4920d94a247a18daf4e34ab7302de307b74911a5
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "common/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
97
98 /* Type of the data stored on the program space. */
99
100 struct main_info
101 {
102 main_info () = default;
103
104 ~main_info ()
105 {
106 xfree (name_of_main);
107 }
108
109 /* Name of "main". */
110
111 char *name_of_main = nullptr;
112
113 /* Language of "main". */
114
115 enum language language_of_main = language_unknown;
116 };
117
118 /* Program space key for finding name and language of "main". */
119
120 static const program_space_key<main_info> main_progspace_key;
121
122 /* The default symbol cache size.
123 There is no extra cpu cost for large N (except when flushing the cache,
124 which is rare). The value here is just a first attempt. A better default
125 value may be higher or lower. A prime number can make up for a bad hash
126 computation, so that's why the number is what it is. */
127 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
128
129 /* The maximum symbol cache size.
130 There's no method to the decision of what value to use here, other than
131 there's no point in allowing a user typo to make gdb consume all memory. */
132 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
133
134 /* symbol_cache_lookup returns this if a previous lookup failed to find the
135 symbol in any objfile. */
136 #define SYMBOL_LOOKUP_FAILED \
137 ((struct block_symbol) {(struct symbol *) 1, NULL})
138 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
139
140 /* Recording lookups that don't find the symbol is just as important, if not
141 more so, than recording found symbols. */
142
143 enum symbol_cache_slot_state
144 {
145 SYMBOL_SLOT_UNUSED,
146 SYMBOL_SLOT_NOT_FOUND,
147 SYMBOL_SLOT_FOUND
148 };
149
150 struct symbol_cache_slot
151 {
152 enum symbol_cache_slot_state state;
153
154 /* The objfile that was current when the symbol was looked up.
155 This is only needed for global blocks, but for simplicity's sake
156 we allocate the space for both. If data shows the extra space used
157 for static blocks is a problem, we can split things up then.
158
159 Global blocks need cache lookup to include the objfile context because
160 we need to account for gdbarch_iterate_over_objfiles_in_search_order
161 which can traverse objfiles in, effectively, any order, depending on
162 the current objfile, thus affecting which symbol is found. Normally,
163 only the current objfile is searched first, and then the rest are
164 searched in recorded order; but putting cache lookup inside
165 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
166 Instead we just make the current objfile part of the context of
167 cache lookup. This means we can record the same symbol multiple times,
168 each with a different "current objfile" that was in effect when the
169 lookup was saved in the cache, but cache space is pretty cheap. */
170 const struct objfile *objfile_context;
171
172 union
173 {
174 struct block_symbol found;
175 struct
176 {
177 char *name;
178 domain_enum domain;
179 } not_found;
180 } value;
181 };
182
183 /* Symbols don't specify global vs static block.
184 So keep them in separate caches. */
185
186 struct block_symbol_cache
187 {
188 unsigned int hits;
189 unsigned int misses;
190 unsigned int collisions;
191
192 /* SYMBOLS is a variable length array of this size.
193 One can imagine that in general one cache (global/static) should be a
194 fraction of the size of the other, but there's no data at the moment
195 on which to decide. */
196 unsigned int size;
197
198 struct symbol_cache_slot symbols[1];
199 };
200
201 /* The symbol cache.
202
203 Searching for symbols in the static and global blocks over multiple objfiles
204 again and again can be slow, as can searching very big objfiles. This is a
205 simple cache to improve symbol lookup performance, which is critical to
206 overall gdb performance.
207
208 Symbols are hashed on the name, its domain, and block.
209 They are also hashed on their objfile for objfile-specific lookups. */
210
211 struct symbol_cache
212 {
213 symbol_cache () = default;
214
215 ~symbol_cache ()
216 {
217 xfree (global_symbols);
218 xfree (static_symbols);
219 }
220
221 struct block_symbol_cache *global_symbols = nullptr;
222 struct block_symbol_cache *static_symbols = nullptr;
223 };
224
225 /* Program space key for finding its symbol cache. */
226
227 static const program_space_key<symbol_cache> symbol_cache_key;
228
229 /* When non-zero, print debugging messages related to symtab creation. */
230 unsigned int symtab_create_debug = 0;
231
232 /* When non-zero, print debugging messages related to symbol lookup. */
233 unsigned int symbol_lookup_debug = 0;
234
235 /* The size of the cache is staged here. */
236 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
237
238 /* The current value of the symbol cache size.
239 This is saved so that if the user enters a value too big we can restore
240 the original value from here. */
241 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
242
243 /* Non-zero if a file may be known by two different basenames.
244 This is the uncommon case, and significantly slows down gdb.
245 Default set to "off" to not slow down the common case. */
246 int basenames_may_differ = 0;
247
248 /* Allow the user to configure the debugger behavior with respect
249 to multiple-choice menus when more than one symbol matches during
250 a symbol lookup. */
251
252 const char multiple_symbols_ask[] = "ask";
253 const char multiple_symbols_all[] = "all";
254 const char multiple_symbols_cancel[] = "cancel";
255 static const char *const multiple_symbols_modes[] =
256 {
257 multiple_symbols_ask,
258 multiple_symbols_all,
259 multiple_symbols_cancel,
260 NULL
261 };
262 static const char *multiple_symbols_mode = multiple_symbols_all;
263
264 /* Read-only accessor to AUTO_SELECT_MODE. */
265
266 const char *
267 multiple_symbols_select_mode (void)
268 {
269 return multiple_symbols_mode;
270 }
271
272 /* Return the name of a domain_enum. */
273
274 const char *
275 domain_name (domain_enum e)
276 {
277 switch (e)
278 {
279 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
280 case VAR_DOMAIN: return "VAR_DOMAIN";
281 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
282 case MODULE_DOMAIN: return "MODULE_DOMAIN";
283 case LABEL_DOMAIN: return "LABEL_DOMAIN";
284 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
285 default: gdb_assert_not_reached ("bad domain_enum");
286 }
287 }
288
289 /* Return the name of a search_domain . */
290
291 const char *
292 search_domain_name (enum search_domain e)
293 {
294 switch (e)
295 {
296 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
297 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
298 case TYPES_DOMAIN: return "TYPES_DOMAIN";
299 case ALL_DOMAIN: return "ALL_DOMAIN";
300 default: gdb_assert_not_reached ("bad search_domain");
301 }
302 }
303
304 /* See symtab.h. */
305
306 struct symtab *
307 compunit_primary_filetab (const struct compunit_symtab *cust)
308 {
309 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
310
311 /* The primary file symtab is the first one in the list. */
312 return COMPUNIT_FILETABS (cust);
313 }
314
315 /* See symtab.h. */
316
317 enum language
318 compunit_language (const struct compunit_symtab *cust)
319 {
320 struct symtab *symtab = compunit_primary_filetab (cust);
321
322 /* The language of the compunit symtab is the language of its primary
323 source file. */
324 return SYMTAB_LANGUAGE (symtab);
325 }
326
327 /* See symtab.h. */
328
329 bool
330 minimal_symbol::data_p () const
331 {
332 return type == mst_data
333 || type == mst_bss
334 || type == mst_abs
335 || type == mst_file_data
336 || type == mst_file_bss;
337 }
338
339 /* See symtab.h. */
340
341 bool
342 minimal_symbol::text_p () const
343 {
344 return type == mst_text
345 || type == mst_text_gnu_ifunc
346 || type == mst_data_gnu_ifunc
347 || type == mst_slot_got_plt
348 || type == mst_solib_trampoline
349 || type == mst_file_text;
350 }
351
352 /* See whether FILENAME matches SEARCH_NAME using the rule that we
353 advertise to the user. (The manual's description of linespecs
354 describes what we advertise). Returns true if they match, false
355 otherwise. */
356
357 int
358 compare_filenames_for_search (const char *filename, const char *search_name)
359 {
360 int len = strlen (filename);
361 size_t search_len = strlen (search_name);
362
363 if (len < search_len)
364 return 0;
365
366 /* The tail of FILENAME must match. */
367 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
368 return 0;
369
370 /* Either the names must completely match, or the character
371 preceding the trailing SEARCH_NAME segment of FILENAME must be a
372 directory separator.
373
374 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
375 cannot match FILENAME "/path//dir/file.c" - as user has requested
376 absolute path. The sama applies for "c:\file.c" possibly
377 incorrectly hypothetically matching "d:\dir\c:\file.c".
378
379 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
380 compatible with SEARCH_NAME "file.c". In such case a compiler had
381 to put the "c:file.c" name into debug info. Such compatibility
382 works only on GDB built for DOS host. */
383 return (len == search_len
384 || (!IS_ABSOLUTE_PATH (search_name)
385 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
386 || (HAS_DRIVE_SPEC (filename)
387 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
388 }
389
390 /* Same as compare_filenames_for_search, but for glob-style patterns.
391 Heads up on the order of the arguments. They match the order of
392 compare_filenames_for_search, but it's the opposite of the order of
393 arguments to gdb_filename_fnmatch. */
394
395 int
396 compare_glob_filenames_for_search (const char *filename,
397 const char *search_name)
398 {
399 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
400 all /s have to be explicitly specified. */
401 int file_path_elements = count_path_elements (filename);
402 int search_path_elements = count_path_elements (search_name);
403
404 if (search_path_elements > file_path_elements)
405 return 0;
406
407 if (IS_ABSOLUTE_PATH (search_name))
408 {
409 return (search_path_elements == file_path_elements
410 && gdb_filename_fnmatch (search_name, filename,
411 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
412 }
413
414 {
415 const char *file_to_compare
416 = strip_leading_path_elements (filename,
417 file_path_elements - search_path_elements);
418
419 return gdb_filename_fnmatch (search_name, file_to_compare,
420 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
421 }
422 }
423
424 /* Check for a symtab of a specific name by searching some symtabs.
425 This is a helper function for callbacks of iterate_over_symtabs.
426
427 If NAME is not absolute, then REAL_PATH is NULL
428 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
429
430 The return value, NAME, REAL_PATH and CALLBACK are identical to the
431 `map_symtabs_matching_filename' method of quick_symbol_functions.
432
433 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
434 Each symtab within the specified compunit symtab is also searched.
435 AFTER_LAST is one past the last compunit symtab to search; NULL means to
436 search until the end of the list. */
437
438 bool
439 iterate_over_some_symtabs (const char *name,
440 const char *real_path,
441 struct compunit_symtab *first,
442 struct compunit_symtab *after_last,
443 gdb::function_view<bool (symtab *)> callback)
444 {
445 struct compunit_symtab *cust;
446 const char* base_name = lbasename (name);
447
448 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
449 {
450 for (symtab *s : compunit_filetabs (cust))
451 {
452 if (compare_filenames_for_search (s->filename, name))
453 {
454 if (callback (s))
455 return true;
456 continue;
457 }
458
459 /* Before we invoke realpath, which can get expensive when many
460 files are involved, do a quick comparison of the basenames. */
461 if (! basenames_may_differ
462 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
463 continue;
464
465 if (compare_filenames_for_search (symtab_to_fullname (s), name))
466 {
467 if (callback (s))
468 return true;
469 continue;
470 }
471
472 /* If the user gave us an absolute path, try to find the file in
473 this symtab and use its absolute path. */
474 if (real_path != NULL)
475 {
476 const char *fullname = symtab_to_fullname (s);
477
478 gdb_assert (IS_ABSOLUTE_PATH (real_path));
479 gdb_assert (IS_ABSOLUTE_PATH (name));
480 if (FILENAME_CMP (real_path, fullname) == 0)
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486 }
487 }
488 }
489
490 return false;
491 }
492
493 /* Check for a symtab of a specific name; first in symtabs, then in
494 psymtabs. *If* there is no '/' in the name, a match after a '/'
495 in the symtab filename will also work.
496
497 Calls CALLBACK with each symtab that is found. If CALLBACK returns
498 true, the search stops. */
499
500 void
501 iterate_over_symtabs (const char *name,
502 gdb::function_view<bool (symtab *)> callback)
503 {
504 gdb::unique_xmalloc_ptr<char> real_path;
505
506 /* Here we are interested in canonicalizing an absolute path, not
507 absolutizing a relative path. */
508 if (IS_ABSOLUTE_PATH (name))
509 {
510 real_path = gdb_realpath (name);
511 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
512 }
513
514 for (objfile *objfile : current_program_space->objfiles ())
515 {
516 if (iterate_over_some_symtabs (name, real_path.get (),
517 objfile->compunit_symtabs, NULL,
518 callback))
519 return;
520 }
521
522 /* Same search rules as above apply here, but now we look thru the
523 psymtabs. */
524
525 for (objfile *objfile : current_program_space->objfiles ())
526 {
527 if (objfile->sf
528 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
529 name,
530 real_path.get (),
531 callback))
532 return;
533 }
534 }
535
536 /* A wrapper for iterate_over_symtabs that returns the first matching
537 symtab, or NULL. */
538
539 struct symtab *
540 lookup_symtab (const char *name)
541 {
542 struct symtab *result = NULL;
543
544 iterate_over_symtabs (name, [&] (symtab *symtab)
545 {
546 result = symtab;
547 return true;
548 });
549
550 return result;
551 }
552
553 \f
554 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
555 full method name, which consist of the class name (from T), the unadorned
556 method name from METHOD_ID, and the signature for the specific overload,
557 specified by SIGNATURE_ID. Note that this function is g++ specific. */
558
559 char *
560 gdb_mangle_name (struct type *type, int method_id, int signature_id)
561 {
562 int mangled_name_len;
563 char *mangled_name;
564 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
565 struct fn_field *method = &f[signature_id];
566 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
567 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
568 const char *newname = TYPE_NAME (type);
569
570 /* Does the form of physname indicate that it is the full mangled name
571 of a constructor (not just the args)? */
572 int is_full_physname_constructor;
573
574 int is_constructor;
575 int is_destructor = is_destructor_name (physname);
576 /* Need a new type prefix. */
577 const char *const_prefix = method->is_const ? "C" : "";
578 const char *volatile_prefix = method->is_volatile ? "V" : "";
579 char buf[20];
580 int len = (newname == NULL ? 0 : strlen (newname));
581
582 /* Nothing to do if physname already contains a fully mangled v3 abi name
583 or an operator name. */
584 if ((physname[0] == '_' && physname[1] == 'Z')
585 || is_operator_name (field_name))
586 return xstrdup (physname);
587
588 is_full_physname_constructor = is_constructor_name (physname);
589
590 is_constructor = is_full_physname_constructor
591 || (newname && strcmp (field_name, newname) == 0);
592
593 if (!is_destructor)
594 is_destructor = (startswith (physname, "__dt"));
595
596 if (is_destructor || is_full_physname_constructor)
597 {
598 mangled_name = (char *) xmalloc (strlen (physname) + 1);
599 strcpy (mangled_name, physname);
600 return mangled_name;
601 }
602
603 if (len == 0)
604 {
605 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
606 }
607 else if (physname[0] == 't' || physname[0] == 'Q')
608 {
609 /* The physname for template and qualified methods already includes
610 the class name. */
611 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
612 newname = NULL;
613 len = 0;
614 }
615 else
616 {
617 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
618 volatile_prefix, len);
619 }
620 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
621 + strlen (buf) + len + strlen (physname) + 1);
622
623 mangled_name = (char *) xmalloc (mangled_name_len);
624 if (is_constructor)
625 mangled_name[0] = '\0';
626 else
627 strcpy (mangled_name, field_name);
628
629 strcat (mangled_name, buf);
630 /* If the class doesn't have a name, i.e. newname NULL, then we just
631 mangle it using 0 for the length of the class. Thus it gets mangled
632 as something starting with `::' rather than `classname::'. */
633 if (newname != NULL)
634 strcat (mangled_name, newname);
635
636 strcat (mangled_name, physname);
637 return (mangled_name);
638 }
639
640 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
641 correctly allocated. */
642
643 void
644 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
645 const char *name,
646 struct obstack *obstack)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (name == NULL)
651 {
652 gsymbol->ada_mangled = 0;
653 gsymbol->language_specific.obstack = obstack;
654 }
655 else
656 {
657 gsymbol->ada_mangled = 1;
658 gsymbol->language_specific.demangled_name = name;
659 }
660 }
661 else
662 gsymbol->language_specific.demangled_name = name;
663 }
664
665 /* Return the demangled name of GSYMBOL. */
666
667 const char *
668 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
669 {
670 if (gsymbol->language == language_ada)
671 {
672 if (!gsymbol->ada_mangled)
673 return NULL;
674 /* Fall through. */
675 }
676
677 return gsymbol->language_specific.demangled_name;
678 }
679
680 \f
681 /* Initialize the language dependent portion of a symbol
682 depending upon the language for the symbol. */
683
684 void
685 symbol_set_language (struct general_symbol_info *gsymbol,
686 enum language language,
687 struct obstack *obstack)
688 {
689 gsymbol->language = language;
690 if (gsymbol->language == language_cplus
691 || gsymbol->language == language_d
692 || gsymbol->language == language_go
693 || gsymbol->language == language_objc
694 || gsymbol->language == language_fortran)
695 {
696 symbol_set_demangled_name (gsymbol, NULL, obstack);
697 }
698 else if (gsymbol->language == language_ada)
699 {
700 gdb_assert (gsymbol->ada_mangled == 0);
701 gsymbol->language_specific.obstack = obstack;
702 }
703 else
704 {
705 memset (&gsymbol->language_specific, 0,
706 sizeof (gsymbol->language_specific));
707 }
708 }
709
710 /* Functions to initialize a symbol's mangled name. */
711
712 /* Objects of this type are stored in the demangled name hash table. */
713 struct demangled_name_entry
714 {
715 const char *mangled;
716 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
717 char demangled[1];
718 };
719
720 /* Hash function for the demangled name hash. */
721
722 static hashval_t
723 hash_demangled_name_entry (const void *data)
724 {
725 const struct demangled_name_entry *e
726 = (const struct demangled_name_entry *) data;
727
728 return htab_hash_string (e->mangled);
729 }
730
731 /* Equality function for the demangled name hash. */
732
733 static int
734 eq_demangled_name_entry (const void *a, const void *b)
735 {
736 const struct demangled_name_entry *da
737 = (const struct demangled_name_entry *) a;
738 const struct demangled_name_entry *db
739 = (const struct demangled_name_entry *) b;
740
741 return strcmp (da->mangled, db->mangled) == 0;
742 }
743
744 /* Create the hash table used for demangled names. Each hash entry is
745 a pair of strings; one for the mangled name and one for the demangled
746 name. The entry is hashed via just the mangled name. */
747
748 static void
749 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
750 {
751 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
752 The hash table code will round this up to the next prime number.
753 Choosing a much larger table size wastes memory, and saves only about
754 1% in symbol reading. */
755
756 per_bfd->demangled_names_hash.reset (htab_create_alloc
757 (256, hash_demangled_name_entry, eq_demangled_name_entry,
758 NULL, xcalloc, xfree));
759 }
760
761 /* Try to determine the demangled name for a symbol, based on the
762 language of that symbol. If the language is set to language_auto,
763 it will attempt to find any demangling algorithm that works and
764 then set the language appropriately. The returned name is allocated
765 by the demangler and should be xfree'd. */
766
767 static char *
768 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
769 const char *mangled)
770 {
771 char *demangled = NULL;
772 int i;
773
774 if (gsymbol->language == language_unknown)
775 gsymbol->language = language_auto;
776
777 if (gsymbol->language != language_auto)
778 {
779 const struct language_defn *lang = language_def (gsymbol->language);
780
781 language_sniff_from_mangled_name (lang, mangled, &demangled);
782 return demangled;
783 }
784
785 for (i = language_unknown; i < nr_languages; ++i)
786 {
787 enum language l = (enum language) i;
788 const struct language_defn *lang = language_def (l);
789
790 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
791 {
792 gsymbol->language = l;
793 return demangled;
794 }
795 }
796
797 return NULL;
798 }
799
800 /* Set both the mangled and demangled (if any) names for GSYMBOL based
801 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
802 objfile's obstack; but if COPY_NAME is 0 and if NAME is
803 NUL-terminated, then this function assumes that NAME is already
804 correctly saved (either permanently or with a lifetime tied to the
805 objfile), and it will not be copied.
