Introduce class completion_tracker & rewrite completion<->readline interaction
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67
68 /* Forward declarations for local functions. */
69
70 static void rbreak_command (char *, int);
71
72 static int find_line_common (struct linetable *, int, int *, int);
73
74 static struct block_symbol
75 lookup_symbol_aux (const char *name,
76 const struct block *block,
77 const domain_enum domain,
78 enum language language,
79 struct field_of_this_result *);
80
81 static
82 struct block_symbol lookup_local_symbol (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language);
86
87 static struct block_symbol
88 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
89 const char *name, const domain_enum domain);
90
91 /* See symtab.h. */
92 const struct block_symbol null_block_symbol = { NULL, NULL };
93
94 extern initialize_file_ftype _initialize_symtab;
95
96 /* Program space key for finding name and language of "main". */
97
98 static const struct program_space_data *main_progspace_key;
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 /* Name of "main". */
105
106 char *name_of_main;
107
108 /* Language of "main". */
109
110 enum language language_of_main;
111 };
112
113 /* Program space key for finding its symbol cache. */
114
115 static const struct program_space_data *symbol_cache_key;
116
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
123
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
128
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
134
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
137
138 enum symbol_cache_slot_state
139 {
140 SYMBOL_SLOT_UNUSED,
141 SYMBOL_SLOT_NOT_FOUND,
142 SYMBOL_SLOT_FOUND
143 };
144
145 struct symbol_cache_slot
146 {
147 enum symbol_cache_slot_state state;
148
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
153
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
166
167 union
168 {
169 struct block_symbol found;
170 struct
171 {
172 char *name;
173 domain_enum domain;
174 } not_found;
175 } value;
176 };
177
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
180
181 struct block_symbol_cache
182 {
183 unsigned int hits;
184 unsigned int misses;
185 unsigned int collisions;
186
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
191 unsigned int size;
192
193 struct symbol_cache_slot symbols[1];
194 };
195
196 /* The symbol cache.
197
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
202
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
205
206 struct symbol_cache
207 {
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
210 };
211
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
214
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
217
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
220
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
230
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
233 a symbol lookup. */
234
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
239 {
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
243 NULL
244 };
245 static const char *multiple_symbols_mode = multiple_symbols_all;
246
247 /* Read-only accessor to AUTO_SELECT_MODE. */
248
249 const char *
250 multiple_symbols_select_mode (void)
251 {
252 return multiple_symbols_mode;
253 }
254
255 /* Return the name of a domain_enum. */
256
257 const char *
258 domain_name (domain_enum e)
259 {
260 switch (e)
261 {
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
269 }
270 }
271
272 /* Return the name of a search_domain . */
273
274 const char *
275 search_domain_name (enum search_domain e)
276 {
277 switch (e)
278 {
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
284 }
285 }
286
287 /* See symtab.h. */
288
289 struct symtab *
290 compunit_primary_filetab (const struct compunit_symtab *cust)
291 {
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
293
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
296 }
297
298 /* See symtab.h. */
299
300 enum language
301 compunit_language (const struct compunit_symtab *cust)
302 {
303 struct symtab *symtab = compunit_primary_filetab (cust);
304
305 /* The language of the compunit symtab is the language of its primary
306 source file. */
307 return SYMTAB_LANGUAGE (symtab);
308 }
309
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
313 otherwise. */
314
315 int
316 compare_filenames_for_search (const char *filename, const char *search_name)
317 {
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
320
321 if (len < search_len)
322 return 0;
323
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
326 return 0;
327
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
330 directory separator.
331
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
336
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
346 }
347
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
352
353 int
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
356 {
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
361
362 if (search_path_elements > file_path_elements)
363 return 0;
364
365 if (IS_ABSOLUTE_PATH (search_name))
366 {
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
370 }
371
372 {
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
376
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
379 }
380 }
381
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
384
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
387
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
390
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
395
396 bool
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s))
414 return true;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s))
427 return true;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s))
442 return true;
443 continue;
444 }
445 }
446 }
447 }
448
449 return false;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
462 {
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
465
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
469 {
470 real_path.reset (gdb_realpath (name));
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
478 callback))
479 return;
480 }
481
482 /* Same search rules as above apply here, but now we look thru the
483 psymtabs. */
484
485 ALL_OBJFILES (objfile)
486 {
487 if (objfile->sf
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
489 name,
490 real_path.get (),
491 callback))
492 return;
493 }
494 }
495
496 /* A wrapper for iterate_over_symtabs that returns the first matching
497 symtab, or NULL. */
498
499 struct symtab *
500 lookup_symtab (const char *name)
501 {
502 struct symtab *result = NULL;
503
504 iterate_over_symtabs (name, [&] (symtab *symtab)
505 {
506 result = symtab;
507 return true;
508 });
509
510 return result;
511 }
512
513 \f
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
518
519 char *
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
521 {
522 int mangled_name_len;
523 char *mangled_name;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
529
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
533
534 int is_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
539 char buf[20];
540 int len = (newname == NULL ? 0 : strlen (newname));
541
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
547
548 is_full_physname_constructor = is_constructor_name (physname);
549
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
552
553 if (!is_destructor)
554 is_destructor = (startswith (physname, "__dt"));
555
556 if (is_destructor || is_full_physname_constructor)
557 {
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
560 return mangled_name;
561 }
562
563 if (len == 0)
564 {
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
566 }
567 else if (physname[0] == 't' || physname[0] == 'Q')
568 {
569 /* The physname for template and qualified methods already includes
570 the class name. */
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
572 newname = NULL;
573 len = 0;
574 }
575 else
576 {
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
579 }
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
582
583 mangled_name = (char *) xmalloc (mangled_name_len);
584 if (is_constructor)
585 mangled_name[0] = '\0';
586 else
587 strcpy (mangled_name, field_name);
588
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
593 if (newname != NULL)
594 strcat (mangled_name, newname);
595
596 strcat (mangled_name, physname);
597 return (mangled_name);
598 }
599
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
602
603 void
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
605 const char *name,
606 struct obstack *obstack)
607 {
608 if (gsymbol->language == language_ada)
609 {
610 if (name == NULL)
611 {
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
614 }
615 else
616 {
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
619 }
620 }
621 else
622 gsymbol->language_specific.demangled_name = name;
623 }
624
625 /* Return the demangled name of GSYMBOL. */
626
627 const char *
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
629 {
630 if (gsymbol->language == language_ada)
631 {
632 if (!gsymbol->ada_mangled)
633 return NULL;
634 /* Fall through. */
635 }
636
637 return gsymbol->language_specific.demangled_name;
638 }
639
640 \f
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
643
644 void
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
648 {
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
655 {
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
657 }
658 else if (gsymbol->language == language_ada)
659 {
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
662 }
663 else
664 {
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
667 }
668 }
669
670 /* Functions to initialize a symbol's mangled name. */
671
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
674 {
675 const char *mangled;
676 char demangled[1];
677 };
678
679 /* Hash function for the demangled name hash. */
680
681 static hashval_t
682 hash_demangled_name_entry (const void *data)
683 {
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
686
687 return htab_hash_string (e->mangled);
688 }
689
690 /* Equality function for the demangled name hash. */
691
692 static int
693 eq_demangled_name_entry (const void *a, const void *b)
694 {
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
699
700 return strcmp (da->mangled, db->mangled) == 0;
701 }
702
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
706
707 static void
708 create_demangled_names_hash (struct objfile *objfile)
709 {
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
714
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
718 }
719
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
725
726 static char *
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
728 const char *mangled)
729 {
730 char *demangled = NULL;
731 int i;
732 int recognized;
733
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
736
737 if (gsymbol->language != language_auto)
738 {
739 const struct language_defn *lang = language_def (gsymbol->language);
740
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
742 return demangled;
743 }
744
745 for (i = language_unknown; i < nr_languages; ++i)
746 {
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
749
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
751 {
752 gsymbol->language = l;
753 return demangled;
754 }
755 }
756
757 return NULL;
758 }
759
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
766
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
770
771 void
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
775 {
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
781
782 if (gsymbol->language == language_ada)
783 {
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
786 if (!copy_name)
787 gsymbol->name = linkage_name;
788 else
789 {
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
791 len + 1);
792
793 memcpy (name, linkage_name, len);
794 name[len] = '\0';
795 gsymbol->name = name;
796 }
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
798
799 return;
800 }
801
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
804
805 if (linkage_name[len] != '\0')
806 {
807 char *alloc_name;
808
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
812
813 linkage_name_copy = alloc_name;
814 }
815 else
816 linkage_name_copy = linkage_name;
817
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
821 &entry, INSERT));
822
823 /* If this name is not in the hash table, add it. */
824 if (*slot == NULL
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
829 {
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
831 linkage_name_copy);
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
833
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
839
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
844 {
845 *slot
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
851 }
852 else
853 {
854 char *mangled_ptr;
855
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
858 allocation. */
859 *slot
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
867 }
868
869 if (demangled_name != NULL)
870 {
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
873 }
874 else
875 (*slot)->demangled[0] = '\0';
876 }
877
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
882 else
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884 }
885
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
888
889 const char *
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
891 {
892 switch (gsymbol->language)
893 {
894 case language_cplus:
895 case language_d:
896 case language_go:
897 case language_objc:
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
901 break;
902 case language_ada:
903 return ada_decode_symbol (gsymbol);
904 default:
905 break;
906 }
907 return gsymbol->name;
908 }
909
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
912
913 const char *
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
915 {
916 const char *dem_name = NULL;
917
918 switch (gsymbol->language)
919 {
920 case language_cplus:
921 case language_d:
922 case language_go:
923 case language_objc:
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
926 break;
927 case language_ada:
928 dem_name = ada_decode_symbol (gsymbol);
929 break;
930 default:
931 break;
932 }
933 return dem_name;
934 }
935
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
940
941 const char *
942 symbol_search_name (const struct general_symbol_info *gsymbol)
943 {
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
946 else
947 return symbol_natural_name (gsymbol);
948 }
949
950 /* Initialize the structure fields to zero values. */
951
952 void
953 init_sal (struct symtab_and_line *sal)
954 {
955 memset (sal, 0, sizeof (*sal));
956 }
957 \f
958
959 /* Return 1 if the two sections are the same, or if they could
960 plausibly be copies of each other, one in an original object
961 file and another in a separated debug file. */
962
963 int
964 matching_obj_sections (struct obj_section *obj_first,
965 struct obj_section *obj_second)
966 {
967 asection *first = obj_first? obj_first->the_bfd_section : NULL;
968 asection *second = obj_second? obj_second->the_bfd_section : NULL;
969 struct objfile *obj;
970
971 /* If they're the same section, then they match. */
972 if (first == second)
973 return 1;
974
975 /* If either is NULL, give up. */
976 if (first == NULL || second == NULL)
977 return 0;
978
979 /* This doesn't apply to absolute symbols. */
980 if (first->owner == NULL || second->owner == NULL)
981 return 0;
982
983 /* If they're in the same object file, they must be different sections. */
984 if (first->owner == second->owner)
985 return 0;
986
987 /* Check whether the two sections are potentially corresponding. They must
988 have the same size, address, and name. We can't compare section indexes,
989 which would be more reliable, because some sections may have been
990 stripped. */
991 if (bfd_get_section_size (first) != bfd_get_section_size (second))
992 return 0;
993
994 /* In-memory addresses may start at a different offset, relativize them. */
995 if (bfd_get_section_vma (first->owner, first)
996 - bfd_get_start_address (first->owner)
997 != bfd_get_section_vma (second->owner, second)
998 - bfd_get_start_address (second->owner))
999 return 0;
1000
1001 if (bfd_get_section_name (first->owner, first) == NULL
1002 || bfd_get_section_name (second->owner, second) == NULL
1003 || strcmp (bfd_get_section_name (first->owner, first),
1004 bfd_get_section_name (second->owner, second)) != 0)
1005 return 0;
1006
1007 /* Otherwise check that they are in corresponding objfiles. */
1008
1009 ALL_OBJFILES (obj)
1010 if (obj->obfd == first->owner)
1011 break;
1012 gdb_assert (obj != NULL);
1013
1014 if (obj->separate_debug_objfile != NULL
1015 && obj->separate_debug_objfile->obfd == second->owner)
1016 return 1;
1017 if (obj->separate_debug_objfile_backlink != NULL
1018 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1019 return 1;
1020
1021 return 0;
1022 }
1023
1024 /* See symtab.h. */
1025
1026 void
1027 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1028 {
1029 struct objfile *objfile;
1030 struct bound_minimal_symbol msymbol;
1031
1032 /* If we know that this is not a text address, return failure. This is
1033 necessary because we loop based on texthigh and textlow, which do
1034 not include the data ranges. */
1035 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1036 if (msymbol.minsym
1037 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1042 return;
1043
1044 ALL_OBJFILES (objfile)
1045 {
1046 struct compunit_symtab *cust = NULL;
1047
1048 if (objfile->sf)
1049 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1050 pc, section, 0);
1051 if (cust)
1052 return;
1053 }
1054 }
1055 \f
1056 /* Hash function for the symbol cache. */
1057
1058 static unsigned int
1059 hash_symbol_entry (const struct objfile *objfile_context,
1060 const char *name, domain_enum domain)
1061 {
1062 unsigned int hash = (uintptr_t) objfile_context;
1063
1064 if (name != NULL)
1065 hash += htab_hash_string (name);
1066
1067 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1068 to map to the same slot. */
1069 if (domain == STRUCT_DOMAIN)
1070 hash += VAR_DOMAIN * 7;
1071 else
1072 hash += domain * 7;
1073
1074 return hash;
1075 }
1076
1077 /* Equality function for the symbol cache. */
1078
1079 static int
1080 eq_symbol_entry (const struct symbol_cache_slot *slot,
1081 const struct objfile *objfile_context,
1082 const char *name, domain_enum domain)
1083 {
1084 const char *slot_name;
1085 domain_enum slot_domain;
1086
1087 if (slot->state == SYMBOL_SLOT_UNUSED)
1088 return 0;
1089
1090 if (slot->objfile_context != objfile_context)
1091 return 0;
1092
1093 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1094 {
1095 slot_name = slot->value.not_found.name;
1096 slot_domain = slot->value.not_found.domain;
1097 }
1098 else
1099 {
1100 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1101 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1102 }
1103
1104 /* NULL names match. */
1105 if (slot_name == NULL && name == NULL)
1106 {
1107 /* But there's no point in calling symbol_matches_domain in the
1108 SYMBOL_SLOT_FOUND case. */
1109 if (slot_domain != domain)
1110 return 0;
1111 }
1112 else if (slot_name != NULL && name != NULL)
1113 {
1114 /* It's important that we use the same comparison that was done the
1115 first time through. If the slot records a found symbol, then this
1116 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1117 It also means using symbol_matches_domain for found symbols.
