bfd_get_filename
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1449
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1454
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1460 std::string drive;
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1462 {
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465 }
1466
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1468 {
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += drive;
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1481 {
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1484 else
1485 base_path = child_path (gdb_sysroot, canon_dir);
1486 }
1487 if (base_path != NULL)
1488 {
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1493 debugfile += "/";
1494 debugfile += base_path;
1495 debugfile += "/";
1496 debugfile += debuglink;
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1506 debugfile += "/";
1507 debugfile += base_path;
1508 debugfile += "/";
1509 debugfile += debuglink;
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 return debugfile;
1513 }
1514
1515 }
1516
1517 return std::string ();
1518 }
1519
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1523
1524 static void
1525 terminate_after_last_dir_separator (char *path)
1526 {
1527 int i;
1528
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1533 break;
1534
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1536 path[i + 1] = '\0';
1537 }
1538
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1541
1542 std::string
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544 {
1545 unsigned long crc32;
1546
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1555 }
1556
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1560
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1564
1565 if (debugfile.empty ())
1566 {
1567 /* For PR gdb/9538, try again with realpath (if different from the
1568 original). */
1569
1570 struct stat st_buf;
1571
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1574 {
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1578 {
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1581 {
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1584 symlink_dir.get (),
1585 debuglink.get (),
1586 crc32,
1587 objfile);
1588 }
1589 }
1590 }
1591 }
1592
1593 return debugfile;
1594 }
1595
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1597 simultaneously. */
1598
1599 static void
1600 validate_readnow_readnever (objfile_flags flags)
1601 {
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1636 int idx;
1637 char *arg;
1638
1639 if (from_tty)
1640 add_flags |= SYMFILE_VERBOSE;
1641
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1644 {
1645 if (stop_processing_options || *arg != '-')
1646 {
1647 if (name == NULL)
1648 name = arg;
1649 else
1650 error (_("Unrecognized argument \"%s\""), arg);
1651 }
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1657 {
1658 arg = built_argv[++idx];
1659 if (arg == NULL)
1660 error (_("Missing argument to -o"));
1661
1662 offset = parse_and_eval_address (arg);
1663 }
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1666 else
1667 error (_("Unrecognized argument \"%s\""), arg);
1668 }
1669
1670 if (name == NULL)
1671 error (_("no symbol file name was specified"));
1672
1673 validate_readnow_readnever (flags);
1674
1675 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1676 (Position Independent Executable) main symbol file will only be
1677 computed by the solib_create_inferior_hook below. Without it,
1678 breakpoint_re_set would fail to insert the breakpoints with the zero
1679 displacement. */
1680 add_flags |= SYMFILE_DEFER_BP_RESET;
1681
1682 symbol_file_add_main_1 (name, add_flags, flags, offset);
1683
1684 solib_create_inferior_hook (from_tty);
1685
1686 /* Now it's safe to re-add the breakpoints. */
1687 breakpoint_re_set ();
1688 }
1689 }
1690
1691 /* Set the initial language.
1692
1693 FIXME: A better solution would be to record the language in the
1694 psymtab when reading partial symbols, and then use it (if known) to
1695 set the language. This would be a win for formats that encode the
1696 language in an easily discoverable place, such as DWARF. For
1697 stabs, we can jump through hoops looking for specially named
1698 symbols or try to intuit the language from the specific type of
1699 stabs we find, but we can't do that until later when we read in
1700 full symbols. */
1701
1702 void
1703 set_initial_language (void)
1704 {
1705 enum language lang = main_language ();
1706
1707 if (lang == language_unknown)
1708 {
1709 const char *name = main_name ();
1710 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1711
1712 if (sym != NULL)
1713 lang = SYMBOL_LANGUAGE (sym);
1714 }
1715
1716 if (lang == language_unknown)
1717 {
1718 /* Make C the default language */
1719 lang = language_c;
1720 }
1721
1722 set_language (lang);
1723 expected_language = current_language; /* Don't warn the user. */
1724 }
1725
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1730
1731 gdb_bfd_ref_ptr
1732 symfile_bfd_open (const char *name)
1733 {
1734 int desc = -1;
1735
1736 gdb::unique_xmalloc_ptr<char> absolute_name;
1737 if (!is_target_filename (name))
1738 {
1739 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1740
1741 /* Look down path for it, allocate 2nd new malloc'd copy. */
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1746 if (desc < 0)
1747 {
1748 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1749
1750 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1751 desc = openp (getenv ("PATH"),
1752 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1753 exename, O_RDONLY | O_BINARY, &absolute_name);
1754 }
1755 #endif
1756 if (desc < 0)
1757 perror_with_name (expanded_name.get ());
1758
1759 name = absolute_name.get ();
1760 }
1761
1762 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1763 if (sym_bfd == NULL)
1764 error (_("`%s': can't open to read symbols: %s."), name,
1765 bfd_errmsg (bfd_get_error ()));
1766
1767 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1768 bfd_set_cacheable (sym_bfd.get (), 1);
1769
1770 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773
1774 return sym_bfd;
1775 }
1776
1777 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1778 the section was not found. */
1779
1780 int
1781 get_section_index (struct objfile *objfile, const char *section_name)
1782 {
1783 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1784
1785 if (sect)
1786 return sect->index;
1787 else
1788 return -1;
1789 }
1790
1791 /* Link SF into the global symtab_fns list.
1792 FLAVOUR is the file format that SF handles.
1793 Called on startup by the _initialize routine in each object file format
1794 reader, to register information about each format the reader is prepared
1795 to handle. */
1796
1797 void
1798 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1799 {
1800 symtab_fns.emplace_back (flavour, sf);
1801 }
1802
1803 /* Initialize OBJFILE to read symbols from its associated BFD. It
1804 either returns or calls error(). The result is an initialized
1805 struct sym_fns in the objfile structure, that contains cached
1806 information about the symbol file. */
1807
1808 static const struct sym_fns *
1809 find_sym_fns (bfd *abfd)
1810 {
1811 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1812
1813 if (our_flavour == bfd_target_srec_flavour
1814 || our_flavour == bfd_target_ihex_flavour
1815 || our_flavour == bfd_target_tekhex_flavour)
1816 return NULL; /* No symbols. */
1817
1818 for (const registered_sym_fns &rsf : symtab_fns)
1819 if (our_flavour == rsf.sym_flavour)
1820 return rsf.sym_fns;
1821
1822 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1823 bfd_get_target (abfd));
1824 }
1825 \f
1826
1827 /* This function runs the load command of our current target. */
1828
1829 static void
1830 load_command (const char *arg, int from_tty)
1831 {
1832 dont_repeat ();
1833
1834 /* The user might be reloading because the binary has changed. Take
1835 this opportunity to check. */
1836 reopen_exec_file ();
1837 reread_symbols ();
1838
1839 std::string temp;
1840 if (arg == NULL)
1841 {
1842 const char *parg, *prev;
1843
1844 arg = get_exec_file (1);
1845
1846 /* We may need to quote this string so buildargv can pull it
1847 apart. */
1848 prev = parg = arg;
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1850 {
1851 temp.append (prev, parg - prev);
1852 prev = parg++;
1853 temp.push_back ('\\');
1854 }
1855 /* If we have not copied anything yet, then we didn't see a
1856 character to quote, and we can just leave ARG unchanged. */
1857 if (!temp.empty ())
1858 {
1859 temp.append (prev);
1860 arg = temp.c_str ();
1861 }
1862 }
1863
1864 target_load (arg, from_tty);
1865
1866 /* After re-loading the executable, we don't really know which
1867 overlays are mapped any more. */
1868 overlay_cache_invalid = 1;
1869 }
1870
1871 /* This version of "load" should be usable for any target. Currently
1872 it is just used for remote targets, not inftarg.c or core files,
1873 on the theory that only in that case is it useful.
