Change some arguments to gdb::string_view instead of name+len
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Symbols don't specify global vs static block.
187 So keep them in separate caches. */
188
189 struct block_symbol_cache
190 {
191 unsigned int hits;
192 unsigned int misses;
193 unsigned int collisions;
194
195 /* SYMBOLS is a variable length array of this size.
196 One can imagine that in general one cache (global/static) should be a
197 fraction of the size of the other, but there's no data at the moment
198 on which to decide. */
199 unsigned int size;
200
201 struct symbol_cache_slot symbols[1];
202 };
203
204 /* The symbol cache.
205
206 Searching for symbols in the static and global blocks over multiple objfiles
207 again and again can be slow, as can searching very big objfiles. This is a
208 simple cache to improve symbol lookup performance, which is critical to
209 overall gdb performance.
210
211 Symbols are hashed on the name, its domain, and block.
212 They are also hashed on their objfile for objfile-specific lookups. */
213
214 struct symbol_cache
215 {
216 symbol_cache () = default;
217
218 ~symbol_cache ()
219 {
220 xfree (global_symbols);
221 xfree (static_symbols);
222 }
223
224 struct block_symbol_cache *global_symbols = nullptr;
225 struct block_symbol_cache *static_symbols = nullptr;
226 };
227
228 /* Program space key for finding its symbol cache. */
229
230 static const program_space_key<symbol_cache> symbol_cache_key;
231
232 /* When non-zero, print debugging messages related to symtab creation. */
233 unsigned int symtab_create_debug = 0;
234
235 /* When non-zero, print debugging messages related to symbol lookup. */
236 unsigned int symbol_lookup_debug = 0;
237
238 /* The size of the cache is staged here. */
239 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
240
241 /* The current value of the symbol cache size.
242 This is saved so that if the user enters a value too big we can restore
243 the original value from here. */
244 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
245
246 /* True if a file may be known by two different basenames.
247 This is the uncommon case, and significantly slows down gdb.
248 Default set to "off" to not slow down the common case. */
249 bool basenames_may_differ = false;
250
251 /* Allow the user to configure the debugger behavior with respect
252 to multiple-choice menus when more than one symbol matches during
253 a symbol lookup. */
254
255 const char multiple_symbols_ask[] = "ask";
256 const char multiple_symbols_all[] = "all";
257 const char multiple_symbols_cancel[] = "cancel";
258 static const char *const multiple_symbols_modes[] =
259 {
260 multiple_symbols_ask,
261 multiple_symbols_all,
262 multiple_symbols_cancel,
263 NULL
264 };
265 static const char *multiple_symbols_mode = multiple_symbols_all;
266
267 /* Read-only accessor to AUTO_SELECT_MODE. */
268
269 const char *
270 multiple_symbols_select_mode (void)
271 {
272 return multiple_symbols_mode;
273 }
274
275 /* Return the name of a domain_enum. */
276
277 const char *
278 domain_name (domain_enum e)
279 {
280 switch (e)
281 {
282 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
283 case VAR_DOMAIN: return "VAR_DOMAIN";
284 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
285 case MODULE_DOMAIN: return "MODULE_DOMAIN";
286 case LABEL_DOMAIN: return "LABEL_DOMAIN";
287 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
288 default: gdb_assert_not_reached ("bad domain_enum");
289 }
290 }
291
292 /* Return the name of a search_domain . */
293
294 const char *
295 search_domain_name (enum search_domain e)
296 {
297 switch (e)
298 {
299 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
300 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
301 case TYPES_DOMAIN: return "TYPES_DOMAIN";
302 case ALL_DOMAIN: return "ALL_DOMAIN";
303 default: gdb_assert_not_reached ("bad search_domain");
304 }
305 }
306
307 /* See symtab.h. */
308
309 struct symtab *
310 compunit_primary_filetab (const struct compunit_symtab *cust)
311 {
312 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
313
314 /* The primary file symtab is the first one in the list. */
315 return COMPUNIT_FILETABS (cust);
316 }
317
318 /* See symtab.h. */
319
320 enum language
321 compunit_language (const struct compunit_symtab *cust)
322 {
323 struct symtab *symtab = compunit_primary_filetab (cust);
324
325 /* The language of the compunit symtab is the language of its primary
326 source file. */
327 return SYMTAB_LANGUAGE (symtab);
328 }
329
330 /* See symtab.h. */
331
332 bool
333 minimal_symbol::data_p () const
334 {
335 return type == mst_data
336 || type == mst_bss
337 || type == mst_abs
338 || type == mst_file_data
339 || type == mst_file_bss;
340 }
341
342 /* See symtab.h. */
343
344 bool
345 minimal_symbol::text_p () const
346 {
347 return type == mst_text
348 || type == mst_text_gnu_ifunc
349 || type == mst_data_gnu_ifunc
350 || type == mst_slot_got_plt
351 || type == mst_solib_trampoline
352 || type == mst_file_text;
353 }
354
355 /* See whether FILENAME matches SEARCH_NAME using the rule that we
356 advertise to the user. (The manual's description of linespecs
357 describes what we advertise). Returns true if they match, false
358 otherwise. */
359
360 bool
361 compare_filenames_for_search (const char *filename, const char *search_name)
362 {
363 int len = strlen (filename);
364 size_t search_len = strlen (search_name);
365
366 if (len < search_len)
367 return false;
368
369 /* The tail of FILENAME must match. */
370 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
371 return false;
372
373 /* Either the names must completely match, or the character
374 preceding the trailing SEARCH_NAME segment of FILENAME must be a
375 directory separator.
376
377 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
378 cannot match FILENAME "/path//dir/file.c" - as user has requested
379 absolute path. The sama applies for "c:\file.c" possibly
380 incorrectly hypothetically matching "d:\dir\c:\file.c".
381
382 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
383 compatible with SEARCH_NAME "file.c". In such case a compiler had
384 to put the "c:file.c" name into debug info. Such compatibility
385 works only on GDB built for DOS host. */
386 return (len == search_len
387 || (!IS_ABSOLUTE_PATH (search_name)
388 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
389 || (HAS_DRIVE_SPEC (filename)
390 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
391 }
392
393 /* Same as compare_filenames_for_search, but for glob-style patterns.
394 Heads up on the order of the arguments. They match the order of
395 compare_filenames_for_search, but it's the opposite of the order of
396 arguments to gdb_filename_fnmatch. */
397
398 bool
399 compare_glob_filenames_for_search (const char *filename,
400 const char *search_name)
401 {
402 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
403 all /s have to be explicitly specified. */
404 int file_path_elements = count_path_elements (filename);
405 int search_path_elements = count_path_elements (search_name);
406
407 if (search_path_elements > file_path_elements)
408 return false;
409
410 if (IS_ABSOLUTE_PATH (search_name))
411 {
412 return (search_path_elements == file_path_elements
413 && gdb_filename_fnmatch (search_name, filename,
414 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
415 }
416
417 {
418 const char *file_to_compare
419 = strip_leading_path_elements (filename,
420 file_path_elements - search_path_elements);
421
422 return gdb_filename_fnmatch (search_name, file_to_compare,
423 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
424 }
425 }
426
427 /* Check for a symtab of a specific name by searching some symtabs.
428 This is a helper function for callbacks of iterate_over_symtabs.
429
430 If NAME is not absolute, then REAL_PATH is NULL
431 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
432
433 The return value, NAME, REAL_PATH and CALLBACK are identical to the
434 `map_symtabs_matching_filename' method of quick_symbol_functions.
435
436 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
437 Each symtab within the specified compunit symtab is also searched.
438 AFTER_LAST is one past the last compunit symtab to search; NULL means to
439 search until the end of the list. */
440
441 bool
442 iterate_over_some_symtabs (const char *name,
443 const char *real_path,
444 struct compunit_symtab *first,
445 struct compunit_symtab *after_last,
446 gdb::function_view<bool (symtab *)> callback)
447 {
448 struct compunit_symtab *cust;
449 const char* base_name = lbasename (name);
450
451 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
452 {
453 for (symtab *s : compunit_filetabs (cust))
454 {
455 if (compare_filenames_for_search (s->filename, name))
456 {
457 if (callback (s))
458 return true;
459 continue;
460 }
461
462 /* Before we invoke realpath, which can get expensive when many
463 files are involved, do a quick comparison of the basenames. */
464 if (! basenames_may_differ
465 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
466 continue;
467
468 if (compare_filenames_for_search (symtab_to_fullname (s), name))
469 {
470 if (callback (s))
471 return true;
472 continue;
473 }
474
475 /* If the user gave us an absolute path, try to find the file in
476 this symtab and use its absolute path. */
477 if (real_path != NULL)
478 {
479 const char *fullname = symtab_to_fullname (s);
480
481 gdb_assert (IS_ABSOLUTE_PATH (real_path));
482 gdb_assert (IS_ABSOLUTE_PATH (name));
483 gdb::unique_xmalloc_ptr<char> fullname_real_path
484 = gdb_realpath (fullname);
485 fullname = fullname_real_path.get ();
486 if (FILENAME_CMP (real_path, fullname) == 0)
487 {
488 if (callback (s))
489 return true;
490 continue;
491 }
492 }
493 }
494 }
495
496 return false;
497 }
498
499 /* Check for a symtab of a specific name; first in symtabs, then in
500 psymtabs. *If* there is no '/' in the name, a match after a '/'
501 in the symtab filename will also work.
502
503 Calls CALLBACK with each symtab that is found. If CALLBACK returns
504 true, the search stops. */
505
506 void
507 iterate_over_symtabs (const char *name,
508 gdb::function_view<bool (symtab *)> callback)
509 {
510 gdb::unique_xmalloc_ptr<char> real_path;
511
512 /* Here we are interested in canonicalizing an absolute path, not
513 absolutizing a relative path. */
514 if (IS_ABSOLUTE_PATH (name))
515 {
516 real_path = gdb_realpath (name);
517 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
518 }
519
520 for (objfile *objfile : current_program_space->objfiles ())
521 {
522 if (iterate_over_some_symtabs (name, real_path.get (),
523 objfile->compunit_symtabs, NULL,
524 callback))
525 return;
526 }
527
528 /* Same search rules as above apply here, but now we look thru the
529 psymtabs. */
530
531 for (objfile *objfile : current_program_space->objfiles ())
532 {
533 if (objfile->sf
534 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
535 name,
536 real_path.get (),
537 callback))
538 return;
539 }
540 }
541
542 /* A wrapper for iterate_over_symtabs that returns the first matching
543 symtab, or NULL. */
544
545 struct symtab *
546 lookup_symtab (const char *name)
547 {
548 struct symtab *result = NULL;
549
550 iterate_over_symtabs (name, [&] (symtab *symtab)
551 {
552 result = symtab;
553 return true;
554 });
555
556 return result;
557 }
558
559 \f
560 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
561 full method name, which consist of the class name (from T), the unadorned
562 method name from METHOD_ID, and the signature for the specific overload,
563 specified by SIGNATURE_ID. Note that this function is g++ specific. */
564
565 char *
566 gdb_mangle_name (struct type *type, int method_id, int signature_id)
567 {
568 int mangled_name_len;
569 char *mangled_name;
570 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
571 struct fn_field *method = &f[signature_id];
572 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
573 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
574 const char *newname = TYPE_NAME (type);
575
576 /* Does the form of physname indicate that it is the full mangled name
577 of a constructor (not just the args)? */
578 int is_full_physname_constructor;
579
580 int is_constructor;
581 int is_destructor = is_destructor_name (physname);
582 /* Need a new type prefix. */
583 const char *const_prefix = method->is_const ? "C" : "";
584 const char *volatile_prefix = method->is_volatile ? "V" : "";
585 char buf[20];
586 int len = (newname == NULL ? 0 : strlen (newname));
587
588 /* Nothing to do if physname already contains a fully mangled v3 abi name
589 or an operator name. */
590 if ((physname[0] == '_' && physname[1] == 'Z')
591 || is_operator_name (field_name))
592 return xstrdup (physname);
593
594 is_full_physname_constructor = is_constructor_name (physname);
595
596 is_constructor = is_full_physname_constructor
597 || (newname && strcmp (field_name, newname) == 0);
598
599 if (!is_destructor)
600 is_destructor = (startswith (physname, "__dt"));
601
602 if (is_destructor || is_full_physname_constructor)
603 {
604 mangled_name = (char *) xmalloc (strlen (physname) + 1);
605 strcpy (mangled_name, physname);
606 return mangled_name;
607 }
608
609 if (len == 0)
610 {
611 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
612 }
613 else if (physname[0] == 't' || physname[0] == 'Q')
614 {
615 /* The physname for template and qualified methods already includes
616 the class name. */
617 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
618 newname = NULL;
619 len = 0;
620 }
621 else
622 {
623 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
624 volatile_prefix, len);
625 }
626 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
627 + strlen (buf) + len + strlen (physname) + 1);
628
629 mangled_name = (char *) xmalloc (mangled_name_len);
630 if (is_constructor)
631 mangled_name[0] = '\0';
632 else
633 strcpy (mangled_name, field_name);
634
635 strcat (mangled_name, buf);
636 /* If the class doesn't have a name, i.e. newname NULL, then we just
637 mangle it using 0 for the length of the class. Thus it gets mangled
638 as something starting with `::' rather than `classname::'. */
639 if (newname != NULL)
640 strcat (mangled_name, newname);
641
642 strcat (mangled_name, physname);
643 return (mangled_name);
644 }
645
646 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
647 correctly allocated. */
648
649 void
650 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
651 const char *name,
652 struct obstack *obstack)
653 {
654 if (gsymbol->language == language_ada)
655 {
656 if (name == NULL)
657 {
658 gsymbol->ada_mangled = 0;
659 gsymbol->language_specific.obstack = obstack;
660 }
661 else
662 {
663 gsymbol->ada_mangled = 1;
664 gsymbol->language_specific.demangled_name = name;
665 }
666 }
667 else
668 gsymbol->language_specific.demangled_name = name;
669 }
670
671 /* Return the demangled name of GSYMBOL. */
672
673 const char *
674 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
675 {
676 if (gsymbol->language == language_ada)
677 {
678 if (!gsymbol->ada_mangled)
679 return NULL;
680 /* Fall through. */
681 }
682
683 return gsymbol->language_specific.demangled_name;
684 }
685
686 \f
687 /* Initialize the language dependent portion of a symbol
688 depending upon the language for the symbol. */
689
690 void
691 symbol_set_language (struct general_symbol_info *gsymbol,
692 enum language language,
693 struct obstack *obstack)
694 {
695 gsymbol->language = language;
696 if (gsymbol->language == language_cplus
697 || gsymbol->language == language_d
698 || gsymbol->language == language_go
699 || gsymbol->language == language_objc
700 || gsymbol->language == language_fortran)
701 {
702 symbol_set_demangled_name (gsymbol, NULL, obstack);
703 }
704 else if (gsymbol->language == language_ada)
705 {
706 gdb_assert (gsymbol->ada_mangled == 0);
707 gsymbol->language_specific.obstack = obstack;
708 }
709 else
710 {
711 memset (&gsymbol->language_specific, 0,
712 sizeof (gsymbol->language_specific));
713 }
714 }
715
716 /* Functions to initialize a symbol's mangled name. */
717
718 /* Objects of this type are stored in the demangled name hash table. */
719 struct demangled_name_entry
720 {
721 demangled_name_entry (gdb::string_view mangled_name)
722 : mangled (mangled_name) {}
723
724 gdb::string_view mangled;
725 enum language language;
726 gdb::unique_xmalloc_ptr<char> demangled;
727 };
728
729 /* Hash function for the demangled name hash. */
730
731 static hashval_t
732 hash_demangled_name_entry (const void *data)
733 {
734 const struct demangled_name_entry *e
735 = (const struct demangled_name_entry *) data;
736
737 return fast_hash (e->mangled.data (), e->mangled.length ());
738 }
739
740 /* Equality function for the demangled name hash. */
741
742 static int
743 eq_demangled_name_entry (const void *a, const void *b)
744 {
745 const struct demangled_name_entry *da
746 = (const struct demangled_name_entry *) a;
747 const struct demangled_name_entry *db
748 = (const struct demangled_name_entry *) b;
749
750 return da->mangled == db->mangled;
751 }
752
753 static void
754 free_demangled_name_entry (void *data)
755 {
756 struct demangled_name_entry *e
757 = (struct demangled_name_entry *) data;
758
759 e->~demangled_name_entry();
760 }
761
762 /* Create the hash table used for demangled names. Each hash entry is
763 a pair of strings; one for the mangled name and one for the demangled
764 name. The entry is hashed via just the mangled name. */
765
766 static void
767 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
768 {
769 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
770 The hash table code will round this up to the next prime number.
771 Choosing a much larger table size wastes memory, and saves only about
772 1% in symbol reading. */
773
774 per_bfd->demangled_names_hash.reset (htab_create_alloc
775 (256, hash_demangled_name_entry, eq_demangled_name_entry,
776 free_demangled_name_entry, xcalloc, xfree));
777 }
778
779 /* Try to determine the demangled name for a symbol, based on the
780 language of that symbol. If the language is set to language_auto,
781 it will attempt to find any demangling algorithm that works and
782 then set the language appropriately. The returned name is allocated
783 by the demangler and should be xfree'd. */
784
785 static char *
786 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
787 const char *mangled)
788 {
789 char *demangled = NULL;
790 int i;
791
792 if (gsymbol->language == language_unknown)
793 gsymbol->language = language_auto;
794
795 if (gsymbol->language != language_auto)
796 {
797 const struct language_defn *lang = language_def (gsymbol->language);
798
799 language_sniff_from_mangled_name (lang, mangled, &demangled);
800 return demangled;
801 }
802
803 for (i = language_unknown; i < nr_languages; ++i)
804 {
805 enum language l = (enum language) i;
806 const struct language_defn *lang = language_def (l);
807
808 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
809 {
810 gsymbol->language = l;
811 return demangled;
812 }
813 }
814
815 return NULL;
816 }
817
818 /* Set both the mangled and demangled (if any) names for GSYMBOL based
819 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
820 objfile's obstack; but if COPY_NAME is 0 and if NAME is
821 NUL-terminated, then this function assumes that NAME is already
822 correctly saved (either permanently or with a lifetime tied to the
823 objfile), and it will not be copied.
824
825 The hash table corresponding to OBJFILE is used, and the memory
826 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
827 so the pointer can be discarded after calling this function. */
828
829 void
830 symbol_set_names (struct general_symbol_info *gsymbol,
831 gdb::string_view linkage_name, bool copy_name,
832 struct objfile_per_bfd_storage *per_bfd)
833 {
834 struct demangled_name_entry **slot;
835
836 if (gsymbol->language == language_ada)
837 {
838 /* In Ada, we do the symbol lookups using the mangled name, so
839 we can save some space by not storing the demangled name. */
840 if (!copy_name)
841 gsymbol->name = linkage_name.data ();
842 else
843 {
844 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
845 linkage_name.length () + 1);
846
847 memcpy (name, linkage_name.data (), linkage_name.length ());
848 name[linkage_name.length ()] = '\0';
849 gsymbol->name = name;
850 }
851 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
852
853 return;
854 }
855
856 if (per_bfd->demangled_names_hash == NULL)
857 create_demangled_names_hash (per_bfd);
858
859 struct demangled_name_entry entry (linkage_name);
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash.get (),
862 &entry, INSERT));
863
864 /* If this name is not in the hash table, add it. */
865 if (*slot == NULL
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go && (*slot)->demangled == nullptr))
869 {
870 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
871 to true if the string might not be nullterminated. We have to make
872 this copy because demangling needs a nullterminated string. */
873 gdb::string_view linkage_name_copy;
874 if (copy_name)
875 {
876 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
877 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
878 alloc_name[linkage_name.length ()] = '\0';
879
880 linkage_name_copy = gdb::string_view (alloc_name,
881 linkage_name.length ());
882 }
883 else
884 linkage_name_copy = linkage_name;
885
886 gdb::unique_xmalloc_ptr<char> demangled_name_ptr
887 (symbol_find_demangled_name (gsymbol, linkage_name_copy.data ()));
888
889 /* Suppose we have demangled_name==NULL, copy_name==0, and
890 linkage_name_copy==linkage_name. In this case, we already have the
891 mangled name saved, and we don't have a demangled name. So,
892 you might think we could save a little space by not recording
893 this in the hash table at all.
894
895 It turns out that it is actually important to still save such
896 an entry in the hash table, because storing this name gives
897 us better bcache hit rates for partial symbols. */
898 if (!copy_name)
899 {
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 sizeof (demangled_name_entry)));
904 new (*slot) demangled_name_entry (linkage_name);
905 }
906 else
907 {
908 /* If we must copy the mangled name, put it directly after
909 the struct so we can have a single allocation. */
910 *slot
911 = ((struct demangled_name_entry *)
912 obstack_alloc (&per_bfd->storage_obstack,
913 sizeof (demangled_name_entry)
914 + linkage_name.length () + 1));
915 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
916 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
917 mangled_ptr [linkage_name.length ()] = '\0';
918 new (*slot) demangled_name_entry
919 (gdb::string_view (mangled_ptr, linkage_name.length ()));
920 }
921 (*slot)->demangled = std::move (demangled_name_ptr);
922 (*slot)->language = gsymbol->language;
923 }
924 else if (gsymbol->language == language_unknown
925 || gsymbol->language == language_auto)
926 gsymbol->language = (*slot)->language;
927
928 gsymbol->name = (*slot)->mangled.data ();
929 if ((*slot)->demangled != nullptr)
930 symbol_set_demangled_name (gsymbol, (*slot)->demangled.get (),
931 &per_bfd->storage_obstack);
932 else
933 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
934 }
935
936 /* Return the source code name of a symbol. In languages where
937 demangling is necessary, this is the demangled name. */
938
939 const char *
940 symbol_natural_name (const struct general_symbol_info *gsymbol)
941 {
942 switch (gsymbol->language)
943 {
944 case language_cplus:
945 case language_d:
946 case language_go:
947 case language_objc:
948 case language_fortran:
949 if (symbol_get_demangled_name (gsymbol) != NULL)
950 return symbol_get_demangled_name (gsymbol);
951 break;
952 case language_ada:
953 return ada_decode_symbol (gsymbol);
954 default:
955 break;
956 }
957 return gsymbol->name;
958 }
959
960 /* Return the demangled name for a symbol based on the language for
961 that symbol. If no demangled name exists, return NULL. */
962
963 const char *
964 symbol_demangled_name (const struct general_symbol_info *gsymbol)
965 {
966 const char *dem_name = NULL;
967
968 switch (gsymbol->language)
969 {
970 case language_cplus:
971 case language_d:
972 case language_go:
973 case language_objc:
974 case language_fortran:
975 dem_name = symbol_get_demangled_name (gsymbol);
976 break;
977 case language_ada:
978 dem_name = ada_decode_symbol (gsymbol);
979 break;
980 default:
981 break;
982 }
983 return dem_name;
984 }
985
986 /* Return the search name of a symbol---generally the demangled or
987 linkage name of the symbol, depending on how it will be searched for.
