648 }
1649 }
1650
1651 /* Set the initial language.
1652
1653 FIXME: A better solution would be to record the language in the
1654 psymtab when reading partial symbols, and then use it (if known) to
1655 set the language. This would be a win for formats that encode the
1656 language in an easily discoverable place, such as DWARF. For
1657 stabs, we can jump through hoops looking for specially named
1658 symbols or try to intuit the language from the specific type of
1659 stabs we find, but we can't do that until later when we read in
1660 full symbols. */
1661
1662 void
1663 set_initial_language (void)
1664 {
1665 enum language lang = main_language ();
1666
1667 if (lang == language_unknown)
1668 {
1669 char *name = main_name ();
1670 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1671
1672 if (sym != NULL)
1673 lang = SYMBOL_LANGUAGE (sym);
1674 }
1675
1676 if (lang == language_unknown)
1677 {
1678 /* Make C the default language */
1679 lang = language_c;
1680 }
1681
1682 set_language (lang);
1683 expected_language = current_language; /* Don't warn the user. */
1684 }
1685
1686 /* Open the file specified by NAME and hand it off to BFD for
1687 preliminary analysis. Return a newly initialized bfd *, which
1688 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1689 absolute). In case of trouble, error() is called. */
1690
1691 gdb_bfd_ref_ptr
1692 symfile_bfd_open (const char *name)
1693 {
1694 int desc = -1;
1695
1696 gdb::unique_xmalloc_ptr<char> absolute_name;
1697 if (!is_target_filename (name))
1698 {
1699 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1700
1701 /* Look down path for it, allocate 2nd new malloc'd copy. */
1702 desc = openp (getenv ("PATH"),
1703 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1704 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1705 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1709
1710 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
1715 #endif
1716 if (desc < 0)
1717 perror_with_name (expanded_name.get ());
1718
1719 name = absolute_name.get ();
1720 }
1721
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
1726
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
1729
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 return sym_bfd;
1735 }
1736
1737 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1738 the section was not found. */
1739
1740 int
1741 get_section_index (struct objfile *objfile, const char *section_name)
1742 {
1743 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1744
1745 if (sect)
1746 return sect->index;
1747 else
1748 return -1;
1749 }
1750
1751 /* Link SF into the global symtab_fns list.
1752 FLAVOUR is the file format that SF handles.
1753 Called on startup by the _initialize routine in each object file format
1754 reader, to register information about each format the reader is prepared
1755 to handle. */
1756
1757 void
1758 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1759 {
1760 symtab_fns.emplace_back (flavour, sf);
1761 }
1762
1763 /* Initialize OBJFILE to read symbols from its associated BFD. It
1764 either returns or calls error(). The result is an initialized
1765 struct sym_fns in the objfile structure, that contains cached
1766 information about the symbol file. */
1767
1768 static const struct sym_fns *
1769 find_sym_fns (bfd *abfd)
1770 {
1771 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1772
1773 if (our_flavour == bfd_target_srec_flavour
1774 || our_flavour == bfd_target_ihex_flavour
1775 || our_flavour == bfd_target_tekhex_flavour)
1776 return NULL; /* No symbols. */
1777
1778 for (const registered_sym_fns &rsf : symtab_fns)
1779 if (our_flavour == rsf.sym_flavour)
1780 return rsf.sym_fns;
1781
1782 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1783 bfd_get_target (abfd));
1784 }
1785 \f
1786
1787 /* This function runs the load command of our current target. */
1788
1789 static void
1790 load_command (const char *arg, int from_tty)
1791 {
1792 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1793
1794 dont_repeat ();
1795
1796 /* The user might be reloading because the binary has changed. Take
1797 this opportunity to check. */
1798 reopen_exec_file ();
1799 reread_symbols ();
1800
1801 if (arg == NULL)
1802 {
1803 const char *parg;
1804 int count = 0;
1805
1806 parg = arg = get_exec_file (1);
1807
1808 /* Count how many \ " ' tab space there are in the name. */
1809 while ((parg = strpbrk (parg, "\\\"'\t ")))
1810 {
1811 parg++;
1812 count++;
1813 }
1814
1815 if (count)
1816 {
1817 /* We need to quote this string so buildargv can pull it apart. */
1818 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1819 char *ptemp = temp;
1820 const char *prev;
1821
1822 make_cleanup (xfree, temp);
1823
1824 prev = parg = arg;
1825 while ((parg = strpbrk (parg, "\\\"'\t ")))
1826 {
1827 strncpy (ptemp, prev, parg - prev);
1828 ptemp += parg - prev;
1829 prev = parg++;
1830 *ptemp++ = '\\';
1831 }
1832 strcpy (ptemp, prev);
1833
1834 arg = temp;
1835 }
1836 }
1837
1838 target_load (arg, from_tty);
1839
1840 /* After re-loading the executable, we don't really know which
1841 overlays are mapped any more. */
1842 overlay_cache_invalid = 1;
1843
1844 do_cleanups (cleanup);
1845 }
1846
1847 /* This version of "load" should be usable for any target. Currently
1848 it is just used for remote targets, not inftarg.c or core files,
1849 on the theory that only in that case is it useful.
1850
1851 Avoiding xmodem and the like seems like a win (a) because we don't have
1852 to worry about finding it, and (b) On VMS, fork() is very slow and so
1853 we don't want to run a subprocess. On the other hand, I'm not sure how
1854 performance compares. */
1855
1856 static int validate_download = 0;
1857
1858 /* Callback service function for generic_load (bfd_map_over_sections). */
1859
1860 static void
1861 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1862 {
1863 bfd_size_type *sum = (bfd_size_type *) data;
1864
1865 *sum += bfd_get_section_size (asec);
1866 }
1867
1868 /* Opaque data for load_progress. */
1869 struct load_progress_data
1870 {
1871 /* Cumulative data. */
1872 unsigned long write_count = 0;
1873 unsigned long data_count = 0;
1874 bfd_size_type total_size = 0;
1875 };
1876
1877 /* Opaque data for load_progress for a single section. */
1878 struct load_progress_section_data
1879 {
1880 load_progress_section_data (load_progress_data *cumulative_,
1881 const char *section_name_, ULONGEST section_size_,
1882 CORE_ADDR lma_, gdb_byte *buffer_)
1883 : cumulative (cumulative_), section_name (section_name_),
1884 section_size (section_size_), lma (lma_), buffer (buffer_)
1885 {}
1886
1887 struct load_progress_data *cumulative;
1888
1889 /* Per-section data. */
1890 const char *section_name;
1891 ULONGEST section_sent = 0;
1892 ULONGEST section_size;
1893 CORE_ADDR lma;
1894 gdb_byte *buffer;
1895 };
1896
1897 /* Opaque data for load_section_callback. */
1898 struct load_section_data
1899 {
1900 load_section_data (load_progress_data *progress_data_)
1901 : progress_data (progress_data_)
1902 {}
1903
1904 ~load_section_data ()
1905 {
1906 for (auto &&request : requests)
1907 {
1908 xfree (request.data);
1909 delete ((load_progress_section_data *) request.baton);
1910 }
1911 }
1912
1913 CORE_ADDR load_offset = 0;
1914 struct load_progress_data *progress_data;
1915 std::vector<struct memory_write_request> requests;
1916 };
1917
1918 /* Target write callback routine for progress reporting. */
1919
1920 static void
1921 load_progress (ULONGEST bytes, void *untyped_arg)
1922 {
1923 struct load_progress_section_data *args
1924 = (struct load_progress_section_data *) untyped_arg;
1925 struct load_progress_data *totals;
1926
1927 if (args == NULL)
1928 /* Writing padding data. No easy way to get at the cumulative
1929 stats, so just ignore this. */
1930 return;
1931
1932 totals = args->cumulative;
1933
1934 if (bytes == 0 && args->section_sent == 0)
1935 {
1936 /* The write is just starting. Let the user know we've started
1937 this section. */
1938 current_uiout->message ("Loading section %s, size %s lma %s\n",
1939 args->section_name,
1940 hex_string (args->section_size),
1941 paddress (target_gdbarch (), args->lma));
1942 return;
1943 }
1944
1945 if (validate_download)
1946 {
1947 /* Broken memories and broken monitors manifest themselves here
1948 when bring new computers to life. This doubles already slow
1949 downloads. */
1950 /* NOTE: cagney/1999-10-18: A more efficient implementation
1951 might add a verify_memory() method to the target vector and
1952 then use that. remote.c could implement that method using
1953 the ``qCRC'' packet. */
1954 gdb::byte_vector check (bytes);
1955
1956 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1957 error (_("Download verify read failed at %s"),
1958 paddress (target_gdbarch (), args->lma));
1959 if (memcmp (args->buffer, check.data (), bytes) != 0)
1960 error (_("Download verify compare failed at %s"),
1961 paddress (target_gdbarch (), args->lma));
1962 }
1963 totals->data_count += bytes;
1964 args->lma += bytes;
1965 args->buffer += bytes;
1966 totals->write_count += 1;
1967 args->section_sent += bytes;
1968 if (check_quit_flag ()
1969 || (deprecated_ui_load_progress_hook != NULL
1970 && deprecated_ui_load_progress_hook (args->section_name,
1971 args->section_sent)))
1972 error (_("Canceled the download"));
1973
1974 if (deprecated_show_load_progress != NULL)
