Constify add_setshow_*
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static const struct sym_fns *find_sym_fns (bfd *);
91
92 static void overlay_invalidate_all (void);
93
94 static void simple_free_overlay_table (void);
95
96 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
97 enum bfd_endian);
98
99 static int simple_read_overlay_table (void);
100
101 static int simple_overlay_update_1 (struct obj_section *);
102
103 static void symfile_find_segment_sections (struct objfile *objfile);
104
105 /* List of all available sym_fns. On gdb startup, each object file reader
106 calls add_symtab_fns() to register information on each format it is
107 prepared to read. */
108
109 struct registered_sym_fns
110 {
111 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
112 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
113 {}
114
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120 };
121
122 static std::vector<registered_sym_fns> symtab_fns;
123
124 /* Values for "set print symbol-loading". */
125
126 const char print_symbol_loading_off[] = "off";
127 const char print_symbol_loading_brief[] = "brief";
128 const char print_symbol_loading_full[] = "full";
129 static const char *print_symbol_loading_enums[] =
130 {
131 print_symbol_loading_off,
132 print_symbol_loading_brief,
133 print_symbol_loading_full,
134 NULL
135 };
136 static const char *print_symbol_loading = print_symbol_loading_full;
137
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
147
148 int auto_solib_add = 1;
149 \f
150
151 /* Return non-zero if symbol-loading messages should be printed.
152 FROM_TTY is the standard from_tty argument to gdb commands.
153 If EXEC is non-zero the messages are for the executable.
154 Otherwise, messages are for shared libraries.
155 If FULL is non-zero then the caller is printing a detailed message.
156 E.g., the message includes the shared library name.
157 Otherwise, the caller is printing a brief "summary" message. */
158
159 int
160 print_symbol_loading_p (int from_tty, int exec, int full)
161 {
162 if (!from_tty && !info_verbose)
163 return 0;
164
165 if (exec)
166 {
167 /* We don't check FULL for executables, there are few such
168 messages, therefore brief == full. */
169 return print_symbol_loading != print_symbol_loading_off;
170 }
171 if (full)
172 return print_symbol_loading == print_symbol_loading_full;
173 return print_symbol_loading == print_symbol_loading_brief;
174 }
175
176 /* True if we are reading a symbol table. */
177
178 int currently_reading_symtab = 0;
179
180 /* Increment currently_reading_symtab and return a cleanup that can be
181 used to decrement it. */
182
183 scoped_restore_tmpl<int>
184 increment_reading_symtab (void)
185 {
186 gdb_assert (currently_reading_symtab >= 0);
187 return make_scoped_restore (&currently_reading_symtab,
188 currently_reading_symtab + 1);
189 }
190
191 /* Remember the lowest-addressed loadable section we've seen.
192 This function is called via bfd_map_over_sections.
193
194 In case of equal vmas, the section with the largest size becomes the
195 lowest-addressed loadable section.
196
197 If the vmas and sizes are equal, the last section is considered the
198 lowest-addressed loadable section. */
199
200 void
201 find_lowest_section (bfd *abfd, asection *sect, void *obj)
202 {
203 asection **lowest = (asection **) obj;
204
205 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
212 && (bfd_section_size (abfd, (*lowest))
213 <= bfd_section_size (abfd, sect)))
214 *lowest = sect;
215 }
216
217 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
218 new object's 'num_sections' field is set to 0; it must be updated
219 by the caller. */
220
221 struct section_addr_info *
222 alloc_section_addr_info (size_t num_sections)
223 {
224 struct section_addr_info *sap;
225 size_t size;
226
227 size = (sizeof (struct section_addr_info)
228 + sizeof (struct other_sections) * (num_sections - 1));
229 sap = (struct section_addr_info *) xmalloc (size);
230 memset (sap, 0, size);
231
232 return sap;
233 }
234
235 /* Build (allocate and populate) a section_addr_info struct from
236 an existing section table. */
237
238 extern struct section_addr_info *
239 build_section_addr_info_from_section_table (const struct target_section *start,
240 const struct target_section *end)
241 {
242 struct section_addr_info *sap;
243 const struct target_section *stp;
244 int oidx;
245
246 sap = alloc_section_addr_info (end - start);
247
248 for (stp = start, oidx = 0; stp != end; stp++)
249 {
250 struct bfd_section *asect = stp->the_bfd_section;
251 bfd *abfd = asect->owner;
252
253 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
254 && oidx < end - start)
255 {
256 sap->other[oidx].addr = stp->addr;
257 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
258 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
259 oidx++;
260 }
261 }
262
263 sap->num_sections = oidx;
264
265 return sap;
266 }
267
268 /* Create a section_addr_info from section offsets in ABFD. */
269
270 static struct section_addr_info *
271 build_section_addr_info_from_bfd (bfd *abfd)
272 {
273 struct section_addr_info *sap;
274 int i;
275 struct bfd_section *sec;
276
277 sap = alloc_section_addr_info (bfd_count_sections (abfd));
278 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
279 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
280 {
281 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
282 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
283 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
284 i++;
285 }
286
287 sap->num_sections = i;
288
289 return sap;
290 }
291
292 /* Create a section_addr_info from section offsets in OBJFILE. */
293
294 struct section_addr_info *
295 build_section_addr_info_from_objfile (const struct objfile *objfile)
296 {
297 struct section_addr_info *sap;
298 int i;
299
300 /* Before reread_symbols gets rewritten it is not safe to call:
301 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
302 */
303 sap = build_section_addr_info_from_bfd (objfile->obfd);
304 for (i = 0; i < sap->num_sections; i++)
305 {
306 int sectindex = sap->other[i].sectindex;
307
308 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
309 }
310 return sap;
311 }
312
313 /* Free all memory allocated by build_section_addr_info_from_section_table. */
314
315 extern void
316 free_section_addr_info (struct section_addr_info *sap)
317 {
318 int idx;
319
320 for (idx = 0; idx < sap->num_sections; idx++)
321 xfree (sap->other[idx].name);
322 xfree (sap);
323 }
324
325 /* Initialize OBJFILE's sect_index_* members. */
326
327 static void
328 init_objfile_sect_indices (struct objfile *objfile)
329 {
330 asection *sect;
331 int i;
332
333 sect = bfd_get_section_by_name (objfile->obfd, ".text");
334 if (sect)
335 objfile->sect_index_text = sect->index;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".data");
338 if (sect)
339 objfile->sect_index_data = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
342 if (sect)
343 objfile->sect_index_bss = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
346 if (sect)
347 objfile->sect_index_rodata = sect->index;
348
349 /* This is where things get really weird... We MUST have valid
350 indices for the various sect_index_* members or gdb will abort.
351 So if for example, there is no ".text" section, we have to
352 accomodate that. First, check for a file with the standard
353 one or two segments. */
354
355 symfile_find_segment_sections (objfile);
356
357 /* Except when explicitly adding symbol files at some address,
358 section_offsets contains nothing but zeros, so it doesn't matter
359 which slot in section_offsets the individual sect_index_* members
360 index into. So if they are all zero, it is safe to just point
361 all the currently uninitialized indices to the first slot. But
362 beware: if this is the main executable, it may be relocated
363 later, e.g. by the remote qOffsets packet, and then this will
364 be wrong! That's why we try segments first. */
365
366 for (i = 0; i < objfile->num_sections; i++)
367 {
368 if (ANOFFSET (objfile->section_offsets, i) != 0)
369 {
370 break;
371 }
372 }
373 if (i == objfile->num_sections)
374 {
375 if (objfile->sect_index_text == -1)
376 objfile->sect_index_text = 0;
377 if (objfile->sect_index_data == -1)
378 objfile->sect_index_data = 0;
379 if (objfile->sect_index_bss == -1)
380 objfile->sect_index_bss = 0;
381 if (objfile->sect_index_rodata == -1)
382 objfile->sect_index_rodata = 0;
383 }
384 }
385
386 /* The arguments to place_section. */
387
388 struct place_section_arg
389 {
390 struct section_offsets *offsets;
391 CORE_ADDR lowest;
392 };
393
394 /* Find a unique offset to use for loadable section SECT if
395 the user did not provide an offset. */
396
397 static void
398 place_section (bfd *abfd, asection *sect, void *obj)
399 {
400 struct place_section_arg *arg = (struct place_section_arg *) obj;
401 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
402 int done;
403 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
404
405 /* We are only interested in allocated sections. */
406 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
407 return;
408
409 /* If the user specified an offset, honor it. */
410 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
411 return;
412
413 /* Otherwise, let's try to find a place for the section. */
414 start_addr = (arg->lowest + align - 1) & -align;
415
416 do {
417 asection *cur_sec;
418
419 done = 1;
420
421 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
422 {
423 int indx = cur_sec->index;
424
425 /* We don't need to compare against ourself. */
426 if (cur_sec == sect)
427 continue;
428
429 /* We can only conflict with allocated sections. */
430 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
431 continue;
432
433 /* If the section offset is 0, either the section has not been placed
434 yet, or it was the lowest section placed (in which case LOWEST
435 will be past its end). */
436 if (offsets[indx] == 0)
437 continue;
438
439 /* If this section would overlap us, then we must move up. */
440 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
441 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
442 {
443 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
444 start_addr = (start_addr + align - 1) & -align;
445 done = 0;
446 break;
447 }
448
449 /* Otherwise, we appear to be OK. So far. */
450 }
451 }
452 while (!done);
453
454 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
455 arg->lowest = start_addr + bfd_get_section_size (sect);
456 }
457
458 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
459 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
460 entries. */
461
462 void
463 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
464 int num_sections,
465 const struct section_addr_info *addrs)
466 {
467 int i;
468
469 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
470
471 /* Now calculate offsets for section that were specified by the caller. */
472 for (i = 0; i < addrs->num_sections; i++)
473 {
474 const struct other_sections *osp;
475
476 osp = &addrs->other[i];
477 if (osp->sectindex == -1)
478 continue;
479
480 /* Record all sections in offsets. */
481 /* The section_offsets in the objfile are here filled in using
482 the BFD index. */
483 section_offsets->offsets[osp->sectindex] = osp->addr;
484 }
485 }
486
487 /* Transform section name S for a name comparison. prelink can split section
488 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
489 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
490 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
491 (`.sbss') section has invalid (increased) virtual address. */
492
493 static const char *
494 addr_section_name (const char *s)
495 {
496 if (strcmp (s, ".dynbss") == 0)
497 return ".bss";
498 if (strcmp (s, ".sdynbss") == 0)
499 return ".sbss";
500
501 return s;
502 }
503
504 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
505 their (name, sectindex) pair. sectindex makes the sort by name stable. */
506
507 static int
508 addrs_section_compar (const void *ap, const void *bp)
509 {
510 const struct other_sections *a = *((struct other_sections **) ap);
511 const struct other_sections *b = *((struct other_sections **) bp);
512 int retval;
513
514 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
515 if (retval)
516 return retval;
517
518 return a->sectindex - b->sectindex;
519 }
520
521 /* Provide sorted array of pointers to sections of ADDRS. The array is
522 terminated by NULL. Caller is responsible to call xfree for it. */
523
524 static struct other_sections **
525 addrs_section_sort (struct section_addr_info *addrs)
526 {
527 struct other_sections **array;
528 int i;
529
530 /* `+ 1' for the NULL terminator. */
531 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
532 for (i = 0; i < addrs->num_sections; i++)
533 array[i] = &addrs->other[i];
534 array[i] = NULL;
535
536 qsort (array, i, sizeof (*array), addrs_section_compar);
537
538 return array;
539 }
540
541 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
542 also SECTINDEXes specific to ABFD there. This function can be used to
543 rebase ADDRS to start referencing different BFD than before. */
544
545 void
546 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
547 {
548 asection *lower_sect;
549 CORE_ADDR lower_offset;
550 int i;
551 struct cleanup *my_cleanup;
552 struct section_addr_info *abfd_addrs;
553 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
554 struct other_sections **addrs_to_abfd_addrs;
555
556 /* Find lowest loadable section to be used as starting point for
557 continguous sections. */
558 lower_sect = NULL;
559 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
560 if (lower_sect == NULL)
561 {
562 warning (_("no loadable sections found in added symbol-file %s"),
563 bfd_get_filename (abfd));
564 lower_offset = 0;
565 }
566 else
567 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
568
569 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
570 in ABFD. Section names are not unique - there can be multiple sections of
571 the same name. Also the sections of the same name do not have to be
572 adjacent to each other. Some sections may be present only in one of the
573 files. Even sections present in both files do not have to be in the same
574 order.
575
576 Use stable sort by name for the sections in both files. Then linearly
577 scan both lists matching as most of the entries as possible. */
578
579 addrs_sorted = addrs_section_sort (addrs);
580 my_cleanup = make_cleanup (xfree, addrs_sorted);
581
582 abfd_addrs = build_section_addr_info_from_bfd (abfd);
583 make_cleanup_free_section_addr_info (abfd_addrs);
584 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
585 make_cleanup (xfree, abfd_addrs_sorted);
586
587 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
588 ABFD_ADDRS_SORTED. */
589
590 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
591 make_cleanup (xfree, addrs_to_abfd_addrs);
592
593 while (*addrs_sorted)
594 {
595 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
596
597 while (*abfd_addrs_sorted
598 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
599 sect_name) < 0)
600 abfd_addrs_sorted++;
601
602 if (*abfd_addrs_sorted
603 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
604 sect_name) == 0)
605 {
606 int index_in_addrs;
607
608 /* Make the found item directly addressable from ADDRS. */
609 index_in_addrs = *addrs_sorted - addrs->other;
610 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
611 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
612
613 /* Never use the same ABFD entry twice. */
614 abfd_addrs_sorted++;
615 }
616
617 addrs_sorted++;
618 }
619
620 /* Calculate offsets for the loadable sections.