988 If there is no distinct demangled name, then returns the same value
989 (same pointer) as SYMBOL_LINKAGE_NAME. */
990
991 const char *
992 symbol_search_name (const struct general_symbol_info *gsymbol)
993 {
994 if (gsymbol->language == language_ada)
995 return gsymbol->name;
996 else
997 return symbol_natural_name (gsymbol);
998 }
999
1000 /* See symtab.h. */
1001
1002 bool
1003 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1004 const lookup_name_info &name)
1005 {
1006 symbol_name_matcher_ftype *name_match
1007 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1008 return name_match (symbol_search_name (gsymbol), name, NULL);
1009 }
1010
1011 \f
1012
1013 /* Return true if the two sections are the same, or if they could
1014 plausibly be copies of each other, one in an original object
1015 file and another in a separated debug file. */
1016
1017 bool
1018 matching_obj_sections (struct obj_section *obj_first,
1019 struct obj_section *obj_second)
1020 {
1021 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1022 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1023
1024 /* If they're the same section, then they match. */
1025 if (first == second)
1026 return true;
1027
1028 /* If either is NULL, give up. */
1029 if (first == NULL || second == NULL)
1030 return false;
1031
1032 /* This doesn't apply to absolute symbols. */
1033 if (first->owner == NULL || second->owner == NULL)
1034 return false;
1035
1036 /* If they're in the same object file, they must be different sections. */
1037 if (first->owner == second->owner)
1038 return false;
1039
1040 /* Check whether the two sections are potentially corresponding. They must
1041 have the same size, address, and name. We can't compare section indexes,
1042 which would be more reliable, because some sections may have been
1043 stripped. */
1044 if (bfd_section_size (first) != bfd_section_size (second))
1045 return false;
1046
1047 /* In-memory addresses may start at a different offset, relativize them. */
1048 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1049 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1050 return false;
1051
1052 if (bfd_section_name (first) == NULL
1053 || bfd_section_name (second) == NULL
1054 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1055 return false;
1056
1057 /* Otherwise check that they are in corresponding objfiles. */
1058
1059 struct objfile *obj = NULL;
1060 for (objfile *objfile : current_program_space->objfiles ())
1061 if (objfile->obfd == first->owner)
1062 {
1063 obj = objfile;
1064 break;
1065 }
1066 gdb_assert (obj != NULL);
1067
1068 if (obj->separate_debug_objfile != NULL
1069 && obj->separate_debug_objfile->obfd == second->owner)
1070 return true;
1071 if (obj->separate_debug_objfile_backlink != NULL
1072 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1073 return true;
1074
1075 return false;
1076 }
1077
1078 /* See symtab.h. */
1079
1080 void
1081 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1082 {
1083 struct bound_minimal_symbol msymbol;
1084
1085 /* If we know that this is not a text address, return failure. This is
1086 necessary because we loop based on texthigh and textlow, which do
1087 not include the data ranges. */
1088 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1089 if (msymbol.minsym && msymbol.minsym->data_p ())
1090 return;
1091
1092 for (objfile *objfile : current_program_space->objfiles ())
1093 {
1094 struct compunit_symtab *cust = NULL;
1095
1096 if (objfile->sf)
1097 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1098 pc, section, 0);
1099 if (cust)
1100 return;
1101 }
1102 }
1103 \f
1104 /* Hash function for the symbol cache. */
1105
1106 static unsigned int
1107 hash_symbol_entry (const struct objfile *objfile_context,
1108 const char *name, domain_enum domain)
1109 {
1110 unsigned int hash = (uintptr_t) objfile_context;
1111
1112 if (name != NULL)
1113 hash += htab_hash_string (name);
1114
1115 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1116 to map to the same slot. */
1117 if (domain == STRUCT_DOMAIN)
1118 hash += VAR_DOMAIN * 7;
1119 else
1120 hash += domain * 7;
1121
1122 return hash;
1123 }
1124
1125 /* Equality function for the symbol cache. */
1126
1127 static int
1128 eq_symbol_entry (const struct symbol_cache_slot *slot,
1129 const struct objfile *objfile_context,
1130 const char *name, domain_enum domain)
1131 {
1132 const char *slot_name;
1133 domain_enum slot_domain;
1134
1135 if (slot->state == SYMBOL_SLOT_UNUSED)
1136 return 0;
1137
1138 if (slot->objfile_context != objfile_context)
1139 return 0;
1140
1141 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1142 {
1143 slot_name = slot->value.not_found.name;
1144 slot_domain = slot->value.not_found.domain;
1145 }
1146 else
1147 {
1148 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1149 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1150 }
1151
1152 /* NULL names match. */
1153 if (slot_name == NULL && name == NULL)
1154 {
1155 /* But there's no point in calling symbol_matches_domain in the
1156 SYMBOL_SLOT_FOUND case. */
1157 if (slot_domain != domain)
1158 return 0;
1159 }
1160 else if (slot_name != NULL && name != NULL)
1161 {
1162 /* It's important that we use the same comparison that was done
1163 the first time through. If the slot records a found symbol,
1164 then this means using the symbol name comparison function of
1165 the symbol's language with SYMBOL_SEARCH_NAME. See
1166 dictionary.c. It also means using symbol_matches_domain for
1167 found symbols. See block.c.
1168
1169 If the slot records a not-found symbol, then require a precise match.
1170 We could still be lax with whitespace like strcmp_iw though. */
1171
1172 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1173 {
1174 if (strcmp (slot_name, name) != 0)
1175 return 0;
1176 if (slot_domain != domain)
1177 return 0;
1178 }
1179 else
1180 {
1181 struct symbol *sym = slot->value.found.symbol;
1182 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1183
1184 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1185 return 0;
1186
1187 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1188 slot_domain, domain))
1189 return 0;
1190 }
1191 }
1192 else
1193 {
1194 /* Only one name is NULL. */
1195 return 0;
1196 }
1197
1198 return 1;
1199 }
1200
1201 /* Given a cache of size SIZE, return the size of the struct (with variable
1202 length array) in bytes. */
1203
1204 static size_t
1205 symbol_cache_byte_size (unsigned int size)
1206 {
1207 return (sizeof (struct block_symbol_cache)
1208 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1209 }
1210
1211 /* Resize CACHE. */
1212
1213 static void
1214 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1215 {
1216 /* If there's no change in size, don't do anything.
1217 All caches have the same size, so we can just compare with the size
1218 of the global symbols cache. */
1219 if ((cache->global_symbols != NULL
1220 && cache->global_symbols->size == new_size)
1221 || (cache->global_symbols == NULL
1222 && new_size == 0))
1223 return;
1224
1225 xfree (cache->global_symbols);
1226 xfree (cache->static_symbols);
1227
1228 if (new_size == 0)
1229 {
1230 cache->global_symbols = NULL;
1231 cache->static_symbols = NULL;
1232 }
1233 else
1234 {
1235 size_t total_size = symbol_cache_byte_size (new_size);
1236
1237 cache->global_symbols
1238 = (struct block_symbol_cache *) xcalloc (1, total_size);
1239 cache->static_symbols
1240 = (struct block_symbol_cache *) xcalloc (1, total_size);
1241 cache->global_symbols->size = new_size;
1242 cache->static_symbols->size = new_size;
1243 }
1244 }
1245
1246 /* Return the symbol cache of PSPACE.
1247 Create one if it doesn't exist yet. */
1248
1249 static struct symbol_cache *
1250 get_symbol_cache (struct program_space *pspace)
1251 {
1252 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1253
1254 if (cache == NULL)
1255 {
1256 cache = symbol_cache_key.emplace (pspace);
1257 resize_symbol_cache (cache, symbol_cache_size);
1258 }
1259
1260 return cache;
1261 }
1262
1263 /* Set the size of the symbol cache in all program spaces. */
1264
1265 static void
1266 set_symbol_cache_size (unsigned int new_size)
1267 {
1268 struct program_space *pspace;
1269
1270 ALL_PSPACES (pspace)
1271 {
1272 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1273
1274 /* The pspace could have been created but not have a cache yet. */
1275 if (cache != NULL)
1276 resize_symbol_cache (cache, new_size);
1277 }
1278 }
1279
1280 /* Called when symbol-cache-size is set. */
1281
1282 static void
1283 set_symbol_cache_size_handler (const char *args, int from_tty,
1284 struct cmd_list_element *c)
1285 {
1286 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1287 {
1288 /* Restore the previous value.
1289 This is the value the "show" command prints. */
1290 new_symbol_cache_size = symbol_cache_size;
1291
1292 error (_("Symbol cache size is too large, max is %u."),
1293 MAX_SYMBOL_CACHE_SIZE);
1294 }
1295 symbol_cache_size = new_symbol_cache_size;
1296
1297 set_symbol_cache_size (symbol_cache_size);
1298 }
1299
1300 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1301 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1302 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1303 failed (and thus this one will too), or NULL if the symbol is not present
1304 in the cache.
1305 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1306 can be used to save the result of a full lookup attempt. */
1307
1308 static struct block_symbol
1309 symbol_cache_lookup (struct symbol_cache *cache,
1310 struct objfile *objfile_context, enum block_enum block,
1311 const char *name, domain_enum domain,
1312 struct block_symbol_cache **bsc_ptr,
1313 struct symbol_cache_slot **slot_ptr)
1314 {
1315 struct block_symbol_cache *bsc;
1316 unsigned int hash;
1317 struct symbol_cache_slot *slot;
1318
1319 if (block == GLOBAL_BLOCK)
1320 bsc = cache->global_symbols;
1321 else
1322 bsc = cache->static_symbols;
1323 if (bsc == NULL)
1324 {
1325 *bsc_ptr = NULL;
1326 *slot_ptr = NULL;
1327 return {};
1328 }
1329
1330 hash = hash_symbol_entry (objfile_context, name, domain);
1331 slot = bsc->symbols + hash % bsc->size;
1332
1333 *bsc_ptr = bsc;
1334 *slot_ptr = slot;
1335
1336 if (eq_symbol_entry (slot, objfile_context, name, domain))
1337 {
1338 if (symbol_lookup_debug)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "%s block symbol cache hit%s for %s, %s\n",
1341 block == GLOBAL_BLOCK ? "Global" : "Static",
1342 slot->state == SYMBOL_SLOT_NOT_FOUND
1343 ? " (not found)" : "",
1344 name, domain_name (domain));
1345 ++bsc->hits;
1346 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1347 return SYMBOL_LOOKUP_FAILED;
1348 return slot->value.found;
1349 }
1350
1351 /* Symbol is not present in the cache. */
1352
1353 if (symbol_lookup_debug)
1354 {
1355 fprintf_unfiltered (gdb_stdlog,
1356 "%s block symbol cache miss for %s, %s\n",
1357 block == GLOBAL_BLOCK ? "Global" : "Static",
1358 name, domain_name (domain));
1359 }
1360 ++bsc->misses;
1361 return {};
1362 }
1363
1364 /* Clear out SLOT. */
1365
1366 static void
1367 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1368 {
1369 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1370 xfree (slot->value.not_found.name);
1371 slot->state = SYMBOL_SLOT_UNUSED;
1372 }
1373
1374 /* Mark SYMBOL as found in SLOT.
1375 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1376 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1377 necessarily the objfile the symbol was found in. */
1378
1379 static void
1380 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1381 struct symbol_cache_slot *slot,
1382 struct objfile *objfile_context,
1383 struct symbol *symbol,
1384 const struct block *block)
1385 {
1386 if (bsc == NULL)
1387 return;
1388 if (slot->state != SYMBOL_SLOT_UNUSED)
1389 {
1390 ++bsc->collisions;
1391 symbol_cache_clear_slot (slot);
1392 }
1393 slot->state = SYMBOL_SLOT_FOUND;
1394 slot->objfile_context = objfile_context;
1395 slot->value.found.symbol = symbol;
1396 slot->value.found.block = block;
1397 }
1398
1399 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1402
1403 static void
1404 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1405 struct symbol_cache_slot *slot,
1406 struct objfile *objfile_context,
1407 const char *name, domain_enum domain)
1408 {
1409 if (bsc == NULL)
1410 return;
1411 if (slot->state != SYMBOL_SLOT_UNUSED)
1412 {
1413 ++bsc->collisions;
1414 symbol_cache_clear_slot (slot);
1415 }
1416 slot->state = SYMBOL_SLOT_NOT_FOUND;
1417 slot->objfile_context = objfile_context;
1418 slot->value.not_found.name = xstrdup (name);
1419 slot->value.not_found.domain = domain;
1420 }
1421
1422 /* Flush the symbol cache of PSPACE. */
1423
1424 static void
1425 symbol_cache_flush (struct program_space *pspace)
1426 {
1427 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1428 int pass;
1429
1430 if (cache == NULL)
1431 return;
1432 if (cache->global_symbols == NULL)
1433 {
1434 gdb_assert (symbol_cache_size == 0);
1435 gdb_assert (cache->static_symbols == NULL);
1436 return;
1437 }
1438
1439 /* If the cache is untouched since the last flush, early exit.
1440 This is important for performance during the startup of a program linked
1441 with 100s (or 1000s) of shared libraries. */
1442 if (cache->global_symbols->misses == 0
1443 && cache->static_symbols->misses == 0)
1444 return;
1445
1446 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1447 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1448
1449 for (pass = 0; pass < 2; ++pass)
1450 {
1451 struct block_symbol_cache *bsc
1452 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1453 unsigned int i;
1454
1455 for (i = 0; i < bsc->size; ++i)
1456 symbol_cache_clear_slot (&bsc->symbols[i]);
1457 }
1458
1459 cache->global_symbols->hits = 0;
1460 cache->global_symbols->misses = 0;
1461 cache->global_symbols->collisions = 0;
1462 cache->static_symbols->hits = 0;
1463 cache->static_symbols->misses = 0;
1464 cache->static_symbols->collisions = 0;
1465 }
1466
1467 /* Dump CACHE. */
1468
1469 static void
1470 symbol_cache_dump (const struct symbol_cache *cache)
1471 {
1472 int pass;
1473
1474 if (cache->global_symbols == NULL)
1475 {
1476 printf_filtered (" <disabled>\n");
1477 return;
1478 }
1479
1480 for (pass = 0; pass < 2; ++pass)
1481 {
1482 const struct block_symbol_cache *bsc
1483 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1484 unsigned int i;
1485
1486 if (pass == 0)
1487 printf_filtered ("Global symbols:\n");
1488 else
1489 printf_filtered ("Static symbols:\n");
1490
1491 for (i = 0; i < bsc->size; ++i)
1492 {
1493 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1494
1495 QUIT;
1496
1497 switch (slot->state)
1498 {
1499 case SYMBOL_SLOT_UNUSED:
1500 break;
1501 case SYMBOL_SLOT_NOT_FOUND:
1502 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1503 host_address_to_string (slot->objfile_context),
1504 slot->value.not_found.name,
1505 domain_name (slot->value.not_found.domain));
1506 break;
1507 case SYMBOL_SLOT_FOUND:
1508 {
1509 struct symbol *found = slot->value.found.symbol;
1510 const struct objfile *context = slot->objfile_context;
1511
1512 printf_filtered (" [%4u] = %s, %s %s\n", i,
1513 host_address_to_string (context),
1514 SYMBOL_PRINT_NAME (found),
1515 domain_name (SYMBOL_DOMAIN (found)));
1516 break;
1517 }
1518 }
1519 }
1520 }
1521 }
1522
1523 /* The "mt print symbol-cache" command. */
1524
1525 static void
1526 maintenance_print_symbol_cache (const char *args, int from_tty)
1527 {
1528 struct program_space *pspace;
1529
1530 ALL_PSPACES (pspace)
1531 {
1532 struct symbol_cache *cache;
1533
1534 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1535 pspace->num,
1536 pspace->symfile_object_file != NULL
1537 ? objfile_name (pspace->symfile_object_file)
1538 : "(no object file)");
1539
1540 /* If the cache hasn't been created yet, avoid creating one. */
1541 cache = symbol_cache_key.get (pspace);
1542 if (cache == NULL)
1543 printf_filtered (" <empty>\n");
1544 else
1545 symbol_cache_dump (cache);
1546 }
1547 }
1548
1549 /* The "mt flush-symbol-cache" command. */
1550
1551 static void
1552 maintenance_flush_symbol_cache (const char *args, int from_tty)
1553 {
1554 struct program_space *pspace;
1555
1556 ALL_PSPACES (pspace)
1557 {
1558 symbol_cache_flush (pspace);
1559 }
1560 }
1561
1562 /* Print usage statistics of CACHE. */
1563
1564 static void
1565 symbol_cache_stats (struct symbol_cache *cache)
1566 {
1567 int pass;
1568
1569 if (cache->global_symbols == NULL)
1570 {
1571 printf_filtered (" <disabled>\n");
1572 return;
1573 }
1574
1575 for (pass = 0; pass < 2; ++pass)
1576 {
1577 const struct block_symbol_cache *bsc
1578 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1579
1580 QUIT;
1581
1582 if (pass == 0)
1583 printf_filtered ("Global block cache stats:\n");
1584 else
1585 printf_filtered ("Static block cache stats:\n");
1586
1587 printf_filtered (" size: %u\n", bsc->size);
1588 printf_filtered (" hits: %u\n", bsc->hits);
1589 printf_filtered (" misses: %u\n", bsc->misses);
1590 printf_filtered (" collisions: %u\n", bsc->collisions);
1591 }
1592 }
1593
1594 /* The "mt print symbol-cache-statistics" command. */
1595
1596 static void
1597 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1598 {
1599 struct program_space *pspace;
1600
1601 ALL_PSPACES (pspace)
1602 {
1603 struct symbol_cache *cache;
1604
1605 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1606 pspace->num,
1607 pspace->symfile_object_file != NULL
1608 ? objfile_name (pspace->symfile_object_file)
1609 : "(no object file)");
1610
1611 /* If the cache hasn't been created yet, avoid creating one. */
1612 cache = symbol_cache_key.get (pspace);
1613 if (cache == NULL)
1614 printf_filtered (" empty, no stats available\n");
1615 else
1616 symbol_cache_stats (cache);
1617 }
1618 }
1619
1620 /* This module's 'new_objfile' observer. */
1621
1622 static void
1623 symtab_new_objfile_observer (struct objfile *objfile)
1624 {
1625 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1626 symbol_cache_flush (current_program_space);
1627 }
1628
1629 /* This module's 'free_objfile' observer. */
1630
1631 static void
1632 symtab_free_objfile_observer (struct objfile *objfile)
1633 {
1634 symbol_cache_flush (objfile->pspace);
1635 }
1636 \f
1637 /* Debug symbols usually don't have section information. We need to dig that
1638 out of the minimal symbols and stash that in the debug symbol. */
1639
1640 void
1641 fixup_section (struct general_symbol_info *ginfo,
1642 CORE_ADDR addr, struct objfile *objfile)
1643 {
1644 struct minimal_symbol *msym;
1645
1646 /* First, check whether a minimal symbol with the same name exists
1647 and points to the same address. The address check is required
1648 e.g. on PowerPC64, where the minimal symbol for a function will
1649 point to the function descriptor, while the debug symbol will
1650 point to the actual function code. */
1651 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1652 if (msym)
1653 ginfo->section = MSYMBOL_SECTION (msym);
1654 else
1655 {
1656 /* Static, function-local variables do appear in the linker
1657 (minimal) symbols, but are frequently given names that won't
1658 be found via lookup_minimal_symbol(). E.g., it has been
1659 observed in frv-uclinux (ELF) executables that a static,
1660 function-local variable named "foo" might appear in the
1661 linker symbols as "foo.6" or "foo.3". Thus, there is no
1662 point in attempting to extend the lookup-by-name mechanism to
1663 handle this case due to the fact that there can be multiple
1664 names.
1665
1666 So, instead, search the section table when lookup by name has
1667 failed. The ``addr'' and ``endaddr'' fields may have already
1668 been relocated. If so, the relocation offset (i.e. the
1669 ANOFFSET value) needs to be subtracted from these values when
1670 performing the comparison. We unconditionally subtract it,
1671 because, when no relocation has been performed, the ANOFFSET
1672 value will simply be zero.
1673
1674 The address of the symbol whose section we're fixing up HAS
1675 NOT BEEN adjusted (relocated) yet. It can't have been since
1676 the section isn't yet known and knowing the section is
1677 necessary in order to add the correct relocation value. In
1678 other words, we wouldn't even be in this function (attempting
1679 to compute the section) if it were already known.
1680
1681 Note that it is possible to search the minimal symbols
1682 (subtracting the relocation value if necessary) to find the
1683 matching minimal symbol, but this is overkill and much less
1684 efficient. It is not necessary to find the matching minimal
1685 symbol, only its section.
1686
1687 Note that this technique (of doing a section table search)
1688 can fail when unrelocated section addresses overlap. For
1689 this reason, we still attempt a lookup by name prior to doing
1690 a search of the section table. */
1691
1692 struct obj_section *s;
1693 int fallback = -1;
1694
1695 ALL_OBJFILE_OSECTIONS (objfile, s)
1696 {
1697 int idx = s - objfile->sections;
1698 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1699
1700 if (fallback == -1)
1701 fallback = idx;
1702
1703 if (obj_section_addr (s) - offset <= addr
1704 && addr < obj_section_endaddr (s) - offset)
1705 {
1706 ginfo->section = idx;
1707 return;
1708 }
1709 }
1710
1711 /* If we didn't find the section, assume it is in the first
1712 section. If there is no allocated section, then it hardly
1713 matters what we pick, so just pick zero. */
1714 if (fallback == -1)
1715 ginfo->section = 0;
1716 else
1717 ginfo->section = fallback;
1718 }
1719 }
1720
1721 struct symbol *
1722 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1723 {
1724 CORE_ADDR addr;
1725
1726 if (!sym)
1727 return NULL;
1728
1729 if (!SYMBOL_OBJFILE_OWNED (sym))
1730 return sym;
1731
1732 /* We either have an OBJFILE, or we can get at it from the sym's
1733 symtab. Anything else is a bug. */
1734 gdb_assert (objfile || symbol_symtab (sym));
1735
1736 if (objfile == NULL)
1737 objfile = symbol_objfile (sym);
1738
1739 if (SYMBOL_OBJ_SECTION (objfile, sym))
1740 return sym;
1741
1742 /* We should have an objfile by now. */
1743 gdb_assert (objfile);
1744
1745 switch (SYMBOL_CLASS (sym))
1746 {
1747 case LOC_STATIC:
1748 case LOC_LABEL:
1749 addr = SYMBOL_VALUE_ADDRESS (sym);
1750 break;
1751 case LOC_BLOCK:
1752 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1753 break;
1754
1755 default:
1756 /* Nothing else will be listed in the minsyms -- no use looking
1757 it up. */
1758 return sym;
1759 }
1760
1761 fixup_section (&sym->ginfo, addr, objfile);
1762
1763 return sym;
1764 }
1765
1766 /* See symtab.h. */
1767
1768 demangle_for_lookup_info::demangle_for_lookup_info
1769 (const lookup_name_info &lookup_name, language lang)
1770 {
1771 demangle_result_storage storage;
1772
1773 if (lookup_name.ignore_parameters () && lang == language_cplus)
1774 {
1775 gdb::unique_xmalloc_ptr<char> without_params
1776 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1777 lookup_name.completion_mode ());
1778
1779 if (without_params != NULL)
1780 {
1781 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = demangle_for_lookup (without_params.get (),
1783 lang, storage);
1784 return;
1785 }
1786 }
1787
1788 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1789 m_demangled_name = lookup_name.name ();
1790 else
1791 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1792 lang, storage);
1793 }
1794
1795 /* See symtab.h. */
1796
1797 const lookup_name_info &
1798 lookup_name_info::match_any ()
1799 {
1800 /* Lookup any symbol that "" would complete. I.e., this matches all
1801 symbol names. */
1802 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1803 true);
1804
1805 return lookup_name;
1806 }
1807
1808 /* Compute the demangled form of NAME as used by the various symbol
1809 lookup functions. The result can either be the input NAME
1810 directly, or a pointer to a buffer owned by the STORAGE object.