1975 deprecated_show_load_progress (args->section_name,
1976 args->section_sent,
1977 args->section_size,
1978 totals->data_count,
1979 totals->total_size);
1980 }
1981
1982 /* Callback service function for generic_load (bfd_map_over_sections). */
1983
1984 static void
1985 load_section_callback (bfd *abfd, asection *asec, void *data)
1986 {
1987 struct load_section_data *args = (struct load_section_data *) data;
1988 bfd_size_type size = bfd_get_section_size (asec);
1989 const char *sect_name = bfd_get_section_name (abfd, asec);
1990
1991 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1992 return;
1993
1994 if (size == 0)
1995 return;
1996
1997 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1998 ULONGEST end = begin + size;
1999 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2000 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2001
2002 load_progress_section_data *section_data
2003 = new load_progress_section_data (args->progress_data, sect_name, size,
2004 begin, buffer);
2005
2006 args->requests.emplace_back (begin, end, buffer, section_data);
2007 }
2008
2009 static void print_transfer_performance (struct ui_file *stream,
2010 unsigned long data_count,
2011 unsigned long write_count,
2012 std::chrono::steady_clock::duration d);
2013
2014 void
2015 generic_load (const char *args, int from_tty)
2016 {
2017 struct load_progress_data total_progress;
2018 struct load_section_data cbdata (&total_progress);
2019 struct ui_out *uiout = current_uiout;
2020
2021 if (args == NULL)
2022 error_no_arg (_("file to load"));
2023
2024 gdb_argv argv (args);
2025
2026 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2027
2028 if (argv[1] != NULL)
2029 {
2030 const char *endptr;
2031
2032 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2033
2034 /* If the last word was not a valid number then
2035 treat it as a file name with spaces in. */
2036 if (argv[1] == endptr)
2037 error (_("Invalid download offset:%s."), argv[1]);
2038
2039 if (argv[2] != NULL)
2040 error (_("Too many parameters."));
2041 }
2042
2043 /* Open the file for loading. */
2044 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2045 if (loadfile_bfd == NULL)
2046 perror_with_name (filename.get ());
2047
2048 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2049 {
2050 error (_("\"%s\" is not an object file: %s"), filename.get (),
2051 bfd_errmsg (bfd_get_error ()));
2052 }
2053
2054 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2055 (void *) &total_progress.total_size);
2056
2057 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2058
2059 using namespace std::chrono;
2060
2061 steady_clock::time_point start_time = steady_clock::now ();
2062
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
2066
2067 steady_clock::time_point end_time = steady_clock::now ();
2068
2069 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2071 uiout->text ("Start address ");
2072 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2073 uiout->text (", load size ");
2074 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2075 uiout->text ("\n");
2076 regcache_write_pc (get_current_regcache (), entry);
2077
2078 /* Reset breakpoints, now that we have changed the load image. For
2079 instance, breakpoints may have been set (or reset, by
2080 post_create_inferior) while connected to the target but before we
2081 loaded the program. In that case, the prologue analyzer could
2082 have read instructions from the target to find the right
2083 breakpoint locations. Loading has changed the contents of that
2084 memory. */
2085
2086 breakpoint_re_set ();
2087
2088 print_transfer_performance (gdb_stdout, total_progress.data_count,
2089 total_progress.write_count,
2090 end_time - start_time);
2091 }
2092
2093 /* Report on STREAM the performance of a memory transfer operation,
2094 such as 'load'. DATA_COUNT is the number of bytes transferred.
2095 WRITE_COUNT is the number of separate write operations, or 0, if
2096 that information is not available. TIME is how long the operation
2097 lasted. */
2098
2099 static void
2100 print_transfer_performance (struct ui_file *stream,
2101 unsigned long data_count,
2102 unsigned long write_count,
2103 std::chrono::steady_clock::duration time)
2104 {
2105 using namespace std::chrono;
2106 struct ui_out *uiout = current_uiout;
2107
2108 milliseconds ms = duration_cast<milliseconds> (time);
2109
2110 uiout->text ("Transfer rate: ");
2111 if (ms.count () > 0)
2112 {
2113 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2114
2115 if (uiout->is_mi_like_p ())
2116 {
2117 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2118 uiout->text (" bits/sec");
2119 }
2120 else if (rate < 1024)
2121 {
2122 uiout->field_fmt ("transfer-rate", "%lu", rate);
2123 uiout->text (" bytes/sec");
2124 }
2125 else
2126 {
2127 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2128 uiout->text (" KB/sec");
2129 }
2130 }
2131 else
2132 {
2133 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2134 uiout->text (" bits in <1 sec");
2135 }
2136 if (write_count > 0)
2137 {
2138 uiout->text (", ");
2139 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2140 uiout->text (" bytes/write");
2141 }
2142 uiout->text (".\n");
2143 }
2144
2145 /* This function allows the addition of incrementally linked object files.
2146 It does not modify any state in the target, only in the debugger. */
2147 /* Note: ezannoni 2000-04-13 This function/command used to have a
2148 special case syntax for the rombug target (Rombug is the boot
2149 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2150 rombug case, the user doesn't need to supply a text address,
2151 instead a call to target_link() (in target.c) would supply the
2152 value to use. We are now discontinuing this type of ad hoc syntax. */
2153
2154 static void
2155 add_symbol_file_command (const char *args, int from_tty)
2156 {
2157 struct gdbarch *gdbarch = get_current_arch ();
2158 gdb::unique_xmalloc_ptr<char> filename;
2159 char *arg;
2160 int argcnt = 0;
2161 int sec_num = 0;
2162 struct objfile *objf;
2163 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2164 symfile_add_flags add_flags = 0;
2165
2166 if (from_tty)
2167 add_flags |= SYMFILE_VERBOSE;
2168
2169 struct sect_opt
2170 {
2171 const char *name;
2172 const char *value;
2173 };
2174
2175 struct section_addr_info *section_addrs;
2176 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2177 bool stop_processing_options = false;
2178 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2179
2180 dont_repeat ();
2181
2182 if (args == NULL)
2183 error (_("add-symbol-file takes a file name and an address"));
2184
2185 bool seen_addr = false;
2186 gdb_argv argv (args);
2187
2188 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2189 {
2190 if (stop_processing_options || *arg != '-')
2191 {
2192 if (filename == NULL)
2193 {
2194 /* First non-option argument is always the filename. */
2195 filename.reset (tilde_expand (arg));
2196 }
2197 else if (!seen_addr)
2198 {
2199 /* The second non-option argument is always the text
2200 address at which to load the program. */
2201 sect_opts[0].value = arg;
2202 seen_addr = true;
2203 }
2204 else
2205 error (_("Unrecognized argument \"%s\""), arg);
2206 }
2207 else if (strcmp (arg, "-readnow") == 0)
2208 flags |= OBJF_READNOW;
2209 else if (strcmp (arg, "-readnever") == 0)
2210 flags |= OBJF_READNEVER;
2211 else if (strcmp (arg, "-s") == 0)
2212 {
2213 if (argv[argcnt + 1] == NULL)
2214 error (_("Missing section name after \"-s\""));
2215 else if (argv[argcnt + 2] == NULL)
2216 error (_("Missing section address after \"-s\""));
2217
2218 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2219
2220 sect_opts.push_back (sect);
2221 argcnt += 2;
2222 }
2223 else if (strcmp (arg, "--") == 0)
2224 stop_processing_options = true;
2225 else
2226 error (_("Unrecognized argument \"%s\""), arg);
2227 }
2228
2229 if (filename == NULL)
2230 error (_("You must provide a filename to be loaded."));
2231
2232 validate_readnow_readnever (flags);
2233
2234 /* This command takes at least two arguments. The first one is a
2235 filename, and the second is the address where this file has been
2236 loaded. Abort now if this address hasn't been provided by the
2237 user. */
2238 if (!seen_addr)
2239 error (_("The address where %s has been loaded is missing"),
2240 filename.get ());
2241
2242 /* Print the prompt for the query below. And save the arguments into
2243 a sect_addr_info structure to be passed around to other
2244 functions. We have to split this up into separate print
2245 statements because hex_string returns a local static
2246 string. */
2247
2248 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2249 filename.get ());
2250 section_addrs = alloc_section_addr_info (sect_opts.size ());
2251 make_cleanup (xfree, section_addrs);
2252 for (sect_opt &sect : sect_opts)
2253 {
2254 CORE_ADDR addr;
2255 const char *val = sect.value;
2256 const char *sec = sect.name;
2257
2258 addr = parse_and_eval_address (val);
2259
2260 /* Here we store the section offsets in the order they were
2261 entered on the command line. */
2262 section_addrs->other[sec_num].name = (char *) sec;
2263 section_addrs->other[sec_num].addr = addr;
2264 printf_unfiltered ("\t%s_addr = %s\n", sec,
2265 paddress (gdbarch, addr));
2266 sec_num++;
2267
2268 /* The object's sections are initialized when a
2269 call is made to build_objfile_section_table (objfile).
