Update copyright year range in all GDB files
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name, objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1454 i = strlen (dir);
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1457
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, debuglink);
1469
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 return debugfile;
1472
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1477 strcat (debugfile, debuglink);
1478
1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1480 return debugfile;
1481
1482 /* Then try in the global debugfile directories.
1483
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
1486
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1489
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
1493 strcat (debugfile, "/");
1494 strcat (debugfile, dir);
1495 strcat (debugfile, debuglink);
1496
1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
1507 strlen (gdb_sysroot)) == 0
1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1509 {
1510 strcpy (debugfile, debugdir);
1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1512 strcat (debugfile, "/");
1513 strcat (debugfile, debuglink);
1514
1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
1520 }
1521 }
1522
1523 do_cleanups (back_to);
1524 xfree (debugfile);
1525 return NULL;
1526 }
1527
1528 /* Modify PATH to contain only "[/]directory/" part of PATH.
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532 static void
1533 terminate_after_last_dir_separator (char *path)
1534 {
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545 }
1546
1547 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550 char *
1551 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552 {
1553 char *debugfile;
1554 unsigned long crc32;
1555
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1569
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1572
1573 if (debugfile == NULL)
1574 {
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1582 {
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1585 if (symlink_dir != NULL)
1586 {
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1599 }
1600
1601 return debugfile;
1602 }
1603
1604 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607 static void
1608 validate_readnow_readnever (objfile_flags flags)
1609 {
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612 }
1613
1614 /* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
1626 conventions (because it is confusing and inconvenient). */
1627
1628 void
1629 symbol_file_command (const char *args, int from_tty)
1630 {
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1635 symbol_file_clear (from_tty);
1636 }
1637 else
1638 {
1639 objfile_flags flags = OBJF_USERLOADED;
1640 symfile_add_flags add_flags = 0;
1641 char *name = NULL;
1642 bool stop_processing_options = false;
1643 int idx;
1644 char *arg;
1645
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
1649 gdb_argv built_argv (args);
1650 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1651 {
1652 if (stop_processing_options || *arg != '-')
1653 {
1654 if (name == NULL)
1655 name = arg;
1656 else
1657 error (_("Unrecognized argument \"%s\""), arg);
1658 }
1659 else if (strcmp (arg, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (strcmp (arg, "-readnever") == 0)
1662 flags |= OBJF_READNEVER;
1663 else if (strcmp (arg, "--") == 0)
1664 stop_processing_options = true;
1665 else
1666 error (_("Unrecognized argument \"%s\""), arg);
1667 }
1668
1669 if (name == NULL)
1670 error (_("no symbol file name was specified"));
1671
1672 validate_readnow_readnever (flags);
1673
1674 symbol_file_add_main_1 (name, add_flags, flags);
1675 }
1676 }
1677
1678 /* Set the initial language.
1679
1680 FIXME: A better solution would be to record the language in the
1681 psymtab when reading partial symbols, and then use it (if known) to
1682 set the language. This would be a win for formats that encode the
1683 language in an easily discoverable place, such as DWARF. For
1684 stabs, we can jump through hoops looking for specially named
1685 symbols or try to intuit the language from the specific type of
1686 stabs we find, but we can't do that until later when we read in
1687 full symbols. */
1688
1689 void
1690 set_initial_language (void)
1691 {
1692 enum language lang = main_language ();
1693
1694 if (lang == language_unknown)
1695 {
1696 char *name = main_name ();
1697 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1698
1699 if (sym != NULL)
1700 lang = SYMBOL_LANGUAGE (sym);
1701 }
1702
1703 if (lang == language_unknown)
1704 {
1705 /* Make C the default language */
1706 lang = language_c;
1707 }
1708
1709 set_language (lang);
1710 expected_language = current_language; /* Don't warn the user. */
1711 }
1712
1713 /* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
1717
1718 gdb_bfd_ref_ptr
1719 symfile_bfd_open (const char *name)
1720 {
1721 int desc = -1;
1722 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1723
1724 if (!is_target_filename (name))
1725 {
1726 char *absolute_name;
1727
1728 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1729
1730 /* Look down path for it, allocate 2nd new malloc'd copy. */
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1734 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1735 if (desc < 0)
1736 {
1737 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1738
1739 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1740 desc = openp (getenv ("PATH"),
1741 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1742 exename, O_RDONLY | O_BINARY, &absolute_name);
1743 }
1744 #endif
1745 if (desc < 0)
1746 perror_with_name (expanded_name.get ());
1747
1748 make_cleanup (xfree, absolute_name);
1749 name = absolute_name;
1750 }
1751
1752 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1753 if (sym_bfd == NULL)
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1756
1757 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1758 bfd_set_cacheable (sym_bfd.get (), 1);
1759
1760 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1763
1764 do_cleanups (back_to);
1765
1766 return sym_bfd;
1767 }
1768
1769 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1771
1772 int
1773 get_section_index (struct objfile *objfile, const char *section_name)
1774 {
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1776
1777 if (sect)
1778 return sect->index;
1779 else
1780 return -1;
1781 }
1782
1783 /* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1787 to handle. */
1788
1789 void
1790 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1791 {
1792 symtab_fns.emplace_back (flavour, sf);
1793 }
1794
1795 /* Initialize OBJFILE to read symbols from its associated BFD. It
1796 either returns or calls error(). The result is an initialized
1797 struct sym_fns in the objfile structure, that contains cached
1798 information about the symbol file. */
1799
1800 static const struct sym_fns *
1801 find_sym_fns (bfd *abfd)
1802 {
1803 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1804
1805 if (our_flavour == bfd_target_srec_flavour
1806 || our_flavour == bfd_target_ihex_flavour
1807 || our_flavour == bfd_target_tekhex_flavour)
1808 return NULL; /* No symbols. */
1809
1810 for (const registered_sym_fns &rsf : symtab_fns)
1811 if (our_flavour == rsf.sym_flavour)
1812 return rsf.sym_fns;
1813
1814 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1815 bfd_get_target (abfd));
1816 }
1817 \f
1818
1819 /* This function runs the load command of our current target. */
1820
1821 static void
1822 load_command (const char *arg, int from_tty)
1823 {
1824 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1825
1826 dont_repeat ();
1827
1828 /* The user might be reloading because the binary has changed. Take
1829 this opportunity to check. */
1830 reopen_exec_file ();
1831 reread_symbols ();
1832
1833 if (arg == NULL)
1834 {
1835 const char *parg;
1836 int count = 0;
1837
1838 parg = arg = get_exec_file (1);
1839
1840 /* Count how many \ " ' tab space there are in the name. */
1841 while ((parg = strpbrk (parg, "\\\"'\t ")))
1842 {
1843 parg++;
1844 count++;
1845 }
1846
1847 if (count)
1848 {
1849 /* We need to quote this string so buildargv can pull it apart. */
1850 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1851 char *ptemp = temp;
1852 const char *prev;
1853
1854 make_cleanup (xfree, temp);
1855
1856 prev = parg = arg;
1857 while ((parg = strpbrk (parg, "\\\"'\t ")))
1858 {
1859 strncpy (ptemp, prev, parg - prev);
1860 ptemp += parg - prev;
1861 prev = parg++;
1862 *ptemp++ = '\\';
1863 }
1864 strcpy (ptemp, prev);
1865
1866 arg = temp;
1867 }
1868 }
1869
1870 target_load (arg, from_tty);
1871
1872 /* After re-loading the executable, we don't really know which
1873 overlays are mapped any more. */
1874 overlay_cache_invalid = 1;
1875
1876 do_cleanups (cleanup);
1877 }
1878
1879 /* This version of "load" should be usable for any target. Currently
1880 it is just used for remote targets, not inftarg.c or core files,
1881 on the theory that only in that case is it useful.