1118 See block.c.
1119
1120 If the slot records a not-found symbol, then require a precise match.
1121 We could still be lax with whitespace like strcmp_iw though. */
1122
1123 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1124 {
1125 if (strcmp (slot_name, name) != 0)
1126 return 0;
1127 if (slot_domain != domain)
1128 return 0;
1129 }
1130 else
1131 {
1132 struct symbol *sym = slot->value.found.symbol;
1133
1134 if (strcmp_iw (slot_name, name) != 0)
1135 return 0;
1136 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1137 slot_domain, domain))
1138 return 0;
1139 }
1140 }
1141 else
1142 {
1143 /* Only one name is NULL. */
1144 return 0;
1145 }
1146
1147 return 1;
1148 }
1149
1150 /* Given a cache of size SIZE, return the size of the struct (with variable
1151 length array) in bytes. */
1152
1153 static size_t
1154 symbol_cache_byte_size (unsigned int size)
1155 {
1156 return (sizeof (struct block_symbol_cache)
1157 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1158 }
1159
1160 /* Resize CACHE. */
1161
1162 static void
1163 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1164 {
1165 /* If there's no change in size, don't do anything.
1166 All caches have the same size, so we can just compare with the size
1167 of the global symbols cache. */
1168 if ((cache->global_symbols != NULL
1169 && cache->global_symbols->size == new_size)
1170 || (cache->global_symbols == NULL
1171 && new_size == 0))
1172 return;
1173
1174 xfree (cache->global_symbols);
1175 xfree (cache->static_symbols);
1176
1177 if (new_size == 0)
1178 {
1179 cache->global_symbols = NULL;
1180 cache->static_symbols = NULL;
1181 }
1182 else
1183 {
1184 size_t total_size = symbol_cache_byte_size (new_size);
1185
1186 cache->global_symbols
1187 = (struct block_symbol_cache *) xcalloc (1, total_size);
1188 cache->static_symbols
1189 = (struct block_symbol_cache *) xcalloc (1, total_size);
1190 cache->global_symbols->size = new_size;
1191 cache->static_symbols->size = new_size;
1192 }
1193 }
1194
1195 /* Make a symbol cache of size SIZE. */
1196
1197 static struct symbol_cache *
1198 make_symbol_cache (unsigned int size)
1199 {
1200 struct symbol_cache *cache;
1201
1202 cache = XCNEW (struct symbol_cache);
1203 resize_symbol_cache (cache, symbol_cache_size);
1204 return cache;
1205 }
1206
1207 /* Free the space used by CACHE. */
1208
1209 static void
1210 free_symbol_cache (struct symbol_cache *cache)
1211 {
1212 xfree (cache->global_symbols);
1213 xfree (cache->static_symbols);
1214 xfree (cache);
1215 }
1216
1217 /* Return the symbol cache of PSPACE.
1218 Create one if it doesn't exist yet. */
1219
1220 static struct symbol_cache *
1221 get_symbol_cache (struct program_space *pspace)
1222 {
1223 struct symbol_cache *cache
1224 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1225
1226 if (cache == NULL)
1227 {
1228 cache = make_symbol_cache (symbol_cache_size);
1229 set_program_space_data (pspace, symbol_cache_key, cache);
1230 }
1231
1232 return cache;
1233 }
1234
1235 /* Delete the symbol cache of PSPACE.
1236 Called when PSPACE is destroyed. */
1237
1238 static void
1239 symbol_cache_cleanup (struct program_space *pspace, void *data)
1240 {
1241 struct symbol_cache *cache = (struct symbol_cache *) data;
1242
1243 free_symbol_cache (cache);
1244 }
1245
1246 /* Set the size of the symbol cache in all program spaces. */
1247
1248 static void
1249 set_symbol_cache_size (unsigned int new_size)
1250 {
1251 struct program_space *pspace;
1252
1253 ALL_PSPACES (pspace)
1254 {
1255 struct symbol_cache *cache
1256 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1257
1258 /* The pspace could have been created but not have a cache yet. */
1259 if (cache != NULL)
1260 resize_symbol_cache (cache, new_size);
1261 }
1262 }
1263
1264 /* Called when symbol-cache-size is set. */
1265
1266 static void
1267 set_symbol_cache_size_handler (char *args, int from_tty,
1268 struct cmd_list_element *c)
1269 {
1270 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1271 {
1272 /* Restore the previous value.
1273 This is the value the "show" command prints. */
1274 new_symbol_cache_size = symbol_cache_size;
1275
1276 error (_("Symbol cache size is too large, max is %u."),
1277 MAX_SYMBOL_CACHE_SIZE);
1278 }
1279 symbol_cache_size = new_symbol_cache_size;
1280
1281 set_symbol_cache_size (symbol_cache_size);
1282 }
1283
1284 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1285 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1286 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1287 failed (and thus this one will too), or NULL if the symbol is not present
1288 in the cache.
1289 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1290 set to the cache and slot of the symbol to save the result of a full lookup
1291 attempt. */
1292
1293 static struct block_symbol
1294 symbol_cache_lookup (struct symbol_cache *cache,
1295 struct objfile *objfile_context, int block,
1296 const char *name, domain_enum domain,
1297 struct block_symbol_cache **bsc_ptr,
1298 struct symbol_cache_slot **slot_ptr)
1299 {
1300 struct block_symbol_cache *bsc;
1301 unsigned int hash;
1302 struct symbol_cache_slot *slot;
1303
1304 if (block == GLOBAL_BLOCK)
1305 bsc = cache->global_symbols;
1306 else
1307 bsc = cache->static_symbols;
1308 if (bsc == NULL)
1309 {
1310 *bsc_ptr = NULL;
1311 *slot_ptr = NULL;
1312 return (struct block_symbol) {NULL, NULL};
1313 }
1314
1315 hash = hash_symbol_entry (objfile_context, name, domain);
1316 slot = bsc->symbols + hash % bsc->size;
1317
1318 if (eq_symbol_entry (slot, objfile_context, name, domain))
1319 {
1320 if (symbol_lookup_debug)
1321 fprintf_unfiltered (gdb_stdlog,
1322 "%s block symbol cache hit%s for %s, %s\n",
1323 block == GLOBAL_BLOCK ? "Global" : "Static",
1324 slot->state == SYMBOL_SLOT_NOT_FOUND
1325 ? " (not found)" : "",
1326 name, domain_name (domain));
1327 ++bsc->hits;
1328 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1329 return SYMBOL_LOOKUP_FAILED;
1330 return slot->value.found;
1331 }
1332
1333 /* Symbol is not present in the cache. */
1334
1335 *bsc_ptr = bsc;
1336 *slot_ptr = slot;
1337
1338 if (symbol_lookup_debug)
1339 {
1340 fprintf_unfiltered (gdb_stdlog,
1341 "%s block symbol cache miss for %s, %s\n",
1342 block == GLOBAL_BLOCK ? "Global" : "Static",
1343 name, domain_name (domain));
1344 }
1345 ++bsc->misses;
1346 return (struct block_symbol) {NULL, NULL};
1347 }
1348
1349 /* Clear out SLOT. */
1350
1351 static void
1352 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1353 {
1354 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1355 xfree (slot->value.not_found.name);
1356 slot->state = SYMBOL_SLOT_UNUSED;
1357 }
1358
1359 /* Mark SYMBOL as found in SLOT.
1360 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1361 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1362 necessarily the objfile the symbol was found in. */
1363
1364 static void
1365 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1366 struct symbol_cache_slot *slot,
1367 struct objfile *objfile_context,
1368 struct symbol *symbol,
1369 const struct block *block)
1370 {
1371 if (bsc == NULL)
1372 return;
1373 if (slot->state != SYMBOL_SLOT_UNUSED)
1374 {
1375 ++bsc->collisions;
1376 symbol_cache_clear_slot (slot);
1377 }
1378 slot->state = SYMBOL_SLOT_FOUND;
1379 slot->objfile_context = objfile_context;
1380 slot->value.found.symbol = symbol;
1381 slot->value.found.block = block;
1382 }
1383
1384 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1385 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1386 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1387
1388 static void
1389 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1390 struct symbol_cache_slot *slot,
1391 struct objfile *objfile_context,
1392 const char *name, domain_enum domain)
1393 {
1394 if (bsc == NULL)
1395 return;
1396 if (slot->state != SYMBOL_SLOT_UNUSED)
1397 {
1398 ++bsc->collisions;
1399 symbol_cache_clear_slot (slot);
1400 }
1401 slot->state = SYMBOL_SLOT_NOT_FOUND;
1402 slot->objfile_context = objfile_context;
1403 slot->value.not_found.name = xstrdup (name);
1404 slot->value.not_found.domain = domain;
1405 }
1406
1407 /* Flush the symbol cache of PSPACE. */
1408
1409 static void
1410 symbol_cache_flush (struct program_space *pspace)
1411 {
1412 struct symbol_cache *cache
1413 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1414 int pass;
1415
1416 if (cache == NULL)
1417 return;
1418 if (cache->global_symbols == NULL)
1419 {
1420 gdb_assert (symbol_cache_size == 0);
1421 gdb_assert (cache->static_symbols == NULL);
1422 return;
1423 }
1424
1425 /* If the cache is untouched since the last flush, early exit.
1426 This is important for performance during the startup of a program linked
1427 with 100s (or 1000s) of shared libraries. */
1428 if (cache->global_symbols->misses == 0
1429 && cache->static_symbols->misses == 0)
1430 return;
1431
1432 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1433 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1434
1435 for (pass = 0; pass < 2; ++pass)
1436 {
1437 struct block_symbol_cache *bsc
1438 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1439 unsigned int i;
1440
1441 for (i = 0; i < bsc->size; ++i)
1442 symbol_cache_clear_slot (&bsc->symbols[i]);
1443 }
1444
1445 cache->global_symbols->hits = 0;
1446 cache->global_symbols->misses = 0;
1447 cache->global_symbols->collisions = 0;
1448 cache->static_symbols->hits = 0;
1449 cache->static_symbols->misses = 0;
1450 cache->static_symbols->collisions = 0;
1451 }
1452
1453 /* Dump CACHE. */
1454
1455 static void
1456 symbol_cache_dump (const struct symbol_cache *cache)
1457 {
1458 int pass;
1459
1460 if (cache->global_symbols == NULL)
1461 {
1462 printf_filtered (" <disabled>\n");
1463 return;
1464 }
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 const struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 if (pass == 0)
1473 printf_filtered ("Global symbols:\n");
1474 else
1475 printf_filtered ("Static symbols:\n");
1476
1477 for (i = 0; i < bsc->size; ++i)
1478 {
1479 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1480
1481 QUIT;
1482
1483 switch (slot->state)
1484 {
1485 case SYMBOL_SLOT_UNUSED:
1486 break;
1487 case SYMBOL_SLOT_NOT_FOUND:
1488 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1489 host_address_to_string (slot->objfile_context),
1490 slot->value.not_found.name,
1491 domain_name (slot->value.not_found.domain));
1492 break;
1493 case SYMBOL_SLOT_FOUND:
1494 {
1495 struct symbol *found = slot->value.found.symbol;
1496 const struct objfile *context = slot->objfile_context;
1497
1498 printf_filtered (" [%4u] = %s, %s %s\n", i,
1499 host_address_to_string (context),
1500 SYMBOL_PRINT_NAME (found),
1501 domain_name (SYMBOL_DOMAIN (found)));
1502 break;
1503 }
1504 }
1505 }
1506 }
1507 }
1508
1509 /* The "mt print symbol-cache" command. */
1510
1511 static void
1512 maintenance_print_symbol_cache (char *args, int from_tty)
1513 {
1514 struct program_space *pspace;
1515
1516 ALL_PSPACES (pspace)
1517 {
1518 struct symbol_cache *cache;
1519
1520 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1521 pspace->num,
1522 pspace->symfile_object_file != NULL
1523 ? objfile_name (pspace->symfile_object_file)
1524 : "(no object file)");
1525
1526 /* If the cache hasn't been created yet, avoid creating one. */
1527 cache
1528 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1529 if (cache == NULL)
1530 printf_filtered (" <empty>\n");
1531 else
1532 symbol_cache_dump (cache);
1533 }
1534 }
1535
1536 /* The "mt flush-symbol-cache" command. */
1537
1538 static void
1539 maintenance_flush_symbol_cache (char *args, int from_tty)
1540 {
1541 struct program_space *pspace;
1542
1543 ALL_PSPACES (pspace)
1544 {
1545 symbol_cache_flush (pspace);
1546 }
1547 }
1548
1549 /* Print usage statistics of CACHE. */
1550
1551 static void
1552 symbol_cache_stats (struct symbol_cache *cache)
1553 {
1554 int pass;
1555
1556 if (cache->global_symbols == NULL)
1557 {
1558 printf_filtered (" <disabled>\n");
1559 return;
1560 }
1561
1562 for (pass = 0; pass < 2; ++pass)
1563 {
1564 const struct block_symbol_cache *bsc
1565 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1566
1567 QUIT;
1568
1569 if (pass == 0)
1570 printf_filtered ("Global block cache stats:\n");
1571 else
1572 printf_filtered ("Static block cache stats:\n");
1573
1574 printf_filtered (" size: %u\n", bsc->size);
1575 printf_filtered (" hits: %u\n", bsc->hits);
1576 printf_filtered (" misses: %u\n", bsc->misses);
1577 printf_filtered (" collisions: %u\n", bsc->collisions);
1578 }
1579 }
1580
1581 /* The "mt print symbol-cache-statistics" command. */
1582
1583 static void
1584 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1585 {
1586 struct program_space *pspace;
1587
1588 ALL_PSPACES (pspace)
1589 {
1590 struct symbol_cache *cache;
1591
1592 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1593 pspace->num,
1594 pspace->symfile_object_file != NULL
1595 ? objfile_name (pspace->symfile_object_file)
1596 : "(no object file)");
1597
1598 /* If the cache hasn't been created yet, avoid creating one. */
1599 cache
1600 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1601 if (cache == NULL)
1602 printf_filtered (" empty, no stats available\n");
1603 else
1604 symbol_cache_stats (cache);
1605 }
1606 }
1607
1608 /* This module's 'new_objfile' observer. */
1609
1610 static void
1611 symtab_new_objfile_observer (struct objfile *objfile)
1612 {
1613 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1614 symbol_cache_flush (current_program_space);
1615 }
1616
1617 /* This module's 'free_objfile' observer. */
1618
1619 static void
1620 symtab_free_objfile_observer (struct objfile *objfile)
1621 {
1622 symbol_cache_flush (objfile->pspace);
1623 }
1624 \f
1625 /* Debug symbols usually don't have section information. We need to dig that
1626 out of the minimal symbols and stash that in the debug symbol. */
1627
1628 void
1629 fixup_section (struct general_symbol_info *ginfo,
1630 CORE_ADDR addr, struct objfile *objfile)
1631 {
1632 struct minimal_symbol *msym;
1633
1634 /* First, check whether a minimal symbol with the same name exists
1635 and points to the same address. The address check is required
1636 e.g. on PowerPC64, where the minimal symbol for a function will
1637 point to the function descriptor, while the debug symbol will
1638 point to the actual function code. */
1639 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1640 if (msym)
1641 ginfo->section = MSYMBOL_SECTION (msym);
1642 else
1643 {
1644 /* Static, function-local variables do appear in the linker
1645 (minimal) symbols, but are frequently given names that won't
1646 be found via lookup_minimal_symbol(). E.g., it has been
1647 observed in frv-uclinux (ELF) executables that a static,
1648 function-local variable named "foo" might appear in the
1649 linker symbols as "foo.6" or "foo.3". Thus, there is no
1650 point in attempting to extend the lookup-by-name mechanism to
1651 handle this case due to the fact that there can be multiple
1652 names.