806
807 The hash table corresponding to OBJFILE is used, and the memory
808 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
809 so the pointer can be discarded after calling this function. */
810
811 void
812 symbol_set_names (struct general_symbol_info *gsymbol,
813 const char *linkage_name, int len, int copy_name,
814 struct objfile_per_bfd_storage *per_bfd)
815 {
816 struct demangled_name_entry **slot;
817 /* A 0-terminated copy of the linkage name. */
818 const char *linkage_name_copy;
819 struct demangled_name_entry entry;
820
821 if (gsymbol->language == language_ada)
822 {
823 /* In Ada, we do the symbol lookups using the mangled name, so
824 we can save some space by not storing the demangled name. */
825 if (!copy_name)
826 gsymbol->name = linkage_name;
827 else
828 {
829 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
830 len + 1);
831
832 memcpy (name, linkage_name, len);
833 name[len] = '\0';
834 gsymbol->name = name;
835 }
836 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
837
838 return;
839 }
840
841 if (per_bfd->demangled_names_hash == NULL)
842 create_demangled_names_hash (per_bfd);
843
844 if (linkage_name[len] != '\0')
845 {
846 char *alloc_name;
847
848 alloc_name = (char *) alloca (len + 1);
849 memcpy (alloc_name, linkage_name, len);
850 alloc_name[len] = '\0';
851
852 linkage_name_copy = alloc_name;
853 }
854 else
855 linkage_name_copy = linkage_name;
856
857 entry.mangled = linkage_name_copy;
858 slot = ((struct demangled_name_entry **)
859 htab_find_slot (per_bfd->demangled_names_hash.get (),
860 &entry, INSERT));
861
862 /* If this name is not in the hash table, add it. */
863 if (*slot == NULL
864 /* A C version of the symbol may have already snuck into the table.
865 This happens to, e.g., main.init (__go_init_main). Cope. */
866 || (gsymbol->language == language_go
867 && (*slot)->demangled[0] == '\0'))
868 {
869 char *demangled_name_ptr
870 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
871 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
872 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
873
874 /* Suppose we have demangled_name==NULL, copy_name==0, and
875 linkage_name_copy==linkage_name. In this case, we already have the
876 mangled name saved, and we don't have a demangled name. So,
877 you might think we could save a little space by not recording
878 this in the hash table at all.
879
880 It turns out that it is actually important to still save such
881 an entry in the hash table, because storing this name gives
882 us better bcache hit rates for partial symbols. */
883 if (!copy_name && linkage_name_copy == linkage_name)
884 {
885 *slot
886 = ((struct demangled_name_entry *)
887 obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry, demangled)
889 + demangled_len + 1));
890 (*slot)->mangled = linkage_name;
891 }
892 else
893 {
894 char *mangled_ptr;
895
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
898 allocation. */
899 *slot
900 = ((struct demangled_name_entry *)
901 obstack_alloc (&per_bfd->storage_obstack,
902 offsetof (struct demangled_name_entry, demangled)
903 + len + demangled_len + 2));
904 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
905 strcpy (mangled_ptr, linkage_name_copy);
906 (*slot)->mangled = mangled_ptr;
907 }
908 (*slot)->language = gsymbol->language;
909
910 if (demangled_name != NULL)
911 strcpy ((*slot)->demangled, demangled_name.get ());
912 else
913 (*slot)->demangled[0] = '\0';
914 }
915 else if (gsymbol->language == language_unknown
916 || gsymbol->language == language_auto)
917 gsymbol->language = (*slot)->language;
918
919 gsymbol->name = (*slot)->mangled;
920 if ((*slot)->demangled[0] != '\0')
921 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
922 &per_bfd->storage_obstack);
923 else
924 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
925 }
926
927 /* Return the source code name of a symbol. In languages where
928 demangling is necessary, this is the demangled name. */
929
930 const char *
931 symbol_natural_name (const struct general_symbol_info *gsymbol)
932 {
933 switch (gsymbol->language)
934 {
935 case language_cplus:
936 case language_d:
937 case language_go:
938 case language_objc:
939 case language_fortran:
940 if (symbol_get_demangled_name (gsymbol) != NULL)
941 return symbol_get_demangled_name (gsymbol);
942 break;
943 case language_ada:
944 return ada_decode_symbol (gsymbol);
945 default:
946 break;
947 }
948 return gsymbol->name;
949 }
950
951 /* Return the demangled name for a symbol based on the language for
952 that symbol. If no demangled name exists, return NULL. */
953
954 const char *
955 symbol_demangled_name (const struct general_symbol_info *gsymbol)
956 {
957 const char *dem_name = NULL;
958
959 switch (gsymbol->language)
960 {
961 case language_cplus:
962 case language_d:
963 case language_go:
964 case language_objc:
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
967 break;
968 case language_ada:
969 dem_name = ada_decode_symbol (gsymbol);
970 break;
971 default:
972 break;
973 }
974 return dem_name;
975 }
976
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
981
982 const char *
983 symbol_search_name (const struct general_symbol_info *gsymbol)
984 {
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
987 else
988 return symbol_natural_name (gsymbol);
989 }
990
991 /* See symtab.h. */
992
993 bool
994 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
995 const lookup_name_info &name)
996 {
997 symbol_name_matcher_ftype *name_match
998 = get_symbol_name_matcher (language_def (gsymbol->language), name);
999 return name_match (symbol_search_name (gsymbol), name, NULL);
1000 }
1001
1002 \f
1003
1004 /* Return 1 if the two sections are the same, or if they could
1005 plausibly be copies of each other, one in an original object
1006 file and another in a separated debug file. */
1007
1008 int
1009 matching_obj_sections (struct obj_section *obj_first,
1010 struct obj_section *obj_second)
1011 {
1012 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1013 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1014
1015 /* If they're the same section, then they match. */
1016 if (first == second)
1017 return 1;
1018
1019 /* If either is NULL, give up. */
1020 if (first == NULL || second == NULL)
1021 return 0;
1022
1023 /* This doesn't apply to absolute symbols. */
1024 if (first->owner == NULL || second->owner == NULL)
1025 return 0;
1026
1027 /* If they're in the same object file, they must be different sections. */
1028 if (first->owner == second->owner)
1029 return 0;
1030
1031 /* Check whether the two sections are potentially corresponding. They must
1032 have the same size, address, and name. We can't compare section indexes,
1033 which would be more reliable, because some sections may have been
1034 stripped. */
1035 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1036 return 0;
1037
1038 /* In-memory addresses may start at a different offset, relativize them. */
1039 if (bfd_get_section_vma (first->owner, first)
1040 - bfd_get_start_address (first->owner)
1041 != bfd_get_section_vma (second->owner, second)
1042 - bfd_get_start_address (second->owner))
1043 return 0;
1044
1045 if (bfd_get_section_name (first->owner, first) == NULL
1046 || bfd_get_section_name (second->owner, second) == NULL
1047 || strcmp (bfd_get_section_name (first->owner, first),
1048 bfd_get_section_name (second->owner, second)) != 0)
1049 return 0;
1050
1051 /* Otherwise check that they are in corresponding objfiles. */
1052
1053 struct objfile *obj = NULL;
1054 for (objfile *objfile : current_program_space->objfiles ())
1055 if (objfile->obfd == first->owner)
1056 {
1057 obj = objfile;
1058 break;
1059 }
1060 gdb_assert (obj != NULL);
1061
1062 if (obj->separate_debug_objfile != NULL
1063 && obj->separate_debug_objfile->obfd == second->owner)
1064 return 1;
1065 if (obj->separate_debug_objfile_backlink != NULL
1066 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1067 return 1;
1068
1069 return 0;
1070 }
1071
1072 /* See symtab.h. */
1073
1074 void
1075 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1076 {
1077 struct bound_minimal_symbol msymbol;
1078
1079 /* If we know that this is not a text address, return failure. This is
1080 necessary because we loop based on texthigh and textlow, which do
1081 not include the data ranges. */
1082 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1083 if (msymbol.minsym && msymbol.minsym->data_p ())
1084 return;
1085
1086 for (objfile *objfile : current_program_space->objfiles ())
1087 {
1088 struct compunit_symtab *cust = NULL;
1089
1090 if (objfile->sf)
1091 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1092 pc, section, 0);
1093 if (cust)
1094 return;
1095 }
1096 }
1097 \f
1098 /* Hash function for the symbol cache. */
1099
1100 static unsigned int
1101 hash_symbol_entry (const struct objfile *objfile_context,
1102 const char *name, domain_enum domain)
1103 {
1104 unsigned int hash = (uintptr_t) objfile_context;
1105
1106 if (name != NULL)
1107 hash += htab_hash_string (name);
1108
1109 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1110 to map to the same slot. */
1111 if (domain == STRUCT_DOMAIN)
1112 hash += VAR_DOMAIN * 7;
1113 else
1114 hash += domain * 7;
1115
1116 return hash;
1117 }
1118
1119 /* Equality function for the symbol cache. */
1120
1121 static int
1122 eq_symbol_entry (const struct symbol_cache_slot *slot,
1123 const struct objfile *objfile_context,
1124 const char *name, domain_enum domain)
1125 {
1126 const char *slot_name;
1127 domain_enum slot_domain;
1128
1129 if (slot->state == SYMBOL_SLOT_UNUSED)
1130 return 0;
1131
1132 if (slot->objfile_context != objfile_context)
1133 return 0;
1134
1135 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1136 {
1137 slot_name = slot->value.not_found.name;
1138 slot_domain = slot->value.not_found.domain;
1139 }
1140 else
1141 {
1142 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1143 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1144 }
1145
1146 /* NULL names match. */
1147 if (slot_name == NULL && name == NULL)
1148 {
1149 /* But there's no point in calling symbol_matches_domain in the
1150 SYMBOL_SLOT_FOUND case. */
1151 if (slot_domain != domain)
1152 return 0;
1153 }
1154 else if (slot_name != NULL && name != NULL)
1155 {
1156 /* It's important that we use the same comparison that was done
1157 the first time through. If the slot records a found symbol,
1158 then this means using the symbol name comparison function of
1159 the symbol's language with SYMBOL_SEARCH_NAME. See
1160 dictionary.c. It also means using symbol_matches_domain for
1161 found symbols. See block.c.
1162
1163 If the slot records a not-found symbol, then require a precise match.
1164 We could still be lax with whitespace like strcmp_iw though. */
1165
1166 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1167 {
1168 if (strcmp (slot_name, name) != 0)
1169 return 0;
1170 if (slot_domain != domain)
1171 return 0;
1172 }
1173 else
1174 {
1175 struct symbol *sym = slot->value.found.symbol;
1176 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1177
1178 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1179 return 0;
1180
1181 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1182 slot_domain, domain))
1183 return 0;
1184 }
1185 }
1186 else
1187 {
1188 /* Only one name is NULL. */
1189 return 0;
1190 }
1191
1192 return 1;
1193 }
1194
1195 /* Given a cache of size SIZE, return the size of the struct (with variable
1196 length array) in bytes. */
1197
1198 static size_t
1199 symbol_cache_byte_size (unsigned int size)
1200 {
1201 return (sizeof (struct block_symbol_cache)
1202 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1203 }
1204
1205 /* Resize CACHE. */
1206
1207 static void
1208 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1209 {
1210 /* If there's no change in size, don't do anything.
1211 All caches have the same size, so we can just compare with the size
1212 of the global symbols cache. */
1213 if ((cache->global_symbols != NULL
1214 && cache->global_symbols->size == new_size)
1215 || (cache->global_symbols == NULL
1216 && new_size == 0))
1217 return;
1218
1219 xfree (cache->global_symbols);
1220 xfree (cache->static_symbols);
1221
1222 if (new_size == 0)
1223 {
1224 cache->global_symbols = NULL;
1225 cache->static_symbols = NULL;
1226 }
1227 else
1228 {
1229 size_t total_size = symbol_cache_byte_size (new_size);
1230
1231 cache->global_symbols
1232 = (struct block_symbol_cache *) xcalloc (1, total_size);
1233 cache->static_symbols
1234 = (struct block_symbol_cache *) xcalloc (1, total_size);
1235 cache->global_symbols->size = new_size;
1236 cache->static_symbols->size = new_size;
1237 }
1238 }
1239
1240 /* Return the symbol cache of PSPACE.
1241 Create one if it doesn't exist yet. */
1242
1243 static struct symbol_cache *
1244 get_symbol_cache (struct program_space *pspace)
1245 {
1246 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1247
1248 if (cache == NULL)
1249 {
1250 cache = symbol_cache_key.emplace (pspace);
1251 resize_symbol_cache (cache, symbol_cache_size);
1252 }
1253
1254 return cache;
1255 }
1256
1257 /* Set the size of the symbol cache in all program spaces. */
1258
1259 static void
1260 set_symbol_cache_size (unsigned int new_size)
1261 {
1262 struct program_space *pspace;
1263
1264 ALL_PSPACES (pspace)
1265 {
1266 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1267
1268 /* The pspace could have been created but not have a cache yet. */
1269 if (cache != NULL)
1270 resize_symbol_cache (cache, new_size);
1271 }
1272 }
1273
1274 /* Called when symbol-cache-size is set. */
1275
1276 static void
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1279 {
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1281 {
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1285
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1288 }
1289 symbol_cache_size = new_symbol_cache_size;
1290
1291 set_symbol_cache_size (symbol_cache_size);
1292 }
1293
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1298 in the cache.
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1301 attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return {};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 *bsc_ptr = bsc;
1346 *slot_ptr = slot;
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return {};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache = symbol_cache_key.get (pspace);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache = symbol_cache_key.get (pspace);
1608 if (cache == NULL)
1609 printf_filtered (" empty, no stats available\n");
1610 else
1611 symbol_cache_stats (cache);
1612 }
1613 }
1614
1615 /* This module's 'new_objfile' observer. */
1616
1617 static void
1618 symtab_new_objfile_observer (struct objfile *objfile)
1619 {
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1622 }
1623
1624 /* This module's 'free_objfile' observer. */
1625
1626 static void
1627 symtab_free_objfile_observer (struct objfile *objfile)
1628 {
1629 symbol_cache_flush (objfile->pspace);
1630 }
1631 \f
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1634
1635 void
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1638 {
1639 struct minimal_symbol *msym;
1640
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1668
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1675
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1681
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1686
1687 struct obj_section *s;
1688 int fallback = -1;
1689
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1691 {
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1694
1695 if (fallback == -1)
1696 fallback = idx;
1697
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1700 {
1701 ginfo->section = idx;
1702 return;
1703 }
1704 }
1705
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1709 if (fallback == -1)
1710 ginfo->section = 0;
1711 else
1712 ginfo->section = fallback;
1713 }
1714 }
1715
1716 struct symbol *
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1718 {
1719 CORE_ADDR addr;
1720
1721 if (!sym)
1722 return NULL;
1723
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1725 return sym;
1726
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1730
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1733
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1735 return sym;
1736
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1739
1740 switch (SYMBOL_CLASS (sym))
1741 {
1742 case LOC_STATIC:
1743 case LOC_LABEL:
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1745 break;
1746 case LOC_BLOCK:
1747 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1748 break;
1749
1750 default:
1751 /* Nothing else will be listed in the minsyms -- no use looking
1752 it up. */
1753 return sym;
1754 }
1755
1756 fixup_section (&sym->ginfo, addr, objfile);
1757
1758 return sym;
1759 }
1760
1761 /* See symtab.h. */
1762
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1765 {
1766 demangle_result_storage storage;
1767
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1769 {
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1773
1774 if (without_params != NULL)
1775 {
1776 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1778 lang, storage);
1779 return;
1780 }
1781 }
1782
1783 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1784 m_demangled_name = lookup_name.name ();
1785 else
1786 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1787 lang, storage);
1788 }
1789
1790 /* See symtab.h. */
1791
1792 const lookup_name_info &
1793 lookup_name_info::match_any ()
1794 {
1795 /* Lookup any symbol that "" would complete. I.e., this matches all
1796 symbol names. */
1797 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1798 true);
1799
1800 return lookup_name;
1801 }
1802
1803 /* Compute the demangled form of NAME as used by the various symbol
1804 lookup functions. The result can either be the input NAME
1805 directly, or a pointer to a buffer owned by the STORAGE object.
1806
1807 For Ada, this function just returns NAME, unmodified.
1808 Normally, Ada symbol lookups are performed using the encoded name
1809 rather than the demangled name, and so it might seem to make sense
1810 for this function to return an encoded version of NAME.
1811 Unfortunately, we cannot do this, because this function is used in
1812 circumstances where it is not appropriate to try to encode NAME.
1813 For instance, when displaying the frame info, we demangle the name
1814 of each parameter, and then perform a symbol lookup inside our
1815 function using that demangled name. In Ada, certain functions
1816 have internally-generated parameters whose name contain uppercase
1817 characters. Encoding those name would result in those uppercase
1818 characters to become lowercase, and thus cause the symbol lookup
1819 to fail. */
1820
1821 const char *
1822 demangle_for_lookup (const char *name, enum language lang,
1823 demangle_result_storage &storage)
1824 {
1825 /* If we are using C++, D, or Go, demangle the name before doing a
1826 lookup, so we can always binary search. */
1827 if (lang == language_cplus)
1828 {
1829 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1830 if (demangled_name != NULL)
1831 return storage.set_malloc_ptr (demangled_name);
1832
1833 /* If we were given a non-mangled name, canonicalize it
1834 according to the language (so far only for C++). */
1835 std::string canon = cp_canonicalize_string (name);
1836 if (!canon.empty ())
1837 return storage.swap_string (canon);
1838 }
1839 else if (lang == language_d)
1840 {
1841 char *demangled_name = d_demangle (name, 0);
1842 if (demangled_name != NULL)
1843 return storage.set_malloc_ptr (demangled_name);
1844 }
1845 else if (lang == language_go)
1846 {
1847 char *demangled_name = go_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851
1852 return name;
1853 }
1854
1855 /* See symtab.h. */
1856
1857 unsigned int
1858 search_name_hash (enum language language, const char *search_name)
1859 {
1860 return language_def (language)->la_search_name_hash (search_name);
1861 }
1862
1863 /* See symtab.h.
