Handle function aliases better (PR gdb/19487, errno printing)
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68
69 /* Forward declarations for local functions. */
70
71 static void rbreak_command (char *, int);
72
73 static int find_line_common (struct linetable *, int, int *, int);
74
75 static struct block_symbol
76 lookup_symbol_aux (const char *name,
77 const struct block *block,
78 const domain_enum domain,
79 enum language language,
80 struct field_of_this_result *);
81
82 static
83 struct block_symbol lookup_local_symbol (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language);
87
88 static struct block_symbol
89 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
90 const char *name, const domain_enum domain);
91
92 /* See symtab.h. */
93 const struct block_symbol null_block_symbol = { NULL, NULL };
94
95 extern initialize_file_ftype _initialize_symtab;
96
97 /* Program space key for finding name and language of "main". */
98
99 static const struct program_space_data *main_progspace_key;
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 /* Name of "main". */
106
107 char *name_of_main;
108
109 /* Language of "main". */
110
111 enum language language_of_main;
112 };
113
114 /* Program space key for finding its symbol cache. */
115
116 static const struct program_space_data *symbol_cache_key;
117
118 /* The default symbol cache size.
119 There is no extra cpu cost for large N (except when flushing the cache,
120 which is rare). The value here is just a first attempt. A better default
121 value may be higher or lower. A prime number can make up for a bad hash
122 computation, so that's why the number is what it is. */
123 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124
125 /* The maximum symbol cache size.
126 There's no method to the decision of what value to use here, other than
127 there's no point in allowing a user typo to make gdb consume all memory. */
128 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129
130 /* symbol_cache_lookup returns this if a previous lookup failed to find the
131 symbol in any objfile. */
132 #define SYMBOL_LOOKUP_FAILED \
133 ((struct block_symbol) {(struct symbol *) 1, NULL})
134 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135
136 /* Recording lookups that don't find the symbol is just as important, if not
137 more so, than recording found symbols. */
138
139 enum symbol_cache_slot_state
140 {
141 SYMBOL_SLOT_UNUSED,
142 SYMBOL_SLOT_NOT_FOUND,
143 SYMBOL_SLOT_FOUND
144 };
145
146 struct symbol_cache_slot
147 {
148 enum symbol_cache_slot_state state;
149
150 /* The objfile that was current when the symbol was looked up.
151 This is only needed for global blocks, but for simplicity's sake
152 we allocate the space for both. If data shows the extra space used
153 for static blocks is a problem, we can split things up then.
154
155 Global blocks need cache lookup to include the objfile context because
156 we need to account for gdbarch_iterate_over_objfiles_in_search_order
157 which can traverse objfiles in, effectively, any order, depending on
158 the current objfile, thus affecting which symbol is found. Normally,
159 only the current objfile is searched first, and then the rest are
160 searched in recorded order; but putting cache lookup inside
161 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
162 Instead we just make the current objfile part of the context of
163 cache lookup. This means we can record the same symbol multiple times,
164 each with a different "current objfile" that was in effect when the
165 lookup was saved in the cache, but cache space is pretty cheap. */
166 const struct objfile *objfile_context;
167
168 union
169 {
170 struct block_symbol found;
171 struct
172 {
173 char *name;
174 domain_enum domain;
175 } not_found;
176 } value;
177 };
178
179 /* Symbols don't specify global vs static block.
180 So keep them in separate caches. */
181
182 struct block_symbol_cache
183 {
184 unsigned int hits;
185 unsigned int misses;
186 unsigned int collisions;
187
188 /* SYMBOLS is a variable length array of this size.
189 One can imagine that in general one cache (global/static) should be a
190 fraction of the size of the other, but there's no data at the moment
191 on which to decide. */
192 unsigned int size;
193
194 struct symbol_cache_slot symbols[1];
195 };
196
197 /* The symbol cache.
198
199 Searching for symbols in the static and global blocks over multiple objfiles
200 again and again can be slow, as can searching very big objfiles. This is a
201 simple cache to improve symbol lookup performance, which is critical to
202 overall gdb performance.
203
204 Symbols are hashed on the name, its domain, and block.
205 They are also hashed on their objfile for objfile-specific lookups. */
206
207 struct symbol_cache
208 {
209 struct block_symbol_cache *global_symbols;
210 struct block_symbol_cache *static_symbols;
211 };
212
213 /* When non-zero, print debugging messages related to symtab creation. */
214 unsigned int symtab_create_debug = 0;
215
216 /* When non-zero, print debugging messages related to symbol lookup. */
217 unsigned int symbol_lookup_debug = 0;
218
219 /* The size of the cache is staged here. */
220 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
221
222 /* The current value of the symbol cache size.
223 This is saved so that if the user enters a value too big we can restore
224 the original value from here. */
225 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226
227 /* Non-zero if a file may be known by two different basenames.
228 This is the uncommon case, and significantly slows down gdb.
229 Default set to "off" to not slow down the common case. */
230 int basenames_may_differ = 0;
231
232 /* Allow the user to configure the debugger behavior with respect
233 to multiple-choice menus when more than one symbol matches during
234 a symbol lookup. */
235
236 const char multiple_symbols_ask[] = "ask";
237 const char multiple_symbols_all[] = "all";
238 const char multiple_symbols_cancel[] = "cancel";
239 static const char *const multiple_symbols_modes[] =
240 {
241 multiple_symbols_ask,
242 multiple_symbols_all,
243 multiple_symbols_cancel,
244 NULL
245 };
246 static const char *multiple_symbols_mode = multiple_symbols_all;
247
248 /* Read-only accessor to AUTO_SELECT_MODE. */
249
250 const char *
251 multiple_symbols_select_mode (void)
252 {
253 return multiple_symbols_mode;
254 }
255
256 /* Return the name of a domain_enum. */
257
258 const char *
259 domain_name (domain_enum e)
260 {
261 switch (e)
262 {
263 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
264 case VAR_DOMAIN: return "VAR_DOMAIN";
265 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
266 case MODULE_DOMAIN: return "MODULE_DOMAIN";
267 case LABEL_DOMAIN: return "LABEL_DOMAIN";
268 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
269 default: gdb_assert_not_reached ("bad domain_enum");
270 }
271 }
272
273 /* Return the name of a search_domain . */
274
275 const char *
276 search_domain_name (enum search_domain e)
277 {
278 switch (e)
279 {
280 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
281 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
282 case TYPES_DOMAIN: return "TYPES_DOMAIN";
283 case ALL_DOMAIN: return "ALL_DOMAIN";
284 default: gdb_assert_not_reached ("bad search_domain");
285 }
286 }
287
288 /* See symtab.h. */
289
290 struct symtab *
291 compunit_primary_filetab (const struct compunit_symtab *cust)
292 {
293 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
294
295 /* The primary file symtab is the first one in the list. */
296 return COMPUNIT_FILETABS (cust);
297 }
298
299 /* See symtab.h. */
300
301 enum language
302 compunit_language (const struct compunit_symtab *cust)
303 {
304 struct symtab *symtab = compunit_primary_filetab (cust);
305
306 /* The language of the compunit symtab is the language of its primary
307 source file. */
308 return SYMTAB_LANGUAGE (symtab);
309 }
310
311 /* See whether FILENAME matches SEARCH_NAME using the rule that we
312 advertise to the user. (The manual's description of linespecs
313 describes what we advertise). Returns true if they match, false
314 otherwise. */
315
316 int
317 compare_filenames_for_search (const char *filename, const char *search_name)
318 {
319 int len = strlen (filename);
320 size_t search_len = strlen (search_name);
321
322 if (len < search_len)
323 return 0;
324
325 /* The tail of FILENAME must match. */
326 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
327 return 0;
328
329 /* Either the names must completely match, or the character
330 preceding the trailing SEARCH_NAME segment of FILENAME must be a
331 directory separator.
332
333 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
334 cannot match FILENAME "/path//dir/file.c" - as user has requested
335 absolute path. The sama applies for "c:\file.c" possibly
336 incorrectly hypothetically matching "d:\dir\c:\file.c".
337
338 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
339 compatible with SEARCH_NAME "file.c". In such case a compiler had
340 to put the "c:file.c" name into debug info. Such compatibility
341 works only on GDB built for DOS host. */
342 return (len == search_len
343 || (!IS_ABSOLUTE_PATH (search_name)
344 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
345 || (HAS_DRIVE_SPEC (filename)
346 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
347 }
348
349 /* Same as compare_filenames_for_search, but for glob-style patterns.
350 Heads up on the order of the arguments. They match the order of
351 compare_filenames_for_search, but it's the opposite of the order of
352 arguments to gdb_filename_fnmatch. */
353
354 int
355 compare_glob_filenames_for_search (const char *filename,
356 const char *search_name)
357 {
358 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
359 all /s have to be explicitly specified. */
360 int file_path_elements = count_path_elements (filename);
361 int search_path_elements = count_path_elements (search_name);
362
363 if (search_path_elements > file_path_elements)
364 return 0;
365
366 if (IS_ABSOLUTE_PATH (search_name))
367 {
368 return (search_path_elements == file_path_elements
369 && gdb_filename_fnmatch (search_name, filename,
370 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
371 }
372
373 {
374 const char *file_to_compare
375 = strip_leading_path_elements (filename,
376 file_path_elements - search_path_elements);
377
378 return gdb_filename_fnmatch (search_name, file_to_compare,
379 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
380 }
381 }
382
383 /* Check for a symtab of a specific name by searching some symtabs.
384 This is a helper function for callbacks of iterate_over_symtabs.
385
386 If NAME is not absolute, then REAL_PATH is NULL
387 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388
389 The return value, NAME, REAL_PATH and CALLBACK are identical to the
390 `map_symtabs_matching_filename' method of quick_symbol_functions.
391
392 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
393 Each symtab within the specified compunit symtab is also searched.
394 AFTER_LAST is one past the last compunit symtab to search; NULL means to
395 search until the end of the list. */
396
397 bool
398 iterate_over_some_symtabs (const char *name,
399 const char *real_path,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last,
402 gdb::function_view<bool (symtab *)> callback)
403 {
404 struct compunit_symtab *cust;
405 struct symtab *s;
406 const char* base_name = lbasename (name);
407
408 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
409 {
410 ALL_COMPUNIT_FILETABS (cust, s)
411 {
412 if (compare_filenames_for_search (s->filename, name))
413 {
414 if (callback (s))
415 return true;
416 continue;
417 }
418
419 /* Before we invoke realpath, which can get expensive when many
420 files are involved, do a quick comparison of the basenames. */
421 if (! basenames_may_differ
422 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
423 continue;
424
425 if (compare_filenames_for_search (symtab_to_fullname (s), name))
426 {
427 if (callback (s))
428 return true;
429 continue;
430 }
431
432 /* If the user gave us an absolute path, try to find the file in
433 this symtab and use its absolute path. */
434 if (real_path != NULL)
435 {
436 const char *fullname = symtab_to_fullname (s);
437
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 gdb_assert (IS_ABSOLUTE_PATH (name));
440 if (FILENAME_CMP (real_path, fullname) == 0)
441 {
442 if (callback (s))
443 return true;
444 continue;
445 }
446 }
447 }
448 }
449
450 return false;
451 }
452
453 /* Check for a symtab of a specific name; first in symtabs, then in
454 psymtabs. *If* there is no '/' in the name, a match after a '/'
455 in the symtab filename will also work.
456
457 Calls CALLBACK with each symtab that is found. If CALLBACK returns
458 true, the search stops. */
459
460 void
461 iterate_over_symtabs (const char *name,
462 gdb::function_view<bool (symtab *)> callback)
463 {
464 struct objfile *objfile;
465 gdb::unique_xmalloc_ptr<char> real_path;
466
467 /* Here we are interested in canonicalizing an absolute path, not
468 absolutizing a relative path. */
469 if (IS_ABSOLUTE_PATH (name))
470 {
471 real_path.reset (gdb_realpath (name));
472 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 if (iterate_over_some_symtabs (name, real_path.get (),
478 objfile->compunit_symtabs, NULL,
479 callback))
480 return;
481 }
482
483 /* Same search rules as above apply here, but now we look thru the
484 psymtabs. */
485
486 ALL_OBJFILES (objfile)
487 {
488 if (objfile->sf
489 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
490 name,
491 real_path.get (),
492 callback))
493 return;
494 }
495 }
496
497 /* A wrapper for iterate_over_symtabs that returns the first matching
498 symtab, or NULL. */
499
500 struct symtab *
501 lookup_symtab (const char *name)
502 {
503 struct symtab *result = NULL;
504
505 iterate_over_symtabs (name, [&] (symtab *symtab)
506 {
507 result = symtab;
508 return true;
509 });
510
511 return result;
512 }
513
514 \f
515 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
516 full method name, which consist of the class name (from T), the unadorned
517 method name from METHOD_ID, and the signature for the specific overload,
518 specified by SIGNATURE_ID. Note that this function is g++ specific. */
519
520 char *
521 gdb_mangle_name (struct type *type, int method_id, int signature_id)
522 {
523 int mangled_name_len;
524 char *mangled_name;
525 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
526 struct fn_field *method = &f[signature_id];
527 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
528 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
529 const char *newname = type_name_no_tag (type);
530
531 /* Does the form of physname indicate that it is the full mangled name
532 of a constructor (not just the args)? */
533 int is_full_physname_constructor;
534
535 int is_constructor;
536 int is_destructor = is_destructor_name (physname);
537 /* Need a new type prefix. */
538 const char *const_prefix = method->is_const ? "C" : "";
539 const char *volatile_prefix = method->is_volatile ? "V" : "";
540 char buf[20];
541 int len = (newname == NULL ? 0 : strlen (newname));
542
543 /* Nothing to do if physname already contains a fully mangled v3 abi name
544 or an operator name. */
545 if ((physname[0] == '_' && physname[1] == 'Z')
546 || is_operator_name (field_name))
547 return xstrdup (physname);
548
549 is_full_physname_constructor = is_constructor_name (physname);
550
551 is_constructor = is_full_physname_constructor
552 || (newname && strcmp (field_name, newname) == 0);
553
554 if (!is_destructor)
555 is_destructor = (startswith (physname, "__dt"));
556
557 if (is_destructor || is_full_physname_constructor)
558 {
559 mangled_name = (char *) xmalloc (strlen (physname) + 1);
560 strcpy (mangled_name, physname);
561 return mangled_name;
562 }
563
564 if (len == 0)
565 {
566 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
567 }
568 else if (physname[0] == 't' || physname[0] == 'Q')
569 {
570 /* The physname for template and qualified methods already includes
571 the class name. */
572 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
573 newname = NULL;
574 len = 0;
575 }
576 else
577 {
578 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
579 volatile_prefix, len);
580 }
581 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
582 + strlen (buf) + len + strlen (physname) + 1);
583
584 mangled_name = (char *) xmalloc (mangled_name_len);
585 if (is_constructor)
586 mangled_name[0] = '\0';
587 else
588 strcpy (mangled_name, field_name);
589
590 strcat (mangled_name, buf);
591 /* If the class doesn't have a name, i.e. newname NULL, then we just
592 mangle it using 0 for the length of the class. Thus it gets mangled
593 as something starting with `::' rather than `classname::'. */
594 if (newname != NULL)
595 strcat (mangled_name, newname);
596
597 strcat (mangled_name, physname);
598 return (mangled_name);
599 }
600
601 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
602 correctly allocated. */
603
604 void
605 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
606 const char *name,
607 struct obstack *obstack)
608 {
609 if (gsymbol->language == language_ada)
610 {
611 if (name == NULL)
612 {
613 gsymbol->ada_mangled = 0;
614 gsymbol->language_specific.obstack = obstack;
615 }
616 else
617 {
618 gsymbol->ada_mangled = 1;
619 gsymbol->language_specific.demangled_name = name;
620 }
621 }
622 else
623 gsymbol->language_specific.demangled_name = name;
624 }
625
626 /* Return the demangled name of GSYMBOL. */
627
628 const char *
629 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
630 {
631 if (gsymbol->language == language_ada)
632 {
633 if (!gsymbol->ada_mangled)
634 return NULL;
635 /* Fall through. */
636 }
637
638 return gsymbol->language_specific.demangled_name;
639 }
640
641 \f
642 /* Initialize the language dependent portion of a symbol
643 depending upon the language for the symbol. */
644
645 void
646 symbol_set_language (struct general_symbol_info *gsymbol,
647 enum language language,
648 struct obstack *obstack)
649 {
650 gsymbol->language = language;
651 if (gsymbol->language == language_cplus
652 || gsymbol->language == language_d
653 || gsymbol->language == language_go
654 || gsymbol->language == language_objc
655 || gsymbol->language == language_fortran)
656 {
657 symbol_set_demangled_name (gsymbol, NULL, obstack);
658 }
659 else if (gsymbol->language == language_ada)
660 {
661 gdb_assert (gsymbol->ada_mangled == 0);
662 gsymbol->language_specific.obstack = obstack;
663 }
664 else
665 {
666 memset (&gsymbol->language_specific, 0,
667 sizeof (gsymbol->language_specific));
668 }
669 }
670
671 /* Functions to initialize a symbol's mangled name. */
672
673 /* Objects of this type are stored in the demangled name hash table. */
674 struct demangled_name_entry
675 {
676 const char *mangled;
677 char demangled[1];
678 };
679
680 /* Hash function for the demangled name hash. */
681
682 static hashval_t
683 hash_demangled_name_entry (const void *data)
684 {
685 const struct demangled_name_entry *e
686 = (const struct demangled_name_entry *) data;
687
688 return htab_hash_string (e->mangled);
689 }
690
691 /* Equality function for the demangled name hash. */
692
693 static int
694 eq_demangled_name_entry (const void *a, const void *b)
695 {
696 const struct demangled_name_entry *da
697 = (const struct demangled_name_entry *) a;
698 const struct demangled_name_entry *db
699 = (const struct demangled_name_entry *) b;
700
701 return strcmp (da->mangled, db->mangled) == 0;
702 }
703
704 /* Create the hash table used for demangled names. Each hash entry is
705 a pair of strings; one for the mangled name and one for the demangled
706 name. The entry is hashed via just the mangled name. */
707
708 static void
709 create_demangled_names_hash (struct objfile *objfile)
710 {
711 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
712 The hash table code will round this up to the next prime number.
713 Choosing a much larger table size wastes memory, and saves only about
714 1% in symbol reading. */
715
716 objfile->per_bfd->demangled_names_hash = htab_create_alloc
717 (256, hash_demangled_name_entry, eq_demangled_name_entry,
718 NULL, xcalloc, xfree);
719 }
720
721 /* Try to determine the demangled name for a symbol, based on the
722 language of that symbol. If the language is set to language_auto,
723 it will attempt to find any demangling algorithm that works and
724 then set the language appropriately. The returned name is allocated
725 by the demangler and should be xfree'd. */
726
727 static char *
728 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
729 const char *mangled)
730 {
731 char *demangled = NULL;
732 int i;
733 int recognized;
734
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
737
738 if (gsymbol->language != language_auto)
739 {
740 const struct language_defn *lang = language_def (gsymbol->language);
741
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
743 return demangled;
744 }
745
746 for (i = language_unknown; i < nr_languages; ++i)
747 {
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
750
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 {
753 gsymbol->language = l;
754 return demangled;
755 }
756 }
757
758 return NULL;
759 }
760
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
767
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
771
772 void
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
776 {
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782
783 if (gsymbol->language == language_ada)
784 {
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
787 if (!copy_name)
788 gsymbol->name = linkage_name;
789 else
790 {
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
792 len + 1);
793
794 memcpy (name, linkage_name, len);
795 name[len] = '\0';
796 gsymbol->name = name;
797 }
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
799
800 return;
801 }
802
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (objfile);
805
806 if (linkage_name[len] != '\0')
807 {
808 char *alloc_name;
809
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
813
814 linkage_name_copy = alloc_name;
815 }
816 else
817 linkage_name_copy = linkage_name;
818
819 entry.mangled = linkage_name_copy;
820 slot = ((struct demangled_name_entry **)
821 htab_find_slot (per_bfd->demangled_names_hash,
822 &entry, INSERT));
823
824 /* If this name is not in the hash table, add it. */
825 if (*slot == NULL
826 /* A C version of the symbol may have already snuck into the table.
827 This happens to, e.g., main.init (__go_init_main). Cope. */
828 || (gsymbol->language == language_go
829 && (*slot)->demangled[0] == '\0'))
830 {
831 char *demangled_name = symbol_find_demangled_name (gsymbol,
832 linkage_name_copy);
833 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
834
835 /* Suppose we have demangled_name==NULL, copy_name==0, and
836 linkage_name_copy==linkage_name. In this case, we already have the
837 mangled name saved, and we don't have a demangled name. So,
838 you might think we could save a little space by not recording
839 this in the hash table at all.