1653
1654 So, instead, search the section table when lookup by name has
1655 failed. The ``addr'' and ``endaddr'' fields may have already
1656 been relocated. If so, the relocation offset (i.e. the
1657 ANOFFSET value) needs to be subtracted from these values when
1658 performing the comparison. We unconditionally subtract it,
1659 because, when no relocation has been performed, the ANOFFSET
1660 value will simply be zero.
1661
1662 The address of the symbol whose section we're fixing up HAS
1663 NOT BEEN adjusted (relocated) yet. It can't have been since
1664 the section isn't yet known and knowing the section is
1665 necessary in order to add the correct relocation value. In
1666 other words, we wouldn't even be in this function (attempting
1667 to compute the section) if it were already known.
1668
1669 Note that it is possible to search the minimal symbols
1670 (subtracting the relocation value if necessary) to find the
1671 matching minimal symbol, but this is overkill and much less
1672 efficient. It is not necessary to find the matching minimal
1673 symbol, only its section.
1674
1675 Note that this technique (of doing a section table search)
1676 can fail when unrelocated section addresses overlap. For
1677 this reason, we still attempt a lookup by name prior to doing
1678 a search of the section table. */
1679
1680 struct obj_section *s;
1681 int fallback = -1;
1682
1683 ALL_OBJFILE_OSECTIONS (objfile, s)
1684 {
1685 int idx = s - objfile->sections;
1686 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1687
1688 if (fallback == -1)
1689 fallback = idx;
1690
1691 if (obj_section_addr (s) - offset <= addr
1692 && addr < obj_section_endaddr (s) - offset)
1693 {
1694 ginfo->section = idx;
1695 return;
1696 }
1697 }
1698
1699 /* If we didn't find the section, assume it is in the first
1700 section. If there is no allocated section, then it hardly
1701 matters what we pick, so just pick zero. */
1702 if (fallback == -1)
1703 ginfo->section = 0;
1704 else
1705 ginfo->section = fallback;
1706 }
1707 }
1708
1709 struct symbol *
1710 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1711 {
1712 CORE_ADDR addr;
1713
1714 if (!sym)
1715 return NULL;
1716
1717 if (!SYMBOL_OBJFILE_OWNED (sym))
1718 return sym;
1719
1720 /* We either have an OBJFILE, or we can get at it from the sym's
1721 symtab. Anything else is a bug. */
1722 gdb_assert (objfile || symbol_symtab (sym));
1723
1724 if (objfile == NULL)
1725 objfile = symbol_objfile (sym);
1726
1727 if (SYMBOL_OBJ_SECTION (objfile, sym))
1728 return sym;
1729
1730 /* We should have an objfile by now. */
1731 gdb_assert (objfile);
1732
1733 switch (SYMBOL_CLASS (sym))
1734 {
1735 case LOC_STATIC:
1736 case LOC_LABEL:
1737 addr = SYMBOL_VALUE_ADDRESS (sym);
1738 break;
1739 case LOC_BLOCK:
1740 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1741 break;
1742
1743 default:
1744 /* Nothing else will be listed in the minsyms -- no use looking
1745 it up. */
1746 return sym;
1747 }
1748
1749 fixup_section (&sym->ginfo, addr, objfile);
1750
1751 return sym;
1752 }
1753
1754 /* Compute the demangled form of NAME as used by the various symbol
1755 lookup functions. The result can either be the input NAME
1756 directly, or a pointer to a buffer owned by the STORAGE object.
1757
1758 For Ada, this function just returns NAME, unmodified.
1759 Normally, Ada symbol lookups are performed using the encoded name
1760 rather than the demangled name, and so it might seem to make sense
1761 for this function to return an encoded version of NAME.
1762 Unfortunately, we cannot do this, because this function is used in
1763 circumstances where it is not appropriate to try to encode NAME.
1764 For instance, when displaying the frame info, we demangle the name
1765 of each parameter, and then perform a symbol lookup inside our
1766 function using that demangled name. In Ada, certain functions
1767 have internally-generated parameters whose name contain uppercase
1768 characters. Encoding those name would result in those uppercase
1769 characters to become lowercase, and thus cause the symbol lookup
1770 to fail. */
1771
1772 const char *
1773 demangle_for_lookup (const char *name, enum language lang,
1774 demangle_result_storage &storage)
1775 {
1776 /* If we are using C++, D, or Go, demangle the name before doing a
1777 lookup, so we can always binary search. */
1778 if (lang == language_cplus)
1779 {
1780 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1781 if (demangled_name != NULL)
1782 return storage.set_malloc_ptr (demangled_name);
1783
1784 /* If we were given a non-mangled name, canonicalize it
1785 according to the language (so far only for C++). */
1786 std::string canon = cp_canonicalize_string (name);
1787 if (!canon.empty ())
1788 return storage.swap_string (canon);
1789 }
1790 else if (lang == language_d)
1791 {
1792 char *demangled_name = d_demangle (name, 0);
1793 if (demangled_name != NULL)
1794 return storage.set_malloc_ptr (demangled_name);
1795 }
1796 else if (lang == language_go)
1797 {
1798 char *demangled_name = go_demangle (name, 0);
1799 if (demangled_name != NULL)
1800 return storage.set_malloc_ptr (demangled_name);
1801 }
1802
1803 return name;
1804 }
1805
1806 /* See symtab.h.
1807
1808 This function (or rather its subordinates) have a bunch of loops and
1809 it would seem to be attractive to put in some QUIT's (though I'm not really
1810 sure whether it can run long enough to be really important). But there
1811 are a few calls for which it would appear to be bad news to quit
1812 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1813 that there is C++ code below which can error(), but that probably
1814 doesn't affect these calls since they are looking for a known
1815 variable and thus can probably assume it will never hit the C++
1816 code). */
1817
1818 struct block_symbol
1819 lookup_symbol_in_language (const char *name, const struct block *block,
1820 const domain_enum domain, enum language lang,
1821 struct field_of_this_result *is_a_field_of_this)
1822 {
1823 demangle_result_storage storage;
1824 const char *modified_name = demangle_for_lookup (name, lang, storage);
1825
1826 return lookup_symbol_aux (modified_name, block, domain, lang,
1827 is_a_field_of_this);
1828 }
1829
1830 /* See symtab.h. */
1831
1832 struct block_symbol
1833 lookup_symbol (const char *name, const struct block *block,
1834 domain_enum domain,
1835 struct field_of_this_result *is_a_field_of_this)
1836 {
1837 return lookup_symbol_in_language (name, block, domain,
1838 current_language->la_language,
1839 is_a_field_of_this);
1840 }
1841
1842 /* See symtab.h. */
1843
1844 struct block_symbol
1845 lookup_language_this (const struct language_defn *lang,
1846 const struct block *block)
1847 {
1848 if (lang->la_name_of_this == NULL || block == NULL)
1849 return (struct block_symbol) {NULL, NULL};
1850
1851 if (symbol_lookup_debug > 1)
1852 {
1853 struct objfile *objfile = lookup_objfile_from_block (block);
1854
1855 fprintf_unfiltered (gdb_stdlog,
1856 "lookup_language_this (%s, %s (objfile %s))",
1857 lang->la_name, host_address_to_string (block),
1858 objfile_debug_name (objfile));
1859 }
1860
1861 while (block)
1862 {
1863 struct symbol *sym;
1864
1865 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1866 if (sym != NULL)
1867 {
1868 if (symbol_lookup_debug > 1)
1869 {
1870 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1871 SYMBOL_PRINT_NAME (sym),
1872 host_address_to_string (sym),
1873 host_address_to_string (block));
1874 }
1875 return (struct block_symbol) {sym, block};
1876 }
1877 if (BLOCK_FUNCTION (block))
1878 break;
1879 block = BLOCK_SUPERBLOCK (block);
1880 }
1881
1882 if (symbol_lookup_debug > 1)
1883 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1884 return (struct block_symbol) {NULL, NULL};
1885 }
1886
1887 /* Given TYPE, a structure/union,
1888 return 1 if the component named NAME from the ultimate target
1889 structure/union is defined, otherwise, return 0. */
1890
1891 static int
1892 check_field (struct type *type, const char *name,
1893 struct field_of_this_result *is_a_field_of_this)
1894 {
1895 int i;
1896
1897 /* The type may be a stub. */
1898 type = check_typedef (type);
1899
1900 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1901 {
1902 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1903
1904 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1905 {
1906 is_a_field_of_this->type = type;
1907 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1908 return 1;
1909 }
1910 }
1911
1912 /* C++: If it was not found as a data field, then try to return it
1913 as a pointer to a method. */
1914
1915 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1916 {
1917 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1918 {
1919 is_a_field_of_this->type = type;
1920 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1921 return 1;
1922 }
1923 }
1924
1925 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1926 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1927 return 1;
1928
1929 return 0;
1930 }
1931
1932 /* Behave like lookup_symbol except that NAME is the natural name
1933 (e.g., demangled name) of the symbol that we're looking for. */
1934
1935 static struct block_symbol
1936 lookup_symbol_aux (const char *name, const struct block *block,
1937 const domain_enum domain, enum language language,
1938 struct field_of_this_result *is_a_field_of_this)
1939 {
1940 struct block_symbol result;
1941 const struct language_defn *langdef;
1942
1943 if (symbol_lookup_debug)
1944 {
1945 struct objfile *objfile = lookup_objfile_from_block (block);
1946
1947 fprintf_unfiltered (gdb_stdlog,
1948 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1949 name, host_address_to_string (block),
1950 objfile != NULL
1951 ? objfile_debug_name (objfile) : "NULL",
1952 domain_name (domain), language_str (language));
1953 }
1954
1955 /* Make sure we do something sensible with is_a_field_of_this, since
1956 the callers that set this parameter to some non-null value will
1957 certainly use it later. If we don't set it, the contents of
1958 is_a_field_of_this are undefined. */
1959 if (is_a_field_of_this != NULL)
1960 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1961
1962 /* Search specified block and its superiors. Don't search
1963 STATIC_BLOCK or GLOBAL_BLOCK. */
1964
1965 result = lookup_local_symbol (name, block, domain, language);
1966 if (result.symbol != NULL)
1967 {
1968 if (symbol_lookup_debug)
1969 {
1970 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1971 host_address_to_string (result.symbol));
1972 }
1973 return result;
1974 }
1975
1976 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1977 check to see if NAME is a field of `this'. */
1978
1979 langdef = language_def (language);
1980
1981 /* Don't do this check if we are searching for a struct. It will
1982 not be found by check_field, but will be found by other
1983 means. */
1984 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1985 {
1986 result = lookup_language_this (langdef, block);
1987
1988 if (result.symbol)
1989 {
1990 struct type *t = result.symbol->type;
1991
1992 /* I'm not really sure that type of this can ever
1993 be typedefed; just be safe. */
1994 t = check_typedef (t);
1995 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1996 t = TYPE_TARGET_TYPE (t);
1997
1998 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1999 && TYPE_CODE (t) != TYPE_CODE_UNION)
2000 error (_("Internal error: `%s' is not an aggregate"),
2001 langdef->la_name_of_this);
2002
2003 if (check_field (t, name, is_a_field_of_this))
2004 {
2005 if (symbol_lookup_debug)
2006 {
2007 fprintf_unfiltered (gdb_stdlog,
2008 "lookup_symbol_aux (...) = NULL\n");
2009 }
2010 return (struct block_symbol) {NULL, NULL};
2011 }
2012 }
2013 }
2014
2015 /* Now do whatever is appropriate for LANGUAGE to look
2016 up static and global variables. */
2017
2018 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2019 if (result.symbol != NULL)
2020 {
2021 if (symbol_lookup_debug)
2022 {
2023 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2024 host_address_to_string (result.symbol));
2025 }
2026 return result;
2027 }
2028
2029 /* Now search all static file-level symbols. Not strictly correct,
2030 but more useful than an error. */
2031
2032 result = lookup_static_symbol (name, domain);
2033 if (symbol_lookup_debug)
2034 {
2035 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2036 result.symbol != NULL
2037 ? host_address_to_string (result.symbol)
2038 : "NULL");
2039 }
2040 return result;
2041 }
2042
2043 /* Check to see if the symbol is defined in BLOCK or its superiors.