1864
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1873 code). */
1874
1875 struct block_symbol
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1882
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct block_symbol
1892 lookup_symbol (const char *name, const struct block *block,
1893 domain_enum domain,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1899 }
1900
1901 /* See symtab.h. */
1902
1903 struct block_symbol
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1905 domain_enum domain)
1906 {
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1916 {
1917 if (lang->la_name_of_this == NULL || block == NULL)
1918 return {};
1919
1920 if (symbol_lookup_debug > 1)
1921 {
1922 struct objfile *objfile = lookup_objfile_from_block (block);
1923
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->la_name, host_address_to_string (block),
1927 objfile_debug_name (objfile));
1928 }
1929
1930 while (block)
1931 {
1932 struct symbol *sym;
1933
1934 sym = block_lookup_symbol (block, lang->la_name_of_this,
1935 symbol_name_match_type::SEARCH_NAME,
1936 VAR_DOMAIN);
1937 if (sym != NULL)
1938 {
1939 if (symbol_lookup_debug > 1)
1940 {
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 SYMBOL_PRINT_NAME (sym),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1945 }
1946 return (struct block_symbol) {sym, block};
1947 }
1948 if (BLOCK_FUNCTION (block))
1949 break;
1950 block = BLOCK_SUPERBLOCK (block);
1951 }
1952
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1955 return {};
1956 }
1957
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1961
1962 static int
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 int i;
1967
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1970
1971 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1972 {
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1974
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1976 {
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1979 return 1;
1980 }
1981 }
1982
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1985
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1987 {
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1989 {
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1992 return 1;
1993 }
1994 }
1995
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1998 return 1;
1999
2000 return 0;
2001 }
2002
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2005
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2011 {
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2014
2015 if (symbol_lookup_debug)
2016 {
2017 struct objfile *objfile = lookup_objfile_from_block (block);
2018
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2022 objfile != NULL
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2025 }
2026
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2033
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2050
2051 langdef = language_def (language);
2052
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2055 means. */
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2057 {
2058 result = lookup_language_this (langdef, block);
2059
2060 if (result.symbol)
2061 {
2062 struct type *t = result.symbol->type;
2063
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2069
2070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2071 && TYPE_CODE (t) != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->la_name_of_this);
2074
2075 if (check_field (t, name, is_a_field_of_this))
2076 {
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2081 }
2082 return {};
2083 }
2084 }
2085 }
2086
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2089
2090 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2091 if (result.symbol != NULL)
2092 {
2093 if (symbol_lookup_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2097 }
2098 return result;
2099 }
2100
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2103
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2106 {
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2110 : "NULL");
2111 }
2112 return result;
2113 }
2114
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2124 {
2125 struct symbol *sym;
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2128
2129 /* Check if either no block is specified or it's a global block. */
2130
2131 if (static_block == NULL)
2132 return {};
2133
2134 while (block != static_block)
2135 {
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2137 if (sym != NULL)
2138 return (struct block_symbol) {sym, block};
2139
2140 if (language == language_cplus || language == language_fortran)
2141 {
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2144 domain);
2145
2146 if (blocksym.symbol != NULL)
2147 return blocksym;
2148 }
2149
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2151 break;
2152 block = BLOCK_SUPERBLOCK (block);
2153 }
2154
2155 /* We've reached the end of the function without finding a result. */
2156
2157 return {};
2158 }
2159
2160 /* See symtab.h. */
2161
2162 struct objfile *
2163 lookup_objfile_from_block (const struct block *block)
2164 {
2165 if (block == NULL)
2166 return NULL;
2167
2168 block = block_global_block (block);
2169 /* Look through all blockvectors. */
2170 for (objfile *obj : current_program_space->objfiles ())
2171 {
2172 for (compunit_symtab *cust : obj->compunits ())
2173 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2174 GLOBAL_BLOCK))
2175 {
2176 if (obj->separate_debug_objfile_backlink)
2177 obj = obj->separate_debug_objfile_backlink;
2178
2179 return obj;
2180 }
2181 }
2182
2183 return NULL;
2184 }
2185
2186 /* See symtab.h. */
2187
2188 struct symbol *
2189 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2190 const struct block *block,
2191 const domain_enum domain)
2192 {
2193 struct symbol *sym;
2194
2195 if (symbol_lookup_debug > 1)
2196 {
2197 struct objfile *objfile = lookup_objfile_from_block (block);
2198
2199 fprintf_unfiltered (gdb_stdlog,
2200 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2201 name, host_address_to_string (block),
2202 objfile_debug_name (objfile),
2203 domain_name (domain));
2204 }
2205
2206 sym = block_lookup_symbol (block, name, match_type, domain);
2207 if (sym)
2208 {
2209 if (symbol_lookup_debug > 1)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2212 host_address_to_string (sym));
2213 }
2214 return fixup_symbol_section (sym, NULL);
2215 }
2216
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return NULL;
2220 }
2221
2222 /* See symtab.h. */
2223
2224 struct block_symbol
2225 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2226 const char *name,
2227 const domain_enum domain)
2228 {
2229 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2230 {
2231 struct block_symbol result
2232 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2233
2234 if (result.symbol != NULL)
2235 return result;
2236 }
2237
2238 return {};
2239 }
2240
2241 /* Check to see if the symbol is defined in one of the OBJFILE's
2242 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2243 depending on whether or not we want to search global symbols or
2244 static symbols. */
2245
2246 static struct block_symbol
2247 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2248 const char *name, const domain_enum domain)
2249 {
2250 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2251
2252 if (symbol_lookup_debug > 1)
2253 {
2254 fprintf_unfiltered (gdb_stdlog,
2255 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2256 objfile_debug_name (objfile),
2257 block_index == GLOBAL_BLOCK
2258 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2259 name, domain_name (domain));
2260 }
2261
2262 for (compunit_symtab *cust : objfile->compunits ())
2263 {
2264 const struct blockvector *bv;
2265 const struct block *block;
2266 struct block_symbol result;
2267
2268 bv = COMPUNIT_BLOCKVECTOR (cust);
2269 block = BLOCKVECTOR_BLOCK (bv, block_index);
2270 result.symbol = block_lookup_symbol_primary (block, name, domain);
2271 result.block = block;
2272 if (result.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (result.symbol),
2278 host_address_to_string (block));
2279 }
2280 result.symbol = fixup_symbol_section (result.symbol, objfile);
2281 return result;
2282
2283 }
2284 }
2285
2286 if (symbol_lookup_debug > 1)
2287 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2288 return {};
2289 }
2290
2291 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2292 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2293 and all associated separate debug objfiles.
2294
2295 Normally we only look in OBJFILE, and not any separate debug objfiles
2296 because the outer loop will cause them to be searched too. This case is
2297 different. Here we're called from search_symbols where it will only
2298 call us for the objfile that contains a matching minsym. */
2299
2300 static struct block_symbol
2301 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2302 const char *linkage_name,
2303 domain_enum domain)
2304 {
2305 enum language lang = current_language->la_language;
2306 struct objfile *main_objfile;
2307
2308 demangle_result_storage storage;
2309 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2310
2311 if (objfile->separate_debug_objfile_backlink)
2312 main_objfile = objfile->separate_debug_objfile_backlink;
2313 else
2314 main_objfile = objfile;
2315
2316 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2317 {
2318 struct block_symbol result;
2319
2320 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2321 modified_name, domain);
2322 if (result.symbol == NULL)
2323 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2324 modified_name, domain);
2325 if (result.symbol != NULL)
2326 return result;
2327 }
2328
2329 return {};
2330 }
2331
2332 /* A helper function that throws an exception when a symbol was found
2333 in a psymtab but not in a symtab. */
2334
2335 static void ATTRIBUTE_NORETURN
2336 error_in_psymtab_expansion (int block_index, const char *name,
2337 struct compunit_symtab *cust)
2338 {
2339 error (_("\
2340 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2341 %s may be an inlined function, or may be a template function\n \
2342 (if a template, try specifying an instantiation: %s<type>)."),
2343 block_index == GLOBAL_BLOCK ? "global" : "static",
2344 name,
2345 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2346 name, name);
2347 }
2348
2349 /* A helper function for various lookup routines that interfaces with
2350 the "quick" symbol table functions. */
2351
2352 static struct block_symbol
2353 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2354 const char *name, const domain_enum domain)
2355 {
2356 struct compunit_symtab *cust;
2357 const struct blockvector *bv;
2358 const struct block *block;
2359 struct block_symbol result;
2360
2361 if (!objfile->sf)
2362 return {};
2363
2364 if (symbol_lookup_debug > 1)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2368 objfile_debug_name (objfile),
2369 block_index == GLOBAL_BLOCK
2370 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2371 name, domain_name (domain));
2372 }
2373
2374 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2375 if (cust == NULL)
2376 {
2377 if (symbol_lookup_debug > 1)
2378 {
2379 fprintf_unfiltered (gdb_stdlog,
2380 "lookup_symbol_via_quick_fns (...) = NULL\n");
2381 }
2382 return {};
2383 }
2384
2385 bv = COMPUNIT_BLOCKVECTOR (cust);
2386 block = BLOCKVECTOR_BLOCK (bv, block_index);
2387 result.symbol = block_lookup_symbol (block, name,
2388 symbol_name_match_type::FULL, domain);
2389 if (result.symbol == NULL)
2390 error_in_psymtab_expansion (block_index, name, cust);
2391
2392 if (symbol_lookup_debug > 1)
2393 {
2394 fprintf_unfiltered (gdb_stdlog,
2395 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2396 host_address_to_string (result.symbol),
2397 host_address_to_string (block));
2398 }
2399
2400 result.symbol = fixup_symbol_section (result.symbol, objfile);
2401 result.block = block;
2402 return result;
2403 }
2404
2405 /* See symtab.h. */
2406
2407 struct block_symbol
2408 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2409 const char *name,
2410 const struct block *block,
2411 const domain_enum domain)
2412 {
2413 struct block_symbol result;
2414
2415 /* NOTE: carlton/2003-05-19: The comments below were written when
2416 this (or what turned into this) was part of lookup_symbol_aux;
2417 I'm much less worried about these questions now, since these
2418 decisions have turned out well, but I leave these comments here
2419 for posterity. */
2420
2421 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2422 not it would be appropriate to search the current global block
2423 here as well. (That's what this code used to do before the
2424 is_a_field_of_this check was moved up.) On the one hand, it's
2425 redundant with the lookup in all objfiles search that happens
2426 next. On the other hand, if decode_line_1 is passed an argument
2427 like filename:var, then the user presumably wants 'var' to be
2428 searched for in filename. On the third hand, there shouldn't be
2429 multiple global variables all of which are named 'var', and it's
2430 not like decode_line_1 has ever restricted its search to only
2431 global variables in a single filename. All in all, only
2432 searching the static block here seems best: it's correct and it's
2433 cleanest. */
2434
2435 /* NOTE: carlton/2002-12-05: There's also a possible performance
2436 issue here: if you usually search for global symbols in the
2437 current file, then it would be slightly better to search the
2438 current global block before searching all the symtabs. But there
2439 are other factors that have a much greater effect on performance
2440 than that one, so I don't think we should worry about that for
2441 now. */
2442
2443 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2444 the current objfile. Searching the current objfile first is useful
2445 for both matching user expectations as well as performance. */
2446
2447 result = lookup_symbol_in_static_block (name, block, domain);
2448 if (result.symbol != NULL)
2449 return result;
2450
2451 /* If we didn't find a definition for a builtin type in the static block,
2452 search for it now. This is actually the right thing to do and can be
2453 a massive performance win. E.g., when debugging a program with lots of
2454 shared libraries we could search all of them only to find out the
2455 builtin type isn't defined in any of them. This is common for types
2456 like "void". */
2457 if (domain == VAR_DOMAIN)
2458 {
2459 struct gdbarch *gdbarch;
2460
2461 if (block == NULL)
2462 gdbarch = target_gdbarch ();
2463 else
2464 gdbarch = block_gdbarch (block);
2465 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2466 gdbarch, name);
2467 result.block = NULL;
2468 if (result.symbol != NULL)
2469 return result;
2470 }
2471
2472 return lookup_global_symbol (name, block, domain);
2473 }
2474
2475 /* See symtab.h. */
2476
2477 struct block_symbol
2478 lookup_symbol_in_static_block (const char *name,
2479 const struct block *block,
2480 const domain_enum domain)
2481 {
2482 const struct block *static_block = block_static_block (block);
2483 struct symbol *sym;
2484
2485 if (static_block == NULL)
2486 return {};
2487
2488 if (symbol_lookup_debug)
2489 {
2490 struct objfile *objfile = lookup_objfile_from_block (static_block);
2491
2492 fprintf_unfiltered (gdb_stdlog,
2493 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2494 " %s)\n",
2495 name,
2496 host_address_to_string (block),
2497 objfile_debug_name (objfile),
2498 domain_name (domain));
2499 }
2500
2501 sym = lookup_symbol_in_block (name,
2502 symbol_name_match_type::FULL,
2503 static_block, domain);
2504 if (symbol_lookup_debug)
2505 {
2506 fprintf_unfiltered (gdb_stdlog,
2507 "lookup_symbol_in_static_block (...) = %s\n",
2508 sym != NULL ? host_address_to_string (sym) : "NULL");
2509 }
2510 return (struct block_symbol) {sym, static_block};
2511 }
2512
2513 /* Perform the standard symbol lookup of NAME in OBJFILE:
2514 1) First search expanded symtabs, and if not found
2515 2) Search the "quick" symtabs (partial or .gdb_index).
2516 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2517
2518 static struct block_symbol
2519 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2520 const char *name, const domain_enum domain)
2521 {
2522 struct block_symbol result;
2523
2524 if (symbol_lookup_debug)
2525 {
2526 fprintf_unfiltered (gdb_stdlog,
2527 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2528 objfile_debug_name (objfile),
2529 block_index == GLOBAL_BLOCK
2530 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2531 name, domain_name (domain));
2532 }
2533
2534 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2535 name, domain);
2536 if (result.symbol != NULL)
2537 {
2538 if (symbol_lookup_debug)
2539 {
2540 fprintf_unfiltered (gdb_stdlog,
2541 "lookup_symbol_in_objfile (...) = %s"
2542 " (in symtabs)\n",
2543 host_address_to_string (result.symbol));
2544 }
2545 return result;
2546 }
2547
2548 result = lookup_symbol_via_quick_fns (objfile, block_index,
2549 name, domain);
2550 if (symbol_lookup_debug)
2551 {
2552 fprintf_unfiltered (gdb_stdlog,
2553 "lookup_symbol_in_objfile (...) = %s%s\n",
2554 result.symbol != NULL
2555 ? host_address_to_string (result.symbol)
2556 : "NULL",
2557 result.symbol != NULL ? " (via quick fns)" : "");
2558 }
2559 return result;
2560 }
2561
2562 /* See symtab.h. */
2563
2564 struct block_symbol
2565 lookup_static_symbol (const char *name, const domain_enum domain)
2566 {
2567 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2568 struct block_symbol result;
2569 struct block_symbol_cache *bsc;
2570 struct symbol_cache_slot *slot;
2571
2572 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2573 NULL for OBJFILE_CONTEXT. */
2574 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2575 &bsc, &slot);
2576 if (result.symbol != NULL)
2577 {
2578 if (SYMBOL_LOOKUP_FAILED_P (result))
2579 return {};
2580 return result;
2581 }
2582
2583 for (objfile *objfile : current_program_space->objfiles ())
2584 {
2585 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2586 if (result.symbol != NULL)
2587 {
2588 /* Still pass NULL for OBJFILE_CONTEXT here. */
2589 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2590 result.block);
2591 return result;
2592 }
2593 }
2594
2595 /* Still pass NULL for OBJFILE_CONTEXT here. */
2596 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2597 return {};
2598 }
2599
2600 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2601
2602 struct global_sym_lookup_data
2603 {
2604 /* The name of the symbol we are searching for. */
2605 const char *name;
2606
2607 /* The domain to use for our search. */
2608 domain_enum domain;
2609
2610 /* The field where the callback should store the symbol if found.
2611 It should be initialized to {NULL, NULL} before the search is started. */
2612 struct block_symbol result;
2613 };
2614
2615 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2616 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2617 OBJFILE. The arguments for the search are passed via CB_DATA,
2618 which in reality is a pointer to struct global_sym_lookup_data. */
2619
2620 static int
2621 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2622 void *cb_data)
2623 {
2624 struct global_sym_lookup_data *data =
2625 (struct global_sym_lookup_data *) cb_data;
2626
2627 gdb_assert (data->result.symbol == NULL
2628 && data->result.block == NULL);
2629
2630 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2631 data->name, data->domain);
2632
2633 /* If we found a match, tell the iterator to stop. Otherwise,
2634 keep going. */
2635 return (data->result.symbol != NULL);
2636 }
2637
2638 /* See symtab.h. */
2639
2640 struct block_symbol
2641 lookup_global_symbol (const char *name,
2642 const struct block *block,
2643 const domain_enum domain)
2644 {
2645 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2646 struct block_symbol result;
2647 struct objfile *objfile;
2648 struct global_sym_lookup_data lookup_data;
2649 struct block_symbol_cache *bsc;
2650 struct symbol_cache_slot *slot;
2651
2652 objfile = lookup_objfile_from_block (block);
2653
2654 /* First see if we can find the symbol in the cache.
2655 This works because we use the current objfile to qualify the lookup. */
2656 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2657 &bsc, &slot);
2658 if (result.symbol != NULL)
2659 {
2660 if (SYMBOL_LOOKUP_FAILED_P (result))
2661 return {};
2662 return result;
2663 }
2664
2665 /* Call library-specific lookup procedure. */
2666 if (objfile != NULL)
2667 result = solib_global_lookup (objfile, name, domain);
2668
2669 /* If that didn't work go a global search (of global blocks, heh). */
2670 if (result.symbol == NULL)
2671 {
2672 memset (&lookup_data, 0, sizeof (lookup_data));
2673 lookup_data.name = name;
2674 lookup_data.domain = domain;
2675 gdbarch_iterate_over_objfiles_in_search_order
2676 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2677 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2678 result = lookup_data.result;
2679 }
2680
2681 if (result.symbol != NULL)
2682 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2683 else
2684 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2685
2686 return result;
2687 }
2688
2689 int
2690 symbol_matches_domain (enum language symbol_language,
2691 domain_enum symbol_domain,
2692 domain_enum domain)
2693 {
2694 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2695 Similarly, any Ada type declaration implicitly defines a typedef. */
2696 if (symbol_language == language_cplus
2697 || symbol_language == language_d
2698 || symbol_language == language_ada
2699 || symbol_language == language_rust)
2700 {
2701 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2702 && symbol_domain == STRUCT_DOMAIN)
2703 return 1;
2704 }
2705 /* For all other languages, strict match is required. */
2706 return (symbol_domain == domain);
2707 }
2708
2709 /* See symtab.h. */
2710
2711 struct type *
2712 lookup_transparent_type (const char *name)
2713 {
2714 return current_language->la_lookup_transparent_type (name);
2715 }
2716
2717 /* A helper for basic_lookup_transparent_type that interfaces with the
2718 "quick" symbol table functions. */
2719
2720 static struct type *
2721 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2722 const char *name)
2723 {
2724 struct compunit_symtab *cust;
2725 const struct blockvector *bv;
2726 const struct block *block;
2727 struct symbol *sym;
2728
2729 if (!objfile->sf)
2730 return NULL;
2731 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2732 STRUCT_DOMAIN);
2733 if (cust == NULL)
2734 return NULL;
2735
2736 bv = COMPUNIT_BLOCKVECTOR (cust);
2737 block = BLOCKVECTOR_BLOCK (bv, block_index);
2738 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2739 block_find_non_opaque_type, NULL);
2740 if (sym == NULL)
2741 error_in_psymtab_expansion (block_index, name, cust);
2742 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2743 return SYMBOL_TYPE (sym);
2744 }
2745
2746 /* Subroutine of basic_lookup_transparent_type to simplify it.
2747 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2748 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2749
2750 static struct type *
2751 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2752 const char *name)
2753 {
2754 const struct blockvector *bv;
2755 const struct block *block;
2756 const struct symbol *sym;
2757
2758 for (compunit_symtab *cust : objfile->compunits ())
2759 {
2760 bv = COMPUNIT_BLOCKVECTOR (cust);
2761 block = BLOCKVECTOR_BLOCK (bv, block_index);
2762 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2763 block_find_non_opaque_type, NULL);
2764 if (sym != NULL)
2765 {
2766 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2767 return SYMBOL_TYPE (sym);
2768 }
2769 }
2770
2771 return NULL;
2772 }
2773
2774 /* The standard implementation of lookup_transparent_type. This code
2775 was modeled on lookup_symbol -- the parts not relevant to looking
2776 up types were just left out. In particular it's assumed here that
2777 types are available in STRUCT_DOMAIN and only in file-static or
2778 global blocks. */
2779
2780 struct type *
2781 basic_lookup_transparent_type (const char *name)
2782 {
2783 struct type *t;
2784
2785 /* Now search all the global symbols. Do the symtab's first, then
2786 check the psymtab's. If a psymtab indicates the existence
2787 of the desired name as a global, then do psymtab-to-symtab
2788 conversion on the fly and return the found symbol. */
2789
2790 for (objfile *objfile : current_program_space->objfiles ())
2791 {
2792 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2793 if (t)
2794 return t;
2795 }
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 /* Now search the static file-level symbols.
