aarch64: Fix segfault on unicode symbols
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->la_name_of_this == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->la_name, host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->la_name_of_this,
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->la_name_of_this);
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR distance = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct block *b;
2918 const struct blockvector *bv;
2919
2920 bv = COMPUNIT_BLOCKVECTOR (cust);
2921 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2922
2923 if (BLOCK_START (b) <= pc
2924 && BLOCK_END (b) > pc
2925 && (distance == 0
2926 || BLOCK_END (b) - BLOCK_START (b) < distance))
2927 {
2928 /* For an objfile that has its functions reordered,
2929 find_pc_psymtab will find the proper partial symbol table
2930 and we simply return its corresponding symtab. */
2931 /* In order to better support objfiles that contain both
2932 stabs and coff debugging info, we continue on if a psymtab
2933 can't be found. */
2934 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2935 {
2936 struct compunit_symtab *result;
2937
2938 result
2939 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2940 msymbol,
2941 pc,
2942 section,
2943 0);
2944 if (result != NULL)
2945 return result;
2946 }
2947 if (section != 0)
2948 {
2949 struct block_iterator iter;
2950 struct symbol *sym = NULL;
2951
2952 ALL_BLOCK_SYMBOLS (b, iter, sym)
2953 {
2954 fixup_symbol_section (sym, obj_file);
2955 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2956 sym),
2957 section))
2958 break;
2959 }
2960 if (sym == NULL)
2961 continue; /* No symbol in this symtab matches
2962 section. */
2963 }
2964 distance = BLOCK_END (b) - BLOCK_START (b);
2965 best_cust = cust;
2966 }
2967 }
2968 }
2969
2970 if (best_cust != NULL)
2971 return best_cust;
2972
2973 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2974
2975 for (objfile *objf : current_program_space->objfiles ())
2976 {
2977 struct compunit_symtab *result;
2978
2979 if (!objf->sf)
2980 continue;
2981 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2982 msymbol,
2983 pc, section,
2984 1);
2985 if (result != NULL)
2986 return result;
2987 }
2988
2989 return NULL;
2990 }
2991
2992 /* Find the compunit symtab associated with PC.
2993 This will read in debug info as necessary.
2994 Backward compatibility, no section. */
2995
2996 struct compunit_symtab *
2997 find_pc_compunit_symtab (CORE_ADDR pc)
2998 {
2999 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3000 }
3001
3002 /* See symtab.h. */
3003
3004 struct symbol *
3005 find_symbol_at_address (CORE_ADDR address)
3006 {
3007 for (objfile *objfile : current_program_space->objfiles ())
3008 {
3009 if (objfile->sf == NULL
3010 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3011 continue;
3012
3013 struct compunit_symtab *symtab
3014 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3015 if (symtab != NULL)
3016 {
3017 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3018
3019 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3020 {
3021 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3022 struct block_iterator iter;
3023 struct symbol *sym;
3024
3025 ALL_BLOCK_SYMBOLS (b, iter, sym)
3026 {
3027 if (SYMBOL_CLASS (sym) == LOC_STATIC
3028 && SYMBOL_VALUE_ADDRESS (sym) == address)
3029 return sym;
3030 }
3031 }
3032 }
3033 }
3034
3035 return NULL;
3036 }
3037
3038 \f
3039
3040 /* Find the source file and line number for a given PC value and SECTION.
3041 Return a structure containing a symtab pointer, a line number,
3042 and a pc range for the entire source line.
3043 The value's .pc field is NOT the specified pc.
3044 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3045 use the line that ends there. Otherwise, in that case, the line
3046 that begins there is used. */
3047
3048 /* The big complication here is that a line may start in one file, and end just
3049 before the start of another file. This usually occurs when you #include
3050 code in the middle of a subroutine. To properly find the end of a line's PC
3051 range, we must search all symtabs associated with this compilation unit, and
3052 find the one whose first PC is closer than that of the next line in this
3053 symtab. */
3054
3055 struct symtab_and_line
3056 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3057 {
3058 struct compunit_symtab *cust;
3059 struct linetable *l;
3060 int len;
3061 struct linetable_entry *item;
3062 const struct blockvector *bv;
3063 struct bound_minimal_symbol msymbol;
3064
3065 /* Info on best line seen so far, and where it starts, and its file. */
3066
3067 struct linetable_entry *best = NULL;
3068 CORE_ADDR best_end = 0;
3069 struct symtab *best_symtab = 0;
3070
3071 /* Store here the first line number
3072 of a file which contains the line at the smallest pc after PC.
3073 If we don't find a line whose range contains PC,
3074 we will use a line one less than this,
3075 with a range from the start of that file to the first line's pc. */
3076 struct linetable_entry *alt = NULL;
3077
3078 /* Info on best line seen in this file. */
3079
3080 struct linetable_entry *prev;
3081
3082 /* If this pc is not from the current frame,
3083 it is the address of the end of a call instruction.
3084 Quite likely that is the start of the following statement.
3085 But what we want is the statement containing the instruction.
3086 Fudge the pc to make sure we get that. */
3087
3088 /* It's tempting to assume that, if we can't find debugging info for
3089 any function enclosing PC, that we shouldn't search for line
3090 number info, either. However, GAS can emit line number info for
3091 assembly files --- very helpful when debugging hand-written
3092 assembly code. In such a case, we'd have no debug info for the
3093 function, but we would have line info. */
3094
3095 if (notcurrent)
3096 pc -= 1;
3097
3098 /* elz: added this because this function returned the wrong
3099 information if the pc belongs to a stub (import/export)
3100 to call a shlib function. This stub would be anywhere between
3101 two functions in the target, and the line info was erroneously
3102 taken to be the one of the line before the pc. */
3103
3104 /* RT: Further explanation:
3105
3106 * We have stubs (trampolines) inserted between procedures.
3107 *
3108 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3109 * exists in the main image.
3110 *
3111 * In the minimal symbol table, we have a bunch of symbols
3112 * sorted by start address. The stubs are marked as "trampoline",
3113 * the others appear as text. E.g.:
3114 *
3115 * Minimal symbol table for main image
3116 * main: code for main (text symbol)
3117 * shr1: stub (trampoline symbol)
3118 * foo: code for foo (text symbol)
3119 * ...
3120 * Minimal symbol table for "shr1" image:
3121 * ...
3122 * shr1: code for shr1 (text symbol)
3123 * ...
3124 *
3125 * So the code below is trying to detect if we are in the stub
3126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3127 * and if found, do the symbolization from the real-code address
3128 * rather than the stub address.
3129 *
3130 * Assumptions being made about the minimal symbol table:
3131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3132 * if we're really in the trampoline.s If we're beyond it (say
3133 * we're in "foo" in the above example), it'll have a closer
3134 * symbol (the "foo" text symbol for example) and will not
3135 * return the trampoline.
3136 * 2. lookup_minimal_symbol_text() will find a real text symbol
3137 * corresponding to the trampoline, and whose address will
3138 * be different than the trampoline address. I put in a sanity
3139 * check for the address being the same, to avoid an
3140 * infinite recursion.
3141 */
3142 msymbol = lookup_minimal_symbol_by_pc (pc);
3143 if (msymbol.minsym != NULL)
3144 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3145 {
3146 struct bound_minimal_symbol mfunsym
3147 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3148 NULL);
3149
3150 if (mfunsym.minsym == NULL)
3151 /* I eliminated this warning since it is coming out
3152 * in the following situation:
3153 * gdb shmain // test program with shared libraries
3154 * (gdb) break shr1 // function in shared lib
3155 * Warning: In stub for ...
3156 * In the above situation, the shared lib is not loaded yet,
3157 * so of course we can't find the real func/line info,
3158 * but the "break" still works, and the warning is annoying.
3159 * So I commented out the warning. RT */
3160 /* warning ("In stub for %s; unable to find real function/line info",
3161 msymbol->linkage_name ()); */
3162 ;
3163 /* fall through */
3164 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3165 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3166 /* Avoid infinite recursion */
3167 /* See above comment about why warning is commented out. */
3168 /* warning ("In stub for %s; unable to find real function/line info",
3169 msymbol->linkage_name ()); */
3170 ;
3171 /* fall through */
3172 else
3173 {
3174 /* Detect an obvious case of infinite recursion. If this
3175 should occur, we'd like to know about it, so error out,
3176 fatally. */
3177 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3178 internal_error (__FILE__, __LINE__,
3179 _("Infinite recursion detected in find_pc_sect_line;"
3180 "please file a bug report"));
3181
3182 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3183 }
3184 }
3185
3186 symtab_and_line val;
3187 val.pspace = current_program_space;
3188
3189 cust = find_pc_sect_compunit_symtab (pc, section);
3190 if (cust == NULL)
3191 {
3192 /* If no symbol information, return previous pc. */
3193 if (notcurrent)
3194 pc++;
3195 val.pc = pc;
3196 return val;
3197 }
3198
3199 bv = COMPUNIT_BLOCKVECTOR (cust);
3200
3201 /* Look at all the symtabs that share this blockvector.
3202 They all have the same apriori range, that we found was right;
3203 but they have different line tables. */
3204
3205 for (symtab *iter_s : compunit_filetabs (cust))
3206 {
3207 /* Find the best line in this symtab. */
3208 l = SYMTAB_LINETABLE (iter_s);
3209 if (!l)
3210 continue;
3211 len = l->nitems;
3212 if (len <= 0)
3213 {
3214 /* I think len can be zero if the symtab lacks line numbers
3215 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3216 I'm not sure which, and maybe it depends on the symbol
3217 reader). */
3218 continue;
3219 }
3220
3221 prev = NULL;
3222 item = l->item; /* Get first line info. */
3223
3224 /* Is this file's first line closer than the first lines of other files?
3225 If so, record this file, and its first line, as best alternate. */
3226 if (item->pc > pc && (!alt || item->pc < alt->pc))
3227 alt = item;
3228
3229 auto pc_compare = [](const CORE_ADDR & comp_pc,
3230 const struct linetable_entry & lhs)->bool
3231 {
3232 return comp_pc < lhs.pc;
3233 };
3234
3235 struct linetable_entry *first = item;
3236 struct linetable_entry *last = item + len;
3237 item = std::upper_bound (first, last, pc, pc_compare);
3238 if (item != first)
3239 {
3240 /* Found a matching item. Skip backwards over any end of
3241 sequence markers. */
3242 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3243 /* Nothing. */;
3244 }
3245
3246 /* At this point, prev points at the line whose start addr is <= pc, and
3247 item points at the next line. If we ran off the end of the linetable
3248 (pc >= start of the last line), then prev == item. If pc < start of
3249 the first line, prev will not be set. */
3250
3251 /* Is this file's best line closer than the best in the other files?
3252 If so, record this file, and its best line, as best so far. Don't
3253 save prev if it represents the end of a function (i.e. line number
3254 0) instead of a real line. */
3255
3256 if (prev && prev->line && (!best || prev->pc > best->pc))
3257 {
3258 best = prev;
3259 best_symtab = iter_s;
3260
3261 /* If during the binary search we land on a non-statement entry,
3262 scan backward through entries at the same address to see if
3263 there is an entry marked as is-statement. In theory this
3264 duplication should have been removed from the line table
3265 during construction, this is just a double check. If the line
3266 table has had the duplication removed then this should be
3267 pretty cheap. */
3268 if (!best->is_stmt)
3269 {
3270 struct linetable_entry *tmp = best;
3271 while (tmp > first && (tmp - 1)->pc == tmp->pc
3272 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3273 --tmp;
3274 if (tmp->is_stmt)
3275 best = tmp;
3276 }
3277
3278 /* Discard BEST_END if it's before the PC of the current BEST. */
3279 if (best_end <= best->pc)
3280 best_end = 0;
3281 }
3282
3283 /* If another line (denoted by ITEM) is in the linetable and its
3284 PC is after BEST's PC, but before the current BEST_END, then
3285 use ITEM's PC as the new best_end. */
3286 if (best && item < last && item->pc > best->pc
3287 && (best_end == 0 || best_end > item->pc))
3288 best_end = item->pc;
3289 }
3290
3291 if (!best_symtab)
3292 {
3293 /* If we didn't find any line number info, just return zeros.
3294 We used to return alt->line - 1 here, but that could be
3295 anywhere; if we don't have line number info for this PC,
3296 don't make some up. */
3297 val.pc = pc;
3298 }
3299 else if (best->line == 0)
3300 {
3301 /* If our best fit is in a range of PC's for which no line
3302 number info is available (line number is zero) then we didn't
3303 find any valid line information. */
3304 val.pc = pc;
3305 }
3306 else
3307 {
3308 val.is_stmt = best->is_stmt;
3309 val.symtab = best_symtab;
3310 val.line = best->line;
3311 val.pc = best->pc;
3312 if (best_end && (!alt || best_end < alt->pc))
3313 val.end = best_end;
3314 else if (alt)
3315 val.end = alt->pc;
3316 else
3317 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3318 }
3319 val.section = section;
3320 return val;
3321 }
3322
3323 /* Backward compatibility (no section). */
3324
3325 struct symtab_and_line
3326 find_pc_line (CORE_ADDR pc, int notcurrent)
3327 {
3328 struct obj_section *section;
3329
3330 section = find_pc_overlay (pc);
3331 if (pc_in_unmapped_range (pc, section))
3332 pc = overlay_mapped_address (pc, section);
3333 return find_pc_sect_line (pc, section, notcurrent);
3334 }
3335
3336 /* See symtab.h. */
3337
3338 struct symtab *
3339 find_pc_line_symtab (CORE_ADDR pc)
3340 {
3341 struct symtab_and_line sal;
3342
3343 /* This always passes zero for NOTCURRENT to find_pc_line.
3344 There are currently no callers that ever pass non-zero. */
3345 sal = find_pc_line (pc, 0);
3346 return sal.symtab;
3347 }
3348 \f
3349 /* Find line number LINE in any symtab whose name is the same as
3350 SYMTAB.
3351
3352 If found, return the symtab that contains the linetable in which it was
3353 found, set *INDEX to the index in the linetable of the best entry
3354 found, and set *EXACT_MATCH to true if the value returned is an
3355 exact match.
3356
3357 If not found, return NULL. */
3358
3359 struct symtab *
3360 find_line_symtab (struct symtab *sym_tab, int line,
3361 int *index, bool *exact_match)
3362 {
3363 int exact = 0; /* Initialized here to avoid a compiler warning. */
3364
3365 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3366 so far seen. */
3367
3368 int best_index;
3369 struct linetable *best_linetable;
3370 struct symtab *best_symtab;
3371
3372 /* First try looking it up in the given symtab. */
3373 best_linetable = SYMTAB_LINETABLE (sym_tab);
3374 best_symtab = sym_tab;
3375 best_index = find_line_common (best_linetable, line, &exact, 0);
3376 if (best_index < 0 || !exact)
3377 {
3378 /* Didn't find an exact match. So we better keep looking for
3379 another symtab with the same name. In the case of xcoff,
3380 multiple csects for one source file (produced by IBM's FORTRAN
3381 compiler) produce multiple symtabs (this is unavoidable
3382 assuming csects can be at arbitrary places in memory and that
3383 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3384
3385 /* BEST is the smallest linenumber > LINE so far seen,
3386 or 0 if none has been seen so far.