840
841 It turns out that it is actually important to still save such
842 an entry in the hash table, because storing this name gives
843 us better bcache hit rates for partial symbols. */
844 if (!copy_name && linkage_name_copy == linkage_name)
845 {
846 *slot
847 = ((struct demangled_name_entry *)
848 obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry, demangled)
850 + demangled_len + 1));
851 (*slot)->mangled = linkage_name;
852 }
853 else
854 {
855 char *mangled_ptr;
856
857 /* If we must copy the mangled name, put it directly after
858 the demangled name so we can have a single
859 allocation. */
860 *slot
861 = ((struct demangled_name_entry *)
862 obstack_alloc (&per_bfd->storage_obstack,
863 offsetof (struct demangled_name_entry, demangled)
864 + len + demangled_len + 2));
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, linkage_name_copy);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_objc:
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
927 break;
928 case language_ada:
929 dem_name = ada_decode_symbol (gsymbol);
930 break;
931 default:
932 break;
933 }
934 return dem_name;
935 }
936
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
941
942 const char *
943 symbol_search_name (const struct general_symbol_info *gsymbol)
944 {
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
947 else
948 return symbol_natural_name (gsymbol);
949 }
950
951 /* Initialize the structure fields to zero values. */
952
953 void
954 init_sal (struct symtab_and_line *sal)
955 {
956 memset (sal, 0, sizeof (*sal));
957 }
958 \f
959
960 /* Return 1 if the two sections are the same, or if they could
961 plausibly be copies of each other, one in an original object
962 file and another in a separated debug file. */
963
964 int
965 matching_obj_sections (struct obj_section *obj_first,
966 struct obj_section *obj_second)
967 {
968 asection *first = obj_first? obj_first->the_bfd_section : NULL;
969 asection *second = obj_second? obj_second->the_bfd_section : NULL;
970 struct objfile *obj;
971
972 /* If they're the same section, then they match. */
973 if (first == second)
974 return 1;
975
976 /* If either is NULL, give up. */
977 if (first == NULL || second == NULL)
978 return 0;
979
980 /* This doesn't apply to absolute symbols. */
981 if (first->owner == NULL || second->owner == NULL)
982 return 0;
983
984 /* If they're in the same object file, they must be different sections. */
985 if (first->owner == second->owner)
986 return 0;
987
988 /* Check whether the two sections are potentially corresponding. They must
989 have the same size, address, and name. We can't compare section indexes,
990 which would be more reliable, because some sections may have been
991 stripped. */
992 if (bfd_get_section_size (first) != bfd_get_section_size (second))
993 return 0;
994
995 /* In-memory addresses may start at a different offset, relativize them. */
996 if (bfd_get_section_vma (first->owner, first)
997 - bfd_get_start_address (first->owner)
998 != bfd_get_section_vma (second->owner, second)
999 - bfd_get_start_address (second->owner))
1000 return 0;
1001
1002 if (bfd_get_section_name (first->owner, first) == NULL
1003 || bfd_get_section_name (second->owner, second) == NULL
1004 || strcmp (bfd_get_section_name (first->owner, first),
1005 bfd_get_section_name (second->owner, second)) != 0)
1006 return 0;
1007
1008 /* Otherwise check that they are in corresponding objfiles. */
1009
1010 ALL_OBJFILES (obj)
1011 if (obj->obfd == first->owner)
1012 break;
1013 gdb_assert (obj != NULL);
1014
1015 if (obj->separate_debug_objfile != NULL
1016 && obj->separate_debug_objfile->obfd == second->owner)
1017 return 1;
1018 if (obj->separate_debug_objfile_backlink != NULL
1019 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1020 return 1;
1021
1022 return 0;
1023 }
1024
1025 /* See symtab.h. */
1026
1027 void
1028 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1029 {
1030 struct objfile *objfile;
1031 struct bound_minimal_symbol msymbol;
1032
1033 /* If we know that this is not a text address, return failure. This is
1034 necessary because we loop based on texthigh and textlow, which do
1035 not include the data ranges. */
1036 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1037 if (msymbol.minsym
1038 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1043 return;
1044
1045 ALL_OBJFILES (objfile)
1046 {
1047 struct compunit_symtab *cust = NULL;
1048
1049 if (objfile->sf)
1050 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1051 pc, section, 0);
1052 if (cust)
1053 return;
1054 }
1055 }
1056 \f
1057 /* Hash function for the symbol cache. */
1058
1059 static unsigned int
1060 hash_symbol_entry (const struct objfile *objfile_context,
1061 const char *name, domain_enum domain)
1062 {
1063 unsigned int hash = (uintptr_t) objfile_context;
1064
1065 if (name != NULL)
1066 hash += htab_hash_string (name);
1067
1068 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1069 to map to the same slot. */
1070 if (domain == STRUCT_DOMAIN)
1071 hash += VAR_DOMAIN * 7;
1072 else
1073 hash += domain * 7;
1074
1075 return hash;
1076 }
1077
1078 /* Equality function for the symbol cache. */
1079
1080 static int
1081 eq_symbol_entry (const struct symbol_cache_slot *slot,
1082 const struct objfile *objfile_context,
1083 const char *name, domain_enum domain)
1084 {
1085 const char *slot_name;
1086 domain_enum slot_domain;
1087
1088 if (slot->state == SYMBOL_SLOT_UNUSED)
1089 return 0;
1090
1091 if (slot->objfile_context != objfile_context)
1092 return 0;
1093
1094 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1095 {
1096 slot_name = slot->value.not_found.name;
1097 slot_domain = slot->value.not_found.domain;
1098 }
1099 else
1100 {
1101 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1102 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1103 }
1104
1105 /* NULL names match. */
1106 if (slot_name == NULL && name == NULL)
1107 {
1108 /* But there's no point in calling symbol_matches_domain in the
1109 SYMBOL_SLOT_FOUND case. */
1110 if (slot_domain != domain)
1111 return 0;
1112 }
1113 else if (slot_name != NULL && name != NULL)
1114 {
1115 /* It's important that we use the same comparison that was done the
1116 first time through. If the slot records a found symbol, then this
1117 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1118 It also means using symbol_matches_domain for found symbols.
1119 See block.c.
1120
1121 If the slot records a not-found symbol, then require a precise match.
1122 We could still be lax with whitespace like strcmp_iw though. */
1123
1124 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1125 {
1126 if (strcmp (slot_name, name) != 0)
1127 return 0;
1128 if (slot_domain != domain)
1129 return 0;
1130 }
1131 else
1132 {
1133 struct symbol *sym = slot->value.found.symbol;
1134
1135 if (strcmp_iw (slot_name, name) != 0)
1136 return 0;
1137 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1138 slot_domain, domain))
1139 return 0;
1140 }
1141 }
1142 else
1143 {
1144 /* Only one name is NULL. */
1145 return 0;
1146 }
1147
1148 return 1;
1149 }
1150
1151 /* Given a cache of size SIZE, return the size of the struct (with variable
1152 length array) in bytes. */
1153
1154 static size_t
1155 symbol_cache_byte_size (unsigned int size)
1156 {
1157 return (sizeof (struct block_symbol_cache)
1158 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1159 }
1160
1161 /* Resize CACHE. */
1162
1163 static void
1164 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1165 {
1166 /* If there's no change in size, don't do anything.
1167 All caches have the same size, so we can just compare with the size
1168 of the global symbols cache. */
1169 if ((cache->global_symbols != NULL
1170 && cache->global_symbols->size == new_size)
1171 || (cache->global_symbols == NULL
1172 && new_size == 0))
1173 return;
1174
1175 xfree (cache->global_symbols);
1176 xfree (cache->static_symbols);
1177
1178 if (new_size == 0)
1179 {
1180 cache->global_symbols = NULL;
1181 cache->static_symbols = NULL;
1182 }
1183 else
1184 {
1185 size_t total_size = symbol_cache_byte_size (new_size);
1186
1187 cache->global_symbols
1188 = (struct block_symbol_cache *) xcalloc (1, total_size);
1189 cache->static_symbols
1190 = (struct block_symbol_cache *) xcalloc (1, total_size);
1191 cache->global_symbols->size = new_size;
1192 cache->static_symbols->size = new_size;
1193 }
1194 }
1195
1196 /* Make a symbol cache of size SIZE. */
1197
1198 static struct symbol_cache *
1199 make_symbol_cache (unsigned int size)
1200 {
1201 struct symbol_cache *cache;
1202
1203 cache = XCNEW (struct symbol_cache);
1204 resize_symbol_cache (cache, symbol_cache_size);
1205 return cache;
1206 }
1207
1208 /* Free the space used by CACHE. */
1209
1210 static void
1211 free_symbol_cache (struct symbol_cache *cache)
1212 {
1213 xfree (cache->global_symbols);
1214 xfree (cache->static_symbols);
1215 xfree (cache);
1216 }
1217
1218 /* Return the symbol cache of PSPACE.
1219 Create one if it doesn't exist yet. */
1220
1221 static struct symbol_cache *
1222 get_symbol_cache (struct program_space *pspace)
1223 {
1224 struct symbol_cache *cache
1225 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1226
1227 if (cache == NULL)
1228 {
1229 cache = make_symbol_cache (symbol_cache_size);
1230 set_program_space_data (pspace, symbol_cache_key, cache);
1231 }
1232
1233 return cache;
1234 }
1235
1236 /* Delete the symbol cache of PSPACE.
1237 Called when PSPACE is destroyed. */
1238
1239 static void
1240 symbol_cache_cleanup (struct program_space *pspace, void *data)
1241 {
1242 struct symbol_cache *cache = (struct symbol_cache *) data;
1243
1244 free_symbol_cache (cache);
1245 }
1246
1247 /* Set the size of the symbol cache in all program spaces. */
1248
1249 static void
1250 set_symbol_cache_size (unsigned int new_size)
1251 {
1252 struct program_space *pspace;
1253
1254 ALL_PSPACES (pspace)
1255 {
1256 struct symbol_cache *cache
1257 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1258
1259 /* The pspace could have been created but not have a cache yet. */
1260 if (cache != NULL)
1261 resize_symbol_cache (cache, new_size);
1262 }
1263 }
1264
1265 /* Called when symbol-cache-size is set. */
1266
1267 static void
1268 set_symbol_cache_size_handler (char *args, int from_tty,
1269 struct cmd_list_element *c)
1270 {
1271 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1272 {
1273 /* Restore the previous value.
1274 This is the value the "show" command prints. */
1275 new_symbol_cache_size = symbol_cache_size;
1276
1277 error (_("Symbol cache size is too large, max is %u."),
1278 MAX_SYMBOL_CACHE_SIZE);
1279 }
1280 symbol_cache_size = new_symbol_cache_size;
1281
1282 set_symbol_cache_size (symbol_cache_size);
1283 }
1284
1285 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1286 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1287 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1288 failed (and thus this one will too), or NULL if the symbol is not present
1289 in the cache.
1290 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1291 set to the cache and slot of the symbol to save the result of a full lookup
1292 attempt. */
1293
1294 static struct block_symbol
1295 symbol_cache_lookup (struct symbol_cache *cache,
1296 struct objfile *objfile_context, int block,
1297 const char *name, domain_enum domain,
1298 struct block_symbol_cache **bsc_ptr,
1299 struct symbol_cache_slot **slot_ptr)
1300 {
1301 struct block_symbol_cache *bsc;
1302 unsigned int hash;
1303 struct symbol_cache_slot *slot;
1304
1305 if (block == GLOBAL_BLOCK)
1306 bsc = cache->global_symbols;
1307 else
1308 bsc = cache->static_symbols;
1309 if (bsc == NULL)
1310 {
1311 *bsc_ptr = NULL;
1312 *slot_ptr = NULL;
1313 return (struct block_symbol) {NULL, NULL};
1314 }
1315
1316 hash = hash_symbol_entry (objfile_context, name, domain);
1317 slot = bsc->symbols + hash % bsc->size;
1318
1319 if (eq_symbol_entry (slot, objfile_context, name, domain))
1320 {
1321 if (symbol_lookup_debug)
1322 fprintf_unfiltered (gdb_stdlog,
1323 "%s block symbol cache hit%s for %s, %s\n",
1324 block == GLOBAL_BLOCK ? "Global" : "Static",
1325 slot->state == SYMBOL_SLOT_NOT_FOUND
1326 ? " (not found)" : "",
1327 name, domain_name (domain));
1328 ++bsc->hits;
1329 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1330 return SYMBOL_LOOKUP_FAILED;
1331 return slot->value.found;
1332 }
1333
1334 /* Symbol is not present in the cache. */
1335
1336 *bsc_ptr = bsc;
1337 *slot_ptr = slot;
1338
1339 if (symbol_lookup_debug)
1340 {
1341 fprintf_unfiltered (gdb_stdlog,
1342 "%s block symbol cache miss for %s, %s\n",
1343 block == GLOBAL_BLOCK ? "Global" : "Static",
1344 name, domain_name (domain));
1345 }
1346 ++bsc->misses;
1347 return (struct block_symbol) {NULL, NULL};
1348 }
1349
1350 /* Clear out SLOT. */
1351
1352 static void
1353 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1354 {
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 xfree (slot->value.not_found.name);
1357 slot->state = SYMBOL_SLOT_UNUSED;
1358 }
1359
1360 /* Mark SYMBOL as found in SLOT.
1361 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1362 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1363 necessarily the objfile the symbol was found in. */
1364
1365 static void
1366 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1367 struct symbol_cache_slot *slot,
1368 struct objfile *objfile_context,
1369 struct symbol *symbol,
1370 const struct block *block)
1371 {
1372 if (bsc == NULL)
1373 return;
1374 if (slot->state != SYMBOL_SLOT_UNUSED)
1375 {
1376 ++bsc->collisions;
1377 symbol_cache_clear_slot (slot);
1378 }
1379 slot->state = SYMBOL_SLOT_FOUND;
1380 slot->objfile_context = objfile_context;
1381 slot->value.found.symbol = symbol;
1382 slot->value.found.block = block;
1383 }
1384
1385 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1386 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1387 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1388
1389 static void
1390 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1391 struct symbol_cache_slot *slot,
1392 struct objfile *objfile_context,
1393 const char *name, domain_enum domain)
1394 {
1395 if (bsc == NULL)
1396 return;
1397 if (slot->state != SYMBOL_SLOT_UNUSED)
1398 {
1399 ++bsc->collisions;
1400 symbol_cache_clear_slot (slot);
1401 }
1402 slot->state = SYMBOL_SLOT_NOT_FOUND;
1403 slot->objfile_context = objfile_context;
1404 slot->value.not_found.name = xstrdup (name);
1405 slot->value.not_found.domain = domain;
1406 }
1407
1408 /* Flush the symbol cache of PSPACE. */
1409
1410 static void
1411 symbol_cache_flush (struct program_space *pspace)
1412 {
1413 struct symbol_cache *cache
1414 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1415 int pass;
1416
1417 if (cache == NULL)
1418 return;
1419 if (cache->global_symbols == NULL)
1420 {
1421 gdb_assert (symbol_cache_size == 0);
1422 gdb_assert (cache->static_symbols == NULL);
1423 return;
1424 }
1425
1426 /* If the cache is untouched since the last flush, early exit.
1427 This is important for performance during the startup of a program linked
1428 with 100s (or 1000s) of shared libraries. */
1429 if (cache->global_symbols->misses == 0
1430 && cache->static_symbols->misses == 0)
1431 return;
1432
1433 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1434 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1435
1436 for (pass = 0; pass < 2; ++pass)
1437 {
1438 struct block_symbol_cache *bsc
1439 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1440 unsigned int i;
1441
1442 for (i = 0; i < bsc->size; ++i)
1443 symbol_cache_clear_slot (&bsc->symbols[i]);
1444 }
1445
1446 cache->global_symbols->hits = 0;
1447 cache->global_symbols->misses = 0;
1448 cache->global_symbols->collisions = 0;
1449 cache->static_symbols->hits = 0;
1450 cache->static_symbols->misses = 0;
1451 cache->static_symbols->collisions = 0;
1452 }
1453
1454 /* Dump CACHE. */
1455
1456 static void
1457 symbol_cache_dump (const struct symbol_cache *cache)
1458 {
1459 int pass;
1460
1461 if (cache->global_symbols == NULL)
1462 {
1463 printf_filtered (" <disabled>\n");
1464 return;
1465 }
1466
1467 for (pass = 0; pass < 2; ++pass)
1468 {
1469 const struct block_symbol_cache *bsc
1470 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1471 unsigned int i;
1472
1473 if (pass == 0)
1474 printf_filtered ("Global symbols:\n");
1475 else
1476 printf_filtered ("Static symbols:\n");
1477
1478 for (i = 0; i < bsc->size; ++i)
1479 {
1480 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1481
1482 QUIT;
1483
1484 switch (slot->state)
1485 {
1486 case SYMBOL_SLOT_UNUSED:
1487 break;
1488 case SYMBOL_SLOT_NOT_FOUND:
1489 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1490 host_address_to_string (slot->objfile_context),
1491 slot->value.not_found.name,
1492 domain_name (slot->value.not_found.domain));
1493 break;
1494 case SYMBOL_SLOT_FOUND:
1495 {
1496 struct symbol *found = slot->value.found.symbol;
1497 const struct objfile *context = slot->objfile_context;
1498
1499 printf_filtered (" [%4u] = %s, %s %s\n", i,
1500 host_address_to_string (context),
1501 SYMBOL_PRINT_NAME (found),
1502 domain_name (SYMBOL_DOMAIN (found)));
1503 break;
1504 }
1505 }
1506 }
1507 }
1508 }
1509
1510 /* The "mt print symbol-cache" command. */
1511
1512 static void
1513 maintenance_print_symbol_cache (char *args, int from_tty)
1514 {
1515 struct program_space *pspace;
1516
1517 ALL_PSPACES (pspace)
1518 {
1519 struct symbol_cache *cache;
1520
1521 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1522 pspace->num,
1523 pspace->symfile_object_file != NULL
1524 ? objfile_name (pspace->symfile_object_file)
1525 : "(no object file)");
1526
1527 /* If the cache hasn't been created yet, avoid creating one. */
1528 cache
1529 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1530 if (cache == NULL)
1531 printf_filtered (" <empty>\n");
1532 else
1533 symbol_cache_dump (cache);
1534 }
1535 }
1536
1537 /* The "mt flush-symbol-cache" command. */
1538
1539 static void
1540 maintenance_flush_symbol_cache (char *args, int from_tty)
1541 {
1542 struct program_space *pspace;
1543
1544 ALL_PSPACES (pspace)
1545 {
1546 symbol_cache_flush (pspace);
1547 }
1548 }
1549
1550 /* Print usage statistics of CACHE. */
1551
1552 static void
1553 symbol_cache_stats (struct symbol_cache *cache)
1554 {
1555 int pass;
1556
1557 if (cache->global_symbols == NULL)
1558 {
1559 printf_filtered (" <disabled>\n");
1560 return;
1561 }
1562
1563 for (pass = 0; pass < 2; ++pass)
1564 {
1565 const struct block_symbol_cache *bsc
1566 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1567
1568 QUIT;
1569
1570 if (pass == 0)
1571 printf_filtered ("Global block cache stats:\n");
1572 else
1573 printf_filtered ("Static block cache stats:\n");
1574
1575 printf_filtered (" size: %u\n", bsc->size);
1576 printf_filtered (" hits: %u\n", bsc->hits);
1577 printf_filtered (" misses: %u\n", bsc->misses);
1578 printf_filtered (" collisions: %u\n", bsc->collisions);
1579 }
1580 }
1581
1582 /* The "mt print symbol-cache-statistics" command. */
1583
1584 static void
1585 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1586 {
1587 struct program_space *pspace;
1588
1589 ALL_PSPACES (pspace)
1590 {
1591 struct symbol_cache *cache;
1592
1593 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1594 pspace->num,
1595 pspace->symfile_object_file != NULL
1596 ? objfile_name (pspace->symfile_object_file)
1597 : "(no object file)");
1598
1599 /* If the cache hasn't been created yet, avoid creating one. */
1600 cache
1601 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1602 if (cache == NULL)
1603 printf_filtered (" empty, no stats available\n");
1604 else
1605 symbol_cache_stats (cache);
1606 }
1607 }
1608
1609 /* This module's 'new_objfile' observer. */
1610
1611 static void
1612 symtab_new_objfile_observer (struct objfile *objfile)
1613 {
1614 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1615 symbol_cache_flush (current_program_space);
1616 }
1617
1618 /* This module's 'free_objfile' observer. */
1619
1620 static void
1621 symtab_free_objfile_observer (struct objfile *objfile)
1622 {
1623 symbol_cache_flush (objfile->pspace);
1624 }
1625 \f
1626 /* Debug symbols usually don't have section information. We need to dig that
1627 out of the minimal symbols and stash that in the debug symbol. */
1628
1629 void
1630 fixup_section (struct general_symbol_info *ginfo,
1631 CORE_ADDR addr, struct objfile *objfile)
1632 {
1633 struct minimal_symbol *msym;
1634
1635 /* First, check whether a minimal symbol with the same name exists
1636 and points to the same address. The address check is required
1637 e.g. on PowerPC64, where the minimal symbol for a function will
1638 point to the function descriptor, while the debug symbol will
1639 point to the actual function code. */
1640 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1641 if (msym)
1642 ginfo->section = MSYMBOL_SECTION (msym);
1643 else
1644 {
1645 /* Static, function-local variables do appear in the linker
1646 (minimal) symbols, but are frequently given names that won't
1647 be found via lookup_minimal_symbol(). E.g., it has been
1648 observed in frv-uclinux (ELF) executables that a static,
1649 function-local variable named "foo" might appear in the
1650 linker symbols as "foo.6" or "foo.3". Thus, there is no
1651 point in attempting to extend the lookup-by-name mechanism to
1652 handle this case due to the fact that there can be multiple
1653 names.
1654
1655 So, instead, search the section table when lookup by name has
1656 failed. The ``addr'' and ``endaddr'' fields may have already
1657 been relocated. If so, the relocation offset (i.e. the
1658 ANOFFSET value) needs to be subtracted from these values when
1659 performing the comparison. We unconditionally subtract it,
1660 because, when no relocation has been performed, the ANOFFSET
1661 value will simply be zero.