2805 Not strictly correct, but more useful than an error.
2806 Do the symtab's first, then
2807 check the psymtab's. If a psymtab indicates the existence
2808 of the desired name as a file-level static, then do psymtab-to-symtab
2809 conversion on the fly and return the found symbol. */
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 return (struct type *) 0;
2826 }
2827
2828 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2829
2830 For each symbol that matches, CALLBACK is called. The symbol is
2831 passed to the callback.
2832
2833 If CALLBACK returns false, the iteration ends. Otherwise, the
2834 search continues. */
2835
2836 void
2837 iterate_over_symbols (const struct block *block,
2838 const lookup_name_info &name,
2839 const domain_enum domain,
2840 gdb::function_view<symbol_found_callback_ftype> callback)
2841 {
2842 struct block_iterator iter;
2843 struct symbol *sym;
2844
2845 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2846 {
2847 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2848 SYMBOL_DOMAIN (sym), domain))
2849 {
2850 struct block_symbol block_sym = {sym, block};
2851
2852 if (!callback (&block_sym))
2853 return;
2854 }
2855 }
2856 }
2857
2858 /* Find the compunit symtab associated with PC and SECTION.
2859 This will read in debug info as necessary. */
2860
2861 struct compunit_symtab *
2862 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2863 {
2864 struct compunit_symtab *best_cust = NULL;
2865 CORE_ADDR distance = 0;
2866 struct bound_minimal_symbol msymbol;
2867
2868 /* If we know that this is not a text address, return failure. This is
2869 necessary because we loop based on the block's high and low code
2870 addresses, which do not include the data ranges, and because
2871 we call find_pc_sect_psymtab which has a similar restriction based
2872 on the partial_symtab's texthigh and textlow. */
2873 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2874 if (msymbol.minsym && msymbol.minsym->data_p ())
2875 return NULL;
2876
2877 /* Search all symtabs for the one whose file contains our address, and which
2878 is the smallest of all the ones containing the address. This is designed
2879 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2880 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2881 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2882
2883 This happens for native ecoff format, where code from included files
2884 gets its own symtab. The symtab for the included file should have
2885 been read in already via the dependency mechanism.
2886 It might be swifter to create several symtabs with the same name
2887 like xcoff does (I'm not sure).
2888
2889 It also happens for objfiles that have their functions reordered.
2890 For these, the symtab we are looking for is not necessarily read in. */
2891
2892 for (objfile *obj_file : current_program_space->objfiles ())
2893 {
2894 for (compunit_symtab *cust : obj_file->compunits ())
2895 {
2896 const struct block *b;
2897 const struct blockvector *bv;
2898
2899 bv = COMPUNIT_BLOCKVECTOR (cust);
2900 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2901
2902 if (BLOCK_START (b) <= pc
2903 && BLOCK_END (b) > pc
2904 && (distance == 0
2905 || BLOCK_END (b) - BLOCK_START (b) < distance))
2906 {
2907 /* For an objfile that has its functions reordered,
2908 find_pc_psymtab will find the proper partial symbol table
2909 and we simply return its corresponding symtab. */
2910 /* In order to better support objfiles that contain both
2911 stabs and coff debugging info, we continue on if a psymtab
2912 can't be found. */
2913 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2914 {
2915 struct compunit_symtab *result;
2916
2917 result
2918 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2919 msymbol,
2920 pc,
2921 section,
2922 0);
2923 if (result != NULL)
2924 return result;
2925 }
2926 if (section != 0)
2927 {
2928 struct block_iterator iter;
2929 struct symbol *sym = NULL;
2930
2931 ALL_BLOCK_SYMBOLS (b, iter, sym)
2932 {
2933 fixup_symbol_section (sym, obj_file);
2934 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2935 sym),
2936 section))
2937 break;
2938 }
2939 if (sym == NULL)
2940 continue; /* No symbol in this symtab matches
2941 section. */
2942 }
2943 distance = BLOCK_END (b) - BLOCK_START (b);
2944 best_cust = cust;
2945 }
2946 }
2947 }
2948
2949 if (best_cust != NULL)
2950 return best_cust;
2951
2952 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2953
2954 for (objfile *objf : current_program_space->objfiles ())
2955 {
2956 struct compunit_symtab *result;
2957
2958 if (!objf->sf)
2959 continue;
2960 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2961 msymbol,
2962 pc, section,
2963 1);
2964 if (result != NULL)
2965 return result;
2966 }
2967
2968 return NULL;
2969 }
2970
2971 /* Find the compunit symtab associated with PC.
2972 This will read in debug info as necessary.
2973 Backward compatibility, no section. */
2974
2975 struct compunit_symtab *
2976 find_pc_compunit_symtab (CORE_ADDR pc)
2977 {
2978 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2979 }
2980
2981 /* See symtab.h. */
2982
2983 struct symbol *
2984 find_symbol_at_address (CORE_ADDR address)
2985 {
2986 for (objfile *objfile : current_program_space->objfiles ())
2987 {
2988 if (objfile->sf == NULL
2989 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2990 continue;
2991
2992 struct compunit_symtab *symtab
2993 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2994 if (symtab != NULL)
2995 {
2996 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2997
2998 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2999 {
3000 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3001 struct block_iterator iter;
3002 struct symbol *sym;
3003
3004 ALL_BLOCK_SYMBOLS (b, iter, sym)
3005 {
3006 if (SYMBOL_CLASS (sym) == LOC_STATIC
3007 && SYMBOL_VALUE_ADDRESS (sym) == address)
3008 return sym;
3009 }
3010 }
3011 }
3012 }
3013
3014 return NULL;
3015 }
3016
3017 \f
3018
3019 /* Find the source file and line number for a given PC value and SECTION.
3020 Return a structure containing a symtab pointer, a line number,
3021 and a pc range for the entire source line.
3022 The value's .pc field is NOT the specified pc.
3023 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3024 use the line that ends there. Otherwise, in that case, the line
3025 that begins there is used. */
3026
3027 /* The big complication here is that a line may start in one file, and end just
3028 before the start of another file. This usually occurs when you #include
3029 code in the middle of a subroutine. To properly find the end of a line's PC
3030 range, we must search all symtabs associated with this compilation unit, and
3031 find the one whose first PC is closer than that of the next line in this
3032 symtab. */
3033
3034 struct symtab_and_line
3035 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3036 {
3037 struct compunit_symtab *cust;
3038 struct linetable *l;
3039 int len;
3040 struct linetable_entry *item;
3041 const struct blockvector *bv;
3042 struct bound_minimal_symbol msymbol;
3043
3044 /* Info on best line seen so far, and where it starts, and its file. */
3045
3046 struct linetable_entry *best = NULL;
3047 CORE_ADDR best_end = 0;
3048 struct symtab *best_symtab = 0;
3049
3050 /* Store here the first line number
3051 of a file which contains the line at the smallest pc after PC.
3052 If we don't find a line whose range contains PC,
3053 we will use a line one less than this,
3054 with a range from the start of that file to the first line's pc. */
3055 struct linetable_entry *alt = NULL;
3056
3057 /* Info on best line seen in this file. */
3058
3059 struct linetable_entry *prev;
3060
3061 /* If this pc is not from the current frame,
3062 it is the address of the end of a call instruction.
3063 Quite likely that is the start of the following statement.
3064 But what we want is the statement containing the instruction.
3065 Fudge the pc to make sure we get that. */
3066
3067 /* It's tempting to assume that, if we can't find debugging info for
3068 any function enclosing PC, that we shouldn't search for line
3069 number info, either. However, GAS can emit line number info for
3070 assembly files --- very helpful when debugging hand-written
3071 assembly code. In such a case, we'd have no debug info for the
3072 function, but we would have line info. */
3073
3074 if (notcurrent)
3075 pc -= 1;
3076
3077 /* elz: added this because this function returned the wrong
3078 information if the pc belongs to a stub (import/export)
3079 to call a shlib function. This stub would be anywhere between
3080 two functions in the target, and the line info was erroneously
3081 taken to be the one of the line before the pc. */
3082
3083 /* RT: Further explanation:
3084
3085 * We have stubs (trampolines) inserted between procedures.
3086 *
3087 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3088 * exists in the main image.
3089 *
3090 * In the minimal symbol table, we have a bunch of symbols
3091 * sorted by start address. The stubs are marked as "trampoline",
3092 * the others appear as text. E.g.:
3093 *
3094 * Minimal symbol table for main image
3095 * main: code for main (text symbol)
3096 * shr1: stub (trampoline symbol)
3097 * foo: code for foo (text symbol)
3098 * ...
3099 * Minimal symbol table for "shr1" image:
3100 * ...
3101 * shr1: code for shr1 (text symbol)
3102 * ...
3103 *
3104 * So the code below is trying to detect if we are in the stub
3105 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3106 * and if found, do the symbolization from the real-code address
3107 * rather than the stub address.
3108 *
3109 * Assumptions being made about the minimal symbol table:
3110 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3111 * if we're really in the trampoline.s If we're beyond it (say
3112 * we're in "foo" in the above example), it'll have a closer
3113 * symbol (the "foo" text symbol for example) and will not
3114 * return the trampoline.
3115 * 2. lookup_minimal_symbol_text() will find a real text symbol
3116 * corresponding to the trampoline, and whose address will
3117 * be different than the trampoline address. I put in a sanity
3118 * check for the address being the same, to avoid an
3119 * infinite recursion.
3120 */
3121 msymbol = lookup_minimal_symbol_by_pc (pc);
3122 if (msymbol.minsym != NULL)
3123 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3124 {
3125 struct bound_minimal_symbol mfunsym
3126 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3127 NULL);
3128
3129 if (mfunsym.minsym == NULL)
3130 /* I eliminated this warning since it is coming out
3131 * in the following situation:
3132 * gdb shmain // test program with shared libraries
3133 * (gdb) break shr1 // function in shared lib
3134 * Warning: In stub for ...
3135 * In the above situation, the shared lib is not loaded yet,
3136 * so of course we can't find the real func/line info,
3137 * but the "break" still works, and the warning is annoying.
3138 * So I commented out the warning. RT */
3139 /* warning ("In stub for %s; unable to find real function/line info",
3140 SYMBOL_LINKAGE_NAME (msymbol)); */
3141 ;
3142 /* fall through */
3143 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3144 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3145 /* Avoid infinite recursion */
3146 /* See above comment about why warning is commented out. */
3147 /* warning ("In stub for %s; unable to find real function/line info",
3148 SYMBOL_LINKAGE_NAME (msymbol)); */
3149 ;
3150 /* fall through */
3151 else
3152 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3153 }
3154
3155 symtab_and_line val;
3156 val.pspace = current_program_space;
3157
3158 cust = find_pc_sect_compunit_symtab (pc, section);
3159 if (cust == NULL)
3160 {
3161 /* If no symbol information, return previous pc. */
3162 if (notcurrent)
3163 pc++;
3164 val.pc = pc;
3165 return val;
3166 }
3167
3168 bv = COMPUNIT_BLOCKVECTOR (cust);
3169
3170 /* Look at all the symtabs that share this blockvector.
3171 They all have the same apriori range, that we found was right;
3172 but they have different line tables. */
3173
3174 for (symtab *iter_s : compunit_filetabs (cust))
3175 {
3176 /* Find the best line in this symtab. */
3177 l = SYMTAB_LINETABLE (iter_s);
3178 if (!l)
3179 continue;
3180 len = l->nitems;
3181 if (len <= 0)
3182 {
3183 /* I think len can be zero if the symtab lacks line numbers
3184 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3185 I'm not sure which, and maybe it depends on the symbol
3186 reader). */
3187 continue;
3188 }
3189
3190 prev = NULL;
3191 item = l->item; /* Get first line info. */
3192
3193 /* Is this file's first line closer than the first lines of other files?
3194 If so, record this file, and its first line, as best alternate. */
3195 if (item->pc > pc && (!alt || item->pc < alt->pc))
3196 alt = item;
3197
3198 auto pc_compare = [](const CORE_ADDR & comp_pc,
3199 const struct linetable_entry & lhs)->bool
3200 {
3201 return comp_pc < lhs.pc;
3202 };
3203
3204 struct linetable_entry *first = item;
3205 struct linetable_entry *last = item + len;
3206 item = std::upper_bound (first, last, pc, pc_compare);
3207 if (item != first)
3208 prev = item - 1; /* Found a matching item. */
3209
3210 /* At this point, prev points at the line whose start addr is <= pc, and
3211 item points at the next line. If we ran off the end of the linetable
3212 (pc >= start of the last line), then prev == item. If pc < start of
3213 the first line, prev will not be set. */
3214
3215 /* Is this file's best line closer than the best in the other files?
3216 If so, record this file, and its best line, as best so far. Don't
3217 save prev if it represents the end of a function (i.e. line number
3218 0) instead of a real line. */
3219
3220 if (prev && prev->line && (!best || prev->pc > best->pc))
3221 {
3222 best = prev;
3223 best_symtab = iter_s;
3224
3225 /* Discard BEST_END if it's before the PC of the current BEST. */
3226 if (best_end <= best->pc)
3227 best_end = 0;
3228 }
3229
3230 /* If another line (denoted by ITEM) is in the linetable and its
3231 PC is after BEST's PC, but before the current BEST_END, then
3232 use ITEM's PC as the new best_end. */
3233 if (best && item < last && item->pc > best->pc
3234 && (best_end == 0 || best_end > item->pc))
3235 best_end = item->pc;
3236 }
3237
3238 if (!best_symtab)
3239 {
3240 /* If we didn't find any line number info, just return zeros.
3241 We used to return alt->line - 1 here, but that could be
3242 anywhere; if we don't have line number info for this PC,
3243 don't make some up. */
3244 val.pc = pc;
3245 }
3246 else if (best->line == 0)
3247 {
3248 /* If our best fit is in a range of PC's for which no line
3249 number info is available (line number is zero) then we didn't
3250 find any valid line information. */
3251 val.pc = pc;
3252 }
3253 else
3254 {
3255 val.symtab = best_symtab;
3256 val.line = best->line;
3257 val.pc = best->pc;
3258 if (best_end && (!alt || best_end < alt->pc))
3259 val.end = best_end;
3260 else if (alt)
3261 val.end = alt->pc;
3262 else
3263 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3264 }
3265 val.section = section;
3266 return val;
3267 }
3268
3269 /* Backward compatibility (no section). */
3270
3271 struct symtab_and_line
3272 find_pc_line (CORE_ADDR pc, int notcurrent)
3273 {
3274 struct obj_section *section;
3275
3276 section = find_pc_overlay (pc);
3277 if (pc_in_unmapped_range (pc, section))
3278 pc = overlay_mapped_address (pc, section);
3279 return find_pc_sect_line (pc, section, notcurrent);
3280 }
3281
3282 /* See symtab.h. */
3283
3284 struct symtab *
3285 find_pc_line_symtab (CORE_ADDR pc)
3286 {
3287 struct symtab_and_line sal;
3288
3289 /* This always passes zero for NOTCURRENT to find_pc_line.
3290 There are currently no callers that ever pass non-zero. */
3291 sal = find_pc_line (pc, 0);
3292 return sal.symtab;
3293 }
3294 \f
3295 /* Find line number LINE in any symtab whose name is the same as
3296 SYMTAB.
3297
3298 If found, return the symtab that contains the linetable in which it was
3299 found, set *INDEX to the index in the linetable of the best entry
3300 found, and set *EXACT_MATCH nonzero if the value returned is an
3301 exact match.
3302
3303 If not found, return NULL. */
3304
3305 struct symtab *
3306 find_line_symtab (struct symtab *sym_tab, int line,
3307 int *index, int *exact_match)
3308 {
3309 int exact = 0; /* Initialized here to avoid a compiler warning. */
3310
3311 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3312 so far seen. */
3313
3314 int best_index;
3315 struct linetable *best_linetable;
3316 struct symtab *best_symtab;
3317
3318 /* First try looking it up in the given symtab. */
3319 best_linetable = SYMTAB_LINETABLE (sym_tab);
3320 best_symtab = sym_tab;
3321 best_index = find_line_common (best_linetable, line, &exact, 0);
3322 if (best_index < 0 || !exact)
3323 {
3324 /* Didn't find an exact match. So we better keep looking for
3325 another symtab with the same name. In the case of xcoff,
3326 multiple csects for one source file (produced by IBM's FORTRAN
3327 compiler) produce multiple symtabs (this is unavoidable
3328 assuming csects can be at arbitrary places in memory and that
3329 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3330
3331 /* BEST is the smallest linenumber > LINE so far seen,
3332 or 0 if none has been seen so far.
3333 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3334 int best;
3335
3336 if (best_index >= 0)
3337 best = best_linetable->item[best_index].line;
3338 else
3339 best = 0;
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 if (objfile->sf)
3344 objfile->sf->qf->expand_symtabs_with_fullname
3345 (objfile, symtab_to_fullname (sym_tab));
3346 }
3347
3348 for (objfile *objfile : current_program_space->objfiles ())
3349 {
3350 for (compunit_symtab *cu : objfile->compunits ())
3351 {
3352 for (symtab *s : compunit_filetabs (cu))
3353 {
3354 struct linetable *l;
3355 int ind;
3356
3357 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3358 continue;
3359 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3360 symtab_to_fullname (s)) != 0)
3361 continue;
3362 l = SYMTAB_LINETABLE (s);
3363 ind = find_line_common (l, line, &exact, 0);
3364 if (ind >= 0)
3365 {
3366 if (exact)
3367 {
3368 best_index = ind;
3369 best_linetable = l;
3370 best_symtab = s;
3371 goto done;
3372 }
3373 if (best == 0 || l->item[ind].line < best)
3374 {
3375 best = l->item[ind].line;
3376 best_index = ind;
3377 best_linetable = l;
3378 best_symtab = s;
3379 }
3380 }
3381 }
3382 }
3383 }
3384 }
3385 done:
3386 if (best_index < 0)
3387 return NULL;
3388
3389 if (index)
3390 *index = best_index;
3391 if (exact_match)
3392 *exact_match = exact;
3393
3394 return best_symtab;
3395 }
3396
3397 /* Given SYMTAB, returns all the PCs function in the symtab that
3398 exactly match LINE. Returns an empty vector if there are no exact
3399 matches, but updates BEST_ITEM in this case. */
3400
3401 std::vector<CORE_ADDR>
3402 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3403 struct linetable_entry **best_item)
3404 {
3405 int start = 0;
3406 std::vector<CORE_ADDR> result;
3407
3408 /* First, collect all the PCs that are at this line. */
3409 while (1)
3410 {
3411 int was_exact;
3412 int idx;
3413
3414 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3415 start);
3416 if (idx < 0)
3417 break;
3418
3419 if (!was_exact)
3420 {
3421 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3422
3423 if (*best_item == NULL || item->line < (*best_item)->line)
3424 *best_item = item;
3425
3426 break;
3427 }
3428
3429 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3430 start = idx + 1;
3431 }
3432
3433 return result;
3434 }
3435
3436 \f
3437 /* Set the PC value for a given source file and line number and return true.
3438 Returns zero for invalid line number (and sets the PC to 0).
3439 The source file is specified with a struct symtab. */
3440
3441 int
3442 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3443 {
3444 struct linetable *l;
3445 int ind;
3446
3447 *pc = 0;
3448 if (symtab == 0)
3449 return 0;
3450
3451 symtab = find_line_symtab (symtab, line, &ind, NULL);
3452 if (symtab != NULL)
3453 {
3454 l = SYMTAB_LINETABLE (symtab);
3455 *pc = l->item[ind].pc;
3456 return 1;
3457 }
3458 else
3459 return 0;
3460 }
3461
3462 /* Find the range of pc values in a line.
3463 Store the starting pc of the line into *STARTPTR
3464 and the ending pc (start of next line) into *ENDPTR.