3387 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3388 int best;
3389
3390 if (best_index >= 0)
3391 best = best_linetable->item[best_index].line;
3392 else
3393 best = 0;
3394
3395 for (objfile *objfile : current_program_space->objfiles ())
3396 {
3397 if (objfile->sf)
3398 objfile->sf->qf->expand_symtabs_with_fullname
3399 (objfile, symtab_to_fullname (sym_tab));
3400 }
3401
3402 for (objfile *objfile : current_program_space->objfiles ())
3403 {
3404 for (compunit_symtab *cu : objfile->compunits ())
3405 {
3406 for (symtab *s : compunit_filetabs (cu))
3407 {
3408 struct linetable *l;
3409 int ind;
3410
3411 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3412 continue;
3413 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3414 symtab_to_fullname (s)) != 0)
3415 continue;
3416 l = SYMTAB_LINETABLE (s);
3417 ind = find_line_common (l, line, &exact, 0);
3418 if (ind >= 0)
3419 {
3420 if (exact)
3421 {
3422 best_index = ind;
3423 best_linetable = l;
3424 best_symtab = s;
3425 goto done;
3426 }
3427 if (best == 0 || l->item[ind].line < best)
3428 {
3429 best = l->item[ind].line;
3430 best_index = ind;
3431 best_linetable = l;
3432 best_symtab = s;
3433 }
3434 }
3435 }
3436 }
3437 }
3438 }
3439 done:
3440 if (best_index < 0)
3441 return NULL;
3442
3443 if (index)
3444 *index = best_index;
3445 if (exact_match)
3446 *exact_match = (exact != 0);
3447
3448 return best_symtab;
3449 }
3450
3451 /* Given SYMTAB, returns all the PCs function in the symtab that
3452 exactly match LINE. Returns an empty vector if there are no exact
3453 matches, but updates BEST_ITEM in this case. */
3454
3455 std::vector<CORE_ADDR>
3456 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3457 struct linetable_entry **best_item)
3458 {
3459 int start = 0;
3460 std::vector<CORE_ADDR> result;
3461
3462 /* First, collect all the PCs that are at this line. */
3463 while (1)
3464 {
3465 int was_exact;
3466 int idx;
3467
3468 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3469 start);
3470 if (idx < 0)
3471 break;
3472
3473 if (!was_exact)
3474 {
3475 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3476
3477 if (*best_item == NULL
3478 || (item->line < (*best_item)->line && item->is_stmt))
3479 *best_item = item;
3480
3481 break;
3482 }
3483
3484 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3485 start = idx + 1;
3486 }
3487
3488 return result;
3489 }
3490
3491 \f
3492 /* Set the PC value for a given source file and line number and return true.
3493 Returns false for invalid line number (and sets the PC to 0).
3494 The source file is specified with a struct symtab. */
3495
3496 bool
3497 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3498 {
3499 struct linetable *l;
3500 int ind;
3501
3502 *pc = 0;
3503 if (symtab == 0)
3504 return false;
3505
3506 symtab = find_line_symtab (symtab, line, &ind, NULL);
3507 if (symtab != NULL)
3508 {
3509 l = SYMTAB_LINETABLE (symtab);
3510 *pc = l->item[ind].pc;
3511 return true;
3512 }
3513 else
3514 return false;
3515 }
3516
3517 /* Find the range of pc values in a line.
3518 Store the starting pc of the line into *STARTPTR
3519 and the ending pc (start of next line) into *ENDPTR.
3520 Returns true to indicate success.
3521 Returns false if could not find the specified line. */
3522
3523 bool
3524 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3525 CORE_ADDR *endptr)
3526 {
3527 CORE_ADDR startaddr;
3528 struct symtab_and_line found_sal;
3529
3530 startaddr = sal.pc;
3531 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3532 return false;
3533
3534 /* This whole function is based on address. For example, if line 10 has
3535 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3536 "info line *0x123" should say the line goes from 0x100 to 0x200
3537 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3538 This also insures that we never give a range like "starts at 0x134
3539 and ends at 0x12c". */
3540
3541 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3542 if (found_sal.line != sal.line)
3543 {
3544 /* The specified line (sal) has zero bytes. */
3545 *startptr = found_sal.pc;
3546 *endptr = found_sal.pc;
3547 }
3548 else
3549 {
3550 *startptr = found_sal.pc;
3551 *endptr = found_sal.end;
3552 }
3553 return true;
3554 }
3555
3556 /* Given a line table and a line number, return the index into the line
3557 table for the pc of the nearest line whose number is >= the specified one.
3558 Return -1 if none is found. The value is >= 0 if it is an index.
3559 START is the index at which to start searching the line table.
3560
3561 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3562
3563 static int
3564 find_line_common (struct linetable *l, int lineno,
3565 int *exact_match, int start)
3566 {
3567 int i;
3568 int len;
3569
3570 /* BEST is the smallest linenumber > LINENO so far seen,
3571 or 0 if none has been seen so far.
3572 BEST_INDEX identifies the item for it. */
3573
3574 int best_index = -1;
3575 int best = 0;
3576
3577 *exact_match = 0;
3578
3579 if (lineno <= 0)
3580 return -1;
3581 if (l == 0)
3582 return -1;
3583
3584 len = l->nitems;
3585 for (i = start; i < len; i++)
3586 {
3587 struct linetable_entry *item = &(l->item[i]);
3588
3589 /* Ignore non-statements. */
3590 if (!item->is_stmt)
3591 continue;
3592
3593 if (item->line == lineno)
3594 {
3595 /* Return the first (lowest address) entry which matches. */
3596 *exact_match = 1;
3597 return i;
3598 }
3599
3600 if (item->line > lineno && (best == 0 || item->line < best))
3601 {
3602 best = item->line;
3603 best_index = i;
3604 }
3605 }
3606
3607 /* If we got here, we didn't get an exact match. */
3608 return best_index;
3609 }
3610
3611 bool
3612 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3613 {
3614 struct symtab_and_line sal;
3615
3616 sal = find_pc_line (pc, 0);
3617 *startptr = sal.pc;
3618 *endptr = sal.end;
3619 return sal.symtab != 0;
3620 }
3621
3622 /* Helper for find_function_start_sal. Does most of the work, except
3623 setting the sal's symbol. */
3624
3625 static symtab_and_line
3626 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3627 bool funfirstline)
3628 {
3629 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3630
3631 if (funfirstline && sal.symtab != NULL
3632 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3633 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3634 {
3635 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3636
3637 sal.pc = func_addr;
3638 if (gdbarch_skip_entrypoint_p (gdbarch))
3639 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3640 return sal;
3641 }
3642
3643 /* We always should have a line for the function start address.
3644 If we don't, something is odd. Create a plain SAL referring
3645 just the PC and hope that skip_prologue_sal (if requested)
3646 can find a line number for after the prologue. */
3647 if (sal.pc < func_addr)
3648 {
3649 sal = {};
3650 sal.pspace = current_program_space;
3651 sal.pc = func_addr;
3652 sal.section = section;
3653 }
3654
3655 if (funfirstline)
3656 skip_prologue_sal (&sal);
3657
3658 return sal;
3659 }
3660
3661 /* See symtab.h. */
3662
3663 symtab_and_line
3664 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3665 bool funfirstline)
3666 {
3667 symtab_and_line sal
3668 = find_function_start_sal_1 (func_addr, section, funfirstline);
3669
3670 /* find_function_start_sal_1 does a linetable search, so it finds
3671 the symtab and linenumber, but not a symbol. Fill in the
3672 function symbol too. */
3673 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3674
3675 return sal;
3676 }
3677
3678 /* See symtab.h. */
3679
3680 symtab_and_line
3681 find_function_start_sal (symbol *sym, bool funfirstline)
3682 {
3683 fixup_symbol_section (sym, NULL);
3684 symtab_and_line sal
3685 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3686 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3687 funfirstline);
3688 sal.symbol = sym;
3689 return sal;
3690 }
3691
3692
3693 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3694 address for that function that has an entry in SYMTAB's line info
3695 table. If such an entry cannot be found, return FUNC_ADDR
3696 unaltered. */
3697
3698 static CORE_ADDR
3699 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3700 {
3701 CORE_ADDR func_start, func_end;
3702 struct linetable *l;
3703 int i;
3704
3705 /* Give up if this symbol has no lineinfo table. */
3706 l = SYMTAB_LINETABLE (symtab);
3707 if (l == NULL)
3708 return func_addr;
3709
3710 /* Get the range for the function's PC values, or give up if we
3711 cannot, for some reason. */
3712 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3713 return func_addr;
3714
3715 /* Linetable entries are ordered by PC values, see the commentary in
3716 symtab.h where `struct linetable' is defined. Thus, the first
3717 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3718 address we are looking for. */
3719 for (i = 0; i < l->nitems; i++)
3720 {
3721 struct linetable_entry *item = &(l->item[i]);
3722
3723 /* Don't use line numbers of zero, they mark special entries in
3724 the table. See the commentary on symtab.h before the
3725 definition of struct linetable. */
3726 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3727 return item->pc;
3728 }
3729
3730 return func_addr;
3731 }
3732
3733 /* Adjust SAL to the first instruction past the function prologue.
3734 If the PC was explicitly specified, the SAL is not changed.
3735 If the line number was explicitly specified then the SAL can still be
3736 updated, unless the language for SAL is assembler, in which case the SAL
3737 will be left unchanged.
3738 If SAL is already past the prologue, then do nothing. */
3739
3740 void
3741 skip_prologue_sal (struct symtab_and_line *sal)
3742 {
3743 struct symbol *sym;
3744 struct symtab_and_line start_sal;
3745 CORE_ADDR pc, saved_pc;
3746 struct obj_section *section;
3747 const char *name;
3748 struct objfile *objfile;
3749 struct gdbarch *gdbarch;
3750 const struct block *b, *function_block;
3751 int force_skip, skip;
3752
3753 /* Do not change the SAL if PC was specified explicitly. */
3754 if (sal->explicit_pc)
3755 return;
3756
3757 /* In assembly code, if the user asks for a specific line then we should
3758 not adjust the SAL. The user already has instruction level
3759 visibility in this case, so selecting a line other than one requested
3760 is likely to be the wrong choice. */
3761 if (sal->symtab != nullptr
3762 && sal->explicit_line
3763 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3764 return;
3765
3766 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3767
3768 switch_to_program_space_and_thread (sal->pspace);
3769
3770 sym = find_pc_sect_function (sal->pc, sal->section);
3771 if (sym != NULL)
3772 {
3773 fixup_symbol_section (sym, NULL);
3774
3775 objfile = symbol_objfile (sym);
3776 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3777 section = SYMBOL_OBJ_SECTION (objfile, sym);
3778 name = sym->linkage_name ();
3779 }
3780 else
3781 {
3782 struct bound_minimal_symbol msymbol
3783 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3784
3785 if (msymbol.minsym == NULL)
3786 return;
3787
3788 objfile = msymbol.objfile;
3789 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3790 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3791 name = msymbol.minsym->linkage_name ();
3792 }
3793
3794 gdbarch = objfile->arch ();
3795
3796 /* Process the prologue in two passes. In the first pass try to skip the
3797 prologue (SKIP is true) and verify there is a real need for it (indicated
3798 by FORCE_SKIP). If no such reason was found run a second pass where the
3799 prologue is not skipped (SKIP is false). */
3800
3801 skip = 1;
3802 force_skip = 1;
3803
3804 /* Be conservative - allow direct PC (without skipping prologue) only if we
3805 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3806 have to be set by the caller so we use SYM instead. */
3807 if (sym != NULL
3808 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3809 force_skip = 0;
3810
3811 saved_pc = pc;
3812 do
3813 {
3814 pc = saved_pc;
3815
3816 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3817 so that gdbarch_skip_prologue has something unique to work on. */
3818 if (section_is_overlay (section) && !section_is_mapped (section))
3819 pc = overlay_unmapped_address (pc, section);
3820
3821 /* Skip "first line" of function (which is actually its prologue). */
3822 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3823 if (gdbarch_skip_entrypoint_p (gdbarch))
3824 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3825 if (skip)
3826 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3827
3828 /* For overlays, map pc back into its mapped VMA range. */
3829 pc = overlay_mapped_address (pc, section);
3830
3831 /* Calculate line number. */
3832 start_sal = find_pc_sect_line (pc, section, 0);
3833
3834 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3835 line is still part of the same function. */
3836 if (skip && start_sal.pc != pc
3837 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3838 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3839 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3840 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3841 {
3842 /* First pc of next line */
3843 pc = start_sal.end;
3844 /* Recalculate the line number (might not be N+1). */
3845 start_sal = find_pc_sect_line (pc, section, 0);
3846 }
3847
3848 /* On targets with executable formats that don't have a concept of
3849 constructors (ELF with .init has, PE doesn't), gcc emits a call
3850 to `__main' in `main' between the prologue and before user
3851 code. */
3852 if (gdbarch_skip_main_prologue_p (gdbarch)
3853 && name && strcmp_iw (name, "main") == 0)
3854 {
3855 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3856 /* Recalculate the line number (might not be N+1). */
3857 start_sal = find_pc_sect_line (pc, section, 0);
3858 force_skip = 1;
3859 }
3860 }
3861 while (!force_skip && skip--);
3862
3863 /* If we still don't have a valid source line, try to find the first
3864 PC in the lineinfo table that belongs to the same function. This
3865 happens with COFF debug info, which does not seem to have an
3866 entry in lineinfo table for the code after the prologue which has
3867 no direct relation to source. For example, this was found to be
3868 the case with the DJGPP target using "gcc -gcoff" when the
3869 compiler inserted code after the prologue to make sure the stack
3870 is aligned. */
3871 if (!force_skip && sym && start_sal.symtab == NULL)
3872 {
3873 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3874 /* Recalculate the line number. */
3875 start_sal = find_pc_sect_line (pc, section, 0);
3876 }
3877
3878 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3879 forward SAL to the end of the prologue. */
3880 if (sal->pc >= pc)
3881 return;
3882
3883 sal->pc = pc;
3884 sal->section = section;
3885 sal->symtab = start_sal.symtab;
3886 sal->line = start_sal.line;
3887 sal->end = start_sal.end;
3888
3889 /* Check if we are now inside an inlined function. If we can,
3890 use the call site of the function instead. */
3891 b = block_for_pc_sect (sal->pc, sal->section);
3892 function_block = NULL;
3893 while (b != NULL)
3894 {
3895 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3896 function_block = b;
3897 else if (BLOCK_FUNCTION (b) != NULL)
3898 break;
3899 b = BLOCK_SUPERBLOCK (b);
3900 }
3901 if (function_block != NULL
3902 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3903 {
3904 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3905 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3906 }
3907 }
3908
3909 /* Given PC at the function's start address, attempt to find the
3910 prologue end using SAL information. Return zero if the skip fails.
3911
3912 A non-optimized prologue traditionally has one SAL for the function
3913 and a second for the function body. A single line function has
3914 them both pointing at the same line.