1874
1875 Avoiding xmodem and the like seems like a win (a) because we don't have
1876 to worry about finding it, and (b) On VMS, fork() is very slow and so
1877 we don't want to run a subprocess. On the other hand, I'm not sure how
1878 performance compares. */
1879
1880 static int validate_download = 0;
1881
1882 /* Callback service function for generic_load (bfd_map_over_sections). */
1883
1884 static void
1885 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1886 {
1887 bfd_size_type *sum = (bfd_size_type *) data;
1888
1889 *sum += bfd_get_section_size (asec);
1890 }
1891
1892 /* Opaque data for load_progress. */
1893 struct load_progress_data
1894 {
1895 /* Cumulative data. */
1896 unsigned long write_count = 0;
1897 unsigned long data_count = 0;
1898 bfd_size_type total_size = 0;
1899 };
1900
1901 /* Opaque data for load_progress for a single section. */
1902 struct load_progress_section_data
1903 {
1904 load_progress_section_data (load_progress_data *cumulative_,
1905 const char *section_name_, ULONGEST section_size_,
1906 CORE_ADDR lma_, gdb_byte *buffer_)
1907 : cumulative (cumulative_), section_name (section_name_),
1908 section_size (section_size_), lma (lma_), buffer (buffer_)
1909 {}
1910
1911 struct load_progress_data *cumulative;
1912
1913 /* Per-section data. */
1914 const char *section_name;
1915 ULONGEST section_sent = 0;
1916 ULONGEST section_size;
1917 CORE_ADDR lma;
1918 gdb_byte *buffer;
1919 };
1920
1921 /* Opaque data for load_section_callback. */
1922 struct load_section_data
1923 {
1924 load_section_data (load_progress_data *progress_data_)
1925 : progress_data (progress_data_)
1926 {}
1927
1928 ~load_section_data ()
1929 {
1930 for (auto &&request : requests)
1931 {
1932 xfree (request.data);
1933 delete ((load_progress_section_data *) request.baton);
1934 }
1935 }
1936
1937 CORE_ADDR load_offset = 0;
1938 struct load_progress_data *progress_data;
1939 std::vector<struct memory_write_request> requests;
1940 };
1941
1942 /* Target write callback routine for progress reporting. */
1943
1944 static void
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1946 {
1947 struct load_progress_section_data *args
1948 = (struct load_progress_section_data *) untyped_arg;
1949 struct load_progress_data *totals;
1950
1951 if (args == NULL)
1952 /* Writing padding data. No easy way to get at the cumulative
1953 stats, so just ignore this. */
1954 return;
1955
1956 totals = args->cumulative;
1957
1958 if (bytes == 0 && args->section_sent == 0)
1959 {
1960 /* The write is just starting. Let the user know we've started
1961 this section. */
1962 current_uiout->message ("Loading section %s, size %s lma %s\n",
1963 args->section_name,
1964 hex_string (args->section_size),
1965 paddress (target_gdbarch (), args->lma));
1966 return;
1967 }
1968
1969 if (validate_download)
1970 {
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1973 downloads. */
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb::byte_vector check (bytes);
1979
1980 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1981 error (_("Download verify read failed at %s"),
1982 paddress (target_gdbarch (), args->lma));
1983 if (memcmp (args->buffer, check.data (), bytes) != 0)
1984 error (_("Download verify compare failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1986 }
1987 totals->data_count += bytes;
1988 args->lma += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
2002 totals->data_count,
2003 totals->total_size);
2004 }
2005
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008 static void
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 {
2011 struct load_section_data *args = (struct load_section_data *) data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2014
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2016 return;
2017
2018 if (size == 0)
2019 return;
2020
2021 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2022 ULONGEST end = begin + size;
2023 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2025
2026 load_progress_section_data *section_data
2027 = new load_progress_section_data (args->progress_data, sect_name, size,
2028 begin, buffer);
2029
2030 args->requests.emplace_back (begin, end, buffer, section_data);
2031 }
2032
2033 static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2037
2038 /* See symfile.h. */
2039
2040 void
2041 generic_load (const char *args, int from_tty)
2042 {
2043 struct load_progress_data total_progress;
2044 struct load_section_data cbdata (&total_progress);
2045 struct ui_out *uiout = current_uiout;
2046
2047 if (args == NULL)
2048 error_no_arg (_("file to load"));
2049
2050 gdb_argv argv (args);
2051
2052 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2053
2054 if (argv[1] != NULL)
2055 {
2056 const char *endptr;
2057
2058 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2059
2060 /* If the last word was not a valid number then
2061 treat it as a file name with spaces in. */
2062 if (argv[1] == endptr)
2063 error (_("Invalid download offset:%s."), argv[1]);
2064
2065 if (argv[2] != NULL)
2066 error (_("Too many parameters."));
2067 }
2068
2069 /* Open the file for loading. */
2070 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2071 if (loadfile_bfd == NULL)
2072 perror_with_name (filename.get ());
2073
2074 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2075 {
2076 error (_("\"%s\" is not an object file: %s"), filename.get (),
2077 bfd_errmsg (bfd_get_error ()));
2078 }
2079
2080 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2081 (void *) &total_progress.total_size);
2082
2083 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2084
2085 using namespace std::chrono;
2086
2087 steady_clock::time_point start_time = steady_clock::now ();
2088
2089 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2090 load_progress) != 0)
2091 error (_("Load failed"));
2092
2093 steady_clock::time_point end_time = steady_clock::now ();
2094
2095 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2096 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2097 uiout->text ("Start address ");
2098 uiout->field_core_addr ("address", target_gdbarch (), entry);
2099 uiout->text (", load size ");
2100 uiout->field_unsigned ("load-size", total_progress.data_count);
2101 uiout->text ("\n");
2102 regcache_write_pc (get_current_regcache (), entry);
2103
2104 /* Reset breakpoints, now that we have changed the load image. For
2105 instance, breakpoints may have been set (or reset, by
2106 post_create_inferior) while connected to the target but before we
2107 loaded the program. In that case, the prologue analyzer could
2108 have read instructions from the target to find the right
2109 breakpoint locations. Loading has changed the contents of that
2110 memory. */
2111
2112 breakpoint_re_set ();
2113
2114 print_transfer_performance (gdb_stdout, total_progress.data_count,
2115 total_progress.write_count,
2116 end_time - start_time);
2117 }
2118
2119 /* Report on STREAM the performance of a memory transfer operation,
2120 such as 'load'. DATA_COUNT is the number of bytes transferred.
2121 WRITE_COUNT is the number of separate write operations, or 0, if
2122 that information is not available. TIME is how long the operation
2123 lasted. */
2124
2125 static void
2126 print_transfer_performance (struct ui_file *stream,
2127 unsigned long data_count,
2128 unsigned long write_count,
2129 std::chrono::steady_clock::duration time)
2130 {
2131 using namespace std::chrono;
2132 struct ui_out *uiout = current_uiout;
2133
2134 milliseconds ms = duration_cast<milliseconds> (time);
2135
2136 uiout->text ("Transfer rate: ");
2137 if (ms.count () > 0)
2138 {
2139 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2140
2141 if (uiout->is_mi_like_p ())
2142 {
2143 uiout->field_unsigned ("transfer-rate", rate * 8);
2144 uiout->text (" bits/sec");
2145 }
2146 else if (rate < 1024)
2147 {
2148 uiout->field_unsigned ("transfer-rate", rate);
2149 uiout->text (" bytes/sec");
2150 }
2151 else
2152 {
2153 uiout->field_unsigned ("transfer-rate", rate / 1024);
2154 uiout->text (" KB/sec");
2155 }
2156 }
2157 else
2158 {
2159 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2160 uiout->text (" bits in <1 sec");
2161 }
2162 if (write_count > 0)
2163 {
2164 uiout->text (", ");
2165 uiout->field_unsigned ("write-rate", data_count / write_count);
2166 uiout->text (" bytes/write");
2167 }
2168 uiout->text (".\n");
2169 }
2170
2171 /* Add an OFFSET to the start address of each section in OBJF, except
2172 sections that were specified in ADDRS. */
2173
2174 static void
2175 set_objfile_default_section_offset (struct objfile *objf,
2176 const section_addr_info &addrs,
2177 CORE_ADDR offset)
2178 {
2179 /* Add OFFSET to all sections by default. */
2180 std::vector<struct section_offsets> offsets (objf->num_sections,
2181 { { offset } });
2182
2183 /* Create sorted lists of all sections in ADDRS as well as all
2184 sections in OBJF. */
2185
2186 std::vector<const struct other_sections *> addrs_sorted
2187 = addrs_section_sort (addrs);
2188
2189 section_addr_info objf_addrs
2190 = build_section_addr_info_from_objfile (objf);
2191 std::vector<const struct other_sections *> objf_addrs_sorted
2192 = addrs_section_sort (objf_addrs);
2193
2194 /* Walk the BFD section list, and if a matching section is found in
2195 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2196 unchanged.
2197
2198 Note that both lists may contain multiple sections with the same
2199 name, and then the sections from ADDRS are matched in BFD order
2200 (thanks to sectindex). */
2201
2202 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2203 = addrs_sorted.begin ();
2204 for (const other_sections *objf_sect : objf_addrs_sorted)
2205 {
2206 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2207 int cmp = -1;
2208
2209 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2210 {
2211 const struct other_sections *sect = *addrs_sorted_iter;
2212 const char *sect_name = addr_section_name (sect->name.c_str ());
2213 cmp = strcmp (sect_name, objf_name);
2214 if (cmp <= 0)
2215 ++addrs_sorted_iter;
2216 }
2217
2218 if (cmp == 0)
2219 offsets[objf_sect->sectindex].offsets[0] = 0;
2220 }
2221
2222 /* Apply the new section offsets. */
2223 objfile_relocate (objf, offsets.data ());
2224 }
2225
2226 /* This function allows the addition of incrementally linked object files.