3465 Returns 1 to indicate success.
3466 Returns 0 if could not find the specified line. */
3467
3468 int
3469 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3470 CORE_ADDR *endptr)
3471 {
3472 CORE_ADDR startaddr;
3473 struct symtab_and_line found_sal;
3474
3475 startaddr = sal.pc;
3476 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3477 return 0;
3478
3479 /* This whole function is based on address. For example, if line 10 has
3480 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3481 "info line *0x123" should say the line goes from 0x100 to 0x200
3482 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3483 This also insures that we never give a range like "starts at 0x134
3484 and ends at 0x12c". */
3485
3486 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3487 if (found_sal.line != sal.line)
3488 {
3489 /* The specified line (sal) has zero bytes. */
3490 *startptr = found_sal.pc;
3491 *endptr = found_sal.pc;
3492 }
3493 else
3494 {
3495 *startptr = found_sal.pc;
3496 *endptr = found_sal.end;
3497 }
3498 return 1;
3499 }
3500
3501 /* Given a line table and a line number, return the index into the line
3502 table for the pc of the nearest line whose number is >= the specified one.
3503 Return -1 if none is found. The value is >= 0 if it is an index.
3504 START is the index at which to start searching the line table.
3505
3506 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3507
3508 static int
3509 find_line_common (struct linetable *l, int lineno,
3510 int *exact_match, int start)
3511 {
3512 int i;
3513 int len;
3514
3515 /* BEST is the smallest linenumber > LINENO so far seen,
3516 or 0 if none has been seen so far.
3517 BEST_INDEX identifies the item for it. */
3518
3519 int best_index = -1;
3520 int best = 0;
3521
3522 *exact_match = 0;
3523
3524 if (lineno <= 0)
3525 return -1;
3526 if (l == 0)
3527 return -1;
3528
3529 len = l->nitems;
3530 for (i = start; i < len; i++)
3531 {
3532 struct linetable_entry *item = &(l->item[i]);
3533
3534 if (item->line == lineno)
3535 {
3536 /* Return the first (lowest address) entry which matches. */
3537 *exact_match = 1;
3538 return i;
3539 }
3540
3541 if (item->line > lineno && (best == 0 || item->line < best))
3542 {
3543 best = item->line;
3544 best_index = i;
3545 }
3546 }
3547
3548 /* If we got here, we didn't get an exact match. */
3549 return best_index;
3550 }
3551
3552 int
3553 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3554 {
3555 struct symtab_and_line sal;
3556
3557 sal = find_pc_line (pc, 0);
3558 *startptr = sal.pc;
3559 *endptr = sal.end;
3560 return sal.symtab != 0;
3561 }
3562
3563 /* Helper for find_function_start_sal. Does most of the work, except
3564 setting the sal's symbol. */
3565
3566 static symtab_and_line
3567 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3568 bool funfirstline)
3569 {
3570 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3571
3572 if (funfirstline && sal.symtab != NULL
3573 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3574 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3575 {
3576 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3577
3578 sal.pc = func_addr;
3579 if (gdbarch_skip_entrypoint_p (gdbarch))
3580 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3581 return sal;
3582 }
3583
3584 /* We always should have a line for the function start address.
3585 If we don't, something is odd. Create a plain SAL referring
3586 just the PC and hope that skip_prologue_sal (if requested)
3587 can find a line number for after the prologue. */
3588 if (sal.pc < func_addr)
3589 {
3590 sal = {};
3591 sal.pspace = current_program_space;
3592 sal.pc = func_addr;
3593 sal.section = section;
3594 }
3595
3596 if (funfirstline)
3597 skip_prologue_sal (&sal);
3598
3599 return sal;
3600 }
3601
3602 /* See symtab.h. */
3603
3604 symtab_and_line
3605 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3606 bool funfirstline)
3607 {
3608 symtab_and_line sal
3609 = find_function_start_sal_1 (func_addr, section, funfirstline);
3610
3611 /* find_function_start_sal_1 does a linetable search, so it finds
3612 the symtab and linenumber, but not a symbol. Fill in the
3613 function symbol too. */
3614 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3615
3616 return sal;
3617 }
3618
3619 /* See symtab.h. */
3620
3621 symtab_and_line
3622 find_function_start_sal (symbol *sym, bool funfirstline)
3623 {
3624 fixup_symbol_section (sym, NULL);
3625 symtab_and_line sal
3626 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3627 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3628 funfirstline);
3629 sal.symbol = sym;
3630 return sal;
3631 }
3632
3633
3634 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3635 address for that function that has an entry in SYMTAB's line info
3636 table. If such an entry cannot be found, return FUNC_ADDR
3637 unaltered. */
3638
3639 static CORE_ADDR
3640 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3641 {
3642 CORE_ADDR func_start, func_end;
3643 struct linetable *l;
3644 int i;
3645
3646 /* Give up if this symbol has no lineinfo table. */
3647 l = SYMTAB_LINETABLE (symtab);
3648 if (l == NULL)
3649 return func_addr;
3650
3651 /* Get the range for the function's PC values, or give up if we
3652 cannot, for some reason. */
3653 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3654 return func_addr;
3655
3656 /* Linetable entries are ordered by PC values, see the commentary in
3657 symtab.h where `struct linetable' is defined. Thus, the first
3658 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3659 address we are looking for. */
3660 for (i = 0; i < l->nitems; i++)
3661 {
3662 struct linetable_entry *item = &(l->item[i]);
3663
3664 /* Don't use line numbers of zero, they mark special entries in
3665 the table. See the commentary on symtab.h before the
3666 definition of struct linetable. */
3667 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3668 return item->pc;
3669 }
3670
3671 return func_addr;
3672 }
3673
3674 /* Adjust SAL to the first instruction past the function prologue.
3675 If the PC was explicitly specified, the SAL is not changed.
3676 If the line number was explicitly specified, at most the SAL's PC
3677 is updated. If SAL is already past the prologue, then do nothing. */
3678
3679 void
3680 skip_prologue_sal (struct symtab_and_line *sal)
3681 {
3682 struct symbol *sym;
3683 struct symtab_and_line start_sal;
3684 CORE_ADDR pc, saved_pc;
3685 struct obj_section *section;
3686 const char *name;
3687 struct objfile *objfile;
3688 struct gdbarch *gdbarch;
3689 const struct block *b, *function_block;
3690 int force_skip, skip;
3691
3692 /* Do not change the SAL if PC was specified explicitly. */
3693 if (sal->explicit_pc)
3694 return;
3695
3696 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3697
3698 switch_to_program_space_and_thread (sal->pspace);
3699
3700 sym = find_pc_sect_function (sal->pc, sal->section);
3701 if (sym != NULL)
3702 {
3703 fixup_symbol_section (sym, NULL);
3704
3705 objfile = symbol_objfile (sym);
3706 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3707 section = SYMBOL_OBJ_SECTION (objfile, sym);
3708 name = SYMBOL_LINKAGE_NAME (sym);
3709 }
3710 else
3711 {
3712 struct bound_minimal_symbol msymbol
3713 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3714
3715 if (msymbol.minsym == NULL)
3716 return;
3717
3718 objfile = msymbol.objfile;
3719 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3720 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3721 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3722 }
3723
3724 gdbarch = get_objfile_arch (objfile);
3725
3726 /* Process the prologue in two passes. In the first pass try to skip the
3727 prologue (SKIP is true) and verify there is a real need for it (indicated
3728 by FORCE_SKIP). If no such reason was found run a second pass where the
3729 prologue is not skipped (SKIP is false). */
3730
3731 skip = 1;
3732 force_skip = 1;
3733
3734 /* Be conservative - allow direct PC (without skipping prologue) only if we
3735 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3736 have to be set by the caller so we use SYM instead. */
3737 if (sym != NULL
3738 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3739 force_skip = 0;
3740
3741 saved_pc = pc;
3742 do
3743 {
3744 pc = saved_pc;
3745
3746 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3747 so that gdbarch_skip_prologue has something unique to work on. */
3748 if (section_is_overlay (section) && !section_is_mapped (section))
3749 pc = overlay_unmapped_address (pc, section);
3750
3751 /* Skip "first line" of function (which is actually its prologue). */
3752 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3753 if (gdbarch_skip_entrypoint_p (gdbarch))
3754 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3755 if (skip)
3756 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3757
3758 /* For overlays, map pc back into its mapped VMA range. */
3759 pc = overlay_mapped_address (pc, section);
3760
3761 /* Calculate line number. */
3762 start_sal = find_pc_sect_line (pc, section, 0);
3763
3764 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3765 line is still part of the same function. */
3766 if (skip && start_sal.pc != pc
3767 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3768 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3769 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3770 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3771 {
3772 /* First pc of next line */
3773 pc = start_sal.end;
3774 /* Recalculate the line number (might not be N+1). */
3775 start_sal = find_pc_sect_line (pc, section, 0);
3776 }
3777
3778 /* On targets with executable formats that don't have a concept of
3779 constructors (ELF with .init has, PE doesn't), gcc emits a call
3780 to `__main' in `main' between the prologue and before user
3781 code. */
3782 if (gdbarch_skip_main_prologue_p (gdbarch)
3783 && name && strcmp_iw (name, "main") == 0)
3784 {
3785 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3786 /* Recalculate the line number (might not be N+1). */
3787 start_sal = find_pc_sect_line (pc, section, 0);
3788 force_skip = 1;
3789 }
3790 }
3791 while (!force_skip && skip--);
3792
3793 /* If we still don't have a valid source line, try to find the first
3794 PC in the lineinfo table that belongs to the same function. This
3795 happens with COFF debug info, which does not seem to have an
3796 entry in lineinfo table for the code after the prologue which has
3797 no direct relation to source. For example, this was found to be
3798 the case with the DJGPP target using "gcc -gcoff" when the
3799 compiler inserted code after the prologue to make sure the stack
3800 is aligned. */
3801 if (!force_skip && sym && start_sal.symtab == NULL)
3802 {
3803 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3804 /* Recalculate the line number. */
3805 start_sal = find_pc_sect_line (pc, section, 0);
3806 }
3807
3808 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3809 forward SAL to the end of the prologue. */
3810 if (sal->pc >= pc)
3811 return;
3812
3813 sal->pc = pc;
3814 sal->section = section;
3815
3816 /* Unless the explicit_line flag was set, update the SAL line
3817 and symtab to correspond to the modified PC location. */
3818 if (sal->explicit_line)
3819 return;
3820
3821 sal->symtab = start_sal.symtab;
3822 sal->line = start_sal.line;
3823 sal->end = start_sal.end;
3824
3825 /* Check if we are now inside an inlined function. If we can,
3826 use the call site of the function instead. */
3827 b = block_for_pc_sect (sal->pc, sal->section);
3828 function_block = NULL;
3829 while (b != NULL)
3830 {
3831 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3832 function_block = b;
3833 else if (BLOCK_FUNCTION (b) != NULL)
3834 break;
3835 b = BLOCK_SUPERBLOCK (b);
3836 }
3837 if (function_block != NULL
3838 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3839 {
3840 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3841 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3842 }
3843 }
3844
3845 /* Given PC at the function's start address, attempt to find the
3846 prologue end using SAL information. Return zero if the skip fails.
3847
3848 A non-optimized prologue traditionally has one SAL for the function
3849 and a second for the function body. A single line function has
3850 them both pointing at the same line.
3851
3852 An optimized prologue is similar but the prologue may contain
3853 instructions (SALs) from the instruction body. Need to skip those
3854 while not getting into the function body.
3855
3856 The functions end point and an increasing SAL line are used as
3857 indicators of the prologue's endpoint.
3858
3859 This code is based on the function refine_prologue_limit
3860 (found in ia64). */
3861
3862 CORE_ADDR
3863 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3864 {
3865 struct symtab_and_line prologue_sal;
3866 CORE_ADDR start_pc;
3867 CORE_ADDR end_pc;
3868 const struct block *bl;
3869
3870 /* Get an initial range for the function. */
3871 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3872 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3873
3874 prologue_sal = find_pc_line (start_pc, 0);
3875 if (prologue_sal.line != 0)
3876 {
3877 /* For languages other than assembly, treat two consecutive line
3878 entries at the same address as a zero-instruction prologue.
3879 The GNU assembler emits separate line notes for each instruction
3880 in a multi-instruction macro, but compilers generally will not
3881 do this. */
3882 if (prologue_sal.symtab->language != language_asm)
3883 {
3884 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3885 int idx = 0;
3886
3887 /* Skip any earlier lines, and any end-of-sequence marker
3888 from a previous function. */
3889 while (linetable->item[idx].pc != prologue_sal.pc
3890 || linetable->item[idx].line == 0)
3891 idx++;
3892
3893 if (idx+1 < linetable->nitems
3894 && linetable->item[idx+1].line != 0
3895 && linetable->item[idx+1].pc == start_pc)
3896 return start_pc;
3897 }
3898
3899 /* If there is only one sal that covers the entire function,
3900 then it is probably a single line function, like
3901 "foo(){}". */
3902 if (prologue_sal.end >= end_pc)
3903 return 0;
3904
3905 while (prologue_sal.end < end_pc)
3906 {
3907 struct symtab_and_line sal;
3908
3909 sal = find_pc_line (prologue_sal.end, 0);
3910 if (sal.line == 0)
3911 break;
3912 /* Assume that a consecutive SAL for the same (or larger)
3913 line mark the prologue -> body transition. */
3914 if (sal.line >= prologue_sal.line)
3915 break;
3916 /* Likewise if we are in a different symtab altogether
3917 (e.g. within a file included via #include).  */
3918 if (sal.symtab != prologue_sal.symtab)
3919 break;
3920
3921 /* The line number is smaller. Check that it's from the
3922 same function, not something inlined. If it's inlined,
3923 then there is no point comparing the line numbers. */
3924 bl = block_for_pc (prologue_sal.end);
3925 while (bl)
3926 {
3927 if (block_inlined_p (bl))
3928 break;
3929 if (BLOCK_FUNCTION (bl))
3930 {
3931 bl = NULL;
3932 break;
3933 }
3934 bl = BLOCK_SUPERBLOCK (bl);
3935 }
3936 if (bl != NULL)
3937 break;
3938
3939 /* The case in which compiler's optimizer/scheduler has
3940 moved instructions into the prologue. We look ahead in
3941 the function looking for address ranges whose
3942 corresponding line number is less the first one that we
3943 found for the function. This is more conservative then
3944 refine_prologue_limit which scans a large number of SALs
3945 looking for any in the prologue. */
3946 prologue_sal = sal;
3947 }
3948 }
3949
3950 if (prologue_sal.end < end_pc)
3951 /* Return the end of this line, or zero if we could not find a
3952 line. */
3953 return prologue_sal.end;
3954 else
3955 /* Don't return END_PC, which is past the end of the function. */
3956 return prologue_sal.pc;
3957 }
3958
3959 /* See symtab.h. */
3960
3961 symbol *
3962 find_function_alias_target (bound_minimal_symbol msymbol)
3963 {
3964 CORE_ADDR func_addr;
3965 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3966 return NULL;
3967
3968 symbol *sym = find_pc_function (func_addr);
3969 if (sym != NULL
3970 && SYMBOL_CLASS (sym) == LOC_BLOCK
3971 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3972 return sym;
3973
3974 return NULL;
3975 }
3976
3977 \f
3978 /* If P is of the form "operator[ \t]+..." where `...' is
3979 some legitimate operator text, return a pointer to the
3980 beginning of the substring of the operator text.
3981 Otherwise, return "". */
3982
3983 static const char *
3984 operator_chars (const char *p, const char **end)
3985 {
3986 *end = "";
3987 if (!startswith (p, CP_OPERATOR_STR))
3988 return *end;
3989 p += CP_OPERATOR_LEN;
3990
3991 /* Don't get faked out by `operator' being part of a longer
3992 identifier. */
3993 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3994 return *end;
3995
3996 /* Allow some whitespace between `operator' and the operator symbol. */
3997 while (*p == ' ' || *p == '\t')
3998 p++;
3999
4000 /* Recognize 'operator TYPENAME'. */
4001
4002 if (isalpha (*p) || *p == '_' || *p == '$')
4003 {
4004 const char *q = p + 1;
4005
4006 while (isalnum (*q) || *q == '_' || *q == '$')
4007 q++;
4008 *end = q;
4009 return p;
4010 }
4011
4012 while (*p)
4013 switch (*p)
4014 {
4015 case '\\': /* regexp quoting */
4016 if (p[1] == '*')
4017 {
4018 if (p[2] == '=') /* 'operator\*=' */
4019 *end = p + 3;
4020 else /* 'operator\*' */
4021 *end = p + 2;
4022 return p;
4023 }
4024 else if (p[1] == '[')
4025 {
4026 if (p[2] == ']')
4027 error (_("mismatched quoting on brackets, "
4028 "try 'operator\\[\\]'"));
4029 else if (p[2] == '\\' && p[3] == ']')
4030 {
4031 *end = p + 4; /* 'operator\[\]' */
4032 return p;
4033 }
4034 else
4035 error (_("nothing is allowed between '[' and ']'"));
4036 }
4037 else
4038 {
4039 /* Gratuitous qoute: skip it and move on. */
4040 p++;
4041 continue;
4042 }
4043 break;
4044 case '!':
4045 case '=':
4046 case '*':
4047 case '/':
4048 case '%':
4049 case '^':
4050 if (p[1] == '=')
4051 *end = p + 2;
4052 else
4053 *end = p + 1;
4054 return p;
4055 case '<':
4056 case '>':
4057 case '+':
4058 case '-':
4059 case '&':
4060 case '|':
4061 if (p[0] == '-' && p[1] == '>')
4062 {
4063 /* Struct pointer member operator 'operator->'. */
4064 if (p[2] == '*')
4065 {
4066 *end = p + 3; /* 'operator->*' */
4067 return p;
4068 }
4069 else if (p[2] == '\\')
4070 {
4071 *end = p + 4; /* Hopefully 'operator->\*' */
4072 return p;
4073 }
4074 else
4075 {
4076 *end = p + 2; /* 'operator->' */
4077 return p;
4078 }
4079 }
4080 if (p[1] == '=' || p[1] == p[0])
4081 *end = p + 2;
4082 else
4083 *end = p + 1;
4084 return p;
4085 case '~':
4086 case ',':
4087 *end = p + 1;
4088 return p;
4089 case '(':
4090 if (p[1] != ')')
4091 error (_("`operator ()' must be specified "
4092 "without whitespace in `()'"));
4093 *end = p + 2;
4094 return p;
4095 case '?':
4096 if (p[1] != ':')
4097 error (_("`operator ?:' must be specified "
4098 "without whitespace in `?:'"));
4099 *end = p + 2;
4100 return p;
4101 case '[':
4102 if (p[1] != ']')
4103 error (_("`operator []' must be specified "
4104 "without whitespace in `[]'"));
4105 *end = p + 2;
4106 return p;
4107 default:
4108 error (_("`operator %s' not supported"), p);
4109 break;
4110 }
4111
4112 *end = "";
4113 return *end;
4114 }
4115 \f
4116
4117 /* Data structure to maintain printing state for output_source_filename. */
4118
4119 struct output_source_filename_data
4120 {
4121 /* Cache of what we've seen so far. */
4122 struct filename_seen_cache *filename_seen_cache;
4123
4124 /* Flag of whether we're printing the first one. */
4125 int first;
4126 };
4127
4128 /* Slave routine for sources_info. Force line breaks at ,'s.