1882
1883 Avoiding xmodem and the like seems like a win (a) because we don't have
1884 to worry about finding it, and (b) On VMS, fork() is very slow and so
1885 we don't want to run a subprocess. On the other hand, I'm not sure how
1886 performance compares. */
1887
1888 static int validate_download = 0;
1889
1890 /* Callback service function for generic_load (bfd_map_over_sections). */
1891
1892 static void
1893 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1894 {
1895 bfd_size_type *sum = (bfd_size_type *) data;
1896
1897 *sum += bfd_get_section_size (asec);
1898 }
1899
1900 /* Opaque data for load_section_callback. */
1901 struct load_section_data {
1902 CORE_ADDR load_offset;
1903 struct load_progress_data *progress_data;
1904 VEC(memory_write_request_s) *requests;
1905 };
1906
1907 /* Opaque data for load_progress. */
1908 struct load_progress_data {
1909 /* Cumulative data. */
1910 unsigned long write_count;
1911 unsigned long data_count;
1912 bfd_size_type total_size;
1913 };
1914
1915 /* Opaque data for load_progress for a single section. */
1916 struct load_progress_section_data {
1917 struct load_progress_data *cumulative;
1918
1919 /* Per-section data. */
1920 const char *section_name;
1921 ULONGEST section_sent;
1922 ULONGEST section_size;
1923 CORE_ADDR lma;
1924 gdb_byte *buffer;
1925 };
1926
1927 /* Target write callback routine for progress reporting. */
1928
1929 static void
1930 load_progress (ULONGEST bytes, void *untyped_arg)
1931 {
1932 struct load_progress_section_data *args
1933 = (struct load_progress_section_data *) untyped_arg;
1934 struct load_progress_data *totals;
1935
1936 if (args == NULL)
1937 /* Writing padding data. No easy way to get at the cumulative
1938 stats, so just ignore this. */
1939 return;
1940
1941 totals = args->cumulative;
1942
1943 if (bytes == 0 && args->section_sent == 0)
1944 {
1945 /* The write is just starting. Let the user know we've started
1946 this section. */
1947 current_uiout->message ("Loading section %s, size %s lma %s\n",
1948 args->section_name,
1949 hex_string (args->section_size),
1950 paddress (target_gdbarch (), args->lma));
1951 return;
1952 }
1953
1954 if (validate_download)
1955 {
1956 /* Broken memories and broken monitors manifest themselves here
1957 when bring new computers to life. This doubles already slow
1958 downloads. */
1959 /* NOTE: cagney/1999-10-18: A more efficient implementation
1960 might add a verify_memory() method to the target vector and
1961 then use that. remote.c could implement that method using
1962 the ``qCRC'' packet. */
1963 gdb::byte_vector check (bytes);
1964
1965 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1966 error (_("Download verify read failed at %s"),
1967 paddress (target_gdbarch (), args->lma));
1968 if (memcmp (args->buffer, check.data (), bytes) != 0)
1969 error (_("Download verify compare failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 }
1972 totals->data_count += bytes;
1973 args->lma += bytes;
1974 args->buffer += bytes;
1975 totals->write_count += 1;
1976 args->section_sent += bytes;
1977 if (check_quit_flag ()
1978 || (deprecated_ui_load_progress_hook != NULL
1979 && deprecated_ui_load_progress_hook (args->section_name,
1980 args->section_sent)))
1981 error (_("Canceled the download"));
1982
1983 if (deprecated_show_load_progress != NULL)
1984 deprecated_show_load_progress (args->section_name,
1985 args->section_sent,
1986 args->section_size,
1987 totals->data_count,
1988 totals->total_size);
1989 }
1990
1991 /* Callback service function for generic_load (bfd_map_over_sections). */
1992
1993 static void
1994 load_section_callback (bfd *abfd, asection *asec, void *data)
1995 {
1996 struct memory_write_request *new_request;
1997 struct load_section_data *args = (struct load_section_data *) data;
1998 struct load_progress_section_data *section_data;
1999 bfd_size_type size = bfd_get_section_size (asec);
2000 gdb_byte *buffer;
2001 const char *sect_name = bfd_get_section_name (abfd, asec);
2002
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004 return;
2005
2006 if (size == 0)
2007 return;
2008
2009 new_request = VEC_safe_push (memory_write_request_s,
2010 args->requests, NULL);
2011 memset (new_request, 0, sizeof (struct memory_write_request));
2012 section_data = XCNEW (struct load_progress_section_data);
2013 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2014 new_request->end = new_request->begin + size; /* FIXME Should size
2015 be in instead? */
2016 new_request->data = (gdb_byte *) xmalloc (size);
2017 new_request->baton = section_data;
2018
2019 buffer = new_request->data;
2020
2021 section_data->cumulative = args->progress_data;
2022 section_data->section_name = sect_name;
2023 section_data->section_size = size;
2024 section_data->lma = new_request->begin;
2025 section_data->buffer = buffer;
2026
2027 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2028 }
2029
2030 /* Clean up an entire memory request vector, including load
2031 data and progress records. */
2032
2033 static void
2034 clear_memory_write_data (void *arg)
2035 {
2036 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2037 VEC(memory_write_request_s) *vec = *vec_p;
2038 int i;
2039 struct memory_write_request *mr;
2040
2041 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2042 {
2043 xfree (mr->data);
2044 xfree (mr->baton);
2045 }
2046 VEC_free (memory_write_request_s, vec);
2047 }
2048
2049 static void print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 std::chrono::steady_clock::duration d);
2053
2054 void
2055 generic_load (const char *args, int from_tty)
2056 {
2057 struct cleanup *old_cleanups;
2058 struct load_section_data cbdata;
2059 struct load_progress_data total_progress;
2060 struct ui_out *uiout = current_uiout;
2061
2062 CORE_ADDR entry;
2063
2064 memset (&cbdata, 0, sizeof (cbdata));
2065 memset (&total_progress, 0, sizeof (total_progress));
2066 cbdata.progress_data = &total_progress;
2067
2068 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2069
2070 if (args == NULL)
2071 error_no_arg (_("file to load"));
2072
2073 gdb_argv argv (args);
2074
2075 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2076
2077 if (argv[1] != NULL)
2078 {
2079 const char *endptr;
2080
2081 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2082
2083 /* If the last word was not a valid number then
2084 treat it as a file name with spaces in. */
2085 if (argv[1] == endptr)
2086 error (_("Invalid download offset:%s."), argv[1]);
2087
2088 if (argv[2] != NULL)
2089 error (_("Too many parameters."));
2090 }
2091
2092 /* Open the file for loading. */
2093 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2094 if (loadfile_bfd == NULL)
2095 perror_with_name (filename.get ());
2096
2097 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2098 {
2099 error (_("\"%s\" is not an object file: %s"), filename.get (),
2100 bfd_errmsg (bfd_get_error ()));
2101 }
2102
2103 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2104 (void *) &total_progress.total_size);
2105
2106 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2107
2108 using namespace std::chrono;
2109
2110 steady_clock::time_point start_time = steady_clock::now ();
2111
2112 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2113 load_progress) != 0)
2114 error (_("Load failed"));
2115
2116 steady_clock::time_point end_time = steady_clock::now ();
2117
2118 entry = bfd_get_start_address (loadfile_bfd.get ());
2119 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2120 uiout->text ("Start address ");
2121 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2122 uiout->text (", load size ");
2123 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2124 uiout->text ("\n");
2125 regcache_write_pc (get_current_regcache (), entry);
2126
2127 /* Reset breakpoints, now that we have changed the load image. For
2128 instance, breakpoints may have been set (or reset, by
2129 post_create_inferior) while connected to the target but before we
2130 loaded the program. In that case, the prologue analyzer could
2131 have read instructions from the target to find the right
2132 breakpoint locations. Loading has changed the contents of that
2133 memory. */
2134
2135 breakpoint_re_set ();
2136
2137 print_transfer_performance (gdb_stdout, total_progress.data_count,
2138 total_progress.write_count,
2139 end_time - start_time);
2140
2141 do_cleanups (old_cleanups);
2142 }
2143
2144 /* Report on STREAM the performance of a memory transfer operation,
2145 such as 'load'. DATA_COUNT is the number of bytes transferred.
2146 WRITE_COUNT is the number of separate write operations, or 0, if
2147 that information is not available. TIME is how long the operation
2148 lasted. */
2149
2150 static void
2151 print_transfer_performance (struct ui_file *stream,
2152 unsigned long data_count,
2153 unsigned long write_count,
2154 std::chrono::steady_clock::duration time)
2155 {
2156 using namespace std::chrono;
2157 struct ui_out *uiout = current_uiout;
2158
2159 milliseconds ms = duration_cast<milliseconds> (time);
2160
2161 uiout->text ("Transfer rate: ");
2162 if (ms.count () > 0)
2163 {
2164 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2165
2166 if (uiout->is_mi_like_p ())
2167 {
2168 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2169 uiout->text (" bits/sec");
2170 }
2171 else if (rate < 1024)
2172 {
2173 uiout->field_fmt ("transfer-rate", "%lu", rate);
2174 uiout->text (" bytes/sec");
2175 }
2176 else
2177 {
2178 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2179 uiout->text (" KB/sec");
2180 }
2181 }
2182 else
2183 {
2184 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2185 uiout->text (" bits in <1 sec");
2186 }
2187 if (write_count > 0)
2188 {
2189 uiout->text (", ");
2190 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2191 uiout->text (" bytes/write");
2192 }
2193 uiout->text (".\n");
2194 }
2195
2196 /* This function allows the addition of incrementally linked object files.