621 FIXME! Sections must be in order of increasing loadable section
622 so that contiguous sections can use the lower-offset!!!
623
624 Adjust offsets if the segments are not contiguous.
625 If the section is contiguous, its offset should be set to
626 the offset of the highest loadable section lower than it
627 (the loadable section directly below it in memory).
628 this_offset = lower_offset = lower_addr - lower_orig_addr */
629
630 for (i = 0; i < addrs->num_sections; i++)
631 {
632 struct other_sections *sect = addrs_to_abfd_addrs[i];
633
634 if (sect)
635 {
636 /* This is the index used by BFD. */
637 addrs->other[i].sectindex = sect->sectindex;
638
639 if (addrs->other[i].addr != 0)
640 {
641 addrs->other[i].addr -= sect->addr;
642 lower_offset = addrs->other[i].addr;
643 }
644 else
645 addrs->other[i].addr = lower_offset;
646 }
647 else
648 {
649 /* addr_section_name transformation is not used for SECT_NAME. */
650 const char *sect_name = addrs->other[i].name;
651
652 /* This section does not exist in ABFD, which is normally
653 unexpected and we want to issue a warning.
654
655 However, the ELF prelinker does create a few sections which are
656 marked in the main executable as loadable (they are loaded in
657 memory from the DYNAMIC segment) and yet are not present in
658 separate debug info files. This is fine, and should not cause
659 a warning. Shared libraries contain just the section
660 ".gnu.liblist" but it is not marked as loadable there. There is
661 no other way to identify them than by their name as the sections
662 created by prelink have no special flags.
663
664 For the sections `.bss' and `.sbss' see addr_section_name. */
665
666 if (!(strcmp (sect_name, ".gnu.liblist") == 0
667 || strcmp (sect_name, ".gnu.conflict") == 0
668 || (strcmp (sect_name, ".bss") == 0
669 && i > 0
670 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
671 && addrs_to_abfd_addrs[i - 1] != NULL)
672 || (strcmp (sect_name, ".sbss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)))
676 warning (_("section %s not found in %s"), sect_name,
677 bfd_get_filename (abfd));
678
679 addrs->other[i].addr = 0;
680 addrs->other[i].sectindex = -1;
681 }
682 }
683
684 do_cleanups (my_cleanup);
685 }
686
687 /* Parse the user's idea of an offset for dynamic linking, into our idea
688 of how to represent it for fast symbol reading. This is the default
689 version of the sym_fns.sym_offsets function for symbol readers that
690 don't need to do anything special. It allocates a section_offsets table
691 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
692
693 void
694 default_symfile_offsets (struct objfile *objfile,
695 const struct section_addr_info *addrs)
696 {
697 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
698 objfile->section_offsets = (struct section_offsets *)
699 obstack_alloc (&objfile->objfile_obstack,
700 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701 relative_addr_info_to_section_offsets (objfile->section_offsets,
702 objfile->num_sections, addrs);
703
704 /* For relocatable files, all loadable sections will start at zero.
705 The zero is meaningless, so try to pick arbitrary addresses such
706 that no loadable sections overlap. This algorithm is quadratic,
707 but the number of sections in a single object file is generally
708 small. */
709 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
710 {
711 struct place_section_arg arg;
712 bfd *abfd = objfile->obfd;
713 asection *cur_sec;
714
715 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
716 /* We do not expect this to happen; just skip this step if the
717 relocatable file has a section with an assigned VMA. */
718 if (bfd_section_vma (abfd, cur_sec) != 0)
719 break;
720
721 if (cur_sec == NULL)
722 {
723 CORE_ADDR *offsets = objfile->section_offsets->offsets;
724
725 /* Pick non-overlapping offsets for sections the user did not
726 place explicitly. */
727 arg.offsets = objfile->section_offsets;
728 arg.lowest = 0;
729 bfd_map_over_sections (objfile->obfd, place_section, &arg);
730
731 /* Correctly filling in the section offsets is not quite
732 enough. Relocatable files have two properties that
733 (most) shared objects do not:
734
735 - Their debug information will contain relocations. Some
736 shared libraries do also, but many do not, so this can not
737 be assumed.
738
739 - If there are multiple code sections they will be loaded
740 at different relative addresses in memory than they are
741 in the objfile, since all sections in the file will start
742 at address zero.
743
744 Because GDB has very limited ability to map from an
745 address in debug info to the correct code section,
746 it relies on adding SECT_OFF_TEXT to things which might be
747 code. If we clear all the section offsets, and set the
748 section VMAs instead, then symfile_relocate_debug_section
749 will return meaningful debug information pointing at the
750 correct sections.
751
752 GDB has too many different data structures for section
753 addresses - a bfd, objfile, and so_list all have section
754 tables, as does exec_ops. Some of these could probably
755 be eliminated. */
756
757 for (cur_sec = abfd->sections; cur_sec != NULL;
758 cur_sec = cur_sec->next)
759 {
760 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
761 continue;
762
763 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
764 exec_set_section_address (bfd_get_filename (abfd),
765 cur_sec->index,
766 offsets[cur_sec->index]);
767 offsets[cur_sec->index] = 0;
768 }
769 }
770 }
771
772 /* Remember the bfd indexes for the .text, .data, .bss and
773 .rodata sections. */
774 init_objfile_sect_indices (objfile);
775 }
776
777 /* Divide the file into segments, which are individual relocatable units.
778 This is the default version of the sym_fns.sym_segments function for
779 symbol readers that do not have an explicit representation of segments.
780 It assumes that object files do not have segments, and fully linked
781 files have a single segment. */
782
783 struct symfile_segment_data *
784 default_symfile_segments (bfd *abfd)
785 {
786 int num_sections, i;
787 asection *sect;
788 struct symfile_segment_data *data;
789 CORE_ADDR low, high;
790
791 /* Relocatable files contain enough information to position each
792 loadable section independently; they should not be relocated
793 in segments. */
794 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
795 return NULL;
796
797 /* Make sure there is at least one loadable section in the file. */
798 for (sect = abfd->sections; sect != NULL; sect = sect->next)
799 {
800 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
801 continue;
802
803 break;
804 }
805 if (sect == NULL)
806 return NULL;
807
808 low = bfd_get_section_vma (abfd, sect);
809 high = low + bfd_get_section_size (sect);
810
811 data = XCNEW (struct symfile_segment_data);
812 data->num_segments = 1;
813 data->segment_bases = XCNEW (CORE_ADDR);
814 data->segment_sizes = XCNEW (CORE_ADDR);
815
816 num_sections = bfd_count_sections (abfd);
817 data->segment_info = XCNEWVEC (int, num_sections);
818
819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
820 {
821 CORE_ADDR vma;
822
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 vma = bfd_get_section_vma (abfd, sect);
827 if (vma < low)
828 low = vma;
829 if (vma + bfd_get_section_size (sect) > high)
830 high = vma + bfd_get_section_size (sect);
831
832 data->segment_info[i] = 1;
833 }
834
835 data->segment_bases[0] = low;
836 data->segment_sizes[0] = high - low;
837
838 return data;
839 }
840
841 /* This is a convenience function to call sym_read for OBJFILE and
842 possibly force the partial symbols to be read. */
843
844 static void
845 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
846 {
847 (*objfile->sf->sym_read) (objfile, add_flags);
848 objfile->per_bfd->minsyms_read = true;
849
850 /* find_separate_debug_file_in_section should be called only if there is
851 single binary with no existing separate debug info file. */
852 if (!objfile_has_partial_symbols (objfile)
853 && objfile->separate_debug_objfile == NULL
854 && objfile->separate_debug_objfile_backlink == NULL)
855 {
856 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
857
858 if (abfd != NULL)
859 {
860 /* find_separate_debug_file_in_section uses the same filename for the
861 virtual section-as-bfd like the bfd filename containing the
862 section. Therefore use also non-canonical name form for the same
863 file containing the section. */
864 symbol_file_add_separate (abfd.get (), objfile->original_name,
865 add_flags, objfile);
866 }
867 }
868 if ((add_flags & SYMFILE_NO_READ) == 0)
869 require_partial_symbols (objfile, 0);
870 }
871
872 /* Initialize entry point information for this objfile. */
873
874 static void
875 init_entry_point_info (struct objfile *objfile)
876 {
877 struct entry_info *ei = &objfile->per_bfd->ei;
878
879 if (ei->initialized)
880 return;
881 ei->initialized = 1;
882
883 /* Save startup file's range of PC addresses to help blockframe.c
884 decide where the bottom of the stack is. */
885
886 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
887 {
888 /* Executable file -- record its entry point so we'll recognize
889 the startup file because it contains the entry point. */
890 ei->entry_point = bfd_get_start_address (objfile->obfd);
891 ei->entry_point_p = 1;
892 }
893 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
894 && bfd_get_start_address (objfile->obfd) != 0)
895 {
896 /* Some shared libraries may have entry points set and be
897 runnable. There's no clear way to indicate this, so just check
898 for values other than zero. */
899 ei->entry_point = bfd_get_start_address (objfile->obfd);
900 ei->entry_point_p = 1;
901 }
902 else
903 {
904 /* Examination of non-executable.o files. Short-circuit this stuff. */
905 ei->entry_point_p = 0;
906 }
907
908 if (ei->entry_point_p)
909 {
910 struct obj_section *osect;
911 CORE_ADDR entry_point = ei->entry_point;
912 int found;
913
914 /* Make certain that the address points at real code, and not a
915 function descriptor. */
916 entry_point
917 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
918 entry_point,
919 &current_target);
920
921 /* Remove any ISA markers, so that this matches entries in the
922 symbol table. */
923 ei->entry_point
924 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
925
926 found = 0;
927 ALL_OBJFILE_OSECTIONS (objfile, osect)
928 {
929 struct bfd_section *sect = osect->the_bfd_section;
930
931 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
932 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
933 + bfd_get_section_size (sect)))
934 {
935 ei->the_bfd_section_index
936 = gdb_bfd_section_index (objfile->obfd, sect);
937 found = 1;
938 break;
939 }
940 }
941
942 if (!found)
943 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
944 }
945 }
946
947 /* Process a symbol file, as either the main file or as a dynamically
948 loaded file.
949
950 This function does not set the OBJFILE's entry-point info.
951
952 OBJFILE is where the symbols are to be read from.
953
954 ADDRS is the list of section load addresses. If the user has given
955 an 'add-symbol-file' command, then this is the list of offsets and
956 addresses he or she provided as arguments to the command; or, if
957 we're handling a shared library, these are the actual addresses the
958 sections are loaded at, according to the inferior's dynamic linker
959 (as gleaned by GDB's shared library code). We convert each address
960 into an offset from the section VMA's as it appears in the object
961 file, and then call the file's sym_offsets function to convert this
962 into a format-specific offset table --- a `struct section_offsets'.
963
964 ADD_FLAGS encodes verbosity level, whether this is main symbol or
965 an extra symbol file such as dynamically loaded code, and wether
966 breakpoint reset should be deferred. */
967
968 static void
969 syms_from_objfile_1 (struct objfile *objfile,
970 struct section_addr_info *addrs,
971 symfile_add_flags add_flags)
972 {
973 struct section_addr_info *local_addr = NULL;
974 struct cleanup *old_chain;
975 const int mainline = add_flags & SYMFILE_MAINLINE;
976
977 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
978
979 if (objfile->sf == NULL)
980 {
981 /* No symbols to load, but we still need to make sure
982 that the section_offsets table is allocated. */
983 int num_sections = gdb_bfd_count_sections (objfile->obfd);
984 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
985
986 objfile->num_sections = num_sections;
987 objfile->section_offsets
988 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
989 size);
990 memset (objfile->section_offsets, 0, size);
991 return;
992 }
993
994 /* Make sure that partially constructed symbol tables will be cleaned up
995 if an error occurs during symbol reading. */
996 old_chain = make_cleanup (null_cleanup, NULL);
997 std::unique_ptr<struct objfile> objfile_holder (objfile);
998
999 /* If ADDRS is NULL, put together a dummy address list.
1000 We now establish the convention that an addr of zero means
1001 no load address was specified. */
1002 if (! addrs)
1003 {
1004 local_addr = alloc_section_addr_info (1);
1005 make_cleanup (xfree, local_addr);
1006 addrs = local_addr;
1007 }
1008
1009 if (mainline)
1010 {
1011 /* We will modify the main symbol table, make sure that all its users
1012 will be cleaned up if an error occurs during symbol reading. */
1013 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1014
1015 /* Since no error yet, throw away the old symbol table. */
1016
1017 if (symfile_objfile != NULL)
1018 {
1019 delete symfile_objfile;
1020 gdb_assert (symfile_objfile == NULL);
1021 }
1022
1023 /* Currently we keep symbols from the add-symbol-file command.