2270 This happens in reread_symbols.
2271 At this point, we don't know what file type this is,
2272 so we can't determine what section names are valid. */
2273 }
2274 section_addrs->num_sections = sec_num;
2275
2276 if (from_tty && (!query ("%s", "")))
2277 error (_("Not confirmed."));
2278
2279 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2280
2281 add_target_sections_of_objfile (objf);
2282
2283 /* Getting new symbols may change our opinion about what is
2284 frameless. */
2285 reinit_frame_cache ();
2286 do_cleanups (my_cleanups);
2287 }
2288 \f
2289
2290 /* This function removes a symbol file that was added via add-symbol-file. */
2291
2292 static void
2293 remove_symbol_file_command (const char *args, int from_tty)
2294 {
2295 struct objfile *objf = NULL;
2296 struct program_space *pspace = current_program_space;
2297
2298 dont_repeat ();
2299
2300 if (args == NULL)
2301 error (_("remove-symbol-file: no symbol file provided"));
2302
2303 gdb_argv argv (args);
2304
2305 if (strcmp (argv[0], "-a") == 0)
2306 {
2307 /* Interpret the next argument as an address. */
2308 CORE_ADDR addr;
2309
2310 if (argv[1] == NULL)
2311 error (_("Missing address argument"));
2312
2313 if (argv[2] != NULL)
2314 error (_("Junk after %s"), argv[1]);
2315
2316 addr = parse_and_eval_address (argv[1]);
2317
2318 ALL_OBJFILES (objf)
2319 {
2320 if ((objf->flags & OBJF_USERLOADED) != 0
2321 && (objf->flags & OBJF_SHARED) != 0
2322 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2323 break;
2324 }
2325 }
2326 else if (argv[0] != NULL)
2327 {
2328 /* Interpret the current argument as a file name. */
2329
2330 if (argv[1] != NULL)
2331 error (_("Junk after %s"), argv[0]);
2332
2333 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2334
2335 ALL_OBJFILES (objf)
2336 {
2337 if ((objf->flags & OBJF_USERLOADED) != 0
2338 && (objf->flags & OBJF_SHARED) != 0
2339 && objf->pspace == pspace
2340 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2341 break;
2342 }
2343 }
2344
2345 if (objf == NULL)
2346 error (_("No symbol file found"));
2347
2348 if (from_tty
2349 && !query (_("Remove symbol table from file \"%s\"? "),
2350 objfile_name (objf)))
2351 error (_("Not confirmed."));
2352
2353 delete objf;
2354 clear_symtab_users (0);
2355 }
2356
2357 /* Re-read symbols if a symbol-file has changed. */
2358
2359 void
2360 reread_symbols (void)
2361 {
2362 struct objfile *objfile;
2363 long new_modtime;
2364 struct stat new_statbuf;
2365 int res;
2366 std::vector<struct objfile *> new_objfiles;
2367
2368 /* With the addition of shared libraries, this should be modified,
2369 the load time should be saved in the partial symbol tables, since
2370 different tables may come from different source files. FIXME.
2371 This routine should then walk down each partial symbol table
2372 and see if the symbol table that it originates from has been changed. */
2373
2374 for (objfile = object_files; objfile; objfile = objfile->next)
2375 {
2376 if (objfile->obfd == NULL)
2377 continue;
2378
2379 /* Separate debug objfiles are handled in the main objfile. */
2380 if (objfile->separate_debug_objfile_backlink)
2381 continue;
2382
2383 /* If this object is from an archive (what you usually create with
2384 `ar', often called a `static library' on most systems, though
2385 a `shared library' on AIX is also an archive), then you should
2386 stat on the archive name, not member name. */
2387 if (objfile->obfd->my_archive)
2388 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2389 else
2390 res = stat (objfile_name (objfile), &new_statbuf);
2391 if (res != 0)
2392 {
2393 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2394 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2395 objfile_name (objfile));
2396 continue;
2397 }
2398 new_modtime = new_statbuf.st_mtime;
2399 if (new_modtime != objfile->mtime)
2400 {
2401 struct cleanup *old_cleanups;
2402 struct section_offsets *offsets;
2403 int num_offsets;
2404 char *original_name;
2405
2406 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2407 objfile_name (objfile));
2408
2409 /* There are various functions like symbol_file_add,
2410 symfile_bfd_open, syms_from_objfile, etc., which might
2411 appear to do what we want. But they have various other
2412 effects which we *don't* want. So we just do stuff
2413 ourselves. We don't worry about mapped files (for one thing,
2414 any mapped file will be out of date). */
2415
2416 /* If we get an error, blow away this objfile (not sure if
2417 that is the correct response for things like shared
2418 libraries). */
2419 std::unique_ptr<struct objfile> objfile_holder (objfile);
2420
2421 /* We need to do this whenever any symbols go away. */
2422 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2423
2424 if (exec_bfd != NULL
2425 && filename_cmp (bfd_get_filename (objfile->obfd),
2426 bfd_get_filename (exec_bfd)) == 0)
2427 {
2428 /* Reload EXEC_BFD without asking anything. */
2429
2430 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2431 }
2432
2433 /* Keep the calls order approx. the same as in free_objfile. */
2434
2435 /* Free the separate debug objfiles. It will be
2436 automatically recreated by sym_read. */
2437 free_objfile_separate_debug (objfile);
2438
2439 /* Remove any references to this objfile in the global
2440 value lists. */
2441 preserve_values (objfile);
2442
2443 /* Nuke all the state that we will re-read. Much of the following
2444 code which sets things to NULL really is necessary to tell
2445 other parts of GDB that there is nothing currently there.
2446
2447 Try to keep the freeing order compatible with free_objfile. */
2448
2449 if (objfile->sf != NULL)
2450 {
2451 (*objfile->sf->sym_finish) (objfile);
2452 }
2453
2454 clear_objfile_data (objfile);
2455
2456 /* Clean up any state BFD has sitting around. */
2457 {
2458 gdb_bfd_ref_ptr obfd (objfile->obfd);
2459 char *obfd_filename;
2460
2461 obfd_filename = bfd_get_filename (objfile->obfd);
2462 /* Open the new BFD before freeing the old one, so that
2463 the filename remains live. */
2464 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2465 objfile->obfd = temp.release ();
2466 if (objfile->obfd == NULL)
2467 error (_("Can't open %s to read symbols."), obfd_filename);
2468 }
2469
2470 original_name = xstrdup (objfile->original_name);
2471 make_cleanup (xfree, original_name);
2472
2473 /* bfd_openr sets cacheable to true, which is what we want. */
2474 if (!bfd_check_format (objfile->obfd, bfd_object))
2475 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2476 bfd_errmsg (bfd_get_error ()));
2477
2478 /* Save the offsets, we will nuke them with the rest of the
2479 objfile_obstack. */
2480 num_offsets = objfile->num_sections;
2481 offsets = ((struct section_offsets *)
2482 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2483 memcpy (offsets, objfile->section_offsets,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485
2486 /* FIXME: Do we have to free a whole linked list, or is this
2487 enough? */
2488 objfile->global_psymbols.clear ();
2489 objfile->static_psymbols.clear ();
2490
2491 /* Free the obstacks for non-reusable objfiles. */
2492 psymbol_bcache_free (objfile->psymbol_cache);
2493 objfile->psymbol_cache = psymbol_bcache_init ();
2494
2495 /* NB: after this call to obstack_free, objfiles_changed
2496 will need to be called (see discussion below). */
2497 obstack_free (&objfile->objfile_obstack, 0);
2498 objfile->sections = NULL;
2499 objfile->compunit_symtabs = NULL;
2500 objfile->psymtabs = NULL;
2501 objfile->psymtabs_addrmap = NULL;
2502 objfile->free_psymtabs = NULL;
2503 objfile->template_symbols = NULL;
2504
2505 /* obstack_init also initializes the obstack so it is
2506 empty. We could use obstack_specify_allocation but
2507 gdb_obstack.h specifies the alloc/dealloc functions. */
2508 obstack_init (&objfile->objfile_obstack);
2509
2510 /* set_objfile_per_bfd potentially allocates the per-bfd
2511 data on the objfile's obstack (if sharing data across
2512 multiple users is not possible), so it's important to
2513 do it *after* the obstack has been initialized. */
2514 set_objfile_per_bfd (objfile);
2515
2516 objfile->original_name
2517 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2518 strlen (original_name));
2519
2520 /* Reset the sym_fns pointer. The ELF reader can change it
2521 based on whether .gdb_index is present, and we need it to
2522 start over. PR symtab/15885 */
2523 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2524
2525 build_objfile_section_table (objfile);
2526 terminate_minimal_symbol_table (objfile);
2527
2528 /* We use the same section offsets as from last time. I'm not
2529 sure whether that is always correct for shared libraries. */
2530 objfile->section_offsets = (struct section_offsets *)
2531 obstack_alloc (&objfile->objfile_obstack,
2532 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2533 memcpy (objfile->section_offsets, offsets,
2534 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2535 objfile->num_sections = num_offsets;
2536
2537 /* What the hell is sym_new_init for, anyway? The concept of
2538 distinguishing between the main file and additional files
2539 in this way seems rather dubious. */
2540 if (objfile == symfile_objfile)
2541 {
2542 (*objfile->sf->sym_new_init) (objfile);
2543 }
2544
2545 (*objfile->sf->sym_init) (objfile);
2546 clear_complaints (&symfile_complaints, 1, 1);
2547
2548 objfile->flags &= ~OBJF_PSYMTABS_READ;
2549
2550 /* We are about to read new symbols and potentially also
2551 DWARF information. Some targets may want to pass addresses
2552 read from DWARF DIE's through an adjustment function before
2553 saving them, like MIPS, which may call into
2554 "find_pc_section". When called, that function will make
2555 use of per-objfile program space data.