2197 It does not modify any state in the target, only in the debugger. */
2198 /* Note: ezannoni 2000-04-13 This function/command used to have a
2199 special case syntax for the rombug target (Rombug is the boot
2200 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2201 rombug case, the user doesn't need to supply a text address,
2202 instead a call to target_link() (in target.c) would supply the
2203 value to use. We are now discontinuing this type of ad hoc syntax. */
2204
2205 static void
2206 add_symbol_file_command (const char *args, int from_tty)
2207 {
2208 struct gdbarch *gdbarch = get_current_arch ();
2209 gdb::unique_xmalloc_ptr<char> filename;
2210 char *arg;
2211 int argcnt = 0;
2212 int sec_num = 0;
2213 struct objfile *objf;
2214 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2215 symfile_add_flags add_flags = 0;
2216
2217 if (from_tty)
2218 add_flags |= SYMFILE_VERBOSE;
2219
2220 struct sect_opt
2221 {
2222 const char *name;
2223 const char *value;
2224 };
2225
2226 struct section_addr_info *section_addrs;
2227 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2228 bool stop_processing_options = false;
2229 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2230
2231 dont_repeat ();
2232
2233 if (args == NULL)
2234 error (_("add-symbol-file takes a file name and an address"));
2235
2236 bool seen_addr = false;
2237 gdb_argv argv (args);
2238
2239 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2240 {
2241 if (stop_processing_options || *arg != '-')
2242 {
2243 if (filename == NULL)
2244 {
2245 /* First non-option argument is always the filename. */
2246 filename.reset (tilde_expand (arg));
2247 }
2248 else if (!seen_addr)
2249 {
2250 /* The second non-option argument is always the text
2251 address at which to load the program. */
2252 sect_opts[0].value = arg;
2253 seen_addr = true;
2254 }
2255 else
2256 error (_("Unrecognized argument \"%s\""), arg);
2257 }
2258 else if (strcmp (arg, "-readnow") == 0)
2259 flags |= OBJF_READNOW;
2260 else if (strcmp (arg, "-readnever") == 0)
2261 flags |= OBJF_READNEVER;
2262 else if (strcmp (arg, "-s") == 0)
2263 {
2264 if (argv[argcnt + 1] == NULL)
2265 error (_("Missing section name after \"-s\""));
2266 else if (argv[argcnt + 2] == NULL)
2267 error (_("Missing section address after \"-s\""));
2268
2269 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2270
2271 sect_opts.push_back (sect);
2272 argcnt += 2;
2273 }
2274 else if (strcmp (arg, "--") == 0)
2275 stop_processing_options = true;
2276 else
2277 error (_("Unrecognized argument \"%s\""), arg);
2278 }
2279
2280 if (filename == NULL)
2281 error (_("You must provide a filename to be loaded."));
2282
2283 validate_readnow_readnever (flags);
2284
2285 /* This command takes at least two arguments. The first one is a
2286 filename, and the second is the address where this file has been
2287 loaded. Abort now if this address hasn't been provided by the
2288 user. */
2289 if (!seen_addr)
2290 error (_("The address where %s has been loaded is missing"),
2291 filename.get ());
2292
2293 /* Print the prompt for the query below. And save the arguments into
2294 a sect_addr_info structure to be passed around to other
2295 functions. We have to split this up into separate print
2296 statements because hex_string returns a local static
2297 string. */
2298
2299 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2300 filename.get ());
2301 section_addrs = alloc_section_addr_info (sect_opts.size ());
2302 make_cleanup (xfree, section_addrs);
2303 for (sect_opt &sect : sect_opts)
2304 {
2305 CORE_ADDR addr;
2306 const char *val = sect.value;
2307 const char *sec = sect.name;
2308
2309 addr = parse_and_eval_address (val);
2310
2311 /* Here we store the section offsets in the order they were
2312 entered on the command line. */
2313 section_addrs->other[sec_num].name = (char *) sec;
2314 section_addrs->other[sec_num].addr = addr;
2315 printf_unfiltered ("\t%s_addr = %s\n", sec,
2316 paddress (gdbarch, addr));
2317 sec_num++;
2318
2319 /* The object's sections are initialized when a
2320 call is made to build_objfile_section_table (objfile).
2321 This happens in reread_symbols.
2322 At this point, we don't know what file type this is,
2323 so we can't determine what section names are valid. */
2324 }
2325 section_addrs->num_sections = sec_num;
2326
2327 if (from_tty && (!query ("%s", "")))
2328 error (_("Not confirmed."));
2329
2330 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2331
2332 add_target_sections_of_objfile (objf);
2333
2334 /* Getting new symbols may change our opinion about what is
2335 frameless. */
2336 reinit_frame_cache ();
2337 do_cleanups (my_cleanups);
2338 }
2339 \f
2340
2341 /* This function removes a symbol file that was added via add-symbol-file. */
2342
2343 static void
2344 remove_symbol_file_command (const char *args, int from_tty)
2345 {
2346 struct objfile *objf = NULL;
2347 struct program_space *pspace = current_program_space;
2348
2349 dont_repeat ();
2350
2351 if (args == NULL)
2352 error (_("remove-symbol-file: no symbol file provided"));
2353
2354 gdb_argv argv (args);
2355
2356 if (strcmp (argv[0], "-a") == 0)
2357 {
2358 /* Interpret the next argument as an address. */
2359 CORE_ADDR addr;
2360
2361 if (argv[1] == NULL)
2362 error (_("Missing address argument"));
2363
2364 if (argv[2] != NULL)
2365 error (_("Junk after %s"), argv[1]);
2366
2367 addr = parse_and_eval_address (argv[1]);
2368
2369 ALL_OBJFILES (objf)
2370 {
2371 if ((objf->flags & OBJF_USERLOADED) != 0
2372 && (objf->flags & OBJF_SHARED) != 0
2373 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2374 break;
2375 }
2376 }
2377 else if (argv[0] != NULL)
2378 {
2379 /* Interpret the current argument as a file name. */
2380
2381 if (argv[1] != NULL)
2382 error (_("Junk after %s"), argv[0]);
2383
2384 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2385
2386 ALL_OBJFILES (objf)
2387 {
2388 if ((objf->flags & OBJF_USERLOADED) != 0
2389 && (objf->flags & OBJF_SHARED) != 0
2390 && objf->pspace == pspace
2391 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2392 break;
2393 }
2394 }
2395
2396 if (objf == NULL)
2397 error (_("No symbol file found"));
2398
2399 if (from_tty
2400 && !query (_("Remove symbol table from file \"%s\"? "),
2401 objfile_name (objf)))
2402 error (_("Not confirmed."));
2403
2404 delete objf;
2405 clear_symtab_users (0);
2406 }
2407
2408 /* Re-read symbols if a symbol-file has changed. */
2409
2410 void
2411 reread_symbols (void)
2412 {
2413 struct objfile *objfile;
2414 long new_modtime;
2415 struct stat new_statbuf;
2416 int res;
2417 std::vector<struct objfile *> new_objfiles;
2418
2419 /* With the addition of shared libraries, this should be modified,
2420 the load time should be saved in the partial symbol tables, since
2421 different tables may come from different source files. FIXME.
2422 This routine should then walk down each partial symbol table
2423 and see if the symbol table that it originates from has been changed. */
2424
2425 for (objfile = object_files; objfile; objfile = objfile->next)
2426 {
2427 if (objfile->obfd == NULL)
2428 continue;
2429
2430 /* Separate debug objfiles are handled in the main objfile. */
2431 if (objfile->separate_debug_objfile_backlink)
2432 continue;
2433
2434 /* If this object is from an archive (what you usually create with
2435 `ar', often called a `static library' on most systems, though
2436 a `shared library' on AIX is also an archive), then you should
2437 stat on the archive name, not member name. */
2438 if (objfile->obfd->my_archive)
2439 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2440 else
2441 res = stat (objfile_name (objfile), &new_statbuf);
2442 if (res != 0)
2443 {
2444 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2445 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2446 objfile_name (objfile));
2447 continue;
2448 }
2449 new_modtime = new_statbuf.st_mtime;
2450 if (new_modtime != objfile->mtime)
2451 {
2452 struct cleanup *old_cleanups;
2453 struct section_offsets *offsets;
2454 int num_offsets;
2455 char *original_name;
2456
2457 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2458 objfile_name (objfile));
2459
2460 /* There are various functions like symbol_file_add,
2461 symfile_bfd_open, syms_from_objfile, etc., which might
2462 appear to do what we want. But they have various other
2463 effects which we *don't* want. So we just do stuff
2464 ourselves. We don't worry about mapped files (for one thing,
2465 any mapped file will be out of date). */
2466
2467 /* If we get an error, blow away this objfile (not sure if
2468 that is the correct response for things like shared
2469 libraries). */
2470 std::unique_ptr<struct objfile> objfile_holder (objfile);
2471
2472 /* We need to do this whenever any symbols go away. */
2473 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2474
2475 if (exec_bfd != NULL
2476 && filename_cmp (bfd_get_filename (objfile->obfd),
2477 bfd_get_filename (exec_bfd)) == 0)
2478 {
2479 /* Reload EXEC_BFD without asking anything. */
2480
2481 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2482 }
2483
2484 /* Keep the calls order approx. the same as in free_objfile. */
2485
2486 /* Free the separate debug objfiles. It will be
2487 automatically recreated by sym_read. */
2488 free_objfile_separate_debug (objfile);
2489
2490 /* Remove any references to this objfile in the global
2491 value lists. */
2492 preserve_values (objfile);
2493
2494 /* Nuke all the state that we will re-read. Much of the following
2495 code which sets things to NULL really is necessary to tell
2496 other parts of GDB that there is nothing currently there.