1811
1812 For Ada, this function just returns NAME, unmodified.
1813 Normally, Ada symbol lookups are performed using the encoded name
1814 rather than the demangled name, and so it might seem to make sense
1815 for this function to return an encoded version of NAME.
1816 Unfortunately, we cannot do this, because this function is used in
1817 circumstances where it is not appropriate to try to encode NAME.
1818 For instance, when displaying the frame info, we demangle the name
1819 of each parameter, and then perform a symbol lookup inside our
1820 function using that demangled name. In Ada, certain functions
1821 have internally-generated parameters whose name contain uppercase
1822 characters. Encoding those name would result in those uppercase
1823 characters to become lowercase, and thus cause the symbol lookup
1824 to fail. */
1825
1826 const char *
1827 demangle_for_lookup (const char *name, enum language lang,
1828 demangle_result_storage &storage)
1829 {
1830 /* If we are using C++, D, or Go, demangle the name before doing a
1831 lookup, so we can always binary search. */
1832 if (lang == language_cplus)
1833 {
1834 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1835 if (demangled_name != NULL)
1836 return storage.set_malloc_ptr (demangled_name);
1837
1838 /* If we were given a non-mangled name, canonicalize it
1839 according to the language (so far only for C++). */
1840 std::string canon = cp_canonicalize_string (name);
1841 if (!canon.empty ())
1842 return storage.swap_string (canon);
1843 }
1844 else if (lang == language_d)
1845 {
1846 char *demangled_name = d_demangle (name, 0);
1847 if (demangled_name != NULL)
1848 return storage.set_malloc_ptr (demangled_name);
1849 }
1850 else if (lang == language_go)
1851 {
1852 char *demangled_name = go_demangle (name, 0);
1853 if (demangled_name != NULL)
1854 return storage.set_malloc_ptr (demangled_name);
1855 }
1856
1857 return name;
1858 }
1859
1860 /* See symtab.h. */
1861
1862 unsigned int
1863 search_name_hash (enum language language, const char *search_name)
1864 {
1865 return language_def (language)->la_search_name_hash (search_name);
1866 }
1867
1868 /* See symtab.h.
1869
1870 This function (or rather its subordinates) have a bunch of loops and
1871 it would seem to be attractive to put in some QUIT's (though I'm not really
1872 sure whether it can run long enough to be really important). But there
1873 are a few calls for which it would appear to be bad news to quit
1874 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1875 that there is C++ code below which can error(), but that probably
1876 doesn't affect these calls since they are looking for a known
1877 variable and thus can probably assume it will never hit the C++
1878 code). */
1879
1880 struct block_symbol
1881 lookup_symbol_in_language (const char *name, const struct block *block,
1882 const domain_enum domain, enum language lang,
1883 struct field_of_this_result *is_a_field_of_this)
1884 {
1885 demangle_result_storage storage;
1886 const char *modified_name = demangle_for_lookup (name, lang, storage);
1887
1888 return lookup_symbol_aux (modified_name,
1889 symbol_name_match_type::FULL,
1890 block, domain, lang,
1891 is_a_field_of_this);
1892 }
1893
1894 /* See symtab.h. */
1895
1896 struct block_symbol
1897 lookup_symbol (const char *name, const struct block *block,
1898 domain_enum domain,
1899 struct field_of_this_result *is_a_field_of_this)
1900 {
1901 return lookup_symbol_in_language (name, block, domain,
1902 current_language->la_language,
1903 is_a_field_of_this);
1904 }
1905
1906 /* See symtab.h. */
1907
1908 struct block_symbol
1909 lookup_symbol_search_name (const char *search_name, const struct block *block,
1910 domain_enum domain)
1911 {
1912 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1913 block, domain, language_asm, NULL);
1914 }
1915
1916 /* See symtab.h. */
1917
1918 struct block_symbol
1919 lookup_language_this (const struct language_defn *lang,
1920 const struct block *block)
1921 {
1922 if (lang->la_name_of_this == NULL || block == NULL)
1923 return {};
1924
1925 if (symbol_lookup_debug > 1)
1926 {
1927 struct objfile *objfile = lookup_objfile_from_block (block);
1928
1929 fprintf_unfiltered (gdb_stdlog,
1930 "lookup_language_this (%s, %s (objfile %s))",
1931 lang->la_name, host_address_to_string (block),
1932 objfile_debug_name (objfile));
1933 }
1934
1935 while (block)
1936 {
1937 struct symbol *sym;
1938
1939 sym = block_lookup_symbol (block, lang->la_name_of_this,
1940 symbol_name_match_type::SEARCH_NAME,
1941 VAR_DOMAIN);
1942 if (sym != NULL)
1943 {
1944 if (symbol_lookup_debug > 1)
1945 {
1946 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1947 SYMBOL_PRINT_NAME (sym),
1948 host_address_to_string (sym),
1949 host_address_to_string (block));
1950 }
1951 return (struct block_symbol) {sym, block};
1952 }
1953 if (BLOCK_FUNCTION (block))
1954 break;
1955 block = BLOCK_SUPERBLOCK (block);
1956 }
1957
1958 if (symbol_lookup_debug > 1)
1959 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1960 return {};
1961 }
1962
1963 /* Given TYPE, a structure/union,
1964 return 1 if the component named NAME from the ultimate target
1965 structure/union is defined, otherwise, return 0. */
1966
1967 static int
1968 check_field (struct type *type, const char *name,
1969 struct field_of_this_result *is_a_field_of_this)
1970 {
1971 int i;
1972
1973 /* The type may be a stub. */
1974 type = check_typedef (type);
1975
1976 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1977 {
1978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1979
1980 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1981 {
1982 is_a_field_of_this->type = type;
1983 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1984 return 1;
1985 }
1986 }
1987
1988 /* C++: If it was not found as a data field, then try to return it
1989 as a pointer to a method. */
1990
1991 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1992 {
1993 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1994 {
1995 is_a_field_of_this->type = type;
1996 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1997 return 1;
1998 }
1999 }
2000
2001 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2002 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2003 return 1;
2004
2005 return 0;
2006 }
2007
2008 /* Behave like lookup_symbol except that NAME is the natural name
2009 (e.g., demangled name) of the symbol that we're looking for. */
2010
2011 static struct block_symbol
2012 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2013 const struct block *block,
2014 const domain_enum domain, enum language language,
2015 struct field_of_this_result *is_a_field_of_this)
2016 {
2017 struct block_symbol result;
2018 const struct language_defn *langdef;
2019
2020 if (symbol_lookup_debug)
2021 {
2022 struct objfile *objfile = lookup_objfile_from_block (block);
2023
2024 fprintf_unfiltered (gdb_stdlog,
2025 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2026 name, host_address_to_string (block),
2027 objfile != NULL
2028 ? objfile_debug_name (objfile) : "NULL",
2029 domain_name (domain), language_str (language));
2030 }
2031
2032 /* Make sure we do something sensible with is_a_field_of_this, since
2033 the callers that set this parameter to some non-null value will
2034 certainly use it later. If we don't set it, the contents of
2035 is_a_field_of_this are undefined. */
2036 if (is_a_field_of_this != NULL)
2037 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2038
2039 /* Search specified block and its superiors. Don't search
2040 STATIC_BLOCK or GLOBAL_BLOCK. */
2041
2042 result = lookup_local_symbol (name, match_type, block, domain, language);
2043 if (result.symbol != NULL)
2044 {
2045 if (symbol_lookup_debug)
2046 {
2047 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2048 host_address_to_string (result.symbol));
2049 }
2050 return result;
2051 }
2052
2053 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2054 check to see if NAME is a field of `this'. */
2055
2056 langdef = language_def (language);
2057
2058 /* Don't do this check if we are searching for a struct. It will
2059 not be found by check_field, but will be found by other
2060 means. */
2061 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2062 {
2063 result = lookup_language_this (langdef, block);
2064
2065 if (result.symbol)
2066 {
2067 struct type *t = result.symbol->type;
2068
2069 /* I'm not really sure that type of this can ever
2070 be typedefed; just be safe. */
2071 t = check_typedef (t);
2072 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2073 t = TYPE_TARGET_TYPE (t);
2074
2075 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2076 && TYPE_CODE (t) != TYPE_CODE_UNION)
2077 error (_("Internal error: `%s' is not an aggregate"),
2078 langdef->la_name_of_this);
2079
2080 if (check_field (t, name, is_a_field_of_this))
2081 {
2082 if (symbol_lookup_debug)
2083 {
2084 fprintf_unfiltered (gdb_stdlog,
2085 "lookup_symbol_aux (...) = NULL\n");
2086 }
2087 return {};
2088 }
2089 }
2090 }
2091
2092 /* Now do whatever is appropriate for LANGUAGE to look
2093 up static and global variables. */
2094
2095 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2096 if (result.symbol != NULL)
2097 {
2098 if (symbol_lookup_debug)
2099 {
2100 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2101 host_address_to_string (result.symbol));
2102 }
2103 return result;
2104 }
2105
2106 /* Now search all static file-level symbols. Not strictly correct,
2107 but more useful than an error. */
2108
2109 result = lookup_static_symbol (name, domain);
2110 if (symbol_lookup_debug)
2111 {
2112 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2113 result.symbol != NULL
2114 ? host_address_to_string (result.symbol)
2115 : "NULL");
2116 }
2117 return result;
2118 }
2119
2120 /* Check to see if the symbol is defined in BLOCK or its superiors.
2121 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2122
2123 static struct block_symbol
2124 lookup_local_symbol (const char *name,
2125 symbol_name_match_type match_type,
2126 const struct block *block,
2127 const domain_enum domain,
2128 enum language language)
2129 {
2130 struct symbol *sym;
2131 const struct block *static_block = block_static_block (block);
2132 const char *scope = block_scope (block);
2133
2134 /* Check if either no block is specified or it's a global block. */
2135
2136 if (static_block == NULL)
2137 return {};
2138
2139 while (block != static_block)
2140 {
2141 sym = lookup_symbol_in_block (name, match_type, block, domain);
2142 if (sym != NULL)
2143 return (struct block_symbol) {sym, block};
2144
2145 if (language == language_cplus || language == language_fortran)
2146 {
2147 struct block_symbol blocksym
2148 = cp_lookup_symbol_imports_or_template (scope, name, block,
2149 domain);
2150
2151 if (blocksym.symbol != NULL)
2152 return blocksym;
2153 }
2154
2155 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2156 break;
2157 block = BLOCK_SUPERBLOCK (block);
2158 }
2159
2160 /* We've reached the end of the function without finding a result. */
2161
2162 return {};
2163 }
2164
2165 /* See symtab.h. */
2166
2167 struct objfile *
2168 lookup_objfile_from_block (const struct block *block)
2169 {
2170 if (block == NULL)
2171 return NULL;
2172
2173 block = block_global_block (block);
2174 /* Look through all blockvectors. */
2175 for (objfile *obj : current_program_space->objfiles ())
2176 {
2177 for (compunit_symtab *cust : obj->compunits ())
2178 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2179 GLOBAL_BLOCK))
2180 {
2181 if (obj->separate_debug_objfile_backlink)
2182 obj = obj->separate_debug_objfile_backlink;
2183
2184 return obj;
2185 }
2186 }
2187
2188 return NULL;
2189 }
2190
2191 /* See symtab.h. */
2192
2193 struct symbol *
2194 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2195 const struct block *block,
2196 const domain_enum domain)
2197 {
2198 struct symbol *sym;
2199
2200 if (symbol_lookup_debug > 1)
2201 {
2202 struct objfile *objfile = lookup_objfile_from_block (block);
2203
2204 fprintf_unfiltered (gdb_stdlog,
2205 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2206 name, host_address_to_string (block),
2207 objfile_debug_name (objfile),
2208 domain_name (domain));
2209 }
2210
2211 sym = block_lookup_symbol (block, name, match_type, domain);
2212 if (sym)
2213 {
2214 if (symbol_lookup_debug > 1)
2215 {
2216 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2217 host_address_to_string (sym));
2218 }
2219 return fixup_symbol_section (sym, NULL);
2220 }
2221
2222 if (symbol_lookup_debug > 1)
2223 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2224 return NULL;
2225 }
2226
2227 /* See symtab.h. */
2228
2229 struct block_symbol
2230 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2231 enum block_enum block_index,
2232 const char *name,
2233 const domain_enum domain)
2234 {
2235 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2236
2237 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2238 {
2239 struct block_symbol result
2240 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2241
2242 if (result.symbol != nullptr)
2243 return result;
2244 }
2245
2246 return {};
2247 }
2248
2249 /* Check to see if the symbol is defined in one of the OBJFILE's
2250 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2251 depending on whether or not we want to search global symbols or
2252 static symbols. */
2253
2254 static struct block_symbol
2255 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2256 enum block_enum block_index, const char *name,
2257 const domain_enum domain)
2258 {
2259 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2260
2261 if (symbol_lookup_debug > 1)
2262 {
2263 fprintf_unfiltered (gdb_stdlog,
2264 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2265 objfile_debug_name (objfile),
2266 block_index == GLOBAL_BLOCK
2267 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2268 name, domain_name (domain));
2269 }
2270
2271 for (compunit_symtab *cust : objfile->compunits ())
2272 {
2273 const struct blockvector *bv;
2274 const struct block *block;
2275 struct block_symbol result;
2276
2277 bv = COMPUNIT_BLOCKVECTOR (cust);
2278 block = BLOCKVECTOR_BLOCK (bv, block_index);
2279 result.symbol = block_lookup_symbol_primary (block, name, domain);
2280 result.block = block;
2281 if (result.symbol != NULL)
2282 {
2283 if (symbol_lookup_debug > 1)
2284 {
2285 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2286 host_address_to_string (result.symbol),
2287 host_address_to_string (block));
2288 }
2289 result.symbol = fixup_symbol_section (result.symbol, objfile);
2290 return result;
2291
2292 }
2293 }
2294
2295 if (symbol_lookup_debug > 1)
2296 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2297 return {};
2298 }
2299
2300 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2301 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2302 and all associated separate debug objfiles.
2303
2304 Normally we only look in OBJFILE, and not any separate debug objfiles
2305 because the outer loop will cause them to be searched too. This case is
2306 different. Here we're called from search_symbols where it will only
2307 call us for the objfile that contains a matching minsym. */
2308
2309 static struct block_symbol
2310 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2311 const char *linkage_name,
2312 domain_enum domain)
2313 {
2314 enum language lang = current_language->la_language;
2315 struct objfile *main_objfile;
2316
2317 demangle_result_storage storage;
2318 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2319
2320 if (objfile->separate_debug_objfile_backlink)
2321 main_objfile = objfile->separate_debug_objfile_backlink;
2322 else
2323 main_objfile = objfile;
2324
2325 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2326 {
2327 struct block_symbol result;
2328
2329 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2330 modified_name, domain);
2331 if (result.symbol == NULL)
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol != NULL)
2335 return result;
2336 }
2337
2338 return {};
2339 }
2340
2341 /* A helper function that throws an exception when a symbol was found
2342 in a psymtab but not in a symtab. */
2343
2344 static void ATTRIBUTE_NORETURN
2345 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2346 struct compunit_symtab *cust)
2347 {
2348 error (_("\
2349 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2350 %s may be an inlined function, or may be a template function\n \
2351 (if a template, try specifying an instantiation: %s<type>)."),
2352 block_index == GLOBAL_BLOCK ? "global" : "static",
2353 name,
2354 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2355 name, name);
2356 }
2357
2358 /* A helper function for various lookup routines that interfaces with
2359 the "quick" symbol table functions. */
2360
2361 static struct block_symbol
2362 lookup_symbol_via_quick_fns (struct objfile *objfile,
2363 enum block_enum block_index, const char *name,
2364 const domain_enum domain)
2365 {
2366 struct compunit_symtab *cust;
2367 const struct blockvector *bv;
2368 const struct block *block;
2369 struct block_symbol result;
2370
2371 if (!objfile->sf)
2372 return {};
2373
2374 if (symbol_lookup_debug > 1)
2375 {
2376 fprintf_unfiltered (gdb_stdlog,
2377 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2378 objfile_debug_name (objfile),
2379 block_index == GLOBAL_BLOCK
2380 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2381 name, domain_name (domain));
2382 }
2383
2384 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2385 if (cust == NULL)
2386 {
2387 if (symbol_lookup_debug > 1)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "lookup_symbol_via_quick_fns (...) = NULL\n");
2391 }
2392 return {};
2393 }
2394
2395 bv = COMPUNIT_BLOCKVECTOR (cust);
2396 block = BLOCKVECTOR_BLOCK (bv, block_index);
2397 result.symbol = block_lookup_symbol (block, name,
2398 symbol_name_match_type::FULL, domain);
2399 if (result.symbol == NULL)
2400 error_in_psymtab_expansion (block_index, name, cust);
2401
2402 if (symbol_lookup_debug > 1)
2403 {
2404 fprintf_unfiltered (gdb_stdlog,
2405 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2406 host_address_to_string (result.symbol),
2407 host_address_to_string (block));
2408 }
2409
2410 result.symbol = fixup_symbol_section (result.symbol, objfile);
2411 result.block = block;
2412 return result;
2413 }
2414
2415 /* See symtab.h. */
2416
2417 struct block_symbol
2418 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2419 const char *name,
2420 const struct block *block,
2421 const domain_enum domain)
2422 {
2423 struct block_symbol result;
2424
2425 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2426 the current objfile. Searching the current objfile first is useful
2427 for both matching user expectations as well as performance. */
2428
2429 result = lookup_symbol_in_static_block (name, block, domain);
2430 if (result.symbol != NULL)
2431 return result;
2432
2433 /* If we didn't find a definition for a builtin type in the static block,
2434 search for it now. This is actually the right thing to do and can be
2435 a massive performance win. E.g., when debugging a program with lots of
2436 shared libraries we could search all of them only to find out the
2437 builtin type isn't defined in any of them. This is common for types
2438 like "void". */
2439 if (domain == VAR_DOMAIN)
2440 {
2441 struct gdbarch *gdbarch;
2442
2443 if (block == NULL)
2444 gdbarch = target_gdbarch ();
2445 else
2446 gdbarch = block_gdbarch (block);
2447 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2448 gdbarch, name);
2449 result.block = NULL;
2450 if (result.symbol != NULL)
2451 return result;
2452 }
2453
2454 return lookup_global_symbol (name, block, domain);
2455 }
2456
2457 /* See symtab.h. */
2458
2459 struct block_symbol
2460 lookup_symbol_in_static_block (const char *name,
2461 const struct block *block,
2462 const domain_enum domain)
2463 {
2464 const struct block *static_block = block_static_block (block);
2465 struct symbol *sym;
2466
2467 if (static_block == NULL)
2468 return {};
2469
2470 if (symbol_lookup_debug)
2471 {
2472 struct objfile *objfile = lookup_objfile_from_block (static_block);
2473
2474 fprintf_unfiltered (gdb_stdlog,
2475 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2476 " %s)\n",
2477 name,
2478 host_address_to_string (block),
2479 objfile_debug_name (objfile),
2480 domain_name (domain));
2481 }
2482
2483 sym = lookup_symbol_in_block (name,
2484 symbol_name_match_type::FULL,
2485 static_block, domain);
2486 if (symbol_lookup_debug)
2487 {
2488 fprintf_unfiltered (gdb_stdlog,
2489 "lookup_symbol_in_static_block (...) = %s\n",
2490 sym != NULL ? host_address_to_string (sym) : "NULL");
2491 }
2492 return (struct block_symbol) {sym, static_block};
2493 }
2494
2495 /* Perform the standard symbol lookup of NAME in OBJFILE:
2496 1) First search expanded symtabs, and if not found
2497 2) Search the "quick" symtabs (partial or .gdb_index).
2498 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2499
2500 static struct block_symbol
2501 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2502 const char *name, const domain_enum domain)
2503 {
2504 struct block_symbol result;
2505
2506 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2507
2508 if (symbol_lookup_debug)
2509 {
2510 fprintf_unfiltered (gdb_stdlog,
2511 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2512 objfile_debug_name (objfile),
2513 block_index == GLOBAL_BLOCK
2514 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2515 name, domain_name (domain));
2516 }
2517
2518 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2519 name, domain);
2520 if (result.symbol != NULL)
2521 {
2522 if (symbol_lookup_debug)
2523 {
2524 fprintf_unfiltered (gdb_stdlog,
2525 "lookup_symbol_in_objfile (...) = %s"
2526 " (in symtabs)\n",
2527 host_address_to_string (result.symbol));
2528 }
2529 return result;
2530 }
2531
2532 result = lookup_symbol_via_quick_fns (objfile, block_index,
2533 name, domain);
2534 if (symbol_lookup_debug)
2535 {
2536 fprintf_unfiltered (gdb_stdlog,
2537 "lookup_symbol_in_objfile (...) = %s%s\n",
2538 result.symbol != NULL
2539 ? host_address_to_string (result.symbol)
2540 : "NULL",
2541 result.symbol != NULL ? " (via quick fns)" : "");
2542 }
2543 return result;
2544 }
2545
2546 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2547
2548 struct global_or_static_sym_lookup_data
2549 {
2550 /* The name of the symbol we are searching for. */
2551 const char *name;
2552
2553 /* The domain to use for our search. */
2554 domain_enum domain;
2555
2556 /* The block index in which to search. */
2557 enum block_enum block_index;
2558
2559 /* The field where the callback should store the symbol if found.
2560 It should be initialized to {NULL, NULL} before the search is started. */
2561 struct block_symbol result;
2562 };
2563
2564 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2565 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2566 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2567 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2568
2569 static int
2570 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2571 void *cb_data)
2572 {
2573 struct global_or_static_sym_lookup_data *data =
2574 (struct global_or_static_sym_lookup_data *) cb_data;
2575
2576 gdb_assert (data->result.symbol == NULL
2577 && data->result.block == NULL);
2578
2579 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2580 data->name, data->domain);
2581
2582 /* If we found a match, tell the iterator to stop. Otherwise,
2583 keep going. */
2584 return (data->result.symbol != NULL);
2585 }
2586
2587 /* This function contains the common code of lookup_{global,static}_symbol.