2556
2557 Since we discarded our section information above, we have
2558 dangling pointers in the per-objfile program space data
2559 structure. Force GDB to update the section mapping
2560 information by letting it know the objfile has changed,
2561 making the dangling pointers point to correct data
2562 again. */
2563
2564 objfiles_changed ();
2565
2566 read_symbols (objfile, 0);
2567
2568 if (!objfile_has_symbols (objfile))
2569 {
2570 wrap_here ("");
2571 printf_unfiltered (_("(no debugging symbols found)\n"));
2572 wrap_here ("");
2573 }
2574
2575 /* We're done reading the symbol file; finish off complaints. */
2576 clear_complaints (&symfile_complaints, 0, 1);
2577
2578 /* Getting new symbols may change our opinion about what is
2579 frameless. */
2580
2581 reinit_frame_cache ();
2582
2583 /* Discard cleanups as symbol reading was successful. */
2584 objfile_holder.release ();
2585 discard_cleanups (old_cleanups);
2586
2587 /* If the mtime has changed between the time we set new_modtime
2588 and now, we *want* this to be out of date, so don't call stat
2589 again now. */
2590 objfile->mtime = new_modtime;
2591 init_entry_point_info (objfile);
2592
2593 new_objfiles.push_back (objfile);
2594 }
2595 }
2596
2597 if (!new_objfiles.empty ())
2598 {
2599 clear_symtab_users (0);
2600
2601 /* clear_objfile_data for each objfile was called before freeing it and
2602 observer_notify_new_objfile (NULL) has been called by
2603 clear_symtab_users above. Notify the new files now. */
2604 for (auto iter : new_objfiles)
2605 observer_notify_new_objfile (iter);
2606
2607 /* At least one objfile has changed, so we can consider that
2608 the executable we're debugging has changed too. */
2609 observer_notify_executable_changed ();
2610 }
2611 }
2612 \f
2613
2614 struct filename_language
2615 {
2616 filename_language (const std::string &ext_, enum language lang_)
2617 : ext (ext_), lang (lang_)
2618 {}
2619
2620 std::string ext;
2621 enum language lang;
2622 };
2623
2624 static std::vector<filename_language> filename_language_table;
2625
2626 /* See symfile.h. */
2627
2628 void
2629 add_filename_language (const char *ext, enum language lang)
2630 {
2631 filename_language_table.emplace_back (ext, lang);
2632 }
2633
2634 static char *ext_args;
2635 static void
2636 show_ext_args (struct ui_file *file, int from_tty,
2637 struct cmd_list_element *c, const char *value)
2638 {
2639 fprintf_filtered (file,
2640 _("Mapping between filename extension "
2641 "and source language is \"%s\".\n"),
2642 value);
2643 }
2644
2645 static void
2646 set_ext_lang_command (const char *args,
2647 int from_tty, struct cmd_list_element *e)
2648 {
2649 char *cp = ext_args;
2650 enum language lang;
2651
2652 /* First arg is filename extension, starting with '.' */
2653 if (*cp != '.')
2654 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2655
2656 /* Find end of first arg. */
2657 while (*cp && !isspace (*cp))
2658 cp++;
2659
2660 if (*cp == '\0')
2661 error (_("'%s': two arguments required -- "
2662 "filename extension and language"),
2663 ext_args);
2664
2665 /* Null-terminate first arg. */
2666 *cp++ = '\0';
2667
2668 /* Find beginning of second arg, which should be a source language. */
2669 cp = skip_spaces (cp);
2670
2671 if (*cp == '\0')
2672 error (_("'%s': two arguments required -- "
2673 "filename extension and language"),
2674 ext_args);
2675
2676 /* Lookup the language from among those we know. */
2677 lang = language_enum (cp);
2678
2679 auto it = filename_language_table.begin ();
2680 /* Now lookup the filename extension: do we already know it? */
2681 for (; it != filename_language_table.end (); it++)
2682 {
2683 if (it->ext == ext_args)
2684 break;
2685 }
2686
2687 if (it == filename_language_table.end ())
2688 {
2689 /* New file extension. */
2690 add_filename_language (ext_args, lang);
2691 }
2692 else
2693 {
2694 /* Redefining a previously known filename extension. */
2695
2696 /* if (from_tty) */
2697 /* query ("Really make files of type %s '%s'?", */
2698 /* ext_args, language_str (lang)); */
2699
2700 it->lang = lang;
2701 }
2702 }
2703
2704 static void
2705 info_ext_lang_command (const char *args, int from_tty)
2706 {
2707 printf_filtered (_("Filename extensions and the languages they represent:"));
2708 printf_filtered ("\n\n");
2709 for (const filename_language &entry : filename_language_table)
2710 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2711 language_str (entry.lang));
2712 }
2713
2714 enum language
2715 deduce_language_from_filename (const char *filename)
2716 {
2717 const char *cp;
2718
2719 if (filename != NULL)
2720 if ((cp = strrchr (filename, '.')) != NULL)
2721 {
2722 for (const filename_language &entry : filename_language_table)
2723 if (entry.ext == cp)
2724 return entry.lang;
2725 }
2726
2727 return language_unknown;
2728 }
2729 \f
2730 /* Allocate and initialize a new symbol table.
2731 CUST is from the result of allocate_compunit_symtab. */
2732
2733 struct symtab *
2734 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2735 {
2736 struct objfile *objfile = cust->objfile;
2737 struct symtab *symtab
2738 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2739
2740 symtab->filename
2741 = (const char *) bcache (filename, strlen (filename) + 1,
2742 objfile->per_bfd->filename_cache);
2743 symtab->fullname = NULL;
2744 symtab->language = deduce_language_from_filename (filename);
2745
2746 /* This can be very verbose with lots of headers.
2747 Only print at higher debug levels. */
2748 if (symtab_create_debug >= 2)
2749 {
2750 /* Be a bit clever with debugging messages, and don't print objfile
2751 every time, only when it changes. */
2752 static char *last_objfile_name = NULL;
2753
2754 if (last_objfile_name == NULL
2755 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2756 {
2757 xfree (last_objfile_name);
2758 last_objfile_name = xstrdup (objfile_name (objfile));
2759 fprintf_unfiltered (gdb_stdlog,
2760 "Creating one or more symtabs for objfile %s ...\n",
2761 last_objfile_name);
2762 }
2763 fprintf_unfiltered (gdb_stdlog,
2764 "Created symtab %s for module %s.\n",
2765 host_address_to_string (symtab), filename);
2766 }
2767
2768 /* Add it to CUST's list of symtabs. */
2769 if (cust->filetabs == NULL)
2770 {
2771 cust->filetabs = symtab;
2772 cust->last_filetab = symtab;
2773 }
2774 else
2775 {
2776 cust->last_filetab->next = symtab;
2777 cust->last_filetab = symtab;
2778 }
2779
2780 /* Backlink to the containing compunit symtab. */
2781 symtab->compunit_symtab = cust;
2782
2783 return symtab;
2784 }
2785
2786 /* Allocate and initialize a new compunit.
2787 NAME is the name of the main source file, if there is one, or some
2788 descriptive text if there are no source files. */
2789
2790 struct compunit_symtab *
2791 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2792 {
2793 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2794 struct compunit_symtab);
2795 const char *saved_name;
2796
2797 cu->objfile = objfile;
2798
2799 /* The name we record here is only for display/debugging purposes.
2800 Just save the basename to avoid path issues (too long for display,
2801 relative vs absolute, etc.). */
2802 saved_name = lbasename (name);
2803 cu->name
2804 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2805 strlen (saved_name));
2806
2807 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2808
2809 if (symtab_create_debug)
2810 {
2811 fprintf_unfiltered (gdb_stdlog,
2812 "Created compunit symtab %s for %s.\n",
2813 host_address_to_string (cu),
2814 cu->name);
2815 }
2816
2817 return cu;
2818 }
2819
2820 /* Hook CU to the objfile it comes from. */
2821
2822 void
2823 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2824 {
2825 cu->next = cu->objfile->compunit_symtabs;
2826 cu->objfile->compunit_symtabs = cu;
2827 }
2828 \f
2829
2830 /* Reset all data structures in gdb which may contain references to
2831 symbol table data. */
2832
2833 void
2834 clear_symtab_users (symfile_add_flags add_flags)
2835 {
2836 /* Someday, we should do better than this, by only blowing away
2837 the things that really need to be blown. */
2838
2839 /* Clear the "current" symtab first, because it is no longer valid.
2840 breakpoint_re_set may try to access the current symtab. */
2841 clear_current_source_symtab_and_line ();
2842
2843 clear_displays ();
2844 clear_last_displayed_sal ();
2845 clear_pc_function_cache ();
2846 observer_notify_new_objfile (NULL);
2847
2848 /* Clear globals which might have pointed into a removed objfile.