1662
1663 The address of the symbol whose section we're fixing up HAS
1664 NOT BEEN adjusted (relocated) yet. It can't have been since
1665 the section isn't yet known and knowing the section is
1666 necessary in order to add the correct relocation value. In
1667 other words, we wouldn't even be in this function (attempting
1668 to compute the section) if it were already known.
1669
1670 Note that it is possible to search the minimal symbols
1671 (subtracting the relocation value if necessary) to find the
1672 matching minimal symbol, but this is overkill and much less
1673 efficient. It is not necessary to find the matching minimal
1674 symbol, only its section.
1675
1676 Note that this technique (of doing a section table search)
1677 can fail when unrelocated section addresses overlap. For
1678 this reason, we still attempt a lookup by name prior to doing
1679 a search of the section table. */
1680
1681 struct obj_section *s;
1682 int fallback = -1;
1683
1684 ALL_OBJFILE_OSECTIONS (objfile, s)
1685 {
1686 int idx = s - objfile->sections;
1687 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1688
1689 if (fallback == -1)
1690 fallback = idx;
1691
1692 if (obj_section_addr (s) - offset <= addr
1693 && addr < obj_section_endaddr (s) - offset)
1694 {
1695 ginfo->section = idx;
1696 return;
1697 }
1698 }
1699
1700 /* If we didn't find the section, assume it is in the first
1701 section. If there is no allocated section, then it hardly
1702 matters what we pick, so just pick zero. */
1703 if (fallback == -1)
1704 ginfo->section = 0;
1705 else
1706 ginfo->section = fallback;
1707 }
1708 }
1709
1710 struct symbol *
1711 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1712 {
1713 CORE_ADDR addr;
1714
1715 if (!sym)
1716 return NULL;
1717
1718 if (!SYMBOL_OBJFILE_OWNED (sym))
1719 return sym;
1720
1721 /* We either have an OBJFILE, or we can get at it from the sym's
1722 symtab. Anything else is a bug. */
1723 gdb_assert (objfile || symbol_symtab (sym));
1724
1725 if (objfile == NULL)
1726 objfile = symbol_objfile (sym);
1727
1728 if (SYMBOL_OBJ_SECTION (objfile, sym))
1729 return sym;
1730
1731 /* We should have an objfile by now. */
1732 gdb_assert (objfile);
1733
1734 switch (SYMBOL_CLASS (sym))
1735 {
1736 case LOC_STATIC:
1737 case LOC_LABEL:
1738 addr = SYMBOL_VALUE_ADDRESS (sym);
1739 break;
1740 case LOC_BLOCK:
1741 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1742 break;
1743
1744 default:
1745 /* Nothing else will be listed in the minsyms -- no use looking
1746 it up. */
1747 return sym;
1748 }
1749
1750 fixup_section (&sym->ginfo, addr, objfile);
1751
1752 return sym;
1753 }
1754
1755 /* Compute the demangled form of NAME as used by the various symbol
1756 lookup functions. The result can either be the input NAME
1757 directly, or a pointer to a buffer owned by the STORAGE object.
1758
1759 For Ada, this function just returns NAME, unmodified.
1760 Normally, Ada symbol lookups are performed using the encoded name
1761 rather than the demangled name, and so it might seem to make sense
1762 for this function to return an encoded version of NAME.
1763 Unfortunately, we cannot do this, because this function is used in
1764 circumstances where it is not appropriate to try to encode NAME.
1765 For instance, when displaying the frame info, we demangle the name
1766 of each parameter, and then perform a symbol lookup inside our
1767 function using that demangled name. In Ada, certain functions
1768 have internally-generated parameters whose name contain uppercase
1769 characters. Encoding those name would result in those uppercase
1770 characters to become lowercase, and thus cause the symbol lookup
1771 to fail. */
1772
1773 const char *
1774 demangle_for_lookup (const char *name, enum language lang,
1775 demangle_result_storage &storage)
1776 {
1777 /* If we are using C++, D, or Go, demangle the name before doing a
1778 lookup, so we can always binary search. */
1779 if (lang == language_cplus)
1780 {
1781 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1782 if (demangled_name != NULL)
1783 return storage.set_malloc_ptr (demangled_name);
1784
1785 /* If we were given a non-mangled name, canonicalize it
1786 according to the language (so far only for C++). */
1787 std::string canon = cp_canonicalize_string (name);
1788 if (!canon.empty ())
1789 return storage.swap_string (canon);
1790 }
1791 else if (lang == language_d)
1792 {
1793 char *demangled_name = d_demangle (name, 0);
1794 if (demangled_name != NULL)
1795 return storage.set_malloc_ptr (demangled_name);
1796 }
1797 else if (lang == language_go)
1798 {
1799 char *demangled_name = go_demangle (name, 0);
1800 if (demangled_name != NULL)
1801 return storage.set_malloc_ptr (demangled_name);
1802 }
1803
1804 return name;
1805 }
1806
1807 /* See symtab.h.
1808
1809 This function (or rather its subordinates) have a bunch of loops and
1810 it would seem to be attractive to put in some QUIT's (though I'm not really
1811 sure whether it can run long enough to be really important). But there
1812 are a few calls for which it would appear to be bad news to quit
1813 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1814 that there is C++ code below which can error(), but that probably
1815 doesn't affect these calls since they are looking for a known
1816 variable and thus can probably assume it will never hit the C++
1817 code). */
1818
1819 struct block_symbol
1820 lookup_symbol_in_language (const char *name, const struct block *block,
1821 const domain_enum domain, enum language lang,
1822 struct field_of_this_result *is_a_field_of_this)
1823 {
1824 demangle_result_storage storage;
1825 const char *modified_name = demangle_for_lookup (name, lang, storage);
1826
1827 return lookup_symbol_aux (modified_name, block, domain, lang,
1828 is_a_field_of_this);
1829 }
1830
1831 /* See symtab.h. */
1832
1833 struct block_symbol
1834 lookup_symbol (const char *name, const struct block *block,
1835 domain_enum domain,
1836 struct field_of_this_result *is_a_field_of_this)
1837 {
1838 return lookup_symbol_in_language (name, block, domain,
1839 current_language->la_language,
1840 is_a_field_of_this);
1841 }
1842
1843 /* See symtab.h. */
1844
1845 struct block_symbol
1846 lookup_language_this (const struct language_defn *lang,
1847 const struct block *block)
1848 {
1849 if (lang->la_name_of_this == NULL || block == NULL)
1850 return (struct block_symbol) {NULL, NULL};
1851
1852 if (symbol_lookup_debug > 1)
1853 {
1854 struct objfile *objfile = lookup_objfile_from_block (block);
1855
1856 fprintf_unfiltered (gdb_stdlog,
1857 "lookup_language_this (%s, %s (objfile %s))",
1858 lang->la_name, host_address_to_string (block),
1859 objfile_debug_name (objfile));
1860 }
1861
1862 while (block)
1863 {
1864 struct symbol *sym;
1865
1866 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1867 if (sym != NULL)
1868 {
1869 if (symbol_lookup_debug > 1)
1870 {
1871 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1872 SYMBOL_PRINT_NAME (sym),
1873 host_address_to_string (sym),
1874 host_address_to_string (block));
1875 }
1876 return (struct block_symbol) {sym, block};
1877 }
1878 if (BLOCK_FUNCTION (block))
1879 break;
1880 block = BLOCK_SUPERBLOCK (block);
1881 }
1882
1883 if (symbol_lookup_debug > 1)
1884 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1885 return (struct block_symbol) {NULL, NULL};
1886 }
1887
1888 /* Given TYPE, a structure/union,
1889 return 1 if the component named NAME from the ultimate target
1890 structure/union is defined, otherwise, return 0. */
1891
1892 static int
1893 check_field (struct type *type, const char *name,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 int i;
1897
1898 /* The type may be a stub. */
1899 type = check_typedef (type);
1900
1901 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1902 {
1903 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1904
1905 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1906 {
1907 is_a_field_of_this->type = type;
1908 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1909 return 1;
1910 }
1911 }
1912
1913 /* C++: If it was not found as a data field, then try to return it
1914 as a pointer to a method. */
1915
1916 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1917 {
1918 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1919 {
1920 is_a_field_of_this->type = type;
1921 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1922 return 1;
1923 }
1924 }
1925
1926 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1927 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1928 return 1;
1929
1930 return 0;
1931 }
1932
1933 /* Behave like lookup_symbol except that NAME is the natural name
1934 (e.g., demangled name) of the symbol that we're looking for. */
1935
1936 static struct block_symbol
1937 lookup_symbol_aux (const char *name, const struct block *block,
1938 const domain_enum domain, enum language language,
1939 struct field_of_this_result *is_a_field_of_this)
1940 {
1941 struct block_symbol result;
1942 const struct language_defn *langdef;
1943
1944 if (symbol_lookup_debug)
1945 {
1946 struct objfile *objfile = lookup_objfile_from_block (block);
1947
1948 fprintf_unfiltered (gdb_stdlog,
1949 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1950 name, host_address_to_string (block),
1951 objfile != NULL
1952 ? objfile_debug_name (objfile) : "NULL",
1953 domain_name (domain), language_str (language));
1954 }
1955
1956 /* Make sure we do something sensible with is_a_field_of_this, since
1957 the callers that set this parameter to some non-null value will
1958 certainly use it later. If we don't set it, the contents of
1959 is_a_field_of_this are undefined. */
1960 if (is_a_field_of_this != NULL)
1961 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1962
1963 /* Search specified block and its superiors. Don't search
1964 STATIC_BLOCK or GLOBAL_BLOCK. */
1965
1966 result = lookup_local_symbol (name, block, domain, language);
1967 if (result.symbol != NULL)
1968 {
1969 if (symbol_lookup_debug)
1970 {
1971 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1972 host_address_to_string (result.symbol));
1973 }
1974 return result;
1975 }
1976
1977 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1978 check to see if NAME is a field of `this'. */
1979
1980 langdef = language_def (language);
1981
1982 /* Don't do this check if we are searching for a struct. It will
1983 not be found by check_field, but will be found by other
1984 means. */
1985 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1986 {
1987 result = lookup_language_this (langdef, block);
1988
1989 if (result.symbol)
1990 {
1991 struct type *t = result.symbol->type;
1992
1993 /* I'm not really sure that type of this can ever
1994 be typedefed; just be safe. */
1995 t = check_typedef (t);
1996 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1997 t = TYPE_TARGET_TYPE (t);
1998
1999 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2000 && TYPE_CODE (t) != TYPE_CODE_UNION)
2001 error (_("Internal error: `%s' is not an aggregate"),
2002 langdef->la_name_of_this);
2003
2004 if (check_field (t, name, is_a_field_of_this))
2005 {
2006 if (symbol_lookup_debug)
2007 {
2008 fprintf_unfiltered (gdb_stdlog,
2009 "lookup_symbol_aux (...) = NULL\n");
2010 }
2011 return (struct block_symbol) {NULL, NULL};
2012 }
2013 }
2014 }
2015
2016 /* Now do whatever is appropriate for LANGUAGE to look
2017 up static and global variables. */
2018
2019 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2020 if (result.symbol != NULL)
2021 {
2022 if (symbol_lookup_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2025 host_address_to_string (result.symbol));
2026 }
2027 return result;
2028 }
2029
2030 /* Now search all static file-level symbols. Not strictly correct,
2031 but more useful than an error. */
2032
2033 result = lookup_static_symbol (name, domain);
2034 if (symbol_lookup_debug)
2035 {
2036 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2037 result.symbol != NULL
2038 ? host_address_to_string (result.symbol)
2039 : "NULL");
2040 }
2041 return result;
2042 }
2043
2044 /* Check to see if the symbol is defined in BLOCK or its superiors.
2045 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2046
2047 static struct block_symbol
2048 lookup_local_symbol (const char *name, const struct block *block,
2049 const domain_enum domain,
2050 enum language language)
2051 {
2052 struct symbol *sym;
2053 const struct block *static_block = block_static_block (block);
2054 const char *scope = block_scope (block);
2055
2056 /* Check if either no block is specified or it's a global block. */
2057
2058 if (static_block == NULL)
2059 return (struct block_symbol) {NULL, NULL};
2060
2061 while (block != static_block)
2062 {
2063 sym = lookup_symbol_in_block (name, block, domain);
2064 if (sym != NULL)
2065 return (struct block_symbol) {sym, block};
2066
2067 if (language == language_cplus || language == language_fortran)
2068 {
2069 struct block_symbol sym
2070 = cp_lookup_symbol_imports_or_template (scope, name, block,
2071 domain);
2072
2073 if (sym.symbol != NULL)
2074 return sym;
2075 }
2076
2077 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2078 break;
2079 block = BLOCK_SUPERBLOCK (block);
2080 }
2081
2082 /* We've reached the end of the function without finding a result. */
2083
2084 return (struct block_symbol) {NULL, NULL};
2085 }
2086
2087 /* See symtab.h. */
2088
2089 struct objfile *
2090 lookup_objfile_from_block (const struct block *block)
2091 {
2092 struct objfile *obj;
2093 struct compunit_symtab *cust;
2094
2095 if (block == NULL)
2096 return NULL;
2097
2098 block = block_global_block (block);
2099 /* Look through all blockvectors. */
2100 ALL_COMPUNITS (obj, cust)
2101 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2102 GLOBAL_BLOCK))
2103 {
2104 if (obj->separate_debug_objfile_backlink)
2105 obj = obj->separate_debug_objfile_backlink;
2106
2107 return obj;
2108 }
2109
2110 return NULL;
2111 }
2112
2113 /* See symtab.h. */
2114
2115 struct symbol *
2116 lookup_symbol_in_block (const char *name, const struct block *block,
2117 const domain_enum domain)
2118 {
2119 struct symbol *sym;
2120
2121 if (symbol_lookup_debug > 1)
2122 {
2123 struct objfile *objfile = lookup_objfile_from_block (block);
2124
2125 fprintf_unfiltered (gdb_stdlog,
2126 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2127 name, host_address_to_string (block),
2128 objfile_debug_name (objfile),
2129 domain_name (domain));
2130 }
2131
2132 sym = block_lookup_symbol (block, name, domain);
2133 if (sym)
2134 {
2135 if (symbol_lookup_debug > 1)
2136 {
2137 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2138 host_address_to_string (sym));
2139 }
2140 return fixup_symbol_section (sym, NULL);
2141 }
2142
2143 if (symbol_lookup_debug > 1)
2144 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2145 return NULL;
2146 }
2147
2148 /* See symtab.h. */
2149
2150 struct block_symbol
2151 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2152 const char *name,
2153 const domain_enum domain)
2154 {
2155 struct objfile *objfile;
2156
2157 for (objfile = main_objfile;
2158 objfile;
2159 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2160 {
2161 struct block_symbol result
2162 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2163
2164 if (result.symbol != NULL)
2165 return result;
2166 }
2167
2168 return (struct block_symbol) {NULL, NULL};
2169 }
2170
2171 /* Check to see if the symbol is defined in one of the OBJFILE's
2172 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2173 depending on whether or not we want to search global symbols or
2174 static symbols. */
2175
2176 static struct block_symbol
2177 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2178 const char *name, const domain_enum domain)
2179 {
2180 struct compunit_symtab *cust;
2181
2182 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2183
2184 if (symbol_lookup_debug > 1)
2185 {
2186 fprintf_unfiltered (gdb_stdlog,
2187 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2188 objfile_debug_name (objfile),
2189 block_index == GLOBAL_BLOCK
2190 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2191 name, domain_name (domain));
2192 }
2193
2194 ALL_OBJFILE_COMPUNITS (objfile, cust)
2195 {
2196 const struct blockvector *bv;
2197 const struct block *block;
2198 struct block_symbol result;
2199
2200 bv = COMPUNIT_BLOCKVECTOR (cust);
2201 block = BLOCKVECTOR_BLOCK (bv, block_index);
2202 result.symbol = block_lookup_symbol_primary (block, name, domain);
2203 result.block = block;
2204 if (result.symbol != NULL)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2209 host_address_to_string (result.symbol),
2210 host_address_to_string (block));
2211 }
2212 result.symbol = fixup_symbol_section (result.symbol, objfile);
2213 return result;
2214
2215 }
2216 }
2217
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2220 return (struct block_symbol) {NULL, NULL};
2221 }
2222
2223 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2224 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2225 and all associated separate debug objfiles.
2226
2227 Normally we only look in OBJFILE, and not any separate debug objfiles
2228 because the outer loop will cause them to be searched too. This case is
2229 different. Here we're called from search_symbols where it will only
2230 call us for the the objfile that contains a matching minsym. */
2231
2232 static struct block_symbol
2233 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2234 const char *linkage_name,
2235 domain_enum domain)
2236 {
2237 enum language lang = current_language->la_language;
2238 struct objfile *main_objfile, *cur_objfile;
2239
2240 demangle_result_storage storage;
2241 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2242
2243 if (objfile->separate_debug_objfile_backlink)
2244 main_objfile = objfile->separate_debug_objfile_backlink;
2245 else
2246 main_objfile = objfile;
2247
2248 for (cur_objfile = main_objfile;
2249 cur_objfile;
2250 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2251 {
2252 struct block_symbol result;
2253
2254 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2255 modified_name, domain);
2256 if (result.symbol == NULL)
2257 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2258 modified_name, domain);
2259 if (result.symbol != NULL)
2260 return result;
2261 }
2262
2263 return (struct block_symbol) {NULL, NULL};
2264 }
2265
2266 /* A helper function that throws an exception when a symbol was found
2267 in a psymtab but not in a symtab. */
2268
2269 static void ATTRIBUTE_NORETURN
2270 error_in_psymtab_expansion (int block_index, const char *name,
2271 struct compunit_symtab *cust)
2272 {
2273 error (_("\
2274 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2275 %s may be an inlined function, or may be a template function\n \
2276 (if a template, try specifying an instantiation: %s<type>)."),
2277 block_index == GLOBAL_BLOCK ? "global" : "static",
2278 name,
2279 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2280 name, name);
2281 }
2282
2283 /* A helper function for various lookup routines that interfaces with
2284 the "quick" symbol table functions. */
2285
2286 static struct block_symbol
2287 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2288 const char *name, const domain_enum domain)
2289 {
2290 struct compunit_symtab *cust;
2291 const struct blockvector *bv;
2292 const struct block *block;
2293 struct block_symbol result;
2294
2295 if (!objfile->sf)
2296 return (struct block_symbol) {NULL, NULL};
2297
2298 if (symbol_lookup_debug > 1)
2299 {
2300 fprintf_unfiltered (gdb_stdlog,
2301 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2302 objfile_debug_name (objfile),
2303 block_index == GLOBAL_BLOCK
2304 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2305 name, domain_name (domain));
2306 }
2307
2308 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2309 if (cust == NULL)
2310 {
2311 if (symbol_lookup_debug > 1)
2312 {
2313 fprintf_unfiltered (gdb_stdlog,
2314 "lookup_symbol_via_quick_fns (...) = NULL\n");
2315 }
2316 return (struct block_symbol) {NULL, NULL};
2317 }
2318
2319 bv = COMPUNIT_BLOCKVECTOR (cust);
2320 block = BLOCKVECTOR_BLOCK (bv, block_index);
2321 result.symbol = block_lookup_symbol (block, name, domain);
2322 if (result.symbol == NULL)
2323 error_in_psymtab_expansion (block_index, name, cust);
2324
2325 if (symbol_lookup_debug > 1)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2329 host_address_to_string (result.symbol),
2330 host_address_to_string (block));
2331 }
2332
2333 result.symbol = fixup_symbol_section (result.symbol, objfile);
2334 result.block = block;
2335 return result;
2336 }
2337
2338 /* See symtab.h. */
2339
2340 struct block_symbol
2341 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2342 const char *name,
2343 const struct block *block,
2344 const domain_enum domain)
2345 {
2346 struct block_symbol result;
2347
2348 /* NOTE: carlton/2003-05-19: The comments below were written when
2349 this (or what turned into this) was part of lookup_symbol_aux;
2350 I'm much less worried about these questions now, since these
2351 decisions have turned out well, but I leave these comments here
2352 for posterity. */
2353
2354 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2355 not it would be appropriate to search the current global block
2356 here as well. (That's what this code used to do before the
2357 is_a_field_of_this check was moved up.) On the one hand, it's
2358 redundant with the lookup in all objfiles search that happens
2359 next. On the other hand, if decode_line_1 is passed an argument
2360 like filename:var, then the user presumably wants 'var' to be
2361 searched for in filename. On the third hand, there shouldn't be
2362 multiple global variables all of which are named 'var', and it's
2363 not like decode_line_1 has ever restricted its search to only
2364 global variables in a single filename. All in all, only
2365 searching the static block here seems best: it's correct and it's
2366 cleanest. */
2367
2368 /* NOTE: carlton/2002-12-05: There's also a possible performance
2369 issue here: if you usually search for global symbols in the
2370 current file, then it would be slightly better to search the
2371 current global block before searching all the symtabs. But there
2372 are other factors that have a much greater effect on performance
2373 than that one, so I don't think we should worry about that for
2374 now. */
2375
2376 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2377 the current objfile. Searching the current objfile first is useful
2378 for both matching user expectations as well as performance. */
2379
2380 result = lookup_symbol_in_static_block (name, block, domain);
2381 if (result.symbol != NULL)
2382 return result;
2383
2384 /* If we didn't find a definition for a builtin type in the static block,
2385 search for it now. This is actually the right thing to do and can be
2386 a massive performance win. E.g., when debugging a program with lots of
2387 shared libraries we could search all of them only to find out the
2388 builtin type isn't defined in any of them. This is common for types
2389 like "void". */
2390 if (domain == VAR_DOMAIN)
2391 {
2392 struct gdbarch *gdbarch;
2393
2394 if (block == NULL)
2395 gdbarch = target_gdbarch ();
2396 else
2397 gdbarch = block_gdbarch (block);
2398 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2399 gdbarch, name);
2400 result.block = NULL;
2401 if (result.symbol != NULL)
2402 return result;
2403 }
2404
2405 return lookup_global_symbol (name, block, domain);
2406 }
2407
2408 /* See symtab.h. */
2409
2410 struct block_symbol
2411 lookup_symbol_in_static_block (const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414 {
2415 const struct block *static_block = block_static_block (block);
2416 struct symbol *sym;
2417
2418 if (static_block == NULL)
2419 return (struct block_symbol) {NULL, NULL};
2420
2421 if (symbol_lookup_debug)
2422 {
2423 struct objfile *objfile = lookup_objfile_from_block (static_block);
2424
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2427 " %s)\n",
2428 name,
2429 host_address_to_string (block),
2430 objfile_debug_name (objfile),
2431 domain_name (domain));
2432 }
2433
2434 sym = lookup_symbol_in_block (name, static_block, domain);
2435 if (symbol_lookup_debug)
2436 {
2437 fprintf_unfiltered (gdb_stdlog,
2438 "lookup_symbol_in_static_block (...) = %s\n",
2439 sym != NULL ? host_address_to_string (sym) : "NULL");
2440 }
2441 return (struct block_symbol) {sym, static_block};
2442 }
2443
2444 /* Perform the standard symbol lookup of NAME in OBJFILE:
2445 1) First search expanded symtabs, and if not found
2446 2) Search the "quick" symtabs (partial or .gdb_index).