3915
3916 An optimized prologue is similar but the prologue may contain
3917 instructions (SALs) from the instruction body. Need to skip those
3918 while not getting into the function body.
3919
3920 The functions end point and an increasing SAL line are used as
3921 indicators of the prologue's endpoint.
3922
3923 This code is based on the function refine_prologue_limit
3924 (found in ia64). */
3925
3926 CORE_ADDR
3927 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3928 {
3929 struct symtab_and_line prologue_sal;
3930 CORE_ADDR start_pc;
3931 CORE_ADDR end_pc;
3932 const struct block *bl;
3933
3934 /* Get an initial range for the function. */
3935 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3936 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3937
3938 prologue_sal = find_pc_line (start_pc, 0);
3939 if (prologue_sal.line != 0)
3940 {
3941 /* For languages other than assembly, treat two consecutive line
3942 entries at the same address as a zero-instruction prologue.
3943 The GNU assembler emits separate line notes for each instruction
3944 in a multi-instruction macro, but compilers generally will not
3945 do this. */
3946 if (prologue_sal.symtab->language != language_asm)
3947 {
3948 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3949 int idx = 0;
3950
3951 /* Skip any earlier lines, and any end-of-sequence marker
3952 from a previous function. */
3953 while (linetable->item[idx].pc != prologue_sal.pc
3954 || linetable->item[idx].line == 0)
3955 idx++;
3956
3957 if (idx+1 < linetable->nitems
3958 && linetable->item[idx+1].line != 0
3959 && linetable->item[idx+1].pc == start_pc)
3960 return start_pc;
3961 }
3962
3963 /* If there is only one sal that covers the entire function,
3964 then it is probably a single line function, like
3965 "foo(){}". */
3966 if (prologue_sal.end >= end_pc)
3967 return 0;
3968
3969 while (prologue_sal.end < end_pc)
3970 {
3971 struct symtab_and_line sal;
3972
3973 sal = find_pc_line (prologue_sal.end, 0);
3974 if (sal.line == 0)
3975 break;
3976 /* Assume that a consecutive SAL for the same (or larger)
3977 line mark the prologue -> body transition. */
3978 if (sal.line >= prologue_sal.line)
3979 break;
3980 /* Likewise if we are in a different symtab altogether
3981 (e.g. within a file included via #include).  */
3982 if (sal.symtab != prologue_sal.symtab)
3983 break;
3984
3985 /* The line number is smaller. Check that it's from the
3986 same function, not something inlined. If it's inlined,
3987 then there is no point comparing the line numbers. */
3988 bl = block_for_pc (prologue_sal.end);
3989 while (bl)
3990 {
3991 if (block_inlined_p (bl))
3992 break;
3993 if (BLOCK_FUNCTION (bl))
3994 {
3995 bl = NULL;
3996 break;
3997 }
3998 bl = BLOCK_SUPERBLOCK (bl);
3999 }
4000 if (bl != NULL)
4001 break;
4002
4003 /* The case in which compiler's optimizer/scheduler has
4004 moved instructions into the prologue. We look ahead in
4005 the function looking for address ranges whose
4006 corresponding line number is less the first one that we
4007 found for the function. This is more conservative then
4008 refine_prologue_limit which scans a large number of SALs
4009 looking for any in the prologue. */
4010 prologue_sal = sal;
4011 }
4012 }
4013
4014 if (prologue_sal.end < end_pc)
4015 /* Return the end of this line, or zero if we could not find a
4016 line. */
4017 return prologue_sal.end;
4018 else
4019 /* Don't return END_PC, which is past the end of the function. */
4020 return prologue_sal.pc;
4021 }
4022
4023 /* See symtab.h. */
4024
4025 symbol *
4026 find_function_alias_target (bound_minimal_symbol msymbol)
4027 {
4028 CORE_ADDR func_addr;
4029 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4030 return NULL;
4031
4032 symbol *sym = find_pc_function (func_addr);
4033 if (sym != NULL
4034 && SYMBOL_CLASS (sym) == LOC_BLOCK
4035 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4036 return sym;
4037
4038 return NULL;
4039 }
4040
4041 \f
4042 /* If P is of the form "operator[ \t]+..." where `...' is
4043 some legitimate operator text, return a pointer to the
4044 beginning of the substring of the operator text.
4045 Otherwise, return "". */
4046
4047 static const char *
4048 operator_chars (const char *p, const char **end)
4049 {
4050 *end = "";
4051 if (!startswith (p, CP_OPERATOR_STR))
4052 return *end;
4053 p += CP_OPERATOR_LEN;
4054
4055 /* Don't get faked out by `operator' being part of a longer
4056 identifier. */
4057 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4058 return *end;
4059
4060 /* Allow some whitespace between `operator' and the operator symbol. */
4061 while (*p == ' ' || *p == '\t')
4062 p++;
4063
4064 /* Recognize 'operator TYPENAME'. */
4065
4066 if (isalpha (*p) || *p == '_' || *p == '$')
4067 {
4068 const char *q = p + 1;
4069
4070 while (isalnum (*q) || *q == '_' || *q == '$')
4071 q++;
4072 *end = q;
4073 return p;
4074 }
4075
4076 while (*p)
4077 switch (*p)
4078 {
4079 case '\\': /* regexp quoting */
4080 if (p[1] == '*')
4081 {
4082 if (p[2] == '=') /* 'operator\*=' */
4083 *end = p + 3;
4084 else /* 'operator\*' */
4085 *end = p + 2;
4086 return p;
4087 }
4088 else if (p[1] == '[')
4089 {
4090 if (p[2] == ']')
4091 error (_("mismatched quoting on brackets, "
4092 "try 'operator\\[\\]'"));
4093 else if (p[2] == '\\' && p[3] == ']')
4094 {
4095 *end = p + 4; /* 'operator\[\]' */
4096 return p;
4097 }
4098 else
4099 error (_("nothing is allowed between '[' and ']'"));
4100 }
4101 else
4102 {
4103 /* Gratuitous quote: skip it and move on. */
4104 p++;
4105 continue;
4106 }
4107 break;
4108 case '!':
4109 case '=':
4110 case '*':
4111 case '/':
4112 case '%':
4113 case '^':
4114 if (p[1] == '=')
4115 *end = p + 2;
4116 else
4117 *end = p + 1;
4118 return p;
4119 case '<':
4120 case '>':
4121 case '+':
4122 case '-':
4123 case '&':
4124 case '|':
4125 if (p[0] == '-' && p[1] == '>')
4126 {
4127 /* Struct pointer member operator 'operator->'. */
4128 if (p[2] == '*')
4129 {
4130 *end = p + 3; /* 'operator->*' */
4131 return p;
4132 }
4133 else if (p[2] == '\\')
4134 {
4135 *end = p + 4; /* Hopefully 'operator->\*' */
4136 return p;
4137 }
4138 else
4139 {
4140 *end = p + 2; /* 'operator->' */
4141 return p;
4142 }
4143 }
4144 if (p[1] == '=' || p[1] == p[0])
4145 *end = p + 2;
4146 else
4147 *end = p + 1;
4148 return p;
4149 case '~':
4150 case ',':
4151 *end = p + 1;
4152 return p;
4153 case '(':
4154 if (p[1] != ')')
4155 error (_("`operator ()' must be specified "
4156 "without whitespace in `()'"));
4157 *end = p + 2;
4158 return p;
4159 case '?':
4160 if (p[1] != ':')
4161 error (_("`operator ?:' must be specified "
4162 "without whitespace in `?:'"));
4163 *end = p + 2;
4164 return p;
4165 case '[':
4166 if (p[1] != ']')
4167 error (_("`operator []' must be specified "
4168 "without whitespace in `[]'"));
4169 *end = p + 2;
4170 return p;
4171 default:
4172 error (_("`operator %s' not supported"), p);
4173 break;
4174 }
4175
4176 *end = "";
4177 return *end;
4178 }
4179 \f
4180
4181 /* What part to match in a file name. */
4182
4183 struct filename_partial_match_opts
4184 {
4185 /* Only match the directory name part. */
4186 bool dirname = false;
4187
4188 /* Only match the basename part. */
4189 bool basename = false;
4190 };
4191
4192 /* Data structure to maintain printing state for output_source_filename. */
4193
4194 struct output_source_filename_data
4195 {
4196 /* Output only filenames matching REGEXP. */
4197 std::string regexp;
4198 gdb::optional<compiled_regex> c_regexp;
4199 /* Possibly only match a part of the filename. */
4200 filename_partial_match_opts partial_match;
4201
4202
4203 /* Cache of what we've seen so far. */
4204 struct filename_seen_cache *filename_seen_cache;
4205
4206 /* Flag of whether we're printing the first one. */
4207 int first;
4208 };
4209
4210 /* Slave routine for sources_info. Force line breaks at ,'s.
4211 NAME is the name to print.
4212 DATA contains the state for printing and watching for duplicates. */
4213
4214 static void
4215 output_source_filename (const char *name,
4216 struct output_source_filename_data *data)
4217 {
4218 /* Since a single source file can result in several partial symbol
4219 tables, we need to avoid printing it more than once. Note: if
4220 some of the psymtabs are read in and some are not, it gets
4221 printed both under "Source files for which symbols have been
4222 read" and "Source files for which symbols will be read in on
4223 demand". I consider this a reasonable way to deal with the
4224 situation. I'm not sure whether this can also happen for
4225 symtabs; it doesn't hurt to check. */
4226
4227 /* Was NAME already seen? */
4228 if (data->filename_seen_cache->seen (name))
4229 {
4230 /* Yes; don't print it again. */
4231 return;
4232 }
4233
4234 /* Does it match data->regexp? */
4235 if (data->c_regexp.has_value ())
4236 {
4237 const char *to_match;
4238 std::string dirname;
4239
4240 if (data->partial_match.dirname)
4241 {
4242 dirname = ldirname (name);
4243 to_match = dirname.c_str ();
4244 }
4245 else if (data->partial_match.basename)
4246 to_match = lbasename (name);
4247 else
4248 to_match = name;
4249
4250 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4251 return;
4252 }
4253
4254 /* Print it and reset *FIRST. */
4255 if (! data->first)
4256 printf_filtered (", ");
4257 data->first = 0;
4258
4259 wrap_here ("");
4260 fputs_styled (name, file_name_style.style (), gdb_stdout);
4261 }
4262
4263 /* A callback for map_partial_symbol_filenames. */
4264
4265 static void
4266 output_partial_symbol_filename (const char *filename, const char *fullname,
4267 void *data)
4268 {
4269 output_source_filename (fullname ? fullname : filename,
4270 (struct output_source_filename_data *) data);
4271 }
4272
4273 using isrc_flag_option_def
4274 = gdb::option::flag_option_def<filename_partial_match_opts>;
4275
4276 static const gdb::option::option_def info_sources_option_defs[] = {
4277
4278 isrc_flag_option_def {
4279 "dirname",
4280 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4281 N_("Show only the files having a dirname matching REGEXP."),
4282 },
4283
4284 isrc_flag_option_def {
4285 "basename",
4286 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4287 N_("Show only the files having a basename matching REGEXP."),
4288 },
4289
4290 };
4291
4292 /* Create an option_def_group for the "info sources" options, with
4293 ISRC_OPTS as context. */
4294
4295 static inline gdb::option::option_def_group
4296 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4297 {
4298 return {{info_sources_option_defs}, isrc_opts};
4299 }
4300
4301 /* Prints the header message for the source files that will be printed
4302 with the matching info present in DATA. SYMBOL_MSG is a message
4303 that tells what will or has been done with the symbols of the
4304 matching source files. */
4305
4306 static void
4307 print_info_sources_header (const char *symbol_msg,
4308 const struct output_source_filename_data *data)
4309 {
4310 puts_filtered (symbol_msg);
4311 if (!data->regexp.empty ())
4312 {
4313 if (data->partial_match.dirname)
4314 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4315 data->regexp.c_str ());
4316 else if (data->partial_match.basename)
4317 printf_filtered (_("(basename matching regular expression \"%s\")"),
4318 data->regexp.c_str ());
4319 else
4320 printf_filtered (_("(filename matching regular expression \"%s\")"),
4321 data->regexp.c_str ());
4322 }
4323 puts_filtered ("\n");
4324 }
4325
4326 /* Completer for "info sources". */
4327
4328 static void
4329 info_sources_command_completer (cmd_list_element *ignore,
4330 completion_tracker &tracker,
4331 const char *text, const char *word)
4332 {
4333 const auto group = make_info_sources_options_def_group (nullptr);
4334 if (gdb::option::complete_options
4335 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4336 return;
4337 }
4338
4339 static void
4340 info_sources_command (const char *args, int from_tty)
4341 {
4342 struct output_source_filename_data data;
4343
4344 if (!have_full_symbols () && !have_partial_symbols ())
4345 {
4346 error (_("No symbol table is loaded. Use the \"file\" command."));
4347 }
4348
4349 filename_seen_cache filenames_seen;
4350
4351 auto group = make_info_sources_options_def_group (&data.partial_match);
4352
4353 gdb::option::process_options
4354 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4355
4356 if (args != NULL && *args != '\000')
4357 data.regexp = args;
4358
4359 data.filename_seen_cache = &filenames_seen;
4360 data.first = 1;
4361
4362 if (data.partial_match.dirname && data.partial_match.basename)
4363 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4364 if ((data.partial_match.dirname || data.partial_match.basename)
4365 && data.regexp.empty ())
4366 error (_("Missing REGEXP for 'info sources'."));
4367
4368 if (data.regexp.empty ())
4369 data.c_regexp.reset ();
4370 else
4371 {
4372 int cflags = REG_NOSUB;
4373 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4374 cflags |= REG_ICASE;
4375 #endif
4376 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4377 _("Invalid regexp"));
4378 }
4379
4380 print_info_sources_header
4381 (_("Source files for which symbols have been read in:\n"), &data);
4382
4383 for (objfile *objfile : current_program_space->objfiles ())
4384 {
4385 for (compunit_symtab *cu : objfile->compunits ())
4386 {
4387 for (symtab *s : compunit_filetabs (cu))
4388 {
4389 const char *fullname = symtab_to_fullname (s);
4390
4391 output_source_filename (fullname, &data);
4392 }
4393 }
4394 }
4395 printf_filtered ("\n\n");
4396
4397 print_info_sources_header
4398 (_("Source files for which symbols will be read in on demand:\n"), &data);
4399
4400 filenames_seen.clear ();
4401 data.first = 1;
4402 map_symbol_filenames (output_partial_symbol_filename, &data,
4403 1 /*need_fullname*/);
4404 printf_filtered ("\n");
4405 }
4406
4407 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4408 true compare only lbasename of FILENAMES. */
4409
4410 static bool
4411 file_matches (const char *file, const std::vector<const char *> &filenames,
4412 bool basenames)
4413 {
4414 if (filenames.empty ())
4415 return true;
4416
4417 for (const char *name : filenames)
4418 {
4419 name = (basenames ? lbasename (name) : name);
4420 if (compare_filenames_for_search (file, name))
4421 return true;
4422 }
4423
4424 return false;
4425 }
4426
4427 /* Helper function for std::sort on symbol_search objects. Can only sort
4428 symbols, not minimal symbols. */
4429
4430 int
4431 symbol_search::compare_search_syms (const symbol_search &sym_a,
4432 const symbol_search &sym_b)
4433 {
4434 int c;
4435
4436 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4437 symbol_symtab (sym_b.symbol)->filename);
4438 if (c != 0)
4439 return c;
4440
4441 if (sym_a.block != sym_b.block)
4442 return sym_a.block - sym_b.block;
4443
4444 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4445 }
4446
4447 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4448 If SYM has no symbol_type or symbol_name, returns false. */
4449
4450 bool
4451 treg_matches_sym_type_name (const compiled_regex &treg,
4452 const struct symbol *sym)
4453 {
4454 struct type *sym_type;
4455 std::string printed_sym_type_name;
4456
4457 if (symbol_lookup_debug > 1)
4458 {
4459 fprintf_unfiltered (gdb_stdlog,
4460 "treg_matches_sym_type_name\n sym %s\n",
4461 sym->natural_name ());
4462 }
4463
4464 sym_type = SYMBOL_TYPE (sym);
4465 if (sym_type == NULL)
4466 return false;
4467
4468 {
4469 scoped_switch_to_sym_language_if_auto l (sym);
4470
4471 printed_sym_type_name = type_to_string (sym_type);
4472 }
4473
4474
4475 if (symbol_lookup_debug > 1)
4476 {
4477 fprintf_unfiltered (gdb_stdlog,
4478 " sym_type_name %s\n",
4479 printed_sym_type_name.c_str ());
4480 }
4481
4482
4483 if (printed_sym_type_name.empty ())
4484 return false;
4485
4486 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4487 }
4488
4489 /* See symtab.h. */
4490
4491 bool
4492 global_symbol_searcher::is_suitable_msymbol
4493 (const enum search_domain kind, const minimal_symbol *msymbol)
4494 {
4495 switch (MSYMBOL_TYPE (msymbol))
4496 {
4497 case mst_data:
4498 case mst_bss:
4499 case mst_file_data:
4500 case mst_file_bss:
4501 return kind == VARIABLES_DOMAIN;
4502 case mst_text:
4503 case mst_file_text:
4504 case mst_solib_trampoline:
4505 case mst_text_gnu_ifunc:
4506 return kind == FUNCTIONS_DOMAIN;
4507 default:
4508 return false;
4509 }
4510 }
4511
4512 /* See symtab.h. */
4513
4514 bool
4515 global_symbol_searcher::expand_symtabs
4516 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4517 {
4518 enum search_domain kind = m_kind;
4519 bool found_msymbol = false;
4520
4521 if (objfile->sf)
4522 objfile->sf->qf->expand_symtabs_matching
4523 (objfile,
4524 [&] (const char *filename, bool basenames)
4525 {
4526 return file_matches (filename, filenames, basenames);
4527 },
4528 &lookup_name_info::match_any (),
4529 [&] (const char *symname)
4530 {
4531 return (!preg.has_value ()
4532 || preg->exec (symname, 0, NULL, 0) == 0);
4533 },
4534 NULL,
4535 kind);
4536
4537 /* Here, we search through the minimal symbol tables for functions and
4538 variables that match, and force their symbols to be read. This is in
4539 particular necessary for demangled variable names, which are no longer
4540 put into the partial symbol tables. The symbol will then be found
4541 during the scan of symtabs later.