2497
2498 Try to keep the freeing order compatible with free_objfile. */
2499
2500 if (objfile->sf != NULL)
2501 {
2502 (*objfile->sf->sym_finish) (objfile);
2503 }
2504
2505 clear_objfile_data (objfile);
2506
2507 /* Clean up any state BFD has sitting around. */
2508 {
2509 gdb_bfd_ref_ptr obfd (objfile->obfd);
2510 char *obfd_filename;
2511
2512 obfd_filename = bfd_get_filename (objfile->obfd);
2513 /* Open the new BFD before freeing the old one, so that
2514 the filename remains live. */
2515 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2516 objfile->obfd = temp.release ();
2517 if (objfile->obfd == NULL)
2518 error (_("Can't open %s to read symbols."), obfd_filename);
2519 }
2520
2521 original_name = xstrdup (objfile->original_name);
2522 make_cleanup (xfree, original_name);
2523
2524 /* bfd_openr sets cacheable to true, which is what we want. */
2525 if (!bfd_check_format (objfile->obfd, bfd_object))
2526 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2527 bfd_errmsg (bfd_get_error ()));
2528
2529 /* Save the offsets, we will nuke them with the rest of the
2530 objfile_obstack. */
2531 num_offsets = objfile->num_sections;
2532 offsets = ((struct section_offsets *)
2533 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2534 memcpy (offsets, objfile->section_offsets,
2535 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2536
2537 /* FIXME: Do we have to free a whole linked list, or is this
2538 enough? */
2539 objfile->global_psymbols.clear ();
2540 objfile->static_psymbols.clear ();
2541
2542 /* Free the obstacks for non-reusable objfiles. */
2543 psymbol_bcache_free (objfile->psymbol_cache);
2544 objfile->psymbol_cache = psymbol_bcache_init ();
2545
2546 /* NB: after this call to obstack_free, objfiles_changed
2547 will need to be called (see discussion below). */
2548 obstack_free (&objfile->objfile_obstack, 0);
2549 objfile->sections = NULL;
2550 objfile->compunit_symtabs = NULL;
2551 objfile->psymtabs = NULL;
2552 objfile->psymtabs_addrmap = NULL;
2553 objfile->free_psymtabs = NULL;
2554 objfile->template_symbols = NULL;
2555
2556 /* obstack_init also initializes the obstack so it is
2557 empty. We could use obstack_specify_allocation but
2558 gdb_obstack.h specifies the alloc/dealloc functions. */
2559 obstack_init (&objfile->objfile_obstack);
2560
2561 /* set_objfile_per_bfd potentially allocates the per-bfd
2562 data on the objfile's obstack (if sharing data across
2563 multiple users is not possible), so it's important to
2564 do it *after* the obstack has been initialized. */
2565 set_objfile_per_bfd (objfile);
2566
2567 objfile->original_name
2568 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2569 strlen (original_name));
2570
2571 /* Reset the sym_fns pointer. The ELF reader can change it
2572 based on whether .gdb_index is present, and we need it to
2573 start over. PR symtab/15885 */
2574 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2575
2576 build_objfile_section_table (objfile);
2577 terminate_minimal_symbol_table (objfile);
2578
2579 /* We use the same section offsets as from last time. I'm not
2580 sure whether that is always correct for shared libraries. */
2581 objfile->section_offsets = (struct section_offsets *)
2582 obstack_alloc (&objfile->objfile_obstack,
2583 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2584 memcpy (objfile->section_offsets, offsets,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 objfile->num_sections = num_offsets;
2587
2588 /* What the hell is sym_new_init for, anyway? The concept of
2589 distinguishing between the main file and additional files
2590 in this way seems rather dubious. */
2591 if (objfile == symfile_objfile)
2592 {
2593 (*objfile->sf->sym_new_init) (objfile);
2594 }
2595
2596 (*objfile->sf->sym_init) (objfile);
2597 clear_complaints (&symfile_complaints, 1, 1);
2598
2599 objfile->flags &= ~OBJF_PSYMTABS_READ;
2600
2601 /* We are about to read new symbols and potentially also
2602 DWARF information. Some targets may want to pass addresses
2603 read from DWARF DIE's through an adjustment function before
2604 saving them, like MIPS, which may call into
2605 "find_pc_section". When called, that function will make
2606 use of per-objfile program space data.
2607
2608 Since we discarded our section information above, we have
2609 dangling pointers in the per-objfile program space data
2610 structure. Force GDB to update the section mapping
2611 information by letting it know the objfile has changed,
2612 making the dangling pointers point to correct data
2613 again. */
2614
2615 objfiles_changed ();
2616
2617 read_symbols (objfile, 0);
2618
2619 if (!objfile_has_symbols (objfile))
2620 {
2621 wrap_here ("");
2622 printf_unfiltered (_("(no debugging symbols found)\n"));
2623 wrap_here ("");
2624 }
2625
2626 /* We're done reading the symbol file; finish off complaints. */
2627 clear_complaints (&symfile_complaints, 0, 1);
2628
2629 /* Getting new symbols may change our opinion about what is
2630 frameless. */
2631
2632 reinit_frame_cache ();
2633
2634 /* Discard cleanups as symbol reading was successful. */
2635 objfile_holder.release ();
2636 discard_cleanups (old_cleanups);
2637
2638 /* If the mtime has changed between the time we set new_modtime
2639 and now, we *want* this to be out of date, so don't call stat
2640 again now. */
2641 objfile->mtime = new_modtime;
2642 init_entry_point_info (objfile);
2643
2644 new_objfiles.push_back (objfile);
2645 }
2646 }
2647
2648 if (!new_objfiles.empty ())
2649 {
2650 clear_symtab_users (0);
2651
2652 /* clear_objfile_data for each objfile was called before freeing it and
2653 observer_notify_new_objfile (NULL) has been called by
2654 clear_symtab_users above. Notify the new files now. */
2655 for (auto iter : new_objfiles)
2656 observer_notify_new_objfile (iter);
2657
2658 /* At least one objfile has changed, so we can consider that
2659 the executable we're debugging has changed too. */
2660 observer_notify_executable_changed ();
2661 }
2662 }
2663 \f
2664
2665 struct filename_language
2666 {
2667 filename_language (const std::string &ext_, enum language lang_)
2668 : ext (ext_), lang (lang_)
2669 {}
2670
2671 std::string ext;
2672 enum language lang;
2673 };
2674
2675 static std::vector<filename_language> filename_language_table;
2676
2677 /* See symfile.h. */
2678
2679 void
2680 add_filename_language (const char *ext, enum language lang)
2681 {
2682 filename_language_table.emplace_back (ext, lang);
2683 }
2684
2685 static char *ext_args;
2686 static void
2687 show_ext_args (struct ui_file *file, int from_tty,
2688 struct cmd_list_element *c, const char *value)
2689 {
2690 fprintf_filtered (file,
2691 _("Mapping between filename extension "
2692 "and source language is \"%s\".\n"),
2693 value);
2694 }
2695
2696 static void
2697 set_ext_lang_command (const char *args,
2698 int from_tty, struct cmd_list_element *e)
2699 {
2700 char *cp = ext_args;
2701 enum language lang;
2702
2703 /* First arg is filename extension, starting with '.' */
2704 if (*cp != '.')
2705 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2706
2707 /* Find end of first arg. */
2708 while (*cp && !isspace (*cp))
2709 cp++;
2710
2711 if (*cp == '\0')
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
2714 ext_args);
2715
2716 /* Null-terminate first arg. */
2717 *cp++ = '\0';
2718
2719 /* Find beginning of second arg, which should be a source language. */
2720 cp = skip_spaces (cp);
2721
2722 if (*cp == '\0')
2723 error (_("'%s': two arguments required -- "
2724 "filename extension and language"),
2725 ext_args);
2726
2727 /* Lookup the language from among those we know. */
2728 lang = language_enum (cp);
2729
2730 auto it = filename_language_table.begin ();
2731 /* Now lookup the filename extension: do we already know it? */
2732 for (; it != filename_language_table.end (); it++)
2733 {
2734 if (it->ext == ext_args)
2735 break;
2736 }
2737
2738 if (it == filename_language_table.end ())
2739 {
2740 /* New file extension. */
2741 add_filename_language (ext_args, lang);
2742 }
2743 else
2744 {
2745 /* Redefining a previously known filename extension. */
2746
2747 /* if (from_tty) */
2748 /* query ("Really make files of type %s '%s'?", */
2749 /* ext_args, language_str (lang)); */
2750
2751 it->lang = lang;
2752 }
2753 }
2754
2755 static void
2756 info_ext_lang_command (const char *args, int from_tty)
2757 {
2758 printf_filtered (_("Filename extensions and the languages they represent:"));
2759 printf_filtered ("\n\n");
2760 for (const filename_language &entry : filename_language_table)
2761 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2762 language_str (entry.lang));
2763 }
2764
2765 enum language
2766 deduce_language_from_filename (const char *filename)
2767 {
2768 const char *cp;
2769
2770 if (filename != NULL)
2771 if ((cp = strrchr (filename, '.')) != NULL)
2772 {
2773 for (const filename_language &entry : filename_language_table)
2774 if (entry.ext == cp)
2775 return entry.lang;
2776 }
2777
2778 return language_unknown;
2779 }
2780 \f
2781 /* Allocate and initialize a new symbol table.
2782 CUST is from the result of allocate_compunit_symtab. */
2783
2784 struct symtab *
2785 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2786 {
2787 struct objfile *objfile = cust->objfile;
2788 struct symtab *symtab
2789 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2790
2791 symtab->filename
2792 = (const char *) bcache (filename, strlen (filename) + 1,
2793 objfile->per_bfd->filename_cache);
2794 symtab->fullname = NULL;
2795 symtab->language = deduce_language_from_filename (filename);
2796
2797 /* This can be very verbose with lots of headers.