2588 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2589 the objfile to start the lookup in. */
2590
2591 static struct block_symbol
2592 lookup_global_or_static_symbol (const char *name,
2593 enum block_enum block_index,
2594 struct objfile *objfile,
2595 const domain_enum domain)
2596 {
2597 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2598 struct block_symbol result;
2599 struct global_or_static_sym_lookup_data lookup_data;
2600 struct block_symbol_cache *bsc;
2601 struct symbol_cache_slot *slot;
2602
2603 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2604 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2605
2606 /* First see if we can find the symbol in the cache.
2607 This works because we use the current objfile to qualify the lookup. */
2608 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2609 &bsc, &slot);
2610 if (result.symbol != NULL)
2611 {
2612 if (SYMBOL_LOOKUP_FAILED_P (result))
2613 return {};
2614 return result;
2615 }
2616
2617 /* Do a global search (of global blocks, heh). */
2618 if (result.symbol == NULL)
2619 {
2620 memset (&lookup_data, 0, sizeof (lookup_data));
2621 lookup_data.name = name;
2622 lookup_data.block_index = block_index;
2623 lookup_data.domain = domain;
2624 gdbarch_iterate_over_objfiles_in_search_order
2625 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2626 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2627 result = lookup_data.result;
2628 }
2629
2630 if (result.symbol != NULL)
2631 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2632 else
2633 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2634
2635 return result;
2636 }
2637
2638 /* See symtab.h. */
2639
2640 struct block_symbol
2641 lookup_static_symbol (const char *name, const domain_enum domain)
2642 {
2643 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2644 }
2645
2646 /* See symtab.h. */
2647
2648 struct block_symbol
2649 lookup_global_symbol (const char *name,
2650 const struct block *block,
2651 const domain_enum domain)
2652 {
2653 /* If a block was passed in, we want to search the corresponding
2654 global block first. This yields "more expected" behavior, and is
2655 needed to support 'FILENAME'::VARIABLE lookups. */
2656 const struct block *global_block = block_global_block (block);
2657 if (global_block != nullptr)
2658 {
2659 symbol *sym = lookup_symbol_in_block (name,
2660 symbol_name_match_type::FULL,
2661 global_block, domain);
2662 if (sym != nullptr)
2663 return { sym, global_block };
2664 }
2665
2666 struct objfile *objfile = lookup_objfile_from_block (block);
2667 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2668 }
2669
2670 bool
2671 symbol_matches_domain (enum language symbol_language,
2672 domain_enum symbol_domain,
2673 domain_enum domain)
2674 {
2675 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2676 Similarly, any Ada type declaration implicitly defines a typedef. */
2677 if (symbol_language == language_cplus
2678 || symbol_language == language_d
2679 || symbol_language == language_ada
2680 || symbol_language == language_rust)
2681 {
2682 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2683 && symbol_domain == STRUCT_DOMAIN)
2684 return true;
2685 }
2686 /* For all other languages, strict match is required. */
2687 return (symbol_domain == domain);
2688 }
2689
2690 /* See symtab.h. */
2691
2692 struct type *
2693 lookup_transparent_type (const char *name)
2694 {
2695 return current_language->la_lookup_transparent_type (name);
2696 }
2697
2698 /* A helper for basic_lookup_transparent_type that interfaces with the
2699 "quick" symbol table functions. */
2700
2701 static struct type *
2702 basic_lookup_transparent_type_quick (struct objfile *objfile,
2703 enum block_enum block_index,
2704 const char *name)
2705 {
2706 struct compunit_symtab *cust;
2707 const struct blockvector *bv;
2708 const struct block *block;
2709 struct symbol *sym;
2710
2711 if (!objfile->sf)
2712 return NULL;
2713 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2714 STRUCT_DOMAIN);
2715 if (cust == NULL)
2716 return NULL;
2717
2718 bv = COMPUNIT_BLOCKVECTOR (cust);
2719 block = BLOCKVECTOR_BLOCK (bv, block_index);
2720 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2721 block_find_non_opaque_type, NULL);
2722 if (sym == NULL)
2723 error_in_psymtab_expansion (block_index, name, cust);
2724 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2725 return SYMBOL_TYPE (sym);
2726 }
2727
2728 /* Subroutine of basic_lookup_transparent_type to simplify it.
2729 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2730 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2731
2732 static struct type *
2733 basic_lookup_transparent_type_1 (struct objfile *objfile,
2734 enum block_enum block_index,
2735 const char *name)
2736 {
2737 const struct blockvector *bv;
2738 const struct block *block;
2739 const struct symbol *sym;
2740
2741 for (compunit_symtab *cust : objfile->compunits ())
2742 {
2743 bv = COMPUNIT_BLOCKVECTOR (cust);
2744 block = BLOCKVECTOR_BLOCK (bv, block_index);
2745 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2746 block_find_non_opaque_type, NULL);
2747 if (sym != NULL)
2748 {
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2750 return SYMBOL_TYPE (sym);
2751 }
2752 }
2753
2754 return NULL;
2755 }
2756
2757 /* The standard implementation of lookup_transparent_type. This code
2758 was modeled on lookup_symbol -- the parts not relevant to looking
2759 up types were just left out. In particular it's assumed here that
2760 types are available in STRUCT_DOMAIN and only in file-static or
2761 global blocks. */
2762
2763 struct type *
2764 basic_lookup_transparent_type (const char *name)
2765 {
2766 struct type *t;
2767
2768 /* Now search all the global symbols. Do the symtab's first, then
2769 check the psymtab's. If a psymtab indicates the existence
2770 of the desired name as a global, then do psymtab-to-symtab
2771 conversion on the fly and return the found symbol. */
2772
2773 for (objfile *objfile : current_program_space->objfiles ())
2774 {
2775 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2776 if (t)
2777 return t;
2778 }
2779
2780 for (objfile *objfile : current_program_space->objfiles ())
2781 {
2782 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2783 if (t)
2784 return t;
2785 }
2786
2787 /* Now search the static file-level symbols.
2788 Not strictly correct, but more useful than an error.
2789 Do the symtab's first, then
2790 check the psymtab's. If a psymtab indicates the existence
2791 of the desired name as a file-level static, then do psymtab-to-symtab
2792 conversion on the fly and return the found symbol. */
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 for (objfile *objfile : current_program_space->objfiles ())
2802 {
2803 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2804 if (t)
2805 return t;
2806 }
2807
2808 return (struct type *) 0;
2809 }
2810
2811 /* See symtab.h. */
2812
2813 bool
2814 iterate_over_symbols (const struct block *block,
2815 const lookup_name_info &name,
2816 const domain_enum domain,
2817 gdb::function_view<symbol_found_callback_ftype> callback)
2818 {
2819 struct block_iterator iter;
2820 struct symbol *sym;
2821
2822 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2823 {
2824 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2825 SYMBOL_DOMAIN (sym), domain))
2826 {
2827 struct block_symbol block_sym = {sym, block};
2828
2829 if (!callback (&block_sym))
2830 return false;
2831 }
2832 }
2833 return true;
2834 }
2835
2836 /* See symtab.h. */
2837
2838 bool
2839 iterate_over_symbols_terminated
2840 (const struct block *block,
2841 const lookup_name_info &name,
2842 const domain_enum domain,
2843 gdb::function_view<symbol_found_callback_ftype> callback)
2844 {
2845 if (!iterate_over_symbols (block, name, domain, callback))
2846 return false;
2847 struct block_symbol block_sym = {nullptr, block};
2848 return callback (&block_sym);
2849 }
2850
2851 /* Find the compunit symtab associated with PC and SECTION.
2852 This will read in debug info as necessary. */
2853
2854 struct compunit_symtab *
2855 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2856 {
2857 struct compunit_symtab *best_cust = NULL;
2858 CORE_ADDR distance = 0;
2859 struct bound_minimal_symbol msymbol;
2860
2861 /* If we know that this is not a text address, return failure. This is
2862 necessary because we loop based on the block's high and low code
2863 addresses, which do not include the data ranges, and because
2864 we call find_pc_sect_psymtab which has a similar restriction based
2865 on the partial_symtab's texthigh and textlow. */
2866 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2867 if (msymbol.minsym && msymbol.minsym->data_p ())
2868 return NULL;
2869
2870 /* Search all symtabs for the one whose file contains our address, and which
2871 is the smallest of all the ones containing the address. This is designed
2872 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2873 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2874 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2875
2876 This happens for native ecoff format, where code from included files
2877 gets its own symtab. The symtab for the included file should have
2878 been read in already via the dependency mechanism.
2879 It might be swifter to create several symtabs with the same name
2880 like xcoff does (I'm not sure).
2881
2882 It also happens for objfiles that have their functions reordered.
2883 For these, the symtab we are looking for is not necessarily read in. */
2884
2885 for (objfile *obj_file : current_program_space->objfiles ())
2886 {
2887 for (compunit_symtab *cust : obj_file->compunits ())
2888 {
2889 const struct block *b;
2890 const struct blockvector *bv;
2891
2892 bv = COMPUNIT_BLOCKVECTOR (cust);
2893 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2894
2895 if (BLOCK_START (b) <= pc
2896 && BLOCK_END (b) > pc
2897 && (distance == 0
2898 || BLOCK_END (b) - BLOCK_START (b) < distance))
2899 {
2900 /* For an objfile that has its functions reordered,
2901 find_pc_psymtab will find the proper partial symbol table
2902 and we simply return its corresponding symtab. */
2903 /* In order to better support objfiles that contain both
2904 stabs and coff debugging info, we continue on if a psymtab
2905 can't be found. */
2906 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2907 {
2908 struct compunit_symtab *result;
2909
2910 result
2911 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2912 msymbol,
2913 pc,
2914 section,
2915 0);
2916 if (result != NULL)
2917 return result;
2918 }
2919 if (section != 0)
2920 {
2921 struct block_iterator iter;
2922 struct symbol *sym = NULL;
2923
2924 ALL_BLOCK_SYMBOLS (b, iter, sym)
2925 {
2926 fixup_symbol_section (sym, obj_file);
2927 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2928 sym),
2929 section))
2930 break;
2931 }
2932 if (sym == NULL)
2933 continue; /* No symbol in this symtab matches
2934 section. */
2935 }
2936 distance = BLOCK_END (b) - BLOCK_START (b);
2937 best_cust = cust;
2938 }
2939 }
2940 }
2941
2942 if (best_cust != NULL)
2943 return best_cust;
2944
2945 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2946
2947 for (objfile *objf : current_program_space->objfiles ())
2948 {
2949 struct compunit_symtab *result;
2950
2951 if (!objf->sf)
2952 continue;
2953 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2954 msymbol,
2955 pc, section,
2956 1);
2957 if (result != NULL)
2958 return result;
2959 }
2960
2961 return NULL;
2962 }
2963
2964 /* Find the compunit symtab associated with PC.
2965 This will read in debug info as necessary.
2966 Backward compatibility, no section. */
2967
2968 struct compunit_symtab *
2969 find_pc_compunit_symtab (CORE_ADDR pc)
2970 {
2971 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2972 }
2973
2974 /* See symtab.h. */
2975
2976 struct symbol *
2977 find_symbol_at_address (CORE_ADDR address)
2978 {
2979 for (objfile *objfile : current_program_space->objfiles ())
2980 {
2981 if (objfile->sf == NULL
2982 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2983 continue;
2984
2985 struct compunit_symtab *symtab
2986 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2987 if (symtab != NULL)
2988 {
2989 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2990
2991 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2992 {
2993 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2994 struct block_iterator iter;
2995 struct symbol *sym;
2996
2997 ALL_BLOCK_SYMBOLS (b, iter, sym)
2998 {
2999 if (SYMBOL_CLASS (sym) == LOC_STATIC
3000 && SYMBOL_VALUE_ADDRESS (sym) == address)
3001 return sym;
3002 }
3003 }
3004 }
3005 }
3006
3007 return NULL;
3008 }
3009
3010 \f
3011
3012 /* Find the source file and line number for a given PC value and SECTION.
3013 Return a structure containing a symtab pointer, a line number,
3014 and a pc range for the entire source line.
3015 The value's .pc field is NOT the specified pc.
3016 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3017 use the line that ends there. Otherwise, in that case, the line
3018 that begins there is used. */
3019
3020 /* The big complication here is that a line may start in one file, and end just
3021 before the start of another file. This usually occurs when you #include
3022 code in the middle of a subroutine. To properly find the end of a line's PC
3023 range, we must search all symtabs associated with this compilation unit, and
3024 find the one whose first PC is closer than that of the next line in this
3025 symtab. */
3026
3027 struct symtab_and_line
3028 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3029 {
3030 struct compunit_symtab *cust;
3031 struct linetable *l;
3032 int len;
3033 struct linetable_entry *item;
3034 const struct blockvector *bv;
3035 struct bound_minimal_symbol msymbol;
3036
3037 /* Info on best line seen so far, and where it starts, and its file. */
3038
3039 struct linetable_entry *best = NULL;
3040 CORE_ADDR best_end = 0;
3041 struct symtab *best_symtab = 0;
3042
3043 /* Store here the first line number
3044 of a file which contains the line at the smallest pc after PC.
3045 If we don't find a line whose range contains PC,
3046 we will use a line one less than this,
3047 with a range from the start of that file to the first line's pc. */
3048 struct linetable_entry *alt = NULL;
3049
3050 /* Info on best line seen in this file. */
3051
3052 struct linetable_entry *prev;
3053
3054 /* If this pc is not from the current frame,
3055 it is the address of the end of a call instruction.
3056 Quite likely that is the start of the following statement.
3057 But what we want is the statement containing the instruction.
3058 Fudge the pc to make sure we get that. */
3059
3060 /* It's tempting to assume that, if we can't find debugging info for
3061 any function enclosing PC, that we shouldn't search for line
3062 number info, either. However, GAS can emit line number info for
3063 assembly files --- very helpful when debugging hand-written
3064 assembly code. In such a case, we'd have no debug info for the
3065 function, but we would have line info. */
3066
3067 if (notcurrent)
3068 pc -= 1;
3069
3070 /* elz: added this because this function returned the wrong
3071 information if the pc belongs to a stub (import/export)
3072 to call a shlib function. This stub would be anywhere between
3073 two functions in the target, and the line info was erroneously
3074 taken to be the one of the line before the pc. */
3075
3076 /* RT: Further explanation:
3077
3078 * We have stubs (trampolines) inserted between procedures.
3079 *
3080 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3081 * exists in the main image.
3082 *
3083 * In the minimal symbol table, we have a bunch of symbols
3084 * sorted by start address. The stubs are marked as "trampoline",
3085 * the others appear as text. E.g.:
3086 *
3087 * Minimal symbol table for main image
3088 * main: code for main (text symbol)
3089 * shr1: stub (trampoline symbol)
3090 * foo: code for foo (text symbol)
3091 * ...
3092 * Minimal symbol table for "shr1" image:
3093 * ...
3094 * shr1: code for shr1 (text symbol)
3095 * ...
3096 *
3097 * So the code below is trying to detect if we are in the stub
3098 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3099 * and if found, do the symbolization from the real-code address
3100 * rather than the stub address.
3101 *
3102 * Assumptions being made about the minimal symbol table:
3103 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3104 * if we're really in the trampoline.s If we're beyond it (say
3105 * we're in "foo" in the above example), it'll have a closer
3106 * symbol (the "foo" text symbol for example) and will not
3107 * return the trampoline.
3108 * 2. lookup_minimal_symbol_text() will find a real text symbol
3109 * corresponding to the trampoline, and whose address will
3110 * be different than the trampoline address. I put in a sanity
3111 * check for the address being the same, to avoid an
3112 * infinite recursion.
3113 */
3114 msymbol = lookup_minimal_symbol_by_pc (pc);
3115 if (msymbol.minsym != NULL)
3116 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3117 {
3118 struct bound_minimal_symbol mfunsym
3119 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3120 NULL);
3121
3122 if (mfunsym.minsym == NULL)
3123 /* I eliminated this warning since it is coming out
3124 * in the following situation:
3125 * gdb shmain // test program with shared libraries
3126 * (gdb) break shr1 // function in shared lib
3127 * Warning: In stub for ...
3128 * In the above situation, the shared lib is not loaded yet,
3129 * so of course we can't find the real func/line info,
3130 * but the "break" still works, and the warning is annoying.
3131 * So I commented out the warning. RT */
3132 /* warning ("In stub for %s; unable to find real function/line info",
3133 SYMBOL_LINKAGE_NAME (msymbol)); */
3134 ;
3135 /* fall through */
3136 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3137 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3138 /* Avoid infinite recursion */
3139 /* See above comment about why warning is commented out. */
3140 /* warning ("In stub for %s; unable to find real function/line info",
3141 SYMBOL_LINKAGE_NAME (msymbol)); */
3142 ;
3143 /* fall through */
3144 else
3145 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3146 }
3147
3148 symtab_and_line val;
3149 val.pspace = current_program_space;
3150
3151 cust = find_pc_sect_compunit_symtab (pc, section);
3152 if (cust == NULL)
3153 {
3154 /* If no symbol information, return previous pc. */
3155 if (notcurrent)
3156 pc++;
3157 val.pc = pc;
3158 return val;
3159 }
3160
3161 bv = COMPUNIT_BLOCKVECTOR (cust);
3162
3163 /* Look at all the symtabs that share this blockvector.
3164 They all have the same apriori range, that we found was right;
3165 but they have different line tables. */
3166
3167 for (symtab *iter_s : compunit_filetabs (cust))
3168 {
3169 /* Find the best line in this symtab. */
3170 l = SYMTAB_LINETABLE (iter_s);
3171 if (!l)
3172 continue;
3173 len = l->nitems;
3174 if (len <= 0)
3175 {
3176 /* I think len can be zero if the symtab lacks line numbers
3177 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3178 I'm not sure which, and maybe it depends on the symbol
3179 reader). */
3180 continue;
3181 }
3182
3183 prev = NULL;
3184 item = l->item; /* Get first line info. */
3185
3186 /* Is this file's first line closer than the first lines of other files?
3187 If so, record this file, and its first line, as best alternate. */
3188 if (item->pc > pc && (!alt || item->pc < alt->pc))
3189 alt = item;
3190
3191 auto pc_compare = [](const CORE_ADDR & comp_pc,
3192 const struct linetable_entry & lhs)->bool
3193 {
3194 return comp_pc < lhs.pc;
3195 };
3196
3197 struct linetable_entry *first = item;
3198 struct linetable_entry *last = item + len;
3199 item = std::upper_bound (first, last, pc, pc_compare);
3200 if (item != first)
3201 prev = item - 1; /* Found a matching item. */
3202
3203 /* At this point, prev points at the line whose start addr is <= pc, and
3204 item points at the next line. If we ran off the end of the linetable
3205 (pc >= start of the last line), then prev == item. If pc < start of
3206 the first line, prev will not be set. */
3207
3208 /* Is this file's best line closer than the best in the other files?
3209 If so, record this file, and its best line, as best so far. Don't
3210 save prev if it represents the end of a function (i.e. line number
3211 0) instead of a real line. */
3212
3213 if (prev && prev->line && (!best || prev->pc > best->pc))
3214 {
3215 best = prev;
3216 best_symtab = iter_s;
3217
3218 /* Discard BEST_END if it's before the PC of the current BEST. */
3219 if (best_end <= best->pc)
3220 best_end = 0;
3221 }
3222
3223 /* If another line (denoted by ITEM) is in the linetable and its
3224 PC is after BEST's PC, but before the current BEST_END, then
3225 use ITEM's PC as the new best_end. */
3226 if (best && item < last && item->pc > best->pc
3227 && (best_end == 0 || best_end > item->pc))
3228 best_end = item->pc;
3229 }
3230
3231 if (!best_symtab)
3232 {
3233 /* If we didn't find any line number info, just return zeros.
3234 We used to return alt->line - 1 here, but that could be
3235 anywhere; if we don't have line number info for this PC,
3236 don't make some up. */
3237 val.pc = pc;
3238 }
3239 else if (best->line == 0)
3240 {
3241 /* If our best fit is in a range of PC's for which no line
3242 number info is available (line number is zero) then we didn't
3243 find any valid line information. */
3244 val.pc = pc;
3245 }
3246 else
3247 {
3248 val.symtab = best_symtab;
3249 val.line = best->line;
3250 val.pc = best->pc;
3251 if (best_end && (!alt || best_end < alt->pc))
3252 val.end = best_end;
3253 else if (alt)
3254 val.end = alt->pc;
3255 else
3256 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3257 }
3258 val.section = section;
3259 return val;
3260 }
3261
3262 /* Backward compatibility (no section). */
3263
3264 struct symtab_and_line
3265 find_pc_line (CORE_ADDR pc, int notcurrent)
3266 {
3267 struct obj_section *section;
3268
3269 section = find_pc_overlay (pc);
3270 if (pc_in_unmapped_range (pc, section))
3271 pc = overlay_mapped_address (pc, section);
3272 return find_pc_sect_line (pc, section, notcurrent);
3273 }
3274
3275 /* See symtab.h. */
3276
3277 struct symtab *
3278 find_pc_line_symtab (CORE_ADDR pc)
3279 {
3280 struct symtab_and_line sal;
3281
3282 /* This always passes zero for NOTCURRENT to find_pc_line.
3283 There are currently no callers that ever pass non-zero. */
3284 sal = find_pc_line (pc, 0);
3285 return sal.symtab;
3286 }
3287 \f
3288 /* Find line number LINE in any symtab whose name is the same as
3289 SYMTAB.
3290
3291 If found, return the symtab that contains the linetable in which it was
3292 found, set *INDEX to the index in the linetable of the best entry
3293 found, and set *EXACT_MATCH to true if the value returned is an
3294 exact match.
3295
3296 If not found, return NULL. */
3297
3298 struct symtab *
3299 find_line_symtab (struct symtab *sym_tab, int line,
3300 int *index, bool *exact_match)
3301 {
3302 int exact = 0; /* Initialized here to avoid a compiler warning. */
3303
3304 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3305 so far seen. */
3306
3307 int best_index;
3308 struct linetable *best_linetable;
3309 struct symtab *best_symtab;
3310
3311 /* First try looking it up in the given symtab. */
3312 best_linetable = SYMTAB_LINETABLE (sym_tab);
3313 best_symtab = sym_tab;
3314 best_index = find_line_common (best_linetable, line, &exact, 0);
3315 if (best_index < 0 || !exact)
3316 {
3317 /* Didn't find an exact match. So we better keep looking for
3318 another symtab with the same name. In the case of xcoff,
3319 multiple csects for one source file (produced by IBM's FORTRAN
3320 compiler) produce multiple symtabs (this is unavoidable
3321 assuming csects can be at arbitrary places in memory and that
3322 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3323
3324 /* BEST is the smallest linenumber > LINE so far seen,
3325 or 0 if none has been seen so far.