1024 If the user wants to get rid of them, they should do "symbol-file"
1025 without arguments first. Not sure this is the best behavior
1026 (PR 2207). */
1027
1028 (*objfile->sf->sym_new_init) (objfile);
1029 }
1030
1031 /* Convert addr into an offset rather than an absolute address.
1032 We find the lowest address of a loaded segment in the objfile,
1033 and assume that <addr> is where that got loaded.
1034
1035 We no longer warn if the lowest section is not a text segment (as
1036 happens for the PA64 port. */
1037 if (addrs->num_sections > 0)
1038 addr_info_make_relative (addrs, objfile->obfd);
1039
1040 /* Initialize symbol reading routines for this objfile, allow complaints to
1041 appear for this new file, and record how verbose to be, then do the
1042 initial symbol reading for this file. */
1043
1044 (*objfile->sf->sym_init) (objfile);
1045 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1046
1047 (*objfile->sf->sym_offsets) (objfile, addrs);
1048
1049 read_symbols (objfile, add_flags);
1050
1051 /* Discard cleanups as symbol reading was successful. */
1052
1053 objfile_holder.release ();
1054 discard_cleanups (old_chain);
1055 xfree (local_addr);
1056 }
1057
1058 /* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
1061 static void
1062 syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
1064 symfile_add_flags add_flags)
1065 {
1066 syms_from_objfile_1 (objfile, addrs, add_flags);
1067 init_entry_point_info (objfile);
1068 }
1069
1070 /* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1073
1074 static void
1075 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1076 {
1077 /* If this is the main symbol file we have to clean up all users of the
1078 old main symbol file. Otherwise it is sufficient to fixup all the
1079 breakpoints that may have been redefined by this symbol file. */
1080 if (add_flags & SYMFILE_MAINLINE)
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
1085 clear_symtab_users (add_flags);
1086 }
1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1088 {
1089 breakpoint_re_set ();
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1094 }
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1100 A new reference is acquired by this function.
1101
1102 For NAME description see the objfile constructor.
1103
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
1106
1107 ADDRS is as described for syms_from_objfile_1, above.
1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1109
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
1113 Upon success, returns a pointer to the objfile that was added.
1114 Upon failure, jumps back to command level (never returns). */
1115
1116 static struct objfile *
1117 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
1119 struct section_addr_info *addrs,
1120 objfile_flags flags, struct objfile *parent)
1121 {
1122 struct objfile *objfile;
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = new struct objfile (abfd, name, flags);
1147
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
1153 performed, or need to read an unmapped symbol table. */
1154 if (should_print)
1155 {
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
1158 else
1159 {
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164 }
1165 syms_from_objfile (objfile, addrs, add_flags);
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
1170 all partial symbol tables for this objfile if so. */
1171
1172 if ((flags & OBJF_READNOW))
1173 {
1174 if (should_print)
1175 {
1176 printf_unfiltered (_("expanding to full symbols..."));
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
1183 }
1184
1185 if (should_print && !objfile_has_symbols (objfile))
1186 {
1187 wrap_here ("");
1188 printf_unfiltered (_("(no debugging symbols found)..."));
1189 wrap_here ("");
1190 }
1191
1192 if (should_print)
1193 {
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
1196 else
1197 printf_unfiltered (_("done.\n"));
1198 }
1199
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
1205 if (objfile->sf == NULL)
1206 {
1207 observer_notify_new_objfile (objfile);
1208 return objfile; /* No symbols. */
1209 }
1210
1211 finish_new_objfile (objfile, add_flags);
1212
1213 observer_notify_new_objfile (objfile);
1214
1215 bfd_cache_close_all ();
1216 return (objfile);
1217 }
1218
1219 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see the objfile constructor. */
1221
1222 void
1223 symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
1225 struct objfile *objfile)
1226 {
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
1235
1236 symbol_file_add_with_addrs
1237 (bfd, name, symfile_flags, sap,
1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1239 | OBJF_USERLOADED),
1240 objfile);
1241
1242 do_cleanups (my_cleanup);
1243 }
1244
1245 /* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
1247 See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
1252 struct section_addr_info *addrs,
1253 objfile_flags flags, struct objfile *parent)
1254 {
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
1257 }
1258
1259 /* Process a symbol file, as either the main file or as a dynamically
1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
1261
1262 struct objfile *
1263 symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
1265 {
1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1267
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
1270 }
1271
1272 /* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
1279
1280 void
1281 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1282 {
1283 symbol_file_add_main_1 (args, add_flags, 0);
1284 }
1285
1286 static void
1287 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
1289 {
1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1291
1292 symbol_file_add (args, add_flags, NULL, flags);
1293
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
1298 if ((add_flags & SYMFILE_NO_READ) == 0)
1299 set_initial_language ();
1300 }
1301
1302 void
1303 symbol_file_clear (int from_tty)
1304 {
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
1309 objfile_name (symfile_objfile))
1310 : !query (_("Discard symbol table? "))))
1311 error (_("Not confirmed."));
1312
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
1315 no_shared_libraries (NULL, from_tty);
1316
1317 free_all_objfiles ();
1318
1319 gdb_assert (symfile_objfile == NULL);
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1322 }
1323
1324 /* See symfile.h. */
1325
1326 int separate_debug_file_debug = 0;
1327
1328 static int
1329 separate_debug_file_exists (const char *name, unsigned long crc,
1330 struct objfile *parent_objfile)
1331 {
1332 unsigned long file_crc;
1333 int file_crc_p;
1334 struct stat parent_stat, abfd_stat;
1335 int verified_as_different;
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1341 the separate debug infos with the same basename can exist. */
1342
1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1344 return 0;
1345
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1350
1351 if (abfd == NULL)
1352 return 0;
1353
1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
1364
1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1368 {
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
1371 return 0;
1372 verified_as_different = 1;
1373 }
1374 else
1375 verified_as_different = 0;
1376
1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1378
1379 if (!file_crc_p)
1380 return 0;
1381
1382 if (crc != file_crc)
1383 {
1384 unsigned long parent_crc;
1385
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
1389
1390 if (!verified_as_different)
1391 {
1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1393 return 0;
1394 }
1395
1396 if (verified_as_different || parent_crc != file_crc)
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
1399 name, objfile_name (parent_objfile));
1400
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 char *debug_file_directory = NULL;
1408 static void
1409 show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411 {
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
1415 value);
1416 }
1417
1418 #if ! defined (DEBUG_SUBDIRECTORY)
1419 #define DEBUG_SUBDIRECTORY ".debug"
1420 #endif
1421
1422 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1428
1429 static char *
1430 find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
1434 {
1435 char *debugdir;
1436 char *debugfile;
1437 int i;
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
1441
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1447 i = strlen (dir);
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1450
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1464 return debugfile;
1465
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* Then try in the global debugfile directories.
1476
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
1479
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1482
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, debuglink);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
1513 }
1514 }
1515
1516 do_cleanups (back_to);
1517 xfree (debugfile);
1518 return NULL;
1519 }
1520
1521 /* Modify PATH to contain only "[/]directory/" part of PATH.
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525 static void
1526 terminate_after_last_dir_separator (char *path)
1527 {
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538 }
1539
1540 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543 char *
1544 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 {
1546 char *debugfile;
1547 unsigned long crc32;
1548
1549 gdb::unique_xmalloc_ptr<char> debuglink
1550 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
1559 std::string dir = objfile_name (objfile);
1560 terminate_after_last_dir_separator (&dir[0]);
1561 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1562
1563 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1564 debuglink.get (), crc32, objfile);
1565
1566 if (debugfile == NULL)
1567 {
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile_name (objfile), &st_buf) == 0
1574 && S_ISLNK (st_buf.st_mode))
1575 {
1576 gdb::unique_xmalloc_ptr<char> symlink_dir
1577 (lrealpath (objfile_name (objfile)));
1578 if (symlink_dir != NULL)
1579 {
1580 terminate_after_last_dir_separator (symlink_dir.get ());
1581 if (dir != symlink_dir.get ())
1582 {
1583 /* Different directory, so try using it. */
1584 debugfile = find_separate_debug_file (symlink_dir.get (),
1585 symlink_dir.get (),
1586 debuglink.get (),
1587 crc32,
1588 objfile);
1589 }
1590 }
1591 }
1592 }
1593
1594 return debugfile;
1595 }
1596
1597 /* This is the symbol-file command. Read the file, analyze its
1598 symbols, and add a struct symtab to a symtab list. The syntax of
1599 the command is rather bizarre:
1600
1601 1. The function buildargv implements various quoting conventions
1602 which are undocumented and have little or nothing in common with
1603 the way things are quoted (or not quoted) elsewhere in GDB.
1604
1605 2. Options are used, which are not generally used in GDB (perhaps
1606 "set mapped on", "set readnow on" would be better)
1607
1608 3. The order of options matters, which is contrary to GNU
1609 conventions (because it is confusing and inconvenient). */
1610
1611 void
1612 symbol_file_command (const char *args, int from_tty)
1613 {
1614 dont_repeat ();
1615
1616 if (args == NULL)
1617 {
1618 symbol_file_clear (from_tty);
1619 }
1620 else
1621 {
1622 objfile_flags flags = OBJF_USERLOADED;
1623 symfile_add_flags add_flags = 0;
1624 char *name = NULL;
1625
1626 if (from_tty)
1627 add_flags |= SYMFILE_VERBOSE;
1628
1629 gdb_argv built_argv (args);
1630 for (char *arg : built_argv)
1631 {
1632 if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
1634 else if (*arg == '-')
1635 error (_("unknown option `%s'"), arg);
1636 else
1637 {
1638 symbol_file_add_main_1 (arg, add_flags, flags);
1639 name = arg;
1640 }
1641 }
1642
1643 if (name == NULL)
1644 error (_("no symbol file name was specified"));
1645 }
1646 }
1647
1648 /* Set the initial language.
1649
1650 FIXME: A better solution would be to record the language in the
1651 psymtab when reading partial symbols, and then use it (if known) to
1652 set the language. This would be a win for formats that encode the
1653 language in an easily discoverable place, such as DWARF. For
1654 stabs, we can jump through hoops looking for specially named
1655 symbols or try to intuit the language from the specific type of
1656 stabs we find, but we can't do that until later when we read in
1657 full symbols. */
1658
1659 void
1660 set_initial_language (void)
1661 {
1662 enum language lang = main_language ();
1663
1664 if (lang == language_unknown)
1665 {
1666 char *name = main_name ();
1667 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1668
1669 if (sym != NULL)
1670 lang = SYMBOL_LANGUAGE (sym);
1671 }
1672
1673 if (lang == language_unknown)
1674 {
1675 /* Make C the default language */
1676 lang = language_c;
1677 }
1678
1679 set_language (lang);
1680 expected_language = current_language; /* Don't warn the user. */
1681 }
1682
1683 /* Open the file specified by NAME and hand it off to BFD for
1684 preliminary analysis. Return a newly initialized bfd *, which
1685 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1686 absolute). In case of trouble, error() is called. */
1687
1688 gdb_bfd_ref_ptr
1689 symfile_bfd_open (const char *name)
1690 {
1691 int desc = -1;
1692 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1693
1694 if (!is_target_filename (name))
1695 {
1696 char *absolute_name;
1697
1698 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1699
1700 /* Look down path for it, allocate 2nd new malloc'd copy. */
1701 desc = openp (getenv ("PATH"),
1702 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1703 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1704 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1705 if (desc < 0)
1706 {
1707 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1708
1709 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714 #endif
1715 if (desc < 0)
1716 perror_with_name (expanded_name.get ());
1717
1718 make_cleanup (xfree, absolute_name);
1719 name = absolute_name;
1720 }
1721
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
1726
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
1729
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 do_cleanups (back_to);
1735
1736 return sym_bfd;
1737 }
1738
1739 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1740 the section was not found. */
1741
1742 int
1743 get_section_index (struct objfile *objfile, const char *section_name)
1744 {
1745 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1746
1747 if (sect)
1748 return sect->index;
1749 else
1750 return -1;
1751 }
1752
1753 /* Link SF into the global symtab_fns list.