4542
4543 For functions, find_pc_symtab should succeed if we have debug info for
4544 the function, for variables we have to call
4545 lookup_symbol_in_objfile_from_linkage_name to determine if the
4546 variable has debug info. If the lookup fails, set found_msymbol so
4547 that we will rescan to print any matching symbols without debug info.
4548 We only search the objfile the msymbol came from, we no longer search
4549 all objfiles. In large programs (1000s of shared libs) searching all
4550 objfiles is not worth the pain. */
4551 if (filenames.empty ()
4552 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4553 {
4554 for (minimal_symbol *msymbol : objfile->msymbols ())
4555 {
4556 QUIT;
4557
4558 if (msymbol->created_by_gdb)
4559 continue;
4560
4561 if (is_suitable_msymbol (kind, msymbol))
4562 {
4563 if (!preg.has_value ()
4564 || preg->exec (msymbol->natural_name (), 0,
4565 NULL, 0) == 0)
4566 {
4567 /* An important side-effect of these lookup functions is
4568 to expand the symbol table if msymbol is found, later
4569 in the process we will add matching symbols or
4570 msymbols to the results list, and that requires that
4571 the symbols tables are expanded. */
4572 if (kind == FUNCTIONS_DOMAIN
4573 ? (find_pc_compunit_symtab
4574 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4575 == NULL)
4576 : (lookup_symbol_in_objfile_from_linkage_name
4577 (objfile, msymbol->linkage_name (),
4578 VAR_DOMAIN)
4579 .symbol == NULL))
4580 found_msymbol = true;
4581 }
4582 }
4583 }
4584 }
4585
4586 return found_msymbol;
4587 }
4588
4589 /* See symtab.h. */
4590
4591 bool
4592 global_symbol_searcher::add_matching_symbols
4593 (objfile *objfile,
4594 const gdb::optional<compiled_regex> &preg,
4595 const gdb::optional<compiled_regex> &treg,
4596 std::set<symbol_search> *result_set) const
4597 {
4598 enum search_domain kind = m_kind;
4599
4600 /* Add matching symbols (if not already present). */
4601 for (compunit_symtab *cust : objfile->compunits ())
4602 {
4603 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4604
4605 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4606 {
4607 struct block_iterator iter;
4608 struct symbol *sym;
4609 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4610
4611 ALL_BLOCK_SYMBOLS (b, iter, sym)
4612 {
4613 struct symtab *real_symtab = symbol_symtab (sym);
4614
4615 QUIT;
4616
4617 /* Check first sole REAL_SYMTAB->FILENAME. It does
4618 not need to be a substring of symtab_to_fullname as
4619 it may contain "./" etc. */
4620 if ((file_matches (real_symtab->filename, filenames, false)
4621 || ((basenames_may_differ
4622 || file_matches (lbasename (real_symtab->filename),
4623 filenames, true))
4624 && file_matches (symtab_to_fullname (real_symtab),
4625 filenames, false)))
4626 && ((!preg.has_value ()
4627 || preg->exec (sym->natural_name (), 0,
4628 NULL, 0) == 0)
4629 && ((kind == VARIABLES_DOMAIN
4630 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4631 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4632 && SYMBOL_CLASS (sym) != LOC_BLOCK
4633 /* LOC_CONST can be used for more than
4634 just enums, e.g., c++ static const
4635 members. We only want to skip enums
4636 here. */
4637 && !(SYMBOL_CLASS (sym) == LOC_CONST
4638 && (SYMBOL_TYPE (sym)->code ()
4639 == TYPE_CODE_ENUM))
4640 && (!treg.has_value ()
4641 || treg_matches_sym_type_name (*treg, sym)))
4642 || (kind == FUNCTIONS_DOMAIN
4643 && SYMBOL_CLASS (sym) == LOC_BLOCK
4644 && (!treg.has_value ()
4645 || treg_matches_sym_type_name (*treg,
4646 sym)))
4647 || (kind == TYPES_DOMAIN
4648 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4649 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4650 || (kind == MODULES_DOMAIN
4651 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4652 && SYMBOL_LINE (sym) != 0))))
4653 {
4654 if (result_set->size () < m_max_search_results)
4655 {
4656 /* Match, insert if not already in the results. */
4657 symbol_search ss (block, sym);
4658 if (result_set->find (ss) == result_set->end ())
4659 result_set->insert (ss);
4660 }
4661 else
4662 return false;
4663 }
4664 }
4665 }
4666 }
4667
4668 return true;
4669 }
4670
4671 /* See symtab.h. */
4672
4673 bool
4674 global_symbol_searcher::add_matching_msymbols
4675 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4676 std::vector<symbol_search> *results) const
4677 {
4678 enum search_domain kind = m_kind;
4679
4680 for (minimal_symbol *msymbol : objfile->msymbols ())
4681 {
4682 QUIT;
4683
4684 if (msymbol->created_by_gdb)
4685 continue;
4686
4687 if (is_suitable_msymbol (kind, msymbol))
4688 {
4689 if (!preg.has_value ()
4690 || preg->exec (msymbol->natural_name (), 0,
4691 NULL, 0) == 0)
4692 {
4693 /* For functions we can do a quick check of whether the
4694 symbol might be found via find_pc_symtab. */
4695 if (kind != FUNCTIONS_DOMAIN
4696 || (find_pc_compunit_symtab
4697 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4698 == NULL))
4699 {
4700 if (lookup_symbol_in_objfile_from_linkage_name
4701 (objfile, msymbol->linkage_name (),
4702 VAR_DOMAIN).symbol == NULL)
4703 {
4704 /* Matching msymbol, add it to the results list. */
4705 if (results->size () < m_max_search_results)
4706 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4707 else
4708 return false;
4709 }
4710 }
4711 }
4712 }
4713 }
4714
4715 return true;
4716 }
4717
4718 /* See symtab.h. */
4719
4720 std::vector<symbol_search>
4721 global_symbol_searcher::search () const
4722 {
4723 gdb::optional<compiled_regex> preg;
4724 gdb::optional<compiled_regex> treg;
4725
4726 gdb_assert (m_kind != ALL_DOMAIN);
4727
4728 if (m_symbol_name_regexp != NULL)
4729 {
4730 const char *symbol_name_regexp = m_symbol_name_regexp;
4731
4732 /* Make sure spacing is right for C++ operators.
4733 This is just a courtesy to make the matching less sensitive
4734 to how many spaces the user leaves between 'operator'
4735 and <TYPENAME> or <OPERATOR>. */
4736 const char *opend;
4737 const char *opname = operator_chars (symbol_name_regexp, &opend);
4738
4739 if (*opname)
4740 {
4741 int fix = -1; /* -1 means ok; otherwise number of
4742 spaces needed. */
4743
4744 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4745 {
4746 /* There should 1 space between 'operator' and 'TYPENAME'. */
4747 if (opname[-1] != ' ' || opname[-2] == ' ')
4748 fix = 1;
4749 }
4750 else
4751 {
4752 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4753 if (opname[-1] == ' ')
4754 fix = 0;
4755 }
4756 /* If wrong number of spaces, fix it. */
4757 if (fix >= 0)
4758 {
4759 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4760
4761 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4762 symbol_name_regexp = tmp;
4763 }
4764 }
4765
4766 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4767 ? REG_ICASE : 0);
4768 preg.emplace (symbol_name_regexp, cflags,
4769 _("Invalid regexp"));
4770 }
4771
4772 if (m_symbol_type_regexp != NULL)
4773 {
4774 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4775 ? REG_ICASE : 0);
4776 treg.emplace (m_symbol_type_regexp, cflags,
4777 _("Invalid regexp"));
4778 }
4779
4780 bool found_msymbol = false;
4781 std::set<symbol_search> result_set;
4782 for (objfile *objfile : current_program_space->objfiles ())
4783 {
4784 /* Expand symtabs within objfile that possibly contain matching
4785 symbols. */
4786 found_msymbol |= expand_symtabs (objfile, preg);
4787
4788 /* Find matching symbols within OBJFILE and add them in to the
4789 RESULT_SET set. Use a set here so that we can easily detect
4790 duplicates as we go, and can therefore track how many unique
4791 matches we have found so far. */
4792 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4793 break;
4794 }
4795
4796 /* Convert the result set into a sorted result list, as std::set is
4797 defined to be sorted then no explicit call to std::sort is needed. */
4798 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4799
4800 /* If there are no debug symbols, then add matching minsyms. But if the
4801 user wants to see symbols matching a type regexp, then never give a
4802 minimal symbol, as we assume that a minimal symbol does not have a
4803 type. */
4804 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4805 && !m_exclude_minsyms
4806 && !treg.has_value ())
4807 {
4808 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4809 for (objfile *objfile : current_program_space->objfiles ())
4810 if (!add_matching_msymbols (objfile, preg, &result))
4811 break;
4812 }
4813
4814 return result;
4815 }
4816
4817 /* See symtab.h. */
4818
4819 std::string
4820 symbol_to_info_string (struct symbol *sym, int block,
4821 enum search_domain kind)
4822 {
4823 std::string str;
4824
4825 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4826
4827 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4828 str += "static ";
4829
4830 /* Typedef that is not a C++ class. */
4831 if (kind == TYPES_DOMAIN
4832 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4833 {
4834 string_file tmp_stream;
4835
4836 /* FIXME: For C (and C++) we end up with a difference in output here
4837 between how a typedef is printed, and non-typedefs are printed.
4838 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4839 appear C-like, while TYPE_PRINT doesn't.