4129 NAME is the name to print.
4130 DATA contains the state for printing and watching for duplicates. */
4131
4132 static void
4133 output_source_filename (const char *name,
4134 struct output_source_filename_data *data)
4135 {
4136 /* Since a single source file can result in several partial symbol
4137 tables, we need to avoid printing it more than once. Note: if
4138 some of the psymtabs are read in and some are not, it gets
4139 printed both under "Source files for which symbols have been
4140 read" and "Source files for which symbols will be read in on
4141 demand". I consider this a reasonable way to deal with the
4142 situation. I'm not sure whether this can also happen for
4143 symtabs; it doesn't hurt to check. */
4144
4145 /* Was NAME already seen? */
4146 if (data->filename_seen_cache->seen (name))
4147 {
4148 /* Yes; don't print it again. */
4149 return;
4150 }
4151
4152 /* No; print it and reset *FIRST. */
4153 if (! data->first)
4154 printf_filtered (", ");
4155 data->first = 0;
4156
4157 wrap_here ("");
4158 fputs_styled (name, file_name_style.style (), gdb_stdout);
4159 }
4160
4161 /* A callback for map_partial_symbol_filenames. */
4162
4163 static void
4164 output_partial_symbol_filename (const char *filename, const char *fullname,
4165 void *data)
4166 {
4167 output_source_filename (fullname ? fullname : filename,
4168 (struct output_source_filename_data *) data);
4169 }
4170
4171 static void
4172 info_sources_command (const char *ignore, int from_tty)
4173 {
4174 struct output_source_filename_data data;
4175
4176 if (!have_full_symbols () && !have_partial_symbols ())
4177 {
4178 error (_("No symbol table is loaded. Use the \"file\" command."));
4179 }
4180
4181 filename_seen_cache filenames_seen;
4182
4183 data.filename_seen_cache = &filenames_seen;
4184
4185 printf_filtered ("Source files for which symbols have been read in:\n\n");
4186
4187 data.first = 1;
4188 for (objfile *objfile : current_program_space->objfiles ())
4189 {
4190 for (compunit_symtab *cu : objfile->compunits ())
4191 {
4192 for (symtab *s : compunit_filetabs (cu))
4193 {
4194 const char *fullname = symtab_to_fullname (s);
4195
4196 output_source_filename (fullname, &data);
4197 }
4198 }
4199 }
4200 printf_filtered ("\n\n");
4201
4202 printf_filtered ("Source files for which symbols "
4203 "will be read in on demand:\n\n");
4204
4205 filenames_seen.clear ();
4206 data.first = 1;
4207 map_symbol_filenames (output_partial_symbol_filename, &data,
4208 1 /*need_fullname*/);
4209 printf_filtered ("\n");
4210 }
4211
4212 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4213 non-zero compare only lbasename of FILES. */
4214
4215 static int
4216 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4217 {
4218 int i;
4219
4220 if (file != NULL && nfiles != 0)
4221 {
4222 for (i = 0; i < nfiles; i++)
4223 {
4224 if (compare_filenames_for_search (file, (basenames
4225 ? lbasename (files[i])
4226 : files[i])))
4227 return 1;
4228 }
4229 }
4230 else if (nfiles == 0)
4231 return 1;
4232 return 0;
4233 }
4234
4235 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4236 sort symbols, not minimal symbols. */
4237
4238 int
4239 symbol_search::compare_search_syms (const symbol_search &sym_a,
4240 const symbol_search &sym_b)
4241 {
4242 int c;
4243
4244 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4245 symbol_symtab (sym_b.symbol)->filename);
4246 if (c != 0)
4247 return c;
4248
4249 if (sym_a.block != sym_b.block)
4250 return sym_a.block - sym_b.block;
4251
4252 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4253 SYMBOL_PRINT_NAME (sym_b.symbol));
4254 }
4255
4256 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4257 If SYM has no symbol_type or symbol_name, returns false. */
4258
4259 bool
4260 treg_matches_sym_type_name (const compiled_regex &treg,
4261 const struct symbol *sym)
4262 {
4263 struct type *sym_type;
4264 std::string printed_sym_type_name;
4265
4266 if (symbol_lookup_debug > 1)
4267 {
4268 fprintf_unfiltered (gdb_stdlog,
4269 "treg_matches_sym_type_name\n sym %s\n",
4270 SYMBOL_NATURAL_NAME (sym));
4271 }
4272
4273 sym_type = SYMBOL_TYPE (sym);
4274 if (sym_type == NULL)
4275 return false;
4276
4277 {
4278 scoped_switch_to_sym_language_if_auto l (sym);
4279
4280 printed_sym_type_name = type_to_string (sym_type);
4281 }
4282
4283
4284 if (symbol_lookup_debug > 1)
4285 {
4286 fprintf_unfiltered (gdb_stdlog,
4287 " sym_type_name %s\n",
4288 printed_sym_type_name.c_str ());
4289 }
4290
4291
4292 if (printed_sym_type_name.empty ())
4293 return false;
4294
4295 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4296 }
4297
4298
4299 /* Sort the symbols in RESULT and remove duplicates. */
4300
4301 static void
4302 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4303 {
4304 std::sort (result->begin (), result->end ());
4305 result->erase (std::unique (result->begin (), result->end ()),
4306 result->end ());
4307 }
4308
4309 /* Search the symbol table for matches to the regular expression REGEXP,
4310 returning the results.
4311
4312 Only symbols of KIND are searched:
4313 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4314 and constants (enums).
4315 if T_REGEXP is not NULL, only returns var that have
4316 a type matching regular expression T_REGEXP.
4317 FUNCTIONS_DOMAIN - search all functions
4318 TYPES_DOMAIN - search all type names
4319 ALL_DOMAIN - an internal error for this function
4320
4321 Within each file the results are sorted locally; each symtab's global and
4322 static blocks are separately alphabetized.
4323 Duplicate entries are removed. */
4324
4325 std::vector<symbol_search>
4326 search_symbols (const char *regexp, enum search_domain kind,
4327 const char *t_regexp,
4328 int nfiles, const char *files[])
4329 {
4330 const struct blockvector *bv;
4331 const struct block *b;
4332 int i = 0;
4333 struct block_iterator iter;
4334 struct symbol *sym;
4335 int found_misc = 0;
4336 static const enum minimal_symbol_type types[]
4337 = {mst_data, mst_text, mst_abs};
4338 static const enum minimal_symbol_type types2[]
4339 = {mst_bss, mst_file_text, mst_abs};
4340 static const enum minimal_symbol_type types3[]
4341 = {mst_file_data, mst_solib_trampoline, mst_abs};
4342 static const enum minimal_symbol_type types4[]
4343 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4344 enum minimal_symbol_type ourtype;
4345 enum minimal_symbol_type ourtype2;
4346 enum minimal_symbol_type ourtype3;
4347 enum minimal_symbol_type ourtype4;
4348 std::vector<symbol_search> result;
4349 gdb::optional<compiled_regex> preg;
4350 gdb::optional<compiled_regex> treg;
4351
4352 gdb_assert (kind <= TYPES_DOMAIN);
4353
4354 ourtype = types[kind];
4355 ourtype2 = types2[kind];
4356 ourtype3 = types3[kind];
4357 ourtype4 = types4[kind];
4358
4359 if (regexp != NULL)
4360 {
4361 /* Make sure spacing is right for C++ operators.
4362 This is just a courtesy to make the matching less sensitive
4363 to how many spaces the user leaves between 'operator'
4364 and <TYPENAME> or <OPERATOR>. */
4365 const char *opend;
4366 const char *opname = operator_chars (regexp, &opend);
4367
4368 if (*opname)
4369 {
4370 int fix = -1; /* -1 means ok; otherwise number of
4371 spaces needed. */
4372
4373 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4374 {
4375 /* There should 1 space between 'operator' and 'TYPENAME'. */
4376 if (opname[-1] != ' ' || opname[-2] == ' ')
4377 fix = 1;
4378 }
4379 else
4380 {
4381 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4382 if (opname[-1] == ' ')
4383 fix = 0;
4384 }
4385 /* If wrong number of spaces, fix it. */
4386 if (fix >= 0)
4387 {
4388 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4389
4390 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4391 regexp = tmp;
4392 }
4393 }
4394
4395 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4396 ? REG_ICASE : 0);
4397 preg.emplace (regexp, cflags, _("Invalid regexp"));
4398 }
4399
4400 if (t_regexp != NULL)
4401 {
4402 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4403 ? REG_ICASE : 0);
4404 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4405 }
4406
4407 /* Search through the partial symtabs *first* for all symbols
4408 matching the regexp. That way we don't have to reproduce all of
4409 the machinery below. */
4410 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4411 {
4412 return file_matches (filename, files, nfiles,
4413 basenames);
4414 },
4415 lookup_name_info::match_any (),
4416 [&] (const char *symname)
4417 {
4418 return (!preg.has_value ()
4419 || preg->exec (symname,
4420 0, NULL, 0) == 0);
4421 },
4422 NULL,
4423 kind);
4424
4425 /* Here, we search through the minimal symbol tables for functions
4426 and variables that match, and force their symbols to be read.
4427 This is in particular necessary for demangled variable names,
4428 which are no longer put into the partial symbol tables.
4429 The symbol will then be found during the scan of symtabs below.
4430
4431 For functions, find_pc_symtab should succeed if we have debug info
4432 for the function, for variables we have to call
4433 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4434 has debug info.
4435 If the lookup fails, set found_misc so that we will rescan to print
4436 any matching symbols without debug info.
4437 We only search the objfile the msymbol came from, we no longer search
4438 all objfiles. In large programs (1000s of shared libs) searching all
4439 objfiles is not worth the pain. */
4440
4441 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4442 {
4443 for (objfile *objfile : current_program_space->objfiles ())
4444 {
4445 for (minimal_symbol *msymbol : objfile->msymbols ())
4446 {
4447 QUIT;
4448
4449 if (msymbol->created_by_gdb)
4450 continue;
4451
4452 if (MSYMBOL_TYPE (msymbol) == ourtype
4453 || MSYMBOL_TYPE (msymbol) == ourtype2
4454 || MSYMBOL_TYPE (msymbol) == ourtype3
4455 || MSYMBOL_TYPE (msymbol) == ourtype4)
4456 {
4457 if (!preg.has_value ()
4458 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4459 NULL, 0) == 0)
4460 {
4461 /* Note: An important side-effect of these
4462 lookup functions is to expand the symbol
4463 table if msymbol is found, for the benefit of
4464 the next loop on compunits. */
4465 if (kind == FUNCTIONS_DOMAIN
4466 ? (find_pc_compunit_symtab
4467 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4468 == NULL)
4469 : (lookup_symbol_in_objfile_from_linkage_name
4470 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4471 VAR_DOMAIN)
4472 .symbol == NULL))
4473 found_misc = 1;
4474 }
4475 }
4476 }
4477 }
4478 }
4479
4480 for (objfile *objfile : current_program_space->objfiles ())
4481 {
4482 for (compunit_symtab *cust : objfile->compunits ())
4483 {
4484 bv = COMPUNIT_BLOCKVECTOR (cust);
4485 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4486 {
4487 b = BLOCKVECTOR_BLOCK (bv, i);
4488 ALL_BLOCK_SYMBOLS (b, iter, sym)
4489 {
4490 struct symtab *real_symtab = symbol_symtab (sym);
4491
4492 QUIT;
4493
4494 /* Check first sole REAL_SYMTAB->FILENAME. It does
4495 not need to be a substring of symtab_to_fullname as
4496 it may contain "./" etc. */
4497 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4498 || ((basenames_may_differ
4499 || file_matches (lbasename (real_symtab->filename),
4500 files, nfiles, 1))
4501 && file_matches (symtab_to_fullname (real_symtab),
4502 files, nfiles, 0)))
4503 && ((!preg.has_value ()
4504 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4505 NULL, 0) == 0)
4506 && ((kind == VARIABLES_DOMAIN
4507 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4508 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4509 && SYMBOL_CLASS (sym) != LOC_BLOCK
4510 /* LOC_CONST can be used for more than
4511 just enums, e.g., c++ static const
4512 members. We only want to skip enums
4513 here. */
4514 && !(SYMBOL_CLASS (sym) == LOC_CONST
4515 && (TYPE_CODE (SYMBOL_TYPE (sym))
4516 == TYPE_CODE_ENUM))
4517 && (!treg.has_value ()
4518 || treg_matches_sym_type_name (*treg, sym)))
4519 || (kind == FUNCTIONS_DOMAIN
4520 && SYMBOL_CLASS (sym) == LOC_BLOCK
4521 && (!treg.has_value ()
4522 || treg_matches_sym_type_name (*treg,
4523 sym)))
4524 || (kind == TYPES_DOMAIN
4525 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4526 {
4527 /* match */
4528 result.emplace_back (i, sym);
4529 }
4530 }
4531 }
4532 }
4533 }
4534
4535 if (!result.empty ())
4536 sort_search_symbols_remove_dups (&result);
4537
4538 /* If there are no eyes, avoid all contact. I mean, if there are
4539 no debug symbols, then add matching minsyms. But if the user wants
4540 to see symbols matching a type regexp, then never give a minimal symbol,
4541 as we assume that a minimal symbol does not have a type. */
4542
4543 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4544 && !treg.has_value ())
4545 {
4546 for (objfile *objfile : current_program_space->objfiles ())
4547 {
4548 for (minimal_symbol *msymbol : objfile->msymbols ())
4549 {
4550 QUIT;
4551
4552 if (msymbol->created_by_gdb)
4553 continue;
4554
4555 if (MSYMBOL_TYPE (msymbol) == ourtype
4556 || MSYMBOL_TYPE (msymbol) == ourtype2
4557 || MSYMBOL_TYPE (msymbol) == ourtype3
4558 || MSYMBOL_TYPE (msymbol) == ourtype4)
4559 {
4560 if (!preg.has_value ()
4561 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4562 NULL, 0) == 0)
4563 {
4564 /* For functions we can do a quick check of whether the
4565 symbol might be found via find_pc_symtab. */
4566 if (kind != FUNCTIONS_DOMAIN
4567 || (find_pc_compunit_symtab
4568 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4569 == NULL))
4570 {
4571 if (lookup_symbol_in_objfile_from_linkage_name
4572 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4573 VAR_DOMAIN)
4574 .symbol == NULL)
4575 {
4576 /* match */
4577 result.emplace_back (i, msymbol, objfile);
4578 }
4579 }
4580 }
4581 }
4582 }
4583 }
4584 }
4585
4586 return result;
4587 }
4588
4589 /* Helper function for symtab_symbol_info, this function uses
4590 the data returned from search_symbols() to print information
4591 regarding the match to gdb_stdout. If LAST is not NULL,
4592 print file and line number information for the symbol as
4593 well. Skip printing the filename if it matches LAST. */
4594
4595 static void
4596 print_symbol_info (enum search_domain kind,
4597 struct symbol *sym,
4598 int block, const char *last)
4599 {
4600 scoped_switch_to_sym_language_if_auto l (sym);
4601 struct symtab *s = symbol_symtab (sym);
4602
4603 if (last != NULL)
4604 {
4605 const char *s_filename = symtab_to_filename_for_display (s);
4606
4607 if (filename_cmp (last, s_filename) != 0)
4608 {
4609 fputs_filtered ("\nFile ", gdb_stdout);
4610 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4611 fputs_filtered (":\n", gdb_stdout);
4612 }
4613
4614 if (SYMBOL_LINE (sym) != 0)
4615 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4616 else
4617 puts_filtered ("\t");
4618 }
4619
4620 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4621 printf_filtered ("static ");
4622
4623 /* Typedef that is not a C++ class. */
4624 if (kind == TYPES_DOMAIN
4625 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4626 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4627 /* variable, func, or typedef-that-is-c++-class. */
4628 else if (kind < TYPES_DOMAIN
4629 || (kind == TYPES_DOMAIN
4630 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4631 {
4632 type_print (SYMBOL_TYPE (sym),
4633 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4634 ? "" : SYMBOL_PRINT_NAME (sym)),
4635 gdb_stdout, 0);
4636
4637 printf_filtered (";\n");
4638 }
4639 }
4640
4641 /* This help function for symtab_symbol_info() prints information
4642 for non-debugging symbols to gdb_stdout. */
4643
4644 static void
4645 print_msymbol_info (struct bound_minimal_symbol msymbol)
4646 {
4647 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4648 char *tmp;
4649
4650 if (gdbarch_addr_bit (gdbarch) <= 32)
4651 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4652 & (CORE_ADDR) 0xffffffff,
4653 8);
4654 else
4655 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4656 16);
4657 fputs_styled (tmp, address_style.style (), gdb_stdout);
4658 fputs_filtered (" ", gdb_stdout);
4659 if (msymbol.minsym->text_p ())
4660 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4661 function_name_style.style (),
4662 gdb_stdout);
4663 else
4664 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4665 fputs_filtered ("\n", gdb_stdout);
4666 }
4667
4668 /* This is the guts of the commands "info functions", "info types", and
4669 "info variables". It calls search_symbols to find all matches and then
4670 print_[m]symbol_info to print out some useful information about the
4671 matches. */
4672
4673 static void
4674 symtab_symbol_info (bool quiet,
4675 const char *regexp, enum search_domain kind,
4676 const char *t_regexp, int from_tty)
4677 {
4678 static const char * const classnames[] =
4679 {"variable", "function", "type"};
4680 const char *last_filename = "";
4681 int first = 1;
4682
4683 gdb_assert (kind <= TYPES_DOMAIN);
4684
4685 /* Must make sure that if we're interrupted, symbols gets freed. */
4686 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4687 t_regexp, 0, NULL);
4688
4689 if (!quiet)
4690 {
4691 if (regexp != NULL)
4692 {
4693 if (t_regexp != NULL)
4694 printf_filtered
4695 (_("All %ss matching regular expression \"%s\""
4696 " with type matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp, t_regexp);
4698 else
4699 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4700 classnames[kind], regexp);
4701 }
4702 else
4703 {
4704 if (t_regexp != NULL)
4705 printf_filtered
4706 (_("All defined %ss"
4707 " with type matching regular expression \"%s\" :\n"),
4708 classnames[kind], t_regexp);
4709 else
4710 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4711 }
4712 }
4713
4714 for (const symbol_search &p : symbols)
4715 {
4716 QUIT;
4717
4718 if (p.msymbol.minsym != NULL)
4719 {
4720 if (first)
4721 {
4722 if (!quiet)
4723 printf_filtered (_("\nNon-debugging symbols:\n"));
4724 first = 0;
4725 }
4726 print_msymbol_info (p.msymbol);
4727 }
4728 else
4729 {
4730 print_symbol_info (kind,
4731 p.symbol,
4732 p.block,
4733 last_filename);
4734 last_filename
4735 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4736 }
4737 }
4738 }
4739
4740 static void
4741 info_variables_command (const char *args, int from_tty)
4742 {
4743 std::string regexp;
4744 std::string t_regexp;
4745 bool quiet = false;
4746
4747 while (args != NULL
4748 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4749 ;
4750
4751 if (args != NULL)
4752 report_unrecognized_option_error ("info variables", args);
4753
4754 symtab_symbol_info (quiet,
4755 regexp.empty () ? NULL : regexp.c_str (),
4756 VARIABLES_DOMAIN,
4757 t_regexp.empty () ? NULL : t_regexp.c_str (),
4758 from_tty);
4759 }
4760
4761
4762 static void
4763 info_functions_command (const char *args, int from_tty)
4764 {
4765 std::string regexp;
4766 std::string t_regexp;
4767 bool quiet = false;
4768
4769 while (args != NULL
4770 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4771 ;
4772
4773 if (args != NULL)
4774 report_unrecognized_option_error ("info functions", args);
4775
4776 symtab_symbol_info (quiet,
4777 regexp.empty () ? NULL : regexp.c_str (),
4778 FUNCTIONS_DOMAIN,
4779 t_regexp.empty () ? NULL : t_regexp.c_str (),
4780 from_tty);
4781 }
4782
4783
4784 static void
4785 info_types_command (const char *regexp, int from_tty)
4786 {
4787 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4788 }
4789
4790 /* Breakpoint all functions matching regular expression. */
4791
4792 void
4793 rbreak_command_wrapper (char *regexp, int from_tty)
4794 {