1754 FLAVOUR is the file format that SF handles.
1755 Called on startup by the _initialize routine in each object file format
1756 reader, to register information about each format the reader is prepared
1757 to handle. */
1758
1759 void
1760 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1761 {
1762 symtab_fns.emplace_back (flavour, sf);
1763 }
1764
1765 /* Initialize OBJFILE to read symbols from its associated BFD. It
1766 either returns or calls error(). The result is an initialized
1767 struct sym_fns in the objfile structure, that contains cached
1768 information about the symbol file. */
1769
1770 static const struct sym_fns *
1771 find_sym_fns (bfd *abfd)
1772 {
1773 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1774
1775 if (our_flavour == bfd_target_srec_flavour
1776 || our_flavour == bfd_target_ihex_flavour
1777 || our_flavour == bfd_target_tekhex_flavour)
1778 return NULL; /* No symbols. */
1779
1780 for (const registered_sym_fns &rsf : symtab_fns)
1781 if (our_flavour == rsf.sym_flavour)
1782 return rsf.sym_fns;
1783
1784 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1785 bfd_get_target (abfd));
1786 }
1787 \f
1788
1789 /* This function runs the load command of our current target. */
1790
1791 static void
1792 load_command (const char *arg, int from_tty)
1793 {
1794 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1795
1796 dont_repeat ();
1797
1798 /* The user might be reloading because the binary has changed. Take
1799 this opportunity to check. */
1800 reopen_exec_file ();
1801 reread_symbols ();
1802
1803 if (arg == NULL)
1804 {
1805 const char *parg;
1806 int count = 0;
1807
1808 parg = arg = get_exec_file (1);
1809
1810 /* Count how many \ " ' tab space there are in the name. */
1811 while ((parg = strpbrk (parg, "\\\"'\t ")))
1812 {
1813 parg++;
1814 count++;
1815 }
1816
1817 if (count)
1818 {
1819 /* We need to quote this string so buildargv can pull it apart. */
1820 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1821 char *ptemp = temp;
1822 const char *prev;
1823
1824 make_cleanup (xfree, temp);
1825
1826 prev = parg = arg;
1827 while ((parg = strpbrk (parg, "\\\"'\t ")))
1828 {
1829 strncpy (ptemp, prev, parg - prev);
1830 ptemp += parg - prev;
1831 prev = parg++;
1832 *ptemp++ = '\\';
1833 }
1834 strcpy (ptemp, prev);
1835
1836 arg = temp;
1837 }
1838 }
1839
1840 target_load (arg, from_tty);
1841
1842 /* After re-loading the executable, we don't really know which
1843 overlays are mapped any more. */
1844 overlay_cache_invalid = 1;
1845
1846 do_cleanups (cleanup);
1847 }
1848
1849 /* This version of "load" should be usable for any target. Currently
1850 it is just used for remote targets, not inftarg.c or core files,
1851 on the theory that only in that case is it useful.
1852
1853 Avoiding xmodem and the like seems like a win (a) because we don't have
1854 to worry about finding it, and (b) On VMS, fork() is very slow and so
1855 we don't want to run a subprocess. On the other hand, I'm not sure how
1856 performance compares. */
1857
1858 static int validate_download = 0;
1859
1860 /* Callback service function for generic_load (bfd_map_over_sections). */
1861
1862 static void
1863 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1864 {
1865 bfd_size_type *sum = (bfd_size_type *) data;
1866
1867 *sum += bfd_get_section_size (asec);
1868 }
1869
1870 /* Opaque data for load_section_callback. */
1871 struct load_section_data {
1872 CORE_ADDR load_offset;
1873 struct load_progress_data *progress_data;
1874 VEC(memory_write_request_s) *requests;
1875 };
1876
1877 /* Opaque data for load_progress. */
1878 struct load_progress_data {
1879 /* Cumulative data. */
1880 unsigned long write_count;
1881 unsigned long data_count;
1882 bfd_size_type total_size;
1883 };
1884
1885 /* Opaque data for load_progress for a single section. */
1886 struct load_progress_section_data {
1887 struct load_progress_data *cumulative;
1888
1889 /* Per-section data. */
1890 const char *section_name;
1891 ULONGEST section_sent;
1892 ULONGEST section_size;
1893 CORE_ADDR lma;
1894 gdb_byte *buffer;
1895 };
1896
1897 /* Target write callback routine for progress reporting. */
1898
1899 static void
1900 load_progress (ULONGEST bytes, void *untyped_arg)
1901 {
1902 struct load_progress_section_data *args
1903 = (struct load_progress_section_data *) untyped_arg;
1904 struct load_progress_data *totals;
1905
1906 if (args == NULL)
1907 /* Writing padding data. No easy way to get at the cumulative
1908 stats, so just ignore this. */
1909 return;
1910
1911 totals = args->cumulative;
1912
1913 if (bytes == 0 && args->section_sent == 0)
1914 {
1915 /* The write is just starting. Let the user know we've started
1916 this section. */
1917 current_uiout->message ("Loading section %s, size %s lma %s\n",
1918 args->section_name,
1919 hex_string (args->section_size),
1920 paddress (target_gdbarch (), args->lma));
1921 return;
1922 }
1923
1924 if (validate_download)
1925 {
1926 /* Broken memories and broken monitors manifest themselves here
1927 when bring new computers to life. This doubles already slow
1928 downloads. */
1929 /* NOTE: cagney/1999-10-18: A more efficient implementation
1930 might add a verify_memory() method to the target vector and
1931 then use that. remote.c could implement that method using
1932 the ``qCRC'' packet. */
1933 gdb::byte_vector check (bytes);
1934
1935 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1936 error (_("Download verify read failed at %s"),
1937 paddress (target_gdbarch (), args->lma));
1938 if (memcmp (args->buffer, check.data (), bytes) != 0)
1939 error (_("Download verify compare failed at %s"),
1940 paddress (target_gdbarch (), args->lma));
1941 }
1942 totals->data_count += bytes;
1943 args->lma += bytes;
1944 args->buffer += bytes;
1945 totals->write_count += 1;
1946 args->section_sent += bytes;
1947 if (check_quit_flag ()
1948 || (deprecated_ui_load_progress_hook != NULL
1949 && deprecated_ui_load_progress_hook (args->section_name,
1950 args->section_sent)))
1951 error (_("Canceled the download"));
1952
1953 if (deprecated_show_load_progress != NULL)
1954 deprecated_show_load_progress (args->section_name,
1955 args->section_sent,
1956 args->section_size,
1957 totals->data_count,
1958 totals->total_size);
1959 }
1960
1961 /* Callback service function for generic_load (bfd_map_over_sections). */
1962
1963 static void
1964 load_section_callback (bfd *abfd, asection *asec, void *data)
1965 {
1966 struct memory_write_request *new_request;
1967 struct load_section_data *args = (struct load_section_data *) data;
1968 struct load_progress_section_data *section_data;
1969 bfd_size_type size = bfd_get_section_size (asec);
1970 gdb_byte *buffer;
1971 const char *sect_name = bfd_get_section_name (abfd, asec);
1972
1973 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1974 return;
1975
1976 if (size == 0)
1977 return;
1978
1979 new_request = VEC_safe_push (memory_write_request_s,
1980 args->requests, NULL);
1981 memset (new_request, 0, sizeof (struct memory_write_request));
1982 section_data = XCNEW (struct load_progress_section_data);
1983 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1984 new_request->end = new_request->begin + size; /* FIXME Should size
1985 be in instead? */
1986 new_request->data = (gdb_byte *) xmalloc (size);
1987 new_request->baton = section_data;
1988
1989 buffer = new_request->data;
1990
1991 section_data->cumulative = args->progress_data;
1992 section_data->section_name = sect_name;
1993 section_data->section_size = size;
1994 section_data->lma = new_request->begin;
1995 section_data->buffer = buffer;
1996
1997 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1998 }
1999
2000 /* Clean up an entire memory request vector, including load
2001 data and progress records. */
2002
2003 static void
2004 clear_memory_write_data (void *arg)
2005 {
2006 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2007 VEC(memory_write_request_s) *vec = *vec_p;
2008 int i;
2009 struct memory_write_request *mr;
2010
2011 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2012 {
2013 xfree (mr->data);
2014 xfree (mr->baton);
2015 }
2016 VEC_free (memory_write_request_s, vec);
2017 }
2018
2019 static void print_transfer_performance (struct ui_file *stream,
2020 unsigned long data_count,
2021 unsigned long write_count,
2022 std::chrono::steady_clock::duration d);
2023
2024 void
2025 generic_load (const char *args, int from_tty)
2026 {
2027 struct cleanup *old_cleanups;
2028 struct load_section_data cbdata;
2029 struct load_progress_data total_progress;
2030 struct ui_out *uiout = current_uiout;
2031
2032 CORE_ADDR entry;
2033
2034 memset (&cbdata, 0, sizeof (cbdata));
2035 memset (&total_progress, 0, sizeof (total_progress));
2036 cbdata.progress_data = &total_progress;
2037
2038 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2039
2040 if (args == NULL)
2041 error_no_arg (_("file to load"));
2042
2043 gdb_argv argv (args);
2044
2045 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2046
2047 if (argv[1] != NULL)
2048 {
2049 const char *endptr;
2050
2051 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2052
2053 /* If the last word was not a valid number then
2054 treat it as a file name with spaces in. */
2055 if (argv[1] == endptr)
2056 error (_("Invalid download offset:%s."), argv[1]);
2057
2058 if (argv[2] != NULL)
2059 error (_("Too many parameters."));
2060 }
2061
2062 /* Open the file for loading. */
2063 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2064 if (loadfile_bfd == NULL)
2065 perror_with_name (filename.get ());
2066
2067 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2068 {
2069 error (_("\"%s\" is not an object file: %s"), filename.get (),
2070 bfd_errmsg (bfd_get_error ()));
2071 }
2072
2073 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2074 (void *) &total_progress.total_size);
2075
2076 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2077
2078 using namespace std::chrono;
2079
2080 steady_clock::time_point start_time = steady_clock::now ();
2081
2082 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2083 load_progress) != 0)
2084 error (_("Load failed"));
2085
2086 steady_clock::time_point end_time = steady_clock::now ();
2087
2088 entry = bfd_get_start_address (loadfile_bfd.get ());
2089 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2090 uiout->text ("Start address ");
2091 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2092 uiout->text (", load size ");
2093 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2094 uiout->text ("\n");
2095 regcache_write_pc (get_current_regcache (), entry);
2096
2097 /* Reset breakpoints, now that we have changed the load image. For
2098 instance, breakpoints may have been set (or reset, by
2099 post_create_inferior) while connected to the target but before we
2100 loaded the program. In that case, the prologue analyzer could
2101 have read instructions from the target to find the right
2102 breakpoint locations. Loading has changed the contents of that
2103 memory. */
2104
2105 breakpoint_re_set ();
2106
2107 print_transfer_performance (gdb_stdout, total_progress.data_count,
2108 total_progress.write_count,
2109 end_time - start_time);
2110
2111 do_cleanups (old_cleanups);
2112 }
2113
2114 /* Report on STREAM the performance of a memory transfer operation,
2115 such as 'load'. DATA_COUNT is the number of bytes transferred.
2116 WRITE_COUNT is the number of separate write operations, or 0, if
2117 that information is not available. TIME is how long the operation
2118 lasted. */
2119
2120 static void
2121 print_transfer_performance (struct ui_file *stream,
2122 unsigned long data_count,
2123 unsigned long write_count,
2124 std::chrono::steady_clock::duration time)
2125 {
2126 using namespace std::chrono;
2127 struct ui_out *uiout = current_uiout;
2128
2129 milliseconds ms = duration_cast<milliseconds> (time);
2130
2131 uiout->text ("Transfer rate: ");
2132 if (ms.count () > 0)
2133 {
2134 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2135
2136 if (uiout->is_mi_like_p ())
2137 {
2138 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2139 uiout->text (" bits/sec");
2140 }
2141 else if (rate < 1024)
2142 {
2143 uiout->field_fmt ("transfer-rate", "%lu", rate);
2144 uiout->text (" bytes/sec");
2145 }
2146 else
2147 {
2148 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2149 uiout->text (" KB/sec");
2150 }
2151 }
2152 else
2153 {
2154 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2155 uiout->text (" bits in <1 sec");
2156 }
2157 if (write_count > 0)
2158 {
2159 uiout->text (", ");
2160 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2161 uiout->text (" bytes/write");
2162 }
2163 uiout->text (".\n");
2164 }
2165
2166 /* This function allows the addition of incrementally linked object files.
2167 It does not modify any state in the target, only in the debugger. */
2168 /* Note: ezannoni 2000-04-13 This function/command used to have a
2169 special case syntax for the rombug target (Rombug is the boot
2170 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2171 rombug case, the user doesn't need to supply a text address,
2172 instead a call to target_link() (in target.c) would supply the
2173 value to use. We are now discontinuing this type of ad hoc syntax. */
2174
2175 static void
2176 add_symbol_file_command (const char *args, int from_tty)
2177 {
2178 struct gdbarch *gdbarch = get_current_arch ();
2179 gdb::unique_xmalloc_ptr<char> filename;
2180 char *arg;
2181 int argcnt = 0;
2182 int sec_num = 0;
2183 int expecting_sec_name = 0;
2184 int expecting_sec_addr = 0;
2185 struct objfile *objf;
2186 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2187 symfile_add_flags add_flags = 0;
2188
2189 if (from_tty)
2190 add_flags |= SYMFILE_VERBOSE;
2191
2192 struct sect_opt
2193 {
2194 const char *name;
2195 const char *value;
2196 };
2197
2198 struct section_addr_info *section_addrs;
2199 std::vector<sect_opt> sect_opts;
2200 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2201
2202 dont_repeat ();
2203
2204 if (args == NULL)
2205 error (_("add-symbol-file takes a file name and an address"));
2206
2207 gdb_argv argv (args);
2208
2209 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2210 {
2211 /* Process the argument. */
2212 if (argcnt == 0)
2213 {
2214 /* The first argument is the file name. */
2215 filename.reset (tilde_expand (arg));
2216 }
2217 else if (argcnt == 1)
2218 {
2219 /* The second argument is always the text address at which
2220 to load the program. */
2221 sect_opt sect = { ".text", arg };
2222 sect_opts.push_back (sect);
2223 }
2224 else
2225 {
2226 /* It's an option (starting with '-') or it's an argument
2227 to an option. */
2228 if (expecting_sec_name)
2229 {
2230 sect_opt sect = { arg, NULL };
2231 sect_opts.push_back (sect);
2232 expecting_sec_name = 0;
2233 }
2234 else if (expecting_sec_addr)
2235 {
2236 sect_opts.back ().value = arg;
2237 expecting_sec_addr = 0;
2238 }
2239 else if (strcmp (arg, "-readnow") == 0)
2240 flags |= OBJF_READNOW;
2241 else if (strcmp (arg, "-s") == 0)
2242 {
2243 expecting_sec_name = 1;
2244 expecting_sec_addr = 1;
2245 }
2246 else
2247 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2248 " [-readnow] [-s <secname> <addr>]*"));
2249 }
2250 }
2251
2252 /* This command takes at least two arguments. The first one is a
2253 filename, and the second is the address where this file has been
2254 loaded. Abort now if this address hasn't been provided by the
2255 user. */
2256 if (sect_opts.empty ())
2257 error (_("The address where %s has been loaded is missing"),
2258 filename.get ());
2259
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
2263 statements because hex_string returns a local static
2264 string. */
2265
2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2267 filename.get ());
2268 section_addrs = alloc_section_addr_info (sect_opts.size ());
2269 make_cleanup (xfree, section_addrs);
2270 for (sect_opt &sect : sect_opts)
2271 {
2272 CORE_ADDR addr;
2273 const char *val = sect.value;
2274 const char *sec = sect.name;
2275
2276 addr = parse_and_eval_address (val);
2277
2278 /* Here we store the section offsets in the order they were
2279 entered on the command line. */
2280 section_addrs->other[sec_num].name = (char *) sec;
2281 section_addrs->other[sec_num].addr = addr;
2282 printf_unfiltered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
2284 sec_num++;
2285
2286 /* The object's sections are initialized when a
2287 call is made to build_objfile_section_table (objfile).