4840
4841 For the struct printing case below, things are worse, we force
4842 printing of the ";" in this function, which is going to be wrong
4843 for languages that don't require a ";" between statements. */
4844 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4845 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4846 else
4847 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4848 str += tmp_stream.string ();
4849 }
4850 /* variable, func, or typedef-that-is-c++-class. */
4851 else if (kind < TYPES_DOMAIN
4852 || (kind == TYPES_DOMAIN
4853 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4854 {
4855 string_file tmp_stream;
4856
4857 type_print (SYMBOL_TYPE (sym),
4858 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4859 ? "" : sym->print_name ()),
4860 &tmp_stream, 0);
4861
4862 str += tmp_stream.string ();
4863 str += ";";
4864 }
4865 /* Printing of modules is currently done here, maybe at some future
4866 point we might want a language specific method to print the module
4867 symbol so that we can customise the output more. */
4868 else if (kind == MODULES_DOMAIN)
4869 str += sym->print_name ();
4870
4871 return str;
4872 }
4873
4874 /* Helper function for symbol info commands, for example 'info functions',
4875 'info variables', etc. KIND is the kind of symbol we searched for, and
4876 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4877 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4878 print file and line number information for the symbol as well. Skip
4879 printing the filename if it matches LAST. */
4880
4881 static void
4882 print_symbol_info (enum search_domain kind,
4883 struct symbol *sym,
4884 int block, const char *last)
4885 {
4886 scoped_switch_to_sym_language_if_auto l (sym);
4887 struct symtab *s = symbol_symtab (sym);
4888
4889 if (last != NULL)
4890 {
4891 const char *s_filename = symtab_to_filename_for_display (s);
4892
4893 if (filename_cmp (last, s_filename) != 0)
4894 {
4895 printf_filtered (_("\nFile %ps:\n"),
4896 styled_string (file_name_style.style (),
4897 s_filename));
4898 }
4899
4900 if (SYMBOL_LINE (sym) != 0)
4901 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4902 else
4903 puts_filtered ("\t");
4904 }
4905
4906 std::string str = symbol_to_info_string (sym, block, kind);
4907 printf_filtered ("%s\n", str.c_str ());
4908 }
4909
4910 /* This help function for symtab_symbol_info() prints information
4911 for non-debugging symbols to gdb_stdout. */
4912
4913 static void
4914 print_msymbol_info (struct bound_minimal_symbol msymbol)
4915 {
4916 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4917 char *tmp;
4918
4919 if (gdbarch_addr_bit (gdbarch) <= 32)
4920 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4921 & (CORE_ADDR) 0xffffffff,
4922 8);
4923 else
4924 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4925 16);
4926
4927 ui_file_style sym_style = (msymbol.minsym->text_p ()
4928 ? function_name_style.style ()
4929 : ui_file_style ());
4930
4931 printf_filtered (_("%ps %ps\n"),
4932 styled_string (address_style.style (), tmp),
4933 styled_string (sym_style, msymbol.minsym->print_name ()));
4934 }
4935
4936 /* This is the guts of the commands "info functions", "info types", and
4937 "info variables". It calls search_symbols to find all matches and then
4938 print_[m]symbol_info to print out some useful information about the
4939 matches. */
4940
4941 static void
4942 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4943 const char *regexp, enum search_domain kind,
4944 const char *t_regexp, int from_tty)
4945 {
4946 static const char * const classnames[] =
4947 {"variable", "function", "type", "module"};
4948 const char *last_filename = "";
4949 int first = 1;
4950
4951 gdb_assert (kind != ALL_DOMAIN);
4952
4953 if (regexp != nullptr && *regexp == '\0')
4954 regexp = nullptr;
4955
4956 global_symbol_searcher spec (kind, regexp);
4957 spec.set_symbol_type_regexp (t_regexp);
4958 spec.set_exclude_minsyms (exclude_minsyms);
4959 std::vector<symbol_search> symbols = spec.search ();
4960
4961 if (!quiet)
4962 {
4963 if (regexp != NULL)
4964 {
4965 if (t_regexp != NULL)
4966 printf_filtered
4967 (_("All %ss matching regular expression \"%s\""
4968 " with type matching regular expression \"%s\":\n"),
4969 classnames[kind], regexp, t_regexp);
4970 else
4971 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4972 classnames[kind], regexp);
4973 }
4974 else
4975 {
4976 if (t_regexp != NULL)
4977 printf_filtered
4978 (_("All defined %ss"
4979 " with type matching regular expression \"%s\" :\n"),
4980 classnames[kind], t_regexp);
4981 else
4982 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4983 }
4984 }
4985
4986 for (const symbol_search &p : symbols)
4987 {
4988 QUIT;
4989
4990 if (p.msymbol.minsym != NULL)
4991 {
4992 if (first)
4993 {
4994 if (!quiet)
4995 printf_filtered (_("\nNon-debugging symbols:\n"));
4996 first = 0;
4997 }
4998 print_msymbol_info (p.msymbol);
4999 }
5000 else
5001 {
5002 print_symbol_info (kind,
5003 p.symbol,
5004 p.block,
5005 last_filename);
5006 last_filename
5007 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5008 }
5009 }
5010 }
5011
5012 /* Structure to hold the values of the options used by the 'info variables'
5013 and 'info functions' commands. These correspond to the -q, -t, and -n
5014 options. */
5015
5016 struct info_vars_funcs_options
5017 {
5018 bool quiet = false;
5019 bool exclude_minsyms = false;
5020 char *type_regexp = nullptr;
5021
5022 ~info_vars_funcs_options ()
5023 {
5024 xfree (type_regexp);
5025 }
5026 };
5027
5028 /* The options used by the 'info variables' and 'info functions'
5029 commands. */
5030
5031 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5032 gdb::option::boolean_option_def<info_vars_funcs_options> {
5033 "q",
5034 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5035 nullptr, /* show_cmd_cb */
5036 nullptr /* set_doc */
5037 },
5038
5039 gdb::option::boolean_option_def<info_vars_funcs_options> {
5040 "n",
5041 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5042 nullptr, /* show_cmd_cb */
5043 nullptr /* set_doc */
5044 },
5045
5046 gdb::option::string_option_def<info_vars_funcs_options> {
5047 "t",
5048 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5049 },
5050 nullptr, /* show_cmd_cb */
5051 nullptr /* set_doc */
5052 }
5053 };
5054
5055 /* Returns the option group used by 'info variables' and 'info
5056 functions'. */
5057
5058 static gdb::option::option_def_group
5059 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5060 {
5061 return {{info_vars_funcs_options_defs}, opts};
5062 }
5063
5064 /* Command completer for 'info variables' and 'info functions'. */
5065
5066 static void
5067 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5068 completion_tracker &tracker,
5069 const char *text, const char * /* word */)
5070 {
5071 const auto group
5072 = make_info_vars_funcs_options_def_group (nullptr);
5073 if (gdb::option::complete_options
5074 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5075 return;
5076
5077 const char *word = advance_to_expression_complete_word_point (tracker, text);
5078 symbol_completer (ignore, tracker, text, word);
5079 }
5080
5081 /* Implement the 'info variables' command. */
5082
5083 static void
5084 info_variables_command (const char *args, int from_tty)
5085 {
5086 info_vars_funcs_options opts;
5087 auto grp = make_info_vars_funcs_options_def_group (&opts);
5088 gdb::option::process_options
5089 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5090 if (args != nullptr && *args == '\0')
5091 args = nullptr;
5092
5093 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5094 opts.type_regexp, from_tty);
5095 }
5096
5097 /* Implement the 'info functions' command. */
5098
5099 static void
5100 info_functions_command (const char *args, int from_tty)
5101 {
5102 info_vars_funcs_options opts;
5103
5104 auto grp = make_info_vars_funcs_options_def_group (&opts);
5105 gdb::option::process_options
5106 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5107 if (args != nullptr && *args == '\0')
5108 args = nullptr;
5109
5110 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5111 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5112 }
5113
5114 /* Holds the -q option for the 'info types' command. */
5115
5116 struct info_types_options
5117 {
5118 bool quiet = false;
5119 };
5120
5121 /* The options used by the 'info types' command. */
5122
5123 static const gdb::option::option_def info_types_options_defs[] = {
5124 gdb::option::boolean_option_def<info_types_options> {
5125 "q",
5126 [] (info_types_options *opt) { return &opt->quiet; },
5127 nullptr, /* show_cmd_cb */
5128 nullptr /* set_doc */
5129 }
5130 };
5131
5132 /* Returns the option group used by 'info types'. */
5133
5134 static gdb::option::option_def_group
5135 make_info_types_options_def_group (info_types_options *opts)
5136 {
5137 return {{info_types_options_defs}, opts};
5138 }
5139
5140 /* Implement the 'info types' command. */
5141
5142 static void
5143 info_types_command (const char *args, int from_tty)
5144 {
5145 info_types_options opts;
5146
5147 auto grp = make_info_types_options_def_group (&opts);
5148 gdb::option::process_options
5149 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5150 if (args != nullptr && *args == '\0')
5151 args = nullptr;
5152 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5153 }
5154
5155 /* Command completer for 'info types' command. */
5156
5157 static void
5158 info_types_command_completer (struct cmd_list_element *ignore,
5159 completion_tracker &tracker,
5160 const char *text, const char * /* word */)
5161 {
5162 const auto group
5163 = make_info_types_options_def_group (nullptr);
5164 if (gdb::option::complete_options
5165 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5166 return;
5167
5168 const char *word = advance_to_expression_complete_word_point (tracker, text);
5169 symbol_completer (ignore, tracker, text, word);
5170 }
5171
5172 /* Implement the 'info modules' command. */
5173
5174 static void
5175 info_modules_command (const char *args, int from_tty)
5176 {
5177 info_types_options opts;
5178
5179 auto grp = make_info_types_options_def_group (&opts);
5180 gdb::option::process_options
5181 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5182 if (args != nullptr && *args == '\0')
5183 args = nullptr;
5184 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5185 from_tty);
5186 }
5187
5188 static void
5189 rbreak_command (const char *regexp, int from_tty)
5190 {
5191 std::string string;
5192 const char *file_name = nullptr;
5193
5194 if (regexp != nullptr)
5195 {
5196 const char *colon = strchr (regexp, ':');
5197
5198 /* Ignore the colon if it is part of a Windows drive. */
5199 if (HAS_DRIVE_SPEC (regexp)
5200 && (regexp[2] == '/' || regexp[2] == '\\'))
5201 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5202
5203 if (colon && *(colon + 1) != ':')
5204 {
5205 int colon_index;
5206 char *local_name;
5207
5208 colon_index = colon - regexp;
5209 local_name = (char *) alloca (colon_index + 1);
5210 memcpy (local_name, regexp, colon_index);
5211 local_name[colon_index--] = 0;
5212 while (isspace (local_name[colon_index]))
5213 local_name[colon_index--] = 0;
5214 file_name = local_name;
5215 regexp = skip_spaces (colon + 1);
5216 }
5217 }
5218
5219 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5220 if (file_name != nullptr)
5221 spec.filenames.push_back (file_name);
5222 std::vector<symbol_search> symbols = spec.search ();
5223
5224 scoped_rbreak_breakpoints finalize;
5225 for (const symbol_search &p : symbols)
5226 {
5227 if (p.msymbol.minsym == NULL)
5228 {
5229 struct symtab *symtab = symbol_symtab (p.symbol);
5230 const char *fullname = symtab_to_fullname (symtab);
5231
5232 string = string_printf ("%s:'%s'", fullname,
5233 p.symbol->linkage_name ());
5234 break_command (&string[0], from_tty);
5235 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5236 }
5237 else
5238 {
5239 string = string_printf ("'%s'",
5240 p.msymbol.minsym->linkage_name ());
5241
5242 break_command (&string[0], from_tty);
5243 printf_filtered ("<function, no debug info> %s;\n",
5244 p.msymbol.minsym->print_name ());
5245 }
5246 }
5247 }
5248 \f
5249
5250 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5251
5252 static int
5253 compare_symbol_name (const char *symbol_name, language symbol_language,
5254 const lookup_name_info &lookup_name,
5255 completion_match_result &match_res)
5256 {
5257 const language_defn *lang = language_def (symbol_language);
5258
5259 symbol_name_matcher_ftype *name_match
5260 = lang->get_symbol_name_matcher (lookup_name);
5261
5262 return name_match (symbol_name, lookup_name, &match_res);
5263 }
5264
5265 /* See symtab.h. */
5266
5267 bool
5268 completion_list_add_name (completion_tracker &tracker,
5269 language symbol_language,
5270 const char *symname,
5271 const lookup_name_info &lookup_name,
5272 const char *text, const char *word)
5273 {
5274 completion_match_result &match_res
5275 = tracker.reset_completion_match_result ();
5276
5277 /* Clip symbols that cannot match. */
5278 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5279 return false;
5280
5281 /* Refresh SYMNAME from the match string. It's potentially
5282 different depending on language. (E.g., on Ada, the match may be
5283 the encoded symbol name wrapped in "<>"). */
5284 symname = match_res.match.match ();
5285 gdb_assert (symname != NULL);
5286
5287 /* We have a match for a completion, so add SYMNAME to the current list
5288 of matches. Note that the name is moved to freshly malloc'd space. */
5289
5290 {
5291 gdb::unique_xmalloc_ptr<char> completion
5292 = make_completion_match_str (symname, text, word);
5293
5294 /* Here we pass the match-for-lcd object to add_completion. Some
5295 languages match the user text against substrings of symbol
5296 names in some cases. E.g., in C++, "b push_ba" completes to
5297 "std::vector::push_back", "std::string::push_back", etc., and
5298 in this case we want the completion lowest common denominator
5299 to be "push_back" instead of "std::". */
5300 tracker.add_completion (std::move (completion),
5301 &match_res.match_for_lcd, text, word);
5302 }
5303
5304 return true;
5305 }
5306
5307 /* completion_list_add_name wrapper for struct symbol. */
5308
5309 static void
5310 completion_list_add_symbol (completion_tracker &tracker,
5311 symbol *sym,
5312 const lookup_name_info &lookup_name,
5313 const char *text, const char *word)
5314 {
5315 if (!completion_list_add_name (tracker, sym->language (),
5316 sym->natural_name (),
5317 lookup_name, text, word))
5318 return;
5319
5320 /* C++ function symbols include the parameters within both the msymbol
5321 name and the symbol name. The problem is that the msymbol name will
5322 describe the parameters in the most basic way, with typedefs stripped
5323 out, while the symbol name will represent the types as they appear in
5324 the program. This means we will see duplicate entries in the
5325 completion tracker. The following converts the symbol name back to
5326 the msymbol name and removes the msymbol name from the completion
5327 tracker. */
5328 if (sym->language () == language_cplus
5329 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5330 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5331 {
5332 /* The call to canonicalize returns the empty string if the input
5333 string is already in canonical form, thanks to this we don't
5334 remove the symbol we just added above. */
5335 gdb::unique_xmalloc_ptr<char> str
5336 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5337 if (str != nullptr)
5338 tracker.remove_completion (str.get ());
5339 }
5340 }
5341
5342 /* completion_list_add_name wrapper for struct minimal_symbol. */
5343
5344 static void
5345 completion_list_add_msymbol (completion_tracker &tracker,
5346 minimal_symbol *sym,
5347 const lookup_name_info &lookup_name,
5348 const char *text, const char *word)
5349 {
5350 completion_list_add_name (tracker, sym->language (),
5351 sym->natural_name (),
5352 lookup_name, text, word);
5353 }
5354
5355
5356 /* ObjC: In case we are completing on a selector, look as the msymbol
5357 again and feed all the selectors into the mill. */
5358
5359 static void
5360 completion_list_objc_symbol (completion_tracker &tracker,
5361 struct minimal_symbol *msymbol,
5362 const lookup_name_info &lookup_name,
5363 const char *text, const char *word)
5364 {
5365 static char *tmp = NULL;
5366 static unsigned int tmplen = 0;
5367
5368 const char *method, *category, *selector;
5369 char *tmp2 = NULL;
5370
5371 method = msymbol->natural_name ();
5372
5373 /* Is it a method? */
5374 if ((method[0] != '-') && (method[0] != '+'))
5375 return;
5376
5377 if (text[0] == '[')
5378 /* Complete on shortened method method. */
5379 completion_list_add_name (tracker, language_objc,
5380 method + 1,
5381 lookup_name,
5382 text, word);
5383
5384 while ((strlen (method) + 1) >= tmplen)
5385 {
5386 if (tmplen == 0)
5387 tmplen = 1024;
5388 else
5389 tmplen *= 2;
5390 tmp = (char *) xrealloc (tmp, tmplen);
5391 }
5392 selector = strchr (method, ' ');
5393 if (selector != NULL)
5394 selector++;
5395
5396 category = strchr (method, '(');
5397
5398 if ((category != NULL) && (selector != NULL))
5399 {
5400 memcpy (tmp, method, (category - method));
5401 tmp[category - method] = ' ';
5402 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5403 completion_list_add_name (tracker, language_objc, tmp,
5404 lookup_name, text, word);
5405 if (text[0] == '[')
5406 completion_list_add_name (tracker, language_objc, tmp + 1,
5407 lookup_name, text, word);
5408 }
5409
5410 if (selector != NULL)
5411 {
5412 /* Complete on selector only. */
5413 strcpy (tmp, selector);
5414 tmp2 = strchr (tmp, ']');
5415 if (tmp2 != NULL)
5416 *tmp2 = '\0';
5417
5418 completion_list_add_name (tracker, language_objc, tmp,
5419 lookup_name, text, word);
5420 }
5421 }
5422
5423 /* Break the non-quoted text based on the characters which are in
5424 symbols. FIXME: This should probably be language-specific. */
5425
5426 static const char *
5427 language_search_unquoted_string (const char *text, const char *p)
5428 {
5429 for (; p > text; --p)
5430 {
5431 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5432 continue;
5433 else
5434 {
5435 if ((current_language->la_language == language_objc))
5436 {
5437 if (p[-1] == ':') /* Might be part of a method name. */
5438 continue;
5439 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5440 p -= 2; /* Beginning of a method name. */
5441 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5442 { /* Might be part of a method name. */
5443 const char *t = p;
5444
5445 /* Seeing a ' ' or a '(' is not conclusive evidence
5446 that we are in the middle of a method name. However,
5447 finding "-[" or "+[" should be pretty un-ambiguous.