2447 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2448
2449 static struct block_symbol
2450 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2451 const char *name, const domain_enum domain)
2452 {
2453 struct block_symbol result;
2454
2455 if (symbol_lookup_debug)
2456 {
2457 fprintf_unfiltered (gdb_stdlog,
2458 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2459 objfile_debug_name (objfile),
2460 block_index == GLOBAL_BLOCK
2461 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2462 name, domain_name (domain));
2463 }
2464
2465 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2466 name, domain);
2467 if (result.symbol != NULL)
2468 {
2469 if (symbol_lookup_debug)
2470 {
2471 fprintf_unfiltered (gdb_stdlog,
2472 "lookup_symbol_in_objfile (...) = %s"
2473 " (in symtabs)\n",
2474 host_address_to_string (result.symbol));
2475 }
2476 return result;
2477 }
2478
2479 result = lookup_symbol_via_quick_fns (objfile, block_index,
2480 name, domain);
2481 if (symbol_lookup_debug)
2482 {
2483 fprintf_unfiltered (gdb_stdlog,
2484 "lookup_symbol_in_objfile (...) = %s%s\n",
2485 result.symbol != NULL
2486 ? host_address_to_string (result.symbol)
2487 : "NULL",
2488 result.symbol != NULL ? " (via quick fns)" : "");
2489 }
2490 return result;
2491 }
2492
2493 /* See symtab.h. */
2494
2495 struct block_symbol
2496 lookup_static_symbol (const char *name, const domain_enum domain)
2497 {
2498 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2499 struct objfile *objfile;
2500 struct block_symbol result;
2501 struct block_symbol_cache *bsc;
2502 struct symbol_cache_slot *slot;
2503
2504 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2505 NULL for OBJFILE_CONTEXT. */
2506 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2507 &bsc, &slot);
2508 if (result.symbol != NULL)
2509 {
2510 if (SYMBOL_LOOKUP_FAILED_P (result))
2511 return (struct block_symbol) {NULL, NULL};
2512 return result;
2513 }
2514
2515 ALL_OBJFILES (objfile)
2516 {
2517 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2518 if (result.symbol != NULL)
2519 {
2520 /* Still pass NULL for OBJFILE_CONTEXT here. */
2521 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2522 result.block);
2523 return result;
2524 }
2525 }
2526
2527 /* Still pass NULL for OBJFILE_CONTEXT here. */
2528 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2529 return (struct block_symbol) {NULL, NULL};
2530 }
2531
2532 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2533
2534 struct global_sym_lookup_data
2535 {
2536 /* The name of the symbol we are searching for. */
2537 const char *name;
2538
2539 /* The domain to use for our search. */
2540 domain_enum domain;
2541
2542 /* The field where the callback should store the symbol if found.
2543 It should be initialized to {NULL, NULL} before the search is started. */
2544 struct block_symbol result;
2545 };
2546
2547 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2548 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2549 OBJFILE. The arguments for the search are passed via CB_DATA,
2550 which in reality is a pointer to struct global_sym_lookup_data. */
2551
2552 static int
2553 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2554 void *cb_data)
2555 {
2556 struct global_sym_lookup_data *data =
2557 (struct global_sym_lookup_data *) cb_data;
2558
2559 gdb_assert (data->result.symbol == NULL
2560 && data->result.block == NULL);
2561
2562 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2563 data->name, data->domain);
2564
2565 /* If we found a match, tell the iterator to stop. Otherwise,
2566 keep going. */
2567 return (data->result.symbol != NULL);
2568 }
2569
2570 /* See symtab.h. */
2571
2572 struct block_symbol
2573 lookup_global_symbol (const char *name,
2574 const struct block *block,
2575 const domain_enum domain)
2576 {
2577 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2578 struct block_symbol result;
2579 struct objfile *objfile;
2580 struct global_sym_lookup_data lookup_data;
2581 struct block_symbol_cache *bsc;
2582 struct symbol_cache_slot *slot;
2583
2584 objfile = lookup_objfile_from_block (block);
2585
2586 /* First see if we can find the symbol in the cache.
2587 This works because we use the current objfile to qualify the lookup. */
2588 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2589 &bsc, &slot);
2590 if (result.symbol != NULL)
2591 {
2592 if (SYMBOL_LOOKUP_FAILED_P (result))
2593 return (struct block_symbol) {NULL, NULL};
2594 return result;
2595 }
2596
2597 /* Call library-specific lookup procedure. */
2598 if (objfile != NULL)
2599 result = solib_global_lookup (objfile, name, domain);
2600
2601 /* If that didn't work go a global search (of global blocks, heh). */
2602 if (result.symbol == NULL)
2603 {
2604 memset (&lookup_data, 0, sizeof (lookup_data));
2605 lookup_data.name = name;
2606 lookup_data.domain = domain;
2607 gdbarch_iterate_over_objfiles_in_search_order
2608 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2609 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2610 result = lookup_data.result;
2611 }
2612
2613 if (result.symbol != NULL)
2614 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2615 else
2616 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2617
2618 return result;
2619 }
2620
2621 int
2622 symbol_matches_domain (enum language symbol_language,
2623 domain_enum symbol_domain,
2624 domain_enum domain)
2625 {
2626 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2627 Similarly, any Ada type declaration implicitly defines a typedef. */
2628 if (symbol_language == language_cplus
2629 || symbol_language == language_d
2630 || symbol_language == language_ada
2631 || symbol_language == language_rust)
2632 {
2633 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2634 && symbol_domain == STRUCT_DOMAIN)
2635 return 1;
2636 }
2637 /* For all other languages, strict match is required. */
2638 return (symbol_domain == domain);
2639 }
2640
2641 /* See symtab.h. */
2642
2643 struct type *
2644 lookup_transparent_type (const char *name)
2645 {
2646 return current_language->la_lookup_transparent_type (name);
2647 }
2648
2649 /* A helper for basic_lookup_transparent_type that interfaces with the
2650 "quick" symbol table functions. */
2651
2652 static struct type *
2653 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2654 const char *name)
2655 {
2656 struct compunit_symtab *cust;
2657 const struct blockvector *bv;
2658 struct block *block;
2659 struct symbol *sym;
2660
2661 if (!objfile->sf)
2662 return NULL;
2663 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2664 STRUCT_DOMAIN);
2665 if (cust == NULL)
2666 return NULL;
2667
2668 bv = COMPUNIT_BLOCKVECTOR (cust);
2669 block = BLOCKVECTOR_BLOCK (bv, block_index);
2670 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2671 block_find_non_opaque_type, NULL);
2672 if (sym == NULL)
2673 error_in_psymtab_expansion (block_index, name, cust);
2674 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2675 return SYMBOL_TYPE (sym);
2676 }
2677
2678 /* Subroutine of basic_lookup_transparent_type to simplify it.
2679 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2680 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2681
2682 static struct type *
2683 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2684 const char *name)
2685 {
2686 const struct compunit_symtab *cust;
2687 const struct blockvector *bv;
2688 const struct block *block;
2689 const struct symbol *sym;
2690
2691 ALL_OBJFILE_COMPUNITS (objfile, cust)
2692 {
2693 bv = COMPUNIT_BLOCKVECTOR (cust);
2694 block = BLOCKVECTOR_BLOCK (bv, block_index);
2695 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2696 block_find_non_opaque_type, NULL);
2697 if (sym != NULL)
2698 {
2699 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2700 return SYMBOL_TYPE (sym);
2701 }
2702 }
2703
2704 return NULL;
2705 }
2706
2707 /* The standard implementation of lookup_transparent_type. This code
2708 was modeled on lookup_symbol -- the parts not relevant to looking
2709 up types were just left out. In particular it's assumed here that
2710 types are available in STRUCT_DOMAIN and only in file-static or
2711 global blocks. */
2712
2713 struct type *
2714 basic_lookup_transparent_type (const char *name)
2715 {
2716 struct objfile *objfile;
2717 struct type *t;
2718
2719 /* Now search all the global symbols. Do the symtab's first, then
2720 check the psymtab's. If a psymtab indicates the existence
2721 of the desired name as a global, then do psymtab-to-symtab
2722 conversion on the fly and return the found symbol. */
2723
2724 ALL_OBJFILES (objfile)
2725 {
2726 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2727 if (t)
2728 return t;
2729 }
2730
2731 ALL_OBJFILES (objfile)
2732 {
2733 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2734 if (t)
2735 return t;
2736 }
2737
2738 /* Now search the static file-level symbols.
2739 Not strictly correct, but more useful than an error.
2740 Do the symtab's first, then
2741 check the psymtab's. If a psymtab indicates the existence
2742 of the desired name as a file-level static, then do psymtab-to-symtab
2743 conversion on the fly and return the found symbol. */
2744
2745 ALL_OBJFILES (objfile)
2746 {
2747 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2748 if (t)
2749 return t;
2750 }
2751
2752 ALL_OBJFILES (objfile)
2753 {
2754 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2755 if (t)
2756 return t;
2757 }
2758
2759 return (struct type *) 0;
2760 }
2761
2762 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2763
2764 For each symbol that matches, CALLBACK is called. The symbol is
2765 passed to the callback.
2766
2767 If CALLBACK returns false, the iteration ends. Otherwise, the
2768 search continues. */
2769
2770 void
2771 iterate_over_symbols (const struct block *block, const char *name,
2772 const domain_enum domain,
2773 gdb::function_view<symbol_found_callback_ftype> callback)
2774 {
2775 struct block_iterator iter;
2776 struct symbol *sym;
2777
2778 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2779 {
2780 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2781 SYMBOL_DOMAIN (sym), domain))
2782 {
2783 if (!callback (sym))
2784 return;
2785 }
2786 }
2787 }
2788
2789 /* Find the compunit symtab associated with PC and SECTION.
2790 This will read in debug info as necessary. */
2791
2792 struct compunit_symtab *
2793 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2794 {
2795 struct compunit_symtab *cust;
2796 struct compunit_symtab *best_cust = NULL;
2797 struct objfile *objfile;
2798 CORE_ADDR distance = 0;
2799 struct bound_minimal_symbol msymbol;
2800
2801 /* If we know that this is not a text address, return failure. This is
2802 necessary because we loop based on the block's high and low code
2803 addresses, which do not include the data ranges, and because
2804 we call find_pc_sect_psymtab which has a similar restriction based
2805 on the partial_symtab's texthigh and textlow. */
2806 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2807 if (msymbol.minsym
2808 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2810 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2811 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2812 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2813 return NULL;
2814
2815 /* Search all symtabs for the one whose file contains our address, and which
2816 is the smallest of all the ones containing the address. This is designed
2817 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2818 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2819 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2820
2821 This happens for native ecoff format, where code from included files
2822 gets its own symtab. The symtab for the included file should have
2823 been read in already via the dependency mechanism.
2824 It might be swifter to create several symtabs with the same name
2825 like xcoff does (I'm not sure).
2826
2827 It also happens for objfiles that have their functions reordered.
2828 For these, the symtab we are looking for is not necessarily read in. */
2829
2830 ALL_COMPUNITS (objfile, cust)
2831 {
2832 struct block *b;
2833 const struct blockvector *bv;
2834
2835 bv = COMPUNIT_BLOCKVECTOR (cust);
2836 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2837
2838 if (BLOCK_START (b) <= pc
2839 && BLOCK_END (b) > pc
2840 && (distance == 0
2841 || BLOCK_END (b) - BLOCK_START (b) < distance))
2842 {
2843 /* For an objfile that has its functions reordered,
2844 find_pc_psymtab will find the proper partial symbol table
2845 and we simply return its corresponding symtab. */
2846 /* In order to better support objfiles that contain both
2847 stabs and coff debugging info, we continue on if a psymtab
2848 can't be found. */
2849 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2850 {
2851 struct compunit_symtab *result;
2852
2853 result
2854 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2855 msymbol,
2856 pc, section,
2857 0);
2858 if (result != NULL)
2859 return result;
2860 }
2861 if (section != 0)
2862 {
2863 struct block_iterator iter;
2864 struct symbol *sym = NULL;
2865
2866 ALL_BLOCK_SYMBOLS (b, iter, sym)
2867 {
2868 fixup_symbol_section (sym, objfile);
2869 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2870 section))
2871 break;
2872 }
2873 if (sym == NULL)
2874 continue; /* No symbol in this symtab matches
2875 section. */
2876 }
2877 distance = BLOCK_END (b) - BLOCK_START (b);
2878 best_cust = cust;
2879 }
2880 }
2881
2882 if (best_cust != NULL)
2883 return best_cust;
2884
2885 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2886
2887 ALL_OBJFILES (objfile)
2888 {
2889 struct compunit_symtab *result;
2890
2891 if (!objfile->sf)
2892 continue;
2893 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2894 msymbol,
2895 pc, section,
2896 1);
2897 if (result != NULL)
2898 return result;
2899 }
2900
2901 return NULL;
2902 }
2903
2904 /* Find the compunit symtab associated with PC.
2905 This will read in debug info as necessary.
2906 Backward compatibility, no section. */
2907
2908 struct compunit_symtab *
2909 find_pc_compunit_symtab (CORE_ADDR pc)
2910 {
2911 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2912 }
2913 \f
2914
2915 /* Find the source file and line number for a given PC value and SECTION.
2916 Return a structure containing a symtab pointer, a line number,
2917 and a pc range for the entire source line.
2918 The value's .pc field is NOT the specified pc.
2919 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2920 use the line that ends there. Otherwise, in that case, the line
2921 that begins there is used. */
2922
2923 /* The big complication here is that a line may start in one file, and end just
2924 before the start of another file. This usually occurs when you #include
2925 code in the middle of a subroutine. To properly find the end of a line's PC
2926 range, we must search all symtabs associated with this compilation unit, and
2927 find the one whose first PC is closer than that of the next line in this
2928 symtab. */
2929
2930 /* If it's worth the effort, we could be using a binary search. */
2931
2932 struct symtab_and_line
2933 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2934 {
2935 struct compunit_symtab *cust;
2936 struct symtab *iter_s;
2937 struct linetable *l;
2938 int len;
2939 int i;
2940 struct linetable_entry *item;
2941 struct symtab_and_line val;
2942 const struct blockvector *bv;
2943 struct bound_minimal_symbol msymbol;
2944
2945 /* Info on best line seen so far, and where it starts, and its file. */
2946
2947 struct linetable_entry *best = NULL;
2948 CORE_ADDR best_end = 0;
2949 struct symtab *best_symtab = 0;
2950
2951 /* Store here the first line number
2952 of a file which contains the line at the smallest pc after PC.
2953 If we don't find a line whose range contains PC,
2954 we will use a line one less than this,
2955 with a range from the start of that file to the first line's pc. */
2956 struct linetable_entry *alt = NULL;
2957
2958 /* Info on best line seen in this file. */
2959
2960 struct linetable_entry *prev;
2961
2962 /* If this pc is not from the current frame,
2963 it is the address of the end of a call instruction.
2964 Quite likely that is the start of the following statement.
2965 But what we want is the statement containing the instruction.
2966 Fudge the pc to make sure we get that. */
2967
2968 init_sal (&val); /* initialize to zeroes */
2969
2970 val.pspace = current_program_space;
2971
2972 /* It's tempting to assume that, if we can't find debugging info for
2973 any function enclosing PC, that we shouldn't search for line
2974 number info, either. However, GAS can emit line number info for
2975 assembly files --- very helpful when debugging hand-written
2976 assembly code. In such a case, we'd have no debug info for the
2977 function, but we would have line info. */
2978
2979 if (notcurrent)
2980 pc -= 1;
2981
2982 /* elz: added this because this function returned the wrong
2983 information if the pc belongs to a stub (import/export)
2984 to call a shlib function. This stub would be anywhere between
2985 two functions in the target, and the line info was erroneously
2986 taken to be the one of the line before the pc. */
2987
2988 /* RT: Further explanation:
2989
2990 * We have stubs (trampolines) inserted between procedures.
2991 *
2992 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2993 * exists in the main image.
2994 *
2995 * In the minimal symbol table, we have a bunch of symbols
2996 * sorted by start address. The stubs are marked as "trampoline",
2997 * the others appear as text. E.g.:
2998 *
2999 * Minimal symbol table for main image
3000 * main: code for main (text symbol)
3001 * shr1: stub (trampoline symbol)
3002 * foo: code for foo (text symbol)
3003 * ...
3004 * Minimal symbol table for "shr1" image:
3005 * ...
3006 * shr1: code for shr1 (text symbol)
3007 * ...
3008 *
3009 * So the code below is trying to detect if we are in the stub
3010 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3011 * and if found, do the symbolization from the real-code address
3012 * rather than the stub address.
3013 *
3014 * Assumptions being made about the minimal symbol table:
3015 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3016 * if we're really in the trampoline.s If we're beyond it (say
3017 * we're in "foo" in the above example), it'll have a closer
3018 * symbol (the "foo" text symbol for example) and will not
3019 * return the trampoline.
3020 * 2. lookup_minimal_symbol_text() will find a real text symbol
3021 * corresponding to the trampoline, and whose address will
3022 * be different than the trampoline address. I put in a sanity
3023 * check for the address being the same, to avoid an
3024 * infinite recursion.
3025 */
3026 msymbol = lookup_minimal_symbol_by_pc (pc);
3027 if (msymbol.minsym != NULL)
3028 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3029 {
3030 struct bound_minimal_symbol mfunsym
3031 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3032 NULL);
3033
3034 if (mfunsym.minsym == NULL)
3035 /* I eliminated this warning since it is coming out
3036 * in the following situation:
3037 * gdb shmain // test program with shared libraries
3038 * (gdb) break shr1 // function in shared lib
3039 * Warning: In stub for ...
3040 * In the above situation, the shared lib is not loaded yet,
3041 * so of course we can't find the real func/line info,
3042 * but the "break" still works, and the warning is annoying.
3043 * So I commented out the warning. RT */
3044 /* warning ("In stub for %s; unable to find real function/line info",
3045 SYMBOL_LINKAGE_NAME (msymbol)); */
3046 ;
3047 /* fall through */
3048 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3049 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3050 /* Avoid infinite recursion */
3051 /* See above comment about why warning is commented out. */
3052 /* warning ("In stub for %s; unable to find real function/line info",
3053 SYMBOL_LINKAGE_NAME (msymbol)); */
3054 ;
3055 /* fall through */
3056 else
3057 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3058 }
3059
3060
3061 cust = find_pc_sect_compunit_symtab (pc, section);
3062 if (cust == NULL)
3063 {
3064 /* If no symbol information, return previous pc. */
3065 if (notcurrent)
3066 pc++;
3067 val.pc = pc;
3068 return val;
3069 }
3070
3071 bv = COMPUNIT_BLOCKVECTOR (cust);
3072
3073 /* Look at all the symtabs that share this blockvector.
3074 They all have the same apriori range, that we found was right;
3075 but they have different line tables. */
3076
3077 ALL_COMPUNIT_FILETABS (cust, iter_s)
3078 {
3079 /* Find the best line in this symtab. */
3080 l = SYMTAB_LINETABLE (iter_s);
3081 if (!l)
3082 continue;
3083 len = l->nitems;
3084 if (len <= 0)
3085 {
3086 /* I think len can be zero if the symtab lacks line numbers
3087 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3088 I'm not sure which, and maybe it depends on the symbol
3089 reader). */
3090 continue;
3091 }
3092
3093 prev = NULL;
3094 item = l->item; /* Get first line info. */
3095
3096 /* Is this file's first line closer than the first lines of other files?
3097 If so, record this file, and its first line, as best alternate. */
3098 if (item->pc > pc && (!alt || item->pc < alt->pc))
3099 alt = item;
3100
3101 for (i = 0; i < len; i++, item++)
3102 {
3103 /* Leave prev pointing to the linetable entry for the last line
3104 that started at or before PC. */
3105 if (item->pc > pc)
3106 break;
3107
3108 prev = item;
3109 }
3110
3111 /* At this point, prev points at the line whose start addr is <= pc, and
3112 item points at the next line. If we ran off the end of the linetable
3113 (pc >= start of the last line), then prev == item. If pc < start of
3114 the first line, prev will not be set. */
3115
3116 /* Is this file's best line closer than the best in the other files?