2288 This happens in reread_symbols.
2289 At this point, we don't know what file type this is,
2290 so we can't determine what section names are valid. */
2291 }
2292 section_addrs->num_sections = sec_num;
2293
2294 if (from_tty && (!query ("%s", "")))
2295 error (_("Not confirmed."));
2296
2297 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2298
2299 add_target_sections_of_objfile (objf);
2300
2301 /* Getting new symbols may change our opinion about what is
2302 frameless. */
2303 reinit_frame_cache ();
2304 do_cleanups (my_cleanups);
2305 }
2306 \f
2307
2308 /* This function removes a symbol file that was added via add-symbol-file. */
2309
2310 static void
2311 remove_symbol_file_command (const char *args, int from_tty)
2312 {
2313 struct objfile *objf = NULL;
2314 struct program_space *pspace = current_program_space;
2315
2316 dont_repeat ();
2317
2318 if (args == NULL)
2319 error (_("remove-symbol-file: no symbol file provided"));
2320
2321 gdb_argv argv (args);
2322
2323 if (strcmp (argv[0], "-a") == 0)
2324 {
2325 /* Interpret the next argument as an address. */
2326 CORE_ADDR addr;
2327
2328 if (argv[1] == NULL)
2329 error (_("Missing address argument"));
2330
2331 if (argv[2] != NULL)
2332 error (_("Junk after %s"), argv[1]);
2333
2334 addr = parse_and_eval_address (argv[1]);
2335
2336 ALL_OBJFILES (objf)
2337 {
2338 if ((objf->flags & OBJF_USERLOADED) != 0
2339 && (objf->flags & OBJF_SHARED) != 0
2340 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2341 break;
2342 }
2343 }
2344 else if (argv[0] != NULL)
2345 {
2346 /* Interpret the current argument as a file name. */
2347
2348 if (argv[1] != NULL)
2349 error (_("Junk after %s"), argv[0]);
2350
2351 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2352
2353 ALL_OBJFILES (objf)
2354 {
2355 if ((objf->flags & OBJF_USERLOADED) != 0
2356 && (objf->flags & OBJF_SHARED) != 0
2357 && objf->pspace == pspace
2358 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2359 break;
2360 }
2361 }
2362
2363 if (objf == NULL)
2364 error (_("No symbol file found"));
2365
2366 if (from_tty
2367 && !query (_("Remove symbol table from file \"%s\"? "),
2368 objfile_name (objf)))
2369 error (_("Not confirmed."));
2370
2371 delete objf;
2372 clear_symtab_users (0);
2373 }
2374
2375 /* Re-read symbols if a symbol-file has changed. */
2376
2377 void
2378 reread_symbols (void)
2379 {
2380 struct objfile *objfile;
2381 long new_modtime;
2382 struct stat new_statbuf;
2383 int res;
2384 std::vector<struct objfile *> new_objfiles;
2385
2386 /* With the addition of shared libraries, this should be modified,
2387 the load time should be saved in the partial symbol tables, since
2388 different tables may come from different source files. FIXME.
2389 This routine should then walk down each partial symbol table
2390 and see if the symbol table that it originates from has been changed. */
2391
2392 for (objfile = object_files; objfile; objfile = objfile->next)
2393 {
2394 if (objfile->obfd == NULL)
2395 continue;
2396
2397 /* Separate debug objfiles are handled in the main objfile. */
2398 if (objfile->separate_debug_objfile_backlink)
2399 continue;
2400
2401 /* If this object is from an archive (what you usually create with
2402 `ar', often called a `static library' on most systems, though
2403 a `shared library' on AIX is also an archive), then you should
2404 stat on the archive name, not member name. */
2405 if (objfile->obfd->my_archive)
2406 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2407 else
2408 res = stat (objfile_name (objfile), &new_statbuf);
2409 if (res != 0)
2410 {
2411 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2412 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2413 objfile_name (objfile));
2414 continue;
2415 }
2416 new_modtime = new_statbuf.st_mtime;
2417 if (new_modtime != objfile->mtime)
2418 {
2419 struct cleanup *old_cleanups;
2420 struct section_offsets *offsets;
2421 int num_offsets;
2422 char *original_name;
2423
2424 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2425 objfile_name (objfile));
2426
2427 /* There are various functions like symbol_file_add,
2428 symfile_bfd_open, syms_from_objfile, etc., which might
2429 appear to do what we want. But they have various other
2430 effects which we *don't* want. So we just do stuff
2431 ourselves. We don't worry about mapped files (for one thing,
2432 any mapped file will be out of date). */
2433
2434 /* If we get an error, blow away this objfile (not sure if
2435 that is the correct response for things like shared
2436 libraries). */
2437 std::unique_ptr<struct objfile> objfile_holder (objfile);
2438
2439 /* We need to do this whenever any symbols go away. */
2440 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2441
2442 if (exec_bfd != NULL
2443 && filename_cmp (bfd_get_filename (objfile->obfd),
2444 bfd_get_filename (exec_bfd)) == 0)
2445 {
2446 /* Reload EXEC_BFD without asking anything. */
2447
2448 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2449 }
2450
2451 /* Keep the calls order approx. the same as in free_objfile. */
2452
2453 /* Free the separate debug objfiles. It will be
2454 automatically recreated by sym_read. */
2455 free_objfile_separate_debug (objfile);
2456
2457 /* Remove any references to this objfile in the global
2458 value lists. */
2459 preserve_values (objfile);
2460
2461 /* Nuke all the state that we will re-read. Much of the following
2462 code which sets things to NULL really is necessary to tell
2463 other parts of GDB that there is nothing currently there.
2464
2465 Try to keep the freeing order compatible with free_objfile. */
2466
2467 if (objfile->sf != NULL)
2468 {
2469 (*objfile->sf->sym_finish) (objfile);
2470 }
2471
2472 clear_objfile_data (objfile);
2473
2474 /* Clean up any state BFD has sitting around. */
2475 {
2476 gdb_bfd_ref_ptr obfd (objfile->obfd);
2477 char *obfd_filename;
2478
2479 obfd_filename = bfd_get_filename (objfile->obfd);
2480 /* Open the new BFD before freeing the old one, so that
2481 the filename remains live. */
2482 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2483 objfile->obfd = temp.release ();
2484 if (objfile->obfd == NULL)
2485 error (_("Can't open %s to read symbols."), obfd_filename);
2486 }
2487
2488 original_name = xstrdup (objfile->original_name);
2489 make_cleanup (xfree, original_name);
2490
2491 /* bfd_openr sets cacheable to true, which is what we want. */
2492 if (!bfd_check_format (objfile->obfd, bfd_object))
2493 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2494 bfd_errmsg (bfd_get_error ()));
2495
2496 /* Save the offsets, we will nuke them with the rest of the
2497 objfile_obstack. */
2498 num_offsets = objfile->num_sections;
2499 offsets = ((struct section_offsets *)
2500 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2501 memcpy (offsets, objfile->section_offsets,
2502 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2503
2504 /* FIXME: Do we have to free a whole linked list, or is this
2505 enough? */
2506 objfile->global_psymbols.clear ();
2507 objfile->static_psymbols.clear ();
2508
2509 /* Free the obstacks for non-reusable objfiles. */
2510 psymbol_bcache_free (objfile->psymbol_cache);
2511 objfile->psymbol_cache = psymbol_bcache_init ();
2512
2513 /* NB: after this call to obstack_free, objfiles_changed
2514 will need to be called (see discussion below). */
2515 obstack_free (&objfile->objfile_obstack, 0);
2516 objfile->sections = NULL;
2517 objfile->compunit_symtabs = NULL;
2518 objfile->psymtabs = NULL;
2519 objfile->psymtabs_addrmap = NULL;
2520 objfile->free_psymtabs = NULL;
2521 objfile->template_symbols = NULL;
2522
2523 /* obstack_init also initializes the obstack so it is
2524 empty. We could use obstack_specify_allocation but
2525 gdb_obstack.h specifies the alloc/dealloc functions. */
2526 obstack_init (&objfile->objfile_obstack);
2527
2528 /* set_objfile_per_bfd potentially allocates the per-bfd
2529 data on the objfile's obstack (if sharing data across
2530 multiple users is not possible), so it's important to
2531 do it *after* the obstack has been initialized. */
2532 set_objfile_per_bfd (objfile);
2533
2534 objfile->original_name
2535 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2536 strlen (original_name));
2537
2538 /* Reset the sym_fns pointer. The ELF reader can change it
2539 based on whether .gdb_index is present, and we need it to
2540 start over. PR symtab/15885 */
2541 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2542
2543 build_objfile_section_table (objfile);
2544 terminate_minimal_symbol_table (objfile);
2545
2546 /* We use the same section offsets as from last time. I'm not
2547 sure whether that is always correct for shared libraries. */
2548 objfile->section_offsets = (struct section_offsets *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 memcpy (objfile->section_offsets, offsets,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 objfile->num_sections = num_offsets;
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
2559 {
2560 (*objfile->sf->sym_new_init) (objfile);
2561 }
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints (&symfile_complaints, 1, 1);
2565
2566 objfile->flags &= ~OBJF_PSYMTABS_READ;
2567
2568 /* We are about to read new symbols and potentially also
2569 DWARF information. Some targets may want to pass addresses
2570 read from DWARF DIE's through an adjustment function before
2571 saving them, like MIPS, which may call into
2572 "find_pc_section". When called, that function will make
2573 use of per-objfile program space data.
2574
2575 Since we discarded our section information above, we have
2576 dangling pointers in the per-objfile program space data
2577 structure. Force GDB to update the section mapping
2578 information by letting it know the objfile has changed,
2579 making the dangling pointers point to correct data
2580 again. */
2581
2582 objfiles_changed ();
2583
2584 read_symbols (objfile, 0);
2585
2586 if (!objfile_has_symbols (objfile))
2587 {
2588 wrap_here ("");
2589 printf_unfiltered (_("(no debugging symbols found)\n"));
2590 wrap_here ("");
2591 }
2592
2593 /* We're done reading the symbol file; finish off complaints. */
2594 clear_complaints (&symfile_complaints, 0, 1);
2595
2596 /* Getting new symbols may change our opinion about what is
2597 frameless. */
2598
2599 reinit_frame_cache ();
2600
2601 /* Discard cleanups as symbol reading was successful. */
2602 objfile_holder.release ();
2603 discard_cleanups (old_cleanups);
2604
2605 /* If the mtime has changed between the time we set new_modtime
2606 and now, we *want* this to be out of date, so don't call stat
2607 again now. */
2608 objfile->mtime = new_modtime;
2609 init_entry_point_info (objfile);
2610
2611 new_objfiles.push_back (objfile);
2612 }
2613 }
2614
2615 if (!new_objfiles.empty ())
2616 {
2617 clear_symtab_users (0);
2618
2619 /* clear_objfile_data for each objfile was called before freeing it and
2620 observer_notify_new_objfile (NULL) has been called by
2621 clear_symtab_users above. Notify the new files now. */
2622 for (auto iter : new_objfiles)
2623 observer_notify_new_objfile (iter);
2624
2625 /* At least one objfile has changed, so we can consider that
2626 the executable we're debugging has changed too. */
2627 observer_notify_executable_changed ();
2628 }
2629 }
2630 \f
2631
2632 struct filename_language
2633 {
2634 filename_language (const std::string &ext_, enum language lang_)
2635 : ext (ext_), lang (lang_)
2636 {}
2637
2638 std::string ext;
2639 enum language lang;
2640 };
2641
2642 static std::vector<filename_language> filename_language_table;
2643
2644 /* See symfile.h. */
2645
2646 void
2647 add_filename_language (const char *ext, enum language lang)
2648 {
2649 filename_language_table.emplace_back (ext, lang);
2650 }
2651
2652 static char *ext_args;
2653 static void
2654 show_ext_args (struct ui_file *file, int from_tty,
2655 struct cmd_list_element *c, const char *value)
2656 {
2657 fprintf_filtered (file,
2658 _("Mapping between filename extension "
2659 "and source language is \"%s\".\n"),
2660 value);
2661 }
2662
2663 static void
2664 set_ext_lang_command (const char *args,
2665 int from_tty, struct cmd_list_element *e)
2666 {
2667 char *cp = ext_args;
2668 enum language lang;
2669
2670 /* First arg is filename extension, starting with '.' */
2671 if (*cp != '.')