5448 Unfortunately we have to find it now to decide. */
5449
5450 while (t > text)
5451 if (isalnum (t[-1]) || t[-1] == '_' ||
5452 t[-1] == ' ' || t[-1] == ':' ||
5453 t[-1] == '(' || t[-1] == ')')
5454 --t;
5455 else
5456 break;
5457
5458 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5459 p = t - 2; /* Method name detected. */
5460 /* Else we leave with p unchanged. */
5461 }
5462 }
5463 break;
5464 }
5465 }
5466 return p;
5467 }
5468
5469 static void
5470 completion_list_add_fields (completion_tracker &tracker,
5471 struct symbol *sym,
5472 const lookup_name_info &lookup_name,
5473 const char *text, const char *word)
5474 {
5475 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5476 {
5477 struct type *t = SYMBOL_TYPE (sym);
5478 enum type_code c = t->code ();
5479 int j;
5480
5481 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5482 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5483 if (TYPE_FIELD_NAME (t, j))
5484 completion_list_add_name (tracker, sym->language (),
5485 TYPE_FIELD_NAME (t, j),
5486 lookup_name, text, word);
5487 }
5488 }
5489
5490 /* See symtab.h. */
5491
5492 bool
5493 symbol_is_function_or_method (symbol *sym)
5494 {
5495 switch (SYMBOL_TYPE (sym)->code ())
5496 {
5497 case TYPE_CODE_FUNC:
5498 case TYPE_CODE_METHOD:
5499 return true;
5500 default:
5501 return false;
5502 }
5503 }
5504
5505 /* See symtab.h. */
5506
5507 bool
5508 symbol_is_function_or_method (minimal_symbol *msymbol)
5509 {
5510 switch (MSYMBOL_TYPE (msymbol))
5511 {
5512 case mst_text:
5513 case mst_text_gnu_ifunc:
5514 case mst_solib_trampoline:
5515 case mst_file_text:
5516 return true;
5517 default:
5518 return false;
5519 }
5520 }
5521
5522 /* See symtab.h. */
5523
5524 bound_minimal_symbol
5525 find_gnu_ifunc (const symbol *sym)
5526 {
5527 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5528 return {};
5529
5530 lookup_name_info lookup_name (sym->search_name (),
5531 symbol_name_match_type::SEARCH_NAME);
5532 struct objfile *objfile = symbol_objfile (sym);
5533
5534 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5535 minimal_symbol *ifunc = NULL;
5536
5537 iterate_over_minimal_symbols (objfile, lookup_name,
5538 [&] (minimal_symbol *minsym)
5539 {
5540 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5541 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5542 {
5543 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5544 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5545 {
5546 struct gdbarch *gdbarch = objfile->arch ();
5547 msym_addr
5548 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5549 msym_addr,
5550 current_top_target ());
5551 }
5552 if (msym_addr == address)
5553 {
5554 ifunc = minsym;
5555 return true;
5556 }
5557 }
5558 return false;
5559 });
5560
5561 if (ifunc != NULL)
5562 return {ifunc, objfile};
5563 return {};
5564 }
5565
5566 /* Add matching symbols from SYMTAB to the current completion list. */
5567
5568 static void
5569 add_symtab_completions (struct compunit_symtab *cust,
5570 completion_tracker &tracker,
5571 complete_symbol_mode mode,
5572 const lookup_name_info &lookup_name,
5573 const char *text, const char *word,
5574 enum type_code code)
5575 {
5576 struct symbol *sym;
5577 const struct block *b;
5578 struct block_iterator iter;
5579 int i;
5580
5581 if (cust == NULL)
5582 return;
5583
5584 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5585 {
5586 QUIT;
5587 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5588 ALL_BLOCK_SYMBOLS (b, iter, sym)
5589 {
5590 if (completion_skip_symbol (mode, sym))
5591 continue;
5592
5593 if (code == TYPE_CODE_UNDEF
5594 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5595 && SYMBOL_TYPE (sym)->code () == code))
5596 completion_list_add_symbol (tracker, sym,
5597 lookup_name,
5598 text, word);
5599 }
5600 }
5601 }
5602
5603 void
5604 default_collect_symbol_completion_matches_break_on
5605 (completion_tracker &tracker, complete_symbol_mode mode,
5606 symbol_name_match_type name_match_type,
5607 const char *text, const char *word,
5608 const char *break_on, enum type_code code)
5609 {
5610 /* Problem: All of the symbols have to be copied because readline
5611 frees them. I'm not going to worry about this; hopefully there
5612 won't be that many. */
5613
5614 struct symbol *sym;
5615 const struct block *b;
5616 const struct block *surrounding_static_block, *surrounding_global_block;
5617 struct block_iterator iter;
5618 /* The symbol we are completing on. Points in same buffer as text. */
5619 const char *sym_text;
5620
5621 /* Now look for the symbol we are supposed to complete on. */
5622 if (mode == complete_symbol_mode::LINESPEC)
5623 sym_text = text;
5624 else
5625 {
5626 const char *p;
5627 char quote_found;
5628 const char *quote_pos = NULL;
5629
5630 /* First see if this is a quoted string. */
5631 quote_found = '\0';
5632 for (p = text; *p != '\0'; ++p)
5633 {
5634 if (quote_found != '\0')
5635 {
5636 if (*p == quote_found)
5637 /* Found close quote. */
5638 quote_found = '\0';
5639 else if (*p == '\\' && p[1] == quote_found)
5640 /* A backslash followed by the quote character
5641 doesn't end the string. */
5642 ++p;
5643 }
5644 else if (*p == '\'' || *p == '"')
5645 {
5646 quote_found = *p;
5647 quote_pos = p;
5648 }
5649 }
5650 if (quote_found == '\'')
5651 /* A string within single quotes can be a symbol, so complete on it. */
5652 sym_text = quote_pos + 1;
5653 else if (quote_found == '"')
5654 /* A double-quoted string is never a symbol, nor does it make sense
5655 to complete it any other way. */
5656 {
5657 return;
5658 }
5659 else
5660 {
5661 /* It is not a quoted string. Break it based on the characters
5662 which are in symbols. */
5663 while (p > text)
5664 {
5665 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5666 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5667 --p;
5668 else
5669 break;
5670 }
5671 sym_text = p;
5672 }
5673 }
5674
5675 lookup_name_info lookup_name (sym_text, name_match_type, true);
5676
5677 /* At this point scan through the misc symbol vectors and add each
5678 symbol you find to the list. Eventually we want to ignore
5679 anything that isn't a text symbol (everything else will be
5680 handled by the psymtab code below). */
5681
5682 if (code == TYPE_CODE_UNDEF)
5683 {
5684 for (objfile *objfile : current_program_space->objfiles ())
5685 {
5686 for (minimal_symbol *msymbol : objfile->msymbols ())
5687 {
5688 QUIT;
5689
5690 if (completion_skip_symbol (mode, msymbol))
5691 continue;
5692
5693 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5694 sym_text, word);
5695
5696 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5697 sym_text, word);
5698 }
5699 }
5700 }
5701
5702 /* Add completions for all currently loaded symbol tables. */
5703 for (objfile *objfile : current_program_space->objfiles ())
5704 {
5705 for (compunit_symtab *cust : objfile->compunits ())
5706 add_symtab_completions (cust, tracker, mode, lookup_name,
5707 sym_text, word, code);
5708 }
5709
5710 /* Look through the partial symtabs for all symbols which begin by
5711 matching SYM_TEXT. Expand all CUs that you find to the list. */
5712 expand_symtabs_matching (NULL,
5713 lookup_name,
5714 NULL,
5715 [&] (compunit_symtab *symtab) /* expansion notify */
5716 {
5717 add_symtab_completions (symtab,
5718 tracker, mode, lookup_name,
5719 sym_text, word, code);
5720 },
5721 ALL_DOMAIN);
5722
5723 /* Search upwards from currently selected frame (so that we can
5724 complete on local vars). Also catch fields of types defined in
5725 this places which match our text string. Only complete on types
5726 visible from current context. */
5727
5728 b = get_selected_block (0);
5729 surrounding_static_block = block_static_block (b);
5730 surrounding_global_block = block_global_block (b);
5731 if (surrounding_static_block != NULL)
5732 while (b != surrounding_static_block)
5733 {
5734 QUIT;
5735
5736 ALL_BLOCK_SYMBOLS (b, iter, sym)
5737 {
5738 if (code == TYPE_CODE_UNDEF)
5739 {
5740 completion_list_add_symbol (tracker, sym, lookup_name,
5741 sym_text, word);
5742 completion_list_add_fields (tracker, sym, lookup_name,
5743 sym_text, word);
5744 }
5745 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5746 && SYMBOL_TYPE (sym)->code () == code)
5747 completion_list_add_symbol (tracker, sym, lookup_name,
5748 sym_text, word);
5749 }
5750
5751 /* Stop when we encounter an enclosing function. Do not stop for
5752 non-inlined functions - the locals of the enclosing function
5753 are in scope for a nested function. */
5754 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5755 break;
5756 b = BLOCK_SUPERBLOCK (b);
5757 }
5758
5759 /* Add fields from the file's types; symbols will be added below. */
5760
5761 if (code == TYPE_CODE_UNDEF)
5762 {
5763 if (surrounding_static_block != NULL)
5764 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5765 completion_list_add_fields (tracker, sym, lookup_name,
5766 sym_text, word);
5767
5768 if (surrounding_global_block != NULL)
5769 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5770 completion_list_add_fields (tracker, sym, lookup_name,
5771 sym_text, word);
5772 }
5773
5774 /* Skip macros if we are completing a struct tag -- arguable but
5775 usually what is expected. */
5776 if (current_language->la_macro_expansion == macro_expansion_c
5777 && code == TYPE_CODE_UNDEF)
5778 {
5779 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5780
5781 /* This adds a macro's name to the current completion list. */
5782 auto add_macro_name = [&] (const char *macro_name,
5783 const macro_definition *,
5784 macro_source_file *,
5785 int)
5786 {
5787 completion_list_add_name (tracker, language_c, macro_name,
5788 lookup_name, sym_text, word);
5789 };
5790
5791 /* Add any macros visible in the default scope. Note that this
5792 may yield the occasional wrong result, because an expression
5793 might be evaluated in a scope other than the default. For
5794 example, if the user types "break file:line if <TAB>", the
5795 resulting expression will be evaluated at "file:line" -- but
5796 at there does not seem to be a way to detect this at
5797 completion time. */
5798 scope = default_macro_scope ();
5799 if (scope)
5800 macro_for_each_in_scope (scope->file, scope->line,
5801 add_macro_name);
5802
5803 /* User-defined macros are always visible. */
5804 macro_for_each (macro_user_macros, add_macro_name);
5805 }
5806 }
5807
5808 /* Collect all symbols (regardless of class) which begin by matching
5809 TEXT. */
5810
5811 void
5812 collect_symbol_completion_matches (completion_tracker &tracker,
5813 complete_symbol_mode mode,
5814 symbol_name_match_type name_match_type,
5815 const char *text, const char *word)
5816 {
5817 current_language->collect_symbol_completion_matches (tracker, mode,
5818 name_match_type,
5819 text, word,
5820 TYPE_CODE_UNDEF);
5821 }
5822
5823 /* Like collect_symbol_completion_matches, but only collect
5824 STRUCT_DOMAIN symbols whose type code is CODE. */
5825
5826 void
5827 collect_symbol_completion_matches_type (completion_tracker &tracker,
5828 const char *text, const char *word,
5829 enum type_code code)
5830 {
5831 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5832 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5833
5834 gdb_assert (code == TYPE_CODE_UNION
5835 || code == TYPE_CODE_STRUCT
5836 || code == TYPE_CODE_ENUM);
5837 current_language->collect_symbol_completion_matches (tracker, mode,
5838 name_match_type,
5839 text, word, code);
5840 }
5841
5842 /* Like collect_symbol_completion_matches, but collects a list of
5843 symbols defined in all source files named SRCFILE. */
5844
5845 void
5846 collect_file_symbol_completion_matches (completion_tracker &tracker,
5847 complete_symbol_mode mode,
5848 symbol_name_match_type name_match_type,
5849 const char *text, const char *word,
5850 const char *srcfile)
5851 {
5852 /* The symbol we are completing on. Points in same buffer as text. */
5853 const char *sym_text;
5854
5855 /* Now look for the symbol we are supposed to complete on.