2849 FIXME: It's not clear which of these are supposed to persist
2850 between expressions and which ought to be reset each time. */
2851 expression_context_block = NULL;
2852 innermost_block.reset ();
2853
2854 /* Varobj may refer to old symbols, perform a cleanup. */
2855 varobj_invalidate ();
2856
2857 /* Now that the various caches have been cleared, we can re_set
2858 our breakpoints without risking it using stale data. */
2859 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2860 breakpoint_re_set ();
2861 }
2862
2863 static void
2864 clear_symtab_users_cleanup (void *ignore)
2865 {
2866 clear_symtab_users (0);
2867 }
2868 \f
2869 /* OVERLAYS:
2870 The following code implements an abstraction for debugging overlay sections.
2871
2872 The target model is as follows:
2873 1) The gnu linker will permit multiple sections to be mapped into the
2874 same VMA, each with its own unique LMA (or load address).
2875 2) It is assumed that some runtime mechanism exists for mapping the
2876 sections, one by one, from the load address into the VMA address.
2877 3) This code provides a mechanism for gdb to keep track of which
2878 sections should be considered to be mapped from the VMA to the LMA.
2879 This information is used for symbol lookup, and memory read/write.
2880 For instance, if a section has been mapped then its contents
2881 should be read from the VMA, otherwise from the LMA.
2882
2883 Two levels of debugger support for overlays are available. One is
2884 "manual", in which the debugger relies on the user to tell it which
2885 overlays are currently mapped. This level of support is
2886 implemented entirely in the core debugger, and the information about
2887 whether a section is mapped is kept in the objfile->obj_section table.
2888
2889 The second level of support is "automatic", and is only available if
2890 the target-specific code provides functionality to read the target's
2891 overlay mapping table, and translate its contents for the debugger
2892 (by updating the mapped state information in the obj_section tables).
2893
2894 The interface is as follows:
2895 User commands:
2896 overlay map <name> -- tell gdb to consider this section mapped
2897 overlay unmap <name> -- tell gdb to consider this section unmapped
2898 overlay list -- list the sections that GDB thinks are mapped
2899 overlay read-target -- get the target's state of what's mapped
2900 overlay off/manual/auto -- set overlay debugging state
2901 Functional interface:
2902 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2903 section, return that section.
2904 find_pc_overlay(pc): find any overlay section that contains
2905 the pc, either in its VMA or its LMA
2906 section_is_mapped(sect): true if overlay is marked as mapped
2907 section_is_overlay(sect): true if section's VMA != LMA
2908 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2909 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2910 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2911 overlay_mapped_address(...): map an address from section's LMA to VMA
2912 overlay_unmapped_address(...): map an address from section's VMA to LMA
2913 symbol_overlayed_address(...): Return a "current" address for symbol:
2914 either in VMA or LMA depending on whether
2915 the symbol's section is currently mapped. */
2916
2917 /* Overlay debugging state: */
2918
2919 enum overlay_debugging_state overlay_debugging = ovly_off;
2920 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2921
2922 /* Function: section_is_overlay (SECTION)
2923 Returns true if SECTION has VMA not equal to LMA, ie.
2924 SECTION is loaded at an address different from where it will "run". */
2925
2926 int
2927 section_is_overlay (struct obj_section *section)
2928 {
2929 if (overlay_debugging && section)
2930 {
2931 asection *bfd_section = section->the_bfd_section;
2932
2933 if (bfd_section_lma (abfd, bfd_section) != 0
2934 && bfd_section_lma (abfd, bfd_section)
2935 != bfd_section_vma (abfd, bfd_section))
2936 return 1;
2937 }
2938
2939 return 0;
2940 }
2941
2942 /* Function: overlay_invalidate_all (void)
2943 Invalidate the mapped state of all overlay sections (mark it as stale). */
2944
2945 static void
2946 overlay_invalidate_all (void)
2947 {
2948 struct objfile *objfile;
2949 struct obj_section *sect;
2950
2951 ALL_OBJSECTIONS (objfile, sect)
2952 if (section_is_overlay (sect))
2953 sect->ovly_mapped = -1;
2954 }
2955
2956 /* Function: section_is_mapped (SECTION)
2957 Returns true if section is an overlay, and is currently mapped.
2958
2959 Access to the ovly_mapped flag is restricted to this function, so
2960 that we can do automatic update. If the global flag
2961 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2962 overlay_invalidate_all. If the mapped state of the particular
2963 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2964
2965 int
2966 section_is_mapped (struct obj_section *osect)
2967 {
2968 struct gdbarch *gdbarch;
2969
2970 if (osect == 0 || !section_is_overlay (osect))
2971 return 0;
2972
2973 switch (overlay_debugging)
2974 {
2975 default:
2976 case ovly_off:
2977 return 0; /* overlay debugging off */
2978 case ovly_auto: /* overlay debugging automatic */
2979 /* Unles there is a gdbarch_overlay_update function,
2980 there's really nothing useful to do here (can't really go auto). */
2981 gdbarch = get_objfile_arch (osect->objfile);
2982 if (gdbarch_overlay_update_p (gdbarch))
2983 {
2984 if (overlay_cache_invalid)
2985 {
2986 overlay_invalidate_all ();
2987 overlay_cache_invalid = 0;
2988 }
2989 if (osect->ovly_mapped == -1)
2990 gdbarch_overlay_update (gdbarch, osect);
2991 }
2992 /* fall thru to manual case */
2993 case ovly_on: /* overlay debugging manual */
2994 return osect->ovly_mapped == 1;
2995 }
2996 }
2997
2998 /* Function: pc_in_unmapped_range
2999 If PC falls into the lma range of SECTION, return true, else false. */
3000
3001 CORE_ADDR
3002 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3003 {
3004 if (section_is_overlay (section))
3005 {
3006 bfd *abfd = section->objfile->obfd;
3007 asection *bfd_section = section->the_bfd_section;
3008
3009 /* We assume the LMA is relocated by the same offset as the VMA. */
3010 bfd_vma size = bfd_get_section_size (bfd_section);
3011 CORE_ADDR offset = obj_section_offset (section);
3012
3013 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3014 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3015 return 1;
3016 }
3017
3018 return 0;
3019 }
3020
3021 /* Function: pc_in_mapped_range
3022 If PC falls into the vma range of SECTION, return true, else false. */
3023
3024 CORE_ADDR
3025 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3026 {
3027 if (section_is_overlay (section))
3028 {
3029 if (obj_section_addr (section) <= pc
3030 && pc < obj_section_endaddr (section))
3031 return 1;
3032 }
3033
3034 return 0;
3035 }
3036
3037 /* Return true if the mapped ranges of sections A and B overlap, false
3038 otherwise. */
3039
3040 static int
3041 sections_overlap (struct obj_section *a, struct obj_section *b)
3042 {
3043 CORE_ADDR a_start = obj_section_addr (a);
3044 CORE_ADDR a_end = obj_section_endaddr (a);
3045 CORE_ADDR b_start = obj_section_addr (b);
3046 CORE_ADDR b_end = obj_section_endaddr (b);
3047
3048 return (a_start < b_end && b_start < a_end);
3049 }
3050
3051 /* Function: overlay_unmapped_address (PC, SECTION)
3052 Returns the address corresponding to PC in the unmapped (load) range.
3053 May be the same as PC. */
3054
3055 CORE_ADDR
3056 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3057 {
3058 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3059 {
3060 asection *bfd_section = section->the_bfd_section;
3061
3062 return pc + bfd_section_lma (abfd, bfd_section)
3063 - bfd_section_vma (abfd, bfd_section);
3064 }
3065
3066 return pc;
3067 }
3068
3069 /* Function: overlay_mapped_address (PC, SECTION)
3070 Returns the address corresponding to PC in the mapped (runtime) range.
3071 May be the same as PC. */
3072
3073 CORE_ADDR
3074 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3075 {
3076 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3077 {
3078 asection *bfd_section = section->the_bfd_section;
3079
3080 return pc + bfd_section_vma (abfd, bfd_section)
3081 - bfd_section_lma (abfd, bfd_section);
3082 }
3083
3084 return pc;
3085 }
3086
3087 /* Function: symbol_overlayed_address
3088 Return one of two addresses (relative to the VMA or to the LMA),
3089 depending on whether the section is mapped or not. */
3090
3091 CORE_ADDR
3092 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3093 {
3094 if (overlay_debugging)
3095 {
3096 /* If the symbol has no section, just return its regular address. */
3097 if (section == 0)
3098 return address;
3099 /* If the symbol's section is not an overlay, just return its
3100 address. */
3101 if (!section_is_overlay (section))
3102 return address;
3103 /* If the symbol's section is mapped, just return its address. */
3104 if (section_is_mapped (section))
3105 return address;
3106 /*
3107 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3108 * then return its LOADED address rather than its vma address!!