4795 rbreak_command (regexp, from_tty);
4796 }
4797
4798 static void
4799 rbreak_command (const char *regexp, int from_tty)
4800 {
4801 std::string string;
4802 const char **files = NULL;
4803 const char *file_name;
4804 int nfiles = 0;
4805
4806 if (regexp)
4807 {
4808 const char *colon = strchr (regexp, ':');
4809
4810 if (colon && *(colon + 1) != ':')
4811 {
4812 int colon_index;
4813 char *local_name;
4814
4815 colon_index = colon - regexp;
4816 local_name = (char *) alloca (colon_index + 1);
4817 memcpy (local_name, regexp, colon_index);
4818 local_name[colon_index--] = 0;
4819 while (isspace (local_name[colon_index]))
4820 local_name[colon_index--] = 0;
4821 file_name = local_name;
4822 files = &file_name;
4823 nfiles = 1;
4824 regexp = skip_spaces (colon + 1);
4825 }
4826 }
4827
4828 std::vector<symbol_search> symbols = search_symbols (regexp,
4829 FUNCTIONS_DOMAIN,
4830 NULL,
4831 nfiles, files);
4832
4833 scoped_rbreak_breakpoints finalize;
4834 for (const symbol_search &p : symbols)
4835 {
4836 if (p.msymbol.minsym == NULL)
4837 {
4838 struct symtab *symtab = symbol_symtab (p.symbol);
4839 const char *fullname = symtab_to_fullname (symtab);
4840
4841 string = string_printf ("%s:'%s'", fullname,
4842 SYMBOL_LINKAGE_NAME (p.symbol));
4843 break_command (&string[0], from_tty);
4844 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4845 }
4846 else
4847 {
4848 string = string_printf ("'%s'",
4849 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4850
4851 break_command (&string[0], from_tty);
4852 printf_filtered ("<function, no debug info> %s;\n",
4853 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4854 }
4855 }
4856 }
4857 \f
4858
4859 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4860
4861 static int
4862 compare_symbol_name (const char *symbol_name, language symbol_language,
4863 const lookup_name_info &lookup_name,
4864 completion_match_result &match_res)
4865 {
4866 const language_defn *lang = language_def (symbol_language);
4867
4868 symbol_name_matcher_ftype *name_match
4869 = get_symbol_name_matcher (lang, lookup_name);
4870
4871 return name_match (symbol_name, lookup_name, &match_res);
4872 }
4873
4874 /* See symtab.h. */
4875
4876 void
4877 completion_list_add_name (completion_tracker &tracker,
4878 language symbol_language,
4879 const char *symname,
4880 const lookup_name_info &lookup_name,
4881 const char *text, const char *word)
4882 {
4883 completion_match_result &match_res
4884 = tracker.reset_completion_match_result ();
4885
4886 /* Clip symbols that cannot match. */
4887 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4888 return;
4889
4890 /* Refresh SYMNAME from the match string. It's potentially
4891 different depending on language. (E.g., on Ada, the match may be
4892 the encoded symbol name wrapped in "<>"). */
4893 symname = match_res.match.match ();
4894 gdb_assert (symname != NULL);
4895
4896 /* We have a match for a completion, so add SYMNAME to the current list
4897 of matches. Note that the name is moved to freshly malloc'd space. */
4898
4899 {
4900 gdb::unique_xmalloc_ptr<char> completion
4901 = make_completion_match_str (symname, text, word);
4902
4903 /* Here we pass the match-for-lcd object to add_completion. Some
4904 languages match the user text against substrings of symbol
4905 names in some cases. E.g., in C++, "b push_ba" completes to
4906 "std::vector::push_back", "std::string::push_back", etc., and
4907 in this case we want the completion lowest common denominator
4908 to be "push_back" instead of "std::". */
4909 tracker.add_completion (std::move (completion),
4910 &match_res.match_for_lcd, text, word);
4911 }
4912 }
4913
4914 /* completion_list_add_name wrapper for struct symbol. */
4915
4916 static void
4917 completion_list_add_symbol (completion_tracker &tracker,
4918 symbol *sym,
4919 const lookup_name_info &lookup_name,
4920 const char *text, const char *word)
4921 {
4922 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4923 SYMBOL_NATURAL_NAME (sym),
4924 lookup_name, text, word);
4925 }
4926
4927 /* completion_list_add_name wrapper for struct minimal_symbol. */
4928
4929 static void
4930 completion_list_add_msymbol (completion_tracker &tracker,
4931 minimal_symbol *sym,
4932 const lookup_name_info &lookup_name,
4933 const char *text, const char *word)
4934 {
4935 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4936 MSYMBOL_NATURAL_NAME (sym),
4937 lookup_name, text, word);
4938 }
4939
4940
4941 /* ObjC: In case we are completing on a selector, look as the msymbol
4942 again and feed all the selectors into the mill. */
4943
4944 static void
4945 completion_list_objc_symbol (completion_tracker &tracker,
4946 struct minimal_symbol *msymbol,
4947 const lookup_name_info &lookup_name,
4948 const char *text, const char *word)
4949 {
4950 static char *tmp = NULL;
4951 static unsigned int tmplen = 0;
4952
4953 const char *method, *category, *selector;
4954 char *tmp2 = NULL;
4955
4956 method = MSYMBOL_NATURAL_NAME (msymbol);
4957
4958 /* Is it a method? */
4959 if ((method[0] != '-') && (method[0] != '+'))
4960 return;
4961
4962 if (text[0] == '[')
4963 /* Complete on shortened method method. */
4964 completion_list_add_name (tracker, language_objc,
4965 method + 1,
4966 lookup_name,
4967 text, word);
4968
4969 while ((strlen (method) + 1) >= tmplen)
4970 {
4971 if (tmplen == 0)
4972 tmplen = 1024;
4973 else
4974 tmplen *= 2;
4975 tmp = (char *) xrealloc (tmp, tmplen);
4976 }
4977 selector = strchr (method, ' ');
4978 if (selector != NULL)
4979 selector++;
4980
4981 category = strchr (method, '(');
4982
4983 if ((category != NULL) && (selector != NULL))
4984 {
4985 memcpy (tmp, method, (category - method));
4986 tmp[category - method] = ' ';
4987 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4988 completion_list_add_name (tracker, language_objc, tmp,
4989 lookup_name, text, word);
4990 if (text[0] == '[')
4991 completion_list_add_name (tracker, language_objc, tmp + 1,
4992 lookup_name, text, word);
4993 }
4994
4995 if (selector != NULL)
4996 {
4997 /* Complete on selector only. */
4998 strcpy (tmp, selector);
4999 tmp2 = strchr (tmp, ']');
5000 if (tmp2 != NULL)
5001 *tmp2 = '\0';
5002
5003 completion_list_add_name (tracker, language_objc, tmp,
5004 lookup_name, text, word);
5005 }
5006 }
5007
5008 /* Break the non-quoted text based on the characters which are in
5009 symbols. FIXME: This should probably be language-specific. */
5010
5011 static const char *
5012 language_search_unquoted_string (const char *text, const char *p)
5013 {
5014 for (; p > text; --p)
5015 {
5016 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5017 continue;
5018 else
5019 {
5020 if ((current_language->la_language == language_objc))
5021 {
5022 if (p[-1] == ':') /* Might be part of a method name. */
5023 continue;
5024 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5025 p -= 2; /* Beginning of a method name. */
5026 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5027 { /* Might be part of a method name. */
5028 const char *t = p;
5029
5030 /* Seeing a ' ' or a '(' is not conclusive evidence
5031 that we are in the middle of a method name. However,
5032 finding "-[" or "+[" should be pretty un-ambiguous.
5033 Unfortunately we have to find it now to decide. */
5034
5035 while (t > text)
5036 if (isalnum (t[-1]) || t[-1] == '_' ||
5037 t[-1] == ' ' || t[-1] == ':' ||
5038 t[-1] == '(' || t[-1] == ')')
5039 --t;
5040 else
5041 break;
5042
5043 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5044 p = t - 2; /* Method name detected. */
5045 /* Else we leave with p unchanged. */
5046 }
5047 }
5048 break;
5049 }
5050 }
5051 return p;
5052 }
5053
5054 static void
5055 completion_list_add_fields (completion_tracker &tracker,
5056 struct symbol *sym,
5057 const lookup_name_info &lookup_name,
5058 const char *text, const char *word)
5059 {
5060 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5061 {
5062 struct type *t = SYMBOL_TYPE (sym);
5063 enum type_code c = TYPE_CODE (t);
5064 int j;
5065
5066 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5067 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5068 if (TYPE_FIELD_NAME (t, j))
5069 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5070 TYPE_FIELD_NAME (t, j),
5071 lookup_name, text, word);
5072 }
5073 }
5074
5075 /* See symtab.h. */
5076
5077 bool
5078 symbol_is_function_or_method (symbol *sym)
5079 {
5080 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5081 {
5082 case TYPE_CODE_FUNC:
5083 case TYPE_CODE_METHOD:
5084 return true;
5085 default:
5086 return false;
5087 }
5088 }
5089
5090 /* See symtab.h. */
5091
5092 bool
5093 symbol_is_function_or_method (minimal_symbol *msymbol)
5094 {
5095 switch (MSYMBOL_TYPE (msymbol))
5096 {
5097 case mst_text:
5098 case mst_text_gnu_ifunc:
5099 case mst_solib_trampoline:
5100 case mst_file_text:
5101 return true;
5102 default:
5103 return false;
5104 }
5105 }
5106
5107 /* See symtab.h. */
5108
5109 bound_minimal_symbol
5110 find_gnu_ifunc (const symbol *sym)
5111 {
5112 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5113 return {};
5114
5115 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5116 symbol_name_match_type::SEARCH_NAME);
5117 struct objfile *objfile = symbol_objfile (sym);
5118
5119 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5120 minimal_symbol *ifunc = NULL;
5121
5122 iterate_over_minimal_symbols (objfile, lookup_name,
5123 [&] (minimal_symbol *minsym)
5124 {
5125 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5126 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5127 {
5128 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5129 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5130 {
5131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5132 msym_addr
5133 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5134 msym_addr,
5135 current_top_target ());
5136 }
5137 if (msym_addr == address)
5138 {
5139 ifunc = minsym;
5140 return true;
5141 }
5142 }
5143 return false;
5144 });
5145
5146 if (ifunc != NULL)
5147 return {ifunc, objfile};
5148 return {};
5149 }
5150
5151 /* Add matching symbols from SYMTAB to the current completion list. */
5152
5153 static void
5154 add_symtab_completions (struct compunit_symtab *cust,
5155 completion_tracker &tracker,
5156 complete_symbol_mode mode,
5157 const lookup_name_info &lookup_name,
5158 const char *text, const char *word,
5159 enum type_code code)
5160 {
5161 struct symbol *sym;
5162 const struct block *b;
5163 struct block_iterator iter;
5164 int i;
5165
5166 if (cust == NULL)
5167 return;
5168
5169 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5170 {
5171 QUIT;
5172 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5173 ALL_BLOCK_SYMBOLS (b, iter, sym)
5174 {
5175 if (completion_skip_symbol (mode, sym))
5176 continue;
5177
5178 if (code == TYPE_CODE_UNDEF
5179 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5180 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5181 completion_list_add_symbol (tracker, sym,
5182 lookup_name,
5183 text, word);
5184 }
5185 }
5186 }
5187
5188 void
5189 default_collect_symbol_completion_matches_break_on
5190 (completion_tracker &tracker, complete_symbol_mode mode,
5191 symbol_name_match_type name_match_type,
5192 const char *text, const char *word,
5193 const char *break_on, enum type_code code)
5194 {
5195 /* Problem: All of the symbols have to be copied because readline
5196 frees them. I'm not going to worry about this; hopefully there
5197 won't be that many. */
5198
5199 struct symbol *sym;
5200 const struct block *b;
5201 const struct block *surrounding_static_block, *surrounding_global_block;
5202 struct block_iterator iter;
5203 /* The symbol we are completing on. Points in same buffer as text. */
5204 const char *sym_text;
5205
5206 /* Now look for the symbol we are supposed to complete on. */
5207 if (mode == complete_symbol_mode::LINESPEC)
5208 sym_text = text;
5209 else
5210 {
5211 const char *p;
5212 char quote_found;
5213 const char *quote_pos = NULL;
5214
5215 /* First see if this is a quoted string. */
5216 quote_found = '\0';
5217 for (p = text; *p != '\0'; ++p)
5218 {
5219 if (quote_found != '\0')
5220 {
5221 if (*p == quote_found)
5222 /* Found close quote. */
5223 quote_found = '\0';
5224 else if (*p == '\\' && p[1] == quote_found)
5225 /* A backslash followed by the quote character
5226 doesn't end the string. */
5227 ++p;
5228 }
5229 else if (*p == '\'' || *p == '"')
5230 {
5231 quote_found = *p;
5232 quote_pos = p;
5233 }
5234 }
5235 if (quote_found == '\'')
5236 /* A string within single quotes can be a symbol, so complete on it. */
5237 sym_text = quote_pos + 1;
5238 else if (quote_found == '"')
5239 /* A double-quoted string is never a symbol, nor does it make sense
5240 to complete it any other way. */
5241 {
5242 return;
5243 }
5244 else
5245 {
5246 /* It is not a quoted string. Break it based on the characters
5247 which are in symbols. */
5248 while (p > text)
5249 {
5250 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5251 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5252 --p;
5253 else
5254 break;
5255 }
5256 sym_text = p;
5257 }
5258 }
5259
5260 lookup_name_info lookup_name (sym_text, name_match_type, true);
5261
5262 /* At this point scan through the misc symbol vectors and add each
5263 symbol you find to the list. Eventually we want to ignore
5264 anything that isn't a text symbol (everything else will be
5265 handled by the psymtab code below). */
5266
5267 if (code == TYPE_CODE_UNDEF)
5268 {
5269 for (objfile *objfile : current_program_space->objfiles ())
5270 {
5271 for (minimal_symbol *msymbol : objfile->msymbols ())
5272 {
5273 QUIT;
5274
5275 if (completion_skip_symbol (mode, msymbol))
5276 continue;
5277
5278 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5279 sym_text, word);
5280
5281 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5282 sym_text, word);
5283 }
5284 }
5285 }
5286
5287 /* Add completions for all currently loaded symbol tables. */
5288 for (objfile *objfile : current_program_space->objfiles ())
5289 {
5290 for (compunit_symtab *cust : objfile->compunits ())
5291 add_symtab_completions (cust, tracker, mode, lookup_name,
5292 sym_text, word, code);
5293 }
5294
5295 /* Look through the partial symtabs for all symbols which begin by
5296 matching SYM_TEXT. Expand all CUs that you find to the list. */
5297 expand_symtabs_matching (NULL,
5298 lookup_name,
5299 NULL,
5300 [&] (compunit_symtab *symtab) /* expansion notify */
5301 {
5302 add_symtab_completions (symtab,
5303 tracker, mode, lookup_name,
5304 sym_text, word, code);
5305 },
5306 ALL_DOMAIN);
5307
5308 /* Search upwards from currently selected frame (so that we can
5309 complete on local vars). Also catch fields of types defined in
5310 this places which match our text string. Only complete on types
5311 visible from current context. */
5312
5313 b = get_selected_block (0);
5314 surrounding_static_block = block_static_block (b);
5315 surrounding_global_block = block_global_block (b);
5316 if (surrounding_static_block != NULL)
5317 while (b != surrounding_static_block)
5318 {
5319 QUIT;
5320
5321 ALL_BLOCK_SYMBOLS (b, iter, sym)
5322 {
5323 if (code == TYPE_CODE_UNDEF)
5324 {
5325 completion_list_add_symbol (tracker, sym, lookup_name,
5326 sym_text, word);
5327 completion_list_add_fields (tracker, sym, lookup_name,
5328 sym_text, word);
5329 }
5330 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5331 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5332 completion_list_add_symbol (tracker, sym, lookup_name,
5333 sym_text, word);
5334 }
5335
5336 /* Stop when we encounter an enclosing function. Do not stop for
5337 non-inlined functions - the locals of the enclosing function
5338 are in scope for a nested function. */
5339 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5340 break;
5341 b = BLOCK_SUPERBLOCK (b);
5342 }
5343
5344 /* Add fields from the file's types; symbols will be added below. */
5345
5346 if (code == TYPE_CODE_UNDEF)
5347 {
5348 if (surrounding_static_block != NULL)
5349 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5350 completion_list_add_fields (tracker, sym, lookup_name,
5351 sym_text, word);
5352
5353 if (surrounding_global_block != NULL)
5354 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5355 completion_list_add_fields (tracker, sym, lookup_name,
5356 sym_text, word);
5357 }
5358
5359 /* Skip macros if we are completing a struct tag -- arguable but
5360 usually what is expected. */
5361 if (current_language->la_macro_expansion == macro_expansion_c
5362 && code == TYPE_CODE_UNDEF)
5363 {
5364 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5365
5366 /* This adds a macro's name to the current completion list. */
5367 auto add_macro_name = [&] (const char *macro_name,
5368 const macro_definition *,
5369 macro_source_file *,
5370 int)
5371 {
5372 completion_list_add_name (tracker, language_c, macro_name,
5373 lookup_name, sym_text, word);
5374 };
5375
5376 /* Add any macros visible in the default scope. Note that this
5377 may yield the occasional wrong result, because an expression
5378 might be evaluated in a scope other than the default. For
5379 example, if the user types "break file:line if <TAB>", the
5380 resulting expression will be evaluated at "file:line" -- but
5381 at there does not seem to be a way to detect this at
5382 completion time. */
5383 scope = default_macro_scope ();
5384 if (scope)
5385 macro_for_each_in_scope (scope->file, scope->line,
5386 add_macro_name);
5387
5388 /* User-defined macros are always visible. */
5389 macro_for_each (macro_user_macros, add_macro_name);
5390 }
5391 }
5392
5393 void
5394 default_collect_symbol_completion_matches (completion_tracker &tracker,
5395 complete_symbol_mode mode,
5396 symbol_name_match_type name_match_type,
5397 const char *text, const char *word,
5398 enum type_code code)
5399 {
5400 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5401 name_match_type,
5402 text, word, "",
5403 code);
5404 }
5405
5406 /* Collect all symbols (regardless of class) which begin by matching
5407 TEXT. */
5408
5409 void
5410 collect_symbol_completion_matches (completion_tracker &tracker,
5411 complete_symbol_mode mode,
5412 symbol_name_match_type name_match_type,
5413 const char *text, const char *word)
5414 {
5415 current_language->la_collect_symbol_completion_matches (tracker, mode,
5416 name_match_type,
5417 text, word,
5418 TYPE_CODE_UNDEF);
5419 }
5420
5421 /* Like collect_symbol_completion_matches, but only collect
5422 STRUCT_DOMAIN symbols whose type code is CODE. */
5423
5424 void
5425 collect_symbol_completion_matches_type (completion_tracker &tracker,
5426 const char *text, const char *word,
5427 enum type_code code)
5428 {
5429 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5430 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5431
5432 gdb_assert (code == TYPE_CODE_UNION
5433 || code == TYPE_CODE_STRUCT
5434 || code == TYPE_CODE_ENUM);
5435 current_language->la_collect_symbol_completion_matches (tracker, mode,
5436 name_match_type,
5437 text, word, code);
5438 }
5439
5440 /* Like collect_symbol_completion_matches, but collects a list of
5441 symbols defined in all source files named SRCFILE. */
5442
5443 void
5444 collect_file_symbol_completion_matches (completion_tracker &tracker,
5445 complete_symbol_mode mode,
5446 symbol_name_match_type name_match_type,
5447 const char *text, const char *word,
5448 const char *srcfile)
5449 {
5450 /* The symbol we are completing on. Points in same buffer as text. */
5451 const char *sym_text;
5452
5453 /* Now look for the symbol we are supposed to complete on.