3326 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3327 int best;
3328
3329 if (best_index >= 0)
3330 best = best_linetable->item[best_index].line;
3331 else
3332 best = 0;
3333
3334 for (objfile *objfile : current_program_space->objfiles ())
3335 {
3336 if (objfile->sf)
3337 objfile->sf->qf->expand_symtabs_with_fullname
3338 (objfile, symtab_to_fullname (sym_tab));
3339 }
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 for (compunit_symtab *cu : objfile->compunits ())
3344 {
3345 for (symtab *s : compunit_filetabs (cu))
3346 {
3347 struct linetable *l;
3348 int ind;
3349
3350 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3351 continue;
3352 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3353 symtab_to_fullname (s)) != 0)
3354 continue;
3355 l = SYMTAB_LINETABLE (s);
3356 ind = find_line_common (l, line, &exact, 0);
3357 if (ind >= 0)
3358 {
3359 if (exact)
3360 {
3361 best_index = ind;
3362 best_linetable = l;
3363 best_symtab = s;
3364 goto done;
3365 }
3366 if (best == 0 || l->item[ind].line < best)
3367 {
3368 best = l->item[ind].line;
3369 best_index = ind;
3370 best_linetable = l;
3371 best_symtab = s;
3372 }
3373 }
3374 }
3375 }
3376 }
3377 }
3378 done:
3379 if (best_index < 0)
3380 return NULL;
3381
3382 if (index)
3383 *index = best_index;
3384 if (exact_match)
3385 *exact_match = (exact != 0);
3386
3387 return best_symtab;
3388 }
3389
3390 /* Given SYMTAB, returns all the PCs function in the symtab that
3391 exactly match LINE. Returns an empty vector if there are no exact
3392 matches, but updates BEST_ITEM in this case. */
3393
3394 std::vector<CORE_ADDR>
3395 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3396 struct linetable_entry **best_item)
3397 {
3398 int start = 0;
3399 std::vector<CORE_ADDR> result;
3400
3401 /* First, collect all the PCs that are at this line. */
3402 while (1)
3403 {
3404 int was_exact;
3405 int idx;
3406
3407 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3408 start);
3409 if (idx < 0)
3410 break;
3411
3412 if (!was_exact)
3413 {
3414 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3415
3416 if (*best_item == NULL || item->line < (*best_item)->line)
3417 *best_item = item;
3418
3419 break;
3420 }
3421
3422 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3423 start = idx + 1;
3424 }
3425
3426 return result;
3427 }
3428
3429 \f
3430 /* Set the PC value for a given source file and line number and return true.
3431 Returns false for invalid line number (and sets the PC to 0).
3432 The source file is specified with a struct symtab. */
3433
3434 bool
3435 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3436 {
3437 struct linetable *l;
3438 int ind;
3439
3440 *pc = 0;
3441 if (symtab == 0)
3442 return false;
3443
3444 symtab = find_line_symtab (symtab, line, &ind, NULL);
3445 if (symtab != NULL)
3446 {
3447 l = SYMTAB_LINETABLE (symtab);
3448 *pc = l->item[ind].pc;
3449 return true;
3450 }
3451 else
3452 return false;
3453 }
3454
3455 /* Find the range of pc values in a line.
3456 Store the starting pc of the line into *STARTPTR
3457 and the ending pc (start of next line) into *ENDPTR.
3458 Returns true to indicate success.
3459 Returns false if could not find the specified line. */
3460
3461 bool
3462 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3463 CORE_ADDR *endptr)
3464 {
3465 CORE_ADDR startaddr;
3466 struct symtab_and_line found_sal;
3467
3468 startaddr = sal.pc;
3469 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3470 return false;
3471
3472 /* This whole function is based on address. For example, if line 10 has
3473 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3474 "info line *0x123" should say the line goes from 0x100 to 0x200
3475 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3476 This also insures that we never give a range like "starts at 0x134
3477 and ends at 0x12c". */
3478
3479 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3480 if (found_sal.line != sal.line)
3481 {
3482 /* The specified line (sal) has zero bytes. */
3483 *startptr = found_sal.pc;
3484 *endptr = found_sal.pc;
3485 }
3486 else
3487 {
3488 *startptr = found_sal.pc;
3489 *endptr = found_sal.end;
3490 }
3491 return true;
3492 }
3493
3494 /* Given a line table and a line number, return the index into the line
3495 table for the pc of the nearest line whose number is >= the specified one.
3496 Return -1 if none is found. The value is >= 0 if it is an index.
3497 START is the index at which to start searching the line table.
3498
3499 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3500
3501 static int
3502 find_line_common (struct linetable *l, int lineno,
3503 int *exact_match, int start)
3504 {
3505 int i;
3506 int len;
3507
3508 /* BEST is the smallest linenumber > LINENO so far seen,
3509 or 0 if none has been seen so far.
3510 BEST_INDEX identifies the item for it. */
3511
3512 int best_index = -1;
3513 int best = 0;
3514
3515 *exact_match = 0;
3516
3517 if (lineno <= 0)
3518 return -1;
3519 if (l == 0)
3520 return -1;
3521
3522 len = l->nitems;
3523 for (i = start; i < len; i++)
3524 {
3525 struct linetable_entry *item = &(l->item[i]);
3526
3527 if (item->line == lineno)
3528 {
3529 /* Return the first (lowest address) entry which matches. */
3530 *exact_match = 1;
3531 return i;
3532 }
3533
3534 if (item->line > lineno && (best == 0 || item->line < best))
3535 {
3536 best = item->line;
3537 best_index = i;
3538 }
3539 }
3540
3541 /* If we got here, we didn't get an exact match. */
3542 return best_index;
3543 }
3544
3545 bool
3546 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3547 {
3548 struct symtab_and_line sal;
3549
3550 sal = find_pc_line (pc, 0);
3551 *startptr = sal.pc;
3552 *endptr = sal.end;
3553 return sal.symtab != 0;
3554 }
3555
3556 /* Helper for find_function_start_sal. Does most of the work, except
3557 setting the sal's symbol. */
3558
3559 static symtab_and_line
3560 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3561 bool funfirstline)
3562 {
3563 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3564
3565 if (funfirstline && sal.symtab != NULL
3566 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3567 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3568 {
3569 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3570
3571 sal.pc = func_addr;
3572 if (gdbarch_skip_entrypoint_p (gdbarch))
3573 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3574 return sal;
3575 }
3576
3577 /* We always should have a line for the function start address.
3578 If we don't, something is odd. Create a plain SAL referring
3579 just the PC and hope that skip_prologue_sal (if requested)
3580 can find a line number for after the prologue. */
3581 if (sal.pc < func_addr)
3582 {
3583 sal = {};
3584 sal.pspace = current_program_space;
3585 sal.pc = func_addr;
3586 sal.section = section;
3587 }
3588
3589 if (funfirstline)
3590 skip_prologue_sal (&sal);
3591
3592 return sal;
3593 }
3594
3595 /* See symtab.h. */
3596
3597 symtab_and_line
3598 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3599 bool funfirstline)
3600 {
3601 symtab_and_line sal
3602 = find_function_start_sal_1 (func_addr, section, funfirstline);
3603
3604 /* find_function_start_sal_1 does a linetable search, so it finds
3605 the symtab and linenumber, but not a symbol. Fill in the
3606 function symbol too. */
3607 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3608
3609 return sal;
3610 }
3611
3612 /* See symtab.h. */
3613
3614 symtab_and_line
3615 find_function_start_sal (symbol *sym, bool funfirstline)
3616 {
3617 fixup_symbol_section (sym, NULL);
3618 symtab_and_line sal
3619 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3620 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3621 funfirstline);
3622 sal.symbol = sym;
3623 return sal;
3624 }
3625
3626
3627 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3628 address for that function that has an entry in SYMTAB's line info
3629 table. If such an entry cannot be found, return FUNC_ADDR
3630 unaltered. */
3631
3632 static CORE_ADDR
3633 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3634 {
3635 CORE_ADDR func_start, func_end;
3636 struct linetable *l;
3637 int i;
3638
3639 /* Give up if this symbol has no lineinfo table. */
3640 l = SYMTAB_LINETABLE (symtab);
3641 if (l == NULL)
3642 return func_addr;
3643
3644 /* Get the range for the function's PC values, or give up if we
3645 cannot, for some reason. */
3646 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3647 return func_addr;
3648
3649 /* Linetable entries are ordered by PC values, see the commentary in
3650 symtab.h where `struct linetable' is defined. Thus, the first
3651 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3652 address we are looking for. */
3653 for (i = 0; i < l->nitems; i++)
3654 {
3655 struct linetable_entry *item = &(l->item[i]);
3656
3657 /* Don't use line numbers of zero, they mark special entries in
3658 the table. See the commentary on symtab.h before the
3659 definition of struct linetable. */
3660 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3661 return item->pc;
3662 }
3663
3664 return func_addr;
3665 }
3666
3667 /* Adjust SAL to the first instruction past the function prologue.
3668 If the PC was explicitly specified, the SAL is not changed.
3669 If the line number was explicitly specified then the SAL can still be
3670 updated, unless the language for SAL is assembler, in which case the SAL
3671 will be left unchanged.
3672 If SAL is already past the prologue, then do nothing. */
3673
3674 void
3675 skip_prologue_sal (struct symtab_and_line *sal)
3676 {
3677 struct symbol *sym;
3678 struct symtab_and_line start_sal;
3679 CORE_ADDR pc, saved_pc;
3680 struct obj_section *section;
3681 const char *name;
3682 struct objfile *objfile;
3683 struct gdbarch *gdbarch;
3684 const struct block *b, *function_block;
3685 int force_skip, skip;
3686
3687 /* Do not change the SAL if PC was specified explicitly. */
3688 if (sal->explicit_pc)
3689 return;
3690
3691 /* In assembly code, if the user asks for a specific line then we should
3692 not adjust the SAL. The user already has instruction level
3693 visibility in this case, so selecting a line other than one requested
3694 is likely to be the wrong choice. */
3695 if (sal->symtab != nullptr
3696 && sal->explicit_line
3697 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3698 return;
3699
3700 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3701
3702 switch_to_program_space_and_thread (sal->pspace);
3703
3704 sym = find_pc_sect_function (sal->pc, sal->section);
3705 if (sym != NULL)
3706 {
3707 fixup_symbol_section (sym, NULL);
3708
3709 objfile = symbol_objfile (sym);
3710 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3711 section = SYMBOL_OBJ_SECTION (objfile, sym);
3712 name = SYMBOL_LINKAGE_NAME (sym);
3713 }
3714 else
3715 {
3716 struct bound_minimal_symbol msymbol
3717 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3718
3719 if (msymbol.minsym == NULL)
3720 return;
3721
3722 objfile = msymbol.objfile;
3723 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3724 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3725 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3726 }
3727
3728 gdbarch = get_objfile_arch (objfile);
3729
3730 /* Process the prologue in two passes. In the first pass try to skip the
3731 prologue (SKIP is true) and verify there is a real need for it (indicated
3732 by FORCE_SKIP). If no such reason was found run a second pass where the
3733 prologue is not skipped (SKIP is false). */
3734
3735 skip = 1;
3736 force_skip = 1;
3737
3738 /* Be conservative - allow direct PC (without skipping prologue) only if we
3739 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3740 have to be set by the caller so we use SYM instead. */
3741 if (sym != NULL
3742 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3743 force_skip = 0;
3744
3745 saved_pc = pc;
3746 do
3747 {
3748 pc = saved_pc;
3749
3750 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3751 so that gdbarch_skip_prologue has something unique to work on. */
3752 if (section_is_overlay (section) && !section_is_mapped (section))
3753 pc = overlay_unmapped_address (pc, section);
3754
3755 /* Skip "first line" of function (which is actually its prologue). */
3756 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3757 if (gdbarch_skip_entrypoint_p (gdbarch))
3758 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3759 if (skip)
3760 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3761
3762 /* For overlays, map pc back into its mapped VMA range. */
3763 pc = overlay_mapped_address (pc, section);
3764
3765 /* Calculate line number. */
3766 start_sal = find_pc_sect_line (pc, section, 0);
3767
3768 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3769 line is still part of the same function. */
3770 if (skip && start_sal.pc != pc
3771 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3772 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3773 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3774 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3775 {
3776 /* First pc of next line */
3777 pc = start_sal.end;
3778 /* Recalculate the line number (might not be N+1). */
3779 start_sal = find_pc_sect_line (pc, section, 0);
3780 }
3781
3782 /* On targets with executable formats that don't have a concept of
3783 constructors (ELF with .init has, PE doesn't), gcc emits a call
3784 to `__main' in `main' between the prologue and before user
3785 code. */
3786 if (gdbarch_skip_main_prologue_p (gdbarch)
3787 && name && strcmp_iw (name, "main") == 0)
3788 {
3789 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3790 /* Recalculate the line number (might not be N+1). */
3791 start_sal = find_pc_sect_line (pc, section, 0);
3792 force_skip = 1;
3793 }
3794 }
3795 while (!force_skip && skip--);
3796
3797 /* If we still don't have a valid source line, try to find the first
3798 PC in the lineinfo table that belongs to the same function. This
3799 happens with COFF debug info, which does not seem to have an
3800 entry in lineinfo table for the code after the prologue which has
3801 no direct relation to source. For example, this was found to be
3802 the case with the DJGPP target using "gcc -gcoff" when the
3803 compiler inserted code after the prologue to make sure the stack
3804 is aligned. */
3805 if (!force_skip && sym && start_sal.symtab == NULL)
3806 {
3807 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3808 /* Recalculate the line number. */
3809 start_sal = find_pc_sect_line (pc, section, 0);
3810 }
3811
3812 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3813 forward SAL to the end of the prologue. */
3814 if (sal->pc >= pc)
3815 return;
3816
3817 sal->pc = pc;
3818 sal->section = section;
3819 sal->symtab = start_sal.symtab;
3820 sal->line = start_sal.line;
3821 sal->end = start_sal.end;
3822
3823 /* Check if we are now inside an inlined function. If we can,
3824 use the call site of the function instead. */
3825 b = block_for_pc_sect (sal->pc, sal->section);
3826 function_block = NULL;
3827 while (b != NULL)
3828 {
3829 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3830 function_block = b;
3831 else if (BLOCK_FUNCTION (b) != NULL)
3832 break;
3833 b = BLOCK_SUPERBLOCK (b);
3834 }
3835 if (function_block != NULL
3836 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3837 {
3838 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3839 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3840 }
3841 }
3842
3843 /* Given PC at the function's start address, attempt to find the
3844 prologue end using SAL information. Return zero if the skip fails.
3845
3846 A non-optimized prologue traditionally has one SAL for the function
3847 and a second for the function body. A single line function has
3848 them both pointing at the same line.
3849
3850 An optimized prologue is similar but the prologue may contain
3851 instructions (SALs) from the instruction body. Need to skip those
3852 while not getting into the function body.
3853
3854 The functions end point and an increasing SAL line are used as
3855 indicators of the prologue's endpoint.
3856
3857 This code is based on the function refine_prologue_limit
3858 (found in ia64). */
3859
3860 CORE_ADDR
3861 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3862 {
3863 struct symtab_and_line prologue_sal;
3864 CORE_ADDR start_pc;
3865 CORE_ADDR end_pc;
3866 const struct block *bl;
3867
3868 /* Get an initial range for the function. */
3869 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3870 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3871
3872 prologue_sal = find_pc_line (start_pc, 0);
3873 if (prologue_sal.line != 0)
3874 {
3875 /* For languages other than assembly, treat two consecutive line
3876 entries at the same address as a zero-instruction prologue.
3877 The GNU assembler emits separate line notes for each instruction
3878 in a multi-instruction macro, but compilers generally will not
3879 do this. */
3880 if (prologue_sal.symtab->language != language_asm)
3881 {
3882 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3883 int idx = 0;
3884
3885 /* Skip any earlier lines, and any end-of-sequence marker
3886 from a previous function. */
3887 while (linetable->item[idx].pc != prologue_sal.pc
3888 || linetable->item[idx].line == 0)
3889 idx++;
3890
3891 if (idx+1 < linetable->nitems
3892 && linetable->item[idx+1].line != 0
3893 && linetable->item[idx+1].pc == start_pc)
3894 return start_pc;
3895 }
3896
3897 /* If there is only one sal that covers the entire function,
3898 then it is probably a single line function, like
3899 "foo(){}". */
3900 if (prologue_sal.end >= end_pc)
3901 return 0;
3902
3903 while (prologue_sal.end < end_pc)
3904 {
3905 struct symtab_and_line sal;
3906
3907 sal = find_pc_line (prologue_sal.end, 0);
3908 if (sal.line == 0)
3909 break;
3910 /* Assume that a consecutive SAL for the same (or larger)
3911 line mark the prologue -> body transition. */
3912 if (sal.line >= prologue_sal.line)
3913 break;
3914 /* Likewise if we are in a different symtab altogether
3915 (e.g. within a file included via #include).  */
3916 if (sal.symtab != prologue_sal.symtab)
3917 break;
3918
3919 /* The line number is smaller. Check that it's from the
3920 same function, not something inlined. If it's inlined,
3921 then there is no point comparing the line numbers. */
3922 bl = block_for_pc (prologue_sal.end);
3923 while (bl)
3924 {
3925 if (block_inlined_p (bl))
3926 break;
3927 if (BLOCK_FUNCTION (bl))
3928 {
3929 bl = NULL;
3930 break;
3931 }
3932 bl = BLOCK_SUPERBLOCK (bl);
3933 }
3934 if (bl != NULL)
3935 break;
3936
3937 /* The case in which compiler's optimizer/scheduler has
3938 moved instructions into the prologue. We look ahead in
3939 the function looking for address ranges whose
3940 corresponding line number is less the first one that we
3941 found for the function. This is more conservative then
3942 refine_prologue_limit which scans a large number of SALs
3943 looking for any in the prologue. */
3944 prologue_sal = sal;
3945 }
3946 }
3947
3948 if (prologue_sal.end < end_pc)
3949 /* Return the end of this line, or zero if we could not find a
3950 line. */
3951 return prologue_sal.end;
3952 else
3953 /* Don't return END_PC, which is past the end of the function. */
3954 return prologue_sal.pc;
3955 }
3956
3957 /* See symtab.h. */
3958
3959 symbol *
3960 find_function_alias_target (bound_minimal_symbol msymbol)
3961 {
3962 CORE_ADDR func_addr;
3963 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3964 return NULL;
3965
3966 symbol *sym = find_pc_function (func_addr);
3967 if (sym != NULL
3968 && SYMBOL_CLASS (sym) == LOC_BLOCK
3969 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3970 return sym;
3971
3972 return NULL;
3973 }
3974
3975 \f
3976 /* If P is of the form "operator[ \t]+..." where `...' is
3977 some legitimate operator text, return a pointer to the
3978 beginning of the substring of the operator text.
3979 Otherwise, return "". */
3980
3981 static const char *
3982 operator_chars (const char *p, const char **end)
3983 {
3984 *end = "";
3985 if (!startswith (p, CP_OPERATOR_STR))
3986 return *end;
3987 p += CP_OPERATOR_LEN;
3988
3989 /* Don't get faked out by `operator' being part of a longer
3990 identifier. */
3991 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3992 return *end;
3993
3994 /* Allow some whitespace between `operator' and the operator symbol. */
3995 while (*p == ' ' || *p == '\t')
3996 p++;
3997
3998 /* Recognize 'operator TYPENAME'. */
3999
4000 if (isalpha (*p) || *p == '_' || *p == '$')
4001 {
4002 const char *q = p + 1;
4003
4004 while (isalnum (*q) || *q == '_' || *q == '$')
4005 q++;
4006 *end = q;
4007 return p;
4008 }
4009
4010 while (*p)
4011 switch (*p)
4012 {
4013 case '\\': /* regexp quoting */
4014 if (p[1] == '*')
4015 {
4016 if (p[2] == '=') /* 'operator\*=' */
4017 *end = p + 3;
4018 else /* 'operator\*' */
4019 *end = p + 2;
4020 return p;
4021 }
4022 else if (p[1] == '[')
4023 {
4024 if (p[2] == ']')
4025 error (_("mismatched quoting on brackets, "
4026 "try 'operator\\[\\]'"));
4027 else if (p[2] == '\\' && p[3] == ']')
4028 {
4029 *end = p + 4; /* 'operator\[\]' */
4030 return p;
4031 }
4032 else
4033 error (_("nothing is allowed between '[' and ']'"));
4034 }
4035 else
4036 {
4037 /* Gratuitous quote: skip it and move on. */
4038 p++;
4039 continue;
4040 }
4041 break;
4042 case '!':
4043 case '=':
4044 case '*':
4045 case '/':
4046 case '%':
4047 case '^':
4048 if (p[1] == '=')
4049 *end = p + 2;
4050 else
4051 *end = p + 1;
4052 return p;
4053 case '<':
4054 case '>':
4055 case '+':
4056 case '-':
4057 case '&':
4058 case '|':
4059 if (p[0] == '-' && p[1] == '>')
4060 {
4061 /* Struct pointer member operator 'operator->'. */
4062 if (p[2] == '*')
4063 {
4064 *end = p + 3; /* 'operator->*' */
4065 return p;
4066 }
4067 else if (p[2] == '\\')
4068 {
4069 *end = p + 4; /* Hopefully 'operator->\*' */
4070 return p;
4071 }
4072 else
4073 {
4074 *end = p + 2; /* 'operator->' */
4075 return p;
4076 }
4077 }
4078 if (p[1] == '=' || p[1] == p[0])
4079 *end = p + 2;
4080 else
4081 *end = p + 1;
4082 return p;
4083 case '~':
4084 case ',':
4085 *end = p + 1;
4086 return p;
4087 case '(':
4088 if (p[1] != ')')
4089 error (_("`operator ()' must be specified "
4090 "without whitespace in `()'"));
4091 *end = p + 2;
4092 return p;
4093 case '?':
4094 if (p[1] != ':')
4095 error (_("`operator ?:' must be specified "
4096 "without whitespace in `?:'"));
4097 *end = p + 2;
4098 return p;
4099 case '[':
4100 if (p[1] != ']')
4101 error (_("`operator []' must be specified "
4102 "without whitespace in `[]'"));
4103 *end = p + 2;
4104 return p;
4105 default:
4106 error (_("`operator %s' not supported"), p);
4107 break;
4108 }
4109
4110 *end = "";
4111 return *end;
4112 }
4113 \f
4114
4115 /* What part to match in a file name. */
4116
4117 struct filename_partial_match_opts
4118 {
4119 /* Only match the directory name part. */
4120 bool dirname = false;
4121
4122 /* Only match the basename part. */
4123 bool basename = false;
4124 };
4125
4126 /* Data structure to maintain printing state for output_source_filename. */
4127
4128 struct output_source_filename_data
4129 {
4130 /* Output only filenames matching REGEXP. */
4131 std::string regexp;
4132 gdb::optional<compiled_regex> c_regexp;
4133 /* Possibly only match a part of the filename. */
4134 filename_partial_match_opts partial_match;
4135
4136
4137 /* Cache of what we've seen so far. */
4138 struct filename_seen_cache *filename_seen_cache;
4139
4140 /* Flag of whether we're printing the first one. */
4141 int first;
4142 };
4143
4144 /* Slave routine for sources_info. Force line breaks at ,'s.