2798 Only print at higher debug levels. */
2799 if (symtab_create_debug >= 2)
2800 {
2801 /* Be a bit clever with debugging messages, and don't print objfile
2802 every time, only when it changes. */
2803 static char *last_objfile_name = NULL;
2804
2805 if (last_objfile_name == NULL
2806 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2807 {
2808 xfree (last_objfile_name);
2809 last_objfile_name = xstrdup (objfile_name (objfile));
2810 fprintf_unfiltered (gdb_stdlog,
2811 "Creating one or more symtabs for objfile %s ...\n",
2812 last_objfile_name);
2813 }
2814 fprintf_unfiltered (gdb_stdlog,
2815 "Created symtab %s for module %s.\n",
2816 host_address_to_string (symtab), filename);
2817 }
2818
2819 /* Add it to CUST's list of symtabs. */
2820 if (cust->filetabs == NULL)
2821 {
2822 cust->filetabs = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825 else
2826 {
2827 cust->last_filetab->next = symtab;
2828 cust->last_filetab = symtab;
2829 }
2830
2831 /* Backlink to the containing compunit symtab. */
2832 symtab->compunit_symtab = cust;
2833
2834 return symtab;
2835 }
2836
2837 /* Allocate and initialize a new compunit.
2838 NAME is the name of the main source file, if there is one, or some
2839 descriptive text if there are no source files. */
2840
2841 struct compunit_symtab *
2842 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2843 {
2844 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2845 struct compunit_symtab);
2846 const char *saved_name;
2847
2848 cu->objfile = objfile;
2849
2850 /* The name we record here is only for display/debugging purposes.
2851 Just save the basename to avoid path issues (too long for display,
2852 relative vs absolute, etc.). */
2853 saved_name = lbasename (name);
2854 cu->name
2855 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2856 strlen (saved_name));
2857
2858 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2859
2860 if (symtab_create_debug)
2861 {
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Created compunit symtab %s for %s.\n",
2864 host_address_to_string (cu),
2865 cu->name);
2866 }
2867
2868 return cu;
2869 }
2870
2871 /* Hook CU to the objfile it comes from. */
2872
2873 void
2874 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2875 {
2876 cu->next = cu->objfile->compunit_symtabs;
2877 cu->objfile->compunit_symtabs = cu;
2878 }
2879 \f
2880
2881 /* Reset all data structures in gdb which may contain references to
2882 symbol table data. */
2883
2884 void
2885 clear_symtab_users (symfile_add_flags add_flags)
2886 {
2887 /* Someday, we should do better than this, by only blowing away
2888 the things that really need to be blown. */
2889
2890 /* Clear the "current" symtab first, because it is no longer valid.
2891 breakpoint_re_set may try to access the current symtab. */
2892 clear_current_source_symtab_and_line ();
2893
2894 clear_displays ();
2895 clear_last_displayed_sal ();
2896 clear_pc_function_cache ();
2897 observer_notify_new_objfile (NULL);
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
2908 /* Now that the various caches have been cleared, we can re_set
2909 our breakpoints without risking it using stale data. */
2910 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2911 breakpoint_re_set ();
2912 }
2913
2914 static void
2915 clear_symtab_users_cleanup (void *ignore)
2916 {
2917 clear_symtab_users (0);
2918 }
2919 \f
2920 /* OVERLAYS:
2921 The following code implements an abstraction for debugging overlay sections.
2922
2923 The target model is as follows:
2924 1) The gnu linker will permit multiple sections to be mapped into the
2925 same VMA, each with its own unique LMA (or load address).
2926 2) It is assumed that some runtime mechanism exists for mapping the
2927 sections, one by one, from the load address into the VMA address.
2928 3) This code provides a mechanism for gdb to keep track of which
2929 sections should be considered to be mapped from the VMA to the LMA.
2930 This information is used for symbol lookup, and memory read/write.
2931 For instance, if a section has been mapped then its contents
2932 should be read from the VMA, otherwise from the LMA.
2933
2934 Two levels of debugger support for overlays are available. One is
2935 "manual", in which the debugger relies on the user to tell it which
2936 overlays are currently mapped. This level of support is
2937 implemented entirely in the core debugger, and the information about
2938 whether a section is mapped is kept in the objfile->obj_section table.
2939
2940 The second level of support is "automatic", and is only available if
2941 the target-specific code provides functionality to read the target's
2942 overlay mapping table, and translate its contents for the debugger
2943 (by updating the mapped state information in the obj_section tables).
2944
2945 The interface is as follows:
2946 User commands:
2947 overlay map <name> -- tell gdb to consider this section mapped
2948 overlay unmap <name> -- tell gdb to consider this section unmapped
2949 overlay list -- list the sections that GDB thinks are mapped
2950 overlay read-target -- get the target's state of what's mapped
2951 overlay off/manual/auto -- set overlay debugging state
2952 Functional interface:
2953 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2954 section, return that section.
2955 find_pc_overlay(pc): find any overlay section that contains
2956 the pc, either in its VMA or its LMA
2957 section_is_mapped(sect): true if overlay is marked as mapped
2958 section_is_overlay(sect): true if section's VMA != LMA
2959 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2960 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2961 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2962 overlay_mapped_address(...): map an address from section's LMA to VMA
2963 overlay_unmapped_address(...): map an address from section's VMA to LMA
2964 symbol_overlayed_address(...): Return a "current" address for symbol:
2965 either in VMA or LMA depending on whether
2966 the symbol's section is currently mapped. */
2967
2968 /* Overlay debugging state: */
2969
2970 enum overlay_debugging_state overlay_debugging = ovly_off;
2971 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2972
2973 /* Function: section_is_overlay (SECTION)
2974 Returns true if SECTION has VMA not equal to LMA, ie.
2975 SECTION is loaded at an address different from where it will "run". */
2976
2977 int
2978 section_is_overlay (struct obj_section *section)
2979 {
2980 if (overlay_debugging && section)
2981 {
2982 asection *bfd_section = section->the_bfd_section;
2983
2984 if (bfd_section_lma (abfd, bfd_section) != 0
2985 && bfd_section_lma (abfd, bfd_section)
2986 != bfd_section_vma (abfd, bfd_section))
2987 return 1;
2988 }
2989
2990 return 0;
2991 }
2992
2993 /* Function: overlay_invalidate_all (void)
2994 Invalidate the mapped state of all overlay sections (mark it as stale). */
2995
2996 static void
2997 overlay_invalidate_all (void)
2998 {
2999 struct objfile *objfile;
3000 struct obj_section *sect;
3001
3002 ALL_OBJSECTIONS (objfile, sect)
3003 if (section_is_overlay (sect))
3004 sect->ovly_mapped = -1;
3005 }
3006
3007 /* Function: section_is_mapped (SECTION)
3008 Returns true if section is an overlay, and is currently mapped.
3009
3010 Access to the ovly_mapped flag is restricted to this function, so
3011 that we can do automatic update. If the global flag
3012 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3013 overlay_invalidate_all. If the mapped state of the particular
3014 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3015
3016 int
3017 section_is_mapped (struct obj_section *osect)
3018 {
3019 struct gdbarch *gdbarch;
3020
3021 if (osect == 0 || !section_is_overlay (osect))
3022 return 0;
3023
3024 switch (overlay_debugging)
3025 {
3026 default:
3027 case ovly_off:
3028 return 0; /* overlay debugging off */
3029 case ovly_auto: /* overlay debugging automatic */
3030 /* Unles there is a gdbarch_overlay_update function,
3031 there's really nothing useful to do here (can't really go auto). */
3032 gdbarch = get_objfile_arch (osect->objfile);
3033 if (gdbarch_overlay_update_p (gdbarch))
3034 {
3035 if (overlay_cache_invalid)
3036 {
3037 overlay_invalidate_all ();
3038 overlay_cache_invalid = 0;
3039 }
3040 if (osect->ovly_mapped == -1)
3041 gdbarch_overlay_update (gdbarch, osect);
3042 }
3043 /* fall thru to manual case */
3044 case ovly_on: /* overlay debugging manual */
3045 return osect->ovly_mapped == 1;
3046 }
3047 }
3048
3049 /* Function: pc_in_unmapped_range
3050 If PC falls into the lma range of SECTION, return true, else false. */
3051
3052 CORE_ADDR
3053 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3054 {
3055 if (section_is_overlay (section))
3056 {
3057 bfd *abfd = section->objfile->obfd;
3058 asection *bfd_section = section->the_bfd_section;
3059
3060 /* We assume the LMA is relocated by the same offset as the VMA. */
3061 bfd_vma size = bfd_get_section_size (bfd_section);
3062 CORE_ADDR offset = obj_section_offset (section);
3063
3064 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3065 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3066 return 1;
3067 }
3068
3069 return 0;
3070 }
3071
3072 /* Function: pc_in_mapped_range
3073 If PC falls into the vma range of SECTION, return true, else false. */
3074
3075 CORE_ADDR
3076 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3077 {
3078 if (section_is_overlay (section))
3079 {
3080 if (obj_section_addr (section) <= pc
3081 && pc < obj_section_endaddr (section))
3082 return 1;
3083 }
3084
3085 return 0;
3086 }
3087
3088 /* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
3090
3091 static int
3092 sections_overlap (struct obj_section *a, struct obj_section *b)
3093 {
3094 CORE_ADDR a_start = obj_section_addr (a);
3095 CORE_ADDR a_end = obj_section_endaddr (a);
3096 CORE_ADDR b_start = obj_section_addr (b);
3097 CORE_ADDR b_end = obj_section_endaddr (b);
3098
3099 return (a_start < b_end && b_start < a_end);
3100 }
3101
3102 /* Function: overlay_unmapped_address (PC, SECTION)