2227 It does not modify any state in the target, only in the debugger. */
2228
2229 static void
2230 add_symbol_file_command (const char *args, int from_tty)
2231 {
2232 struct gdbarch *gdbarch = get_current_arch ();
2233 gdb::unique_xmalloc_ptr<char> filename;
2234 char *arg;
2235 int argcnt = 0;
2236 struct objfile *objf;
2237 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2238 symfile_add_flags add_flags = 0;
2239
2240 if (from_tty)
2241 add_flags |= SYMFILE_VERBOSE;
2242
2243 struct sect_opt
2244 {
2245 const char *name;
2246 const char *value;
2247 };
2248
2249 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2250 bool stop_processing_options = false;
2251 CORE_ADDR offset = 0;
2252
2253 dont_repeat ();
2254
2255 if (args == NULL)
2256 error (_("add-symbol-file takes a file name and an address"));
2257
2258 bool seen_addr = false;
2259 bool seen_offset = false;
2260 gdb_argv argv (args);
2261
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2263 {
2264 if (stop_processing_options || *arg != '-')
2265 {
2266 if (filename == NULL)
2267 {
2268 /* First non-option argument is always the filename. */
2269 filename.reset (tilde_expand (arg));
2270 }
2271 else if (!seen_addr)
2272 {
2273 /* The second non-option argument is always the text
2274 address at which to load the program. */
2275 sect_opts[0].value = arg;
2276 seen_addr = true;
2277 }
2278 else
2279 error (_("Unrecognized argument \"%s\""), arg);
2280 }
2281 else if (strcmp (arg, "-readnow") == 0)
2282 flags |= OBJF_READNOW;
2283 else if (strcmp (arg, "-readnever") == 0)
2284 flags |= OBJF_READNEVER;
2285 else if (strcmp (arg, "-s") == 0)
2286 {
2287 if (argv[argcnt + 1] == NULL)
2288 error (_("Missing section name after \"-s\""));
2289 else if (argv[argcnt + 2] == NULL)
2290 error (_("Missing section address after \"-s\""));
2291
2292 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2293
2294 sect_opts.push_back (sect);
2295 argcnt += 2;
2296 }
2297 else if (strcmp (arg, "-o") == 0)
2298 {
2299 arg = argv[++argcnt];
2300 if (arg == NULL)
2301 error (_("Missing argument to -o"));
2302
2303 offset = parse_and_eval_address (arg);
2304 seen_offset = true;
2305 }
2306 else if (strcmp (arg, "--") == 0)
2307 stop_processing_options = true;
2308 else
2309 error (_("Unrecognized argument \"%s\""), arg);
2310 }
2311
2312 if (filename == NULL)
2313 error (_("You must provide a filename to be loaded."));
2314
2315 validate_readnow_readnever (flags);
2316
2317 /* Print the prompt for the query below. And save the arguments into
2318 a sect_addr_info structure to be passed around to other
2319 functions. We have to split this up into separate print
2320 statements because hex_string returns a local static
2321 string. */
2322
2323 printf_unfiltered (_("add symbol table from file \"%s\""),
2324 filename.get ());
2325 section_addr_info section_addrs;
2326 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2327 if (!seen_addr)
2328 ++it;
2329 for (; it != sect_opts.end (); ++it)
2330 {
2331 CORE_ADDR addr;
2332 const char *val = it->value;
2333 const char *sec = it->name;
2334
2335 if (section_addrs.empty ())
2336 printf_unfiltered (_(" at\n"));
2337 addr = parse_and_eval_address (val);
2338
2339 /* Here we store the section offsets in the order they were
2340 entered on the command line. Every array element is
2341 assigned an ascending section index to preserve the above
2342 order over an unstable sorting algorithm. This dummy
2343 index is not used for any other purpose.
2344 */
2345 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2346 printf_filtered ("\t%s_addr = %s\n", sec,
2347 paddress (gdbarch, addr));
2348
2349 /* The object's sections are initialized when a
2350 call is made to build_objfile_section_table (objfile).
2351 This happens in reread_symbols.
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2354 }
2355 if (seen_offset)
2356 printf_unfiltered (_("%s offset by %s\n"),
2357 (section_addrs.empty ()
2358 ? _(" with all sections")
2359 : _("with other sections")),
2360 paddress (gdbarch, offset));
2361 else if (section_addrs.empty ())
2362 printf_unfiltered ("\n");
2363
2364 if (from_tty && (!query ("%s", "")))
2365 error (_("Not confirmed."));
2366
2367 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2368 flags);
2369 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2370 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2371 filename.get ());
2372
2373 if (seen_offset)
2374 set_objfile_default_section_offset (objf, section_addrs, offset);
2375
2376 add_target_sections_of_objfile (objf);
2377
2378 /* Getting new symbols may change our opinion about what is
2379 frameless. */
2380 reinit_frame_cache ();
2381 }
2382 \f
2383
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2385
2386 static void
2387 remove_symbol_file_command (const char *args, int from_tty)
2388 {
2389 struct objfile *objf = NULL;
2390 struct program_space *pspace = current_program_space;
2391
2392 dont_repeat ();
2393
2394 if (args == NULL)
2395 error (_("remove-symbol-file: no symbol file provided"));
2396
2397 gdb_argv argv (args);
2398
2399 if (strcmp (argv[0], "-a") == 0)
2400 {
2401 /* Interpret the next argument as an address. */
2402 CORE_ADDR addr;
2403
2404 if (argv[1] == NULL)
2405 error (_("Missing address argument"));
2406
2407 if (argv[2] != NULL)
2408 error (_("Junk after %s"), argv[1]);
2409
2410 addr = parse_and_eval_address (argv[1]);
2411
2412 for (objfile *objfile : current_program_space->objfiles ())
2413 {
2414 if ((objfile->flags & OBJF_USERLOADED) != 0
2415 && (objfile->flags & OBJF_SHARED) != 0
2416 && objfile->pspace == pspace
2417 && is_addr_in_objfile (addr, objfile))
2418 {
2419 objf = objfile;
2420 break;
2421 }
2422 }
2423 }
2424 else if (argv[0] != NULL)
2425 {
2426 /* Interpret the current argument as a file name. */
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2432
2433 for (objfile *objfile : current_program_space->objfiles ())
2434 {
2435 if ((objfile->flags & OBJF_USERLOADED) != 0
2436 && (objfile->flags & OBJF_SHARED) != 0
2437 && objfile->pspace == pspace
2438 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2439 {
2440 objf = objfile;
2441 break;
2442 }
2443 }
2444 }
2445
2446 if (objf == NULL)
2447 error (_("No symbol file found"));
2448
2449 if (from_tty
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2453
2454 delete objf;
2455 clear_symtab_users (0);
2456 }
2457
2458 /* Re-read symbols if a symbol-file has changed. */
2459
2460 void
2461 reread_symbols (void)
2462 {
2463 long new_modtime;
2464 struct stat new_statbuf;
2465 int res;
2466 std::vector<struct objfile *> new_objfiles;
2467
2468 for (objfile *objfile : current_program_space->objfiles ())
2469 {
2470 if (objfile->obfd == NULL)
2471 continue;
2472
2473 /* Separate debug objfiles are handled in the main objfile. */
2474 if (objfile->separate_debug_objfile_backlink)
2475 continue;
2476
2477 /* If this object is from an archive (what you usually create with
2478 `ar', often called a `static library' on most systems, though
2479 a `shared library' on AIX is also an archive), then you should
2480 stat on the archive name, not member name. */
2481 if (objfile->obfd->my_archive)
2482 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2483 else
2484 res = stat (objfile_name (objfile), &new_statbuf);
2485 if (res != 0)
2486 {
2487 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2488 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2489 objfile_name (objfile));
2490 continue;
2491 }
2492 new_modtime = new_statbuf.st_mtime;
2493 if (new_modtime != objfile->mtime)
2494 {
2495 struct section_offsets *offsets;
2496 int num_offsets;
2497
2498 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2499 objfile_name (objfile));
2500
2501 /* There are various functions like symbol_file_add,
2502 symfile_bfd_open, syms_from_objfile, etc., which might
2503 appear to do what we want. But they have various other
2504 effects which we *don't* want. So we just do stuff
2505 ourselves. We don't worry about mapped files (for one thing,
2506 any mapped file will be out of date). */
2507
2508 /* If we get an error, blow away this objfile (not sure if
2509 that is the correct response for things like shared
2510 libraries). */
2511 std::unique_ptr<struct objfile> objfile_holder (objfile);
2512
2513 /* We need to do this whenever any symbols go away. */
2514 clear_symtab_users_cleanup defer_clear_users (0);
2515
2516 if (exec_bfd != NULL
2517 && filename_cmp (bfd_get_filename (objfile->obfd),
2518 bfd_get_filename (exec_bfd)) == 0)
2519 {
2520 /* Reload EXEC_BFD without asking anything. */
2521
2522 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2523 }
2524
2525 /* Keep the calls order approx. the same as in free_objfile. */
2526
2527 /* Free the separate debug objfiles. It will be
2528 automatically recreated by sym_read. */
2529 free_objfile_separate_debug (objfile);
2530
2531 /* Remove any references to this objfile in the global
2532 value lists. */
2533 preserve_values (objfile);
2534
2535 /* Nuke all the state that we will re-read. Much of the following
2536 code which sets things to NULL really is necessary to tell
2537 other parts of GDB that there is nothing currently there.