5856 FIXME: This should be language-specific. */
5857 if (mode == complete_symbol_mode::LINESPEC)
5858 sym_text = text;
5859 else
5860 {
5861 const char *p;
5862 char quote_found;
5863 const char *quote_pos = NULL;
5864
5865 /* First see if this is a quoted string. */
5866 quote_found = '\0';
5867 for (p = text; *p != '\0'; ++p)
5868 {
5869 if (quote_found != '\0')
5870 {
5871 if (*p == quote_found)
5872 /* Found close quote. */
5873 quote_found = '\0';
5874 else if (*p == '\\' && p[1] == quote_found)
5875 /* A backslash followed by the quote character
5876 doesn't end the string. */
5877 ++p;
5878 }
5879 else if (*p == '\'' || *p == '"')
5880 {
5881 quote_found = *p;
5882 quote_pos = p;
5883 }
5884 }
5885 if (quote_found == '\'')
5886 /* A string within single quotes can be a symbol, so complete on it. */
5887 sym_text = quote_pos + 1;
5888 else if (quote_found == '"')
5889 /* A double-quoted string is never a symbol, nor does it make sense
5890 to complete it any other way. */
5891 {
5892 return;
5893 }
5894 else
5895 {
5896 /* Not a quoted string. */
5897 sym_text = language_search_unquoted_string (text, p);
5898 }
5899 }
5900
5901 lookup_name_info lookup_name (sym_text, name_match_type, true);
5902
5903 /* Go through symtabs for SRCFILE and check the externs and statics
5904 for symbols which match. */
5905 iterate_over_symtabs (srcfile, [&] (symtab *s)
5906 {
5907 add_symtab_completions (SYMTAB_COMPUNIT (s),
5908 tracker, mode, lookup_name,
5909 sym_text, word, TYPE_CODE_UNDEF);
5910 return false;
5911 });
5912 }
5913
5914 /* A helper function for make_source_files_completion_list. It adds
5915 another file name to a list of possible completions, growing the
5916 list as necessary. */
5917
5918 static void
5919 add_filename_to_list (const char *fname, const char *text, const char *word,
5920 completion_list *list)
5921 {
5922 list->emplace_back (make_completion_match_str (fname, text, word));
5923 }
5924
5925 static int
5926 not_interesting_fname (const char *fname)
5927 {
5928 static const char *illegal_aliens[] = {
5929 "_globals_", /* inserted by coff_symtab_read */
5930 NULL
5931 };
5932 int i;
5933
5934 for (i = 0; illegal_aliens[i]; i++)
5935 {
5936 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5937 return 1;
5938 }
5939 return 0;
5940 }
5941
5942 /* An object of this type is passed as the user_data argument to
5943 map_partial_symbol_filenames. */
5944 struct add_partial_filename_data
5945 {
5946 struct filename_seen_cache *filename_seen_cache;
5947 const char *text;
5948 const char *word;
5949 int text_len;
5950 completion_list *list;
5951 };
5952
5953 /* A callback for map_partial_symbol_filenames. */
5954
5955 static void
5956 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5957 void *user_data)
5958 {
5959 struct add_partial_filename_data *data
5960 = (struct add_partial_filename_data *) user_data;
5961
5962 if (not_interesting_fname (filename))
5963 return;
5964 if (!data->filename_seen_cache->seen (filename)
5965 && filename_ncmp (filename, data->text, data->text_len) == 0)
5966 {
5967 /* This file matches for a completion; add it to the
5968 current list of matches. */
5969 add_filename_to_list (filename, data->text, data->word, data->list);
5970 }
5971 else
5972 {
5973 const char *base_name = lbasename (filename);
5974
5975 if (base_name != filename
5976 && !data->filename_seen_cache->seen (base_name)
5977 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5978 add_filename_to_list (base_name, data->text, data->word, data->list);
5979 }
5980 }
5981
5982 /* Return a list of all source files whose names begin with matching
5983 TEXT. The file names are looked up in the symbol tables of this
5984 program. */
5985
5986 completion_list
5987 make_source_files_completion_list (const char *text, const char *word)
5988 {
5989 size_t text_len = strlen (text);
5990 completion_list list;
5991 const char *base_name;
5992 struct add_partial_filename_data datum;
5993
5994 if (!have_full_symbols () && !have_partial_symbols ())
5995 return list;
5996
5997 filename_seen_cache filenames_seen;
5998
5999 for (objfile *objfile : current_program_space->objfiles ())
6000 {
6001 for (compunit_symtab *cu : objfile->compunits ())
6002 {
6003 for (symtab *s : compunit_filetabs (cu))
6004 {
6005 if (not_interesting_fname (s->filename))
6006 continue;
6007 if (!filenames_seen.seen (s->filename)
6008 && filename_ncmp (s->filename, text, text_len) == 0)
6009 {
6010 /* This file matches for a completion; add it to the current
6011 list of matches. */
6012 add_filename_to_list (s->filename, text, word, &list);
6013 }
6014 else
6015 {
6016 /* NOTE: We allow the user to type a base name when the
6017 debug info records leading directories, but not the other
6018 way around. This is what subroutines of breakpoint
6019 command do when they parse file names. */
6020 base_name = lbasename (s->filename);
6021 if (base_name != s->filename
6022 && !filenames_seen.seen (base_name)
6023 && filename_ncmp (base_name, text, text_len) == 0)
6024 add_filename_to_list (base_name, text, word, &list);
6025 }
6026 }
6027 }
6028 }
6029
6030 datum.filename_seen_cache = &filenames_seen;
6031 datum.text = text;
6032 datum.word = word;
6033 datum.text_len = text_len;
6034 datum.list = &list;
6035 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6036 0 /*need_fullname*/);
6037
6038 return list;
6039 }
6040 \f
6041 /* Track MAIN */
6042
6043 /* Return the "main_info" object for the current program space. If
6044 the object has not yet been created, create it and fill in some
6045 default values. */
6046
6047 static struct main_info *
6048 get_main_info (void)
6049 {
6050 struct main_info *info = main_progspace_key.get (current_program_space);
6051
6052 if (info == NULL)
6053 {
6054 /* It may seem strange to store the main name in the progspace
6055 and also in whatever objfile happens to see a main name in
6056 its debug info. The reason for this is mainly historical:
6057 gdb returned "main" as the name even if no function named
6058 "main" was defined the program; and this approach lets us
6059 keep compatibility. */
6060 info = main_progspace_key.emplace (current_program_space);
6061 }
6062
6063 return info;
6064 }
6065
6066 static void
6067 set_main_name (const char *name, enum language lang)
6068 {
6069 struct main_info *info = get_main_info ();
6070
6071 if (info->name_of_main != NULL)
6072 {
6073 xfree (info->name_of_main);
6074 info->name_of_main = NULL;
6075 info->language_of_main = language_unknown;
6076 }
6077 if (name != NULL)
6078 {
6079 info->name_of_main = xstrdup (name);
6080 info->language_of_main = lang;
6081 }
6082 }
6083
6084 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6085 accordingly. */
6086
6087 static void
6088 find_main_name (void)
6089 {
6090 const char *new_main_name;
6091
6092 /* First check the objfiles to see whether a debuginfo reader has
6093 picked up the appropriate main name. Historically the main name
6094 was found in a more or less random way; this approach instead
6095 relies on the order of objfile creation -- which still isn't
6096 guaranteed to get the correct answer, but is just probably more
6097 accurate. */
6098 for (objfile *objfile : current_program_space->objfiles ())
6099 {
6100 if (objfile->per_bfd->name_of_main != NULL)
6101 {
6102 set_main_name (objfile->per_bfd->name_of_main,
6103 objfile->per_bfd->language_of_main);
6104 return;
6105 }
6106 }
6107
6108 /* Try to see if the main procedure is in Ada. */
6109 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6110 be to add a new method in the language vector, and call this
6111 method for each language until one of them returns a non-empty
6112 name. This would allow us to remove this hard-coded call to
6113 an Ada function. It is not clear that this is a better approach
6114 at this point, because all methods need to be written in a way
6115 such that false positives never be returned. For instance, it is
6116 important that a method does not return a wrong name for the main
6117 procedure if the main procedure is actually written in a different
6118 language. It is easy to guaranty this with Ada, since we use a
6119 special symbol generated only when the main in Ada to find the name
6120 of the main procedure. It is difficult however to see how this can
6121 be guarantied for languages such as C, for instance. This suggests
6122 that order of call for these methods becomes important, which means
6123 a more complicated approach. */
6124 new_main_name = ada_main_name ();
6125 if (new_main_name != NULL)
6126 {
6127 set_main_name (new_main_name, language_ada);
6128 return;
6129 }
6130
6131 new_main_name = d_main_name ();
6132 if (new_main_name != NULL)
6133 {
6134 set_main_name (new_main_name, language_d);
6135 return;
6136 }
6137
6138 new_main_name = go_main_name ();
6139 if (new_main_name != NULL)
6140 {
6141 set_main_name (new_main_name, language_go);
6142 return;
6143 }
6144
6145 new_main_name = pascal_main_name ();
6146 if (new_main_name != NULL)
6147 {
6148 set_main_name (new_main_name, language_pascal);
6149 return;
6150 }
6151
6152 /* The languages above didn't identify the name of the main procedure.
6153 Fallback to "main". */
6154
6155 /* Try to find language for main in psymtabs. */
6156 enum language lang
6157 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6158 if (lang != language_unknown)
6159 {
6160 set_main_name ("main", lang);
6161 return;
6162 }
6163
6164 set_main_name ("main", language_unknown);
6165 }
6166
6167 /* See symtab.h. */
6168
6169 const char *
6170 main_name ()
6171 {
6172 struct main_info *info = get_main_info ();
6173
6174 if (info->name_of_main == NULL)
6175 find_main_name ();
6176
6177 return info->name_of_main;
6178 }
6179
6180 /* Return the language of the main function. If it is not known,
6181 return language_unknown. */
6182
6183 enum language
6184 main_language (void)
6185 {
6186 struct main_info *info = get_main_info ();
6187
6188 if (info->name_of_main == NULL)
6189 find_main_name ();
6190
6191 return info->language_of_main;
6192 }
6193
6194 /* Handle ``executable_changed'' events for the symtab module. */
6195
6196 static void
6197 symtab_observer_executable_changed (void)
6198 {
6199 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6200 set_main_name (NULL, language_unknown);
6201 }
6202
6203 /* Return 1 if the supplied producer string matches the ARM RealView
6204 compiler (armcc). */
6205
6206 bool
6207 producer_is_realview (const char *producer)
6208 {
6209 static const char *const arm_idents[] = {
6210 "ARM C Compiler, ADS",
6211 "Thumb C Compiler, ADS",
6212 "ARM C++ Compiler, ADS",
6213 "Thumb C++ Compiler, ADS",
6214 "ARM/Thumb C/C++ Compiler, RVCT",
6215 "ARM C/C++ Compiler, RVCT"
6216 };
6217 int i;
6218
6219 if (producer == NULL)
6220 return false;
6221
6222 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6223 if (startswith (producer, arm_idents[i]))
6224 return true;
6225
6226 return false;
6227 }
6228
6229 \f
6230
6231 /* The next index to hand out in response to a registration request. */
6232
6233 static int next_aclass_value = LOC_FINAL_VALUE;
6234
6235 /* The maximum number of "aclass" registrations we support. This is
6236 constant for convenience. */
6237 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6238
6239 /* The objects representing the various "aclass" values. The elements
6240 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6241 elements are those registered at gdb initialization time. */
6242
6243 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6244
6245 /* The globally visible pointer. This is separate from 'symbol_impl'
6246 so that it can be const. */
6247
6248 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6249
6250 /* Make sure we saved enough room in struct symbol. */
6251
6252 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6253
6254 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6255 is the ops vector associated with this index. This returns the new
6256 index, which should be used as the aclass_index field for symbols
6257 of this type. */
6258
6259 int
6260 register_symbol_computed_impl (enum address_class aclass,
6261 const struct symbol_computed_ops *ops)
6262 {
6263 int result = next_aclass_value++;
6264
6265 gdb_assert (aclass == LOC_COMPUTED);
6266 gdb_assert (result < MAX_SYMBOL_IMPLS);
6267 symbol_impl[result].aclass = aclass;
6268 symbol_impl[result].ops_computed = ops;
6269
6270 /* Sanity check OPS. */
6271 gdb_assert (ops != NULL);
6272 gdb_assert (ops->tracepoint_var_ref != NULL);
6273 gdb_assert (ops->describe_location != NULL);
6274 gdb_assert (ops->get_symbol_read_needs != NULL);
6275 gdb_assert (ops->read_variable != NULL);
6276
6277 return result;
6278 }
6279
6280 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6281 OPS is the ops vector associated with this index. This returns the
6282 new index, which should be used as the aclass_index field for symbols
6283 of this type. */
6284
6285 int
6286 register_symbol_block_impl (enum address_class aclass,
6287 const struct symbol_block_ops *ops)
6288 {
6289 int result = next_aclass_value++;
6290
6291 gdb_assert (aclass == LOC_BLOCK);
6292 gdb_assert (result < MAX_SYMBOL_IMPLS);
6293 symbol_impl[result].aclass = aclass;
6294 symbol_impl[result].ops_block = ops;
6295
6296 /* Sanity check OPS. */
6297 gdb_assert (ops != NULL);
6298 gdb_assert (ops->find_frame_base_location != NULL);
6299
6300 return result;
6301 }
6302
6303 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6304 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6305 this index. This returns the new index, which should be used as
6306 the aclass_index field for symbols of this type. */
6307
6308 int
6309 register_symbol_register_impl (enum address_class aclass,
6310 const struct symbol_register_ops *ops)
6311 {
6312 int result = next_aclass_value++;
6313
6314 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6315 gdb_assert (result < MAX_SYMBOL_IMPLS);
6316 symbol_impl[result].aclass = aclass;
6317 symbol_impl[result].ops_register = ops;
6318
6319 return result;
6320 }
6321
6322 /* Initialize elements of 'symbol_impl' for the constants in enum
6323 address_class. */
6324
6325 static void
6326 initialize_ordinary_address_classes (void)
6327 {
6328 int i;
6329
6330 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6331 symbol_impl[i].aclass = (enum address_class) i;
6332 }
6333
6334 \f
6335
6336 /* See symtab.h. */
6337
6338 struct objfile *
6339 symbol_objfile (const struct symbol *symbol)
6340 {
6341 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6342 return SYMTAB_OBJFILE (symbol->owner.symtab);
6343 }
6344
6345 /* See symtab.h. */
6346
6347 struct gdbarch *
6348 symbol_arch (const struct symbol *symbol)
6349 {
6350 if (!SYMBOL_OBJFILE_OWNED (symbol))
6351 return symbol->owner.arch;
6352 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6353 }
6354
6355 /* See symtab.h. */
6356
6357 struct symtab *
6358 symbol_symtab (const struct symbol *symbol)
6359 {
6360 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6361 return symbol->owner.symtab;
6362 }
6363
6364 /* See symtab.h. */
6365
6366 void
6367 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6368 {
6369 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6370 symbol->owner.symtab = symtab;
6371 }
6372
6373 /* See symtab.h. */
6374
6375 CORE_ADDR
6376 get_symbol_address (const struct symbol *sym)
6377 {
6378 gdb_assert (sym->maybe_copied);
6379 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6380
6381 const char *linkage_name = sym->linkage_name ();
6382
6383 for (objfile *objfile : current_program_space->objfiles ())
6384 {
6385 if (objfile->separate_debug_objfile_backlink != nullptr)
6386 continue;
6387
6388 bound_minimal_symbol minsym
6389 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6390 if (minsym.minsym != nullptr)
6391 return BMSYMBOL_VALUE_ADDRESS (minsym);
6392 }
6393 return sym->value.address;
6394 }
6395
6396 /* See symtab.h. */
6397
6398 CORE_ADDR
6399 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6400 {
6401 gdb_assert (minsym->maybe_copied);
6402 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6403
6404 const char *linkage_name = minsym->linkage_name ();
6405
6406 for (objfile *objfile : current_program_space->objfiles ())
6407 {
6408 if (objfile->separate_debug_objfile_backlink == nullptr
6409 && (objfile->flags & OBJF_MAINLINE) != 0)
6410 {
6411 bound_minimal_symbol found
6412 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6413 if (found.minsym != nullptr)
6414 return BMSYMBOL_VALUE_ADDRESS (found);
6415 }
6416 }