2044 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2045
2046 static struct block_symbol
2047 lookup_local_symbol (const char *name, const struct block *block,
2048 const domain_enum domain,
2049 enum language language)
2050 {
2051 struct symbol *sym;
2052 const struct block *static_block = block_static_block (block);
2053 const char *scope = block_scope (block);
2054
2055 /* Check if either no block is specified or it's a global block. */
2056
2057 if (static_block == NULL)
2058 return (struct block_symbol) {NULL, NULL};
2059
2060 while (block != static_block)
2061 {
2062 sym = lookup_symbol_in_block (name, block, domain);
2063 if (sym != NULL)
2064 return (struct block_symbol) {sym, block};
2065
2066 if (language == language_cplus || language == language_fortran)
2067 {
2068 struct block_symbol sym
2069 = cp_lookup_symbol_imports_or_template (scope, name, block,
2070 domain);
2071
2072 if (sym.symbol != NULL)
2073 return sym;
2074 }
2075
2076 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2077 break;
2078 block = BLOCK_SUPERBLOCK (block);
2079 }
2080
2081 /* We've reached the end of the function without finding a result. */
2082
2083 return (struct block_symbol) {NULL, NULL};
2084 }
2085
2086 /* See symtab.h. */
2087
2088 struct objfile *
2089 lookup_objfile_from_block (const struct block *block)
2090 {
2091 struct objfile *obj;
2092 struct compunit_symtab *cust;
2093
2094 if (block == NULL)
2095 return NULL;
2096
2097 block = block_global_block (block);
2098 /* Look through all blockvectors. */
2099 ALL_COMPUNITS (obj, cust)
2100 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2101 GLOBAL_BLOCK))
2102 {
2103 if (obj->separate_debug_objfile_backlink)
2104 obj = obj->separate_debug_objfile_backlink;
2105
2106 return obj;
2107 }
2108
2109 return NULL;
2110 }
2111
2112 /* See symtab.h. */
2113
2114 struct symbol *
2115 lookup_symbol_in_block (const char *name, const struct block *block,
2116 const domain_enum domain)
2117 {
2118 struct symbol *sym;
2119
2120 if (symbol_lookup_debug > 1)
2121 {
2122 struct objfile *objfile = lookup_objfile_from_block (block);
2123
2124 fprintf_unfiltered (gdb_stdlog,
2125 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2126 name, host_address_to_string (block),
2127 objfile_debug_name (objfile),
2128 domain_name (domain));
2129 }
2130
2131 sym = block_lookup_symbol (block, name, domain);
2132 if (sym)
2133 {
2134 if (symbol_lookup_debug > 1)
2135 {
2136 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2137 host_address_to_string (sym));
2138 }
2139 return fixup_symbol_section (sym, NULL);
2140 }
2141
2142 if (symbol_lookup_debug > 1)
2143 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2144 return NULL;
2145 }
2146
2147 /* See symtab.h. */
2148
2149 struct block_symbol
2150 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2151 const char *name,
2152 const domain_enum domain)
2153 {
2154 struct objfile *objfile;
2155
2156 for (objfile = main_objfile;
2157 objfile;
2158 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2159 {
2160 struct block_symbol result
2161 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2162
2163 if (result.symbol != NULL)
2164 return result;
2165 }
2166
2167 return (struct block_symbol) {NULL, NULL};
2168 }
2169
2170 /* Check to see if the symbol is defined in one of the OBJFILE's
2171 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2172 depending on whether or not we want to search global symbols or
2173 static symbols. */
2174
2175 static struct block_symbol
2176 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2177 const char *name, const domain_enum domain)
2178 {
2179 struct compunit_symtab *cust;
2180
2181 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2182
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog,
2186 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2187 objfile_debug_name (objfile),
2188 block_index == GLOBAL_BLOCK
2189 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2190 name, domain_name (domain));
2191 }
2192
2193 ALL_OBJFILE_COMPUNITS (objfile, cust)
2194 {
2195 const struct blockvector *bv;
2196 const struct block *block;
2197 struct block_symbol result;
2198
2199 bv = COMPUNIT_BLOCKVECTOR (cust);
2200 block = BLOCKVECTOR_BLOCK (bv, block_index);
2201 result.symbol = block_lookup_symbol_primary (block, name, domain);
2202 result.block = block;
2203 if (result.symbol != NULL)
2204 {
2205 if (symbol_lookup_debug > 1)
2206 {
2207 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2208 host_address_to_string (result.symbol),
2209 host_address_to_string (block));
2210 }
2211 result.symbol = fixup_symbol_section (result.symbol, objfile);
2212 return result;
2213
2214 }
2215 }
2216
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return (struct block_symbol) {NULL, NULL};
2220 }
2221
2222 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2223 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2224 and all associated separate debug objfiles.
2225
2226 Normally we only look in OBJFILE, and not any separate debug objfiles
2227 because the outer loop will cause them to be searched too. This case is
2228 different. Here we're called from search_symbols where it will only
2229 call us for the the objfile that contains a matching minsym. */
2230
2231 static struct block_symbol
2232 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2233 const char *linkage_name,
2234 domain_enum domain)
2235 {
2236 enum language lang = current_language->la_language;
2237 struct objfile *main_objfile, *cur_objfile;
2238
2239 demangle_result_storage storage;
2240 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2241
2242 if (objfile->separate_debug_objfile_backlink)
2243 main_objfile = objfile->separate_debug_objfile_backlink;
2244 else
2245 main_objfile = objfile;
2246
2247 for (cur_objfile = main_objfile;
2248 cur_objfile;
2249 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2250 {
2251 struct block_symbol result;
2252
2253 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2254 modified_name, domain);
2255 if (result.symbol == NULL)
2256 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2257 modified_name, domain);
2258 if (result.symbol != NULL)
2259 return result;
2260 }
2261
2262 return (struct block_symbol) {NULL, NULL};
2263 }
2264
2265 /* A helper function that throws an exception when a symbol was found
2266 in a psymtab but not in a symtab. */
2267
2268 static void ATTRIBUTE_NORETURN
2269 error_in_psymtab_expansion (int block_index, const char *name,
2270 struct compunit_symtab *cust)
2271 {
2272 error (_("\
2273 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2274 %s may be an inlined function, or may be a template function\n \
2275 (if a template, try specifying an instantiation: %s<type>)."),
2276 block_index == GLOBAL_BLOCK ? "global" : "static",
2277 name,
2278 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2279 name, name);
2280 }
2281
2282 /* A helper function for various lookup routines that interfaces with
2283 the "quick" symbol table functions. */
2284
2285 static struct block_symbol
2286 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2287 const char *name, const domain_enum domain)
2288 {
2289 struct compunit_symtab *cust;
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2293
2294 if (!objfile->sf)
2295 return (struct block_symbol) {NULL, NULL};
2296
2297 if (symbol_lookup_debug > 1)
2298 {
2299 fprintf_unfiltered (gdb_stdlog,
2300 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2301 objfile_debug_name (objfile),
2302 block_index == GLOBAL_BLOCK
2303 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2304 name, domain_name (domain));
2305 }
2306
2307 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2308 if (cust == NULL)
2309 {
2310 if (symbol_lookup_debug > 1)
2311 {
2312 fprintf_unfiltered (gdb_stdlog,
2313 "lookup_symbol_via_quick_fns (...) = NULL\n");
2314 }
2315 return (struct block_symbol) {NULL, NULL};
2316 }
2317
2318 bv = COMPUNIT_BLOCKVECTOR (cust);
2319 block = BLOCKVECTOR_BLOCK (bv, block_index);
2320 result.symbol = block_lookup_symbol (block, name, domain);
2321 if (result.symbol == NULL)
2322 error_in_psymtab_expansion (block_index, name, cust);
2323
2324 if (symbol_lookup_debug > 1)
2325 {
2326 fprintf_unfiltered (gdb_stdlog,
2327 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2328 host_address_to_string (result.symbol),
2329 host_address_to_string (block));
2330 }
2331
2332 result.symbol = fixup_symbol_section (result.symbol, objfile);
2333 result.block = block;
2334 return result;
2335 }
2336
2337 /* See symtab.h. */
2338
2339 struct block_symbol
2340 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2341 const char *name,
2342 const struct block *block,
2343 const domain_enum domain)
2344 {
2345 struct block_symbol result;
2346
2347 /* NOTE: carlton/2003-05-19: The comments below were written when
2348 this (or what turned into this) was part of lookup_symbol_aux;
2349 I'm much less worried about these questions now, since these
2350 decisions have turned out well, but I leave these comments here
2351 for posterity. */
2352
2353 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2354 not it would be appropriate to search the current global block
2355 here as well. (That's what this code used to do before the
2356 is_a_field_of_this check was moved up.) On the one hand, it's
2357 redundant with the lookup in all objfiles search that happens
2358 next. On the other hand, if decode_line_1 is passed an argument
2359 like filename:var, then the user presumably wants 'var' to be
2360 searched for in filename. On the third hand, there shouldn't be
2361 multiple global variables all of which are named 'var', and it's
2362 not like decode_line_1 has ever restricted its search to only
2363 global variables in a single filename. All in all, only
2364 searching the static block here seems best: it's correct and it's
2365 cleanest. */
2366
2367 /* NOTE: carlton/2002-12-05: There's also a possible performance
2368 issue here: if you usually search for global symbols in the
2369 current file, then it would be slightly better to search the
2370 current global block before searching all the symtabs. But there
2371 are other factors that have a much greater effect on performance
2372 than that one, so I don't think we should worry about that for
2373 now. */
2374
2375 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2376 the current objfile. Searching the current objfile first is useful
2377 for both matching user expectations as well as performance. */
2378
2379 result = lookup_symbol_in_static_block (name, block, domain);
2380 if (result.symbol != NULL)
2381 return result;
2382
2383 /* If we didn't find a definition for a builtin type in the static block,
2384 search for it now. This is actually the right thing to do and can be
2385 a massive performance win. E.g., when debugging a program with lots of
2386 shared libraries we could search all of them only to find out the
2387 builtin type isn't defined in any of them. This is common for types
2388 like "void". */
2389 if (domain == VAR_DOMAIN)
2390 {
2391 struct gdbarch *gdbarch;
2392
2393 if (block == NULL)
2394 gdbarch = target_gdbarch ();
2395 else
2396 gdbarch = block_gdbarch (block);
2397 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2398 gdbarch, name);
2399 result.block = NULL;
2400 if (result.symbol != NULL)
2401 return result;
2402 }
2403
2404 return lookup_global_symbol (name, block, domain);
2405 }
2406
2407 /* See symtab.h. */
2408
2409 struct block_symbol
2410 lookup_symbol_in_static_block (const char *name,
2411 const struct block *block,
2412 const domain_enum domain)
2413 {
2414 const struct block *static_block = block_static_block (block);
2415 struct symbol *sym;
2416
2417 if (static_block == NULL)
2418 return (struct block_symbol) {NULL, NULL};
2419
2420 if (symbol_lookup_debug)
2421 {
2422 struct objfile *objfile = lookup_objfile_from_block (static_block);
2423
2424 fprintf_unfiltered (gdb_stdlog,
2425 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2426 " %s)\n",
2427 name,
2428 host_address_to_string (block),
2429 objfile_debug_name (objfile),
2430 domain_name (domain));
2431 }
2432
2433 sym = lookup_symbol_in_block (name, static_block, domain);
2434 if (symbol_lookup_debug)
2435 {
2436 fprintf_unfiltered (gdb_stdlog,
2437 "lookup_symbol_in_static_block (...) = %s\n",
2438 sym != NULL ? host_address_to_string (sym) : "NULL");
2439 }
2440 return (struct block_symbol) {sym, static_block};
2441 }
2442
2443 /* Perform the standard symbol lookup of NAME in OBJFILE:
2444 1) First search expanded symtabs, and if not found
2445 2) Search the "quick" symtabs (partial or .gdb_index).
2446 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2447
2448 static struct block_symbol
2449 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2450 const char *name, const domain_enum domain)
2451 {
2452 struct block_symbol result;
2453
2454 if (symbol_lookup_debug)
2455 {
2456 fprintf_unfiltered (gdb_stdlog,
2457 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2458 objfile_debug_name (objfile),
2459 block_index == GLOBAL_BLOCK
2460 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2461 name, domain_name (domain));
2462 }
2463
2464 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2465 name, domain);
2466 if (result.symbol != NULL)
2467 {
2468 if (symbol_lookup_debug)
2469 {
2470 fprintf_unfiltered (gdb_stdlog,
2471 "lookup_symbol_in_objfile (...) = %s"
2472 " (in symtabs)\n",
2473 host_address_to_string (result.symbol));
2474 }
2475 return result;
2476 }
2477
2478 result = lookup_symbol_via_quick_fns (objfile, block_index,
2479 name, domain);
2480 if (symbol_lookup_debug)
2481 {
2482 fprintf_unfiltered (gdb_stdlog,
2483 "lookup_symbol_in_objfile (...) = %s%s\n",
2484 result.symbol != NULL
2485 ? host_address_to_string (result.symbol)
2486 : "NULL",
2487 result.symbol != NULL ? " (via quick fns)" : "");
2488 }
2489 return result;
2490 }
2491
2492 /* See symtab.h. */
2493
2494 struct block_symbol
2495 lookup_static_symbol (const char *name, const domain_enum domain)
2496 {
2497 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2498 struct objfile *objfile;
2499 struct block_symbol result;
2500 struct block_symbol_cache *bsc;
2501 struct symbol_cache_slot *slot;
2502
2503 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2504 NULL for OBJFILE_CONTEXT. */
2505 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2506 &bsc, &slot);
2507 if (result.symbol != NULL)
2508 {
2509 if (SYMBOL_LOOKUP_FAILED_P (result))
2510 return (struct block_symbol) {NULL, NULL};
2511 return result;
2512 }
2513
2514 ALL_OBJFILES (objfile)
2515 {
2516 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2517 if (result.symbol != NULL)
2518 {
2519 /* Still pass NULL for OBJFILE_CONTEXT here. */
2520 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2521 result.block);
2522 return result;
2523 }
2524 }
2525
2526 /* Still pass NULL for OBJFILE_CONTEXT here. */
2527 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2528 return (struct block_symbol) {NULL, NULL};
2529 }
2530
2531 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2532
2533 struct global_sym_lookup_data
2534 {
2535 /* The name of the symbol we are searching for. */
2536 const char *name;
2537
2538 /* The domain to use for our search. */
2539 domain_enum domain;
2540
2541 /* The field where the callback should store the symbol if found.