2538
2539 Try to keep the freeing order compatible with free_objfile. */
2540
2541 if (objfile->sf != NULL)
2542 {
2543 (*objfile->sf->sym_finish) (objfile);
2544 }
2545
2546 clear_objfile_data (objfile);
2547
2548 /* Clean up any state BFD has sitting around. */
2549 {
2550 gdb_bfd_ref_ptr obfd (objfile->obfd);
2551 const char *obfd_filename;
2552
2553 obfd_filename = bfd_get_filename (objfile->obfd);
2554 /* Open the new BFD before freeing the old one, so that
2555 the filename remains live. */
2556 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2557 objfile->obfd = temp.release ();
2558 if (objfile->obfd == NULL)
2559 error (_("Can't open %s to read symbols."), obfd_filename);
2560 }
2561
2562 std::string original_name = objfile->original_name;
2563
2564 /* bfd_openr sets cacheable to true, which is what we want. */
2565 if (!bfd_check_format (objfile->obfd, bfd_object))
2566 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2567 bfd_errmsg (bfd_get_error ()));
2568
2569 /* Save the offsets, we will nuke them with the rest of the
2570 objfile_obstack. */
2571 num_offsets = objfile->num_sections;
2572 offsets = ((struct section_offsets *)
2573 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2574 memcpy (offsets, objfile->section_offsets,
2575 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2576
2577 objfile->reset_psymtabs ();
2578
2579 /* NB: after this call to obstack_free, objfiles_changed
2580 will need to be called (see discussion below). */
2581 obstack_free (&objfile->objfile_obstack, 0);
2582 objfile->sections = NULL;
2583 objfile->compunit_symtabs = NULL;
2584 objfile->template_symbols = NULL;
2585 objfile->static_links.reset (nullptr);
2586
2587 /* obstack_init also initializes the obstack so it is
2588 empty. We could use obstack_specify_allocation but
2589 gdb_obstack.h specifies the alloc/dealloc functions. */
2590 obstack_init (&objfile->objfile_obstack);
2591
2592 /* set_objfile_per_bfd potentially allocates the per-bfd
2593 data on the objfile's obstack (if sharing data across
2594 multiple users is not possible), so it's important to
2595 do it *after* the obstack has been initialized. */
2596 set_objfile_per_bfd (objfile);
2597
2598 objfile->original_name
2599 = obstack_strdup (&objfile->objfile_obstack, original_name);
2600
2601 /* Reset the sym_fns pointer. The ELF reader can change it
2602 based on whether .gdb_index is present, and we need it to
2603 start over. PR symtab/15885 */
2604 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2605
2606 build_objfile_section_table (objfile);
2607
2608 /* We use the same section offsets as from last time. I'm not
2609 sure whether that is always correct for shared libraries. */
2610 objfile->section_offsets = (struct section_offsets *)
2611 obstack_alloc (&objfile->objfile_obstack,
2612 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2613 memcpy (objfile->section_offsets, offsets,
2614 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2615 objfile->num_sections = num_offsets;
2616
2617 /* What the hell is sym_new_init for, anyway? The concept of
2618 distinguishing between the main file and additional files
2619 in this way seems rather dubious. */
2620 if (objfile == symfile_objfile)
2621 {
2622 (*objfile->sf->sym_new_init) (objfile);
2623 }
2624
2625 (*objfile->sf->sym_init) (objfile);
2626 clear_complaints ();
2627
2628 objfile->flags &= ~OBJF_PSYMTABS_READ;
2629
2630 /* We are about to read new symbols and potentially also
2631 DWARF information. Some targets may want to pass addresses
2632 read from DWARF DIE's through an adjustment function before
2633 saving them, like MIPS, which may call into
2634 "find_pc_section". When called, that function will make
2635 use of per-objfile program space data.
2636
2637 Since we discarded our section information above, we have
2638 dangling pointers in the per-objfile program space data
2639 structure. Force GDB to update the section mapping
2640 information by letting it know the objfile has changed,
2641 making the dangling pointers point to correct data
2642 again. */
2643
2644 objfiles_changed ();
2645
2646 read_symbols (objfile, 0);
2647
2648 if (!objfile_has_symbols (objfile))
2649 {
2650 wrap_here ("");
2651 printf_filtered (_("(no debugging symbols found)\n"));
2652 wrap_here ("");
2653 }
2654
2655 /* We're done reading the symbol file; finish off complaints. */
2656 clear_complaints ();
2657
2658 /* Getting new symbols may change our opinion about what is
2659 frameless. */
2660
2661 reinit_frame_cache ();
2662
2663 /* Discard cleanups as symbol reading was successful. */
2664 objfile_holder.release ();
2665 defer_clear_users.release ();
2666
2667 /* If the mtime has changed between the time we set new_modtime
2668 and now, we *want* this to be out of date, so don't call stat
2669 again now. */
2670 objfile->mtime = new_modtime;
2671 init_entry_point_info (objfile);
2672
2673 new_objfiles.push_back (objfile);
2674 }
2675 }
2676
2677 if (!new_objfiles.empty ())
2678 {
2679 clear_symtab_users (0);
2680
2681 /* clear_objfile_data for each objfile was called before freeing it and
2682 gdb::observers::new_objfile.notify (NULL) has been called by
2683 clear_symtab_users above. Notify the new files now. */
2684 for (auto iter : new_objfiles)
2685 gdb::observers::new_objfile.notify (iter);
2686
2687 /* At least one objfile has changed, so we can consider that
2688 the executable we're debugging has changed too. */
2689 gdb::observers::executable_changed.notify ();
2690 }
2691 }
2692 \f
2693
2694 struct filename_language
2695 {
2696 filename_language (const std::string &ext_, enum language lang_)
2697 : ext (ext_), lang (lang_)
2698 {}
2699
2700 std::string ext;
2701 enum language lang;
2702 };
2703
2704 static std::vector<filename_language> filename_language_table;
2705
2706 /* See symfile.h. */
2707
2708 void
2709 add_filename_language (const char *ext, enum language lang)
2710 {
2711 filename_language_table.emplace_back (ext, lang);
2712 }
2713
2714 static char *ext_args;
2715 static void
2716 show_ext_args (struct ui_file *file, int from_tty,
2717 struct cmd_list_element *c, const char *value)
2718 {
2719 fprintf_filtered (file,
2720 _("Mapping between filename extension "
2721 "and source language is \"%s\".\n"),
2722 value);
2723 }
2724
2725 static void
2726 set_ext_lang_command (const char *args,
2727 int from_tty, struct cmd_list_element *e)
2728 {
2729 char *cp = ext_args;
2730 enum language lang;
2731
2732 /* First arg is filename extension, starting with '.' */
2733 if (*cp != '.')
2734 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2735
2736 /* Find end of first arg. */
2737 while (*cp && !isspace (*cp))
2738 cp++;
2739
2740 if (*cp == '\0')
2741 error (_("'%s': two arguments required -- "
2742 "filename extension and language"),
2743 ext_args);
2744
2745 /* Null-terminate first arg. */
2746 *cp++ = '\0';
2747
2748 /* Find beginning of second arg, which should be a source language. */
2749 cp = skip_spaces (cp);
2750
2751 if (*cp == '\0')
2752 error (_("'%s': two arguments required -- "
2753 "filename extension and language"),
2754 ext_args);
2755
2756 /* Lookup the language from among those we know. */
2757 lang = language_enum (cp);
2758
2759 auto it = filename_language_table.begin ();
2760 /* Now lookup the filename extension: do we already know it? */
2761 for (; it != filename_language_table.end (); it++)
2762 {
2763 if (it->ext == ext_args)
2764 break;
2765 }
2766
2767 if (it == filename_language_table.end ())
2768 {
2769 /* New file extension. */
2770 add_filename_language (ext_args, lang);
2771 }
2772 else
2773 {
2774 /* Redefining a previously known filename extension. */
2775
2776 /* if (from_tty) */
2777 /* query ("Really make files of type %s '%s'?", */
2778 /* ext_args, language_str (lang)); */
2779
2780 it->lang = lang;
2781 }
2782 }
2783
2784 static void
2785 info_ext_lang_command (const char *args, int from_tty)
2786 {
2787 printf_filtered (_("Filename extensions and the languages they represent:"));
2788 printf_filtered ("\n\n");
2789 for (const filename_language &entry : filename_language_table)
2790 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2791 language_str (entry.lang));
2792 }
2793
2794 enum language
2795 deduce_language_from_filename (const char *filename)
2796 {
2797 const char *cp;
2798
2799 if (filename != NULL)
2800 if ((cp = strrchr (filename, '.')) != NULL)
2801 {
2802 for (const filename_language &entry : filename_language_table)
2803 if (entry.ext == cp)
2804 return entry.lang;
2805 }
2806
2807 return language_unknown;
2808 }
2809 \f
2810 /* Allocate and initialize a new symbol table.
2811 CUST is from the result of allocate_compunit_symtab. */
2812
2813 struct symtab *
2814 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2815 {
2816 struct objfile *objfile = cust->objfile;
2817 struct symtab *symtab
2818 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2819
2820 symtab->filename
2821 = ((const char *) objfile->per_bfd->filename_cache.insert
2822 (filename, strlen (filename) + 1));
2823 symtab->fullname = NULL;
2824 symtab->language = deduce_language_from_filename (filename);
2825
2826 /* This can be very verbose with lots of headers.