3109 */
3110 return overlay_unmapped_address (address, section);
3111 }
3112 return address;
3113 }
3114
3115 /* Function: find_pc_overlay (PC)
3116 Return the best-match overlay section for PC:
3117 If PC matches a mapped overlay section's VMA, return that section.
3118 Else if PC matches an unmapped section's VMA, return that section.
3119 Else if PC matches an unmapped section's LMA, return that section. */
3120
3121 struct obj_section *
3122 find_pc_overlay (CORE_ADDR pc)
3123 {
3124 struct objfile *objfile;
3125 struct obj_section *osect, *best_match = NULL;
3126
3127 if (overlay_debugging)
3128 {
3129 ALL_OBJSECTIONS (objfile, osect)
3130 if (section_is_overlay (osect))
3131 {
3132 if (pc_in_mapped_range (pc, osect))
3133 {
3134 if (section_is_mapped (osect))
3135 return osect;
3136 else
3137 best_match = osect;
3138 }
3139 else if (pc_in_unmapped_range (pc, osect))
3140 best_match = osect;
3141 }
3142 }
3143 return best_match;
3144 }
3145
3146 /* Function: find_pc_mapped_section (PC)
3147 If PC falls into the VMA address range of an overlay section that is
3148 currently marked as MAPPED, return that section. Else return NULL. */
3149
3150 struct obj_section *
3151 find_pc_mapped_section (CORE_ADDR pc)
3152 {
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 {
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3160 return osect;
3161 }
3162
3163 return NULL;
3164 }
3165
3166 /* Function: list_overlays_command
3167 Print a list of mapped sections and their PC ranges. */
3168
3169 static void
3170 list_overlays_command (const char *args, int from_tty)
3171 {
3172 int nmapped = 0;
3173 struct objfile *objfile;
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (section_is_mapped (osect))
3180 {
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const char *name;
3183 bfd_vma lma, vma;
3184 int size;
3185
3186 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3187 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3188 size = bfd_get_section_size (osect->the_bfd_section);
3189 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3190
3191 printf_filtered ("Section %s, loaded at ", name);
3192 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3193 puts_filtered (" - ");
3194 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3195 printf_filtered (", mapped at ");
3196 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3197 puts_filtered (" - ");
3198 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3199 puts_filtered ("\n");
3200
3201 nmapped++;
3202 }
3203 }
3204 if (nmapped == 0)
3205 printf_filtered (_("No sections are mapped.\n"));
3206 }
3207
3208 /* Function: map_overlay_command
3209 Mark the named section as mapped (ie. residing at its VMA address). */
3210
3211 static void
3212 map_overlay_command (const char *args, int from_tty)
3213 {
3214 struct objfile *objfile, *objfile2;
3215 struct obj_section *sec, *sec2;
3216
3217 if (!overlay_debugging)
3218 error (_("Overlay debugging not enabled. Use "
3219 "either the 'overlay auto' or\n"
3220 "the 'overlay manual' command."));
3221
3222 if (args == 0 || *args == 0)
3223 error (_("Argument required: name of an overlay section"));
3224
3225 /* First, find a section matching the user supplied argument. */
3226 ALL_OBJSECTIONS (objfile, sec)
3227 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3228 {
3229 /* Now, check to see if the section is an overlay. */
3230 if (!section_is_overlay (sec))
3231 continue; /* not an overlay section */
3232
3233 /* Mark the overlay as "mapped". */
3234 sec->ovly_mapped = 1;
3235
3236 /* Next, make a pass and unmap any sections that are
3237 overlapped by this new section: */
3238 ALL_OBJSECTIONS (objfile2, sec2)
3239 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3240 {
3241 if (info_verbose)
3242 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3243 bfd_section_name (objfile->obfd,
3244 sec2->the_bfd_section));
3245 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3246 }
3247 return;
3248 }
3249 error (_("No overlay section called %s"), args);
3250 }
3251
3252 /* Function: unmap_overlay_command
3253 Mark the overlay section as unmapped
3254 (ie. resident in its LMA address range, rather than the VMA range). */
3255
3256 static void
3257 unmap_overlay_command (const char *args, int from_tty)
3258 {
3259 struct objfile *objfile;
3260 struct obj_section *sec = NULL;
3261
3262 if (!overlay_debugging)
3263 error (_("Overlay debugging not enabled. "
3264 "Use either the 'overlay auto' or\n"
3265 "the 'overlay manual' command."));
3266
3267 if (args == 0 || *args == 0)
3268 error (_("Argument required: name of an overlay section"));
3269
3270 /* First, find a section matching the user supplied argument. */
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3273 {
3274 if (!sec->ovly_mapped)
3275 error (_("Section %s is not mapped"), args);
3276 sec->ovly_mapped = 0;
3277 return;
3278 }
3279 error (_("No overlay section called %s"), args);
3280 }
3281
3282 /* Function: overlay_auto_command
3283 A utility command to turn on overlay debugging.
3284 Possibly this should be done via a set/show command. */
3285
3286 static void
3287 overlay_auto_command (const char *args, int from_tty)
3288 {
3289 overlay_debugging = ovly_auto;
3290 enable_overlay_breakpoints ();
3291 if (info_verbose)
3292 printf_unfiltered (_("Automatic overlay debugging enabled."));
3293 }
3294
3295 /* Function: overlay_manual_command
3296 A utility command to turn on overlay debugging.
3297 Possibly this should be done via a set/show command. */
3298
3299 static void
3300 overlay_manual_command (const char *args, int from_tty)
3301 {
3302 overlay_debugging = ovly_on;
3303 disable_overlay_breakpoints ();
3304 if (info_verbose)
3305 printf_unfiltered (_("Overlay debugging enabled."));
3306 }
3307
3308 /* Function: overlay_off_command
3309 A utility command to turn on overlay debugging.
3310 Possibly this should be done via a set/show command. */
3311
3312 static void
3313 overlay_off_command (const char *args, int from_tty)
3314 {
3315 overlay_debugging = ovly_off;
3316 disable_overlay_breakpoints ();
3317 if (info_verbose)
3318 printf_unfiltered (_("Overlay debugging disabled."));
3319 }
3320
3321 static void
3322 overlay_load_command (const char *args, int from_tty)
3323 {
3324 struct gdbarch *gdbarch = get_current_arch ();
3325
3326 if (gdbarch_overlay_update_p (gdbarch))
3327 gdbarch_overlay_update (gdbarch, NULL);
3328 else
3329 error (_("This target does not know how to read its overlay state."));
3330 }
3331
3332 /* Function: overlay_command
3333 A place-holder for a mis-typed command. */
3334
3335 /* Command list chain containing all defined "overlay" subcommands. */
3336 static struct cmd_list_element *overlaylist;
3337
3338 static void
3339 overlay_command (const char *args, int from_tty)
3340 {
3341 printf_unfiltered
3342 ("\"overlay\" must be followed by the name of an overlay command.\n");
3343 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3344 }
3345
3346 /* Target Overlays for the "Simplest" overlay manager:
3347
3348 This is GDB's default target overlay layer. It works with the
3349 minimal overlay manager supplied as an example by Cygnus. The
3350 entry point is via a function pointer "gdbarch_overlay_update",
3351 so targets that use a different runtime overlay manager can
3352 substitute their own overlay_update function and take over the
3353 function pointer.
3354
3355 The overlay_update function pokes around in the target's data structures
3356 to see what overlays are mapped, and updates GDB's overlay mapping with
3357 this information.
3358
3359 In this simple implementation, the target data structures are as follows:
3360 unsigned _novlys; /# number of overlay sections #/
3361 unsigned _ovly_table[_novlys][4] = {
3362 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3363 {..., ..., ..., ...},
3364 }
3365 unsigned _novly_regions; /# number of overlay regions #/
3366 unsigned _ovly_region_table[_novly_regions][3] = {
3367 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3368 {..., ..., ...},
3369 }
3370 These functions will attempt to update GDB's mappedness state in the
3371 symbol section table, based on the target's mappedness state.
3372
3373 To do this, we keep a cached copy of the target's _ovly_table, and
3374 attempt to detect when the cached copy is invalidated. The main
3375 entry point is "simple_overlay_update(SECT), which looks up SECT in
3376 the cached table and re-reads only the entry for that section from
3377 the target (whenever possible). */
3378
3379 /* Cached, dynamically allocated copies of the target data structures: */
3380 static unsigned (*cache_ovly_table)[4] = 0;
3381 static unsigned cache_novlys = 0;
3382 static CORE_ADDR cache_ovly_table_base = 0;
3383 enum ovly_index
3384 {
3385 VMA, OSIZE, LMA, MAPPED
3386 };
3387
3388 /* Throw away the cached copy of _ovly_table. */
3389
3390 static void
3391 simple_free_overlay_table (void)
3392 {
3393 if (cache_ovly_table)
3394 xfree (cache_ovly_table);
3395 cache_novlys = 0;
3396 cache_ovly_table = NULL;
3397 cache_ovly_table_base = 0;
3398 }
3399
3400 /* Read an array of ints of size SIZE from the target into a local buffer.