3117 If so, record this file, and its best line, as best so far. Don't
3118 save prev if it represents the end of a function (i.e. line number
3119 0) instead of a real line. */
3120
3121 if (prev && prev->line && (!best || prev->pc > best->pc))
3122 {
3123 best = prev;
3124 best_symtab = iter_s;
3125
3126 /* Discard BEST_END if it's before the PC of the current BEST. */
3127 if (best_end <= best->pc)
3128 best_end = 0;
3129 }
3130
3131 /* If another line (denoted by ITEM) is in the linetable and its
3132 PC is after BEST's PC, but before the current BEST_END, then
3133 use ITEM's PC as the new best_end. */
3134 if (best && i < len && item->pc > best->pc
3135 && (best_end == 0 || best_end > item->pc))
3136 best_end = item->pc;
3137 }
3138
3139 if (!best_symtab)
3140 {
3141 /* If we didn't find any line number info, just return zeros.
3142 We used to return alt->line - 1 here, but that could be
3143 anywhere; if we don't have line number info for this PC,
3144 don't make some up. */
3145 val.pc = pc;
3146 }
3147 else if (best->line == 0)
3148 {
3149 /* If our best fit is in a range of PC's for which no line
3150 number info is available (line number is zero) then we didn't
3151 find any valid line information. */
3152 val.pc = pc;
3153 }
3154 else
3155 {
3156 val.symtab = best_symtab;
3157 val.line = best->line;
3158 val.pc = best->pc;
3159 if (best_end && (!alt || best_end < alt->pc))
3160 val.end = best_end;
3161 else if (alt)
3162 val.end = alt->pc;
3163 else
3164 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3165 }
3166 val.section = section;
3167 return val;
3168 }
3169
3170 /* Backward compatibility (no section). */
3171
3172 struct symtab_and_line
3173 find_pc_line (CORE_ADDR pc, int notcurrent)
3174 {
3175 struct obj_section *section;
3176
3177 section = find_pc_overlay (pc);
3178 if (pc_in_unmapped_range (pc, section))
3179 pc = overlay_mapped_address (pc, section);
3180 return find_pc_sect_line (pc, section, notcurrent);
3181 }
3182
3183 /* See symtab.h. */
3184
3185 struct symtab *
3186 find_pc_line_symtab (CORE_ADDR pc)
3187 {
3188 struct symtab_and_line sal;
3189
3190 /* This always passes zero for NOTCURRENT to find_pc_line.
3191 There are currently no callers that ever pass non-zero. */
3192 sal = find_pc_line (pc, 0);
3193 return sal.symtab;
3194 }
3195 \f
3196 /* Find line number LINE in any symtab whose name is the same as
3197 SYMTAB.
3198
3199 If found, return the symtab that contains the linetable in which it was
3200 found, set *INDEX to the index in the linetable of the best entry
3201 found, and set *EXACT_MATCH nonzero if the value returned is an
3202 exact match.
3203
3204 If not found, return NULL. */
3205
3206 struct symtab *
3207 find_line_symtab (struct symtab *symtab, int line,
3208 int *index, int *exact_match)
3209 {
3210 int exact = 0; /* Initialized here to avoid a compiler warning. */
3211
3212 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3213 so far seen. */
3214
3215 int best_index;
3216 struct linetable *best_linetable;
3217 struct symtab *best_symtab;
3218
3219 /* First try looking it up in the given symtab. */
3220 best_linetable = SYMTAB_LINETABLE (symtab);
3221 best_symtab = symtab;
3222 best_index = find_line_common (best_linetable, line, &exact, 0);
3223 if (best_index < 0 || !exact)
3224 {
3225 /* Didn't find an exact match. So we better keep looking for
3226 another symtab with the same name. In the case of xcoff,
3227 multiple csects for one source file (produced by IBM's FORTRAN
3228 compiler) produce multiple symtabs (this is unavoidable
3229 assuming csects can be at arbitrary places in memory and that
3230 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3231
3232 /* BEST is the smallest linenumber > LINE so far seen,
3233 or 0 if none has been seen so far.
3234 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3235 int best;
3236
3237 struct objfile *objfile;
3238 struct compunit_symtab *cu;
3239 struct symtab *s;
3240
3241 if (best_index >= 0)
3242 best = best_linetable->item[best_index].line;
3243 else
3244 best = 0;
3245
3246 ALL_OBJFILES (objfile)
3247 {
3248 if (objfile->sf)
3249 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3250 symtab_to_fullname (symtab));
3251 }
3252
3253 ALL_FILETABS (objfile, cu, s)
3254 {
3255 struct linetable *l;
3256 int ind;
3257
3258 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3259 continue;
3260 if (FILENAME_CMP (symtab_to_fullname (symtab),
3261 symtab_to_fullname (s)) != 0)
3262 continue;
3263 l = SYMTAB_LINETABLE (s);
3264 ind = find_line_common (l, line, &exact, 0);
3265 if (ind >= 0)
3266 {
3267 if (exact)
3268 {
3269 best_index = ind;
3270 best_linetable = l;
3271 best_symtab = s;
3272 goto done;
3273 }
3274 if (best == 0 || l->item[ind].line < best)
3275 {
3276 best = l->item[ind].line;
3277 best_index = ind;
3278 best_linetable = l;
3279 best_symtab = s;
3280 }
3281 }
3282 }
3283 }
3284 done:
3285 if (best_index < 0)
3286 return NULL;
3287
3288 if (index)
3289 *index = best_index;
3290 if (exact_match)
3291 *exact_match = exact;
3292
3293 return best_symtab;
3294 }
3295
3296 /* Given SYMTAB, returns all the PCs function in the symtab that
3297 exactly match LINE. Returns an empty vector if there are no exact
3298 matches, but updates BEST_ITEM in this case. */
3299
3300 std::vector<CORE_ADDR>
3301 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3302 struct linetable_entry **best_item)
3303 {
3304 int start = 0;
3305 std::vector<CORE_ADDR> result;
3306
3307 /* First, collect all the PCs that are at this line. */
3308 while (1)
3309 {
3310 int was_exact;
3311 int idx;
3312
3313 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3314 start);
3315 if (idx < 0)
3316 break;
3317
3318 if (!was_exact)
3319 {
3320 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3321
3322 if (*best_item == NULL || item->line < (*best_item)->line)
3323 *best_item = item;
3324
3325 break;
3326 }
3327
3328 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3329 start = idx + 1;
3330 }
3331
3332 return result;
3333 }
3334
3335 \f
3336 /* Set the PC value for a given source file and line number and return true.
3337 Returns zero for invalid line number (and sets the PC to 0).
3338 The source file is specified with a struct symtab. */
3339
3340 int
3341 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3342 {
3343 struct linetable *l;
3344 int ind;
3345
3346 *pc = 0;
3347 if (symtab == 0)
3348 return 0;
3349
3350 symtab = find_line_symtab (symtab, line, &ind, NULL);
3351 if (symtab != NULL)
3352 {
3353 l = SYMTAB_LINETABLE (symtab);
3354 *pc = l->item[ind].pc;
3355 return 1;
3356 }
3357 else
3358 return 0;
3359 }
3360
3361 /* Find the range of pc values in a line.
3362 Store the starting pc of the line into *STARTPTR
3363 and the ending pc (start of next line) into *ENDPTR.
3364 Returns 1 to indicate success.
3365 Returns 0 if could not find the specified line. */
3366
3367 int
3368 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3369 CORE_ADDR *endptr)
3370 {
3371 CORE_ADDR startaddr;
3372 struct symtab_and_line found_sal;
3373
3374 startaddr = sal.pc;
3375 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3376 return 0;
3377
3378 /* This whole function is based on address. For example, if line 10 has
3379 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3380 "info line *0x123" should say the line goes from 0x100 to 0x200
3381 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3382 This also insures that we never give a range like "starts at 0x134
3383 and ends at 0x12c". */
3384
3385 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3386 if (found_sal.line != sal.line)
3387 {
3388 /* The specified line (sal) has zero bytes. */
3389 *startptr = found_sal.pc;
3390 *endptr = found_sal.pc;
3391 }
3392 else
3393 {
3394 *startptr = found_sal.pc;
3395 *endptr = found_sal.end;
3396 }
3397 return 1;
3398 }
3399
3400 /* Given a line table and a line number, return the index into the line
3401 table for the pc of the nearest line whose number is >= the specified one.
3402 Return -1 if none is found. The value is >= 0 if it is an index.
3403 START is the index at which to start searching the line table.
3404
3405 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3406
3407 static int
3408 find_line_common (struct linetable *l, int lineno,
3409 int *exact_match, int start)
3410 {
3411 int i;
3412 int len;
3413
3414 /* BEST is the smallest linenumber > LINENO so far seen,
3415 or 0 if none has been seen so far.
3416 BEST_INDEX identifies the item for it. */
3417
3418 int best_index = -1;
3419 int best = 0;
3420
3421 *exact_match = 0;
3422
3423 if (lineno <= 0)
3424 return -1;
3425 if (l == 0)
3426 return -1;
3427
3428 len = l->nitems;
3429 for (i = start; i < len; i++)
3430 {
3431 struct linetable_entry *item = &(l->item[i]);
3432
3433 if (item->line == lineno)
3434 {
3435 /* Return the first (lowest address) entry which matches. */
3436 *exact_match = 1;
3437 return i;
3438 }
3439
3440 if (item->line > lineno && (best == 0 || item->line < best))
3441 {
3442 best = item->line;
3443 best_index = i;
3444 }
3445 }
3446
3447 /* If we got here, we didn't get an exact match. */
3448 return best_index;
3449 }
3450
3451 int
3452 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3453 {
3454 struct symtab_and_line sal;
3455
3456 sal = find_pc_line (pc, 0);
3457 *startptr = sal.pc;
3458 *endptr = sal.end;
3459 return sal.symtab != 0;
3460 }
3461
3462 /* Given a function symbol SYM, find the symtab and line for the start
3463 of the function.
3464 If the argument FUNFIRSTLINE is nonzero, we want the first line
3465 of real code inside the function.
3466 This function should return SALs matching those from minsym_found,
3467 otherwise false multiple-locations breakpoints could be placed. */
3468
3469 struct symtab_and_line
3470 find_function_start_sal (struct symbol *sym, int funfirstline)
3471 {
3472 struct symtab_and_line sal;
3473 struct obj_section *section;
3474
3475 fixup_symbol_section (sym, NULL);
3476 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3477 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3478
3479 if (funfirstline && sal.symtab != NULL
3480 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3481 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3482 {
3483 struct gdbarch *gdbarch = symbol_arch (sym);
3484
3485 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3486 if (gdbarch_skip_entrypoint_p (gdbarch))
3487 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3488 return sal;
3489 }
3490
3491 /* We always should have a line for the function start address.
3492 If we don't, something is odd. Create a plain SAL refering
3493 just the PC and hope that skip_prologue_sal (if requested)
3494 can find a line number for after the prologue. */
3495 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3496 {
3497 init_sal (&sal);
3498 sal.pspace = current_program_space;
3499 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3500 sal.section = section;
3501 }
3502
3503 if (funfirstline)
3504 skip_prologue_sal (&sal);
3505
3506 return sal;
3507 }
3508
3509 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3510 address for that function that has an entry in SYMTAB's line info
3511 table. If such an entry cannot be found, return FUNC_ADDR
3512 unaltered. */
3513
3514 static CORE_ADDR
3515 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3516 {
3517 CORE_ADDR func_start, func_end;
3518 struct linetable *l;
3519 int i;
3520
3521 /* Give up if this symbol has no lineinfo table. */
3522 l = SYMTAB_LINETABLE (symtab);
3523 if (l == NULL)
3524 return func_addr;
3525
3526 /* Get the range for the function's PC values, or give up if we
3527 cannot, for some reason. */
3528 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3529 return func_addr;
3530
3531 /* Linetable entries are ordered by PC values, see the commentary in
3532 symtab.h where `struct linetable' is defined. Thus, the first
3533 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3534 address we are looking for. */
3535 for (i = 0; i < l->nitems; i++)
3536 {
3537 struct linetable_entry *item = &(l->item[i]);
3538
3539 /* Don't use line numbers of zero, they mark special entries in
3540 the table. See the commentary on symtab.h before the
3541 definition of struct linetable. */
3542 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3543 return item->pc;
3544 }
3545
3546 return func_addr;
3547 }
3548
3549 /* Adjust SAL to the first instruction past the function prologue.
3550 If the PC was explicitly specified, the SAL is not changed.
3551 If the line number was explicitly specified, at most the SAL's PC
3552 is updated. If SAL is already past the prologue, then do nothing. */
3553
3554 void
3555 skip_prologue_sal (struct symtab_and_line *sal)
3556 {
3557 struct symbol *sym;
3558 struct symtab_and_line start_sal;
3559 CORE_ADDR pc, saved_pc;
3560 struct obj_section *section;
3561 const char *name;
3562 struct objfile *objfile;
3563 struct gdbarch *gdbarch;
3564 const struct block *b, *function_block;
3565 int force_skip, skip;
3566
3567 /* Do not change the SAL if PC was specified explicitly. */
3568 if (sal->explicit_pc)
3569 return;
3570
3571 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3572
3573 switch_to_program_space_and_thread (sal->pspace);
3574
3575 sym = find_pc_sect_function (sal->pc, sal->section);
3576 if (sym != NULL)
3577 {
3578 fixup_symbol_section (sym, NULL);
3579
3580 objfile = symbol_objfile (sym);
3581 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3582 section = SYMBOL_OBJ_SECTION (objfile, sym);
3583 name = SYMBOL_LINKAGE_NAME (sym);
3584 }
3585 else
3586 {
3587 struct bound_minimal_symbol msymbol
3588 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3589
3590 if (msymbol.minsym == NULL)
3591 return;
3592
3593 objfile = msymbol.objfile;
3594 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3595 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3596 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3597 }
3598
3599 gdbarch = get_objfile_arch (objfile);
3600
3601 /* Process the prologue in two passes. In the first pass try to skip the
3602 prologue (SKIP is true) and verify there is a real need for it (indicated
3603 by FORCE_SKIP). If no such reason was found run a second pass where the
3604 prologue is not skipped (SKIP is false). */
3605
3606 skip = 1;
3607 force_skip = 1;
3608
3609 /* Be conservative - allow direct PC (without skipping prologue) only if we
3610 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3611 have to be set by the caller so we use SYM instead. */
3612 if (sym != NULL
3613 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3614 force_skip = 0;
3615
3616 saved_pc = pc;
3617 do
3618 {
3619 pc = saved_pc;
3620
3621 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3622 so that gdbarch_skip_prologue has something unique to work on. */
3623 if (section_is_overlay (section) && !section_is_mapped (section))
3624 pc = overlay_unmapped_address (pc, section);
3625
3626 /* Skip "first line" of function (which is actually its prologue). */
3627 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3628 if (gdbarch_skip_entrypoint_p (gdbarch))
3629 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3630 if (skip)
3631 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3632
3633 /* For overlays, map pc back into its mapped VMA range. */
3634 pc = overlay_mapped_address (pc, section);
3635
3636 /* Calculate line number. */
3637 start_sal = find_pc_sect_line (pc, section, 0);
3638
3639 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3640 line is still part of the same function. */
3641 if (skip && start_sal.pc != pc
3642 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3643 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3644 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3645 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3646 {
3647 /* First pc of next line */
3648 pc = start_sal.end;
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 }
3652
3653 /* On targets with executable formats that don't have a concept of
3654 constructors (ELF with .init has, PE doesn't), gcc emits a call
3655 to `__main' in `main' between the prologue and before user
3656 code. */
3657 if (gdbarch_skip_main_prologue_p (gdbarch)
3658 && name && strcmp_iw (name, "main") == 0)
3659 {
3660 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3661 /* Recalculate the line number (might not be N+1). */
3662 start_sal = find_pc_sect_line (pc, section, 0);
3663 force_skip = 1;
3664 }
3665 }
3666 while (!force_skip && skip--);
3667
3668 /* If we still don't have a valid source line, try to find the first
3669 PC in the lineinfo table that belongs to the same function. This
3670 happens with COFF debug info, which does not seem to have an
3671 entry in lineinfo table for the code after the prologue which has
3672 no direct relation to source. For example, this was found to be
3673 the case with the DJGPP target using "gcc -gcoff" when the
3674 compiler inserted code after the prologue to make sure the stack
3675 is aligned. */
3676 if (!force_skip && sym && start_sal.symtab == NULL)
3677 {
3678 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3679 /* Recalculate the line number. */
3680 start_sal = find_pc_sect_line (pc, section, 0);
3681 }
3682
3683 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3684 forward SAL to the end of the prologue. */
3685 if (sal->pc >= pc)
3686 return;
3687
3688 sal->pc = pc;
3689 sal->section = section;
3690
3691 /* Unless the explicit_line flag was set, update the SAL line
3692 and symtab to correspond to the modified PC location. */
3693 if (sal->explicit_line)
3694 return;
3695
3696 sal->symtab = start_sal.symtab;
3697 sal->line = start_sal.line;
3698 sal->end = start_sal.end;
3699
3700 /* Check if we are now inside an inlined function. If we can,
3701 use the call site of the function instead. */
3702 b = block_for_pc_sect (sal->pc, sal->section);
3703 function_block = NULL;
3704 while (b != NULL)
3705 {
3706 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3707 function_block = b;
3708 else if (BLOCK_FUNCTION (b) != NULL)
3709 break;
3710 b = BLOCK_SUPERBLOCK (b);
3711 }
3712 if (function_block != NULL
3713 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3714 {
3715 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3716 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3717 }
3718 }
3719
3720 /* Given PC at the function's start address, attempt to find the
3721 prologue end using SAL information. Return zero if the skip fails.
3722
3723 A non-optimized prologue traditionally has one SAL for the function
3724 and a second for the function body. A single line function has
3725 them both pointing at the same line.
3726
3727 An optimized prologue is similar but the prologue may contain
3728 instructions (SALs) from the instruction body. Need to skip those
3729 while not getting into the function body.
3730
3731 The functions end point and an increasing SAL line are used as
3732 indicators of the prologue's endpoint.
3733
3734 This code is based on the function refine_prologue_limit
3735 (found in ia64). */
3736
3737 CORE_ADDR
3738 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3739 {
3740 struct symtab_and_line prologue_sal;
3741 CORE_ADDR start_pc;
3742 CORE_ADDR end_pc;
3743 const struct block *bl;
3744
3745 /* Get an initial range for the function. */
3746 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3747 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3748
3749 prologue_sal = find_pc_line (start_pc, 0);
3750 if (prologue_sal.line != 0)
3751 {
3752 /* For languages other than assembly, treat two consecutive line
3753 entries at the same address as a zero-instruction prologue.
3754 The GNU assembler emits separate line notes for each instruction
3755 in a multi-instruction macro, but compilers generally will not
3756 do this. */
3757 if (prologue_sal.symtab->language != language_asm)
3758 {
3759 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3760 int idx = 0;
3761
3762 /* Skip any earlier lines, and any end-of-sequence marker
3763 from a previous function. */
3764 while (linetable->item[idx].pc != prologue_sal.pc
3765 || linetable->item[idx].line == 0)
3766 idx++;
3767
3768 if (idx+1 < linetable->nitems
3769 && linetable->item[idx+1].line != 0
3770 && linetable->item[idx+1].pc == start_pc)
3771 return start_pc;
3772 }
3773
3774 /* If there is only one sal that covers the entire function,
3775 then it is probably a single line function, like
3776 "foo(){}". */
3777 if (prologue_sal.end >= end_pc)
3778 return 0;
3779
3780 while (prologue_sal.end < end_pc)
3781 {
3782 struct symtab_and_line sal;
3783
3784 sal = find_pc_line (prologue_sal.end, 0);
3785 if (sal.line == 0)
3786 break;
3787 /* Assume that a consecutive SAL for the same (or larger)
3788 line mark the prologue -> body transition. */
3789 if (sal.line >= prologue_sal.line)
3790 break;
3791 /* Likewise if we are in a different symtab altogether
3792 (e.g. within a file included via #include).  */
3793 if (sal.symtab != prologue_sal.symtab)
3794 break;
3795
3796 /* The line number is smaller. Check that it's from the
3797 same function, not something inlined. If it's inlined,
3798 then there is no point comparing the line numbers. */
3799 bl = block_for_pc (prologue_sal.end);
3800 while (bl)
3801 {
3802 if (block_inlined_p (bl))
3803 break;
3804 if (BLOCK_FUNCTION (bl))
3805 {
3806 bl = NULL;
3807 break;
3808 }
3809 bl = BLOCK_SUPERBLOCK (bl);
3810 }
3811 if (bl != NULL)
3812 break;
3813
3814 /* The case in which compiler's optimizer/scheduler has
3815 moved instructions into the prologue. We look ahead in
3816 the function looking for address ranges whose
3817 corresponding line number is less the first one that we
3818 found for the function. This is more conservative then
3819 refine_prologue_limit which scans a large number of SALs
3820 looking for any in the prologue. */
3821 prologue_sal = sal;
3822 }
3823 }
3824
3825 if (prologue_sal.end < end_pc)
3826 /* Return the end of this line, or zero if we could not find a
3827 line. */
3828 return prologue_sal.end;
3829 else
3830 /* Don't return END_PC, which is past the end of the function. */
3831 return prologue_sal.pc;
3832 }
3833
3834 /* See symtab.h. */
3835
3836 symbol *
3837 find_function_alias_target (bound_minimal_symbol msymbol)
3838 {
3839 if (!msymbol_is_text (msymbol.minsym))
3840 return NULL;
3841
3842 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3843 symbol *sym = find_pc_function (addr);
3844 if (sym != NULL
3845 && SYMBOL_CLASS (sym) == LOC_BLOCK
3846 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3847 return sym;
3848
3849 return NULL;
3850 }
3851
3852 \f
3853 /* If P is of the form "operator[ \t]+..." where `...' is
3854 some legitimate operator text, return a pointer to the
3855 beginning of the substring of the operator text.