2542 It should be initialized to {NULL, NULL} before the search is started. */
2543 struct block_symbol result;
2544 };
2545
2546 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2547 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2548 OBJFILE. The arguments for the search are passed via CB_DATA,
2549 which in reality is a pointer to struct global_sym_lookup_data. */
2550
2551 static int
2552 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2553 void *cb_data)
2554 {
2555 struct global_sym_lookup_data *data =
2556 (struct global_sym_lookup_data *) cb_data;
2557
2558 gdb_assert (data->result.symbol == NULL
2559 && data->result.block == NULL);
2560
2561 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2562 data->name, data->domain);
2563
2564 /* If we found a match, tell the iterator to stop. Otherwise,
2565 keep going. */
2566 return (data->result.symbol != NULL);
2567 }
2568
2569 /* See symtab.h. */
2570
2571 struct block_symbol
2572 lookup_global_symbol (const char *name,
2573 const struct block *block,
2574 const domain_enum domain)
2575 {
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct block_symbol result;
2578 struct objfile *objfile;
2579 struct global_sym_lookup_data lookup_data;
2580 struct block_symbol_cache *bsc;
2581 struct symbol_cache_slot *slot;
2582
2583 objfile = lookup_objfile_from_block (block);
2584
2585 /* First see if we can find the symbol in the cache.
2586 This works because we use the current objfile to qualify the lookup. */
2587 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2588 &bsc, &slot);
2589 if (result.symbol != NULL)
2590 {
2591 if (SYMBOL_LOOKUP_FAILED_P (result))
2592 return (struct block_symbol) {NULL, NULL};
2593 return result;
2594 }
2595
2596 /* Call library-specific lookup procedure. */
2597 if (objfile != NULL)
2598 result = solib_global_lookup (objfile, name, domain);
2599
2600 /* If that didn't work go a global search (of global blocks, heh). */
2601 if (result.symbol == NULL)
2602 {
2603 memset (&lookup_data, 0, sizeof (lookup_data));
2604 lookup_data.name = name;
2605 lookup_data.domain = domain;
2606 gdbarch_iterate_over_objfiles_in_search_order
2607 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2608 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2609 result = lookup_data.result;
2610 }
2611
2612 if (result.symbol != NULL)
2613 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2614 else
2615 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2616
2617 return result;
2618 }
2619
2620 int
2621 symbol_matches_domain (enum language symbol_language,
2622 domain_enum symbol_domain,
2623 domain_enum domain)
2624 {
2625 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2626 Similarly, any Ada type declaration implicitly defines a typedef. */
2627 if (symbol_language == language_cplus
2628 || symbol_language == language_d
2629 || symbol_language == language_ada
2630 || symbol_language == language_rust)
2631 {
2632 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2633 && symbol_domain == STRUCT_DOMAIN)
2634 return 1;
2635 }
2636 /* For all other languages, strict match is required. */
2637 return (symbol_domain == domain);
2638 }
2639
2640 /* See symtab.h. */
2641
2642 struct type *
2643 lookup_transparent_type (const char *name)
2644 {
2645 return current_language->la_lookup_transparent_type (name);
2646 }
2647
2648 /* A helper for basic_lookup_transparent_type that interfaces with the
2649 "quick" symbol table functions. */
2650
2651 static struct type *
2652 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2653 const char *name)
2654 {
2655 struct compunit_symtab *cust;
2656 const struct blockvector *bv;
2657 struct block *block;
2658 struct symbol *sym;
2659
2660 if (!objfile->sf)
2661 return NULL;
2662 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2663 STRUCT_DOMAIN);
2664 if (cust == NULL)
2665 return NULL;
2666
2667 bv = COMPUNIT_BLOCKVECTOR (cust);
2668 block = BLOCKVECTOR_BLOCK (bv, block_index);
2669 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2670 block_find_non_opaque_type, NULL);
2671 if (sym == NULL)
2672 error_in_psymtab_expansion (block_index, name, cust);
2673 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2674 return SYMBOL_TYPE (sym);
2675 }
2676
2677 /* Subroutine of basic_lookup_transparent_type to simplify it.
2678 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2679 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2680
2681 static struct type *
2682 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2683 const char *name)
2684 {
2685 const struct compunit_symtab *cust;
2686 const struct blockvector *bv;
2687 const struct block *block;
2688 const struct symbol *sym;
2689
2690 ALL_OBJFILE_COMPUNITS (objfile, cust)
2691 {
2692 bv = COMPUNIT_BLOCKVECTOR (cust);
2693 block = BLOCKVECTOR_BLOCK (bv, block_index);
2694 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2695 block_find_non_opaque_type, NULL);
2696 if (sym != NULL)
2697 {
2698 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2699 return SYMBOL_TYPE (sym);
2700 }
2701 }
2702
2703 return NULL;
2704 }
2705
2706 /* The standard implementation of lookup_transparent_type. This code
2707 was modeled on lookup_symbol -- the parts not relevant to looking
2708 up types were just left out. In particular it's assumed here that
2709 types are available in STRUCT_DOMAIN and only in file-static or
2710 global blocks. */
2711
2712 struct type *
2713 basic_lookup_transparent_type (const char *name)
2714 {
2715 struct objfile *objfile;
2716 struct type *t;
2717
2718 /* Now search all the global symbols. Do the symtab's first, then
2719 check the psymtab's. If a psymtab indicates the existence
2720 of the desired name as a global, then do psymtab-to-symtab
2721 conversion on the fly and return the found symbol. */
2722
2723 ALL_OBJFILES (objfile)
2724 {
2725 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2726 if (t)
2727 return t;
2728 }
2729
2730 ALL_OBJFILES (objfile)
2731 {
2732 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2733 if (t)
2734 return t;
2735 }
2736
2737 /* Now search the static file-level symbols.
2738 Not strictly correct, but more useful than an error.
2739 Do the symtab's first, then
2740 check the psymtab's. If a psymtab indicates the existence
2741 of the desired name as a file-level static, then do psymtab-to-symtab
2742 conversion on the fly and return the found symbol. */
2743
2744 ALL_OBJFILES (objfile)
2745 {
2746 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2747 if (t)
2748 return t;
2749 }
2750
2751 ALL_OBJFILES (objfile)
2752 {
2753 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2754 if (t)
2755 return t;
2756 }
2757
2758 return (struct type *) 0;
2759 }
2760
2761 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2762
2763 For each symbol that matches, CALLBACK is called. The symbol is
2764 passed to the callback.
2765
2766 If CALLBACK returns false, the iteration ends. Otherwise, the
2767 search continues. */
2768
2769 void
2770 iterate_over_symbols (const struct block *block, const char *name,
2771 const domain_enum domain,
2772 gdb::function_view<symbol_found_callback_ftype> callback)
2773 {
2774 struct block_iterator iter;
2775 struct symbol *sym;
2776
2777 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2778 {
2779 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2780 SYMBOL_DOMAIN (sym), domain))
2781 {
2782 if (!callback (sym))
2783 return;
2784 }
2785 }
2786 }
2787
2788 /* Find the compunit symtab associated with PC and SECTION.
2789 This will read in debug info as necessary. */
2790
2791 struct compunit_symtab *
2792 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2793 {
2794 struct compunit_symtab *cust;
2795 struct compunit_symtab *best_cust = NULL;
2796 struct objfile *objfile;
2797 CORE_ADDR distance = 0;
2798 struct bound_minimal_symbol msymbol;
2799
2800 /* If we know that this is not a text address, return failure. This is
2801 necessary because we loop based on the block's high and low code
2802 addresses, which do not include the data ranges, and because
2803 we call find_pc_sect_psymtab which has a similar restriction based
2804 on the partial_symtab's texthigh and textlow. */
2805 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2806 if (msymbol.minsym
2807 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2808 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2810 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2811 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2812 return NULL;
2813
2814 /* Search all symtabs for the one whose file contains our address, and which
2815 is the smallest of all the ones containing the address. This is designed
2816 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2817 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2818 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2819
2820 This happens for native ecoff format, where code from included files
2821 gets its own symtab. The symtab for the included file should have
2822 been read in already via the dependency mechanism.
2823 It might be swifter to create several symtabs with the same name
2824 like xcoff does (I'm not sure).
2825
2826 It also happens for objfiles that have their functions reordered.
2827 For these, the symtab we are looking for is not necessarily read in. */
2828
2829 ALL_COMPUNITS (objfile, cust)
2830 {
2831 struct block *b;
2832 const struct blockvector *bv;
2833
2834 bv = COMPUNIT_BLOCKVECTOR (cust);
2835 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2836
2837 if (BLOCK_START (b) <= pc
2838 && BLOCK_END (b) > pc
2839 && (distance == 0
2840 || BLOCK_END (b) - BLOCK_START (b) < distance))
2841 {
2842 /* For an objfile that has its functions reordered,
2843 find_pc_psymtab will find the proper partial symbol table
2844 and we simply return its corresponding symtab. */
2845 /* In order to better support objfiles that contain both
2846 stabs and coff debugging info, we continue on if a psymtab
2847 can't be found. */
2848 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2849 {
2850 struct compunit_symtab *result;
2851
2852 result
2853 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2854 msymbol,
2855 pc, section,
2856 0);
2857 if (result != NULL)
2858 return result;
2859 }
2860 if (section != 0)
2861 {
2862 struct block_iterator iter;
2863 struct symbol *sym = NULL;
2864
2865 ALL_BLOCK_SYMBOLS (b, iter, sym)
2866 {
2867 fixup_symbol_section (sym, objfile);
2868 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2869 section))
2870 break;
2871 }
2872 if (sym == NULL)
2873 continue; /* No symbol in this symtab matches
2874 section. */
2875 }
2876 distance = BLOCK_END (b) - BLOCK_START (b);
2877 best_cust = cust;
2878 }
2879 }
2880
2881 if (best_cust != NULL)
2882 return best_cust;
2883
2884 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2885
2886 ALL_OBJFILES (objfile)
2887 {
2888 struct compunit_symtab *result;
2889
2890 if (!objfile->sf)
2891 continue;
2892 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2893 msymbol,
2894 pc, section,
2895 1);
2896 if (result != NULL)
2897 return result;
2898 }
2899
2900 return NULL;
2901 }
2902
2903 /* Find the compunit symtab associated with PC.
2904 This will read in debug info as necessary.
2905 Backward compatibility, no section. */
2906
2907 struct compunit_symtab *
2908 find_pc_compunit_symtab (CORE_ADDR pc)
2909 {
2910 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2911 }
2912 \f
2913
2914 /* Find the source file and line number for a given PC value and SECTION.
2915 Return a structure containing a symtab pointer, a line number,
2916 and a pc range for the entire source line.
2917 The value's .pc field is NOT the specified pc.
2918 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2919 use the line that ends there. Otherwise, in that case, the line
2920 that begins there is used. */
2921
2922 /* The big complication here is that a line may start in one file, and end just
2923 before the start of another file. This usually occurs when you #include
2924 code in the middle of a subroutine. To properly find the end of a line's PC
2925 range, we must search all symtabs associated with this compilation unit, and
2926 find the one whose first PC is closer than that of the next line in this
2927 symtab. */
2928
2929 /* If it's worth the effort, we could be using a binary search. */
2930
2931 struct symtab_and_line
2932 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2933 {
2934 struct compunit_symtab *cust;
2935 struct symtab *iter_s;
2936 struct linetable *l;
2937 int len;
2938 int i;
2939 struct linetable_entry *item;
2940 struct symtab_and_line val;
2941 const struct blockvector *bv;
2942 struct bound_minimal_symbol msymbol;
2943
2944 /* Info on best line seen so far, and where it starts, and its file. */
2945
2946 struct linetable_entry *best = NULL;
2947 CORE_ADDR best_end = 0;
2948 struct symtab *best_symtab = 0;
2949
2950 /* Store here the first line number
2951 of a file which contains the line at the smallest pc after PC.
2952 If we don't find a line whose range contains PC,
2953 we will use a line one less than this,
2954 with a range from the start of that file to the first line's pc. */
2955 struct linetable_entry *alt = NULL;
2956
2957 /* Info on best line seen in this file. */
2958
2959 struct linetable_entry *prev;
2960
2961 /* If this pc is not from the current frame,
2962 it is the address of the end of a call instruction.
2963 Quite likely that is the start of the following statement.
2964 But what we want is the statement containing the instruction.
2965 Fudge the pc to make sure we get that. */
2966
2967 init_sal (&val); /* initialize to zeroes */
2968
2969 val.pspace = current_program_space;
2970
2971 /* It's tempting to assume that, if we can't find debugging info for
2972 any function enclosing PC, that we shouldn't search for line
2973 number info, either. However, GAS can emit line number info for
2974 assembly files --- very helpful when debugging hand-written
2975 assembly code. In such a case, we'd have no debug info for the
2976 function, but we would have line info. */
2977
2978 if (notcurrent)
2979 pc -= 1;
2980
2981 /* elz: added this because this function returned the wrong
2982 information if the pc belongs to a stub (import/export)
2983 to call a shlib function. This stub would be anywhere between
2984 two functions in the target, and the line info was erroneously
2985 taken to be the one of the line before the pc. */
2986
2987 /* RT: Further explanation:
2988
2989 * We have stubs (trampolines) inserted between procedures.