6417 return minsym->value.address + objf->section_offsets[minsym->section];
6418 }
6419
6420 \f
6421
6422 /* Hold the sub-commands of 'info module'. */
6423
6424 static struct cmd_list_element *info_module_cmdlist = NULL;
6425
6426 /* See symtab.h. */
6427
6428 std::vector<module_symbol_search>
6429 search_module_symbols (const char *module_regexp, const char *regexp,
6430 const char *type_regexp, search_domain kind)
6431 {
6432 std::vector<module_symbol_search> results;
6433
6434 /* Search for all modules matching MODULE_REGEXP. */
6435 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6436 spec1.set_exclude_minsyms (true);
6437 std::vector<symbol_search> modules = spec1.search ();
6438
6439 /* Now search for all symbols of the required KIND matching the required
6440 regular expressions. We figure out which ones are in which modules
6441 below. */
6442 global_symbol_searcher spec2 (kind, regexp);
6443 spec2.set_symbol_type_regexp (type_regexp);
6444 spec2.set_exclude_minsyms (true);
6445 std::vector<symbol_search> symbols = spec2.search ();
6446
6447 /* Now iterate over all MODULES, checking to see which items from
6448 SYMBOLS are in each module. */
6449 for (const symbol_search &p : modules)
6450 {
6451 QUIT;
6452
6453 /* This is a module. */
6454 gdb_assert (p.symbol != nullptr);
6455
6456 std::string prefix = p.symbol->print_name ();
6457 prefix += "::";
6458
6459 for (const symbol_search &q : symbols)
6460 {
6461 if (q.symbol == nullptr)
6462 continue;
6463
6464 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6465 prefix.size ()) != 0)
6466 continue;
6467
6468 results.push_back ({p, q});
6469 }
6470 }
6471
6472 return results;
6473 }
6474
6475 /* Implement the core of both 'info module functions' and 'info module
6476 variables'. */
6477
6478 static void
6479 info_module_subcommand (bool quiet, const char *module_regexp,
6480 const char *regexp, const char *type_regexp,
6481 search_domain kind)
6482 {
6483 /* Print a header line. Don't build the header line bit by bit as this
6484 prevents internationalisation. */
6485 if (!quiet)
6486 {
6487 if (module_regexp == nullptr)
6488 {
6489 if (type_regexp == nullptr)
6490 {
6491 if (regexp == nullptr)
6492 printf_filtered ((kind == VARIABLES_DOMAIN
6493 ? _("All variables in all modules:")
6494 : _("All functions in all modules:")));
6495 else
6496 printf_filtered
6497 ((kind == VARIABLES_DOMAIN
6498 ? _("All variables matching regular expression"
6499 " \"%s\" in all modules:")
6500 : _("All functions matching regular expression"
6501 " \"%s\" in all modules:")),
6502 regexp);
6503 }
6504 else
6505 {
6506 if (regexp == nullptr)
6507 printf_filtered
6508 ((kind == VARIABLES_DOMAIN
6509 ? _("All variables with type matching regular "
6510 "expression \"%s\" in all modules:")
6511 : _("All functions with type matching regular "
6512 "expression \"%s\" in all modules:")),
6513 type_regexp);
6514 else
6515 printf_filtered
6516 ((kind == VARIABLES_DOMAIN
6517 ? _("All variables matching regular expression "
6518 "\"%s\",\n\twith type matching regular "
6519 "expression \"%s\" in all modules:")
6520 : _("All functions matching regular expression "
6521 "\"%s\",\n\twith type matching regular "
6522 "expression \"%s\" in all modules:")),
6523 regexp, type_regexp);
6524 }
6525 }
6526 else
6527 {
6528 if (type_regexp == nullptr)
6529 {
6530 if (regexp == nullptr)
6531 printf_filtered
6532 ((kind == VARIABLES_DOMAIN
6533 ? _("All variables in all modules matching regular "
6534 "expression \"%s\":")
6535 : _("All functions in all modules matching regular "
6536 "expression \"%s\":")),
6537 module_regexp);
6538 else
6539 printf_filtered
6540 ((kind == VARIABLES_DOMAIN
6541 ? _("All variables matching regular expression "
6542 "\"%s\",\n\tin all modules matching regular "
6543 "expression \"%s\":")
6544 : _("All functions matching regular expression "
6545 "\"%s\",\n\tin all modules matching regular "
6546 "expression \"%s\":")),
6547 regexp, module_regexp);
6548 }
6549 else
6550 {
6551 if (regexp == nullptr)
6552 printf_filtered
6553 ((kind == VARIABLES_DOMAIN
6554 ? _("All variables with type matching regular "
6555 "expression \"%s\"\n\tin all modules matching "
6556 "regular expression \"%s\":")
6557 : _("All functions with type matching regular "
6558 "expression \"%s\"\n\tin all modules matching "
6559 "regular expression \"%s\":")),
6560 type_regexp, module_regexp);
6561 else
6562 printf_filtered
6563 ((kind == VARIABLES_DOMAIN
6564 ? _("All variables matching regular expression "
6565 "\"%s\",\n\twith type matching regular expression "
6566 "\"%s\",\n\tin all modules matching regular "
6567 "expression \"%s\":")
6568 : _("All functions matching regular expression "
6569 "\"%s\",\n\twith type matching regular expression "
6570 "\"%s\",\n\tin all modules matching regular "
6571 "expression \"%s\":")),
6572 regexp, type_regexp, module_regexp);
6573 }
6574 }
6575 printf_filtered ("\n");
6576 }
6577
6578 /* Find all symbols of type KIND matching the given regular expressions
6579 along with the symbols for the modules in which those symbols
6580 reside. */
6581 std::vector<module_symbol_search> module_symbols
6582 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6583
6584 std::sort (module_symbols.begin (), module_symbols.end (),
6585 [] (const module_symbol_search &a, const module_symbol_search &b)
6586 {
6587 if (a.first < b.first)
6588 return true;
6589 else if (a.first == b.first)
6590 return a.second < b.second;
6591 else
6592 return false;
6593 });
6594
6595 const char *last_filename = "";
6596 const symbol *last_module_symbol = nullptr;
6597 for (const module_symbol_search &ms : module_symbols)
6598 {
6599 const symbol_search &p = ms.first;
6600 const symbol_search &q = ms.second;
6601
6602 gdb_assert (q.symbol != nullptr);
6603
6604 if (last_module_symbol != p.symbol)
6605 {
6606 printf_filtered ("\n");
6607 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6608 last_module_symbol = p.symbol;
6609 last_filename = "";
6610 }
6611
6612 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6613 last_filename);
6614 last_filename
6615 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6616 }
6617 }
6618
6619 /* Hold the option values for the 'info module .....' sub-commands. */
6620
6621 struct info_modules_var_func_options
6622 {
6623 bool quiet = false;
6624 char *type_regexp = nullptr;
6625 char *module_regexp = nullptr;
6626
6627 ~info_modules_var_func_options ()
6628 {
6629 xfree (type_regexp);
6630 xfree (module_regexp);
6631 }
6632 };
6633
6634 /* The options used by 'info module variables' and 'info module functions'
6635 commands. */
6636
6637 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6638 gdb::option::boolean_option_def<info_modules_var_func_options> {
6639 "q",
6640 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6641 nullptr, /* show_cmd_cb */
6642 nullptr /* set_doc */
6643 },
6644
6645 gdb::option::string_option_def<info_modules_var_func_options> {
6646 "t",
6647 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6648 nullptr, /* show_cmd_cb */
6649 nullptr /* set_doc */
6650 },
6651
6652 gdb::option::string_option_def<info_modules_var_func_options> {
6653 "m",
6654 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6655 nullptr, /* show_cmd_cb */
6656 nullptr /* set_doc */
6657 }
6658 };
6659
6660 /* Return the option group used by the 'info module ...' sub-commands. */
6661
6662 static inline gdb::option::option_def_group
6663 make_info_modules_var_func_options_def_group
6664 (info_modules_var_func_options *opts)
6665 {
6666 return {{info_modules_var_func_options_defs}, opts};
6667 }
6668
6669 /* Implements the 'info module functions' command. */
6670
6671 static void
6672 info_module_functions_command (const char *args, int from_tty)
6673 {
6674 info_modules_var_func_options opts;
6675 auto grp = make_info_modules_var_func_options_def_group (&opts);
6676 gdb::option::process_options
6677 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6678 if (args != nullptr && *args == '\0')
6679 args = nullptr;
6680
6681 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6682 opts.type_regexp, FUNCTIONS_DOMAIN);
6683 }
6684
6685 /* Implements the 'info module variables' command. */
6686
6687 static void
6688 info_module_variables_command (const char *args, int from_tty)
6689 {
6690 info_modules_var_func_options opts;
6691 auto grp = make_info_modules_var_func_options_def_group (&opts);
6692 gdb::option::process_options
6693 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6694 if (args != nullptr && *args == '\0')
6695 args = nullptr;
6696
6697 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6698 opts.type_regexp, VARIABLES_DOMAIN);
6699 }
6700
6701 /* Command completer for 'info module ...' sub-commands. */
6702
6703 static void
6704 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6705 completion_tracker &tracker,
6706 const char *text,
6707 const char * /* word */)
6708 {
6709
6710 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6711 if (gdb::option::complete_options
6712 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6713 return;
6714
6715 const char *word = advance_to_expression_complete_word_point (tracker, text);
6716 symbol_completer (ignore, tracker, text, word);
6717 }
6718
6719 \f
6720
6721 void _initialize_symtab ();
6722 void
6723 _initialize_symtab ()
6724 {
6725 cmd_list_element *c;
6726
6727 initialize_ordinary_address_classes ();
6728
6729 c = add_info ("variables", info_variables_command,
6730 info_print_args_help (_("\
6731 All global and static variable names or those matching REGEXPs.\n\
6732 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6733 Prints the global and static variables.\n"),
6734 _("global and static variables"),
6735 true));
6736 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6737 if (dbx_commands)
6738 {
6739 c = add_com ("whereis", class_info, info_variables_command,
6740 info_print_args_help (_("\
6741 All global and static variable names, or those matching REGEXPs.\n\
6742 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6743 Prints the global and static variables.\n"),
6744 _("global and static variables"),
6745 true));
6746 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6747 }
6748
6749 c = add_info ("functions", info_functions_command,
6750 info_print_args_help (_("\
6751 All function names or those matching REGEXPs.\n\
6752 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6753 Prints the functions.\n"),
6754 _("functions"),
6755 true));
6756 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6757
6758 c = add_info ("types", info_types_command, _("\
6759 All type names, or those matching REGEXP.\n\
6760 Usage: info types [-q] [REGEXP]\n\
6761 Print information about all types matching REGEXP, or all types if no\n\
6762 REGEXP is given. The optional flag -q disables printing of headers."));
6763 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6764
6765 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6766
6767 static std::string info_sources_help
6768 = gdb::option::build_help (_("\
6769 All source files in the program or those matching REGEXP.\n\
6770 Usage: info sources [OPTION]... [REGEXP]\n\
6771 By default, REGEXP is used to match anywhere in the filename.\n\
6772 \n\
6773 Options:\n\
6774 %OPTIONS%"),
6775 info_sources_opts);
6776
6777 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6778 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6779
6780 c = add_info ("modules", info_modules_command,
6781 _("All module names, or those matching REGEXP."));
6782 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6783
6784 add_basic_prefix_cmd ("module", class_info, _("\
6785 Print information about modules."),
6786 &info_module_cmdlist, "info module ",
6787 0, &infolist);
6788
6789 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6790 Display functions arranged by modules.\n\
6791 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6792 Print a summary of all functions within each Fortran module, grouped by\n\
6793 module and file. For each function the line on which the function is\n\
6794 defined is given along with the type signature and name of the function.\n\
6795 \n\
6796 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6797 listed. If MODREGEXP is provided then only functions in modules matching\n\
6798 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6799 type signature matches TYPEREGEXP are listed.\n\
6800 \n\
6801 The -q flag suppresses printing some header information."),
6802 &info_module_cmdlist);
6803 set_cmd_completer_handle_brkchars
6804 (c, info_module_var_func_command_completer);
6805
6806 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6807 Display variables arranged by modules.\n\
6808 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6809 Print a summary of all variables within each Fortran module, grouped by\n\
6810 module and file. For each variable the line on which the variable is\n\
6811 defined is given along with the type and name of the variable.\n\
6812 \n\
6813 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6814 listed. If MODREGEXP is provided then only variables in modules matching\n\
6815 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6816 type matches TYPEREGEXP are listed.\n\
6817 \n\
6818 The -q flag suppresses printing some header information."),
6819 &info_module_cmdlist);
6820 set_cmd_completer_handle_brkchars
6821 (c, info_module_var_func_command_completer);
6822
6823 add_com ("rbreak", class_breakpoint, rbreak_command,
6824 _("Set a breakpoint for all functions matching REGEXP."));
6825
6826 add_setshow_enum_cmd ("multiple-symbols", no_class,
6827 multiple_symbols_modes, &multiple_symbols_mode,
6828 _("\
6829 Set how the debugger handles ambiguities in expressions."), _("\
6830 Show how the debugger handles ambiguities in expressions."), _("\
6831 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6832 NULL, NULL, &setlist, &showlist);
6833
6834 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6835 &basenames_may_differ, _("\
6836 Set whether a source file may have multiple base names."), _("\
6837 Show whether a source file may have multiple base names."), _("\
6838 (A \"base name\" is the name of a file with the directory part removed.\n\
6839 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6840 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6841 before comparing them. Canonicalization is an expensive operation,\n\
6842 but it allows the same file be known by more than one base name.\n\
6843 If not set (the default), all source files are assumed to have just\n\
6844 one base name, and gdb will do file name comparisons more efficiently."),
6845 NULL, NULL,
6846 &setlist, &showlist);
6847
6848 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6849 _("Set debugging of symbol table creation."),
6850 _("Show debugging of symbol table creation."), _("\
6851 When enabled (non-zero), debugging messages are printed when building\n\
6852 symbol tables. A value of 1 (one) normally provides enough information.\n\
6853 A value greater than 1 provides more verbose information."),
6854 NULL,
6855 NULL,
6856 &setdebuglist, &showdebuglist);
6857
6858 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6859 _("\
6860 Set debugging of symbol lookup."), _("\
6861 Show debugging of symbol lookup."), _("\
6862 When enabled (non-zero), symbol lookups are logged."),
6863 NULL, NULL,
6864 &setdebuglist, &showdebuglist);
6865
6866 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6867 &new_symbol_cache_size,
6868 _("Set the size of the symbol cache."),
6869 _("Show the size of the symbol cache."), _("\
6870 The size of the symbol cache.\n\
6871 If zero then the symbol cache is disabled."),
6872 set_symbol_cache_size_handler, NULL,
6873 &maintenance_set_cmdlist,
6874 &maintenance_show_cmdlist);
6875
6876 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6877 _("Dump the symbol cache for each program space."),
6878 &maintenanceprintlist);
6879
6880 add_cmd ("symbol-cache-statistics", class_maintenance,
6881 maintenance_print_symbol_cache_statistics,
6882 _("Print symbol cache statistics for each program space."),
6883 &maintenanceprintlist);
6884
6885 add_cmd ("flush-symbol-cache", class_maintenance,
6886 maintenance_flush_symbol_cache,
6887 _("Flush the symbol cache for each program space."),
6888 &maintenancelist);
6889
6890 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6891 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6892 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6893 }
This page took 0.203384 seconds and 4 git commands to generate.