2672 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2673
2674 /* Find end of first arg. */
2675 while (*cp && !isspace (*cp))
2676 cp++;
2677
2678 if (*cp == '\0')
2679 error (_("'%s': two arguments required -- "
2680 "filename extension and language"),
2681 ext_args);
2682
2683 /* Null-terminate first arg. */
2684 *cp++ = '\0';
2685
2686 /* Find beginning of second arg, which should be a source language. */
2687 cp = skip_spaces (cp);
2688
2689 if (*cp == '\0')
2690 error (_("'%s': two arguments required -- "
2691 "filename extension and language"),
2692 ext_args);
2693
2694 /* Lookup the language from among those we know. */
2695 lang = language_enum (cp);
2696
2697 auto it = filename_language_table.begin ();
2698 /* Now lookup the filename extension: do we already know it? */
2699 for (; it != filename_language_table.end (); it++)
2700 {
2701 if (it->ext == ext_args)
2702 break;
2703 }
2704
2705 if (it == filename_language_table.end ())
2706 {
2707 /* New file extension. */
2708 add_filename_language (ext_args, lang);
2709 }
2710 else
2711 {
2712 /* Redefining a previously known filename extension. */
2713
2714 /* if (from_tty) */
2715 /* query ("Really make files of type %s '%s'?", */
2716 /* ext_args, language_str (lang)); */
2717
2718 it->lang = lang;
2719 }
2720 }
2721
2722 static void
2723 info_ext_lang_command (const char *args, int from_tty)
2724 {
2725 printf_filtered (_("Filename extensions and the languages they represent:"));
2726 printf_filtered ("\n\n");
2727 for (const filename_language &entry : filename_language_table)
2728 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2729 language_str (entry.lang));
2730 }
2731
2732 enum language
2733 deduce_language_from_filename (const char *filename)
2734 {
2735 const char *cp;
2736
2737 if (filename != NULL)
2738 if ((cp = strrchr (filename, '.')) != NULL)
2739 {
2740 for (const filename_language &entry : filename_language_table)
2741 if (entry.ext == cp)
2742 return entry.lang;
2743 }
2744
2745 return language_unknown;
2746 }
2747 \f
2748 /* Allocate and initialize a new symbol table.
2749 CUST is from the result of allocate_compunit_symtab. */
2750
2751 struct symtab *
2752 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2753 {
2754 struct objfile *objfile = cust->objfile;
2755 struct symtab *symtab
2756 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2757
2758 symtab->filename
2759 = (const char *) bcache (filename, strlen (filename) + 1,
2760 objfile->per_bfd->filename_cache);
2761 symtab->fullname = NULL;
2762 symtab->language = deduce_language_from_filename (filename);
2763
2764 /* This can be very verbose with lots of headers.
2765 Only print at higher debug levels. */
2766 if (symtab_create_debug >= 2)
2767 {
2768 /* Be a bit clever with debugging messages, and don't print objfile
2769 every time, only when it changes. */
2770 static char *last_objfile_name = NULL;
2771
2772 if (last_objfile_name == NULL
2773 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2774 {
2775 xfree (last_objfile_name);
2776 last_objfile_name = xstrdup (objfile_name (objfile));
2777 fprintf_unfiltered (gdb_stdlog,
2778 "Creating one or more symtabs for objfile %s ...\n",
2779 last_objfile_name);
2780 }
2781 fprintf_unfiltered (gdb_stdlog,
2782 "Created symtab %s for module %s.\n",
2783 host_address_to_string (symtab), filename);
2784 }
2785
2786 /* Add it to CUST's list of symtabs. */
2787 if (cust->filetabs == NULL)
2788 {
2789 cust->filetabs = symtab;
2790 cust->last_filetab = symtab;
2791 }
2792 else
2793 {
2794 cust->last_filetab->next = symtab;
2795 cust->last_filetab = symtab;
2796 }
2797
2798 /* Backlink to the containing compunit symtab. */
2799 symtab->compunit_symtab = cust;
2800
2801 return symtab;
2802 }
2803
2804 /* Allocate and initialize a new compunit.
2805 NAME is the name of the main source file, if there is one, or some
2806 descriptive text if there are no source files. */
2807
2808 struct compunit_symtab *
2809 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2810 {
2811 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct compunit_symtab);
2813 const char *saved_name;
2814
2815 cu->objfile = objfile;
2816
2817 /* The name we record here is only for display/debugging purposes.
2818 Just save the basename to avoid path issues (too long for display,
2819 relative vs absolute, etc.). */
2820 saved_name = lbasename (name);
2821 cu->name
2822 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2823 strlen (saved_name));
2824
2825 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2826
2827 if (symtab_create_debug)
2828 {
2829 fprintf_unfiltered (gdb_stdlog,
2830 "Created compunit symtab %s for %s.\n",
2831 host_address_to_string (cu),
2832 cu->name);
2833 }
2834
2835 return cu;
2836 }
2837
2838 /* Hook CU to the objfile it comes from. */
2839
2840 void
2841 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2842 {
2843 cu->next = cu->objfile->compunit_symtabs;
2844 cu->objfile->compunit_symtabs = cu;
2845 }
2846 \f
2847
2848 /* Reset all data structures in gdb which may contain references to
2849 symbol table data. */
2850
2851 void
2852 clear_symtab_users (symfile_add_flags add_flags)
2853 {
2854 /* Someday, we should do better than this, by only blowing away
2855 the things that really need to be blown. */
2856
2857 /* Clear the "current" symtab first, because it is no longer valid.
2858 breakpoint_re_set may try to access the current symtab. */
2859 clear_current_source_symtab_and_line ();
2860
2861 clear_displays ();
2862 clear_last_displayed_sal ();
2863 clear_pc_function_cache ();
2864 observer_notify_new_objfile (NULL);
2865
2866 /* Clear globals which might have pointed into a removed objfile.
2867 FIXME: It's not clear which of these are supposed to persist
2868 between expressions and which ought to be reset each time. */
2869 expression_context_block = NULL;
2870 innermost_block = NULL;
2871
2872 /* Varobj may refer to old symbols, perform a cleanup. */
2873 varobj_invalidate ();
2874
2875 /* Now that the various caches have been cleared, we can re_set
2876 our breakpoints without risking it using stale data. */
2877 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2878 breakpoint_re_set ();
2879 }
2880
2881 static void
2882 clear_symtab_users_cleanup (void *ignore)
2883 {
2884 clear_symtab_users (0);
2885 }
2886 \f
2887 /* OVERLAYS:
2888 The following code implements an abstraction for debugging overlay sections.
2889
2890 The target model is as follows:
2891 1) The gnu linker will permit multiple sections to be mapped into the
2892 same VMA, each with its own unique LMA (or load address).
2893 2) It is assumed that some runtime mechanism exists for mapping the
2894 sections, one by one, from the load address into the VMA address.
2895 3) This code provides a mechanism for gdb to keep track of which
2896 sections should be considered to be mapped from the VMA to the LMA.
2897 This information is used for symbol lookup, and memory read/write.
2898 For instance, if a section has been mapped then its contents
2899 should be read from the VMA, otherwise from the LMA.
2900
2901 Two levels of debugger support for overlays are available. One is
2902 "manual", in which the debugger relies on the user to tell it which
2903 overlays are currently mapped. This level of support is
2904 implemented entirely in the core debugger, and the information about
2905 whether a section is mapped is kept in the objfile->obj_section table.
2906
2907 The second level of support is "automatic", and is only available if
2908 the target-specific code provides functionality to read the target's
2909 overlay mapping table, and translate its contents for the debugger
2910 (by updating the mapped state information in the obj_section tables).
2911
2912 The interface is as follows:
2913 User commands:
2914 overlay map <name> -- tell gdb to consider this section mapped
2915 overlay unmap <name> -- tell gdb to consider this section unmapped
2916 overlay list -- list the sections that GDB thinks are mapped
2917 overlay read-target -- get the target's state of what's mapped
2918 overlay off/manual/auto -- set overlay debugging state
2919 Functional interface:
2920 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2921 section, return that section.
2922 find_pc_overlay(pc): find any overlay section that contains
2923 the pc, either in its VMA or its LMA
2924 section_is_mapped(sect): true if overlay is marked as mapped
2925 section_is_overlay(sect): true if section's VMA != LMA
2926 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2927 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2928 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2929 overlay_mapped_address(...): map an address from section's LMA to VMA
2930 overlay_unmapped_address(...): map an address from section's VMA to LMA
2931 symbol_overlayed_address(...): Return a "current" address for symbol:
2932 either in VMA or LMA depending on whether
2933 the symbol's section is currently mapped. */
2934
2935 /* Overlay debugging state: */
2936
2937 enum overlay_debugging_state overlay_debugging = ovly_off;
2938 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2939
2940 /* Function: section_is_overlay (SECTION)
2941 Returns true if SECTION has VMA not equal to LMA, ie.
2942 SECTION is loaded at an address different from where it will "run". */
2943
2944 int
2945 section_is_overlay (struct obj_section *section)
2946 {
2947 if (overlay_debugging && section)
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
2951
2952 if (bfd_section_lma (abfd, bfd_section) != 0
2953 && bfd_section_lma (abfd, bfd_section)
2954 != bfd_section_vma (abfd, bfd_section))
2955 return 1;
2956 }
2957
2958 return 0;
2959 }
2960
2961 /* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964 static void
2965 overlay_invalidate_all (void)
2966 {
2967 struct objfile *objfile;
2968 struct obj_section *sect;
2969
2970 ALL_OBJSECTIONS (objfile, sect)
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
2973 }
2974
2975 /* Function: section_is_mapped (SECTION)
2976 Returns true if section is an overlay, and is currently mapped.
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
2984 int
2985 section_is_mapped (struct obj_section *osect)
2986 {
2987 struct gdbarch *gdbarch;
2988
2989 if (osect == 0 || !section_is_overlay (osect))
2990 return 0;
2991
2992 switch (overlay_debugging)
2993 {
2994 default:
2995 case ovly_off:
2996 return 0; /* overlay debugging off */
2997 case ovly_auto: /* overlay debugging automatic */
2998 /* Unles there is a gdbarch_overlay_update function,
2999 there's really nothing useful to do here (can't really go auto). */
3000 gdbarch = get_objfile_arch (osect->objfile);
3001 if (gdbarch_overlay_update_p (gdbarch))
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
3009 gdbarch_overlay_update (gdbarch, osect);
3010 }
3011 /* fall thru to manual case */
3012 case ovly_on: /* overlay debugging manual */
3013 return osect->ovly_mapped == 1;
3014 }
3015 }
3016
3017 /* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020 CORE_ADDR
3021 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3022 {
3023 if (section_is_overlay (section))
3024 {
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
3027
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_get_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3033 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3034 return 1;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043 CORE_ADDR
3044 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3045 {
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
3052
3053 return 0;
3054 }
3055
3056 /* Return true if the mapped ranges of sections A and B overlap, false
3057 otherwise. */
3058
3059 static int
3060 sections_overlap (struct obj_section *a, struct obj_section *b)
3061 {
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
3066
3067 return (a_start < b_end && b_start < a_end);
3068 }
3069
3070 /* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074 CORE_ADDR
3075 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3076 {
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
3081
3082 return pc + bfd_section_lma (abfd, bfd_section)
3083 - bfd_section_vma (abfd, bfd_section);
3084 }
3085
3086 return pc;
3087 }
3088
3089 /* Function: overlay_mapped_address (PC, SECTION)
3090 Returns the address corresponding to PC in the mapped (runtime) range.
3091 May be the same as PC. */
3092
3093 CORE_ADDR
3094 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3095 {
3096 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3097 {
3098 bfd *abfd = section->objfile->obfd;
3099 asection *bfd_section = section->the_bfd_section;
3100
3101 return pc + bfd_section_vma (abfd, bfd_section)
3102 - bfd_section_lma (abfd, bfd_section);
3103 }
3104
3105 return pc;
3106 }
3107
3108 /* Function: symbol_overlayed_address
3109 Return one of two addresses (relative to the VMA or to the LMA),
3110 depending on whether the section is mapped or not. */
3111
3112 CORE_ADDR
3113 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3114 {
3115 if (overlay_debugging)
3116 {
3117 /* If the symbol has no section, just return its regular address. */
3118 if (section == 0)
3119 return address;
3120 /* If the symbol's section is not an overlay, just return its
3121 address. */
3122 if (!section_is_overlay (section))
3123 return address;
3124 /* If the symbol's section is mapped, just return its address. */
3125 if (section_is_mapped (section))
3126 return address;
3127 /*
3128 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3129 * then return its LOADED address rather than its vma address!!