2990 *
2991 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2992 * exists in the main image.
2993 *
2994 * In the minimal symbol table, we have a bunch of symbols
2995 * sorted by start address. The stubs are marked as "trampoline",
2996 * the others appear as text. E.g.:
2997 *
2998 * Minimal symbol table for main image
2999 * main: code for main (text symbol)
3000 * shr1: stub (trampoline symbol)
3001 * foo: code for foo (text symbol)
3002 * ...
3003 * Minimal symbol table for "shr1" image:
3004 * ...
3005 * shr1: code for shr1 (text symbol)
3006 * ...
3007 *
3008 * So the code below is trying to detect if we are in the stub
3009 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3010 * and if found, do the symbolization from the real-code address
3011 * rather than the stub address.
3012 *
3013 * Assumptions being made about the minimal symbol table:
3014 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3015 * if we're really in the trampoline.s If we're beyond it (say
3016 * we're in "foo" in the above example), it'll have a closer
3017 * symbol (the "foo" text symbol for example) and will not
3018 * return the trampoline.
3019 * 2. lookup_minimal_symbol_text() will find a real text symbol
3020 * corresponding to the trampoline, and whose address will
3021 * be different than the trampoline address. I put in a sanity
3022 * check for the address being the same, to avoid an
3023 * infinite recursion.
3024 */
3025 msymbol = lookup_minimal_symbol_by_pc (pc);
3026 if (msymbol.minsym != NULL)
3027 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3028 {
3029 struct bound_minimal_symbol mfunsym
3030 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3031 NULL);
3032
3033 if (mfunsym.minsym == NULL)
3034 /* I eliminated this warning since it is coming out
3035 * in the following situation:
3036 * gdb shmain // test program with shared libraries
3037 * (gdb) break shr1 // function in shared lib
3038 * Warning: In stub for ...
3039 * In the above situation, the shared lib is not loaded yet,
3040 * so of course we can't find the real func/line info,
3041 * but the "break" still works, and the warning is annoying.
3042 * So I commented out the warning. RT */
3043 /* warning ("In stub for %s; unable to find real function/line info",
3044 SYMBOL_LINKAGE_NAME (msymbol)); */
3045 ;
3046 /* fall through */
3047 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3048 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3049 /* Avoid infinite recursion */
3050 /* See above comment about why warning is commented out. */
3051 /* warning ("In stub for %s; unable to find real function/line info",
3052 SYMBOL_LINKAGE_NAME (msymbol)); */
3053 ;
3054 /* fall through */
3055 else
3056 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3057 }
3058
3059
3060 cust = find_pc_sect_compunit_symtab (pc, section);
3061 if (cust == NULL)
3062 {
3063 /* If no symbol information, return previous pc. */
3064 if (notcurrent)
3065 pc++;
3066 val.pc = pc;
3067 return val;
3068 }
3069
3070 bv = COMPUNIT_BLOCKVECTOR (cust);
3071
3072 /* Look at all the symtabs that share this blockvector.
3073 They all have the same apriori range, that we found was right;
3074 but they have different line tables. */
3075
3076 ALL_COMPUNIT_FILETABS (cust, iter_s)
3077 {
3078 /* Find the best line in this symtab. */
3079 l = SYMTAB_LINETABLE (iter_s);
3080 if (!l)
3081 continue;
3082 len = l->nitems;
3083 if (len <= 0)
3084 {
3085 /* I think len can be zero if the symtab lacks line numbers
3086 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3087 I'm not sure which, and maybe it depends on the symbol
3088 reader). */
3089 continue;
3090 }
3091
3092 prev = NULL;
3093 item = l->item; /* Get first line info. */
3094
3095 /* Is this file's first line closer than the first lines of other files?
3096 If so, record this file, and its first line, as best alternate. */
3097 if (item->pc > pc && (!alt || item->pc < alt->pc))
3098 alt = item;
3099
3100 for (i = 0; i < len; i++, item++)
3101 {
3102 /* Leave prev pointing to the linetable entry for the last line
3103 that started at or before PC. */
3104 if (item->pc > pc)
3105 break;
3106
3107 prev = item;
3108 }
3109
3110 /* At this point, prev points at the line whose start addr is <= pc, and
3111 item points at the next line. If we ran off the end of the linetable
3112 (pc >= start of the last line), then prev == item. If pc < start of
3113 the first line, prev will not be set. */
3114
3115 /* Is this file's best line closer than the best in the other files?
3116 If so, record this file, and its best line, as best so far. Don't
3117 save prev if it represents the end of a function (i.e. line number
3118 0) instead of a real line. */
3119
3120 if (prev && prev->line && (!best || prev->pc > best->pc))
3121 {
3122 best = prev;
3123 best_symtab = iter_s;
3124
3125 /* Discard BEST_END if it's before the PC of the current BEST. */
3126 if (best_end <= best->pc)
3127 best_end = 0;
3128 }
3129
3130 /* If another line (denoted by ITEM) is in the linetable and its
3131 PC is after BEST's PC, but before the current BEST_END, then
3132 use ITEM's PC as the new best_end. */
3133 if (best && i < len && item->pc > best->pc
3134 && (best_end == 0 || best_end > item->pc))
3135 best_end = item->pc;
3136 }
3137
3138 if (!best_symtab)
3139 {
3140 /* If we didn't find any line number info, just return zeros.
3141 We used to return alt->line - 1 here, but that could be
3142 anywhere; if we don't have line number info for this PC,
3143 don't make some up. */
3144 val.pc = pc;
3145 }
3146 else if (best->line == 0)
3147 {
3148 /* If our best fit is in a range of PC's for which no line
3149 number info is available (line number is zero) then we didn't
3150 find any valid line information. */
3151 val.pc = pc;
3152 }
3153 else
3154 {
3155 val.symtab = best_symtab;
3156 val.line = best->line;
3157 val.pc = best->pc;
3158 if (best_end && (!alt || best_end < alt->pc))
3159 val.end = best_end;
3160 else if (alt)
3161 val.end = alt->pc;
3162 else
3163 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3164 }
3165 val.section = section;
3166 return val;
3167 }
3168
3169 /* Backward compatibility (no section). */
3170
3171 struct symtab_and_line
3172 find_pc_line (CORE_ADDR pc, int notcurrent)
3173 {
3174 struct obj_section *section;
3175
3176 section = find_pc_overlay (pc);
3177 if (pc_in_unmapped_range (pc, section))
3178 pc = overlay_mapped_address (pc, section);
3179 return find_pc_sect_line (pc, section, notcurrent);
3180 }
3181
3182 /* See symtab.h. */
3183
3184 struct symtab *
3185 find_pc_line_symtab (CORE_ADDR pc)
3186 {
3187 struct symtab_and_line sal;
3188
3189 /* This always passes zero for NOTCURRENT to find_pc_line.
3190 There are currently no callers that ever pass non-zero. */
3191 sal = find_pc_line (pc, 0);
3192 return sal.symtab;
3193 }
3194 \f
3195 /* Find line number LINE in any symtab whose name is the same as
3196 SYMTAB.
3197
3198 If found, return the symtab that contains the linetable in which it was
3199 found, set *INDEX to the index in the linetable of the best entry
3200 found, and set *EXACT_MATCH nonzero if the value returned is an
3201 exact match.
3202
3203 If not found, return NULL. */
3204
3205 struct symtab *
3206 find_line_symtab (struct symtab *symtab, int line,
3207 int *index, int *exact_match)
3208 {
3209 int exact = 0; /* Initialized here to avoid a compiler warning. */
3210
3211 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3212 so far seen. */
3213
3214 int best_index;
3215 struct linetable *best_linetable;
3216 struct symtab *best_symtab;
3217
3218 /* First try looking it up in the given symtab. */
3219 best_linetable = SYMTAB_LINETABLE (symtab);
3220 best_symtab = symtab;
3221 best_index = find_line_common (best_linetable, line, &exact, 0);
3222 if (best_index < 0 || !exact)
3223 {
3224 /* Didn't find an exact match. So we better keep looking for
3225 another symtab with the same name. In the case of xcoff,
3226 multiple csects for one source file (produced by IBM's FORTRAN
3227 compiler) produce multiple symtabs (this is unavoidable
3228 assuming csects can be at arbitrary places in memory and that
3229 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3230
3231 /* BEST is the smallest linenumber > LINE so far seen,
3232 or 0 if none has been seen so far.
3233 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3234 int best;
3235
3236 struct objfile *objfile;
3237 struct compunit_symtab *cu;
3238 struct symtab *s;
3239
3240 if (best_index >= 0)
3241 best = best_linetable->item[best_index].line;
3242 else
3243 best = 0;
3244
3245 ALL_OBJFILES (objfile)
3246 {
3247 if (objfile->sf)
3248 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3249 symtab_to_fullname (symtab));
3250 }
3251
3252 ALL_FILETABS (objfile, cu, s)
3253 {
3254 struct linetable *l;
3255 int ind;
3256
3257 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3258 continue;
3259 if (FILENAME_CMP (symtab_to_fullname (symtab),
3260 symtab_to_fullname (s)) != 0)
3261 continue;
3262 l = SYMTAB_LINETABLE (s);
3263 ind = find_line_common (l, line, &exact, 0);
3264 if (ind >= 0)
3265 {
3266 if (exact)
3267 {
3268 best_index = ind;
3269 best_linetable = l;
3270 best_symtab = s;
3271 goto done;
3272 }
3273 if (best == 0 || l->item[ind].line < best)
3274 {
3275 best = l->item[ind].line;
3276 best_index = ind;
3277 best_linetable = l;
3278 best_symtab = s;
3279 }
3280 }
3281 }
3282 }
3283 done:
3284 if (best_index < 0)
3285 return NULL;
3286
3287 if (index)
3288 *index = best_index;
3289 if (exact_match)
3290 *exact_match = exact;
3291
3292 return best_symtab;
3293 }
3294
3295 /* Given SYMTAB, returns all the PCs function in the symtab that
3296 exactly match LINE. Returns an empty vector if there are no exact
3297 matches, but updates BEST_ITEM in this case. */
3298
3299 std::vector<CORE_ADDR>
3300 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3301 struct linetable_entry **best_item)
3302 {
3303 int start = 0;
3304 std::vector<CORE_ADDR> result;
3305
3306 /* First, collect all the PCs that are at this line. */
3307 while (1)
3308 {
3309 int was_exact;
3310 int idx;
3311
3312 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3313 start);
3314 if (idx < 0)
3315 break;
3316
3317 if (!was_exact)
3318 {
3319 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3320
3321 if (*best_item == NULL || item->line < (*best_item)->line)
3322 *best_item = item;
3323
3324 break;
3325 }
3326
3327 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3328 start = idx + 1;
3329 }
3330
3331 return result;
3332 }
3333
3334 \f
3335 /* Set the PC value for a given source file and line number and return true.
3336 Returns zero for invalid line number (and sets the PC to 0).
3337 The source file is specified with a struct symtab. */
3338
3339 int
3340 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3341 {
3342 struct linetable *l;
3343 int ind;
3344
3345 *pc = 0;
3346 if (symtab == 0)
3347 return 0;
3348
3349 symtab = find_line_symtab (symtab, line, &ind, NULL);
3350 if (symtab != NULL)
3351 {
3352 l = SYMTAB_LINETABLE (symtab);
3353 *pc = l->item[ind].pc;
3354 return 1;
3355 }
3356 else
3357 return 0;
3358 }
3359
3360 /* Find the range of pc values in a line.
3361 Store the starting pc of the line into *STARTPTR
3362 and the ending pc (start of next line) into *ENDPTR.
3363 Returns 1 to indicate success.
3364 Returns 0 if could not find the specified line. */
3365
3366 int
3367 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3368 CORE_ADDR *endptr)
3369 {
3370 CORE_ADDR startaddr;
3371 struct symtab_and_line found_sal;
3372
3373 startaddr = sal.pc;
3374 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3375 return 0;
3376
3377 /* This whole function is based on address. For example, if line 10 has
3378 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3379 "info line *0x123" should say the line goes from 0x100 to 0x200
3380 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3381 This also insures that we never give a range like "starts at 0x134
3382 and ends at 0x12c". */
3383
3384 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3385 if (found_sal.line != sal.line)
3386 {
3387 /* The specified line (sal) has zero bytes. */
3388 *startptr = found_sal.pc;
3389 *endptr = found_sal.pc;
3390 }
3391 else
3392 {
3393 *startptr = found_sal.pc;
3394 *endptr = found_sal.end;
3395 }
3396 return 1;
3397 }
3398
3399 /* Given a line table and a line number, return the index into the line
3400 table for the pc of the nearest line whose number is >= the specified one.
3401 Return -1 if none is found. The value is >= 0 if it is an index.
3402 START is the index at which to start searching the line table.
3403
3404 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3405
3406 static int
3407 find_line_common (struct linetable *l, int lineno,
3408 int *exact_match, int start)
3409 {
3410 int i;
3411 int len;
3412
3413 /* BEST is the smallest linenumber > LINENO so far seen,
3414 or 0 if none has been seen so far.