3856 Otherwise, return "". */
3857
3858 static const char *
3859 operator_chars (const char *p, const char **end)
3860 {
3861 *end = "";
3862 if (!startswith (p, CP_OPERATOR_STR))
3863 return *end;
3864 p += CP_OPERATOR_LEN;
3865
3866 /* Don't get faked out by `operator' being part of a longer
3867 identifier. */
3868 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3869 return *end;
3870
3871 /* Allow some whitespace between `operator' and the operator symbol. */
3872 while (*p == ' ' || *p == '\t')
3873 p++;
3874
3875 /* Recognize 'operator TYPENAME'. */
3876
3877 if (isalpha (*p) || *p == '_' || *p == '$')
3878 {
3879 const char *q = p + 1;
3880
3881 while (isalnum (*q) || *q == '_' || *q == '$')
3882 q++;
3883 *end = q;
3884 return p;
3885 }
3886
3887 while (*p)
3888 switch (*p)
3889 {
3890 case '\\': /* regexp quoting */
3891 if (p[1] == '*')
3892 {
3893 if (p[2] == '=') /* 'operator\*=' */
3894 *end = p + 3;
3895 else /* 'operator\*' */
3896 *end = p + 2;
3897 return p;
3898 }
3899 else if (p[1] == '[')
3900 {
3901 if (p[2] == ']')
3902 error (_("mismatched quoting on brackets, "
3903 "try 'operator\\[\\]'"));
3904 else if (p[2] == '\\' && p[3] == ']')
3905 {
3906 *end = p + 4; /* 'operator\[\]' */
3907 return p;
3908 }
3909 else
3910 error (_("nothing is allowed between '[' and ']'"));
3911 }
3912 else
3913 {
3914 /* Gratuitous qoute: skip it and move on. */
3915 p++;
3916 continue;
3917 }
3918 break;
3919 case '!':
3920 case '=':
3921 case '*':
3922 case '/':
3923 case '%':
3924 case '^':
3925 if (p[1] == '=')
3926 *end = p + 2;
3927 else
3928 *end = p + 1;
3929 return p;
3930 case '<':
3931 case '>':
3932 case '+':
3933 case '-':
3934 case '&':
3935 case '|':
3936 if (p[0] == '-' && p[1] == '>')
3937 {
3938 /* Struct pointer member operator 'operator->'. */
3939 if (p[2] == '*')
3940 {
3941 *end = p + 3; /* 'operator->*' */
3942 return p;
3943 }
3944 else if (p[2] == '\\')
3945 {
3946 *end = p + 4; /* Hopefully 'operator->\*' */
3947 return p;
3948 }
3949 else
3950 {
3951 *end = p + 2; /* 'operator->' */
3952 return p;
3953 }
3954 }
3955 if (p[1] == '=' || p[1] == p[0])
3956 *end = p + 2;
3957 else
3958 *end = p + 1;
3959 return p;
3960 case '~':
3961 case ',':
3962 *end = p + 1;
3963 return p;
3964 case '(':
3965 if (p[1] != ')')
3966 error (_("`operator ()' must be specified "
3967 "without whitespace in `()'"));
3968 *end = p + 2;
3969 return p;
3970 case '?':
3971 if (p[1] != ':')
3972 error (_("`operator ?:' must be specified "
3973 "without whitespace in `?:'"));
3974 *end = p + 2;
3975 return p;
3976 case '[':
3977 if (p[1] != ']')
3978 error (_("`operator []' must be specified "
3979 "without whitespace in `[]'"));
3980 *end = p + 2;
3981 return p;
3982 default:
3983 error (_("`operator %s' not supported"), p);
3984 break;
3985 }
3986
3987 *end = "";
3988 return *end;
3989 }
3990 \f
3991
3992 /* Data structure to maintain printing state for output_source_filename. */
3993
3994 struct output_source_filename_data
3995 {
3996 /* Cache of what we've seen so far. */
3997 struct filename_seen_cache *filename_seen_cache;
3998
3999 /* Flag of whether we're printing the first one. */
4000 int first;
4001 };
4002
4003 /* Slave routine for sources_info. Force line breaks at ,'s.
4004 NAME is the name to print.
4005 DATA contains the state for printing and watching for duplicates. */
4006
4007 static void
4008 output_source_filename (const char *name,
4009 struct output_source_filename_data *data)
4010 {
4011 /* Since a single source file can result in several partial symbol
4012 tables, we need to avoid printing it more than once. Note: if
4013 some of the psymtabs are read in and some are not, it gets
4014 printed both under "Source files for which symbols have been
4015 read" and "Source files for which symbols will be read in on
4016 demand". I consider this a reasonable way to deal with the
4017 situation. I'm not sure whether this can also happen for
4018 symtabs; it doesn't hurt to check. */
4019
4020 /* Was NAME already seen? */
4021 if (data->filename_seen_cache->seen (name))
4022 {
4023 /* Yes; don't print it again. */
4024 return;
4025 }
4026
4027 /* No; print it and reset *FIRST. */
4028 if (! data->first)
4029 printf_filtered (", ");
4030 data->first = 0;
4031
4032 wrap_here ("");
4033 fputs_filtered (name, gdb_stdout);
4034 }
4035
4036 /* A callback for map_partial_symbol_filenames. */
4037
4038 static void
4039 output_partial_symbol_filename (const char *filename, const char *fullname,
4040 void *data)
4041 {
4042 output_source_filename (fullname ? fullname : filename,
4043 (struct output_source_filename_data *) data);
4044 }
4045
4046 static void
4047 sources_info (char *ignore, int from_tty)
4048 {
4049 struct compunit_symtab *cu;
4050 struct symtab *s;
4051 struct objfile *objfile;
4052 struct output_source_filename_data data;
4053
4054 if (!have_full_symbols () && !have_partial_symbols ())
4055 {
4056 error (_("No symbol table is loaded. Use the \"file\" command."));
4057 }
4058
4059 filename_seen_cache filenames_seen;
4060
4061 data.filename_seen_cache = &filenames_seen;
4062
4063 printf_filtered ("Source files for which symbols have been read in:\n\n");
4064
4065 data.first = 1;
4066 ALL_FILETABS (objfile, cu, s)
4067 {
4068 const char *fullname = symtab_to_fullname (s);
4069
4070 output_source_filename (fullname, &data);
4071 }
4072 printf_filtered ("\n\n");
4073
4074 printf_filtered ("Source files for which symbols "
4075 "will be read in on demand:\n\n");
4076
4077 filenames_seen.clear ();
4078 data.first = 1;
4079 map_symbol_filenames (output_partial_symbol_filename, &data,
4080 1 /*need_fullname*/);
4081 printf_filtered ("\n");
4082 }
4083
4084 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4085 non-zero compare only lbasename of FILES. */
4086
4087 static int
4088 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4089 {
4090 int i;
4091
4092 if (file != NULL && nfiles != 0)
4093 {
4094 for (i = 0; i < nfiles; i++)
4095 {
4096 if (compare_filenames_for_search (file, (basenames
4097 ? lbasename (files[i])
4098 : files[i])))
4099 return 1;
4100 }
4101 }
4102 else if (nfiles == 0)
4103 return 1;
4104 return 0;
4105 }
4106
4107 /* Free any memory associated with a search. */
4108
4109 void
4110 free_search_symbols (struct symbol_search *symbols)
4111 {
4112 struct symbol_search *p;
4113 struct symbol_search *next;
4114
4115 for (p = symbols; p != NULL; p = next)
4116 {
4117 next = p->next;
4118 xfree (p);
4119 }
4120 }
4121
4122 static void
4123 do_free_search_symbols_cleanup (void *symbolsp)
4124 {
4125 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4126
4127 free_search_symbols (symbols);
4128 }
4129
4130 struct cleanup *
4131 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4132 {
4133 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4134 }
4135
4136 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4137 sort symbols, not minimal symbols. */
4138
4139 static int
4140 compare_search_syms (const void *sa, const void *sb)
4141 {
4142 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4143 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4144 int c;
4145
4146 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4147 symbol_symtab (sym_b->symbol)->filename);
4148 if (c != 0)
4149 return c;
4150
4151 if (sym_a->block != sym_b->block)
4152 return sym_a->block - sym_b->block;
4153
4154 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4155 SYMBOL_PRINT_NAME (sym_b->symbol));
4156 }
4157
4158 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4159 The duplicates are freed, and the new list is returned in
4160 *NEW_HEAD, *NEW_TAIL. */
4161
4162 static void
4163 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4164 struct symbol_search **new_head,
4165 struct symbol_search **new_tail)
4166 {
4167 struct symbol_search **symbols, *symp;
4168 int i, j, nunique;
4169
4170 gdb_assert (found != NULL && nfound > 0);
4171
4172 /* Build an array out of the list so we can easily sort them. */
4173 symbols = XNEWVEC (struct symbol_search *, nfound);
4174
4175 symp = found;
4176 for (i = 0; i < nfound; i++)
4177 {
4178 gdb_assert (symp != NULL);
4179 gdb_assert (symp->block >= 0 && symp->block <= 1);
4180 symbols[i] = symp;
4181 symp = symp->next;
4182 }
4183 gdb_assert (symp == NULL);
4184
4185 qsort (symbols, nfound, sizeof (struct symbol_search *),
4186 compare_search_syms);
4187
4188 /* Collapse out the dups. */
4189 for (i = 1, j = 1; i < nfound; ++i)
4190 {
4191 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4192 symbols[j++] = symbols[i];
4193 else
4194 xfree (symbols[i]);
4195 }
4196 nunique = j;
4197 symbols[j - 1]->next = NULL;
4198
4199 /* Rebuild the linked list. */
4200 for (i = 0; i < nunique - 1; i++)
4201 symbols[i]->next = symbols[i + 1];
4202 symbols[nunique - 1]->next = NULL;
4203
4204 *new_head = symbols[0];
4205 *new_tail = symbols[nunique - 1];
4206 xfree (symbols);
4207 }
4208
4209 /* Search the symbol table for matches to the regular expression REGEXP,
4210 returning the results in *MATCHES.
4211
4212 Only symbols of KIND are searched:
4213 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4214 and constants (enums)
4215 FUNCTIONS_DOMAIN - search all functions
4216 TYPES_DOMAIN - search all type names
4217 ALL_DOMAIN - an internal error for this function
4218
4219 free_search_symbols should be called when *MATCHES is no longer needed.
4220
4221 Within each file the results are sorted locally; each symtab's global and
4222 static blocks are separately alphabetized.
4223 Duplicate entries are removed. */
4224
4225 void
4226 search_symbols (const char *regexp, enum search_domain kind,
4227 int nfiles, const char *files[],
4228 struct symbol_search **matches)
4229 {
4230 struct compunit_symtab *cust;
4231 const struct blockvector *bv;
4232 struct block *b;
4233 int i = 0;
4234 struct block_iterator iter;
4235 struct symbol *sym;
4236 struct objfile *objfile;
4237 struct minimal_symbol *msymbol;
4238 int found_misc = 0;
4239 static const enum minimal_symbol_type types[]
4240 = {mst_data, mst_text, mst_abs};
4241 static const enum minimal_symbol_type types2[]
4242 = {mst_bss, mst_file_text, mst_abs};
4243 static const enum minimal_symbol_type types3[]
4244 = {mst_file_data, mst_solib_trampoline, mst_abs};
4245 static const enum minimal_symbol_type types4[]
4246 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4247 enum minimal_symbol_type ourtype;
4248 enum minimal_symbol_type ourtype2;
4249 enum minimal_symbol_type ourtype3;
4250 enum minimal_symbol_type ourtype4;
4251 struct symbol_search *found;
4252 struct symbol_search *tail;
4253 int nfound;
4254 gdb::optional<compiled_regex> preg;
4255
4256 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4257 CLEANUP_CHAIN is freed only in the case of an error. */
4258 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4259 struct cleanup *retval_chain;
4260
4261 gdb_assert (kind <= TYPES_DOMAIN);
4262
4263 ourtype = types[kind];
4264 ourtype2 = types2[kind];
4265 ourtype3 = types3[kind];
4266 ourtype4 = types4[kind];
4267
4268 *matches = NULL;
4269
4270 if (regexp != NULL)
4271 {
4272 /* Make sure spacing is right for C++ operators.
4273 This is just a courtesy to make the matching less sensitive
4274 to how many spaces the user leaves between 'operator'
4275 and <TYPENAME> or <OPERATOR>. */
4276 const char *opend;
4277 const char *opname = operator_chars (regexp, &opend);
4278 int errcode;
4279
4280 if (*opname)
4281 {
4282 int fix = -1; /* -1 means ok; otherwise number of
4283 spaces needed. */
4284
4285 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4286 {
4287 /* There should 1 space between 'operator' and 'TYPENAME'. */
4288 if (opname[-1] != ' ' || opname[-2] == ' ')
4289 fix = 1;
4290 }
4291 else
4292 {
4293 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4294 if (opname[-1] == ' ')
4295 fix = 0;
4296 }
4297 /* If wrong number of spaces, fix it. */
4298 if (fix >= 0)
4299 {
4300 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4301
4302 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4303 regexp = tmp;
4304 }
4305 }
4306
4307 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4308 ? REG_ICASE : 0);
4309 preg.emplace (regexp, cflags, _("Invalid regexp"));
4310 }
4311
4312 /* Search through the partial symtabs *first* for all symbols
4313 matching the regexp. That way we don't have to reproduce all of
4314 the machinery below. */
4315 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4316 {
4317 return file_matches (filename, files, nfiles,
4318 basenames);
4319 },
4320 [&] (const char *symname)
4321 {
4322 return (!preg || preg->exec (symname,
4323 0, NULL, 0) == 0);
4324 },
4325 NULL,
4326 kind);
4327
4328 /* Here, we search through the minimal symbol tables for functions
4329 and variables that match, and force their symbols to be read.
4330 This is in particular necessary for demangled variable names,
4331 which are no longer put into the partial symbol tables.
4332 The symbol will then be found during the scan of symtabs below.
4333
4334 For functions, find_pc_symtab should succeed if we have debug info
4335 for the function, for variables we have to call
4336 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4337 has debug info.
4338 If the lookup fails, set found_misc so that we will rescan to print
4339 any matching symbols without debug info.
4340 We only search the objfile the msymbol came from, we no longer search
4341 all objfiles. In large programs (1000s of shared libs) searching all
4342 objfiles is not worth the pain. */
4343
4344 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4345 {
4346 ALL_MSYMBOLS (objfile, msymbol)
4347 {
4348 QUIT;
4349
4350 if (msymbol->created_by_gdb)
4351 continue;
4352
4353 if (MSYMBOL_TYPE (msymbol) == ourtype
4354 || MSYMBOL_TYPE (msymbol) == ourtype2
4355 || MSYMBOL_TYPE (msymbol) == ourtype3
4356 || MSYMBOL_TYPE (msymbol) == ourtype4)
4357 {
4358 if (!preg
4359 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4360 NULL, 0) == 0)
4361 {
4362 /* Note: An important side-effect of these lookup functions
4363 is to expand the symbol table if msymbol is found, for the
4364 benefit of the next loop on ALL_COMPUNITS. */
4365 if (kind == FUNCTIONS_DOMAIN
4366 ? (find_pc_compunit_symtab
4367 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4368 : (lookup_symbol_in_objfile_from_linkage_name
4369 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4370 .symbol == NULL))
4371 found_misc = 1;
4372 }
4373 }
4374 }
4375 }
4376
4377 found = NULL;
4378 tail = NULL;
4379 nfound = 0;
4380 retval_chain = make_cleanup_free_search_symbols (&found);
4381
4382 ALL_COMPUNITS (objfile, cust)
4383 {
4384 bv = COMPUNIT_BLOCKVECTOR (cust);
4385 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4386 {
4387 b = BLOCKVECTOR_BLOCK (bv, i);
4388 ALL_BLOCK_SYMBOLS (b, iter, sym)
4389 {
4390 struct symtab *real_symtab = symbol_symtab (sym);
4391
4392 QUIT;
4393
4394 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4395 a substring of symtab_to_fullname as it may contain "./" etc. */
4396 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4397 || ((basenames_may_differ
4398 || file_matches (lbasename (real_symtab->filename),
4399 files, nfiles, 1))
4400 && file_matches (symtab_to_fullname (real_symtab),
4401 files, nfiles, 0)))
4402 && ((!preg
4403 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4404 NULL, 0) == 0)
4405 && ((kind == VARIABLES_DOMAIN
4406 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4407 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4408 && SYMBOL_CLASS (sym) != LOC_BLOCK
4409 /* LOC_CONST can be used for more than just enums,
4410 e.g., c++ static const members.