3130 */
3131 return overlay_unmapped_address (address, section);
3132 }
3133 return address;
3134 }
3135
3136 /* Function: find_pc_overlay (PC)
3137 Return the best-match overlay section for PC:
3138 If PC matches a mapped overlay section's VMA, return that section.
3139 Else if PC matches an unmapped section's VMA, return that section.
3140 Else if PC matches an unmapped section's LMA, return that section. */
3141
3142 struct obj_section *
3143 find_pc_overlay (CORE_ADDR pc)
3144 {
3145 struct objfile *objfile;
3146 struct obj_section *osect, *best_match = NULL;
3147
3148 if (overlay_debugging)
3149 {
3150 ALL_OBJSECTIONS (objfile, osect)
3151 if (section_is_overlay (osect))
3152 {
3153 if (pc_in_mapped_range (pc, osect))
3154 {
3155 if (section_is_mapped (osect))
3156 return osect;
3157 else
3158 best_match = osect;
3159 }
3160 else if (pc_in_unmapped_range (pc, osect))
3161 best_match = osect;
3162 }
3163 }
3164 return best_match;
3165 }
3166
3167 /* Function: find_pc_mapped_section (PC)
3168 If PC falls into the VMA address range of an overlay section that is
3169 currently marked as MAPPED, return that section. Else return NULL. */
3170
3171 struct obj_section *
3172 find_pc_mapped_section (CORE_ADDR pc)
3173 {
3174 struct objfile *objfile;
3175 struct obj_section *osect;
3176
3177 if (overlay_debugging)
3178 {
3179 ALL_OBJSECTIONS (objfile, osect)
3180 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3181 return osect;
3182 }
3183
3184 return NULL;
3185 }
3186
3187 /* Function: list_overlays_command
3188 Print a list of mapped sections and their PC ranges. */
3189
3190 static void
3191 list_overlays_command (const char *args, int from_tty)
3192 {
3193 int nmapped = 0;
3194 struct objfile *objfile;
3195 struct obj_section *osect;
3196
3197 if (overlay_debugging)
3198 {
3199 ALL_OBJSECTIONS (objfile, osect)
3200 if (section_is_mapped (osect))
3201 {
3202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3203 const char *name;
3204 bfd_vma lma, vma;
3205 int size;
3206
3207 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3208 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3209 size = bfd_get_section_size (osect->the_bfd_section);
3210 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3211
3212 printf_filtered ("Section %s, loaded at ", name);
3213 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3214 puts_filtered (" - ");
3215 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3216 printf_filtered (", mapped at ");
3217 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3218 puts_filtered (" - ");
3219 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3220 puts_filtered ("\n");
3221
3222 nmapped++;
3223 }
3224 }
3225 if (nmapped == 0)
3226 printf_filtered (_("No sections are mapped.\n"));
3227 }
3228
3229 /* Function: map_overlay_command
3230 Mark the named section as mapped (ie. residing at its VMA address). */
3231
3232 static void
3233 map_overlay_command (const char *args, int from_tty)
3234 {
3235 struct objfile *objfile, *objfile2;
3236 struct obj_section *sec, *sec2;
3237
3238 if (!overlay_debugging)
3239 error (_("Overlay debugging not enabled. Use "
3240 "either the 'overlay auto' or\n"
3241 "the 'overlay manual' command."));
3242
3243 if (args == 0 || *args == 0)
3244 error (_("Argument required: name of an overlay section"));
3245
3246 /* First, find a section matching the user supplied argument. */
3247 ALL_OBJSECTIONS (objfile, sec)
3248 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3249 {
3250 /* Now, check to see if the section is an overlay. */
3251 if (!section_is_overlay (sec))
3252 continue; /* not an overlay section */
3253
3254 /* Mark the overlay as "mapped". */
3255 sec->ovly_mapped = 1;
3256
3257 /* Next, make a pass and unmap any sections that are
3258 overlapped by this new section: */
3259 ALL_OBJSECTIONS (objfile2, sec2)
3260 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3261 {
3262 if (info_verbose)
3263 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3264 bfd_section_name (objfile->obfd,
3265 sec2->the_bfd_section));
3266 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3267 }
3268 return;
3269 }
3270 error (_("No overlay section called %s"), args);
3271 }
3272
3273 /* Function: unmap_overlay_command
3274 Mark the overlay section as unmapped
3275 (ie. resident in its LMA address range, rather than the VMA range). */
3276
3277 static void
3278 unmap_overlay_command (const char *args, int from_tty)
3279 {
3280 struct objfile *objfile;
3281 struct obj_section *sec = NULL;
3282
3283 if (!overlay_debugging)
3284 error (_("Overlay debugging not enabled. "
3285 "Use either the 'overlay auto' or\n"
3286 "the 'overlay manual' command."));
3287
3288 if (args == 0 || *args == 0)
3289 error (_("Argument required: name of an overlay section"));
3290
3291 /* First, find a section matching the user supplied argument. */
3292 ALL_OBJSECTIONS (objfile, sec)
3293 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3294 {
3295 if (!sec->ovly_mapped)
3296 error (_("Section %s is not mapped"), args);
3297 sec->ovly_mapped = 0;
3298 return;
3299 }
3300 error (_("No overlay section called %s"), args);
3301 }
3302
3303 /* Function: overlay_auto_command
3304 A utility command to turn on overlay debugging.
3305 Possibly this should be done via a set/show command. */
3306
3307 static void
3308 overlay_auto_command (const char *args, int from_tty)
3309 {
3310 overlay_debugging = ovly_auto;
3311 enable_overlay_breakpoints ();
3312 if (info_verbose)
3313 printf_unfiltered (_("Automatic overlay debugging enabled."));
3314 }
3315
3316 /* Function: overlay_manual_command
3317 A utility command to turn on overlay debugging.
3318 Possibly this should be done via a set/show command. */
3319
3320 static void
3321 overlay_manual_command (const char *args, int from_tty)
3322 {
3323 overlay_debugging = ovly_on;
3324 disable_overlay_breakpoints ();
3325 if (info_verbose)
3326 printf_unfiltered (_("Overlay debugging enabled."));
3327 }
3328
3329 /* Function: overlay_off_command
3330 A utility command to turn on overlay debugging.
3331 Possibly this should be done via a set/show command. */
3332
3333 static void
3334 overlay_off_command (const char *args, int from_tty)
3335 {
3336 overlay_debugging = ovly_off;
3337 disable_overlay_breakpoints ();
3338 if (info_verbose)
3339 printf_unfiltered (_("Overlay debugging disabled."));
3340 }
3341
3342 static void
3343 overlay_load_command (const char *args, int from_tty)
3344 {
3345 struct gdbarch *gdbarch = get_current_arch ();
3346
3347 if (gdbarch_overlay_update_p (gdbarch))
3348 gdbarch_overlay_update (gdbarch, NULL);
3349 else
3350 error (_("This target does not know how to read its overlay state."));
3351 }
3352
3353 /* Function: overlay_command
3354 A place-holder for a mis-typed command. */
3355
3356 /* Command list chain containing all defined "overlay" subcommands. */
3357 static struct cmd_list_element *overlaylist;
3358
3359 static void
3360 overlay_command (const char *args, int from_tty)
3361 {
3362 printf_unfiltered
3363 ("\"overlay\" must be followed by the name of an overlay command.\n");
3364 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3365 }
3366
3367 /* Target Overlays for the "Simplest" overlay manager:
3368
3369 This is GDB's default target overlay layer. It works with the
3370 minimal overlay manager supplied as an example by Cygnus. The
3371 entry point is via a function pointer "gdbarch_overlay_update",
3372 so targets that use a different runtime overlay manager can
3373 substitute their own overlay_update function and take over the
3374 function pointer.
3375
3376 The overlay_update function pokes around in the target's data structures
3377 to see what overlays are mapped, and updates GDB's overlay mapping with
3378 this information.
3379
3380 In this simple implementation, the target data structures are as follows:
3381 unsigned _novlys; /# number of overlay sections #/
3382 unsigned _ovly_table[_novlys][4] = {
3383 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3384 {..., ..., ..., ...},
3385 }
3386 unsigned _novly_regions; /# number of overlay regions #/
3387 unsigned _ovly_region_table[_novly_regions][3] = {
3388 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3389 {..., ..., ...},
3390 }
3391 These functions will attempt to update GDB's mappedness state in the
3392 symbol section table, based on the target's mappedness state.
3393
3394 To do this, we keep a cached copy of the target's _ovly_table, and
3395 attempt to detect when the cached copy is invalidated. The main
3396 entry point is "simple_overlay_update(SECT), which looks up SECT in
3397 the cached table and re-reads only the entry for that section from
3398 the target (whenever possible). */
3399
3400 /* Cached, dynamically allocated copies of the target data structures: */
3401 static unsigned (*cache_ovly_table)[4] = 0;
3402 static unsigned cache_novlys = 0;
3403 static CORE_ADDR cache_ovly_table_base = 0;
3404 enum ovly_index
3405 {
3406 VMA, OSIZE, LMA, MAPPED
3407 };
3408
3409 /* Throw away the cached copy of _ovly_table. */
3410
3411 static void
3412 simple_free_overlay_table (void)
3413 {
3414 if (cache_ovly_table)
3415 xfree (cache_ovly_table);
3416 cache_novlys = 0;
3417 cache_ovly_table = NULL;
3418 cache_ovly_table_base = 0;
3419 }
3420
3421 /* Read an array of ints of size SIZE from the target into a local buffer.
3422 Convert to host order. int LEN is number of ints. */
3423
3424 static void
3425 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3426 int len, int size, enum bfd_endian byte_order)
3427 {
3428 /* FIXME (alloca): Not safe if array is very large. */
3429 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3430 int i;
3431
3432 read_memory (memaddr, buf, len * size);
3433 for (i = 0; i < len; i++)
3434 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3435 }
3436
3437 /* Find and grab a copy of the target _ovly_table
3438 (and _novlys, which is needed for the table's size). */
3439
3440 static int
3441 simple_read_overlay_table (void)
3442 {
3443 struct bound_minimal_symbol novlys_msym;
3444 struct bound_minimal_symbol ovly_table_msym;
3445 struct gdbarch *gdbarch;
3446 int word_size;
3447 enum bfd_endian byte_order;
3448
3449 simple_free_overlay_table ();
3450 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3451 if (! novlys_msym.minsym)
3452 {
3453 error (_("Error reading inferior's overlay table: "
3454 "couldn't find `_novlys' variable\n"
3455 "in inferior. Use `overlay manual' mode."));
3456 return 0;
3457 }
3458
3459 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3460 if (! ovly_table_msym.minsym)
3461 {
3462 error (_("Error reading inferior's overlay table: couldn't find "
3463 "`_ovly_table' array\n"
3464 "in inferior. Use `overlay manual' mode."));
3465 return 0;
3466 }
3467
3468 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3469 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3470 byte_order = gdbarch_byte_order (gdbarch);
3471
3472 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3473 4, byte_order);
3474 cache_ovly_table
3475 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3476 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3477 read_target_long_array (cache_ovly_table_base,
3478 (unsigned int *) cache_ovly_table,
3479 cache_novlys * 4, word_size, byte_order);
3480
3481 return 1; /* SUCCESS */
3482 }
3483
3484 /* Function: simple_overlay_update_1
3485 A helper function for simple_overlay_update. Assuming a cached copy
3486 of _ovly_table exists, look through it to find an entry whose vma,
3487 lma and size match those of OSECT. Re-read the entry and make sure
3488 it still matches OSECT (else the table may no longer be valid).
3489 Set OSECT's mapped state to match the entry. Return: 1 for
3490 success, 0 for failure. */
3491
3492 static int
3493 simple_overlay_update_1 (struct obj_section *osect)
3494 {
3495 int i;
3496 bfd *obfd = osect->objfile->obfd;
3497 asection *bsect = osect->the_bfd_section;
3498 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3499 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3501
3502 for (i = 0; i < cache_novlys; i++)
3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3504 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3505 {
3506 read_target_long_array (cache_ovly_table_base + i * word_size,
3507 (unsigned int *) cache_ovly_table[i],
3508 4, word_size, byte_order);
3509 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3510 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3511 {
3512 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3513 return 1;
3514 }
3515 else /* Warning! Warning! Target's ovly table has changed! */
3516 return 0;
3517 }
3518 return 0;
3519 }
3520
3521 /* Function: simple_overlay_update
3522 If OSECT is NULL, then update all sections' mapped state
3523 (after re-reading the entire target _ovly_table).
3524 If OSECT is non-NULL, then try to find a matching entry in the
3525 cached ovly_table and update only OSECT's mapped state.
3526 If a cached entry can't be found or the cache isn't valid, then
3527 re-read the entire cache, and go ahead and update all sections. */
3528
3529 void
3530 simple_overlay_update (struct obj_section *osect)
3531 {
3532 struct objfile *objfile;
3533
3534 /* Were we given an osect to look up? NULL means do all of them. */
3535 if (osect)
3536 /* Have we got a cached copy of the target's overlay table? */
3537 if (cache_ovly_table != NULL)
3538 {
3539 /* Does its cached location match what's currently in the
3540 symtab? */
3541 struct bound_minimal_symbol minsym
3542 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3543
3544 if (minsym.minsym == NULL)
3545 error (_("Error reading inferior's overlay table: couldn't "
3546 "find `_ovly_table' array\n"
3547 "in inferior. Use `overlay manual' mode."));
3548
3549 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3550 /* Then go ahead and try to look up this single section in
3551 the cache. */
3552 if (simple_overlay_update_1 (osect))
3553 /* Found it! We're done. */
3554 return;
3555 }
3556
3557 /* Cached table no good: need to read the entire table anew.