3103 Returns the address corresponding to PC in the unmapped (load) range.
3104 May be the same as PC. */
3105
3106 CORE_ADDR
3107 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3108 {
3109 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3110 {
3111 asection *bfd_section = section->the_bfd_section;
3112
3113 return pc + bfd_section_lma (abfd, bfd_section)
3114 - bfd_section_vma (abfd, bfd_section);
3115 }
3116
3117 return pc;
3118 }
3119
3120 /* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124 CORE_ADDR
3125 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3126 {
3127 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3128 {
3129 asection *bfd_section = section->the_bfd_section;
3130
3131 return pc + bfd_section_vma (abfd, bfd_section)
3132 - bfd_section_lma (abfd, bfd_section);
3133 }
3134
3135 return pc;
3136 }
3137
3138 /* Function: symbol_overlayed_address
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
3142 CORE_ADDR
3143 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3144 {
3145 if (overlay_debugging)
3146 {
3147 /* If the symbol has no section, just return its regular address. */
3148 if (section == 0)
3149 return address;
3150 /* If the symbol's section is not an overlay, just return its
3151 address. */
3152 if (!section_is_overlay (section))
3153 return address;
3154 /* If the symbol's section is mapped, just return its address. */
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164 }
3165
3166 /* Function: find_pc_overlay (PC)
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
3172 struct obj_section *
3173 find_pc_overlay (CORE_ADDR pc)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *osect, *best_match = NULL;
3177
3178 if (overlay_debugging)
3179 {
3180 ALL_OBJSECTIONS (objfile, osect)
3181 if (section_is_overlay (osect))
3182 {
3183 if (pc_in_mapped_range (pc, osect))
3184 {
3185 if (section_is_mapped (osect))
3186 return osect;
3187 else
3188 best_match = osect;
3189 }
3190 else if (pc_in_unmapped_range (pc, osect))
3191 best_match = osect;
3192 }
3193 }
3194 return best_match;
3195 }
3196
3197 /* Function: find_pc_mapped_section (PC)
3198 If PC falls into the VMA address range of an overlay section that is
3199 currently marked as MAPPED, return that section. Else return NULL. */
3200
3201 struct obj_section *
3202 find_pc_mapped_section (CORE_ADDR pc)
3203 {
3204 struct objfile *objfile;
3205 struct obj_section *osect;
3206
3207 if (overlay_debugging)
3208 {
3209 ALL_OBJSECTIONS (objfile, osect)
3210 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3211 return osect;
3212 }
3213
3214 return NULL;
3215 }
3216
3217 /* Function: list_overlays_command
3218 Print a list of mapped sections and their PC ranges. */
3219
3220 static void
3221 list_overlays_command (const char *args, int from_tty)
3222 {
3223 int nmapped = 0;
3224 struct objfile *objfile;
3225 struct obj_section *osect;
3226
3227 if (overlay_debugging)
3228 {
3229 ALL_OBJSECTIONS (objfile, osect)
3230 if (section_is_mapped (osect))
3231 {
3232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3233 const char *name;
3234 bfd_vma lma, vma;
3235 int size;
3236
3237 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3238 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3239 size = bfd_get_section_size (osect->the_bfd_section);
3240 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3241
3242 printf_filtered ("Section %s, loaded at ", name);
3243 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3244 puts_filtered (" - ");
3245 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3246 printf_filtered (", mapped at ");
3247 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3250 puts_filtered ("\n");
3251
3252 nmapped++;
3253 }
3254 }
3255 if (nmapped == 0)
3256 printf_filtered (_("No sections are mapped.\n"));
3257 }
3258
3259 /* Function: map_overlay_command
3260 Mark the named section as mapped (ie. residing at its VMA address). */
3261
3262 static void
3263 map_overlay_command (const char *args, int from_tty)
3264 {
3265 struct objfile *objfile, *objfile2;
3266 struct obj_section *sec, *sec2;
3267
3268 if (!overlay_debugging)
3269 error (_("Overlay debugging not enabled. Use "
3270 "either the 'overlay auto' or\n"
3271 "the 'overlay manual' command."));
3272
3273 if (args == 0 || *args == 0)
3274 error (_("Argument required: name of an overlay section"));
3275
3276 /* First, find a section matching the user supplied argument. */
3277 ALL_OBJSECTIONS (objfile, sec)
3278 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3279 {
3280 /* Now, check to see if the section is an overlay. */
3281 if (!section_is_overlay (sec))
3282 continue; /* not an overlay section */
3283
3284 /* Mark the overlay as "mapped". */
3285 sec->ovly_mapped = 1;
3286
3287 /* Next, make a pass and unmap any sections that are
3288 overlapped by this new section: */
3289 ALL_OBJSECTIONS (objfile2, sec2)
3290 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3291 {
3292 if (info_verbose)
3293 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3294 bfd_section_name (objfile->obfd,
3295 sec2->the_bfd_section));
3296 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3297 }
3298 return;
3299 }
3300 error (_("No overlay section called %s"), args);
3301 }
3302
3303 /* Function: unmap_overlay_command
3304 Mark the overlay section as unmapped
3305 (ie. resident in its LMA address range, rather than the VMA range). */
3306
3307 static void
3308 unmap_overlay_command (const char *args, int from_tty)
3309 {
3310 struct objfile *objfile;
3311 struct obj_section *sec = NULL;
3312
3313 if (!overlay_debugging)
3314 error (_("Overlay debugging not enabled. "
3315 "Use either the 'overlay auto' or\n"
3316 "the 'overlay manual' command."));
3317
3318 if (args == 0 || *args == 0)
3319 error (_("Argument required: name of an overlay section"));
3320
3321 /* First, find a section matching the user supplied argument. */
3322 ALL_OBJSECTIONS (objfile, sec)
3323 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3324 {
3325 if (!sec->ovly_mapped)
3326 error (_("Section %s is not mapped"), args);
3327 sec->ovly_mapped = 0;
3328 return;
3329 }
3330 error (_("No overlay section called %s"), args);
3331 }
3332
3333 /* Function: overlay_auto_command
3334 A utility command to turn on overlay debugging.
3335 Possibly this should be done via a set/show command. */
3336
3337 static void
3338 overlay_auto_command (const char *args, int from_tty)
3339 {
3340 overlay_debugging = ovly_auto;
3341 enable_overlay_breakpoints ();
3342 if (info_verbose)
3343 printf_unfiltered (_("Automatic overlay debugging enabled."));
3344 }
3345
3346 /* Function: overlay_manual_command
3347 A utility command to turn on overlay debugging.
3348 Possibly this should be done via a set/show command. */
3349
3350 static void
3351 overlay_manual_command (const char *args, int from_tty)
3352 {
3353 overlay_debugging = ovly_on;
3354 disable_overlay_breakpoints ();
3355 if (info_verbose)
3356 printf_unfiltered (_("Overlay debugging enabled."));
3357 }
3358
3359 /* Function: overlay_off_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
3364 overlay_off_command (const char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_off;
3367 disable_overlay_breakpoints ();
3368 if (info_verbose)
3369 printf_unfiltered (_("Overlay debugging disabled."));
3370 }
3371
3372 static void
3373 overlay_load_command (const char *args, int from_tty)
3374 {
3375 struct gdbarch *gdbarch = get_current_arch ();
3376
3377 if (gdbarch_overlay_update_p (gdbarch))
3378 gdbarch_overlay_update (gdbarch, NULL);
3379 else
3380 error (_("This target does not know how to read its overlay state."));
3381 }
3382
3383 /* Function: overlay_command
3384 A place-holder for a mis-typed command. */
3385
3386 /* Command list chain containing all defined "overlay" subcommands. */
3387 static struct cmd_list_element *overlaylist;
3388
3389 static void
3390 overlay_command (const char *args, int from_tty)
3391 {
3392 printf_unfiltered
3393 ("\"overlay\" must be followed by the name of an overlay command.\n");
3394 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3395 }
3396
3397 /* Target Overlays for the "Simplest" overlay manager:
3398
3399 This is GDB's default target overlay layer. It works with the
3400 minimal overlay manager supplied as an example by Cygnus. The
3401 entry point is via a function pointer "gdbarch_overlay_update",
3402 so targets that use a different runtime overlay manager can
3403 substitute their own overlay_update function and take over the
3404 function pointer.
3405
3406 The overlay_update function pokes around in the target's data structures
3407 to see what overlays are mapped, and updates GDB's overlay mapping with
3408 this information.
3409
3410 In this simple implementation, the target data structures are as follows:
3411 unsigned _novlys; /# number of overlay sections #/
3412 unsigned _ovly_table[_novlys][4] = {
3413 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3414 {..., ..., ..., ...},
3415 }
3416 unsigned _novly_regions; /# number of overlay regions #/
3417 unsigned _ovly_region_table[_novly_regions][3] = {
3418 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3419 {..., ..., ...},
3420 }
3421 These functions will attempt to update GDB's mappedness state in the
3422 symbol section table, based on the target's mappedness state.
3423
3424 To do this, we keep a cached copy of the target's _ovly_table, and
3425 attempt to detect when the cached copy is invalidated. The main
3426 entry point is "simple_overlay_update(SECT), which looks up SECT in
3427 the cached table and re-reads only the entry for that section from
3428 the target (whenever possible). */
3429
3430 /* Cached, dynamically allocated copies of the target data structures: */
3431 static unsigned (*cache_ovly_table)[4] = 0;
3432 static unsigned cache_novlys = 0;
3433 static CORE_ADDR cache_ovly_table_base = 0;
3434 enum ovly_index
3435 {
3436 VMA, OSIZE, LMA, MAPPED
3437 };
3438
3439 /* Throw away the cached copy of _ovly_table. */
3440
3441 static void
3442 simple_free_overlay_table (void)
3443 {
3444 if (cache_ovly_table)
3445 xfree (cache_ovly_table);
3446 cache_novlys = 0;
3447 cache_ovly_table = NULL;
3448 cache_ovly_table_base = 0;
3449 }
3450
3451 /* Read an array of ints of size SIZE from the target into a local buffer.