4145 NAME is the name to print.
4146 DATA contains the state for printing and watching for duplicates. */
4147
4148 static void
4149 output_source_filename (const char *name,
4150 struct output_source_filename_data *data)
4151 {
4152 /* Since a single source file can result in several partial symbol
4153 tables, we need to avoid printing it more than once. Note: if
4154 some of the psymtabs are read in and some are not, it gets
4155 printed both under "Source files for which symbols have been
4156 read" and "Source files for which symbols will be read in on
4157 demand". I consider this a reasonable way to deal with the
4158 situation. I'm not sure whether this can also happen for
4159 symtabs; it doesn't hurt to check. */
4160
4161 /* Was NAME already seen? */
4162 if (data->filename_seen_cache->seen (name))
4163 {
4164 /* Yes; don't print it again. */
4165 return;
4166 }
4167
4168 /* Does it match data->regexp? */
4169 if (data->c_regexp.has_value ())
4170 {
4171 const char *to_match;
4172 std::string dirname;
4173
4174 if (data->partial_match.dirname)
4175 {
4176 dirname = ldirname (name);
4177 to_match = dirname.c_str ();
4178 }
4179 else if (data->partial_match.basename)
4180 to_match = lbasename (name);
4181 else
4182 to_match = name;
4183
4184 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4185 return;
4186 }
4187
4188 /* Print it and reset *FIRST. */
4189 if (! data->first)
4190 printf_filtered (", ");
4191 data->first = 0;
4192
4193 wrap_here ("");
4194 fputs_styled (name, file_name_style.style (), gdb_stdout);
4195 }
4196
4197 /* A callback for map_partial_symbol_filenames. */
4198
4199 static void
4200 output_partial_symbol_filename (const char *filename, const char *fullname,
4201 void *data)
4202 {
4203 output_source_filename (fullname ? fullname : filename,
4204 (struct output_source_filename_data *) data);
4205 }
4206
4207 using isrc_flag_option_def
4208 = gdb::option::flag_option_def<filename_partial_match_opts>;
4209
4210 static const gdb::option::option_def info_sources_option_defs[] = {
4211
4212 isrc_flag_option_def {
4213 "dirname",
4214 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4215 N_("Show only the files having a dirname matching REGEXP."),
4216 },
4217
4218 isrc_flag_option_def {
4219 "basename",
4220 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4221 N_("Show only the files having a basename matching REGEXP."),
4222 },
4223
4224 };
4225
4226 /* Create an option_def_group for the "info sources" options, with
4227 ISRC_OPTS as context. */
4228
4229 static inline gdb::option::option_def_group
4230 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4231 {
4232 return {{info_sources_option_defs}, isrc_opts};
4233 }
4234
4235 /* Prints the header message for the source files that will be printed
4236 with the matching info present in DATA. SYMBOL_MSG is a message
4237 that tells what will or has been done with the symbols of the
4238 matching source files. */
4239
4240 static void
4241 print_info_sources_header (const char *symbol_msg,
4242 const struct output_source_filename_data *data)
4243 {
4244 puts_filtered (symbol_msg);
4245 if (!data->regexp.empty ())
4246 {
4247 if (data->partial_match.dirname)
4248 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4249 data->regexp.c_str ());
4250 else if (data->partial_match.basename)
4251 printf_filtered (_("(basename matching regular expression \"%s\")"),
4252 data->regexp.c_str ());
4253 else
4254 printf_filtered (_("(filename matching regular expression \"%s\")"),
4255 data->regexp.c_str ());
4256 }
4257 puts_filtered ("\n");
4258 }
4259
4260 /* Completer for "info sources". */
4261
4262 static void
4263 info_sources_command_completer (cmd_list_element *ignore,
4264 completion_tracker &tracker,
4265 const char *text, const char *word)
4266 {
4267 const auto group = make_info_sources_options_def_group (nullptr);
4268 if (gdb::option::complete_options
4269 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4270 return;
4271 }
4272
4273 static void
4274 info_sources_command (const char *args, int from_tty)
4275 {
4276 struct output_source_filename_data data;
4277
4278 if (!have_full_symbols () && !have_partial_symbols ())
4279 {
4280 error (_("No symbol table is loaded. Use the \"file\" command."));
4281 }
4282
4283 filename_seen_cache filenames_seen;
4284
4285 auto group = make_info_sources_options_def_group (&data.partial_match);
4286
4287 gdb::option::process_options
4288 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4289
4290 if (args != NULL && *args != '\000')
4291 data.regexp = args;
4292
4293 data.filename_seen_cache = &filenames_seen;
4294 data.first = 1;
4295
4296 if (data.partial_match.dirname && data.partial_match.basename)
4297 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4298 if ((data.partial_match.dirname || data.partial_match.basename)
4299 && data.regexp.empty ())
4300 error (_("Missing REGEXP for 'info sources'."));
4301
4302 if (data.regexp.empty ())
4303 data.c_regexp.reset ();
4304 else
4305 {
4306 int cflags = REG_NOSUB;
4307 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4308 cflags |= REG_ICASE;
4309 #endif
4310 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4311 _("Invalid regexp"));
4312 }
4313
4314 print_info_sources_header
4315 (_("Source files for which symbols have been read in:\n"), &data);
4316
4317 for (objfile *objfile : current_program_space->objfiles ())
4318 {
4319 for (compunit_symtab *cu : objfile->compunits ())
4320 {
4321 for (symtab *s : compunit_filetabs (cu))
4322 {
4323 const char *fullname = symtab_to_fullname (s);
4324
4325 output_source_filename (fullname, &data);
4326 }
4327 }
4328 }
4329 printf_filtered ("\n\n");
4330
4331 print_info_sources_header
4332 (_("Source files for which symbols will be read in on demand:\n"), &data);
4333
4334 filenames_seen.clear ();
4335 data.first = 1;
4336 map_symbol_filenames (output_partial_symbol_filename, &data,
4337 1 /*need_fullname*/);
4338 printf_filtered ("\n");
4339 }
4340
4341 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4342 non-zero compare only lbasename of FILES. */
4343
4344 static int
4345 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4346 {
4347 int i;
4348
4349 if (file != NULL && nfiles != 0)
4350 {
4351 for (i = 0; i < nfiles; i++)
4352 {
4353 if (compare_filenames_for_search (file, (basenames
4354 ? lbasename (files[i])
4355 : files[i])))
4356 return 1;
4357 }
4358 }
4359 else if (nfiles == 0)
4360 return 1;
4361 return 0;
4362 }
4363
4364 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4365 sort symbols, not minimal symbols. */
4366
4367 int
4368 symbol_search::compare_search_syms (const symbol_search &sym_a,
4369 const symbol_search &sym_b)
4370 {
4371 int c;
4372
4373 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4374 symbol_symtab (sym_b.symbol)->filename);
4375 if (c != 0)
4376 return c;
4377
4378 if (sym_a.block != sym_b.block)
4379 return sym_a.block - sym_b.block;
4380
4381 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4382 SYMBOL_PRINT_NAME (sym_b.symbol));
4383 }
4384
4385 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4386 If SYM has no symbol_type or symbol_name, returns false. */
4387
4388 bool
4389 treg_matches_sym_type_name (const compiled_regex &treg,
4390 const struct symbol *sym)
4391 {
4392 struct type *sym_type;
4393 std::string printed_sym_type_name;
4394
4395 if (symbol_lookup_debug > 1)
4396 {
4397 fprintf_unfiltered (gdb_stdlog,
4398 "treg_matches_sym_type_name\n sym %s\n",
4399 SYMBOL_NATURAL_NAME (sym));
4400 }
4401
4402 sym_type = SYMBOL_TYPE (sym);
4403 if (sym_type == NULL)
4404 return false;
4405
4406 {
4407 scoped_switch_to_sym_language_if_auto l (sym);
4408
4409 printed_sym_type_name = type_to_string (sym_type);
4410 }
4411
4412
4413 if (symbol_lookup_debug > 1)
4414 {
4415 fprintf_unfiltered (gdb_stdlog,
4416 " sym_type_name %s\n",
4417 printed_sym_type_name.c_str ());
4418 }
4419
4420
4421 if (printed_sym_type_name.empty ())
4422 return false;
4423
4424 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4425 }
4426
4427
4428 /* Sort the symbols in RESULT and remove duplicates. */
4429
4430 static void
4431 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4432 {
4433 std::sort (result->begin (), result->end ());
4434 result->erase (std::unique (result->begin (), result->end ()),
4435 result->end ());
4436 }
4437
4438 /* Search the symbol table for matches to the regular expression REGEXP,
4439 returning the results.
4440
4441 Only symbols of KIND are searched:
4442 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4443 and constants (enums).
4444 if T_REGEXP is not NULL, only returns var that have
4445 a type matching regular expression T_REGEXP.
4446 FUNCTIONS_DOMAIN - search all functions
4447 TYPES_DOMAIN - search all type names
4448 ALL_DOMAIN - an internal error for this function
4449
4450 Within each file the results are sorted locally; each symtab's global and
4451 static blocks are separately alphabetized.
4452 Duplicate entries are removed.
4453
4454 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4455 otherwise they are excluded. */
4456
4457 std::vector<symbol_search>
4458 search_symbols (const char *regexp, enum search_domain kind,
4459 const char *t_regexp,
4460 int nfiles, const char *files[],
4461 bool exclude_minsyms)
4462 {
4463 const struct blockvector *bv;
4464 const struct block *b;
4465 int i = 0;
4466 struct block_iterator iter;
4467 struct symbol *sym;
4468 int found_misc = 0;
4469 static const enum minimal_symbol_type types[]
4470 = {mst_data, mst_text, mst_unknown};
4471 static const enum minimal_symbol_type types2[]
4472 = {mst_bss, mst_file_text, mst_unknown};
4473 static const enum minimal_symbol_type types3[]
4474 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4475 static const enum minimal_symbol_type types4[]
4476 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4477 enum minimal_symbol_type ourtype;
4478 enum minimal_symbol_type ourtype2;
4479 enum minimal_symbol_type ourtype3;
4480 enum minimal_symbol_type ourtype4;
4481 std::vector<symbol_search> result;
4482 gdb::optional<compiled_regex> preg;
4483 gdb::optional<compiled_regex> treg;
4484
4485 gdb_assert (kind <= TYPES_DOMAIN);
4486
4487 ourtype = types[kind];
4488 ourtype2 = types2[kind];
4489 ourtype3 = types3[kind];
4490 ourtype4 = types4[kind];
4491
4492 if (regexp != NULL)
4493 {
4494 /* Make sure spacing is right for C++ operators.
4495 This is just a courtesy to make the matching less sensitive
4496 to how many spaces the user leaves between 'operator'
4497 and <TYPENAME> or <OPERATOR>. */
4498 const char *opend;
4499 const char *opname = operator_chars (regexp, &opend);
4500
4501 if (*opname)
4502 {
4503 int fix = -1; /* -1 means ok; otherwise number of
4504 spaces needed. */
4505
4506 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4507 {
4508 /* There should 1 space between 'operator' and 'TYPENAME'. */
4509 if (opname[-1] != ' ' || opname[-2] == ' ')
4510 fix = 1;
4511 }
4512 else
4513 {
4514 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4515 if (opname[-1] == ' ')
4516 fix = 0;
4517 }
4518 /* If wrong number of spaces, fix it. */
4519 if (fix >= 0)
4520 {
4521 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4522
4523 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4524 regexp = tmp;
4525 }
4526 }
4527
4528 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4529 ? REG_ICASE : 0);
4530 preg.emplace (regexp, cflags, _("Invalid regexp"));
4531 }
4532
4533 if (t_regexp != NULL)
4534 {
4535 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4536 ? REG_ICASE : 0);
4537 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4538 }
4539
4540 /* Search through the partial symtabs *first* for all symbols
4541 matching the regexp. That way we don't have to reproduce all of
4542 the machinery below. */
4543 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4544 {
4545 return file_matches (filename, files, nfiles,
4546 basenames);
4547 },
4548 lookup_name_info::match_any (),
4549 [&] (const char *symname)
4550 {
4551 return (!preg.has_value ()
4552 || preg->exec (symname,
4553 0, NULL, 0) == 0);
4554 },
4555 NULL,
4556 kind);
4557
4558 /* Here, we search through the minimal symbol tables for functions
4559 and variables that match, and force their symbols to be read.
4560 This is in particular necessary for demangled variable names,
4561 which are no longer put into the partial symbol tables.
4562 The symbol will then be found during the scan of symtabs below.
4563
4564 For functions, find_pc_symtab should succeed if we have debug info
4565 for the function, for variables we have to call
4566 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4567 has debug info.
4568 If the lookup fails, set found_misc so that we will rescan to print
4569 any matching symbols without debug info.
4570 We only search the objfile the msymbol came from, we no longer search
4571 all objfiles. In large programs (1000s of shared libs) searching all
4572 objfiles is not worth the pain. */
4573
4574 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4575 {
4576 for (objfile *objfile : current_program_space->objfiles ())
4577 {
4578 for (minimal_symbol *msymbol : objfile->msymbols ())
4579 {
4580 QUIT;
4581
4582 if (msymbol->created_by_gdb)
4583 continue;
4584
4585 if (MSYMBOL_TYPE (msymbol) == ourtype
4586 || MSYMBOL_TYPE (msymbol) == ourtype2
4587 || MSYMBOL_TYPE (msymbol) == ourtype3
4588 || MSYMBOL_TYPE (msymbol) == ourtype4)
4589 {
4590 if (!preg.has_value ()
4591 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4592 NULL, 0) == 0)
4593 {
4594 /* Note: An important side-effect of these
4595 lookup functions is to expand the symbol
4596 table if msymbol is found, for the benefit of
4597 the next loop on compunits. */
4598 if (kind == FUNCTIONS_DOMAIN
4599 ? (find_pc_compunit_symtab
4600 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4601 == NULL)
4602 : (lookup_symbol_in_objfile_from_linkage_name
4603 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4604 VAR_DOMAIN)
4605 .symbol == NULL))
4606 found_misc = 1;
4607 }
4608 }
4609 }
4610 }
4611 }
4612
4613 for (objfile *objfile : current_program_space->objfiles ())
4614 {
4615 for (compunit_symtab *cust : objfile->compunits ())
4616 {
4617 bv = COMPUNIT_BLOCKVECTOR (cust);
4618 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4619 {
4620 b = BLOCKVECTOR_BLOCK (bv, i);
4621 ALL_BLOCK_SYMBOLS (b, iter, sym)
4622 {
4623 struct symtab *real_symtab = symbol_symtab (sym);
4624
4625 QUIT;
4626
4627 /* Check first sole REAL_SYMTAB->FILENAME. It does
4628 not need to be a substring of symtab_to_fullname as
4629 it may contain "./" etc. */
4630 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4631 || ((basenames_may_differ
4632 || file_matches (lbasename (real_symtab->filename),
4633 files, nfiles, 1))
4634 && file_matches (symtab_to_fullname (real_symtab),
4635 files, nfiles, 0)))
4636 && ((!preg.has_value ()
4637 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4638 NULL, 0) == 0)
4639 && ((kind == VARIABLES_DOMAIN
4640 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4641 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4642 && SYMBOL_CLASS (sym) != LOC_BLOCK
4643 /* LOC_CONST can be used for more than
4644 just enums, e.g., c++ static const
4645 members. We only want to skip enums
4646 here. */
4647 && !(SYMBOL_CLASS (sym) == LOC_CONST
4648 && (TYPE_CODE (SYMBOL_TYPE (sym))
4649 == TYPE_CODE_ENUM))
4650 && (!treg.has_value ()
4651 || treg_matches_sym_type_name (*treg, sym)))
4652 || (kind == FUNCTIONS_DOMAIN
4653 && SYMBOL_CLASS (sym) == LOC_BLOCK
4654 && (!treg.has_value ()
4655 || treg_matches_sym_type_name (*treg,
4656 sym)))
4657 || (kind == TYPES_DOMAIN
4658 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4659 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4660 {
4661 /* match */
4662 result.emplace_back (i, sym);
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 if (!result.empty ())
4670 sort_search_symbols_remove_dups (&result);
4671
4672 /* If there are no eyes, avoid all contact. I mean, if there are
4673 no debug symbols, then add matching minsyms. But if the user wants
4674 to see symbols matching a type regexp, then never give a minimal symbol,
4675 as we assume that a minimal symbol does not have a type. */
4676
4677 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4678 && !exclude_minsyms
4679 && !treg.has_value ())
4680 {
4681 for (objfile *objfile : current_program_space->objfiles ())
4682 {
4683 for (minimal_symbol *msymbol : objfile->msymbols ())
4684 {
4685 QUIT;
4686
4687 if (msymbol->created_by_gdb)
4688 continue;
4689
4690 if (MSYMBOL_TYPE (msymbol) == ourtype
4691 || MSYMBOL_TYPE (msymbol) == ourtype2
4692 || MSYMBOL_TYPE (msymbol) == ourtype3
4693 || MSYMBOL_TYPE (msymbol) == ourtype4)
4694 {
4695 if (!preg.has_value ()
4696 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4697 NULL, 0) == 0)
4698 {
4699 /* For functions we can do a quick check of whether the
4700 symbol might be found via find_pc_symtab. */
4701 if (kind != FUNCTIONS_DOMAIN
4702 || (find_pc_compunit_symtab
4703 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4704 == NULL))
4705 {
4706 if (lookup_symbol_in_objfile_from_linkage_name
4707 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4708 VAR_DOMAIN)
4709 .symbol == NULL)
4710 {
4711 /* match */
4712 result.emplace_back (i, msymbol, objfile);
4713 }
4714 }
4715 }
4716 }
4717 }
4718 }
4719 }
4720
4721 return result;
4722 }
4723
4724 /* Helper function for symtab_symbol_info, this function uses
4725 the data returned from search_symbols() to print information
4726 regarding the match to gdb_stdout. If LAST is not NULL,
4727 print file and line number information for the symbol as
4728 well. Skip printing the filename if it matches LAST. */
4729
4730 static void
4731 print_symbol_info (enum search_domain kind,
4732 struct symbol *sym,
4733 int block, const char *last)
4734 {
4735 scoped_switch_to_sym_language_if_auto l (sym);
4736 struct symtab *s = symbol_symtab (sym);
4737
4738 if (last != NULL)
4739 {
4740 const char *s_filename = symtab_to_filename_for_display (s);
4741
4742 if (filename_cmp (last, s_filename) != 0)
4743 {
4744 printf_filtered (_("\nFile %ps:\n"),
4745 styled_string (file_name_style.style (),
4746 s_filename));
4747 }
4748
4749 if (SYMBOL_LINE (sym) != 0)
4750 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4751 else
4752 puts_filtered ("\t");
4753 }
4754
4755 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4756 printf_filtered ("static ");
4757
4758 /* Typedef that is not a C++ class. */
4759 if (kind == TYPES_DOMAIN
4760 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4761 {
4762 /* FIXME: For C (and C++) we end up with a difference in output here
4763 between how a typedef is printed, and non-typedefs are printed.
4764 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4765 appear C-like, while TYPE_PRINT doesn't.