3558 Or else we want all the sections, in which case it's actually
3559 more efficient to read the whole table in one block anyway. */
3560
3561 if (! simple_read_overlay_table ())
3562 return;
3563
3564 /* Now may as well update all sections, even if only one was requested. */
3565 ALL_OBJSECTIONS (objfile, osect)
3566 if (section_is_overlay (osect))
3567 {
3568 int i;
3569 bfd *obfd = osect->objfile->obfd;
3570 asection *bsect = osect->the_bfd_section;
3571
3572 for (i = 0; i < cache_novlys; i++)
3573 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3574 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3575 { /* obj_section matches i'th entry in ovly_table. */
3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3577 break; /* finished with inner for loop: break out. */
3578 }
3579 }
3580 }
3581
3582 /* Set the output sections and output offsets for section SECTP in
3583 ABFD. The relocation code in BFD will read these offsets, so we
3584 need to be sure they're initialized. We map each section to itself,
3585 with no offset; this means that SECTP->vma will be honored. */
3586
3587 static void
3588 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3589 {
3590 sectp->output_section = sectp;
3591 sectp->output_offset = 0;
3592 }
3593
3594 /* Default implementation for sym_relocate. */
3595
3596 bfd_byte *
3597 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599 {
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614 }
3615
3616 /* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
3629
3630 bfd_byte *
3631 symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
3633 {
3634 gdb_assert (objfile->sf->sym_relocate);
3635
3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3637 }
3638
3639 struct symfile_segment_data *
3640 get_symfile_segment_data (bfd *abfd)
3641 {
3642 const struct sym_fns *sf = find_sym_fns (abfd);
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648 }
3649
3650 void
3651 free_symfile_segment_data (struct symfile_segment_data *data)
3652 {
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657 }
3658
3659 /* Given:
3660 - DATA, containing segment addresses from the object file ABFD, and
3661 the mapping from ABFD's sections onto the segments that own them,
3662 and
3663 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3664 segment addresses reported by the target,
3665 store the appropriate offsets for each section in OFFSETS.
3666
3667 If there are fewer entries in SEGMENT_BASES than there are segments
3668 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3669
3670 If there are more entries, then ignore the extra. The target may
3671 not be able to distinguish between an empty data segment and a
3672 missing data segment; a missing text segment is less plausible. */
3673
3674 int
3675 symfile_map_offsets_to_segments (bfd *abfd,
3676 const struct symfile_segment_data *data,
3677 struct section_offsets *offsets,
3678 int num_segment_bases,
3679 const CORE_ADDR *segment_bases)
3680 {
3681 int i;
3682 asection *sect;
3683
3684 /* It doesn't make sense to call this function unless you have some
3685 segment base addresses. */
3686 gdb_assert (num_segment_bases > 0);
3687
3688 /* If we do not have segment mappings for the object file, we
3689 can not relocate it by segments. */
3690 gdb_assert (data != NULL);
3691 gdb_assert (data->num_segments > 0);
3692
3693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3694 {
3695 int which = data->segment_info[i];
3696
3697 gdb_assert (0 <= which && which <= data->num_segments);
3698
3699 /* Don't bother computing offsets for sections that aren't
3700 loaded as part of any segment. */
3701 if (! which)
3702 continue;
3703
3704 /* Use the last SEGMENT_BASES entry as the address of any extra
3705 segments mentioned in DATA->segment_info. */
3706 if (which > num_segment_bases)
3707 which = num_segment_bases;
3708
3709 offsets->offsets[i] = (segment_bases[which - 1]
3710 - data->segment_bases[which - 1]);
3711 }
3712
3713 return 1;
3714 }
3715
3716 static void
3717 symfile_find_segment_sections (struct objfile *objfile)
3718 {
3719 bfd *abfd = objfile->obfd;
3720 int i;
3721 asection *sect;
3722 struct symfile_segment_data *data;
3723
3724 data = get_symfile_segment_data (objfile->obfd);
3725 if (data == NULL)
3726 return;
3727
3728 if (data->num_segments != 1 && data->num_segments != 2)
3729 {
3730 free_symfile_segment_data (data);
3731 return;
3732 }
3733
3734 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3735 {
3736 int which = data->segment_info[i];
3737
3738 if (which == 1)
3739 {
3740 if (objfile->sect_index_text == -1)
3741 objfile->sect_index_text = sect->index;
3742
3743 if (objfile->sect_index_rodata == -1)
3744 objfile->sect_index_rodata = sect->index;
3745 }
3746 else if (which == 2)
3747 {
3748 if (objfile->sect_index_data == -1)
3749 objfile->sect_index_data = sect->index;
3750
3751 if (objfile->sect_index_bss == -1)
3752 objfile->sect_index_bss = sect->index;
3753 }
3754 }
3755
3756 free_symfile_segment_data (data);
3757 }
3758
3759 /* Listen for free_objfile events. */
3760
3761 static void
3762 symfile_free_objfile (struct objfile *objfile)
3763 {
3764 /* Remove the target sections owned by this objfile. */
3765 if (objfile != NULL)
3766 remove_target_sections ((void *) objfile);
3767 }
3768
3769 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3770 Expand all symtabs that match the specified criteria.
3771 See quick_symbol_functions.expand_symtabs_matching for details. */
3772
3773 void
3774 expand_symtabs_matching
3775 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3776 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3777 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3778 enum search_domain kind)
3779 {
3780 struct objfile *objfile;
3781
3782 ALL_OBJFILES (objfile)
3783 {
3784 if (objfile->sf)
3785 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3786 symbol_matcher,
3787 expansion_notify, kind);
3788 }
3789 }
3790
3791 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3792 Map function FUN over every file.
3793 See quick_symbol_functions.map_symbol_filenames for details. */
3794
3795 void
3796 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3797 int need_fullname)
3798 {
3799 struct objfile *objfile;
3800
3801 ALL_OBJFILES (objfile)
3802 {
3803 if (objfile->sf)
3804 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3805 need_fullname);
3806 }
3807 }
3808
3809 #if GDB_SELF_TEST
3810
3811 namespace selftests {
3812 namespace filename_language {
3813
3814 static void test_filename_language ()
3815 {
3816 /* This test messes up the filename_language_table global. */
3817 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3818
3819 /* Test deducing an unknown extension. */
3820 language lang = deduce_language_from_filename ("myfile.blah");
3821 SELF_CHECK (lang == language_unknown);
3822
3823 /* Test deducing a known extension. */
3824 lang = deduce_language_from_filename ("myfile.c");
3825 SELF_CHECK (lang == language_c);
3826
3827 /* Test adding a new extension using the internal API. */
3828 add_filename_language (".blah", language_pascal);
3829 lang = deduce_language_from_filename ("myfile.blah");
3830 SELF_CHECK (lang == language_pascal);
3831 }
3832
3833 static void
3834 test_set_ext_lang_command ()
3835 {
3836 /* This test messes up the filename_language_table global. */
3837 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3838
3839 /* Confirm that the .hello extension is not known. */
3840 language lang = deduce_language_from_filename ("cake.hello");
3841 SELF_CHECK (lang == language_unknown);
3842
3843 /* Test adding a new extension using the CLI command. */
3844 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3845 ext_args = args_holder.get ();
3846 set_ext_lang_command (NULL, 1, NULL);
3847
3848 lang = deduce_language_from_filename ("cake.hello");
3849 SELF_CHECK (lang == language_rust);
3850
3851 /* Test overriding an existing extension using the CLI command. */
3852 int size_before = filename_language_table.size ();
3853 args_holder.reset (xstrdup (".hello pascal"));
3854 ext_args = args_holder.get ();
3855 set_ext_lang_command (NULL, 1, NULL);
3856 int size_after = filename_language_table.size ();
3857
3858 lang = deduce_language_from_filename ("cake.hello");
3859 SELF_CHECK (lang == language_pascal);
3860 SELF_CHECK (size_before == size_after);
3861 }
3862
3863 } /* namespace filename_language */
3864 } /* namespace selftests */
3865
3866 #endif /* GDB_SELF_TEST */
3867
3868 void
3869 _initialize_symfile (void)
3870 {
3871 struct cmd_list_element *c;
3872
3873 observer_attach_free_objfile (symfile_free_objfile);
3874
3875 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3876 Load symbol table from executable file FILE.\n\
3877 The `file' command can also load symbol tables, as well as setting the file\n\
3878 to execute."), &cmdlist);
3879 set_cmd_completer (c, filename_completer);
3880
3881 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3882 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3883 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3884 ...]\nADDR is the starting address of the file's text.\n\
3885 The optional arguments are section-name section-address pairs and\n\
3886 should be specified if the data and bss segments are not contiguous\n\
3887 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3888 &cmdlist);
3889 set_cmd_completer (c, filename_completer);
3890
3891 c = add_cmd ("remove-symbol-file", class_files,
3892 remove_symbol_file_command, _("\
3893 Remove a symbol file added via the add-symbol-file command.\n\
3894 Usage: remove-symbol-file FILENAME\n\
3895 remove-symbol-file -a ADDRESS\n\
3896 The file to remove can be identified by its filename or by an address\n\
3897 that lies within the boundaries of this symbol file in memory."),
3898 &cmdlist);
3899
3900 c = add_cmd ("load", class_files, load_command, _("\
3901 Dynamically load FILE into the running program, and record its symbols\n\
3902 for access from GDB.\n\
3903 An optional load OFFSET may also be given as a literal address.\n\
3904 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3905 on its own.\n\
3906 Usage: load [FILE] [OFFSET]"), &cmdlist);
3907 set_cmd_completer (c, filename_completer);
3908
3909 add_prefix_cmd ("overlay", class_support, overlay_command,
3910 _("Commands for debugging overlays."), &overlaylist,
3911 "overlay ", 0, &cmdlist);
3912
3913 add_com_alias ("ovly", "overlay", class_alias, 1);
3914 add_com_alias ("ov", "overlay", class_alias, 1);
3915
3916 add_cmd ("map-overlay", class_support, map_overlay_command,
3917 _("Assert that an overlay section is mapped."), &overlaylist);
3918
3919 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3920 _("Assert that an overlay section is unmapped."), &overlaylist);
3921
3922 add_cmd ("list-overlays", class_support, list_overlays_command,
3923 _("List mappings of overlay sections."), &overlaylist);
3924
3925 add_cmd ("manual", class_support, overlay_manual_command,
3926 _("Enable overlay debugging."), &overlaylist);
3927 add_cmd ("off", class_support, overlay_off_command,
3928 _("Disable overlay debugging."), &overlaylist);
3929 add_cmd ("auto", class_support, overlay_auto_command,
3930 _("Enable automatic overlay debugging."), &overlaylist);
3931 add_cmd ("load-target", class_support, overlay_load_command,
3932 _("Read the overlay mapping state from the target."), &overlaylist);
3933
3934 /* Filename extension to source language lookup table: */
3935 add_setshow_string_noescape_cmd ("extension-language", class_files,
3936 &ext_args, _("\
3937 Set mapping between filename extension and source language."), _("\
3938 Show mapping between filename extension and source language."), _("\
3939 Usage: set extension-language .foo bar"),
3940 set_ext_lang_command,
3941 show_ext_args,
3942 &setlist, &showlist);
3943
3944 add_info ("extensions", info_ext_lang_command,
3945 _("All filename extensions associated with a source language."));
3946
3947 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3948 &debug_file_directory, _("\
3949 Set the directories where separate debug symbols are searched for."), _("\
3950 Show the directories where separate debug symbols are searched for."), _("\
3951 Separate debug symbols are first searched for in the same\n\
3952 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3953 and lastly at the path of the directory of the binary with\n\
3954 each global debug-file-directory component prepended."),
3955 NULL,
3956 show_debug_file_directory,
3957 &setlist, &showlist);
3958
3959 add_setshow_enum_cmd ("symbol-loading", no_class,
3960 print_symbol_loading_enums, &print_symbol_loading,
3961 _("\
3962 Set printing of symbol loading messages."), _("\
3963 Show printing of symbol loading messages."), _("\
3964 off == turn all messages off\n\
3965 brief == print messages for the executable,\n\
3966 and brief messages for shared libraries\n\
3967 full == print messages for the executable,\n\
3968 and messages for each shared library."),
3969 NULL,
3970 NULL,
3971 &setprintlist, &showprintlist);
3972
3973 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3974 &separate_debug_file_debug, _("\
3975 Set printing of separate debug info file search debug."), _("\
3976 Show printing of separate debug info file search debug."), _("\
3977 When on, GDB prints the searched locations while looking for separate debug \
3978 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3979
3980 #if GDB_SELF_TEST
3981 selftests::register_test
3982 ("filename_language", selftests::filename_language::test_filename_language);
3983 selftests::register_test
3984 ("set_ext_lang_command",
3985 selftests::filename_language::test_set_ext_lang_command);
3986 #endif
3987 }
This page took 0.158247 seconds and 5 git commands to generate.