2827 Only print at higher debug levels. */
2828 if (symtab_create_debug >= 2)
2829 {
2830 /* Be a bit clever with debugging messages, and don't print objfile
2831 every time, only when it changes. */
2832 static char *last_objfile_name = NULL;
2833
2834 if (last_objfile_name == NULL
2835 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2836 {
2837 xfree (last_objfile_name);
2838 last_objfile_name = xstrdup (objfile_name (objfile));
2839 fprintf_filtered (gdb_stdlog,
2840 "Creating one or more symtabs for objfile %s ...\n",
2841 last_objfile_name);
2842 }
2843 fprintf_filtered (gdb_stdlog,
2844 "Created symtab %s for module %s.\n",
2845 host_address_to_string (symtab), filename);
2846 }
2847
2848 /* Add it to CUST's list of symtabs. */
2849 if (cust->filetabs == NULL)
2850 {
2851 cust->filetabs = symtab;
2852 cust->last_filetab = symtab;
2853 }
2854 else
2855 {
2856 cust->last_filetab->next = symtab;
2857 cust->last_filetab = symtab;
2858 }
2859
2860 /* Backlink to the containing compunit symtab. */
2861 symtab->compunit_symtab = cust;
2862
2863 return symtab;
2864 }
2865
2866 /* Allocate and initialize a new compunit.
2867 NAME is the name of the main source file, if there is one, or some
2868 descriptive text if there are no source files. */
2869
2870 struct compunit_symtab *
2871 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2872 {
2873 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct compunit_symtab);
2875 const char *saved_name;
2876
2877 cu->objfile = objfile;
2878
2879 /* The name we record here is only for display/debugging purposes.
2880 Just save the basename to avoid path issues (too long for display,
2881 relative vs absolute, etc.). */
2882 saved_name = lbasename (name);
2883 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2884
2885 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2886
2887 if (symtab_create_debug)
2888 {
2889 fprintf_filtered (gdb_stdlog,
2890 "Created compunit symtab %s for %s.\n",
2891 host_address_to_string (cu),
2892 cu->name);
2893 }
2894
2895 return cu;
2896 }
2897
2898 /* Hook CU to the objfile it comes from. */
2899
2900 void
2901 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2902 {
2903 cu->next = cu->objfile->compunit_symtabs;
2904 cu->objfile->compunit_symtabs = cu;
2905 }
2906 \f
2907
2908 /* Reset all data structures in gdb which may contain references to
2909 symbol table data. */
2910
2911 void
2912 clear_symtab_users (symfile_add_flags add_flags)
2913 {
2914 /* Someday, we should do better than this, by only blowing away
2915 the things that really need to be blown. */
2916
2917 /* Clear the "current" symtab first, because it is no longer valid.
2918 breakpoint_re_set may try to access the current symtab. */
2919 clear_current_source_symtab_and_line ();
2920
2921 clear_displays ();
2922 clear_last_displayed_sal ();
2923 clear_pc_function_cache ();
2924 gdb::observers::new_objfile.notify (NULL);
2925
2926 /* Varobj may refer to old symbols, perform a cleanup. */
2927 varobj_invalidate ();
2928
2929 /* Now that the various caches have been cleared, we can re_set
2930 our breakpoints without risking it using stale data. */
2931 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2932 breakpoint_re_set ();
2933 }
2934 \f
2935 /* OVERLAYS:
2936 The following code implements an abstraction for debugging overlay sections.
2937
2938 The target model is as follows:
2939 1) The gnu linker will permit multiple sections to be mapped into the
2940 same VMA, each with its own unique LMA (or load address).
2941 2) It is assumed that some runtime mechanism exists for mapping the
2942 sections, one by one, from the load address into the VMA address.
2943 3) This code provides a mechanism for gdb to keep track of which
2944 sections should be considered to be mapped from the VMA to the LMA.
2945 This information is used for symbol lookup, and memory read/write.
2946 For instance, if a section has been mapped then its contents
2947 should be read from the VMA, otherwise from the LMA.
2948
2949 Two levels of debugger support for overlays are available. One is
2950 "manual", in which the debugger relies on the user to tell it which
2951 overlays are currently mapped. This level of support is
2952 implemented entirely in the core debugger, and the information about
2953 whether a section is mapped is kept in the objfile->obj_section table.
2954
2955 The second level of support is "automatic", and is only available if
2956 the target-specific code provides functionality to read the target's
2957 overlay mapping table, and translate its contents for the debugger
2958 (by updating the mapped state information in the obj_section tables).
2959
2960 The interface is as follows:
2961 User commands:
2962 overlay map <name> -- tell gdb to consider this section mapped
2963 overlay unmap <name> -- tell gdb to consider this section unmapped
2964 overlay list -- list the sections that GDB thinks are mapped
2965 overlay read-target -- get the target's state of what's mapped
2966 overlay off/manual/auto -- set overlay debugging state
2967 Functional interface:
2968 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2969 section, return that section.
2970 find_pc_overlay(pc): find any overlay section that contains
2971 the pc, either in its VMA or its LMA
2972 section_is_mapped(sect): true if overlay is marked as mapped
2973 section_is_overlay(sect): true if section's VMA != LMA
2974 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2975 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2976 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2977 overlay_mapped_address(...): map an address from section's LMA to VMA
2978 overlay_unmapped_address(...): map an address from section's VMA to LMA
2979 symbol_overlayed_address(...): Return a "current" address for symbol:
2980 either in VMA or LMA depending on whether
2981 the symbol's section is currently mapped. */
2982
2983 /* Overlay debugging state: */
2984
2985 enum overlay_debugging_state overlay_debugging = ovly_off;
2986 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2987
2988 /* Function: section_is_overlay (SECTION)
2989 Returns true if SECTION has VMA not equal to LMA, ie.
2990 SECTION is loaded at an address different from where it will "run". */
2991
2992 int
2993 section_is_overlay (struct obj_section *section)
2994 {
2995 if (overlay_debugging && section)
2996 {
2997 asection *bfd_section = section->the_bfd_section;
2998
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3002 return 1;
3003 }
3004
3005 return 0;
3006 }
3007
3008 /* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011 static void
3012 overlay_invalidate_all (void)
3013 {
3014 struct obj_section *sect;
3015
3016 for (objfile *objfile : current_program_space->objfiles ())
3017 ALL_OBJFILE_OSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
3020 }
3021
3022 /* Function: section_is_mapped (SECTION)
3023 Returns true if section is an overlay, and is currently mapped.
3024
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3030
3031 int
3032 section_is_mapped (struct obj_section *osect)
3033 {
3034 struct gdbarch *gdbarch;
3035
3036 if (osect == 0 || !section_is_overlay (osect))
3037 return 0;
3038
3039 switch (overlay_debugging)
3040 {
3041 default:
3042 case ovly_off:
3043 return 0; /* overlay debugging off */
3044 case ovly_auto: /* overlay debugging automatic */
3045 /* Unles there is a gdbarch_overlay_update function,
3046 there's really nothing useful to do here (can't really go auto). */
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
3049 {
3050 if (overlay_cache_invalid)
3051 {
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3054 }
3055 if (osect->ovly_mapped == -1)
3056 gdbarch_overlay_update (gdbarch, osect);
3057 }
3058 /* fall thru */
3059 case ovly_on: /* overlay debugging manual */
3060 return osect->ovly_mapped == 1;
3061 }
3062 }
3063
3064 /* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3066
3067 CORE_ADDR
3068 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3069 {
3070 if (section_is_overlay (section))
3071 {
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
3074
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3078
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3089
3090 CORE_ADDR
3091 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3092 {
3093 if (section_is_overlay (section))
3094 {
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3097 return 1;
3098 }
3099
3100 return 0;
3101 }
3102
3103 /* Return true if the mapped ranges of sections A and B overlap, false
3104 otherwise. */
3105
3106 static int
3107 sections_overlap (struct obj_section *a, struct obj_section *b)
3108 {
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
3113
3114 return (a_start < b_end && b_start < a_end);
3115 }
3116
3117 /* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3120
3121 CORE_ADDR
3122 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3123 {
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3125 {
3126 asection *bfd_section = section->the_bfd_section;
3127
3128 return pc + bfd_section_lma (abfd, bfd_section)
3129 - bfd_section_vma (abfd, bfd_section);
3130 }
3131
3132 return pc;
3133 }
3134
3135 /* Function: overlay_mapped_address (PC, SECTION)
3136 Returns the address corresponding to PC in the mapped (runtime) range.
3137 May be the same as PC. */
3138
3139 CORE_ADDR
3140 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3141 {
3142 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3143 {
3144 asection *bfd_section = section->the_bfd_section;
3145
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3148 }
3149
3150 return pc;
3151 }
3152
3153 /* Function: symbol_overlayed_address
3154 Return one of two addresses (relative to the VMA or to the LMA),
3155 depending on whether the section is mapped or not. */
3156
3157 CORE_ADDR
3158 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3159 {
3160 if (overlay_debugging)
3161 {
3162 /* If the symbol has no section, just return its regular address. */
3163 if (section == 0)
3164 return address;
3165 /* If the symbol's section is not an overlay, just return its
3166 address. */
3167 if (!section_is_overlay (section))
3168 return address;
3169 /* If the symbol's section is mapped, just return its address. */
3170 if (section_is_mapped (section))
3171 return address;
3172 /*
3173 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3174 * then return its LOADED address rather than its vma address!!