3452 Convert to host order. int LEN is number of ints. */
3453
3454 static void
3455 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3456 int len, int size, enum bfd_endian byte_order)
3457 {
3458 /* FIXME (alloca): Not safe if array is very large. */
3459 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3460 int i;
3461
3462 read_memory (memaddr, buf, len * size);
3463 for (i = 0; i < len; i++)
3464 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3465 }
3466
3467 /* Find and grab a copy of the target _ovly_table
3468 (and _novlys, which is needed for the table's size). */
3469
3470 static int
3471 simple_read_overlay_table (void)
3472 {
3473 struct bound_minimal_symbol novlys_msym;
3474 struct bound_minimal_symbol ovly_table_msym;
3475 struct gdbarch *gdbarch;
3476 int word_size;
3477 enum bfd_endian byte_order;
3478
3479 simple_free_overlay_table ();
3480 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3481 if (! novlys_msym.minsym)
3482 {
3483 error (_("Error reading inferior's overlay table: "
3484 "couldn't find `_novlys' variable\n"
3485 "in inferior. Use `overlay manual' mode."));
3486 return 0;
3487 }
3488
3489 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3490 if (! ovly_table_msym.minsym)
3491 {
3492 error (_("Error reading inferior's overlay table: couldn't find "
3493 "`_ovly_table' array\n"
3494 "in inferior. Use `overlay manual' mode."));
3495 return 0;
3496 }
3497
3498 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3499 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3500 byte_order = gdbarch_byte_order (gdbarch);
3501
3502 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3503 4, byte_order);
3504 cache_ovly_table
3505 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3506 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3507 read_target_long_array (cache_ovly_table_base,
3508 (unsigned int *) cache_ovly_table,
3509 cache_novlys * 4, word_size, byte_order);
3510
3511 return 1; /* SUCCESS */
3512 }
3513
3514 /* Function: simple_overlay_update_1
3515 A helper function for simple_overlay_update. Assuming a cached copy
3516 of _ovly_table exists, look through it to find an entry whose vma,
3517 lma and size match those of OSECT. Re-read the entry and make sure
3518 it still matches OSECT (else the table may no longer be valid).
3519 Set OSECT's mapped state to match the entry. Return: 1 for
3520 success, 0 for failure. */
3521
3522 static int
3523 simple_overlay_update_1 (struct obj_section *osect)
3524 {
3525 int i;
3526 asection *bsect = osect->the_bfd_section;
3527 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3528 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3530
3531 for (i = 0; i < cache_novlys; i++)
3532 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3533 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3534 {
3535 read_target_long_array (cache_ovly_table_base + i * word_size,
3536 (unsigned int *) cache_ovly_table[i],
3537 4, word_size, byte_order);
3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3540 {
3541 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3542 return 1;
3543 }
3544 else /* Warning! Warning! Target's ovly table has changed! */
3545 return 0;
3546 }
3547 return 0;
3548 }
3549
3550 /* Function: simple_overlay_update
3551 If OSECT is NULL, then update all sections' mapped state
3552 (after re-reading the entire target _ovly_table).
3553 If OSECT is non-NULL, then try to find a matching entry in the
3554 cached ovly_table and update only OSECT's mapped state.
3555 If a cached entry can't be found or the cache isn't valid, then
3556 re-read the entire cache, and go ahead and update all sections. */
3557
3558 void
3559 simple_overlay_update (struct obj_section *osect)
3560 {
3561 struct objfile *objfile;
3562
3563 /* Were we given an osect to look up? NULL means do all of them. */
3564 if (osect)
3565 /* Have we got a cached copy of the target's overlay table? */
3566 if (cache_ovly_table != NULL)
3567 {
3568 /* Does its cached location match what's currently in the
3569 symtab? */
3570 struct bound_minimal_symbol minsym
3571 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3572
3573 if (minsym.minsym == NULL)
3574 error (_("Error reading inferior's overlay table: couldn't "
3575 "find `_ovly_table' array\n"
3576 "in inferior. Use `overlay manual' mode."));
3577
3578 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3579 /* Then go ahead and try to look up this single section in
3580 the cache. */
3581 if (simple_overlay_update_1 (osect))
3582 /* Found it! We're done. */
3583 return;
3584 }
3585
3586 /* Cached table no good: need to read the entire table anew.
3587 Or else we want all the sections, in which case it's actually
3588 more efficient to read the whole table in one block anyway. */
3589
3590 if (! simple_read_overlay_table ())
3591 return;
3592
3593 /* Now may as well update all sections, even if only one was requested. */
3594 ALL_OBJSECTIONS (objfile, osect)
3595 if (section_is_overlay (osect))
3596 {
3597 int i;
3598 asection *bsect = osect->the_bfd_section;
3599
3600 for (i = 0; i < cache_novlys; i++)
3601 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3602 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3603 { /* obj_section matches i'th entry in ovly_table. */
3604 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3605 break; /* finished with inner for loop: break out. */
3606 }
3607 }
3608 }
3609
3610 /* Set the output sections and output offsets for section SECTP in
3611 ABFD. The relocation code in BFD will read these offsets, so we
3612 need to be sure they're initialized. We map each section to itself,
3613 with no offset; this means that SECTP->vma will be honored. */
3614
3615 static void
3616 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3617 {
3618 sectp->output_section = sectp;
3619 sectp->output_offset = 0;
3620 }
3621
3622 /* Default implementation for sym_relocate. */
3623
3624 bfd_byte *
3625 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3626 bfd_byte *buf)
3627 {
3628 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3629 DWO file. */
3630 bfd *abfd = sectp->owner;
3631
3632 /* We're only interested in sections with relocation
3633 information. */
3634 if ((sectp->flags & SEC_RELOC) == 0)
3635 return NULL;
3636
3637 /* We will handle section offsets properly elsewhere, so relocate as if
3638 all sections begin at 0. */
3639 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3640
3641 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3642 }
3643
3644 /* Relocate the contents of a debug section SECTP in ABFD. The
3645 contents are stored in BUF if it is non-NULL, or returned in a
3646 malloc'd buffer otherwise.
3647
3648 For some platforms and debug info formats, shared libraries contain
3649 relocations against the debug sections (particularly for DWARF-2;
3650 one affected platform is PowerPC GNU/Linux, although it depends on
3651 the version of the linker in use). Also, ELF object files naturally
3652 have unresolved relocations for their debug sections. We need to apply
3653 the relocations in order to get the locations of symbols correct.
3654 Another example that may require relocation processing, is the
3655 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3656 debug section. */
3657
3658 bfd_byte *
3659 symfile_relocate_debug_section (struct objfile *objfile,
3660 asection *sectp, bfd_byte *buf)
3661 {
3662 gdb_assert (objfile->sf->sym_relocate);
3663
3664 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3665 }
3666
3667 struct symfile_segment_data *
3668 get_symfile_segment_data (bfd *abfd)
3669 {
3670 const struct sym_fns *sf = find_sym_fns (abfd);
3671
3672 if (sf == NULL)
3673 return NULL;
3674
3675 return sf->sym_segments (abfd);
3676 }
3677
3678 void
3679 free_symfile_segment_data (struct symfile_segment_data *data)
3680 {
3681 xfree (data->segment_bases);
3682 xfree (data->segment_sizes);
3683 xfree (data->segment_info);
3684 xfree (data);
3685 }
3686
3687 /* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
3701
3702 int
3703 symfile_map_offsets_to_segments (bfd *abfd,
3704 const struct symfile_segment_data *data,
3705 struct section_offsets *offsets,
3706 int num_segment_bases,
3707 const CORE_ADDR *segment_bases)
3708 {
3709 int i;
3710 asection *sect;
3711
3712 /* It doesn't make sense to call this function unless you have some
3713 segment base addresses. */
3714 gdb_assert (num_segment_bases > 0);
3715
3716 /* If we do not have segment mappings for the object file, we
3717 can not relocate it by segments. */
3718 gdb_assert (data != NULL);
3719 gdb_assert (data->num_segments > 0);
3720
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
3723 int which = data->segment_info[i];
3724
3725 gdb_assert (0 <= which && which <= data->num_segments);
3726
3727 /* Don't bother computing offsets for sections that aren't
3728 loaded as part of any segment. */
3729 if (! which)
3730 continue;
3731
3732 /* Use the last SEGMENT_BASES entry as the address of any extra
3733 segments mentioned in DATA->segment_info. */
3734 if (which > num_segment_bases)
3735 which = num_segment_bases;
3736
3737 offsets->offsets[i] = (segment_bases[which - 1]
3738 - data->segment_bases[which - 1]);
3739 }
3740
3741 return 1;
3742 }
3743
3744 static void
3745 symfile_find_segment_sections (struct objfile *objfile)
3746 {
3747 bfd *abfd = objfile->obfd;
3748 int i;
3749 asection *sect;
3750 struct symfile_segment_data *data;
3751
3752 data = get_symfile_segment_data (objfile->obfd);
3753 if (data == NULL)
3754 return;
3755
3756 if (data->num_segments != 1 && data->num_segments != 2)
3757 {
3758 free_symfile_segment_data (data);
3759 return;
3760 }
3761
3762 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3763 {
3764 int which = data->segment_info[i];
3765
3766 if (which == 1)
3767 {
3768 if (objfile->sect_index_text == -1)
3769 objfile->sect_index_text = sect->index;
3770
3771 if (objfile->sect_index_rodata == -1)
3772 objfile->sect_index_rodata = sect->index;
3773 }
3774 else if (which == 2)
3775 {
3776 if (objfile->sect_index_data == -1)
3777 objfile->sect_index_data = sect->index;
3778
3779 if (objfile->sect_index_bss == -1)
3780 objfile->sect_index_bss = sect->index;
3781 }
3782 }
3783
3784 free_symfile_segment_data (data);
3785 }
3786
3787 /* Listen for free_objfile events. */
3788
3789 static void
3790 symfile_free_objfile (struct objfile *objfile)
3791 {
3792 /* Remove the target sections owned by this objfile. */
3793 if (objfile != NULL)
3794 remove_target_sections ((void *) objfile);
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3798 Expand all symtabs that match the specified criteria.