3415 BEST_INDEX identifies the item for it. */
3416
3417 int best_index = -1;
3418 int best = 0;
3419
3420 *exact_match = 0;
3421
3422 if (lineno <= 0)
3423 return -1;
3424 if (l == 0)
3425 return -1;
3426
3427 len = l->nitems;
3428 for (i = start; i < len; i++)
3429 {
3430 struct linetable_entry *item = &(l->item[i]);
3431
3432 if (item->line == lineno)
3433 {
3434 /* Return the first (lowest address) entry which matches. */
3435 *exact_match = 1;
3436 return i;
3437 }
3438
3439 if (item->line > lineno && (best == 0 || item->line < best))
3440 {
3441 best = item->line;
3442 best_index = i;
3443 }
3444 }
3445
3446 /* If we got here, we didn't get an exact match. */
3447 return best_index;
3448 }
3449
3450 int
3451 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3452 {
3453 struct symtab_and_line sal;
3454
3455 sal = find_pc_line (pc, 0);
3456 *startptr = sal.pc;
3457 *endptr = sal.end;
3458 return sal.symtab != 0;
3459 }
3460
3461 /* Given a function symbol SYM, find the symtab and line for the start
3462 of the function.
3463 If the argument FUNFIRSTLINE is nonzero, we want the first line
3464 of real code inside the function.
3465 This function should return SALs matching those from minsym_found,
3466 otherwise false multiple-locations breakpoints could be placed. */
3467
3468 struct symtab_and_line
3469 find_function_start_sal (struct symbol *sym, int funfirstline)
3470 {
3471 struct symtab_and_line sal;
3472 struct obj_section *section;
3473
3474 fixup_symbol_section (sym, NULL);
3475 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3476 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3477
3478 if (funfirstline && sal.symtab != NULL
3479 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3480 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3481 {
3482 struct gdbarch *gdbarch = symbol_arch (sym);
3483
3484 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3485 if (gdbarch_skip_entrypoint_p (gdbarch))
3486 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3487 return sal;
3488 }
3489
3490 /* We always should have a line for the function start address.
3491 If we don't, something is odd. Create a plain SAL refering
3492 just the PC and hope that skip_prologue_sal (if requested)
3493 can find a line number for after the prologue. */
3494 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3495 {
3496 init_sal (&sal);
3497 sal.pspace = current_program_space;
3498 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3499 sal.section = section;
3500 }
3501
3502 if (funfirstline)
3503 skip_prologue_sal (&sal);
3504
3505 return sal;
3506 }
3507
3508 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3509 address for that function that has an entry in SYMTAB's line info
3510 table. If such an entry cannot be found, return FUNC_ADDR
3511 unaltered. */
3512
3513 static CORE_ADDR
3514 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3515 {
3516 CORE_ADDR func_start, func_end;
3517 struct linetable *l;
3518 int i;
3519
3520 /* Give up if this symbol has no lineinfo table. */
3521 l = SYMTAB_LINETABLE (symtab);
3522 if (l == NULL)
3523 return func_addr;
3524
3525 /* Get the range for the function's PC values, or give up if we
3526 cannot, for some reason. */
3527 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3528 return func_addr;
3529
3530 /* Linetable entries are ordered by PC values, see the commentary in
3531 symtab.h where `struct linetable' is defined. Thus, the first
3532 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3533 address we are looking for. */
3534 for (i = 0; i < l->nitems; i++)
3535 {
3536 struct linetable_entry *item = &(l->item[i]);
3537
3538 /* Don't use line numbers of zero, they mark special entries in
3539 the table. See the commentary on symtab.h before the
3540 definition of struct linetable. */
3541 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3542 return item->pc;
3543 }
3544
3545 return func_addr;
3546 }
3547
3548 /* Adjust SAL to the first instruction past the function prologue.
3549 If the PC was explicitly specified, the SAL is not changed.
3550 If the line number was explicitly specified, at most the SAL's PC
3551 is updated. If SAL is already past the prologue, then do nothing. */
3552
3553 void
3554 skip_prologue_sal (struct symtab_and_line *sal)
3555 {
3556 struct symbol *sym;
3557 struct symtab_and_line start_sal;
3558 CORE_ADDR pc, saved_pc;
3559 struct obj_section *section;
3560 const char *name;
3561 struct objfile *objfile;
3562 struct gdbarch *gdbarch;
3563 const struct block *b, *function_block;
3564 int force_skip, skip;
3565
3566 /* Do not change the SAL if PC was specified explicitly. */
3567 if (sal->explicit_pc)
3568 return;
3569
3570 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3571
3572 switch_to_program_space_and_thread (sal->pspace);
3573
3574 sym = find_pc_sect_function (sal->pc, sal->section);
3575 if (sym != NULL)
3576 {
3577 fixup_symbol_section (sym, NULL);
3578
3579 objfile = symbol_objfile (sym);
3580 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3581 section = SYMBOL_OBJ_SECTION (objfile, sym);
3582 name = SYMBOL_LINKAGE_NAME (sym);
3583 }
3584 else
3585 {
3586 struct bound_minimal_symbol msymbol
3587 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3588
3589 if (msymbol.minsym == NULL)
3590 return;
3591
3592 objfile = msymbol.objfile;
3593 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3594 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3595 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3596 }
3597
3598 gdbarch = get_objfile_arch (objfile);
3599
3600 /* Process the prologue in two passes. In the first pass try to skip the
3601 prologue (SKIP is true) and verify there is a real need for it (indicated
3602 by FORCE_SKIP). If no such reason was found run a second pass where the
3603 prologue is not skipped (SKIP is false). */
3604
3605 skip = 1;
3606 force_skip = 1;
3607
3608 /* Be conservative - allow direct PC (without skipping prologue) only if we
3609 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3610 have to be set by the caller so we use SYM instead. */
3611 if (sym != NULL
3612 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3613 force_skip = 0;
3614
3615 saved_pc = pc;
3616 do
3617 {
3618 pc = saved_pc;
3619
3620 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3621 so that gdbarch_skip_prologue has something unique to work on. */
3622 if (section_is_overlay (section) && !section_is_mapped (section))
3623 pc = overlay_unmapped_address (pc, section);
3624
3625 /* Skip "first line" of function (which is actually its prologue). */
3626 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3627 if (gdbarch_skip_entrypoint_p (gdbarch))
3628 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3629 if (skip)
3630 pc = gdbarch_skip_prologue (gdbarch, pc);
3631
3632 /* For overlays, map pc back into its mapped VMA range. */
3633 pc = overlay_mapped_address (pc, section);
3634
3635 /* Calculate line number. */
3636 start_sal = find_pc_sect_line (pc, section, 0);
3637
3638 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3639 line is still part of the same function. */
3640 if (skip && start_sal.pc != pc
3641 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3642 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3643 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3644 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3645 {
3646 /* First pc of next line */
3647 pc = start_sal.end;
3648 /* Recalculate the line number (might not be N+1). */
3649 start_sal = find_pc_sect_line (pc, section, 0);
3650 }
3651
3652 /* On targets with executable formats that don't have a concept of
3653 constructors (ELF with .init has, PE doesn't), gcc emits a call
3654 to `__main' in `main' between the prologue and before user
3655 code. */
3656 if (gdbarch_skip_main_prologue_p (gdbarch)
3657 && name && strcmp_iw (name, "main") == 0)
3658 {
3659 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3660 /* Recalculate the line number (might not be N+1). */
3661 start_sal = find_pc_sect_line (pc, section, 0);
3662 force_skip = 1;
3663 }
3664 }
3665 while (!force_skip && skip--);
3666
3667 /* If we still don't have a valid source line, try to find the first
3668 PC in the lineinfo table that belongs to the same function. This
3669 happens with COFF debug info, which does not seem to have an
3670 entry in lineinfo table for the code after the prologue which has
3671 no direct relation to source. For example, this was found to be
3672 the case with the DJGPP target using "gcc -gcoff" when the
3673 compiler inserted code after the prologue to make sure the stack
3674 is aligned. */
3675 if (!force_skip && sym && start_sal.symtab == NULL)
3676 {
3677 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3678 /* Recalculate the line number. */
3679 start_sal = find_pc_sect_line (pc, section, 0);
3680 }
3681
3682 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3683 forward SAL to the end of the prologue. */
3684 if (sal->pc >= pc)
3685 return;
3686
3687 sal->pc = pc;
3688 sal->section = section;
3689
3690 /* Unless the explicit_line flag was set, update the SAL line
3691 and symtab to correspond to the modified PC location. */
3692 if (sal->explicit_line)
3693 return;
3694
3695 sal->symtab = start_sal.symtab;
3696 sal->line = start_sal.line;
3697 sal->end = start_sal.end;
3698
3699 /* Check if we are now inside an inlined function. If we can,
3700 use the call site of the function instead. */
3701 b = block_for_pc_sect (sal->pc, sal->section);
3702 function_block = NULL;
3703 while (b != NULL)
3704 {
3705 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3706 function_block = b;
3707 else if (BLOCK_FUNCTION (b) != NULL)
3708 break;
3709 b = BLOCK_SUPERBLOCK (b);
3710 }
3711 if (function_block != NULL
3712 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3713 {
3714 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3715 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3716 }
3717 }
3718
3719 /* Given PC at the function's start address, attempt to find the
3720 prologue end using SAL information. Return zero if the skip fails.
3721
3722 A non-optimized prologue traditionally has one SAL for the function
3723 and a second for the function body. A single line function has
3724 them both pointing at the same line.
3725
3726 An optimized prologue is similar but the prologue may contain
3727 instructions (SALs) from the instruction body. Need to skip those
3728 while not getting into the function body.
3729
3730 The functions end point and an increasing SAL line are used as
3731 indicators of the prologue's endpoint.
3732
3733 This code is based on the function refine_prologue_limit
3734 (found in ia64). */
3735
3736 CORE_ADDR
3737 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3738 {
3739 struct symtab_and_line prologue_sal;
3740 CORE_ADDR start_pc;
3741 CORE_ADDR end_pc;
3742 const struct block *bl;
3743
3744 /* Get an initial range for the function. */
3745 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3746 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3747
3748 prologue_sal = find_pc_line (start_pc, 0);
3749 if (prologue_sal.line != 0)
3750 {
3751 /* For languages other than assembly, treat two consecutive line
3752 entries at the same address as a zero-instruction prologue.
3753 The GNU assembler emits separate line notes for each instruction
3754 in a multi-instruction macro, but compilers generally will not
3755 do this. */
3756 if (prologue_sal.symtab->language != language_asm)
3757 {
3758 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3759 int idx = 0;
3760
3761 /* Skip any earlier lines, and any end-of-sequence marker
3762 from a previous function. */
3763 while (linetable->item[idx].pc != prologue_sal.pc
3764 || linetable->item[idx].line == 0)
3765 idx++;
3766
3767 if (idx+1 < linetable->nitems
3768 && linetable->item[idx+1].line != 0
3769 && linetable->item[idx+1].pc == start_pc)
3770 return start_pc;
3771 }
3772
3773 /* If there is only one sal that covers the entire function,
3774 then it is probably a single line function, like
3775 "foo(){}". */
3776 if (prologue_sal.end >= end_pc)
3777 return 0;
3778
3779 while (prologue_sal.end < end_pc)
3780 {
3781 struct symtab_and_line sal;
3782
3783 sal = find_pc_line (prologue_sal.end, 0);
3784 if (sal.line == 0)
3785 break;
3786 /* Assume that a consecutive SAL for the same (or larger)
3787 line mark the prologue -> body transition. */
3788 if (sal.line >= prologue_sal.line)
3789 break;
3790 /* Likewise if we are in a different symtab altogether
3791 (e.g. within a file included via #include).  */
3792 if (sal.symtab != prologue_sal.symtab)
3793 break;
3794
3795 /* The line number is smaller. Check that it's from the
3796 same function, not something inlined. If it's inlined,
3797 then there is no point comparing the line numbers. */
3798 bl = block_for_pc (prologue_sal.end);
3799 while (bl)
3800 {
3801 if (block_inlined_p (bl))
3802 break;
3803 if (BLOCK_FUNCTION (bl))
3804 {
3805 bl = NULL;
3806 break;
3807 }
3808 bl = BLOCK_SUPERBLOCK (bl);
3809 }
3810 if (bl != NULL)
3811 break;
3812
3813 /* The case in which compiler's optimizer/scheduler has
3814 moved instructions into the prologue. We look ahead in
3815 the function looking for address ranges whose
3816 corresponding line number is less the first one that we
3817 found for the function. This is more conservative then
3818 refine_prologue_limit which scans a large number of SALs
3819 looking for any in the prologue. */
3820 prologue_sal = sal;
3821 }
3822 }
3823
3824 if (prologue_sal.end < end_pc)
3825 /* Return the end of this line, or zero if we could not find a
3826 line. */
3827 return prologue_sal.end;
3828 else
3829 /* Don't return END_PC, which is past the end of the function. */
3830 return prologue_sal.pc;
3831 }
3832 \f
3833 /* If P is of the form "operator[ \t]+..." where `...' is
3834 some legitimate operator text, return a pointer to the
3835 beginning of the substring of the operator text.