3401 Convert to host order. int LEN is number of ints. */
3402
3403 static void
3404 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3405 int len, int size, enum bfd_endian byte_order)
3406 {
3407 /* FIXME (alloca): Not safe if array is very large. */
3408 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3409 int i;
3410
3411 read_memory (memaddr, buf, len * size);
3412 for (i = 0; i < len; i++)
3413 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3414 }
3415
3416 /* Find and grab a copy of the target _ovly_table
3417 (and _novlys, which is needed for the table's size). */
3418
3419 static int
3420 simple_read_overlay_table (void)
3421 {
3422 struct bound_minimal_symbol novlys_msym;
3423 struct bound_minimal_symbol ovly_table_msym;
3424 struct gdbarch *gdbarch;
3425 int word_size;
3426 enum bfd_endian byte_order;
3427
3428 simple_free_overlay_table ();
3429 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3430 if (! novlys_msym.minsym)
3431 {
3432 error (_("Error reading inferior's overlay table: "
3433 "couldn't find `_novlys' variable\n"
3434 "in inferior. Use `overlay manual' mode."));
3435 return 0;
3436 }
3437
3438 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3439 if (! ovly_table_msym.minsym)
3440 {
3441 error (_("Error reading inferior's overlay table: couldn't find "
3442 "`_ovly_table' array\n"
3443 "in inferior. Use `overlay manual' mode."));
3444 return 0;
3445 }
3446
3447 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3448 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3449 byte_order = gdbarch_byte_order (gdbarch);
3450
3451 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3452 4, byte_order);
3453 cache_ovly_table
3454 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3455 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3456 read_target_long_array (cache_ovly_table_base,
3457 (unsigned int *) cache_ovly_table,
3458 cache_novlys * 4, word_size, byte_order);
3459
3460 return 1; /* SUCCESS */
3461 }
3462
3463 /* Function: simple_overlay_update_1
3464 A helper function for simple_overlay_update. Assuming a cached copy
3465 of _ovly_table exists, look through it to find an entry whose vma,
3466 lma and size match those of OSECT. Re-read the entry and make sure
3467 it still matches OSECT (else the table may no longer be valid).
3468 Set OSECT's mapped state to match the entry. Return: 1 for
3469 success, 0 for failure. */
3470
3471 static int
3472 simple_overlay_update_1 (struct obj_section *osect)
3473 {
3474 int i;
3475 asection *bsect = osect->the_bfd_section;
3476 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3477 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3479
3480 for (i = 0; i < cache_novlys; i++)
3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3482 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3483 {
3484 read_target_long_array (cache_ovly_table_base + i * word_size,
3485 (unsigned int *) cache_ovly_table[i],
3486 4, word_size, byte_order);
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3489 {
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 return 1;
3492 }
3493 else /* Warning! Warning! Target's ovly table has changed! */
3494 return 0;
3495 }
3496 return 0;
3497 }
3498
3499 /* Function: simple_overlay_update
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
3503 cached ovly_table and update only OSECT's mapped state.
3504 If a cached entry can't be found or the cache isn't valid, then
3505 re-read the entire cache, and go ahead and update all sections. */
3506
3507 void
3508 simple_overlay_update (struct obj_section *osect)
3509 {
3510 struct objfile *objfile;
3511
3512 /* Were we given an osect to look up? NULL means do all of them. */
3513 if (osect)
3514 /* Have we got a cached copy of the target's overlay table? */
3515 if (cache_ovly_table != NULL)
3516 {
3517 /* Does its cached location match what's currently in the
3518 symtab? */
3519 struct bound_minimal_symbol minsym
3520 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3521
3522 if (minsym.minsym == NULL)
3523 error (_("Error reading inferior's overlay table: couldn't "
3524 "find `_ovly_table' array\n"
3525 "in inferior. Use `overlay manual' mode."));
3526
3527 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3528 /* Then go ahead and try to look up this single section in
3529 the cache. */
3530 if (simple_overlay_update_1 (osect))
3531 /* Found it! We're done. */
3532 return;
3533 }
3534
3535 /* Cached table no good: need to read the entire table anew.
3536 Or else we want all the sections, in which case it's actually
3537 more efficient to read the whole table in one block anyway. */
3538
3539 if (! simple_read_overlay_table ())
3540 return;
3541
3542 /* Now may as well update all sections, even if only one was requested. */
3543 ALL_OBJSECTIONS (objfile, osect)
3544 if (section_is_overlay (osect))
3545 {
3546 int i;
3547 asection *bsect = osect->the_bfd_section;
3548
3549 for (i = 0; i < cache_novlys; i++)
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3552 { /* obj_section matches i'th entry in ovly_table. */
3553 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3554 break; /* finished with inner for loop: break out. */
3555 }
3556 }
3557 }
3558
3559 /* Set the output sections and output offsets for section SECTP in
3560 ABFD. The relocation code in BFD will read these offsets, so we
3561 need to be sure they're initialized. We map each section to itself,
3562 with no offset; this means that SECTP->vma will be honored. */
3563
3564 static void
3565 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3566 {
3567 sectp->output_section = sectp;
3568 sectp->output_offset = 0;
3569 }
3570
3571 /* Default implementation for sym_relocate. */
3572
3573 bfd_byte *
3574 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3575 bfd_byte *buf)
3576 {
3577 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3578 DWO file. */
3579 bfd *abfd = sectp->owner;
3580
3581 /* We're only interested in sections with relocation
3582 information. */
3583 if ((sectp->flags & SEC_RELOC) == 0)
3584 return NULL;
3585
3586 /* We will handle section offsets properly elsewhere, so relocate as if
3587 all sections begin at 0. */
3588 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3589
3590 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3591 }
3592
3593 /* Relocate the contents of a debug section SECTP in ABFD. The
3594 contents are stored in BUF if it is non-NULL, or returned in a
3595 malloc'd buffer otherwise.
3596
3597 For some platforms and debug info formats, shared libraries contain
3598 relocations against the debug sections (particularly for DWARF-2;
3599 one affected platform is PowerPC GNU/Linux, although it depends on
3600 the version of the linker in use). Also, ELF object files naturally
3601 have unresolved relocations for their debug sections. We need to apply
3602 the relocations in order to get the locations of symbols correct.
3603 Another example that may require relocation processing, is the
3604 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3605 debug section. */
3606
3607 bfd_byte *
3608 symfile_relocate_debug_section (struct objfile *objfile,
3609 asection *sectp, bfd_byte *buf)
3610 {
3611 gdb_assert (objfile->sf->sym_relocate);
3612
3613 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3614 }
3615
3616 struct symfile_segment_data *
3617 get_symfile_segment_data (bfd *abfd)
3618 {
3619 const struct sym_fns *sf = find_sym_fns (abfd);
3620
3621 if (sf == NULL)
3622 return NULL;
3623
3624 return sf->sym_segments (abfd);
3625 }
3626
3627 void
3628 free_symfile_segment_data (struct symfile_segment_data *data)
3629 {
3630 xfree (data->segment_bases);
3631 xfree (data->segment_sizes);
3632 xfree (data->segment_info);
3633 xfree (data);
3634 }
3635
3636 /* Given:
3637 - DATA, containing segment addresses from the object file ABFD, and
3638 the mapping from ABFD's sections onto the segments that own them,
3639 and
3640 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3641 segment addresses reported by the target,
3642 store the appropriate offsets for each section in OFFSETS.
3643
3644 If there are fewer entries in SEGMENT_BASES than there are segments
3645 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3646
3647 If there are more entries, then ignore the extra. The target may
3648 not be able to distinguish between an empty data segment and a
3649 missing data segment; a missing text segment is less plausible. */
3650
3651 int
3652 symfile_map_offsets_to_segments (bfd *abfd,
3653 const struct symfile_segment_data *data,
3654 struct section_offsets *offsets,
3655 int num_segment_bases,
3656 const CORE_ADDR *segment_bases)
3657 {
3658 int i;
3659 asection *sect;
3660
3661 /* It doesn't make sense to call this function unless you have some
3662 segment base addresses. */
3663 gdb_assert (num_segment_bases > 0);
3664
3665 /* If we do not have segment mappings for the object file, we
3666 can not relocate it by segments. */
3667 gdb_assert (data != NULL);
3668 gdb_assert (data->num_segments > 0);
3669
3670 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3671 {
3672 int which = data->segment_info[i];
3673
3674 gdb_assert (0 <= which && which <= data->num_segments);
3675
3676 /* Don't bother computing offsets for sections that aren't
3677 loaded as part of any segment. */
3678 if (! which)
3679 continue;
3680
3681 /* Use the last SEGMENT_BASES entry as the address of any extra
3682 segments mentioned in DATA->segment_info. */
3683 if (which > num_segment_bases)
3684 which = num_segment_bases;
3685
3686 offsets->offsets[i] = (segment_bases[which - 1]
3687 - data->segment_bases[which - 1]);
3688 }
3689
3690 return 1;
3691 }
3692
3693 static void
3694 symfile_find_segment_sections (struct objfile *objfile)
3695 {
3696 bfd *abfd = objfile->obfd;
3697 int i;
3698 asection *sect;
3699 struct symfile_segment_data *data;
3700
3701 data = get_symfile_segment_data (objfile->obfd);
3702 if (data == NULL)
3703 return;
3704
3705 if (data->num_segments != 1 && data->num_segments != 2)
3706 {
3707 free_symfile_segment_data (data);
3708 return;
3709 }
3710
3711 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3712 {
3713 int which = data->segment_info[i];
3714
3715 if (which == 1)
3716 {
3717 if (objfile->sect_index_text == -1)
3718 objfile->sect_index_text = sect->index;
3719
3720 if (objfile->sect_index_rodata == -1)
3721 objfile->sect_index_rodata = sect->index;
3722 }
3723 else if (which == 2)
3724 {
3725 if (objfile->sect_index_data == -1)
3726 objfile->sect_index_data = sect->index;
3727
3728 if (objfile->sect_index_bss == -1)
3729 objfile->sect_index_bss = sect->index;
3730 }
3731 }
3732
3733 free_symfile_segment_data (data);
3734 }
3735
3736 /* Listen for free_objfile events. */
3737
3738 static void
3739 symfile_free_objfile (struct objfile *objfile)
3740 {
3741 /* Remove the target sections owned by this objfile. */
3742 if (objfile != NULL)
3743 remove_target_sections ((void *) objfile);
3744 }
3745
3746 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3747 Expand all symtabs that match the specified criteria.