3799 See quick_symbol_functions.expand_symtabs_matching for details. */
3800
3801 void
3802 expand_symtabs_matching
3803 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3804 const lookup_name_info &lookup_name,
3805 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3806 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3807 enum search_domain kind)
3808 {
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
3814 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3815 lookup_name,
3816 symbol_matcher,
3817 expansion_notify, kind);
3818 }
3819 }
3820
3821 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3822 Map function FUN over every file.
3823 See quick_symbol_functions.map_symbol_filenames for details. */
3824
3825 void
3826 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3827 int need_fullname)
3828 {
3829 struct objfile *objfile;
3830
3831 ALL_OBJFILES (objfile)
3832 {
3833 if (objfile->sf)
3834 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3835 need_fullname);
3836 }
3837 }
3838
3839 #if GDB_SELF_TEST
3840
3841 namespace selftests {
3842 namespace filename_language {
3843
3844 static void test_filename_language ()
3845 {
3846 /* This test messes up the filename_language_table global. */
3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3848
3849 /* Test deducing an unknown extension. */
3850 language lang = deduce_language_from_filename ("myfile.blah");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test deducing a known extension. */
3854 lang = deduce_language_from_filename ("myfile.c");
3855 SELF_CHECK (lang == language_c);
3856
3857 /* Test adding a new extension using the internal API. */
3858 add_filename_language (".blah", language_pascal);
3859 lang = deduce_language_from_filename ("myfile.blah");
3860 SELF_CHECK (lang == language_pascal);
3861 }
3862
3863 static void
3864 test_set_ext_lang_command ()
3865 {
3866 /* This test messes up the filename_language_table global. */
3867 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3868
3869 /* Confirm that the .hello extension is not known. */
3870 language lang = deduce_language_from_filename ("cake.hello");
3871 SELF_CHECK (lang == language_unknown);
3872
3873 /* Test adding a new extension using the CLI command. */
3874 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3875 ext_args = args_holder.get ();
3876 set_ext_lang_command (NULL, 1, NULL);
3877
3878 lang = deduce_language_from_filename ("cake.hello");
3879 SELF_CHECK (lang == language_rust);
3880
3881 /* Test overriding an existing extension using the CLI command. */
3882 int size_before = filename_language_table.size ();
3883 args_holder.reset (xstrdup (".hello pascal"));
3884 ext_args = args_holder.get ();
3885 set_ext_lang_command (NULL, 1, NULL);
3886 int size_after = filename_language_table.size ();
3887
3888 lang = deduce_language_from_filename ("cake.hello");
3889 SELF_CHECK (lang == language_pascal);
3890 SELF_CHECK (size_before == size_after);
3891 }
3892
3893 } /* namespace filename_language */
3894 } /* namespace selftests */
3895
3896 #endif /* GDB_SELF_TEST */
3897
3898 void
3899 _initialize_symfile (void)
3900 {
3901 struct cmd_list_element *c;
3902
3903 observer_attach_free_objfile (symfile_free_objfile);
3904
3905 #define READNOW_READNEVER_HELP \
3906 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3907 immediately. This makes the command slower, but may make future operations\n\
3908 faster.\n\
3909 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3910 symbolic debug information."
3911
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913 Load symbol table from executable file FILE.\n\
3914 Usage: symbol-file [-readnow | -readnever] FILE\n\
3915 The `file' command can also load symbol tables, as well as setting the file\n\
3916 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3917 set_cmd_completer (c, filename_completer);
3918
3919 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3920 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3921 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3922 -s SECT-NAME SECT-ADDR]...\n\
3923 ADDR is the starting address of the file's text.\n\
3924 Each '-s' argument provides a section name and address, and\n\
3925 should be specified if the data and bss segments are not contiguous\n\
3926 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3927 READNOW_READNEVER_HELP),
3928 &cmdlist);
3929 set_cmd_completer (c, filename_completer);
3930
3931 c = add_cmd ("remove-symbol-file", class_files,
3932 remove_symbol_file_command, _("\
3933 Remove a symbol file added via the add-symbol-file command.\n\
3934 Usage: remove-symbol-file FILENAME\n\
3935 remove-symbol-file -a ADDRESS\n\
3936 The file to remove can be identified by its filename or by an address\n\
3937 that lies within the boundaries of this symbol file in memory."),
3938 &cmdlist);
3939
3940 c = add_cmd ("load", class_files, load_command, _("\
3941 Dynamically load FILE into the running program, and record its symbols\n\
3942 for access from GDB.\n\
3943 Usage: load [FILE] [OFFSET]\n\
3944 An optional load OFFSET may also be given as a literal address.\n\
3945 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3946 on its own."), &cmdlist);
3947 set_cmd_completer (c, filename_completer);
3948
3949 add_prefix_cmd ("overlay", class_support, overlay_command,
3950 _("Commands for debugging overlays."), &overlaylist,
3951 "overlay ", 0, &cmdlist);
3952
3953 add_com_alias ("ovly", "overlay", class_alias, 1);
3954 add_com_alias ("ov", "overlay", class_alias, 1);
3955
3956 add_cmd ("map-overlay", class_support, map_overlay_command,
3957 _("Assert that an overlay section is mapped."), &overlaylist);
3958
3959 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3960 _("Assert that an overlay section is unmapped."), &overlaylist);
3961
3962 add_cmd ("list-overlays", class_support, list_overlays_command,
3963 _("List mappings of overlay sections."), &overlaylist);
3964
3965 add_cmd ("manual", class_support, overlay_manual_command,
3966 _("Enable overlay debugging."), &overlaylist);
3967 add_cmd ("off", class_support, overlay_off_command,
3968 _("Disable overlay debugging."), &overlaylist);
3969 add_cmd ("auto", class_support, overlay_auto_command,
3970 _("Enable automatic overlay debugging."), &overlaylist);
3971 add_cmd ("load-target", class_support, overlay_load_command,
3972 _("Read the overlay mapping state from the target."), &overlaylist);
3973
3974 /* Filename extension to source language lookup table: */
3975 add_setshow_string_noescape_cmd ("extension-language", class_files,
3976 &ext_args, _("\
3977 Set mapping between filename extension and source language."), _("\
3978 Show mapping between filename extension and source language."), _("\
3979 Usage: set extension-language .foo bar"),
3980 set_ext_lang_command,
3981 show_ext_args,
3982 &setlist, &showlist);
3983
3984 add_info ("extensions", info_ext_lang_command,
3985 _("All filename extensions associated with a source language."));
3986
3987 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3988 &debug_file_directory, _("\
3989 Set the directories where separate debug symbols are searched for."), _("\
3990 Show the directories where separate debug symbols are searched for."), _("\
3991 Separate debug symbols are first searched for in the same\n\
3992 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3993 and lastly at the path of the directory of the binary with\n\
3994 each global debug-file-directory component prepended."),
3995 NULL,
3996 show_debug_file_directory,
3997 &setlist, &showlist);
3998
3999 add_setshow_enum_cmd ("symbol-loading", no_class,
4000 print_symbol_loading_enums, &print_symbol_loading,
4001 _("\
4002 Set printing of symbol loading messages."), _("\
4003 Show printing of symbol loading messages."), _("\
4004 off == turn all messages off\n\
4005 brief == print messages for the executable,\n\
4006 and brief messages for shared libraries\n\
4007 full == print messages for the executable,\n\
4008 and messages for each shared library."),
4009 NULL,
4010 NULL,
4011 &setprintlist, &showprintlist);
4012
4013 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4014 &separate_debug_file_debug, _("\
4015 Set printing of separate debug info file search debug."), _("\
4016 Show printing of separate debug info file search debug."), _("\
4017 When on, GDB prints the searched locations while looking for separate debug \
4018 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4019
4020 #if GDB_SELF_TEST
4021 selftests::register_test
4022 ("filename_language", selftests::filename_language::test_filename_language);
4023 selftests::register_test
4024 ("set_ext_lang_command",
4025 selftests::filename_language::test_set_ext_lang_command);
4026 #endif
4027 }
This page took 0.162573 seconds and 5 git commands to generate.