3175 */
3176 return overlay_unmapped_address (address, section);
3177 }
3178 return address;
3179 }
3180
3181 /* Function: find_pc_overlay (PC)
3182 Return the best-match overlay section for PC:
3183 If PC matches a mapped overlay section's VMA, return that section.
3184 Else if PC matches an unmapped section's VMA, return that section.
3185 Else if PC matches an unmapped section's LMA, return that section. */
3186
3187 struct obj_section *
3188 find_pc_overlay (CORE_ADDR pc)
3189 {
3190 struct obj_section *osect, *best_match = NULL;
3191
3192 if (overlay_debugging)
3193 {
3194 for (objfile *objfile : current_program_space->objfiles ())
3195 ALL_OBJFILE_OSECTIONS (objfile, osect)
3196 if (section_is_overlay (osect))
3197 {
3198 if (pc_in_mapped_range (pc, osect))
3199 {
3200 if (section_is_mapped (osect))
3201 return osect;
3202 else
3203 best_match = osect;
3204 }
3205 else if (pc_in_unmapped_range (pc, osect))
3206 best_match = osect;
3207 }
3208 }
3209 return best_match;
3210 }
3211
3212 /* Function: find_pc_mapped_section (PC)
3213 If PC falls into the VMA address range of an overlay section that is
3214 currently marked as MAPPED, return that section. Else return NULL. */
3215
3216 struct obj_section *
3217 find_pc_mapped_section (CORE_ADDR pc)
3218 {
3219 struct obj_section *osect;
3220
3221 if (overlay_debugging)
3222 {
3223 for (objfile *objfile : current_program_space->objfiles ())
3224 ALL_OBJFILE_OSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 /* Function: list_overlays_command
3233 Print a list of mapped sections and their PC ranges. */
3234
3235 static void
3236 list_overlays_command (const char *args, int from_tty)
3237 {
3238 int nmapped = 0;
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 {
3243 for (objfile *objfile : current_program_space->objfiles ())
3244 ALL_OBJFILE_OSECTIONS (objfile, osect)
3245 if (section_is_mapped (osect))
3246 {
3247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3248 const char *name;
3249 bfd_vma lma, vma;
3250 int size;
3251
3252 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3253 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3254 size = bfd_get_section_size (osect->the_bfd_section);
3255 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3256
3257 printf_filtered ("Section %s, loaded at ", name);
3258 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3259 puts_filtered (" - ");
3260 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3261 printf_filtered (", mapped at ");
3262 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3265 puts_filtered ("\n");
3266
3267 nmapped++;
3268 }
3269 }
3270 if (nmapped == 0)
3271 printf_filtered (_("No sections are mapped.\n"));
3272 }
3273
3274 /* Function: map_overlay_command
3275 Mark the named section as mapped (ie. residing at its VMA address). */
3276
3277 static void
3278 map_overlay_command (const char *args, int from_tty)
3279 {
3280 struct obj_section *sec, *sec2;
3281
3282 if (!overlay_debugging)
3283 error (_("Overlay debugging not enabled. Use "
3284 "either the 'overlay auto' or\n"
3285 "the 'overlay manual' command."));
3286
3287 if (args == 0 || *args == 0)
3288 error (_("Argument required: name of an overlay section"));
3289
3290 /* First, find a section matching the user supplied argument. */
3291 for (objfile *obj_file : current_program_space->objfiles ())
3292 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3293 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3294 args))
3295 {
3296 /* Now, check to see if the section is an overlay. */
3297 if (!section_is_overlay (sec))
3298 continue; /* not an overlay section */
3299
3300 /* Mark the overlay as "mapped". */
3301 sec->ovly_mapped = 1;
3302
3303 /* Next, make a pass and unmap any sections that are
3304 overlapped by this new section: */
3305 for (objfile *objfile2 : current_program_space->objfiles ())
3306 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3307 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3308 sec2))
3309 {
3310 if (info_verbose)
3311 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3312 bfd_section_name (obj_file->obfd,
3313 sec2->the_bfd_section));
3314 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3315 }
3316 return;
3317 }
3318 error (_("No overlay section called %s"), args);
3319 }
3320
3321 /* Function: unmap_overlay_command
3322 Mark the overlay section as unmapped
3323 (ie. resident in its LMA address range, rather than the VMA range). */
3324
3325 static void
3326 unmap_overlay_command (const char *args, int from_tty)
3327 {
3328 struct obj_section *sec = NULL;
3329
3330 if (!overlay_debugging)
3331 error (_("Overlay debugging not enabled. "
3332 "Use either the 'overlay auto' or\n"
3333 "the 'overlay manual' command."));
3334
3335 if (args == 0 || *args == 0)
3336 error (_("Argument required: name of an overlay section"));
3337
3338 /* First, find a section matching the user supplied argument. */
3339 for (objfile *objfile : current_program_space->objfiles ())
3340 ALL_OBJFILE_OSECTIONS (objfile, sec)
3341 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3342 {
3343 if (!sec->ovly_mapped)
3344 error (_("Section %s is not mapped"), args);
3345 sec->ovly_mapped = 0;
3346 return;
3347 }
3348 error (_("No overlay section called %s"), args);
3349 }
3350
3351 /* Function: overlay_auto_command
3352 A utility command to turn on overlay debugging.
3353 Possibly this should be done via a set/show command. */
3354
3355 static void
3356 overlay_auto_command (const char *args, int from_tty)
3357 {
3358 overlay_debugging = ovly_auto;
3359 enable_overlay_breakpoints ();
3360 if (info_verbose)
3361 printf_unfiltered (_("Automatic overlay debugging enabled."));
3362 }
3363
3364 /* Function: overlay_manual_command
3365 A utility command to turn on overlay debugging.
3366 Possibly this should be done via a set/show command. */
3367
3368 static void
3369 overlay_manual_command (const char *args, int from_tty)
3370 {
3371 overlay_debugging = ovly_on;
3372 disable_overlay_breakpoints ();
3373 if (info_verbose)
3374 printf_unfiltered (_("Overlay debugging enabled."));
3375 }
3376
3377 /* Function: overlay_off_command
3378 A utility command to turn on overlay debugging.
3379 Possibly this should be done via a set/show command. */
3380
3381 static void
3382 overlay_off_command (const char *args, int from_tty)
3383 {
3384 overlay_debugging = ovly_off;
3385 disable_overlay_breakpoints ();
3386 if (info_verbose)
3387 printf_unfiltered (_("Overlay debugging disabled."));
3388 }
3389
3390 static void
3391 overlay_load_command (const char *args, int from_tty)
3392 {
3393 struct gdbarch *gdbarch = get_current_arch ();
3394
3395 if (gdbarch_overlay_update_p (gdbarch))
3396 gdbarch_overlay_update (gdbarch, NULL);
3397 else
3398 error (_("This target does not know how to read its overlay state."));
3399 }
3400
3401 /* Function: overlay_command
3402 A place-holder for a mis-typed command. */
3403
3404 /* Command list chain containing all defined "overlay" subcommands. */
3405 static struct cmd_list_element *overlaylist;
3406
3407 static void
3408 overlay_command (const char *args, int from_tty)
3409 {
3410 printf_unfiltered
3411 ("\"overlay\" must be followed by the name of an overlay command.\n");
3412 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3413 }
3414
3415 /* Target Overlays for the "Simplest" overlay manager:
3416
3417 This is GDB's default target overlay layer. It works with the
3418 minimal overlay manager supplied as an example by Cygnus. The
3419 entry point is via a function pointer "gdbarch_overlay_update",
3420 so targets that use a different runtime overlay manager can
3421 substitute their own overlay_update function and take over the
3422 function pointer.
3423
3424 The overlay_update function pokes around in the target's data structures
3425 to see what overlays are mapped, and updates GDB's overlay mapping with
3426 this information.
3427
3428 In this simple implementation, the target data structures are as follows:
3429 unsigned _novlys; /# number of overlay sections #/
3430 unsigned _ovly_table[_novlys][4] = {
3431 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3432 {..., ..., ..., ...},
3433 }
3434 unsigned _novly_regions; /# number of overlay regions #/
3435 unsigned _ovly_region_table[_novly_regions][3] = {
3436 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3437 {..., ..., ...},
3438 }
3439 These functions will attempt to update GDB's mappedness state in the
3440 symbol section table, based on the target's mappedness state.