5454 FIXME: This should be language-specific. */
5455 if (mode == complete_symbol_mode::LINESPEC)
5456 sym_text = text;
5457 else
5458 {
5459 const char *p;
5460 char quote_found;
5461 const char *quote_pos = NULL;
5462
5463 /* First see if this is a quoted string. */
5464 quote_found = '\0';
5465 for (p = text; *p != '\0'; ++p)
5466 {
5467 if (quote_found != '\0')
5468 {
5469 if (*p == quote_found)
5470 /* Found close quote. */
5471 quote_found = '\0';
5472 else if (*p == '\\' && p[1] == quote_found)
5473 /* A backslash followed by the quote character
5474 doesn't end the string. */
5475 ++p;
5476 }
5477 else if (*p == '\'' || *p == '"')
5478 {
5479 quote_found = *p;
5480 quote_pos = p;
5481 }
5482 }
5483 if (quote_found == '\'')
5484 /* A string within single quotes can be a symbol, so complete on it. */
5485 sym_text = quote_pos + 1;
5486 else if (quote_found == '"')
5487 /* A double-quoted string is never a symbol, nor does it make sense
5488 to complete it any other way. */
5489 {
5490 return;
5491 }
5492 else
5493 {
5494 /* Not a quoted string. */
5495 sym_text = language_search_unquoted_string (text, p);
5496 }
5497 }
5498
5499 lookup_name_info lookup_name (sym_text, name_match_type, true);
5500
5501 /* Go through symtabs for SRCFILE and check the externs and statics
5502 for symbols which match. */
5503 iterate_over_symtabs (srcfile, [&] (symtab *s)
5504 {
5505 add_symtab_completions (SYMTAB_COMPUNIT (s),
5506 tracker, mode, lookup_name,
5507 sym_text, word, TYPE_CODE_UNDEF);
5508 return false;
5509 });
5510 }
5511
5512 /* A helper function for make_source_files_completion_list. It adds
5513 another file name to a list of possible completions, growing the
5514 list as necessary. */
5515
5516 static void
5517 add_filename_to_list (const char *fname, const char *text, const char *word,
5518 completion_list *list)
5519 {
5520 list->emplace_back (make_completion_match_str (fname, text, word));
5521 }
5522
5523 static int
5524 not_interesting_fname (const char *fname)
5525 {
5526 static const char *illegal_aliens[] = {
5527 "_globals_", /* inserted by coff_symtab_read */
5528 NULL
5529 };
5530 int i;
5531
5532 for (i = 0; illegal_aliens[i]; i++)
5533 {
5534 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5535 return 1;
5536 }
5537 return 0;
5538 }
5539
5540 /* An object of this type is passed as the user_data argument to
5541 map_partial_symbol_filenames. */
5542 struct add_partial_filename_data
5543 {
5544 struct filename_seen_cache *filename_seen_cache;
5545 const char *text;
5546 const char *word;
5547 int text_len;
5548 completion_list *list;
5549 };
5550
5551 /* A callback for map_partial_symbol_filenames. */
5552
5553 static void
5554 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5555 void *user_data)
5556 {
5557 struct add_partial_filename_data *data
5558 = (struct add_partial_filename_data *) user_data;
5559
5560 if (not_interesting_fname (filename))
5561 return;
5562 if (!data->filename_seen_cache->seen (filename)
5563 && filename_ncmp (filename, data->text, data->text_len) == 0)
5564 {
5565 /* This file matches for a completion; add it to the
5566 current list of matches. */
5567 add_filename_to_list (filename, data->text, data->word, data->list);
5568 }
5569 else
5570 {
5571 const char *base_name = lbasename (filename);
5572
5573 if (base_name != filename
5574 && !data->filename_seen_cache->seen (base_name)
5575 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5576 add_filename_to_list (base_name, data->text, data->word, data->list);
5577 }
5578 }
5579
5580 /* Return a list of all source files whose names begin with matching
5581 TEXT. The file names are looked up in the symbol tables of this
5582 program. */
5583
5584 completion_list
5585 make_source_files_completion_list (const char *text, const char *word)
5586 {
5587 size_t text_len = strlen (text);
5588 completion_list list;
5589 const char *base_name;
5590 struct add_partial_filename_data datum;
5591
5592 if (!have_full_symbols () && !have_partial_symbols ())
5593 return list;
5594
5595 filename_seen_cache filenames_seen;
5596
5597 for (objfile *objfile : current_program_space->objfiles ())
5598 {
5599 for (compunit_symtab *cu : objfile->compunits ())
5600 {
5601 for (symtab *s : compunit_filetabs (cu))
5602 {
5603 if (not_interesting_fname (s->filename))
5604 continue;
5605 if (!filenames_seen.seen (s->filename)
5606 && filename_ncmp (s->filename, text, text_len) == 0)
5607 {
5608 /* This file matches for a completion; add it to the current
5609 list of matches. */
5610 add_filename_to_list (s->filename, text, word, &list);
5611 }
5612 else
5613 {
5614 /* NOTE: We allow the user to type a base name when the
5615 debug info records leading directories, but not the other
5616 way around. This is what subroutines of breakpoint
5617 command do when they parse file names. */
5618 base_name = lbasename (s->filename);
5619 if (base_name != s->filename
5620 && !filenames_seen.seen (base_name)
5621 && filename_ncmp (base_name, text, text_len) == 0)
5622 add_filename_to_list (base_name, text, word, &list);
5623 }
5624 }
5625 }
5626 }
5627
5628 datum.filename_seen_cache = &filenames_seen;
5629 datum.text = text;
5630 datum.word = word;
5631 datum.text_len = text_len;
5632 datum.list = &list;
5633 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5634 0 /*need_fullname*/);
5635
5636 return list;
5637 }
5638 \f
5639 /* Track MAIN */
5640
5641 /* Return the "main_info" object for the current program space. If
5642 the object has not yet been created, create it and fill in some
5643 default values. */
5644
5645 static struct main_info *
5646 get_main_info (void)
5647 {
5648 struct main_info *info = main_progspace_key.get (current_program_space);
5649
5650 if (info == NULL)
5651 {
5652 /* It may seem strange to store the main name in the progspace
5653 and also in whatever objfile happens to see a main name in
5654 its debug info. The reason for this is mainly historical:
5655 gdb returned "main" as the name even if no function named
5656 "main" was defined the program; and this approach lets us
5657 keep compatibility. */
5658 info = main_progspace_key.emplace (current_program_space);
5659 }
5660
5661 return info;
5662 }
5663
5664 static void
5665 set_main_name (const char *name, enum language lang)
5666 {
5667 struct main_info *info = get_main_info ();
5668
5669 if (info->name_of_main != NULL)
5670 {
5671 xfree (info->name_of_main);
5672 info->name_of_main = NULL;
5673 info->language_of_main = language_unknown;
5674 }
5675 if (name != NULL)
5676 {
5677 info->name_of_main = xstrdup (name);
5678 info->language_of_main = lang;
5679 }
5680 }
5681
5682 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5683 accordingly. */
5684
5685 static void
5686 find_main_name (void)
5687 {
5688 const char *new_main_name;
5689
5690 /* First check the objfiles to see whether a debuginfo reader has
5691 picked up the appropriate main name. Historically the main name
5692 was found in a more or less random way; this approach instead
5693 relies on the order of objfile creation -- which still isn't
5694 guaranteed to get the correct answer, but is just probably more
5695 accurate. */
5696 for (objfile *objfile : current_program_space->objfiles ())
5697 {
5698 if (objfile->per_bfd->name_of_main != NULL)
5699 {
5700 set_main_name (objfile->per_bfd->name_of_main,
5701 objfile->per_bfd->language_of_main);
5702 return;
5703 }
5704 }
5705
5706 /* Try to see if the main procedure is in Ada. */
5707 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5708 be to add a new method in the language vector, and call this
5709 method for each language until one of them returns a non-empty
5710 name. This would allow us to remove this hard-coded call to
5711 an Ada function. It is not clear that this is a better approach
5712 at this point, because all methods need to be written in a way
5713 such that false positives never be returned. For instance, it is
5714 important that a method does not return a wrong name for the main
5715 procedure if the main procedure is actually written in a different
5716 language. It is easy to guaranty this with Ada, since we use a
5717 special symbol generated only when the main in Ada to find the name
5718 of the main procedure. It is difficult however to see how this can
5719 be guarantied for languages such as C, for instance. This suggests
5720 that order of call for these methods becomes important, which means
5721 a more complicated approach. */
5722 new_main_name = ada_main_name ();
5723 if (new_main_name != NULL)
5724 {
5725 set_main_name (new_main_name, language_ada);
5726 return;
5727 }
5728
5729 new_main_name = d_main_name ();
5730 if (new_main_name != NULL)
5731 {
5732 set_main_name (new_main_name, language_d);
5733 return;
5734 }
5735
5736 new_main_name = go_main_name ();
5737 if (new_main_name != NULL)
5738 {
5739 set_main_name (new_main_name, language_go);
5740 return;
5741 }
5742
5743 new_main_name = pascal_main_name ();
5744 if (new_main_name != NULL)
5745 {
5746 set_main_name (new_main_name, language_pascal);
5747 return;
5748 }
5749
5750 /* The languages above didn't identify the name of the main procedure.
5751 Fallback to "main". */
5752 set_main_name ("main", language_unknown);
5753 }
5754
5755 char *
5756 main_name (void)
5757 {
5758 struct main_info *info = get_main_info ();
5759
5760 if (info->name_of_main == NULL)
5761 find_main_name ();
5762
5763 return info->name_of_main;
5764 }
5765
5766 /* Return the language of the main function. If it is not known,
5767 return language_unknown. */
5768
5769 enum language
5770 main_language (void)
5771 {
5772 struct main_info *info = get_main_info ();
5773
5774 if (info->name_of_main == NULL)
5775 find_main_name ();
5776
5777 return info->language_of_main;
5778 }
5779
5780 /* Handle ``executable_changed'' events for the symtab module. */
5781
5782 static void
5783 symtab_observer_executable_changed (void)
5784 {
5785 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5786 set_main_name (NULL, language_unknown);
5787 }
5788
5789 /* Return 1 if the supplied producer string matches the ARM RealView
5790 compiler (armcc). */
5791
5792 int
5793 producer_is_realview (const char *producer)
5794 {
5795 static const char *const arm_idents[] = {
5796 "ARM C Compiler, ADS",
5797 "Thumb C Compiler, ADS",
5798 "ARM C++ Compiler, ADS",
5799 "Thumb C++ Compiler, ADS",
5800 "ARM/Thumb C/C++ Compiler, RVCT",
5801 "ARM C/C++ Compiler, RVCT"
5802 };
5803 int i;
5804
5805 if (producer == NULL)
5806 return 0;
5807
5808 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5809 if (startswith (producer, arm_idents[i]))
5810 return 1;
5811
5812 return 0;
5813 }
5814
5815 \f
5816
5817 /* The next index to hand out in response to a registration request. */
5818
5819 static int next_aclass_value = LOC_FINAL_VALUE;
5820
5821 /* The maximum number of "aclass" registrations we support. This is
5822 constant for convenience. */
5823 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5824
5825 /* The objects representing the various "aclass" values. The elements
5826 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5827 elements are those registered at gdb initialization time. */
5828
5829 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5830
5831 /* The globally visible pointer. This is separate from 'symbol_impl'
5832 so that it can be const. */
5833
5834 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5835
5836 /* Make sure we saved enough room in struct symbol. */
5837
5838 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5839
5840 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5841 is the ops vector associated with this index. This returns the new
5842 index, which should be used as the aclass_index field for symbols
5843 of this type. */
5844
5845 int
5846 register_symbol_computed_impl (enum address_class aclass,
5847 const struct symbol_computed_ops *ops)
5848 {
5849 int result = next_aclass_value++;
5850
5851 gdb_assert (aclass == LOC_COMPUTED);
5852 gdb_assert (result < MAX_SYMBOL_IMPLS);
5853 symbol_impl[result].aclass = aclass;
5854 symbol_impl[result].ops_computed = ops;
5855
5856 /* Sanity check OPS. */
5857 gdb_assert (ops != NULL);
5858 gdb_assert (ops->tracepoint_var_ref != NULL);
5859 gdb_assert (ops->describe_location != NULL);
5860 gdb_assert (ops->get_symbol_read_needs != NULL);
5861 gdb_assert (ops->read_variable != NULL);
5862
5863 return result;
5864 }
5865
5866 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5867 OPS is the ops vector associated with this index. This returns the
5868 new index, which should be used as the aclass_index field for symbols
5869 of this type. */
5870
5871 int
5872 register_symbol_block_impl (enum address_class aclass,
5873 const struct symbol_block_ops *ops)
5874 {
5875 int result = next_aclass_value++;
5876
5877 gdb_assert (aclass == LOC_BLOCK);
5878 gdb_assert (result < MAX_SYMBOL_IMPLS);
5879 symbol_impl[result].aclass = aclass;
5880 symbol_impl[result].ops_block = ops;
5881
5882 /* Sanity check OPS. */
5883 gdb_assert (ops != NULL);
5884 gdb_assert (ops->find_frame_base_location != NULL);
5885
5886 return result;
5887 }
5888
5889 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5890 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5891 this index. This returns the new index, which should be used as
5892 the aclass_index field for symbols of this type. */
5893
5894 int
5895 register_symbol_register_impl (enum address_class aclass,
5896 const struct symbol_register_ops *ops)
5897 {
5898 int result = next_aclass_value++;
5899
5900 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5901 gdb_assert (result < MAX_SYMBOL_IMPLS);
5902 symbol_impl[result].aclass = aclass;
5903 symbol_impl[result].ops_register = ops;
5904
5905 return result;
5906 }
5907
5908 /* Initialize elements of 'symbol_impl' for the constants in enum
5909 address_class. */
5910
5911 static void
5912 initialize_ordinary_address_classes (void)
5913 {
5914 int i;
5915
5916 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5917 symbol_impl[i].aclass = (enum address_class) i;
5918 }
5919
5920 \f
5921
5922 /* Helper function to initialize the fields of an objfile-owned symbol.
5923 It assumed that *SYM is already all zeroes. */
5924
5925 static void
5926 initialize_objfile_symbol_1 (struct symbol *sym)
5927 {
5928 SYMBOL_OBJFILE_OWNED (sym) = 1;
5929 SYMBOL_SECTION (sym) = -1;
5930 }
5931
5932 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5933
5934 void
5935 initialize_objfile_symbol (struct symbol *sym)
5936 {
5937 memset (sym, 0, sizeof (*sym));
5938 initialize_objfile_symbol_1 (sym);
5939 }
5940
5941 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5942 obstack. */
5943
5944 struct symbol *
5945 allocate_symbol (struct objfile *objfile)
5946 {
5947 struct symbol *result;
5948
5949 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5950 initialize_objfile_symbol_1 (result);
5951
5952 return result;
5953 }
5954
5955 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5956 obstack. */
5957
5958 struct template_symbol *
5959 allocate_template_symbol (struct objfile *objfile)
5960 {
5961 struct template_symbol *result;
5962
5963 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5964 initialize_objfile_symbol_1 (result);
5965
5966 return result;
5967 }
5968
5969 /* See symtab.h. */
5970
5971 struct objfile *
5972 symbol_objfile (const struct symbol *symbol)
5973 {
5974 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5975 return SYMTAB_OBJFILE (symbol->owner.symtab);
5976 }
5977
5978 /* See symtab.h. */
5979
5980 struct gdbarch *
5981 symbol_arch (const struct symbol *symbol)
5982 {
5983 if (!SYMBOL_OBJFILE_OWNED (symbol))
5984 return symbol->owner.arch;
5985 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5986 }
5987
5988 /* See symtab.h. */
5989
5990 struct symtab *
5991 symbol_symtab (const struct symbol *symbol)
5992 {
5993 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5994 return symbol->owner.symtab;
5995 }
5996
5997 /* See symtab.h. */
5998
5999 void
6000 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6001 {
6002 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6003 symbol->owner.symtab = symtab;
6004 }
6005
6006 \f
6007
6008 void
6009 _initialize_symtab (void)
6010 {
6011 initialize_ordinary_address_classes ();
6012
6013 add_info ("variables", info_variables_command,
6014 info_print_args_help (_("\
6015 All global and static variable names or those matching REGEXPs.\n\
6016 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6017 Prints the global and static variables.\n"),
6018 _("global and static variables")));
6019 if (dbx_commands)
6020 add_com ("whereis", class_info, info_variables_command,
6021 info_print_args_help (_("\
6022 All global and static variable names, or those matching REGEXPs.\n\
6023 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6024 Prints the global and static variables.\n"),
6025 _("global and static variables")));
6026
6027 add_info ("functions", info_functions_command,
6028 info_print_args_help (_("\
6029 All function names or those matching REGEXPs.\n\
6030 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6031 Prints the functions.\n"),
6032 _("functions")));
6033
6034 /* FIXME: This command has at least the following problems:
6035 1. It prints builtin types (in a very strange and confusing fashion).
6036 2. It doesn't print right, e.g. with
6037 typedef struct foo *FOO
6038 type_print prints "FOO" when we want to make it (in this situation)
6039 print "struct foo *".
6040 I also think "ptype" or "whatis" is more likely to be useful (but if
6041 there is much disagreement "info types" can be fixed). */
6042 add_info ("types", info_types_command,
6043 _("All type names, or those matching REGEXP."));
6044
6045 add_info ("sources", info_sources_command,
6046 _("Source files in the program."));
6047
6048 add_com ("rbreak", class_breakpoint, rbreak_command,
6049 _("Set a breakpoint for all functions matching REGEXP."));
6050
6051 add_setshow_enum_cmd ("multiple-symbols", no_class,
6052 multiple_symbols_modes, &multiple_symbols_mode,
6053 _("\
6054 Set the debugger behavior when more than one symbol are possible matches\n\
6055 in an expression."), _("\
6056 Show how the debugger handles ambiguities in expressions."), _("\
6057 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6058 NULL, NULL, &setlist, &showlist);
6059
6060 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6061 &basenames_may_differ, _("\
6062 Set whether a source file may have multiple base names."), _("\
6063 Show whether a source file may have multiple base names."), _("\
6064 (A \"base name\" is the name of a file with the directory part removed.\n\
6065 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6066 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6067 before comparing them. Canonicalization is an expensive operation,\n\
6068 but it allows the same file be known by more than one base name.\n\
6069 If not set (the default), all source files are assumed to have just\n\
6070 one base name, and gdb will do file name comparisons more efficiently."),
6071 NULL, NULL,
6072 &setlist, &showlist);
6073
6074 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6075 _("Set debugging of symbol table creation."),
6076 _("Show debugging of symbol table creation."), _("\
6077 When enabled (non-zero), debugging messages are printed when building\n\
6078 symbol tables. A value of 1 (one) normally provides enough information.\n\
6079 A value greater than 1 provides more verbose information."),
6080 NULL,
6081 NULL,
6082 &setdebuglist, &showdebuglist);
6083
6084 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6085 _("\
6086 Set debugging of symbol lookup."), _("\
6087 Show debugging of symbol lookup."), _("\
6088 When enabled (non-zero), symbol lookups are logged."),
6089 NULL, NULL,
6090 &setdebuglist, &showdebuglist);
6091
6092 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6093 &new_symbol_cache_size,
6094 _("Set the size of the symbol cache."),
6095 _("Show the size of the symbol cache."), _("\
6096 The size of the symbol cache.\n\
6097 If zero then the symbol cache is disabled."),
6098 set_symbol_cache_size_handler, NULL,
6099 &maintenance_set_cmdlist,
6100 &maintenance_show_cmdlist);
6101
6102 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6103 _("Dump the symbol cache for each program space."),
6104 &maintenanceprintlist);
6105
6106 add_cmd ("symbol-cache-statistics", class_maintenance,
6107 maintenance_print_symbol_cache_statistics,
6108 _("Print symbol cache statistics for each program space."),
6109 &maintenanceprintlist);
6110
6111 add_cmd ("flush-symbol-cache", class_maintenance,
6112 maintenance_flush_symbol_cache,
6113 _("Flush the symbol cache for each program space."),
6114 &maintenancelist);
6115
6116 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6117 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6118 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6119 }
This page took 0.239575 seconds and 3 git commands to generate.