4411 We only want to skip enums here. */
4412 && !(SYMBOL_CLASS (sym) == LOC_CONST
4413 && (TYPE_CODE (SYMBOL_TYPE (sym))
4414 == TYPE_CODE_ENUM)))
4415 || (kind == FUNCTIONS_DOMAIN
4416 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4417 || (kind == TYPES_DOMAIN
4418 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4419 {
4420 /* match */
4421 struct symbol_search *psr = XCNEW (struct symbol_search);
4422
4423 psr->block = i;
4424 psr->symbol = sym;
4425 psr->next = NULL;
4426 if (tail == NULL)
4427 found = psr;
4428 else
4429 tail->next = psr;
4430 tail = psr;
4431 nfound ++;
4432 }
4433 }
4434 }
4435 }
4436
4437 if (found != NULL)
4438 {
4439 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4440 /* Note: nfound is no longer useful beyond this point. */
4441 }
4442
4443 /* If there are no eyes, avoid all contact. I mean, if there are
4444 no debug symbols, then add matching minsyms. */
4445
4446 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4447 {
4448 ALL_MSYMBOLS (objfile, msymbol)
4449 {
4450 QUIT;
4451
4452 if (msymbol->created_by_gdb)
4453 continue;
4454
4455 if (MSYMBOL_TYPE (msymbol) == ourtype
4456 || MSYMBOL_TYPE (msymbol) == ourtype2
4457 || MSYMBOL_TYPE (msymbol) == ourtype3
4458 || MSYMBOL_TYPE (msymbol) == ourtype4)
4459 {
4460 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4461 NULL, 0) == 0)
4462 {
4463 /* For functions we can do a quick check of whether the
4464 symbol might be found via find_pc_symtab. */
4465 if (kind != FUNCTIONS_DOMAIN
4466 || (find_pc_compunit_symtab
4467 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4468 {
4469 if (lookup_symbol_in_objfile_from_linkage_name
4470 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4471 .symbol == NULL)
4472 {
4473 /* match */
4474 struct symbol_search *psr = XNEW (struct symbol_search);
4475 psr->block = i;
4476 psr->msymbol.minsym = msymbol;
4477 psr->msymbol.objfile = objfile;
4478 psr->symbol = NULL;
4479 psr->next = NULL;
4480 if (tail == NULL)
4481 found = psr;
4482 else
4483 tail->next = psr;
4484 tail = psr;
4485 }
4486 }
4487 }
4488 }
4489 }
4490 }
4491
4492 discard_cleanups (retval_chain);
4493 do_cleanups (old_chain);
4494 *matches = found;
4495 }
4496
4497 /* Helper function for symtab_symbol_info, this function uses
4498 the data returned from search_symbols() to print information
4499 regarding the match to gdb_stdout. */
4500
4501 static void
4502 print_symbol_info (enum search_domain kind,
4503 struct symbol *sym,
4504 int block, const char *last)
4505 {
4506 struct symtab *s = symbol_symtab (sym);
4507 const char *s_filename = symtab_to_filename_for_display (s);
4508
4509 if (last == NULL || filename_cmp (last, s_filename) != 0)
4510 {
4511 fputs_filtered ("\nFile ", gdb_stdout);
4512 fputs_filtered (s_filename, gdb_stdout);
4513 fputs_filtered (":\n", gdb_stdout);
4514 }
4515
4516 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4517 printf_filtered ("static ");
4518
4519 /* Typedef that is not a C++ class. */
4520 if (kind == TYPES_DOMAIN
4521 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4522 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4523 /* variable, func, or typedef-that-is-c++-class. */
4524 else if (kind < TYPES_DOMAIN
4525 || (kind == TYPES_DOMAIN
4526 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4527 {
4528 type_print (SYMBOL_TYPE (sym),
4529 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4530 ? "" : SYMBOL_PRINT_NAME (sym)),
4531 gdb_stdout, 0);
4532
4533 printf_filtered (";\n");
4534 }
4535 }
4536
4537 /* This help function for symtab_symbol_info() prints information
4538 for non-debugging symbols to gdb_stdout. */
4539
4540 static void
4541 print_msymbol_info (struct bound_minimal_symbol msymbol)
4542 {
4543 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4544 char *tmp;
4545
4546 if (gdbarch_addr_bit (gdbarch) <= 32)
4547 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4548 & (CORE_ADDR) 0xffffffff,
4549 8);
4550 else
4551 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4552 16);
4553 printf_filtered ("%s %s\n",
4554 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4555 }
4556
4557 /* This is the guts of the commands "info functions", "info types", and
4558 "info variables". It calls search_symbols to find all matches and then
4559 print_[m]symbol_info to print out some useful information about the
4560 matches. */
4561
4562 static void
4563 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4564 {
4565 static const char * const classnames[] =
4566 {"variable", "function", "type"};
4567 struct symbol_search *symbols;
4568 struct symbol_search *p;
4569 struct cleanup *old_chain;
4570 const char *last_filename = NULL;
4571 int first = 1;
4572
4573 gdb_assert (kind <= TYPES_DOMAIN);
4574
4575 /* Must make sure that if we're interrupted, symbols gets freed. */
4576 search_symbols (regexp, kind, 0, NULL, &symbols);
4577 old_chain = make_cleanup_free_search_symbols (&symbols);
4578
4579 if (regexp != NULL)
4580 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4581 classnames[kind], regexp);
4582 else
4583 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4584
4585 for (p = symbols; p != NULL; p = p->next)
4586 {
4587 QUIT;
4588
4589 if (p->msymbol.minsym != NULL)
4590 {
4591 if (first)
4592 {
4593 printf_filtered (_("\nNon-debugging symbols:\n"));
4594 first = 0;
4595 }
4596 print_msymbol_info (p->msymbol);
4597 }
4598 else
4599 {
4600 print_symbol_info (kind,
4601 p->symbol,
4602 p->block,
4603 last_filename);
4604 last_filename
4605 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4606 }
4607 }
4608
4609 do_cleanups (old_chain);
4610 }
4611
4612 static void
4613 variables_info (char *regexp, int from_tty)
4614 {
4615 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4616 }
4617
4618 static void
4619 functions_info (char *regexp, int from_tty)
4620 {
4621 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4622 }
4623
4624
4625 static void
4626 types_info (char *regexp, int from_tty)
4627 {
4628 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4629 }
4630
4631 /* Breakpoint all functions matching regular expression. */
4632
4633 void
4634 rbreak_command_wrapper (char *regexp, int from_tty)
4635 {
4636 rbreak_command (regexp, from_tty);
4637 }
4638
4639 /* A cleanup function that calls end_rbreak_breakpoints. */
4640
4641 static void
4642 do_end_rbreak_breakpoints (void *ignore)
4643 {
4644 end_rbreak_breakpoints ();
4645 }
4646
4647 static void
4648 rbreak_command (char *regexp, int from_tty)
4649 {
4650 struct symbol_search *ss;
4651 struct symbol_search *p;
4652 struct cleanup *old_chain;
4653 char *string = NULL;
4654 int len = 0;
4655 const char **files = NULL;
4656 const char *file_name;
4657 int nfiles = 0;
4658
4659 if (regexp)
4660 {
4661 char *colon = strchr (regexp, ':');
4662
4663 if (colon && *(colon + 1) != ':')
4664 {
4665 int colon_index;
4666 char *local_name;
4667
4668 colon_index = colon - regexp;
4669 local_name = (char *) alloca (colon_index + 1);
4670 memcpy (local_name, regexp, colon_index);
4671 local_name[colon_index--] = 0;
4672 while (isspace (local_name[colon_index]))
4673 local_name[colon_index--] = 0;
4674 file_name = local_name;
4675 files = &file_name;
4676 nfiles = 1;
4677 regexp = skip_spaces (colon + 1);
4678 }
4679 }
4680
4681 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4682 old_chain = make_cleanup_free_search_symbols (&ss);
4683 make_cleanup (free_current_contents, &string);
4684
4685 start_rbreak_breakpoints ();
4686 make_cleanup (do_end_rbreak_breakpoints, NULL);
4687 for (p = ss; p != NULL; p = p->next)
4688 {
4689 if (p->msymbol.minsym == NULL)
4690 {
4691 struct symtab *symtab = symbol_symtab (p->symbol);
4692 const char *fullname = symtab_to_fullname (symtab);
4693
4694 int newlen = (strlen (fullname)
4695 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4696 + 4);
4697
4698 if (newlen > len)
4699 {
4700 string = (char *) xrealloc (string, newlen);
4701 len = newlen;
4702 }
4703 strcpy (string, fullname);
4704 strcat (string, ":'");
4705 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4706 strcat (string, "'");
4707 break_command (string, from_tty);
4708 print_symbol_info (FUNCTIONS_DOMAIN,
4709 p->symbol,
4710 p->block,
4711 symtab_to_filename_for_display (symtab));
4712 }
4713 else
4714 {
4715 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4716
4717 if (newlen > len)
4718 {
4719 string = (char *) xrealloc (string, newlen);
4720 len = newlen;
4721 }
4722 strcpy (string, "'");
4723 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4724 strcat (string, "'");
4725
4726 break_command (string, from_tty);
4727 printf_filtered ("<function, no debug info> %s;\n",
4728 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4729 }
4730 }
4731
4732 do_cleanups (old_chain);
4733 }
4734 \f
4735
4736 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4737
4738 Either sym_text[sym_text_len] != '(' and then we search for any
4739 symbol starting with SYM_TEXT text.
4740
4741 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4742 be terminated at that point. Partial symbol tables do not have parameters
4743 information. */
4744
4745 static int
4746 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4747 {
4748 int (*ncmp) (const char *, const char *, size_t);
4749
4750 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4751
4752 if (ncmp (name, sym_text, sym_text_len) != 0)
4753 return 0;
4754
4755 if (sym_text[sym_text_len] == '(')
4756 {
4757 /* User searches for `name(someth...'. Require NAME to be terminated.
4758 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4759 present but accept even parameters presence. In this case this
4760 function is in fact strcmp_iw but whitespace skipping is not supported
4761 for tab completion. */
4762
4763 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4764 return 0;
4765 }
4766
4767 return 1;
4768 }
4769
4770 /* Test to see if the symbol specified by SYMNAME (which is already
4771 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4772 characters. If so, add it to the current completion list. */
4773
4774 static void
4775 completion_list_add_name (completion_tracker &tracker,
4776 const char *symname,
4777 const char *sym_text, int sym_text_len,
4778 const char *text, const char *word)
4779 {
4780 /* Clip symbols that cannot match. */
4781 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4782 return;
4783
4784 /* We have a match for a completion, so add SYMNAME to the current list
4785 of matches. Note that the name is moved to freshly malloc'd space. */
4786
4787 {
4788 char *newobj;
4789
4790 if (word == sym_text)
4791 {
4792 newobj = (char *) xmalloc (strlen (symname) + 5);
4793 strcpy (newobj, symname);
4794 }
4795 else if (word > sym_text)
4796 {
4797 /* Return some portion of symname. */
4798 newobj = (char *) xmalloc (strlen (symname) + 5);
4799 strcpy (newobj, symname + (word - sym_text));
4800 }
4801 else
4802 {
4803 /* Return some of SYM_TEXT plus symname. */
4804 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4805 strncpy (newobj, word, sym_text - word);
4806 newobj[sym_text - word] = '\0';
4807 strcat (newobj, symname);
4808 }
4809
4810 gdb::unique_xmalloc_ptr<char> completion (newobj);
4811
4812 tracker.add_completion (std::move (completion));
4813 }
4814 }
4815
4816 /* completion_list_add_name wrapper for struct symbol. */
4817
4818 static void
4819 completion_list_add_symbol (completion_tracker &tracker,
4820 symbol *sym,
4821 const char *sym_text, int sym_text_len,
4822 const char *text, const char *word)
4823 {
4824 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4825 sym_text, sym_text_len, text, word);
4826 }
4827
4828 /* completion_list_add_name wrapper for struct minimal_symbol. */
4829
4830 static void
4831 completion_list_add_msymbol (completion_tracker &tracker,
4832 minimal_symbol *sym,
4833 const char *sym_text, int sym_text_len,
4834 const char *text, const char *word)
4835 {
4836 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4837 sym_text, sym_text_len, text, word);
4838 }
4839
4840 /* ObjC: In case we are completing on a selector, look as the msymbol
4841 again and feed all the selectors into the mill. */
4842
4843 static void
4844 completion_list_objc_symbol (completion_tracker &tracker,
4845 struct minimal_symbol *msymbol,
4846 const char *sym_text, int sym_text_len,
4847 const char *text, const char *word)
4848 {
4849 static char *tmp = NULL;
4850 static unsigned int tmplen = 0;
4851
4852 const char *method, *category, *selector;
4853 char *tmp2 = NULL;
4854
4855 method = MSYMBOL_NATURAL_NAME (msymbol);
4856
4857 /* Is it a method? */
4858 if ((method[0] != '-') && (method[0] != '+'))
4859 return;
4860
4861 if (sym_text[0] == '[')
4862 /* Complete on shortened method method. */
4863 completion_list_add_name (tracker, method + 1,
4864 sym_text, sym_text_len, text, word);
4865
4866 while ((strlen (method) + 1) >= tmplen)
4867 {
4868 if (tmplen == 0)
4869 tmplen = 1024;
4870 else
4871 tmplen *= 2;
4872 tmp = (char *) xrealloc (tmp, tmplen);
4873 }
4874 selector = strchr (method, ' ');
4875 if (selector != NULL)
4876 selector++;
4877
4878 category = strchr (method, '(');
4879
4880 if ((category != NULL) && (selector != NULL))
4881 {
4882 memcpy (tmp, method, (category - method));
4883 tmp[category - method] = ' ';
4884 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4885 completion_list_add_name (tracker, tmp,
4886 sym_text, sym_text_len, text, word);
4887 if (sym_text[0] == '[')
4888 completion_list_add_name (tracker, tmp + 1,
4889 sym_text, sym_text_len, text, word);
4890 }
4891
4892 if (selector != NULL)
4893 {
4894 /* Complete on selector only. */
4895 strcpy (tmp, selector);
4896 tmp2 = strchr (tmp, ']');
4897 if (tmp2 != NULL)
4898 *tmp2 = '\0';
4899
4900 completion_list_add_name (tracker, tmp,
4901 sym_text, sym_text_len, text, word);
4902 }
4903 }
4904
4905 /* Break the non-quoted text based on the characters which are in
4906 symbols. FIXME: This should probably be language-specific. */
4907
4908 static const char *
4909 language_search_unquoted_string (const char *text, const char *p)
4910 {
4911 for (; p > text; --p)
4912 {
4913 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4914 continue;
4915 else
4916 {
4917 if ((current_language->la_language == language_objc))
4918 {
4919 if (p[-1] == ':') /* Might be part of a method name. */
4920 continue;
4921 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4922 p -= 2; /* Beginning of a method name. */
4923 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4924 { /* Might be part of a method name. */
4925 const char *t = p;
4926
4927 /* Seeing a ' ' or a '(' is not conclusive evidence
4928 that we are in the middle of a method name. However,
4929 finding "-[" or "+[" should be pretty un-ambiguous.
4930 Unfortunately we have to find it now to decide. */
4931
4932 while (t > text)
4933 if (isalnum (t[-1]) || t[-1] == '_' ||
4934 t[-1] == ' ' || t[-1] == ':' ||
4935 t[-1] == '(' || t[-1] == ')')
4936 --t;
4937 else
4938 break;
4939
4940 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4941 p = t - 2; /* Method name detected. */
4942 /* Else we leave with p unchanged. */
4943 }
4944 }
4945 break;
4946 }
4947 }
4948 return p;
4949 }
4950
4951 static void
4952 completion_list_add_fields (completion_tracker &tracker,
4953 struct symbol *sym,
4954 const char *sym_text, int sym_text_len,
4955 const char *text, const char *word)
4956 {
4957 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4958 {
4959 struct type *t = SYMBOL_TYPE (sym);
4960 enum type_code c = TYPE_CODE (t);
4961 int j;
4962
4963 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4964 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4965 if (TYPE_FIELD_NAME (t, j))
4966 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4967 sym_text, sym_text_len, text, word);
4968 }
4969 }
4970
4971 /* Add matching symbols from SYMTAB to the current completion list. */
4972
4973 static void
4974 add_symtab_completions (struct compunit_symtab *cust,
4975 completion_tracker &tracker,
4976 const char *sym_text, int sym_text_len,
4977 const char *text, const char *word,
4978 enum type_code code)
4979 {
4980 struct symbol *sym;
4981 const struct block *b;
4982 struct block_iterator iter;
4983 int i;
4984
4985 if (cust == NULL)
4986 return;
4987
4988 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4989 {
4990 QUIT;
4991 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4992 ALL_BLOCK_SYMBOLS (b, iter, sym)
4993 {
4994 if (code == TYPE_CODE_UNDEF
4995 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4996 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4997 completion_list_add_symbol (tracker, sym,
4998 sym_text, sym_text_len,
4999 text, word);
5000 }
5001 }
5002 }
5003
5004 void
5005 default_collect_symbol_completion_matches_break_on
5006 (completion_tracker &tracker,
5007 complete_symbol_mode mode,
5008 const char *text, const char *word,
5009 const char *break_on, enum type_code code)
5010 {
5011 /* Problem: All of the symbols have to be copied because readline
5012 frees them. I'm not going to worry about this; hopefully there
5013 won't be that many. */
5014
5015 struct symbol *sym;
5016 struct compunit_symtab *cust;
5017 struct minimal_symbol *msymbol;
5018 struct objfile *objfile;
5019 const struct block *b;
5020 const struct block *surrounding_static_block, *surrounding_global_block;
5021 struct block_iterator iter;
5022 /* The symbol we are completing on. Points in same buffer as text. */
5023 const char *sym_text;
5024 /* Length of sym_text. */
5025 int sym_text_len;
5026
5027 /* Now look for the symbol we are supposed to complete on. */
5028 if (mode == complete_symbol_mode::LINESPEC)
5029 sym_text = text;
5030 else
5031 {
5032 const char *p;
5033 char quote_found;
5034 const char *quote_pos = NULL;
5035
5036 /* First see if this is a quoted string. */
5037 quote_found = '\0';
5038 for (p = text; *p != '\0'; ++p)
5039 {
5040 if (quote_found != '\0')
5041 {
5042 if (*p == quote_found)
5043 /* Found close quote. */
5044 quote_found = '\0';
5045 else if (*p == '\\' && p[1] == quote_found)
5046 /* A backslash followed by the quote character
5047 doesn't end the string. */
5048 ++p;
5049 }
5050 else if (*p == '\'' || *p == '"')
5051 {
5052 quote_found = *p;
5053 quote_pos = p;
5054 }
5055 }
5056 if (quote_found == '\'')
5057 /* A string within single quotes can be a symbol, so complete on it. */
5058 sym_text = quote_pos + 1;
5059 else if (quote_found == '"')
5060 /* A double-quoted string is never a symbol, nor does it make sense
5061 to complete it any other way. */
5062 {
5063 return;
5064 }
5065 else
5066 {
5067 /* It is not a quoted string. Break it based on the characters
5068 which are in symbols. */
5069 while (p > text)
5070 {
5071 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5072 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5073 --p;
5074 else
5075 break;
5076 }
5077 sym_text = p;
5078 }
5079 }
5080
5081 sym_text_len = strlen (sym_text);
5082
5083 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5084
5085 if (current_language->la_language == language_cplus
5086 || current_language->la_language == language_fortran)
5087 {
5088 /* These languages may have parameters entered by user but they are never
5089 present in the partial symbol tables. */
5090
5091 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5092
5093 if (cs)
5094 sym_text_len = cs - sym_text;
5095 }
5096 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5097
5098 /* At this point scan through the misc symbol vectors and add each
5099 symbol you find to the list. Eventually we want to ignore
5100 anything that isn't a text symbol (everything else will be
5101 handled by the psymtab code below). */
5102
5103 if (code == TYPE_CODE_UNDEF)
5104 {
5105 ALL_MSYMBOLS (objfile, msymbol)
5106 {
5107 QUIT;
5108
5109 completion_list_add_msymbol (tracker,
5110 msymbol, sym_text, sym_text_len,
5111 text, word);
5112
5113 completion_list_objc_symbol (tracker,
5114 msymbol, sym_text, sym_text_len,
5115 text, word);
5116 }
5117 }
5118
5119 /* Add completions for all currently loaded symbol tables. */
5120 ALL_COMPUNITS (objfile, cust)
5121 add_symtab_completions (cust, tracker,
5122 sym_text, sym_text_len, text, word, code);
5123
5124 /* Look through the partial symtabs for all symbols which begin by
5125 matching SYM_TEXT. Expand all CUs that you find to the list. */
5126 expand_symtabs_matching (NULL,
5127 [&] (const char *name) /* symbol matcher */
5128 {
5129 return compare_symbol_name (name,
5130 sym_text,
5131 sym_text_len);
5132 },
5133 [&] (compunit_symtab *symtab) /* expansion notify */
5134 {
5135 add_symtab_completions (symtab,
5136 tracker,
5137 sym_text, sym_text_len,
5138 text, word, code);
5139 },
5140 ALL_DOMAIN);
5141
5142 /* Search upwards from currently selected frame (so that we can
5143 complete on local vars). Also catch fields of types defined in
5144 this places which match our text string. Only complete on types
5145 visible from current context. */
5146
5147 b = get_selected_block (0);
5148 surrounding_static_block = block_static_block (b);
5149 surrounding_global_block = block_global_block (b);
5150 if (surrounding_static_block != NULL)
5151 while (b != surrounding_static_block)
5152 {
5153 QUIT;
5154
5155 ALL_BLOCK_SYMBOLS (b, iter, sym)
5156 {
5157 if (code == TYPE_CODE_UNDEF)
5158 {
5159 completion_list_add_symbol (tracker, sym,
5160 sym_text, sym_text_len, text,
5161 word);
5162 completion_list_add_fields (tracker, sym,
5163 sym_text, sym_text_len, text,
5164 word);
5165 }
5166 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5167 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5168 completion_list_add_symbol (tracker, sym,
5169 sym_text, sym_text_len, text,
5170 word);
5171 }
5172
5173 /* Stop when we encounter an enclosing function. Do not stop for
5174 non-inlined functions - the locals of the enclosing function
5175 are in scope for a nested function. */
5176 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5177 break;
5178 b = BLOCK_SUPERBLOCK (b);
5179 }
5180
5181 /* Add fields from the file's types; symbols will be added below. */
5182
5183 if (code == TYPE_CODE_UNDEF)
5184 {
5185 if (surrounding_static_block != NULL)
5186 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5187 completion_list_add_fields (tracker, sym,
5188 sym_text, sym_text_len, text, word);
5189
5190 if (surrounding_global_block != NULL)
5191 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5192 completion_list_add_fields (tracker, sym,
5193 sym_text, sym_text_len, text, word);
5194 }
5195
5196 /* Skip macros if we are completing a struct tag -- arguable but
5197 usually what is expected. */
5198 if (current_language->la_macro_expansion == macro_expansion_c
5199 && code == TYPE_CODE_UNDEF)
5200 {
5201 struct macro_scope *scope;
5202
5203 /* This adds a macro's name to the current completion list. */
5204 auto add_macro_name = [&] (const char *macro_name,
5205 const macro_definition *,
5206 macro_source_file *,
5207 int)
5208 {
5209 completion_list_add_name (tracker, macro_name,
5210 sym_text, sym_text_len,
5211 text, word);
5212 };
5213
5214 /* Add any macros visible in the default scope. Note that this
5215 may yield the occasional wrong result, because an expression
5216 might be evaluated in a scope other than the default. For
5217 example, if the user types "break file:line if <TAB>", the
5218 resulting expression will be evaluated at "file:line" -- but
5219 at there does not seem to be a way to detect this at
5220 completion time. */
5221 scope = default_macro_scope ();
5222 if (scope)
5223 {
5224 macro_for_each_in_scope (scope->file, scope->line,
5225 add_macro_name);
5226 xfree (scope);
5227 }
5228
5229 /* User-defined macros are always visible. */
5230 macro_for_each (macro_user_macros, add_macro_name);
5231 }
5232 }
5233
5234 void
5235 default_collect_symbol_completion_matches (completion_tracker &tracker,
5236 complete_symbol_mode mode,
5237 const char *text, const char *word,
5238 enum type_code code)
5239 {
5240 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5241 text, word, "",
5242 code);
5243 }
5244
5245 /* Collect all symbols (regardless of class) which begin by matching
5246 TEXT. */
5247
5248 void
5249 collect_symbol_completion_matches (completion_tracker &tracker,
5250 complete_symbol_mode mode,
5251 const char *text, const char *word)
5252 {
5253 current_language->la_collect_symbol_completion_matches (tracker, mode,
5254 text, word,
5255 TYPE_CODE_UNDEF);
5256 }
5257
5258 /* Like collect_symbol_completion_matches, but only collect
5259 STRUCT_DOMAIN symbols whose type code is CODE. */
5260
5261 void
5262 collect_symbol_completion_matches_type (completion_tracker &tracker,
5263 const char *text, const char *word,
5264 enum type_code code)
5265 {
5266 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5267
5268 gdb_assert (code == TYPE_CODE_UNION
5269 || code == TYPE_CODE_STRUCT
5270 || code == TYPE_CODE_ENUM);
5271 current_language->la_collect_symbol_completion_matches (tracker, mode,
5272 text, word, code);
5273 }
5274
5275 /* Like collect_symbol_completion_matches, but collects a list of
5276 symbols defined in all source files named SRCFILE. */
5277
5278 void
5279 collect_file_symbol_completion_matches (completion_tracker &tracker,
5280 complete_symbol_mode mode,
5281 const char *text, const char *word,
5282 const char *srcfile)
5283 {
5284 /* The symbol we are completing on. Points in same buffer as text. */
5285 const char *sym_text;
5286 /* Length of sym_text. */
5287 int sym_text_len;
5288
5289 /* Now look for the symbol we are supposed to complete on.