3748 See quick_symbol_functions.expand_symtabs_matching for details. */
3749
3750 void
3751 expand_symtabs_matching
3752 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3753 const lookup_name_info &lookup_name,
3754 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3755 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3756 enum search_domain kind)
3757 {
3758 struct objfile *objfile;
3759
3760 ALL_OBJFILES (objfile)
3761 {
3762 if (objfile->sf)
3763 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3764 lookup_name,
3765 symbol_matcher,
3766 expansion_notify, kind);
3767 }
3768 }
3769
3770 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3771 Map function FUN over every file.
3772 See quick_symbol_functions.map_symbol_filenames for details. */
3773
3774 void
3775 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3776 int need_fullname)
3777 {
3778 struct objfile *objfile;
3779
3780 ALL_OBJFILES (objfile)
3781 {
3782 if (objfile->sf)
3783 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3784 need_fullname);
3785 }
3786 }
3787
3788 #if GDB_SELF_TEST
3789
3790 namespace selftests {
3791 namespace filename_language {
3792
3793 static void test_filename_language ()
3794 {
3795 /* This test messes up the filename_language_table global. */
3796 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3797
3798 /* Test deducing an unknown extension. */
3799 language lang = deduce_language_from_filename ("myfile.blah");
3800 SELF_CHECK (lang == language_unknown);
3801
3802 /* Test deducing a known extension. */
3803 lang = deduce_language_from_filename ("myfile.c");
3804 SELF_CHECK (lang == language_c);
3805
3806 /* Test adding a new extension using the internal API. */
3807 add_filename_language (".blah", language_pascal);
3808 lang = deduce_language_from_filename ("myfile.blah");
3809 SELF_CHECK (lang == language_pascal);
3810 }
3811
3812 static void
3813 test_set_ext_lang_command ()
3814 {
3815 /* This test messes up the filename_language_table global. */
3816 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3817
3818 /* Confirm that the .hello extension is not known. */
3819 language lang = deduce_language_from_filename ("cake.hello");
3820 SELF_CHECK (lang == language_unknown);
3821
3822 /* Test adding a new extension using the CLI command. */
3823 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3824 ext_args = args_holder.get ();
3825 set_ext_lang_command (NULL, 1, NULL);
3826
3827 lang = deduce_language_from_filename ("cake.hello");
3828 SELF_CHECK (lang == language_rust);
3829
3830 /* Test overriding an existing extension using the CLI command. */
3831 int size_before = filename_language_table.size ();
3832 args_holder.reset (xstrdup (".hello pascal"));
3833 ext_args = args_holder.get ();
3834 set_ext_lang_command (NULL, 1, NULL);
3835 int size_after = filename_language_table.size ();
3836
3837 lang = deduce_language_from_filename ("cake.hello");
3838 SELF_CHECK (lang == language_pascal);
3839 SELF_CHECK (size_before == size_after);
3840 }
3841
3842 } /* namespace filename_language */
3843 } /* namespace selftests */
3844
3845 #endif /* GDB_SELF_TEST */
3846
3847 void
3848 _initialize_symfile (void)
3849 {
3850 struct cmd_list_element *c;
3851
3852 observer_attach_free_objfile (symfile_free_objfile);
3853
3854 #define READNOW_READNEVER_HELP \
3855 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3856 immediately. This makes the command slower, but may make future operations\n\
3857 faster.\n\
3858 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3859 symbolic debug information."
3860
3861 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3862 Load symbol table from executable file FILE.\n\
3863 Usage: symbol-file [-readnow | -readnever] FILE\n\
3864 The `file' command can also load symbol tables, as well as setting the file\n\
3865 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3866 set_cmd_completer (c, filename_completer);
3867
3868 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3869 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3870 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3871 -s SECT-NAME SECT-ADDR]...\n\
3872 ADDR is the starting address of the file's text.\n\
3873 Each '-s' argument provides a section name and address, and\n\
3874 should be specified if the data and bss segments are not contiguous\n\
3875 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3876 READNOW_READNEVER_HELP),
3877 &cmdlist);
3878 set_cmd_completer (c, filename_completer);
3879
3880 c = add_cmd ("remove-symbol-file", class_files,
3881 remove_symbol_file_command, _("\
3882 Remove a symbol file added via the add-symbol-file command.\n\
3883 Usage: remove-symbol-file FILENAME\n\
3884 remove-symbol-file -a ADDRESS\n\
3885 The file to remove can be identified by its filename or by an address\n\
3886 that lies within the boundaries of this symbol file in memory."),
3887 &cmdlist);
3888
3889 c = add_cmd ("load", class_files, load_command, _("\
3890 Dynamically load FILE into the running program, and record its symbols\n\
3891 for access from GDB.\n\
3892 Usage: load [FILE] [OFFSET]\n\
3893 An optional load OFFSET may also be given as a literal address.\n\
3894 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3895 on its own."), &cmdlist);
3896 set_cmd_completer (c, filename_completer);
3897
3898 add_prefix_cmd ("overlay", class_support, overlay_command,
3899 _("Commands for debugging overlays."), &overlaylist,
3900 "overlay ", 0, &cmdlist);
3901
3902 add_com_alias ("ovly", "overlay", class_alias, 1);
3903 add_com_alias ("ov", "overlay", class_alias, 1);
3904
3905 add_cmd ("map-overlay", class_support, map_overlay_command,
3906 _("Assert that an overlay section is mapped."), &overlaylist);
3907
3908 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3909 _("Assert that an overlay section is unmapped."), &overlaylist);
3910
3911 add_cmd ("list-overlays", class_support, list_overlays_command,
3912 _("List mappings of overlay sections."), &overlaylist);
3913
3914 add_cmd ("manual", class_support, overlay_manual_command,
3915 _("Enable overlay debugging."), &overlaylist);
3916 add_cmd ("off", class_support, overlay_off_command,
3917 _("Disable overlay debugging."), &overlaylist);
3918 add_cmd ("auto", class_support, overlay_auto_command,
3919 _("Enable automatic overlay debugging."), &overlaylist);
3920 add_cmd ("load-target", class_support, overlay_load_command,
3921 _("Read the overlay mapping state from the target."), &overlaylist);
3922
3923 /* Filename extension to source language lookup table: */
3924 add_setshow_string_noescape_cmd ("extension-language", class_files,
3925 &ext_args, _("\
3926 Set mapping between filename extension and source language."), _("\
3927 Show mapping between filename extension and source language."), _("\
3928 Usage: set extension-language .foo bar"),
3929 set_ext_lang_command,
3930 show_ext_args,
3931 &setlist, &showlist);
3932
3933 add_info ("extensions", info_ext_lang_command,
3934 _("All filename extensions associated with a source language."));
3935
3936 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3937 &debug_file_directory, _("\
3938 Set the directories where separate debug symbols are searched for."), _("\
3939 Show the directories where separate debug symbols are searched for."), _("\
3940 Separate debug symbols are first searched for in the same\n\
3941 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3942 and lastly at the path of the directory of the binary with\n\
3943 each global debug-file-directory component prepended."),
3944 NULL,
3945 show_debug_file_directory,
3946 &setlist, &showlist);
3947
3948 add_setshow_enum_cmd ("symbol-loading", no_class,
3949 print_symbol_loading_enums, &print_symbol_loading,
3950 _("\
3951 Set printing of symbol loading messages."), _("\
3952 Show printing of symbol loading messages."), _("\
3953 off == turn all messages off\n\
3954 brief == print messages for the executable,\n\
3955 and brief messages for shared libraries\n\
3956 full == print messages for the executable,\n\
3957 and messages for each shared library."),
3958 NULL,
3959 NULL,
3960 &setprintlist, &showprintlist);
3961
3962 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3963 &separate_debug_file_debug, _("\
3964 Set printing of separate debug info file search debug."), _("\
3965 Show printing of separate debug info file search debug."), _("\
3966 When on, GDB prints the searched locations while looking for separate debug \
3967 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3968
3969 #if GDB_SELF_TEST
3970 selftests::register_test
3971 ("filename_language", selftests::filename_language::test_filename_language);
3972 selftests::register_test
3973 ("set_ext_lang_command",
3974 selftests::filename_language::test_set_ext_lang_command);
3975 #endif
3976 }
This page took 0.179061 seconds and 5 git commands to generate.