3441
3442 To do this, we keep a cached copy of the target's _ovly_table, and
3443 attempt to detect when the cached copy is invalidated. The main
3444 entry point is "simple_overlay_update(SECT), which looks up SECT in
3445 the cached table and re-reads only the entry for that section from
3446 the target (whenever possible). */
3447
3448 /* Cached, dynamically allocated copies of the target data structures: */
3449 static unsigned (*cache_ovly_table)[4] = 0;
3450 static unsigned cache_novlys = 0;
3451 static CORE_ADDR cache_ovly_table_base = 0;
3452 enum ovly_index
3453 {
3454 VMA, OSIZE, LMA, MAPPED
3455 };
3456
3457 /* Throw away the cached copy of _ovly_table. */
3458
3459 static void
3460 simple_free_overlay_table (void)
3461 {
3462 if (cache_ovly_table)
3463 xfree (cache_ovly_table);
3464 cache_novlys = 0;
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3467 }
3468
3469 /* Read an array of ints of size SIZE from the target into a local buffer.
3470 Convert to host order. int LEN is number of ints. */
3471
3472 static void
3473 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3474 int len, int size, enum bfd_endian byte_order)
3475 {
3476 /* FIXME (alloca): Not safe if array is very large. */
3477 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3478 int i;
3479
3480 read_memory (memaddr, buf, len * size);
3481 for (i = 0; i < len; i++)
3482 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3483 }
3484
3485 /* Find and grab a copy of the target _ovly_table
3486 (and _novlys, which is needed for the table's size). */
3487
3488 static int
3489 simple_read_overlay_table (void)
3490 {
3491 struct bound_minimal_symbol novlys_msym;
3492 struct bound_minimal_symbol ovly_table_msym;
3493 struct gdbarch *gdbarch;
3494 int word_size;
3495 enum bfd_endian byte_order;
3496
3497 simple_free_overlay_table ();
3498 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3499 if (! novlys_msym.minsym)
3500 {
3501 error (_("Error reading inferior's overlay table: "
3502 "couldn't find `_novlys' variable\n"
3503 "in inferior. Use `overlay manual' mode."));
3504 return 0;
3505 }
3506
3507 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3508 if (! ovly_table_msym.minsym)
3509 {
3510 error (_("Error reading inferior's overlay table: couldn't find "
3511 "`_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3513 return 0;
3514 }
3515
3516 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3517 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3518 byte_order = gdbarch_byte_order (gdbarch);
3519
3520 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3521 4, byte_order);
3522 cache_ovly_table
3523 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3524 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3525 read_target_long_array (cache_ovly_table_base,
3526 (unsigned int *) cache_ovly_table,
3527 cache_novlys * 4, word_size, byte_order);
3528
3529 return 1; /* SUCCESS */
3530 }
3531
3532 /* Function: simple_overlay_update_1
3533 A helper function for simple_overlay_update. Assuming a cached copy
3534 of _ovly_table exists, look through it to find an entry whose vma,
3535 lma and size match those of OSECT. Re-read the entry and make sure
3536 it still matches OSECT (else the table may no longer be valid).
3537 Set OSECT's mapped state to match the entry. Return: 1 for
3538 success, 0 for failure. */
3539
3540 static int
3541 simple_overlay_update_1 (struct obj_section *osect)
3542 {
3543 int i;
3544 asection *bsect = osect->the_bfd_section;
3545 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3546 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3548
3549 for (i = 0; i < cache_novlys; i++)
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3552 {
3553 read_target_long_array (cache_ovly_table_base + i * word_size,
3554 (unsigned int *) cache_ovly_table[i],
3555 4, word_size, byte_order);
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3558 {
3559 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3560 return 1;
3561 }
3562 else /* Warning! Warning! Target's ovly table has changed! */
3563 return 0;
3564 }
3565 return 0;
3566 }
3567
3568 /* Function: simple_overlay_update
3569 If OSECT is NULL, then update all sections' mapped state
3570 (after re-reading the entire target _ovly_table).
3571 If OSECT is non-NULL, then try to find a matching entry in the
3572 cached ovly_table and update only OSECT's mapped state.
3573 If a cached entry can't be found or the cache isn't valid, then
3574 re-read the entire cache, and go ahead and update all sections. */
3575
3576 void
3577 simple_overlay_update (struct obj_section *osect)
3578 {
3579 /* Were we given an osect to look up? NULL means do all of them. */
3580 if (osect)
3581 /* Have we got a cached copy of the target's overlay table? */
3582 if (cache_ovly_table != NULL)
3583 {
3584 /* Does its cached location match what's currently in the
3585 symtab? */
3586 struct bound_minimal_symbol minsym
3587 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3588
3589 if (minsym.minsym == NULL)
3590 error (_("Error reading inferior's overlay table: couldn't "
3591 "find `_ovly_table' array\n"
3592 "in inferior. Use `overlay manual' mode."));
3593
3594 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3595 /* Then go ahead and try to look up this single section in
3596 the cache. */
3597 if (simple_overlay_update_1 (osect))
3598 /* Found it! We're done. */
3599 return;
3600 }
3601
3602 /* Cached table no good: need to read the entire table anew.
3603 Or else we want all the sections, in which case it's actually
3604 more efficient to read the whole table in one block anyway. */
3605
3606 if (! simple_read_overlay_table ())
3607 return;
3608
3609 /* Now may as well update all sections, even if only one was requested. */
3610 for (objfile *objfile : current_program_space->objfiles ())
3611 ALL_OBJFILE_OSECTIONS (objfile, osect)
3612 if (section_is_overlay (osect))
3613 {
3614 int i;
3615 asection *bsect = osect->the_bfd_section;
3616
3617 for (i = 0; i < cache_novlys; i++)
3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3620 { /* obj_section matches i'th entry in ovly_table. */
3621 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3622 break; /* finished with inner for loop: break out. */
3623 }
3624 }
3625 }
3626
3627 /* Set the output sections and output offsets for section SECTP in
3628 ABFD. The relocation code in BFD will read these offsets, so we
3629 need to be sure they're initialized. We map each section to itself,
3630 with no offset; this means that SECTP->vma will be honored. */
3631
3632 static void
3633 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3634 {
3635 sectp->output_section = sectp;
3636 sectp->output_offset = 0;
3637 }
3638
3639 /* Default implementation for sym_relocate. */
3640
3641 bfd_byte *
3642 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644 {
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659 }
3660
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
3674
3675 bfd_byte *
3676 symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
3678 {
3679 gdb_assert (objfile->sf->sym_relocate);
3680
3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3682 }
3683
3684 struct symfile_segment_data *
3685 get_symfile_segment_data (bfd *abfd)
3686 {
3687 const struct sym_fns *sf = find_sym_fns (abfd);
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693 }
3694
3695 void
3696 free_symfile_segment_data (struct symfile_segment_data *data)
3697 {
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702 }
3703
3704 /* Given:
3705 - DATA, containing segment addresses from the object file ABFD, and
3706 the mapping from ABFD's sections onto the segments that own them,
3707 and
3708 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3709 segment addresses reported by the target,
3710 store the appropriate offsets for each section in OFFSETS.
3711
3712 If there are fewer entries in SEGMENT_BASES than there are segments
3713 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3714
3715 If there are more entries, then ignore the extra. The target may
3716 not be able to distinguish between an empty data segment and a
3717 missing data segment; a missing text segment is less plausible. */
3718
3719 int
3720 symfile_map_offsets_to_segments (bfd *abfd,
3721 const struct symfile_segment_data *data,
3722 struct section_offsets *offsets,
3723 int num_segment_bases,
3724 const CORE_ADDR *segment_bases)
3725 {
3726 int i;
3727 asection *sect;
3728
3729 /* It doesn't make sense to call this function unless you have some
3730 segment base addresses. */
3731 gdb_assert (num_segment_bases > 0);
3732
3733 /* If we do not have segment mappings for the object file, we
3734 can not relocate it by segments. */
3735 gdb_assert (data != NULL);
3736 gdb_assert (data->num_segments > 0);
3737
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
3740 int which = data->segment_info[i];
3741
3742 gdb_assert (0 <= which && which <= data->num_segments);
3743
3744 /* Don't bother computing offsets for sections that aren't
3745 loaded as part of any segment. */
3746 if (! which)
3747 continue;
3748
3749 /* Use the last SEGMENT_BASES entry as the address of any extra
3750 segments mentioned in DATA->segment_info. */
3751 if (which > num_segment_bases)
3752 which = num_segment_bases;
3753
3754 offsets->offsets[i] = (segment_bases[which - 1]
3755 - data->segment_bases[which - 1]);
3756 }
3757
3758 return 1;
3759 }
3760
3761 static void
3762 symfile_find_segment_sections (struct objfile *objfile)
3763 {
3764 bfd *abfd = objfile->obfd;
3765 int i;
3766 asection *sect;
3767 struct symfile_segment_data *data;
3768
3769 data = get_symfile_segment_data (objfile->obfd);
3770 if (data == NULL)
3771 return;
3772
3773 if (data->num_segments != 1 && data->num_segments != 2)
3774 {
3775 free_symfile_segment_data (data);
3776 return;
3777 }
3778
3779 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3780 {
3781 int which = data->segment_info[i];
3782
3783 if (which == 1)
3784 {
3785 if (objfile->sect_index_text == -1)
3786 objfile->sect_index_text = sect->index;
3787
3788 if (objfile->sect_index_rodata == -1)
3789 objfile->sect_index_rodata = sect->index;
3790 }
3791 else if (which == 2)
3792 {
3793 if (objfile->sect_index_data == -1)
3794 objfile->sect_index_data = sect->index;
3795
3796 if (objfile->sect_index_bss == -1)
3797 objfile->sect_index_bss = sect->index;
3798 }
3799 }
3800
3801 free_symfile_segment_data (data);
3802 }
3803
3804 /* Listen for free_objfile events. */
3805
3806 static void
3807 symfile_free_objfile (struct objfile *objfile)
3808 {
3809 /* Remove the target sections owned by this objfile. */
3810 if (objfile != NULL)
3811 remove_target_sections ((void *) objfile);
3812 }
3813
3814 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3815 Expand all symtabs that match the specified criteria.