5290 FIXME: This should be language-specific. */
5291 if (mode == complete_symbol_mode::LINESPEC)
5292 sym_text = text;
5293 else
5294 {
5295 const char *p;
5296 char quote_found;
5297 const char *quote_pos = NULL;
5298
5299 /* First see if this is a quoted string. */
5300 quote_found = '\0';
5301 for (p = text; *p != '\0'; ++p)
5302 {
5303 if (quote_found != '\0')
5304 {
5305 if (*p == quote_found)
5306 /* Found close quote. */
5307 quote_found = '\0';
5308 else if (*p == '\\' && p[1] == quote_found)
5309 /* A backslash followed by the quote character
5310 doesn't end the string. */
5311 ++p;
5312 }
5313 else if (*p == '\'' || *p == '"')
5314 {
5315 quote_found = *p;
5316 quote_pos = p;
5317 }
5318 }
5319 if (quote_found == '\'')
5320 /* A string within single quotes can be a symbol, so complete on it. */
5321 sym_text = quote_pos + 1;
5322 else if (quote_found == '"')
5323 /* A double-quoted string is never a symbol, nor does it make sense
5324 to complete it any other way. */
5325 {
5326 return;
5327 }
5328 else
5329 {
5330 /* Not a quoted string. */
5331 sym_text = language_search_unquoted_string (text, p);
5332 }
5333 }
5334
5335 sym_text_len = strlen (sym_text);
5336
5337 /* Go through symtabs for SRCFILE and check the externs and statics
5338 for symbols which match. */
5339 iterate_over_symtabs (srcfile, [&] (symtab *s)
5340 {
5341 add_symtab_completions (SYMTAB_COMPUNIT (s),
5342 tracker,
5343 sym_text, sym_text_len,
5344 text, word, TYPE_CODE_UNDEF);
5345 return false;
5346 });
5347 }
5348
5349 /* A helper function for make_source_files_completion_list. It adds
5350 another file name to a list of possible completions, growing the
5351 list as necessary. */
5352
5353 static void
5354 add_filename_to_list (const char *fname, const char *text, const char *word,
5355 completion_list *list)
5356 {
5357 char *newobj;
5358 size_t fnlen = strlen (fname);
5359
5360 if (word == text)
5361 {
5362 /* Return exactly fname. */
5363 newobj = (char *) xmalloc (fnlen + 5);
5364 strcpy (newobj, fname);
5365 }
5366 else if (word > text)
5367 {
5368 /* Return some portion of fname. */
5369 newobj = (char *) xmalloc (fnlen + 5);
5370 strcpy (newobj, fname + (word - text));
5371 }
5372 else
5373 {
5374 /* Return some of TEXT plus fname. */
5375 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5376 strncpy (newobj, word, text - word);
5377 newobj[text - word] = '\0';
5378 strcat (newobj, fname);
5379 }
5380 list->emplace_back (newobj);
5381 }
5382
5383 static int
5384 not_interesting_fname (const char *fname)
5385 {
5386 static const char *illegal_aliens[] = {
5387 "_globals_", /* inserted by coff_symtab_read */
5388 NULL
5389 };
5390 int i;
5391
5392 for (i = 0; illegal_aliens[i]; i++)
5393 {
5394 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5395 return 1;
5396 }
5397 return 0;
5398 }
5399
5400 /* An object of this type is passed as the user_data argument to
5401 map_partial_symbol_filenames. */
5402 struct add_partial_filename_data
5403 {
5404 struct filename_seen_cache *filename_seen_cache;
5405 const char *text;
5406 const char *word;
5407 int text_len;
5408 completion_list *list;
5409 };
5410
5411 /* A callback for map_partial_symbol_filenames. */
5412
5413 static void
5414 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5415 void *user_data)
5416 {
5417 struct add_partial_filename_data *data
5418 = (struct add_partial_filename_data *) user_data;
5419
5420 if (not_interesting_fname (filename))
5421 return;
5422 if (!data->filename_seen_cache->seen (filename)
5423 && filename_ncmp (filename, data->text, data->text_len) == 0)
5424 {
5425 /* This file matches for a completion; add it to the
5426 current list of matches. */
5427 add_filename_to_list (filename, data->text, data->word, data->list);
5428 }
5429 else
5430 {
5431 const char *base_name = lbasename (filename);
5432
5433 if (base_name != filename
5434 && !data->filename_seen_cache->seen (base_name)
5435 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5436 add_filename_to_list (base_name, data->text, data->word, data->list);
5437 }
5438 }
5439
5440 /* Return a list of all source files whose names begin with matching
5441 TEXT. The file names are looked up in the symbol tables of this
5442 program. */
5443
5444 completion_list
5445 make_source_files_completion_list (const char *text, const char *word)
5446 {
5447 struct compunit_symtab *cu;
5448 struct symtab *s;
5449 struct objfile *objfile;
5450 size_t text_len = strlen (text);
5451 completion_list list;
5452 const char *base_name;
5453 struct add_partial_filename_data datum;
5454 struct cleanup *back_to;
5455
5456 if (!have_full_symbols () && !have_partial_symbols ())
5457 return list;
5458
5459 filename_seen_cache filenames_seen;
5460
5461 ALL_FILETABS (objfile, cu, s)
5462 {
5463 if (not_interesting_fname (s->filename))
5464 continue;
5465 if (!filenames_seen.seen (s->filename)
5466 && filename_ncmp (s->filename, text, text_len) == 0)
5467 {
5468 /* This file matches for a completion; add it to the current
5469 list of matches. */
5470 add_filename_to_list (s->filename, text, word, &list);
5471 }
5472 else
5473 {
5474 /* NOTE: We allow the user to type a base name when the
5475 debug info records leading directories, but not the other
5476 way around. This is what subroutines of breakpoint
5477 command do when they parse file names. */
5478 base_name = lbasename (s->filename);
5479 if (base_name != s->filename
5480 && !filenames_seen.seen (base_name)
5481 && filename_ncmp (base_name, text, text_len) == 0)
5482 add_filename_to_list (base_name, text, word, &list);
5483 }
5484 }
5485
5486 datum.filename_seen_cache = &filenames_seen;
5487 datum.text = text;
5488 datum.word = word;
5489 datum.text_len = text_len;
5490 datum.list = &list;
5491 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5492 0 /*need_fullname*/);
5493
5494 return list;
5495 }
5496 \f
5497 /* Track MAIN */
5498
5499 /* Return the "main_info" object for the current program space. If
5500 the object has not yet been created, create it and fill in some
5501 default values. */
5502
5503 static struct main_info *
5504 get_main_info (void)
5505 {
5506 struct main_info *info
5507 = (struct main_info *) program_space_data (current_program_space,
5508 main_progspace_key);
5509
5510 if (info == NULL)
5511 {
5512 /* It may seem strange to store the main name in the progspace
5513 and also in whatever objfile happens to see a main name in
5514 its debug info. The reason for this is mainly historical:
5515 gdb returned "main" as the name even if no function named
5516 "main" was defined the program; and this approach lets us
5517 keep compatibility. */
5518 info = XCNEW (struct main_info);
5519 info->language_of_main = language_unknown;
5520 set_program_space_data (current_program_space, main_progspace_key,
5521 info);
5522 }
5523
5524 return info;
5525 }
5526
5527 /* A cleanup to destroy a struct main_info when a progspace is
5528 destroyed. */
5529
5530 static void
5531 main_info_cleanup (struct program_space *pspace, void *data)
5532 {
5533 struct main_info *info = (struct main_info *) data;
5534
5535 if (info != NULL)
5536 xfree (info->name_of_main);
5537 xfree (info);
5538 }
5539
5540 static void
5541 set_main_name (const char *name, enum language lang)
5542 {
5543 struct main_info *info = get_main_info ();
5544
5545 if (info->name_of_main != NULL)
5546 {
5547 xfree (info->name_of_main);
5548 info->name_of_main = NULL;
5549 info->language_of_main = language_unknown;
5550 }
5551 if (name != NULL)
5552 {
5553 info->name_of_main = xstrdup (name);
5554 info->language_of_main = lang;
5555 }
5556 }
5557
5558 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5559 accordingly. */
5560
5561 static void
5562 find_main_name (void)
5563 {
5564 const char *new_main_name;
5565 struct objfile *objfile;
5566
5567 /* First check the objfiles to see whether a debuginfo reader has
5568 picked up the appropriate main name. Historically the main name
5569 was found in a more or less random way; this approach instead
5570 relies on the order of objfile creation -- which still isn't
5571 guaranteed to get the correct answer, but is just probably more
5572 accurate. */
5573 ALL_OBJFILES (objfile)
5574 {
5575 if (objfile->per_bfd->name_of_main != NULL)
5576 {
5577 set_main_name (objfile->per_bfd->name_of_main,
5578 objfile->per_bfd->language_of_main);
5579 return;
5580 }
5581 }
5582
5583 /* Try to see if the main procedure is in Ada. */
5584 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5585 be to add a new method in the language vector, and call this
5586 method for each language until one of them returns a non-empty
5587 name. This would allow us to remove this hard-coded call to
5588 an Ada function. It is not clear that this is a better approach
5589 at this point, because all methods need to be written in a way
5590 such that false positives never be returned. For instance, it is
5591 important that a method does not return a wrong name for the main
5592 procedure if the main procedure is actually written in a different
5593 language. It is easy to guaranty this with Ada, since we use a
5594 special symbol generated only when the main in Ada to find the name
5595 of the main procedure. It is difficult however to see how this can
5596 be guarantied for languages such as C, for instance. This suggests
5597 that order of call for these methods becomes important, which means
5598 a more complicated approach. */
5599 new_main_name = ada_main_name ();
5600 if (new_main_name != NULL)
5601 {
5602 set_main_name (new_main_name, language_ada);
5603 return;
5604 }
5605
5606 new_main_name = d_main_name ();
5607 if (new_main_name != NULL)
5608 {
5609 set_main_name (new_main_name, language_d);
5610 return;
5611 }
5612
5613 new_main_name = go_main_name ();
5614 if (new_main_name != NULL)
5615 {
5616 set_main_name (new_main_name, language_go);
5617 return;
5618 }
5619
5620 new_main_name = pascal_main_name ();
5621 if (new_main_name != NULL)
5622 {
5623 set_main_name (new_main_name, language_pascal);
5624 return;
5625 }
5626
5627 /* The languages above didn't identify the name of the main procedure.
5628 Fallback to "main". */
5629 set_main_name ("main", language_unknown);
5630 }
5631
5632 char *
5633 main_name (void)
5634 {
5635 struct main_info *info = get_main_info ();
5636
5637 if (info->name_of_main == NULL)
5638 find_main_name ();
5639
5640 return info->name_of_main;
5641 }
5642
5643 /* Return the language of the main function. If it is not known,
5644 return language_unknown. */
5645
5646 enum language
5647 main_language (void)
5648 {
5649 struct main_info *info = get_main_info ();
5650
5651 if (info->name_of_main == NULL)
5652 find_main_name ();
5653
5654 return info->language_of_main;
5655 }
5656
5657 /* Handle ``executable_changed'' events for the symtab module. */
5658
5659 static void
5660 symtab_observer_executable_changed (void)
5661 {
5662 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5663 set_main_name (NULL, language_unknown);
5664 }
5665
5666 /* Return 1 if the supplied producer string matches the ARM RealView
5667 compiler (armcc). */
5668
5669 int
5670 producer_is_realview (const char *producer)
5671 {
5672 static const char *const arm_idents[] = {
5673 "ARM C Compiler, ADS",
5674 "Thumb C Compiler, ADS",
5675 "ARM C++ Compiler, ADS",
5676 "Thumb C++ Compiler, ADS",
5677 "ARM/Thumb C/C++ Compiler, RVCT",
5678 "ARM C/C++ Compiler, RVCT"
5679 };
5680 int i;
5681
5682 if (producer == NULL)
5683 return 0;
5684
5685 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5686 if (startswith (producer, arm_idents[i]))
5687 return 1;
5688
5689 return 0;
5690 }
5691
5692 \f
5693
5694 /* The next index to hand out in response to a registration request. */
5695
5696 static int next_aclass_value = LOC_FINAL_VALUE;
5697
5698 /* The maximum number of "aclass" registrations we support. This is
5699 constant for convenience. */
5700 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5701
5702 /* The objects representing the various "aclass" values. The elements
5703 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5704 elements are those registered at gdb initialization time. */
5705
5706 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5707
5708 /* The globally visible pointer. This is separate from 'symbol_impl'
5709 so that it can be const. */
5710
5711 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5712
5713 /* Make sure we saved enough room in struct symbol. */
5714
5715 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5716
5717 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5718 is the ops vector associated with this index. This returns the new
5719 index, which should be used as the aclass_index field for symbols
5720 of this type. */
5721
5722 int
5723 register_symbol_computed_impl (enum address_class aclass,
5724 const struct symbol_computed_ops *ops)
5725 {
5726 int result = next_aclass_value++;
5727
5728 gdb_assert (aclass == LOC_COMPUTED);
5729 gdb_assert (result < MAX_SYMBOL_IMPLS);
5730 symbol_impl[result].aclass = aclass;
5731 symbol_impl[result].ops_computed = ops;
5732
5733 /* Sanity check OPS. */
5734 gdb_assert (ops != NULL);
5735 gdb_assert (ops->tracepoint_var_ref != NULL);
5736 gdb_assert (ops->describe_location != NULL);
5737 gdb_assert (ops->get_symbol_read_needs != NULL);
5738 gdb_assert (ops->read_variable != NULL);
5739
5740 return result;
5741 }
5742
5743 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5744 OPS is the ops vector associated with this index. This returns the
5745 new index, which should be used as the aclass_index field for symbols
5746 of this type. */
5747
5748 int
5749 register_symbol_block_impl (enum address_class aclass,
5750 const struct symbol_block_ops *ops)
5751 {
5752 int result = next_aclass_value++;
5753
5754 gdb_assert (aclass == LOC_BLOCK);
5755 gdb_assert (result < MAX_SYMBOL_IMPLS);
5756 symbol_impl[result].aclass = aclass;
5757 symbol_impl[result].ops_block = ops;
5758
5759 /* Sanity check OPS. */
5760 gdb_assert (ops != NULL);
5761 gdb_assert (ops->find_frame_base_location != NULL);
5762
5763 return result;
5764 }
5765
5766 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5767 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5768 this index. This returns the new index, which should be used as
5769 the aclass_index field for symbols of this type. */
5770
5771 int
5772 register_symbol_register_impl (enum address_class aclass,
5773 const struct symbol_register_ops *ops)
5774 {
5775 int result = next_aclass_value++;
5776
5777 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5778 gdb_assert (result < MAX_SYMBOL_IMPLS);
5779 symbol_impl[result].aclass = aclass;
5780 symbol_impl[result].ops_register = ops;
5781
5782 return result;
5783 }
5784
5785 /* Initialize elements of 'symbol_impl' for the constants in enum
5786 address_class. */
5787
5788 static void
5789 initialize_ordinary_address_classes (void)
5790 {
5791 int i;
5792
5793 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5794 symbol_impl[i].aclass = (enum address_class) i;
5795 }
5796
5797 \f
5798
5799 /* Helper function to initialize the fields of an objfile-owned symbol.
5800 It assumed that *SYM is already all zeroes. */
5801
5802 static void
5803 initialize_objfile_symbol_1 (struct symbol *sym)
5804 {
5805 SYMBOL_OBJFILE_OWNED (sym) = 1;
5806 SYMBOL_SECTION (sym) = -1;
5807 }
5808
5809 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5810
5811 void
5812 initialize_objfile_symbol (struct symbol *sym)
5813 {
5814 memset (sym, 0, sizeof (*sym));
5815 initialize_objfile_symbol_1 (sym);
5816 }
5817
5818 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5819 obstack. */
5820
5821 struct symbol *
5822 allocate_symbol (struct objfile *objfile)
5823 {
5824 struct symbol *result;
5825
5826 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5827 initialize_objfile_symbol_1 (result);
5828
5829 return result;
5830 }
5831
5832 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5833 obstack. */
5834
5835 struct template_symbol *
5836 allocate_template_symbol (struct objfile *objfile)
5837 {
5838 struct template_symbol *result;
5839
5840 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5841 initialize_objfile_symbol_1 (&result->base);
5842
5843 return result;
5844 }
5845
5846 /* See symtab.h. */
5847
5848 struct objfile *
5849 symbol_objfile (const struct symbol *symbol)
5850 {
5851 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5852 return SYMTAB_OBJFILE (symbol->owner.symtab);
5853 }
5854
5855 /* See symtab.h. */
5856
5857 struct gdbarch *
5858 symbol_arch (const struct symbol *symbol)
5859 {
5860 if (!SYMBOL_OBJFILE_OWNED (symbol))
5861 return symbol->owner.arch;
5862 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5863 }
5864
5865 /* See symtab.h. */
5866
5867 struct symtab *
5868 symbol_symtab (const struct symbol *symbol)
5869 {
5870 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5871 return symbol->owner.symtab;
5872 }
5873
5874 /* See symtab.h. */
5875
5876 void
5877 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5878 {
5879 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5880 symbol->owner.symtab = symtab;
5881 }
5882
5883 \f
5884
5885 void
5886 _initialize_symtab (void)
5887 {
5888 initialize_ordinary_address_classes ();
5889
5890 main_progspace_key
5891 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5892
5893 symbol_cache_key
5894 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5895
5896 add_info ("variables", variables_info, _("\
5897 All global and static variable names, or those matching REGEXP."));
5898 if (dbx_commands)
5899 add_com ("whereis", class_info, variables_info, _("\
5900 All global and static variable names, or those matching REGEXP."));
5901
5902 add_info ("functions", functions_info,
5903 _("All function names, or those matching REGEXP."));
5904
5905 /* FIXME: This command has at least the following problems:
5906 1. It prints builtin types (in a very strange and confusing fashion).
5907 2. It doesn't print right, e.g. with
5908 typedef struct foo *FOO
5909 type_print prints "FOO" when we want to make it (in this situation)
5910 print "struct foo *".
5911 I also think "ptype" or "whatis" is more likely to be useful (but if
5912 there is much disagreement "info types" can be fixed). */
5913 add_info ("types", types_info,
5914 _("All type names, or those matching REGEXP."));
5915
5916 add_info ("sources", sources_info,
5917 _("Source files in the program."));
5918
5919 add_com ("rbreak", class_breakpoint, rbreak_command,
5920 _("Set a breakpoint for all functions matching REGEXP."));
5921
5922 add_setshow_enum_cmd ("multiple-symbols", no_class,
5923 multiple_symbols_modes, &multiple_symbols_mode,
5924 _("\
5925 Set the debugger behavior when more than one symbol are possible matches\n\
5926 in an expression."), _("\
5927 Show how the debugger handles ambiguities in expressions."), _("\
5928 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5929 NULL, NULL, &setlist, &showlist);
5930
5931 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5932 &basenames_may_differ, _("\
5933 Set whether a source file may have multiple base names."), _("\
5934 Show whether a source file may have multiple base names."), _("\
5935 (A \"base name\" is the name of a file with the directory part removed.\n\
5936 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5937 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5938 before comparing them. Canonicalization is an expensive operation,\n\
5939 but it allows the same file be known by more than one base name.\n\
5940 If not set (the default), all source files are assumed to have just\n\
5941 one base name, and gdb will do file name comparisons more efficiently."),
5942 NULL, NULL,
5943 &setlist, &showlist);
5944
5945 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5946 _("Set debugging of symbol table creation."),
5947 _("Show debugging of symbol table creation."), _("\
5948 When enabled (non-zero), debugging messages are printed when building\n\
5949 symbol tables. A value of 1 (one) normally provides enough information.\n\
5950 A value greater than 1 provides more verbose information."),
5951 NULL,
5952 NULL,
5953 &setdebuglist, &showdebuglist);
5954
5955 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5956 _("\
5957 Set debugging of symbol lookup."), _("\
5958 Show debugging of symbol lookup."), _("\
5959 When enabled (non-zero), symbol lookups are logged."),
5960 NULL, NULL,
5961 &setdebuglist, &showdebuglist);
5962
5963 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5964 &new_symbol_cache_size,
5965 _("Set the size of the symbol cache."),
5966 _("Show the size of the symbol cache."), _("\
5967 The size of the symbol cache.\n\
5968 If zero then the symbol cache is disabled."),
5969 set_symbol_cache_size_handler, NULL,
5970 &maintenance_set_cmdlist,
5971 &maintenance_show_cmdlist);
5972
5973 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5974 _("Dump the symbol cache for each program space."),
5975 &maintenanceprintlist);
5976
5977 add_cmd ("symbol-cache-statistics", class_maintenance,
5978 maintenance_print_symbol_cache_statistics,
5979 _("Print symbol cache statistics for each program space."),
5980 &maintenanceprintlist);
5981
5982 add_cmd ("flush-symbol-cache", class_maintenance,
5983 maintenance_flush_symbol_cache,
5984 _("Flush the symbol cache for each program space."),
5985 &maintenancelist);
5986
5987 observer_attach_executable_changed (symtab_observer_executable_changed);
5988 observer_attach_new_objfile (symtab_new_objfile_observer);
5989 observer_attach_free_objfile (symtab_free_objfile_observer);
5990 }
This page took 0.246475 seconds and 4 git commands to generate.