4766
4767 For the struct printing case below, things are worse, we force
4768 printing of the ";" in this function, which is going to be wrong
4769 for languages that don't require a ";" between statements. */
4770 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4771 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4772 else
4773 {
4774 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4775 printf_filtered ("\n");
4776 }
4777 }
4778 /* variable, func, or typedef-that-is-c++-class. */
4779 else if (kind < TYPES_DOMAIN
4780 || (kind == TYPES_DOMAIN
4781 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4782 {
4783 type_print (SYMBOL_TYPE (sym),
4784 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4785 ? "" : SYMBOL_PRINT_NAME (sym)),
4786 gdb_stdout, 0);
4787
4788 printf_filtered (";\n");
4789 }
4790 }
4791
4792 /* This help function for symtab_symbol_info() prints information
4793 for non-debugging symbols to gdb_stdout. */
4794
4795 static void
4796 print_msymbol_info (struct bound_minimal_symbol msymbol)
4797 {
4798 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4799 char *tmp;
4800
4801 if (gdbarch_addr_bit (gdbarch) <= 32)
4802 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4803 & (CORE_ADDR) 0xffffffff,
4804 8);
4805 else
4806 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4807 16);
4808
4809 ui_file_style sym_style = (msymbol.minsym->text_p ()
4810 ? function_name_style.style ()
4811 : ui_file_style ());
4812
4813 printf_filtered (_("%ps %ps\n"),
4814 styled_string (address_style.style (), tmp),
4815 styled_string (sym_style,
4816 MSYMBOL_PRINT_NAME (msymbol.minsym)));
4817 }
4818
4819 /* This is the guts of the commands "info functions", "info types", and
4820 "info variables". It calls search_symbols to find all matches and then
4821 print_[m]symbol_info to print out some useful information about the
4822 matches. */
4823
4824 static void
4825 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4826 const char *regexp, enum search_domain kind,
4827 const char *t_regexp, int from_tty)
4828 {
4829 static const char * const classnames[] =
4830 {"variable", "function", "type"};
4831 const char *last_filename = "";
4832 int first = 1;
4833
4834 gdb_assert (kind <= TYPES_DOMAIN);
4835
4836 if (regexp != nullptr && *regexp == '\0')
4837 regexp = nullptr;
4838
4839 /* Must make sure that if we're interrupted, symbols gets freed. */
4840 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4841 t_regexp, 0, NULL,
4842 exclude_minsyms);
4843
4844 if (!quiet)
4845 {
4846 if (regexp != NULL)
4847 {
4848 if (t_regexp != NULL)
4849 printf_filtered
4850 (_("All %ss matching regular expression \"%s\""
4851 " with type matching regular expression \"%s\":\n"),
4852 classnames[kind], regexp, t_regexp);
4853 else
4854 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4855 classnames[kind], regexp);
4856 }
4857 else
4858 {
4859 if (t_regexp != NULL)
4860 printf_filtered
4861 (_("All defined %ss"
4862 " with type matching regular expression \"%s\" :\n"),
4863 classnames[kind], t_regexp);
4864 else
4865 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4866 }
4867 }
4868
4869 for (const symbol_search &p : symbols)
4870 {
4871 QUIT;
4872
4873 if (p.msymbol.minsym != NULL)
4874 {
4875 if (first)
4876 {
4877 if (!quiet)
4878 printf_filtered (_("\nNon-debugging symbols:\n"));
4879 first = 0;
4880 }
4881 print_msymbol_info (p.msymbol);
4882 }
4883 else
4884 {
4885 print_symbol_info (kind,
4886 p.symbol,
4887 p.block,
4888 last_filename);
4889 last_filename
4890 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4891 }
4892 }
4893 }
4894
4895 /* Structure to hold the values of the options used by the 'info variables'
4896 and 'info functions' commands. These correspond to the -q, -t, and -n
4897 options. */
4898
4899 struct info_print_options
4900 {
4901 bool quiet = false;
4902 bool exclude_minsyms = false;
4903 char *type_regexp = nullptr;
4904
4905 ~info_print_options ()
4906 {
4907 xfree (type_regexp);
4908 }
4909 };
4910
4911 /* The options used by the 'info variables' and 'info functions'
4912 commands. */
4913
4914 static const gdb::option::option_def info_print_options_defs[] = {
4915 gdb::option::boolean_option_def<info_print_options> {
4916 "q",
4917 [] (info_print_options *opt) { return &opt->quiet; },
4918 nullptr, /* show_cmd_cb */
4919 nullptr /* set_doc */
4920 },
4921
4922 gdb::option::boolean_option_def<info_print_options> {
4923 "n",
4924 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4925 nullptr, /* show_cmd_cb */
4926 nullptr /* set_doc */
4927 },
4928
4929 gdb::option::string_option_def<info_print_options> {
4930 "t",
4931 [] (info_print_options *opt) { return &opt->type_regexp; },
4932 nullptr, /* show_cmd_cb */
4933 nullptr /* set_doc */
4934 }
4935 };
4936
4937 /* Returns the option group used by 'info variables' and 'info
4938 functions'. */
4939
4940 static gdb::option::option_def_group
4941 make_info_print_options_def_group (info_print_options *opts)
4942 {
4943 return {{info_print_options_defs}, opts};
4944 }
4945
4946 /* Command completer for 'info variables' and 'info functions'. */
4947
4948 static void
4949 info_print_command_completer (struct cmd_list_element *ignore,
4950 completion_tracker &tracker,
4951 const char *text, const char * /* word */)
4952 {
4953 const auto group
4954 = make_info_print_options_def_group (nullptr);
4955 if (gdb::option::complete_options
4956 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4957 return;
4958
4959 const char *word = advance_to_expression_complete_word_point (tracker, text);
4960 symbol_completer (ignore, tracker, text, word);
4961 }
4962
4963 /* Implement the 'info variables' command. */
4964
4965 static void
4966 info_variables_command (const char *args, int from_tty)
4967 {
4968 info_print_options opts;
4969 auto grp = make_info_print_options_def_group (&opts);
4970 gdb::option::process_options
4971 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4972 if (args != nullptr && *args == '\0')
4973 args = nullptr;
4974
4975 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4976 opts.type_regexp, from_tty);
4977 }
4978
4979 /* Implement the 'info functions' command. */
4980
4981 static void
4982 info_functions_command (const char *args, int from_tty)
4983 {
4984 info_print_options opts;
4985 auto grp = make_info_print_options_def_group (&opts);
4986 gdb::option::process_options
4987 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4988 if (args != nullptr && *args == '\0')
4989 args = nullptr;
4990
4991 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4992 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
4993 }
4994
4995 /* Holds the -q option for the 'info types' command. */
4996
4997 struct info_types_options
4998 {
4999 bool quiet = false;
5000 };
5001
5002 /* The options used by the 'info types' command. */
5003
5004 static const gdb::option::option_def info_types_options_defs[] = {
5005 gdb::option::boolean_option_def<info_types_options> {
5006 "q",
5007 [] (info_types_options *opt) { return &opt->quiet; },
5008 nullptr, /* show_cmd_cb */
5009 nullptr /* set_doc */
5010 }
5011 };
5012
5013 /* Returns the option group used by 'info types'. */
5014
5015 static gdb::option::option_def_group
5016 make_info_types_options_def_group (info_types_options *opts)
5017 {
5018 return {{info_types_options_defs}, opts};
5019 }
5020
5021 /* Implement the 'info types' command. */
5022
5023 static void
5024 info_types_command (const char *args, int from_tty)
5025 {
5026 info_types_options opts;
5027
5028 auto grp = make_info_types_options_def_group (&opts);
5029 gdb::option::process_options
5030 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5031 if (args != nullptr && *args == '\0')
5032 args = nullptr;
5033 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5034 }
5035
5036 /* Command completer for 'info types' command. */
5037
5038 static void
5039 info_types_command_completer (struct cmd_list_element *ignore,
5040 completion_tracker &tracker,
5041 const char *text, const char * /* word */)
5042 {
5043 const auto group
5044 = make_info_types_options_def_group (nullptr);
5045 if (gdb::option::complete_options
5046 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5047 return;
5048
5049 const char *word = advance_to_expression_complete_word_point (tracker, text);
5050 symbol_completer (ignore, tracker, text, word);
5051 }
5052
5053 /* Breakpoint all functions matching regular expression. */
5054
5055 void
5056 rbreak_command_wrapper (char *regexp, int from_tty)
5057 {
5058 rbreak_command (regexp, from_tty);
5059 }
5060
5061 static void
5062 rbreak_command (const char *regexp, int from_tty)
5063 {
5064 std::string string;
5065 const char **files = NULL;
5066 const char *file_name;
5067 int nfiles = 0;
5068
5069 if (regexp)
5070 {
5071 const char *colon = strchr (regexp, ':');
5072
5073 if (colon && *(colon + 1) != ':')
5074 {
5075 int colon_index;
5076 char *local_name;
5077
5078 colon_index = colon - regexp;
5079 local_name = (char *) alloca (colon_index + 1);
5080 memcpy (local_name, regexp, colon_index);
5081 local_name[colon_index--] = 0;
5082 while (isspace (local_name[colon_index]))
5083 local_name[colon_index--] = 0;
5084 file_name = local_name;
5085 files = &file_name;
5086 nfiles = 1;
5087 regexp = skip_spaces (colon + 1);
5088 }
5089 }
5090
5091 std::vector<symbol_search> symbols = search_symbols (regexp,
5092 FUNCTIONS_DOMAIN,
5093 NULL,
5094 nfiles, files,
5095 false);
5096
5097 scoped_rbreak_breakpoints finalize;
5098 for (const symbol_search &p : symbols)
5099 {
5100 if (p.msymbol.minsym == NULL)
5101 {
5102 struct symtab *symtab = symbol_symtab (p.symbol);
5103 const char *fullname = symtab_to_fullname (symtab);
5104
5105 string = string_printf ("%s:'%s'", fullname,
5106 SYMBOL_LINKAGE_NAME (p.symbol));
5107 break_command (&string[0], from_tty);
5108 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5109 }
5110 else
5111 {
5112 string = string_printf ("'%s'",
5113 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5114
5115 break_command (&string[0], from_tty);
5116 printf_filtered ("<function, no debug info> %s;\n",
5117 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5118 }
5119 }
5120 }
5121 \f
5122
5123 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5124
5125 static int
5126 compare_symbol_name (const char *symbol_name, language symbol_language,
5127 const lookup_name_info &lookup_name,
5128 completion_match_result &match_res)
5129 {
5130 const language_defn *lang = language_def (symbol_language);
5131
5132 symbol_name_matcher_ftype *name_match
5133 = get_symbol_name_matcher (lang, lookup_name);
5134
5135 return name_match (symbol_name, lookup_name, &match_res);
5136 }
5137
5138 /* See symtab.h. */
5139
5140 void
5141 completion_list_add_name (completion_tracker &tracker,
5142 language symbol_language,
5143 const char *symname,
5144 const lookup_name_info &lookup_name,
5145 const char *text, const char *word)
5146 {
5147 completion_match_result &match_res
5148 = tracker.reset_completion_match_result ();
5149
5150 /* Clip symbols that cannot match. */
5151 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5152 return;
5153
5154 /* Refresh SYMNAME from the match string. It's potentially
5155 different depending on language. (E.g., on Ada, the match may be
5156 the encoded symbol name wrapped in "<>"). */
5157 symname = match_res.match.match ();
5158 gdb_assert (symname != NULL);
5159
5160 /* We have a match for a completion, so add SYMNAME to the current list
5161 of matches. Note that the name is moved to freshly malloc'd space. */
5162
5163 {
5164 gdb::unique_xmalloc_ptr<char> completion
5165 = make_completion_match_str (symname, text, word);
5166
5167 /* Here we pass the match-for-lcd object to add_completion. Some
5168 languages match the user text against substrings of symbol
5169 names in some cases. E.g., in C++, "b push_ba" completes to
5170 "std::vector::push_back", "std::string::push_back", etc., and
5171 in this case we want the completion lowest common denominator
5172 to be "push_back" instead of "std::". */
5173 tracker.add_completion (std::move (completion),
5174 &match_res.match_for_lcd, text, word);
5175 }
5176 }
5177
5178 /* completion_list_add_name wrapper for struct symbol. */
5179
5180 static void
5181 completion_list_add_symbol (completion_tracker &tracker,
5182 symbol *sym,
5183 const lookup_name_info &lookup_name,
5184 const char *text, const char *word)
5185 {
5186 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5187 SYMBOL_NATURAL_NAME (sym),
5188 lookup_name, text, word);
5189 }
5190
5191 /* completion_list_add_name wrapper for struct minimal_symbol. */
5192
5193 static void
5194 completion_list_add_msymbol (completion_tracker &tracker,
5195 minimal_symbol *sym,
5196 const lookup_name_info &lookup_name,
5197 const char *text, const char *word)
5198 {
5199 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5200 MSYMBOL_NATURAL_NAME (sym),
5201 lookup_name, text, word);
5202 }
5203
5204
5205 /* ObjC: In case we are completing on a selector, look as the msymbol
5206 again and feed all the selectors into the mill. */
5207
5208 static void
5209 completion_list_objc_symbol (completion_tracker &tracker,
5210 struct minimal_symbol *msymbol,
5211 const lookup_name_info &lookup_name,
5212 const char *text, const char *word)
5213 {
5214 static char *tmp = NULL;
5215 static unsigned int tmplen = 0;
5216
5217 const char *method, *category, *selector;
5218 char *tmp2 = NULL;
5219
5220 method = MSYMBOL_NATURAL_NAME (msymbol);
5221
5222 /* Is it a method? */
5223 if ((method[0] != '-') && (method[0] != '+'))
5224 return;
5225
5226 if (text[0] == '[')
5227 /* Complete on shortened method method. */
5228 completion_list_add_name (tracker, language_objc,
5229 method + 1,
5230 lookup_name,
5231 text, word);
5232
5233 while ((strlen (method) + 1) >= tmplen)
5234 {
5235 if (tmplen == 0)
5236 tmplen = 1024;
5237 else
5238 tmplen *= 2;
5239 tmp = (char *) xrealloc (tmp, tmplen);
5240 }
5241 selector = strchr (method, ' ');
5242 if (selector != NULL)
5243 selector++;
5244
5245 category = strchr (method, '(');
5246
5247 if ((category != NULL) && (selector != NULL))
5248 {
5249 memcpy (tmp, method, (category - method));
5250 tmp[category - method] = ' ';
5251 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5252 completion_list_add_name (tracker, language_objc, tmp,
5253 lookup_name, text, word);
5254 if (text[0] == '[')
5255 completion_list_add_name (tracker, language_objc, tmp + 1,
5256 lookup_name, text, word);
5257 }
5258
5259 if (selector != NULL)
5260 {
5261 /* Complete on selector only. */
5262 strcpy (tmp, selector);
5263 tmp2 = strchr (tmp, ']');
5264 if (tmp2 != NULL)
5265 *tmp2 = '\0';
5266
5267 completion_list_add_name (tracker, language_objc, tmp,
5268 lookup_name, text, word);
5269 }
5270 }
5271
5272 /* Break the non-quoted text based on the characters which are in
5273 symbols. FIXME: This should probably be language-specific. */
5274
5275 static const char *
5276 language_search_unquoted_string (const char *text, const char *p)
5277 {
5278 for (; p > text; --p)
5279 {
5280 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5281 continue;
5282 else
5283 {
5284 if ((current_language->la_language == language_objc))
5285 {
5286 if (p[-1] == ':') /* Might be part of a method name. */
5287 continue;
5288 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5289 p -= 2; /* Beginning of a method name. */
5290 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5291 { /* Might be part of a method name. */
5292 const char *t = p;
5293
5294 /* Seeing a ' ' or a '(' is not conclusive evidence
5295 that we are in the middle of a method name. However,
5296 finding "-[" or "+[" should be pretty un-ambiguous.
5297 Unfortunately we have to find it now to decide. */
5298
5299 while (t > text)
5300 if (isalnum (t[-1]) || t[-1] == '_' ||
5301 t[-1] == ' ' || t[-1] == ':' ||
5302 t[-1] == '(' || t[-1] == ')')
5303 --t;
5304 else
5305 break;
5306
5307 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5308 p = t - 2; /* Method name detected. */
5309 /* Else we leave with p unchanged. */
5310 }
5311 }
5312 break;
5313 }
5314 }
5315 return p;
5316 }
5317
5318 static void
5319 completion_list_add_fields (completion_tracker &tracker,
5320 struct symbol *sym,
5321 const lookup_name_info &lookup_name,
5322 const char *text, const char *word)
5323 {
5324 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5325 {
5326 struct type *t = SYMBOL_TYPE (sym);
5327 enum type_code c = TYPE_CODE (t);
5328 int j;
5329
5330 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5331 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5332 if (TYPE_FIELD_NAME (t, j))
5333 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5334 TYPE_FIELD_NAME (t, j),
5335 lookup_name, text, word);
5336 }
5337 }
5338
5339 /* See symtab.h. */
5340
5341 bool
5342 symbol_is_function_or_method (symbol *sym)
5343 {
5344 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5345 {
5346 case TYPE_CODE_FUNC:
5347 case TYPE_CODE_METHOD:
5348 return true;
5349 default:
5350 return false;
5351 }
5352 }
5353
5354 /* See symtab.h. */
5355
5356 bool
5357 symbol_is_function_or_method (minimal_symbol *msymbol)
5358 {
5359 switch (MSYMBOL_TYPE (msymbol))
5360 {
5361 case mst_text:
5362 case mst_text_gnu_ifunc:
5363 case mst_solib_trampoline:
5364 case mst_file_text:
5365 return true;
5366 default:
5367 return false;
5368 }
5369 }
5370
5371 /* See symtab.h. */
5372
5373 bound_minimal_symbol
5374 find_gnu_ifunc (const symbol *sym)
5375 {
5376 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5377 return {};
5378
5379 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5380 symbol_name_match_type::SEARCH_NAME);
5381 struct objfile *objfile = symbol_objfile (sym);
5382
5383 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5384 minimal_symbol *ifunc = NULL;
5385
5386 iterate_over_minimal_symbols (objfile, lookup_name,
5387 [&] (minimal_symbol *minsym)
5388 {
5389 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5390 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5391 {
5392 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5393 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5394 {
5395 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5396 msym_addr
5397 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5398 msym_addr,
5399 current_top_target ());
5400 }
5401 if (msym_addr == address)
5402 {
5403 ifunc = minsym;
5404 return true;
5405 }
5406 }
5407 return false;
5408 });
5409
5410 if (ifunc != NULL)
5411 return {ifunc, objfile};
5412 return {};
5413 }
5414
5415 /* Add matching symbols from SYMTAB to the current completion list. */
5416
5417 static void
5418 add_symtab_completions (struct compunit_symtab *cust,
5419 completion_tracker &tracker,
5420 complete_symbol_mode mode,
5421 const lookup_name_info &lookup_name,
5422 const char *text, const char *word,
5423 enum type_code code)
5424 {
5425 struct symbol *sym;
5426 const struct block *b;
5427 struct block_iterator iter;
5428 int i;
5429
5430 if (cust == NULL)
5431 return;
5432
5433 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5434 {
5435 QUIT;
5436 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5437 ALL_BLOCK_SYMBOLS (b, iter, sym)
5438 {
5439 if (completion_skip_symbol (mode, sym))
5440 continue;
5441
5442 if (code == TYPE_CODE_UNDEF
5443 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5444 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5445 completion_list_add_symbol (tracker, sym,
5446 lookup_name,
5447 text, word);
5448 }
5449 }
5450 }
5451
5452 void
5453 default_collect_symbol_completion_matches_break_on
5454 (completion_tracker &tracker, complete_symbol_mode mode,
5455 symbol_name_match_type name_match_type,
5456 const char *text, const char *word,
5457 const char *break_on, enum type_code code)
5458 {
5459 /* Problem: All of the symbols have to be copied because readline
5460 frees them. I'm not going to worry about this; hopefully there
5461 won't be that many. */
5462
5463 struct symbol *sym;
5464 const struct block *b;
5465 const struct block *surrounding_static_block, *surrounding_global_block;
5466 struct block_iterator iter;
5467 /* The symbol we are completing on. Points in same buffer as text. */
5468 const char *sym_text;
5469
5470 /* Now look for the symbol we are supposed to complete on. */
5471 if (mode == complete_symbol_mode::LINESPEC)
5472 sym_text = text;
5473 else
5474 {
5475 const char *p;
5476 char quote_found;
5477 const char *quote_pos = NULL;
5478
5479 /* First see if this is a quoted string. */
5480 quote_found = '\0';
5481 for (p = text; *p != '\0'; ++p)
5482 {
5483 if (quote_found != '\0')
5484 {
5485 if (*p == quote_found)
5486 /* Found close quote. */
5487 quote_found = '\0';
5488 else if (*p == '\\' && p[1] == quote_found)
5489 /* A backslash followed by the quote character
5490 doesn't end the string. */
5491 ++p;
5492 }
5493 else if (*p == '\'' || *p == '"')
5494 {
5495 quote_found = *p;
5496 quote_pos = p;
5497 }
5498 }
5499 if (quote_found == '\'')
5500 /* A string within single quotes can be a symbol, so complete on it. */
5501 sym_text = quote_pos + 1;
5502 else if (quote_found == '"')
5503 /* A double-quoted string is never a symbol, nor does it make sense
5504 to complete it any other way. */
5505 {
5506 return;
5507 }
5508 else
5509 {
5510 /* It is not a quoted string. Break it based on the characters
5511 which are in symbols. */
5512 while (p > text)
5513 {
5514 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5515 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5516 --p;
5517 else
5518 break;
5519 }
5520 sym_text = p;
5521 }
5522 }
5523
5524 lookup_name_info lookup_name (sym_text, name_match_type, true);
5525
5526 /* At this point scan through the misc symbol vectors and add each
5527 symbol you find to the list. Eventually we want to ignore
5528 anything that isn't a text symbol (everything else will be
5529 handled by the psymtab code below). */
5530
5531 if (code == TYPE_CODE_UNDEF)
5532 {
5533 for (objfile *objfile : current_program_space->objfiles ())
5534 {
5535 for (minimal_symbol *msymbol : objfile->msymbols ())
5536 {
5537 QUIT;
5538
5539 if (completion_skip_symbol (mode, msymbol))
5540 continue;
5541
5542 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5543 sym_text, word);
5544
5545 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5546 sym_text, word);
5547 }
5548 }
5549 }
5550
5551 /* Add completions for all currently loaded symbol tables. */
5552 for (objfile *objfile : current_program_space->objfiles ())
5553 {
5554 for (compunit_symtab *cust : objfile->compunits ())
5555 add_symtab_completions (cust, tracker, mode, lookup_name,
5556 sym_text, word, code);
5557 }
5558
5559 /* Look through the partial symtabs for all symbols which begin by
5560 matching SYM_TEXT. Expand all CUs that you find to the list. */
5561 expand_symtabs_matching (NULL,
5562 lookup_name,
5563 NULL,
5564 [&] (compunit_symtab *symtab) /* expansion notify */
5565 {
5566 add_symtab_completions (symtab,
5567 tracker, mode, lookup_name,
5568 sym_text, word, code);
5569 },
5570 ALL_DOMAIN);
5571
5572 /* Search upwards from currently selected frame (so that we can
5573 complete on local vars). Also catch fields of types defined in
5574 this places which match our text string. Only complete on types
5575 visible from current context. */
5576
5577 b = get_selected_block (0);
5578 surrounding_static_block = block_static_block (b);
5579 surrounding_global_block = block_global_block (b);
5580 if (surrounding_static_block != NULL)
5581 while (b != surrounding_static_block)
5582 {
5583 QUIT;
5584
5585 ALL_BLOCK_SYMBOLS (b, iter, sym)
5586 {
5587 if (code == TYPE_CODE_UNDEF)
5588 {
5589 completion_list_add_symbol (tracker, sym, lookup_name,
5590 sym_text, word);
5591 completion_list_add_fields (tracker, sym, lookup_name,
5592 sym_text, word);
5593 }
5594 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5595 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5596 completion_list_add_symbol (tracker, sym, lookup_name,
5597 sym_text, word);
5598 }
5599
5600 /* Stop when we encounter an enclosing function. Do not stop for
5601 non-inlined functions - the locals of the enclosing function
5602 are in scope for a nested function. */
5603 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5604 break;
5605 b = BLOCK_SUPERBLOCK (b);
5606 }
5607
5608 /* Add fields from the file's types; symbols will be added below. */
5609
5610 if (code == TYPE_CODE_UNDEF)
5611 {
5612 if (surrounding_static_block != NULL)
5613 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5614 completion_list_add_fields (tracker, sym, lookup_name,
5615 sym_text, word);
5616
5617 if (surrounding_global_block != NULL)
5618 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5619 completion_list_add_fields (tracker, sym, lookup_name,
5620 sym_text, word);
5621 }
5622
5623 /* Skip macros if we are completing a struct tag -- arguable but
5624 usually what is expected. */
5625 if (current_language->la_macro_expansion == macro_expansion_c
5626 && code == TYPE_CODE_UNDEF)
5627 {
5628 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5629
5630 /* This adds a macro's name to the current completion list. */
5631 auto add_macro_name = [&] (const char *macro_name,
5632 const macro_definition *,
5633 macro_source_file *,
5634 int)
5635 {
5636 completion_list_add_name (tracker, language_c, macro_name,
5637 lookup_name, sym_text, word);
5638 };
5639
5640 /* Add any macros visible in the default scope. Note that this
5641 may yield the occasional wrong result, because an expression
5642 might be evaluated in a scope other than the default. For
5643 example, if the user types "break file:line if <TAB>", the
5644 resulting expression will be evaluated at "file:line" -- but
5645 at there does not seem to be a way to detect this at
5646 completion time. */
5647 scope = default_macro_scope ();
5648 if (scope)
5649 macro_for_each_in_scope (scope->file, scope->line,
5650 add_macro_name);
5651
5652 /* User-defined macros are always visible. */
5653 macro_for_each (macro_user_macros, add_macro_name);
5654 }
5655 }
5656
5657 void
5658 default_collect_symbol_completion_matches (completion_tracker &tracker,
5659 complete_symbol_mode mode,
5660 symbol_name_match_type name_match_type,
5661 const char *text, const char *word,
5662 enum type_code code)
5663 {
5664 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5665 name_match_type,
5666 text, word, "",
5667 code);
5668 }
5669
5670 /* Collect all symbols (regardless of class) which begin by matching
5671 TEXT. */
5672
5673 void
5674 collect_symbol_completion_matches (completion_tracker &tracker,
5675 complete_symbol_mode mode,
5676 symbol_name_match_type name_match_type,
5677 const char *text, const char *word)
5678 {
5679 current_language->la_collect_symbol_completion_matches (tracker, mode,
5680 name_match_type,
5681 text, word,
5682 TYPE_CODE_UNDEF);
5683 }
5684
5685 /* Like collect_symbol_completion_matches, but only collect
5686 STRUCT_DOMAIN symbols whose type code is CODE. */
5687
5688 void
5689 collect_symbol_completion_matches_type (completion_tracker &tracker,
5690 const char *text, const char *word,
5691 enum type_code code)
5692 {
5693 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5694 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5695
5696 gdb_assert (code == TYPE_CODE_UNION
5697 || code == TYPE_CODE_STRUCT
5698 || code == TYPE_CODE_ENUM);
5699 current_language->la_collect_symbol_completion_matches (tracker, mode,
5700 name_match_type,
5701 text, word, code);
5702 }
5703
5704 /* Like collect_symbol_completion_matches, but collects a list of
5705 symbols defined in all source files named SRCFILE. */
5706
5707 void
5708 collect_file_symbol_completion_matches (completion_tracker &tracker,
5709 complete_symbol_mode mode,
5710 symbol_name_match_type name_match_type,
5711 const char *text, const char *word,
5712 const char *srcfile)
5713 {
5714 /* The symbol we are completing on. Points in same buffer as text. */
5715 const char *sym_text;
5716
5717 /* Now look for the symbol we are supposed to complete on.