3816 See quick_symbol_functions.expand_symtabs_matching for details. */
3817
3818 void
3819 expand_symtabs_matching
3820 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3821 const lookup_name_info &lookup_name,
3822 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3823 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3824 enum search_domain kind)
3825 {
3826 for (objfile *objfile : current_program_space->objfiles ())
3827 {
3828 if (objfile->sf)
3829 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3830 lookup_name,
3831 symbol_matcher,
3832 expansion_notify, kind);
3833 }
3834 }
3835
3836 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3837 Map function FUN over every file.
3838 See quick_symbol_functions.map_symbol_filenames for details. */
3839
3840 void
3841 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3842 int need_fullname)
3843 {
3844 for (objfile *objfile : current_program_space->objfiles ())
3845 {
3846 if (objfile->sf)
3847 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3848 need_fullname);
3849 }
3850 }
3851
3852 #if GDB_SELF_TEST
3853
3854 namespace selftests {
3855 namespace filename_language {
3856
3857 static void test_filename_language ()
3858 {
3859 /* This test messes up the filename_language_table global. */
3860 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3861
3862 /* Test deducing an unknown extension. */
3863 language lang = deduce_language_from_filename ("myfile.blah");
3864 SELF_CHECK (lang == language_unknown);
3865
3866 /* Test deducing a known extension. */
3867 lang = deduce_language_from_filename ("myfile.c");
3868 SELF_CHECK (lang == language_c);
3869
3870 /* Test adding a new extension using the internal API. */
3871 add_filename_language (".blah", language_pascal);
3872 lang = deduce_language_from_filename ("myfile.blah");
3873 SELF_CHECK (lang == language_pascal);
3874 }
3875
3876 static void
3877 test_set_ext_lang_command ()
3878 {
3879 /* This test messes up the filename_language_table global. */
3880 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3881
3882 /* Confirm that the .hello extension is not known. */
3883 language lang = deduce_language_from_filename ("cake.hello");
3884 SELF_CHECK (lang == language_unknown);
3885
3886 /* Test adding a new extension using the CLI command. */
3887 auto args_holder = make_unique_xstrdup (".hello rust");
3888 ext_args = args_holder.get ();
3889 set_ext_lang_command (NULL, 1, NULL);
3890
3891 lang = deduce_language_from_filename ("cake.hello");
3892 SELF_CHECK (lang == language_rust);
3893
3894 /* Test overriding an existing extension using the CLI command. */
3895 int size_before = filename_language_table.size ();
3896 args_holder.reset (xstrdup (".hello pascal"));
3897 ext_args = args_holder.get ();
3898 set_ext_lang_command (NULL, 1, NULL);
3899 int size_after = filename_language_table.size ();
3900
3901 lang = deduce_language_from_filename ("cake.hello");
3902 SELF_CHECK (lang == language_pascal);
3903 SELF_CHECK (size_before == size_after);
3904 }
3905
3906 } /* namespace filename_language */
3907 } /* namespace selftests */
3908
3909 #endif /* GDB_SELF_TEST */
3910
3911 void
3912 _initialize_symfile (void)
3913 {
3914 struct cmd_list_element *c;
3915
3916 gdb::observers::free_objfile.attach (symfile_free_objfile);
3917
3918 #define READNOW_READNEVER_HELP \
3919 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3920 immediately. This makes the command slower, but may make future operations\n\
3921 faster.\n\
3922 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3923 symbolic debug information."
3924
3925 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3926 Load symbol table from executable file FILE.\n\
3927 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3928 OFF is an optional offset which is added to each section address.\n\
3929 The `file' command can also load symbol tables, as well as setting the file\n\
3930 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3932
3933 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3934 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3935 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3936 [-s SECT-NAME SECT-ADDR]...\n\
3937 ADDR is the starting address of the file's text.\n\
3938 Each '-s' argument provides a section name and address, and\n\
3939 should be specified if the data and bss segments are not contiguous\n\
3940 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3941 OFF is an optional offset which is added to the default load addresses\n\
3942 of all sections for which no other address was specified.\n"
3943 READNOW_READNEVER_HELP),
3944 &cmdlist);
3945 set_cmd_completer (c, filename_completer);
3946
3947 c = add_cmd ("remove-symbol-file", class_files,
3948 remove_symbol_file_command, _("\
3949 Remove a symbol file added via the add-symbol-file command.\n\
3950 Usage: remove-symbol-file FILENAME\n\
3951 remove-symbol-file -a ADDRESS\n\
3952 The file to remove can be identified by its filename or by an address\n\
3953 that lies within the boundaries of this symbol file in memory."),
3954 &cmdlist);
3955
3956 c = add_cmd ("load", class_files, load_command, _("\
3957 Dynamically load FILE into the running program.\n\
3958 FILE symbols are recorded for access from GDB.\n\
3959 Usage: load [FILE] [OFFSET]\n\
3960 An optional load OFFSET may also be given as a literal address.\n\
3961 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3962 on its own."), &cmdlist);
3963 set_cmd_completer (c, filename_completer);
3964
3965 add_prefix_cmd ("overlay", class_support, overlay_command,
3966 _("Commands for debugging overlays."), &overlaylist,
3967 "overlay ", 0, &cmdlist);
3968
3969 add_com_alias ("ovly", "overlay", class_alias, 1);
3970 add_com_alias ("ov", "overlay", class_alias, 1);
3971
3972 add_cmd ("map-overlay", class_support, map_overlay_command,
3973 _("Assert that an overlay section is mapped."), &overlaylist);
3974
3975 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3976 _("Assert that an overlay section is unmapped."), &overlaylist);
3977
3978 add_cmd ("list-overlays", class_support, list_overlays_command,
3979 _("List mappings of overlay sections."), &overlaylist);
3980
3981 add_cmd ("manual", class_support, overlay_manual_command,
3982 _("Enable overlay debugging."), &overlaylist);
3983 add_cmd ("off", class_support, overlay_off_command,
3984 _("Disable overlay debugging."), &overlaylist);
3985 add_cmd ("auto", class_support, overlay_auto_command,
3986 _("Enable automatic overlay debugging."), &overlaylist);
3987 add_cmd ("load-target", class_support, overlay_load_command,
3988 _("Read the overlay mapping state from the target."), &overlaylist);
3989
3990 /* Filename extension to source language lookup table: */
3991 add_setshow_string_noescape_cmd ("extension-language", class_files,
3992 &ext_args, _("\
3993 Set mapping between filename extension and source language."), _("\
3994 Show mapping between filename extension and source language."), _("\
3995 Usage: set extension-language .foo bar"),
3996 set_ext_lang_command,
3997 show_ext_args,
3998 &setlist, &showlist);
3999
4000 add_info ("extensions", info_ext_lang_command,
4001 _("All filename extensions associated with a source language."));
4002
4003 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4004 &debug_file_directory, _("\
4005 Set the directories where separate debug symbols are searched for."), _("\
4006 Show the directories where separate debug symbols are searched for."), _("\
4007 Separate debug symbols are first searched for in the same\n\
4008 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4009 and lastly at the path of the directory of the binary with\n\
4010 each global debug-file-directory component prepended."),
4011 NULL,
4012 show_debug_file_directory,
4013 &setlist, &showlist);
4014
4015 add_setshow_enum_cmd ("symbol-loading", no_class,
4016 print_symbol_loading_enums, &print_symbol_loading,
4017 _("\
4018 Set printing of symbol loading messages."), _("\
4019 Show printing of symbol loading messages."), _("\
4020 off == turn all messages off\n\
4021 brief == print messages for the executable,\n\
4022 and brief messages for shared libraries\n\
4023 full == print messages for the executable,\n\
4024 and messages for each shared library."),
4025 NULL,
4026 NULL,
4027 &setprintlist, &showprintlist);
4028
4029 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4030 &separate_debug_file_debug, _("\
4031 Set printing of separate debug info file search debug."), _("\
4032 Show printing of separate debug info file search debug."), _("\
4033 When on, GDB prints the searched locations while looking for separate debug \
4034 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4035
4036 #if GDB_SELF_TEST
4037 selftests::register_test
4038 ("filename_language", selftests::filename_language::test_filename_language);
4039 selftests::register_test
4040 ("set_ext_lang_command",
4041 selftests::filename_language::test_set_ext_lang_command);
4042 #endif
4043 }
This page took 0.232744 seconds and 5 git commands to generate.