5718 FIXME: This should be language-specific. */
5719 if (mode == complete_symbol_mode::LINESPEC)
5720 sym_text = text;
5721 else
5722 {
5723 const char *p;
5724 char quote_found;
5725 const char *quote_pos = NULL;
5726
5727 /* First see if this is a quoted string. */
5728 quote_found = '\0';
5729 for (p = text; *p != '\0'; ++p)
5730 {
5731 if (quote_found != '\0')
5732 {
5733 if (*p == quote_found)
5734 /* Found close quote. */
5735 quote_found = '\0';
5736 else if (*p == '\\' && p[1] == quote_found)
5737 /* A backslash followed by the quote character
5738 doesn't end the string. */
5739 ++p;
5740 }
5741 else if (*p == '\'' || *p == '"')
5742 {
5743 quote_found = *p;
5744 quote_pos = p;
5745 }
5746 }
5747 if (quote_found == '\'')
5748 /* A string within single quotes can be a symbol, so complete on it. */
5749 sym_text = quote_pos + 1;
5750 else if (quote_found == '"')
5751 /* A double-quoted string is never a symbol, nor does it make sense
5752 to complete it any other way. */
5753 {
5754 return;
5755 }
5756 else
5757 {
5758 /* Not a quoted string. */
5759 sym_text = language_search_unquoted_string (text, p);
5760 }
5761 }
5762
5763 lookup_name_info lookup_name (sym_text, name_match_type, true);
5764
5765 /* Go through symtabs for SRCFILE and check the externs and statics
5766 for symbols which match. */
5767 iterate_over_symtabs (srcfile, [&] (symtab *s)
5768 {
5769 add_symtab_completions (SYMTAB_COMPUNIT (s),
5770 tracker, mode, lookup_name,
5771 sym_text, word, TYPE_CODE_UNDEF);
5772 return false;
5773 });
5774 }
5775
5776 /* A helper function for make_source_files_completion_list. It adds
5777 another file name to a list of possible completions, growing the
5778 list as necessary. */
5779
5780 static void
5781 add_filename_to_list (const char *fname, const char *text, const char *word,
5782 completion_list *list)
5783 {
5784 list->emplace_back (make_completion_match_str (fname, text, word));
5785 }
5786
5787 static int
5788 not_interesting_fname (const char *fname)
5789 {
5790 static const char *illegal_aliens[] = {
5791 "_globals_", /* inserted by coff_symtab_read */
5792 NULL
5793 };
5794 int i;
5795
5796 for (i = 0; illegal_aliens[i]; i++)
5797 {
5798 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5799 return 1;
5800 }
5801 return 0;
5802 }
5803
5804 /* An object of this type is passed as the user_data argument to
5805 map_partial_symbol_filenames. */
5806 struct add_partial_filename_data
5807 {
5808 struct filename_seen_cache *filename_seen_cache;
5809 const char *text;
5810 const char *word;
5811 int text_len;
5812 completion_list *list;
5813 };
5814
5815 /* A callback for map_partial_symbol_filenames. */
5816
5817 static void
5818 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5819 void *user_data)
5820 {
5821 struct add_partial_filename_data *data
5822 = (struct add_partial_filename_data *) user_data;
5823
5824 if (not_interesting_fname (filename))
5825 return;
5826 if (!data->filename_seen_cache->seen (filename)
5827 && filename_ncmp (filename, data->text, data->text_len) == 0)
5828 {
5829 /* This file matches for a completion; add it to the
5830 current list of matches. */
5831 add_filename_to_list (filename, data->text, data->word, data->list);
5832 }
5833 else
5834 {
5835 const char *base_name = lbasename (filename);
5836
5837 if (base_name != filename
5838 && !data->filename_seen_cache->seen (base_name)
5839 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5840 add_filename_to_list (base_name, data->text, data->word, data->list);
5841 }
5842 }
5843
5844 /* Return a list of all source files whose names begin with matching
5845 TEXT. The file names are looked up in the symbol tables of this
5846 program. */
5847
5848 completion_list
5849 make_source_files_completion_list (const char *text, const char *word)
5850 {
5851 size_t text_len = strlen (text);
5852 completion_list list;
5853 const char *base_name;
5854 struct add_partial_filename_data datum;
5855
5856 if (!have_full_symbols () && !have_partial_symbols ())
5857 return list;
5858
5859 filename_seen_cache filenames_seen;
5860
5861 for (objfile *objfile : current_program_space->objfiles ())
5862 {
5863 for (compunit_symtab *cu : objfile->compunits ())
5864 {
5865 for (symtab *s : compunit_filetabs (cu))
5866 {
5867 if (not_interesting_fname (s->filename))
5868 continue;
5869 if (!filenames_seen.seen (s->filename)
5870 && filename_ncmp (s->filename, text, text_len) == 0)
5871 {
5872 /* This file matches for a completion; add it to the current
5873 list of matches. */
5874 add_filename_to_list (s->filename, text, word, &list);
5875 }
5876 else
5877 {
5878 /* NOTE: We allow the user to type a base name when the
5879 debug info records leading directories, but not the other
5880 way around. This is what subroutines of breakpoint
5881 command do when they parse file names. */
5882 base_name = lbasename (s->filename);
5883 if (base_name != s->filename
5884 && !filenames_seen.seen (base_name)
5885 && filename_ncmp (base_name, text, text_len) == 0)
5886 add_filename_to_list (base_name, text, word, &list);
5887 }
5888 }
5889 }
5890 }
5891
5892 datum.filename_seen_cache = &filenames_seen;
5893 datum.text = text;
5894 datum.word = word;
5895 datum.text_len = text_len;
5896 datum.list = &list;
5897 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5898 0 /*need_fullname*/);
5899
5900 return list;
5901 }
5902 \f
5903 /* Track MAIN */
5904
5905 /* Return the "main_info" object for the current program space. If
5906 the object has not yet been created, create it and fill in some
5907 default values. */
5908
5909 static struct main_info *
5910 get_main_info (void)
5911 {
5912 struct main_info *info = main_progspace_key.get (current_program_space);
5913
5914 if (info == NULL)
5915 {
5916 /* It may seem strange to store the main name in the progspace
5917 and also in whatever objfile happens to see a main name in
5918 its debug info. The reason for this is mainly historical:
5919 gdb returned "main" as the name even if no function named
5920 "main" was defined the program; and this approach lets us
5921 keep compatibility. */
5922 info = main_progspace_key.emplace (current_program_space);
5923 }
5924
5925 return info;
5926 }
5927
5928 static void
5929 set_main_name (const char *name, enum language lang)
5930 {
5931 struct main_info *info = get_main_info ();
5932
5933 if (info->name_of_main != NULL)
5934 {
5935 xfree (info->name_of_main);
5936 info->name_of_main = NULL;
5937 info->language_of_main = language_unknown;
5938 }
5939 if (name != NULL)
5940 {
5941 info->name_of_main = xstrdup (name);
5942 info->language_of_main = lang;
5943 }
5944 }
5945
5946 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5947 accordingly. */
5948
5949 static void
5950 find_main_name (void)
5951 {
5952 const char *new_main_name;
5953
5954 /* First check the objfiles to see whether a debuginfo reader has
5955 picked up the appropriate main name. Historically the main name
5956 was found in a more or less random way; this approach instead
5957 relies on the order of objfile creation -- which still isn't
5958 guaranteed to get the correct answer, but is just probably more
5959 accurate. */
5960 for (objfile *objfile : current_program_space->objfiles ())
5961 {
5962 if (objfile->per_bfd->name_of_main != NULL)
5963 {
5964 set_main_name (objfile->per_bfd->name_of_main,
5965 objfile->per_bfd->language_of_main);
5966 return;
5967 }
5968 }
5969
5970 /* Try to see if the main procedure is in Ada. */
5971 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5972 be to add a new method in the language vector, and call this
5973 method for each language until one of them returns a non-empty
5974 name. This would allow us to remove this hard-coded call to
5975 an Ada function. It is not clear that this is a better approach
5976 at this point, because all methods need to be written in a way
5977 such that false positives never be returned. For instance, it is
5978 important that a method does not return a wrong name for the main
5979 procedure if the main procedure is actually written in a different
5980 language. It is easy to guaranty this with Ada, since we use a
5981 special symbol generated only when the main in Ada to find the name
5982 of the main procedure. It is difficult however to see how this can
5983 be guarantied for languages such as C, for instance. This suggests
5984 that order of call for these methods becomes important, which means
5985 a more complicated approach. */
5986 new_main_name = ada_main_name ();
5987 if (new_main_name != NULL)
5988 {
5989 set_main_name (new_main_name, language_ada);
5990 return;
5991 }
5992
5993 new_main_name = d_main_name ();
5994 if (new_main_name != NULL)
5995 {
5996 set_main_name (new_main_name, language_d);
5997 return;
5998 }
5999
6000 new_main_name = go_main_name ();
6001 if (new_main_name != NULL)
6002 {
6003 set_main_name (new_main_name, language_go);
6004 return;
6005 }
6006
6007 new_main_name = pascal_main_name ();
6008 if (new_main_name != NULL)
6009 {
6010 set_main_name (new_main_name, language_pascal);
6011 return;
6012 }
6013
6014 /* The languages above didn't identify the name of the main procedure.
6015 Fallback to "main". */
6016 set_main_name ("main", language_unknown);
6017 }
6018
6019 /* See symtab.h. */
6020
6021 const char *
6022 main_name ()
6023 {
6024 struct main_info *info = get_main_info ();
6025
6026 if (info->name_of_main == NULL)
6027 find_main_name ();
6028
6029 return info->name_of_main;
6030 }
6031
6032 /* Return the language of the main function. If it is not known,
6033 return language_unknown. */
6034
6035 enum language
6036 main_language (void)
6037 {
6038 struct main_info *info = get_main_info ();
6039
6040 if (info->name_of_main == NULL)
6041 find_main_name ();
6042
6043 return info->language_of_main;
6044 }
6045
6046 /* Handle ``executable_changed'' events for the symtab module. */
6047
6048 static void
6049 symtab_observer_executable_changed (void)
6050 {
6051 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6052 set_main_name (NULL, language_unknown);
6053 }
6054
6055 /* Return 1 if the supplied producer string matches the ARM RealView
6056 compiler (armcc). */
6057
6058 bool
6059 producer_is_realview (const char *producer)
6060 {
6061 static const char *const arm_idents[] = {
6062 "ARM C Compiler, ADS",
6063 "Thumb C Compiler, ADS",
6064 "ARM C++ Compiler, ADS",
6065 "Thumb C++ Compiler, ADS",
6066 "ARM/Thumb C/C++ Compiler, RVCT",
6067 "ARM C/C++ Compiler, RVCT"
6068 };
6069 int i;
6070
6071 if (producer == NULL)
6072 return false;
6073
6074 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6075 if (startswith (producer, arm_idents[i]))
6076 return true;
6077
6078 return false;
6079 }
6080
6081 \f
6082
6083 /* The next index to hand out in response to a registration request. */
6084
6085 static int next_aclass_value = LOC_FINAL_VALUE;
6086
6087 /* The maximum number of "aclass" registrations we support. This is
6088 constant for convenience. */
6089 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6090
6091 /* The objects representing the various "aclass" values. The elements
6092 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6093 elements are those registered at gdb initialization time. */
6094
6095 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6096
6097 /* The globally visible pointer. This is separate from 'symbol_impl'
6098 so that it can be const. */
6099
6100 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6101
6102 /* Make sure we saved enough room in struct symbol. */
6103
6104 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6105
6106 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6107 is the ops vector associated with this index. This returns the new
6108 index, which should be used as the aclass_index field for symbols
6109 of this type. */
6110
6111 int
6112 register_symbol_computed_impl (enum address_class aclass,
6113 const struct symbol_computed_ops *ops)
6114 {
6115 int result = next_aclass_value++;
6116
6117 gdb_assert (aclass == LOC_COMPUTED);
6118 gdb_assert (result < MAX_SYMBOL_IMPLS);
6119 symbol_impl[result].aclass = aclass;
6120 symbol_impl[result].ops_computed = ops;
6121
6122 /* Sanity check OPS. */
6123 gdb_assert (ops != NULL);
6124 gdb_assert (ops->tracepoint_var_ref != NULL);
6125 gdb_assert (ops->describe_location != NULL);
6126 gdb_assert (ops->get_symbol_read_needs != NULL);
6127 gdb_assert (ops->read_variable != NULL);
6128
6129 return result;
6130 }
6131
6132 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6133 OPS is the ops vector associated with this index. This returns the
6134 new index, which should be used as the aclass_index field for symbols
6135 of this type. */
6136
6137 int
6138 register_symbol_block_impl (enum address_class aclass,
6139 const struct symbol_block_ops *ops)
6140 {
6141 int result = next_aclass_value++;
6142
6143 gdb_assert (aclass == LOC_BLOCK);
6144 gdb_assert (result < MAX_SYMBOL_IMPLS);
6145 symbol_impl[result].aclass = aclass;
6146 symbol_impl[result].ops_block = ops;
6147
6148 /* Sanity check OPS. */
6149 gdb_assert (ops != NULL);
6150 gdb_assert (ops->find_frame_base_location != NULL);
6151
6152 return result;
6153 }
6154
6155 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6156 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6157 this index. This returns the new index, which should be used as
6158 the aclass_index field for symbols of this type. */
6159
6160 int
6161 register_symbol_register_impl (enum address_class aclass,
6162 const struct symbol_register_ops *ops)
6163 {
6164 int result = next_aclass_value++;
6165
6166 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6167 gdb_assert (result < MAX_SYMBOL_IMPLS);
6168 symbol_impl[result].aclass = aclass;
6169 symbol_impl[result].ops_register = ops;
6170
6171 return result;
6172 }
6173
6174 /* Initialize elements of 'symbol_impl' for the constants in enum
6175 address_class. */
6176
6177 static void
6178 initialize_ordinary_address_classes (void)
6179 {
6180 int i;
6181
6182 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6183 symbol_impl[i].aclass = (enum address_class) i;
6184 }
6185
6186 \f
6187
6188 /* Helper function to initialize the fields of an objfile-owned symbol.
6189 It assumed that *SYM is already all zeroes. */
6190
6191 static void
6192 initialize_objfile_symbol_1 (struct symbol *sym)
6193 {
6194 SYMBOL_OBJFILE_OWNED (sym) = 1;
6195 SYMBOL_SECTION (sym) = -1;
6196 }
6197
6198 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6199
6200 void
6201 initialize_objfile_symbol (struct symbol *sym)
6202 {
6203 memset (sym, 0, sizeof (*sym));
6204 initialize_objfile_symbol_1 (sym);
6205 }
6206
6207 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6208 obstack. */
6209
6210 struct symbol *
6211 allocate_symbol (struct objfile *objfile)
6212 {
6213 struct symbol *result;
6214
6215 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6216 initialize_objfile_symbol_1 (result);
6217
6218 return result;
6219 }
6220
6221 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6222 obstack. */
6223
6224 struct template_symbol *
6225 allocate_template_symbol (struct objfile *objfile)
6226 {
6227 struct template_symbol *result;
6228
6229 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6230 initialize_objfile_symbol_1 (result);
6231
6232 return result;
6233 }
6234
6235 /* See symtab.h. */
6236
6237 struct objfile *
6238 symbol_objfile (const struct symbol *symbol)
6239 {
6240 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6241 return SYMTAB_OBJFILE (symbol->owner.symtab);
6242 }
6243
6244 /* See symtab.h. */
6245
6246 struct gdbarch *
6247 symbol_arch (const struct symbol *symbol)
6248 {
6249 if (!SYMBOL_OBJFILE_OWNED (symbol))
6250 return symbol->owner.arch;
6251 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6252 }
6253
6254 /* See symtab.h. */
6255
6256 struct symtab *
6257 symbol_symtab (const struct symbol *symbol)
6258 {
6259 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6260 return symbol->owner.symtab;
6261 }
6262
6263 /* See symtab.h. */
6264
6265 void
6266 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6267 {
6268 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6269 symbol->owner.symtab = symtab;
6270 }
6271
6272 /* See symtab.h. */
6273
6274 CORE_ADDR
6275 get_symbol_address (const struct symbol *sym)
6276 {
6277 gdb_assert (sym->maybe_copied);
6278 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6279
6280 const char *linkage_name = SYMBOL_LINKAGE_NAME (sym);
6281
6282 for (objfile *objfile : current_program_space->objfiles ())
6283 {
6284 bound_minimal_symbol minsym
6285 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6286 if (minsym.minsym != nullptr)
6287 return BMSYMBOL_VALUE_ADDRESS (minsym);
6288 }
6289 return sym->ginfo.value.address;
6290 }
6291
6292 /* See symtab.h. */
6293
6294 CORE_ADDR
6295 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6296 {
6297 gdb_assert (minsym->maybe_copied);
6298 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6299
6300 const char *linkage_name = MSYMBOL_LINKAGE_NAME (minsym);
6301
6302 for (objfile *objfile : current_program_space->objfiles ())
6303 {
6304 if ((objfile->flags & OBJF_MAINLINE) != 0)
6305 {
6306 bound_minimal_symbol found
6307 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6308 if (found.minsym != nullptr)
6309 return BMSYMBOL_VALUE_ADDRESS (found);
6310 }
6311 }
6312 return (minsym->value.address
6313 + ANOFFSET (objf->section_offsets, minsym->section));
6314 }
6315
6316 \f
6317
6318 void
6319 _initialize_symtab (void)
6320 {
6321 cmd_list_element *c;
6322
6323 initialize_ordinary_address_classes ();
6324
6325 c = add_info ("variables", info_variables_command,
6326 info_print_args_help (_("\
6327 All global and static variable names or those matching REGEXPs.\n\
6328 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6329 Prints the global and static variables.\n"),
6330 _("global and static variables"),
6331 true));
6332 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6333 if (dbx_commands)
6334 {
6335 c = add_com ("whereis", class_info, info_variables_command,
6336 info_print_args_help (_("\
6337 All global and static variable names, or those matching REGEXPs.\n\
6338 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6339 Prints the global and static variables.\n"),
6340 _("global and static variables"),
6341 true));
6342 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6343 }
6344
6345 c = add_info ("functions", info_functions_command,
6346 info_print_args_help (_("\
6347 All function names or those matching REGEXPs.\n\
6348 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6349 Prints the functions.\n"),
6350 _("functions"),
6351 true));
6352 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6353
6354 c = add_info ("types", info_types_command, _("\
6355 All type names, or those matching REGEXP.\n\
6356 Usage: info types [-q] [REGEXP]\n\
6357 Print information about all types matching REGEXP, or all types if no\n\
6358 REGEXP is given. The optional flag -q disables printing of headers."));
6359 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6360
6361 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6362
6363 static std::string info_sources_help
6364 = gdb::option::build_help (_("\
6365 All source files in the program or those matching REGEXP.\n\
6366 Usage: info sources [OPTION]... [REGEXP]\n\
6367 By default, REGEXP is used to match anywhere in the filename.\n\
6368 \n\
6369 Options:\n\
6370 %OPTIONS%"),
6371 info_sources_opts);
6372
6373 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6374 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6375
6376 add_com ("rbreak", class_breakpoint, rbreak_command,
6377 _("Set a breakpoint for all functions matching REGEXP."));
6378
6379 add_setshow_enum_cmd ("multiple-symbols", no_class,
6380 multiple_symbols_modes, &multiple_symbols_mode,
6381 _("\
6382 Set how the debugger handles ambiguities in expressions."), _("\
6383 Show how the debugger handles ambiguities in expressions."), _("\
6384 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6385 NULL, NULL, &setlist, &showlist);
6386
6387 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6388 &basenames_may_differ, _("\
6389 Set whether a source file may have multiple base names."), _("\
6390 Show whether a source file may have multiple base names."), _("\
6391 (A \"base name\" is the name of a file with the directory part removed.\n\
6392 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6393 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6394 before comparing them. Canonicalization is an expensive operation,\n\
6395 but it allows the same file be known by more than one base name.\n\
6396 If not set (the default), all source files are assumed to have just\n\
6397 one base name, and gdb will do file name comparisons more efficiently."),
6398 NULL, NULL,
6399 &setlist, &showlist);
6400
6401 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6402 _("Set debugging of symbol table creation."),
6403 _("Show debugging of symbol table creation."), _("\
6404 When enabled (non-zero), debugging messages are printed when building\n\
6405 symbol tables. A value of 1 (one) normally provides enough information.\n\
6406 A value greater than 1 provides more verbose information."),
6407 NULL,
6408 NULL,
6409 &setdebuglist, &showdebuglist);
6410
6411 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6412 _("\
6413 Set debugging of symbol lookup."), _("\
6414 Show debugging of symbol lookup."), _("\
6415 When enabled (non-zero), symbol lookups are logged."),
6416 NULL, NULL,
6417 &setdebuglist, &showdebuglist);
6418
6419 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6420 &new_symbol_cache_size,
6421 _("Set the size of the symbol cache."),
6422 _("Show the size of the symbol cache."), _("\
6423 The size of the symbol cache.\n\
6424 If zero then the symbol cache is disabled."),
6425 set_symbol_cache_size_handler, NULL,
6426 &maintenance_set_cmdlist,
6427 &maintenance_show_cmdlist);
6428
6429 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6430 _("Dump the symbol cache for each program space."),
6431 &maintenanceprintlist);
6432
6433 add_cmd ("symbol-cache-statistics", class_maintenance,
6434 maintenance_print_symbol_cache_statistics,
6435 _("Print symbol cache statistics for each program space."),
6436 &maintenanceprintlist);
6437
6438 add_cmd ("flush-symbol-cache", class_maintenance,
6439 maintenance_flush_symbol_cache,
6440 _("Flush the symbol cache for each program space."),
6441 &maintenancelist);
6442
6443 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6444 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6445 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6446 }
This page took 0.185087 seconds and 4 git commands to generate.