3836 Otherwise, return "". */
3837
3838 static const char *
3839 operator_chars (const char *p, const char **end)
3840 {
3841 *end = "";
3842 if (!startswith (p, "operator"))
3843 return *end;
3844 p += 8;
3845
3846 /* Don't get faked out by `operator' being part of a longer
3847 identifier. */
3848 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3849 return *end;
3850
3851 /* Allow some whitespace between `operator' and the operator symbol. */
3852 while (*p == ' ' || *p == '\t')
3853 p++;
3854
3855 /* Recognize 'operator TYPENAME'. */
3856
3857 if (isalpha (*p) || *p == '_' || *p == '$')
3858 {
3859 const char *q = p + 1;
3860
3861 while (isalnum (*q) || *q == '_' || *q == '$')
3862 q++;
3863 *end = q;
3864 return p;
3865 }
3866
3867 while (*p)
3868 switch (*p)
3869 {
3870 case '\\': /* regexp quoting */
3871 if (p[1] == '*')
3872 {
3873 if (p[2] == '=') /* 'operator\*=' */
3874 *end = p + 3;
3875 else /* 'operator\*' */
3876 *end = p + 2;
3877 return p;
3878 }
3879 else if (p[1] == '[')
3880 {
3881 if (p[2] == ']')
3882 error (_("mismatched quoting on brackets, "
3883 "try 'operator\\[\\]'"));
3884 else if (p[2] == '\\' && p[3] == ']')
3885 {
3886 *end = p + 4; /* 'operator\[\]' */
3887 return p;
3888 }
3889 else
3890 error (_("nothing is allowed between '[' and ']'"));
3891 }
3892 else
3893 {
3894 /* Gratuitous qoute: skip it and move on. */
3895 p++;
3896 continue;
3897 }
3898 break;
3899 case '!':
3900 case '=':
3901 case '*':
3902 case '/':
3903 case '%':
3904 case '^':
3905 if (p[1] == '=')
3906 *end = p + 2;
3907 else
3908 *end = p + 1;
3909 return p;
3910 case '<':
3911 case '>':
3912 case '+':
3913 case '-':
3914 case '&':
3915 case '|':
3916 if (p[0] == '-' && p[1] == '>')
3917 {
3918 /* Struct pointer member operator 'operator->'. */
3919 if (p[2] == '*')
3920 {
3921 *end = p + 3; /* 'operator->*' */
3922 return p;
3923 }
3924 else if (p[2] == '\\')
3925 {
3926 *end = p + 4; /* Hopefully 'operator->\*' */
3927 return p;
3928 }
3929 else
3930 {
3931 *end = p + 2; /* 'operator->' */
3932 return p;
3933 }
3934 }
3935 if (p[1] == '=' || p[1] == p[0])
3936 *end = p + 2;
3937 else
3938 *end = p + 1;
3939 return p;
3940 case '~':
3941 case ',':
3942 *end = p + 1;
3943 return p;
3944 case '(':
3945 if (p[1] != ')')
3946 error (_("`operator ()' must be specified "
3947 "without whitespace in `()'"));
3948 *end = p + 2;
3949 return p;
3950 case '?':
3951 if (p[1] != ':')
3952 error (_("`operator ?:' must be specified "
3953 "without whitespace in `?:'"));
3954 *end = p + 2;
3955 return p;
3956 case '[':
3957 if (p[1] != ']')
3958 error (_("`operator []' must be specified "
3959 "without whitespace in `[]'"));
3960 *end = p + 2;
3961 return p;
3962 default:
3963 error (_("`operator %s' not supported"), p);
3964 break;
3965 }
3966
3967 *end = "";
3968 return *end;
3969 }
3970 \f
3971
3972 /* Data structure to maintain printing state for output_source_filename. */
3973
3974 struct output_source_filename_data
3975 {
3976 /* Cache of what we've seen so far. */
3977 struct filename_seen_cache *filename_seen_cache;
3978
3979 /* Flag of whether we're printing the first one. */
3980 int first;
3981 };
3982
3983 /* Slave routine for sources_info. Force line breaks at ,'s.
3984 NAME is the name to print.
3985 DATA contains the state for printing and watching for duplicates. */
3986
3987 static void
3988 output_source_filename (const char *name,
3989 struct output_source_filename_data *data)
3990 {
3991 /* Since a single source file can result in several partial symbol
3992 tables, we need to avoid printing it more than once. Note: if
3993 some of the psymtabs are read in and some are not, it gets
3994 printed both under "Source files for which symbols have been
3995 read" and "Source files for which symbols will be read in on
3996 demand". I consider this a reasonable way to deal with the
3997 situation. I'm not sure whether this can also happen for
3998 symtabs; it doesn't hurt to check. */
3999
4000 /* Was NAME already seen? */
4001 if (data->filename_seen_cache->seen (name))
4002 {
4003 /* Yes; don't print it again. */
4004 return;
4005 }
4006
4007 /* No; print it and reset *FIRST. */
4008 if (! data->first)
4009 printf_filtered (", ");
4010 data->first = 0;
4011
4012 wrap_here ("");
4013 fputs_filtered (name, gdb_stdout);
4014 }
4015
4016 /* A callback for map_partial_symbol_filenames. */
4017
4018 static void
4019 output_partial_symbol_filename (const char *filename, const char *fullname,
4020 void *data)
4021 {
4022 output_source_filename (fullname ? fullname : filename,
4023 (struct output_source_filename_data *) data);
4024 }
4025
4026 static void
4027 sources_info (char *ignore, int from_tty)
4028 {
4029 struct compunit_symtab *cu;
4030 struct symtab *s;
4031 struct objfile *objfile;
4032 struct output_source_filename_data data;
4033
4034 if (!have_full_symbols () && !have_partial_symbols ())
4035 {
4036 error (_("No symbol table is loaded. Use the \"file\" command."));
4037 }
4038
4039 filename_seen_cache filenames_seen;
4040
4041 data.filename_seen_cache = &filenames_seen;
4042
4043 printf_filtered ("Source files for which symbols have been read in:\n\n");
4044
4045 data.first = 1;
4046 ALL_FILETABS (objfile, cu, s)
4047 {
4048 const char *fullname = symtab_to_fullname (s);
4049
4050 output_source_filename (fullname, &data);
4051 }
4052 printf_filtered ("\n\n");
4053
4054 printf_filtered ("Source files for which symbols "
4055 "will be read in on demand:\n\n");
4056
4057 filenames_seen.clear ();
4058 data.first = 1;
4059 map_symbol_filenames (output_partial_symbol_filename, &data,
4060 1 /*need_fullname*/);
4061 printf_filtered ("\n");
4062 }
4063
4064 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4065 non-zero compare only lbasename of FILES. */
4066
4067 static int
4068 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4069 {
4070 int i;
4071
4072 if (file != NULL && nfiles != 0)
4073 {
4074 for (i = 0; i < nfiles; i++)
4075 {
4076 if (compare_filenames_for_search (file, (basenames
4077 ? lbasename (files[i])
4078 : files[i])))
4079 return 1;
4080 }
4081 }
4082 else if (nfiles == 0)
4083 return 1;
4084 return 0;
4085 }
4086
4087 /* Free any memory associated with a search. */
4088
4089 void
4090 free_search_symbols (struct symbol_search *symbols)
4091 {
4092 struct symbol_search *p;
4093 struct symbol_search *next;
4094
4095 for (p = symbols; p != NULL; p = next)
4096 {
4097 next = p->next;
4098 xfree (p);
4099 }
4100 }
4101
4102 static void
4103 do_free_search_symbols_cleanup (void *symbolsp)
4104 {
4105 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4106
4107 free_search_symbols (symbols);
4108 }
4109
4110 struct cleanup *
4111 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4112 {
4113 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4114 }
4115
4116 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4117 sort symbols, not minimal symbols. */
4118
4119 static int
4120 compare_search_syms (const void *sa, const void *sb)
4121 {
4122 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4123 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4124 int c;
4125
4126 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4127 symbol_symtab (sym_b->symbol)->filename);
4128 if (c != 0)
4129 return c;
4130
4131 if (sym_a->block != sym_b->block)
4132 return sym_a->block - sym_b->block;
4133
4134 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4135 SYMBOL_PRINT_NAME (sym_b->symbol));
4136 }
4137
4138 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4139 The duplicates are freed, and the new list is returned in
4140 *NEW_HEAD, *NEW_TAIL. */
4141
4142 static void
4143 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4144 struct symbol_search **new_head,
4145 struct symbol_search **new_tail)
4146 {
4147 struct symbol_search **symbols, *symp;
4148 int i, j, nunique;
4149
4150 gdb_assert (found != NULL && nfound > 0);
4151
4152 /* Build an array out of the list so we can easily sort them. */
4153 symbols = XNEWVEC (struct symbol_search *, nfound);
4154
4155 symp = found;
4156 for (i = 0; i < nfound; i++)
4157 {
4158 gdb_assert (symp != NULL);
4159 gdb_assert (symp->block >= 0 && symp->block <= 1);
4160 symbols[i] = symp;
4161 symp = symp->next;
4162 }
4163 gdb_assert (symp == NULL);
4164
4165 qsort (symbols, nfound, sizeof (struct symbol_search *),
4166 compare_search_syms);
4167
4168 /* Collapse out the dups. */
4169 for (i = 1, j = 1; i < nfound; ++i)
4170 {
4171 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4172 symbols[j++] = symbols[i];
4173 else
4174 xfree (symbols[i]);
4175 }
4176 nunique = j;
4177 symbols[j - 1]->next = NULL;
4178
4179 /* Rebuild the linked list. */
4180 for (i = 0; i < nunique - 1; i++)
4181 symbols[i]->next = symbols[i + 1];
4182 symbols[nunique - 1]->next = NULL;
4183
4184 *new_head = symbols[0];
4185 *new_tail = symbols[nunique - 1];
4186 xfree (symbols);
4187 }
4188
4189 /* Search the symbol table for matches to the regular expression REGEXP,
4190 returning the results in *MATCHES.
4191
4192 Only symbols of KIND are searched:
4193 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4194 and constants (enums)
4195 FUNCTIONS_DOMAIN - search all functions
4196 TYPES_DOMAIN - search all type names
4197 ALL_DOMAIN - an internal error for this function
4198
4199 free_search_symbols should be called when *MATCHES is no longer needed.
4200
4201 Within each file the results are sorted locally; each symtab's global and
4202 static blocks are separately alphabetized.
4203 Duplicate entries are removed. */
4204
4205 void
4206 search_symbols (const char *regexp, enum search_domain kind,
4207 int nfiles, const char *files[],
4208 struct symbol_search **matches)
4209 {
4210 struct compunit_symtab *cust;
4211 const struct blockvector *bv;
4212 struct block *b;
4213 int i = 0;
4214 struct block_iterator iter;
4215 struct symbol *sym;
4216 struct objfile *objfile;
4217 struct minimal_symbol *msymbol;
4218 int found_misc = 0;
4219 static const enum minimal_symbol_type types[]
4220 = {mst_data, mst_text, mst_abs};
4221 static const enum minimal_symbol_type types2[]
4222 = {mst_bss, mst_file_text, mst_abs};
4223 static const enum minimal_symbol_type types3[]
4224 = {mst_file_data, mst_solib_trampoline, mst_abs};
4225 static const enum minimal_symbol_type types4[]
4226 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4227 enum minimal_symbol_type ourtype;
4228 enum minimal_symbol_type ourtype2;
4229 enum minimal_symbol_type ourtype3;
4230 enum minimal_symbol_type ourtype4;
4231 struct symbol_search *found;
4232 struct symbol_search *tail;
4233 int nfound;
4234 gdb::optional<compiled_regex> preg;
4235
4236 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4237 CLEANUP_CHAIN is freed only in the case of an error. */
4238 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4239 struct cleanup *retval_chain;
4240
4241 gdb_assert (kind <= TYPES_DOMAIN);
4242
4243 ourtype = types[kind];
4244 ourtype2 = types2[kind];
4245 ourtype3 = types3[kind];
4246 ourtype4 = types4[kind];
4247
4248 *matches = NULL;
4249
4250 if (regexp != NULL)
4251 {
4252 /* Make sure spacing is right for C++ operators.
4253 This is just a courtesy to make the matching less sensitive
4254 to how many spaces the user leaves between 'operator'
4255 and <TYPENAME> or <OPERATOR>. */
4256 const char *opend;
4257 const char *opname = operator_chars (regexp, &opend);
4258 int errcode;
4259
4260 if (*opname)
4261 {
4262 int fix = -1; /* -1 means ok; otherwise number of
4263 spaces needed. */
4264
4265 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4266 {
4267 /* There should 1 space between 'operator' and 'TYPENAME'. */
4268 if (opname[-1] != ' ' || opname[-2] == ' ')
4269 fix = 1;
4270 }
4271 else
4272 {
4273 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4274 if (opname[-1] == ' ')
4275 fix = 0;
4276 }
4277 /* If wrong number of spaces, fix it. */
4278 if (fix >= 0)
4279 {
4280 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4281
4282 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4283 regexp = tmp;
4284 }
4285 }
4286
4287 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4288 ? REG_ICASE : 0);
4289 preg.emplace (regexp, cflags, _("Invalid regexp"));
4290 }
4291
4292 /* Search through the partial symtabs *first* for all symbols
4293 matching the regexp. That way we don't have to reproduce all of
4294 the machinery below. */
4295 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4296 {
4297 return file_matches (filename, files, nfiles,
4298 basenames);
4299 },
4300 [&] (const char *symname)
4301 {
4302 return (!preg || preg->exec (symname,
4303 0, NULL, 0) == 0);
4304 },
4305 NULL,
4306 kind);
4307
4308 /* Here, we search through the minimal symbol tables for functions
4309 and variables that match, and force their symbols to be read.
4310 This is in particular necessary for demangled variable names,
4311 which are no longer put into the partial symbol tables.
4312 The symbol will then be found during the scan of symtabs below.
4313
4314 For functions, find_pc_symtab should succeed if we have debug info
4315 for the function, for variables we have to call
4316 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4317 has debug info.
4318 If the lookup fails, set found_misc so that we will rescan to print
4319 any matching symbols without debug info.
4320 We only search the objfile the msymbol came from, we no longer search
4321 all objfiles. In large programs (1000s of shared libs) searching all
4322 objfiles is not worth the pain. */
4323
4324 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4325 {
4326 ALL_MSYMBOLS (objfile, msymbol)
4327 {
4328 QUIT;
4329
4330 if (msymbol->created_by_gdb)
4331 continue;
4332
4333 if (MSYMBOL_TYPE (msymbol) == ourtype
4334 || MSYMBOL_TYPE (msymbol) == ourtype2
4335 || MSYMBOL_TYPE (msymbol) == ourtype3
4336 || MSYMBOL_TYPE (msymbol) == ourtype4)
4337 {
4338 if (!preg
4339 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4340 NULL, 0) == 0)
4341 {
4342 /* Note: An important side-effect of these lookup functions
4343 is to expand the symbol table if msymbol is found, for the
4344 benefit of the next loop on ALL_COMPUNITS. */
4345 if (kind == FUNCTIONS_DOMAIN
4346 ? (find_pc_compunit_symtab
4347 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4348 : (lookup_symbol_in_objfile_from_linkage_name
4349 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4350 .symbol == NULL))
4351 found_misc = 1;
4352 }
4353 }
4354 }
4355 }
4356
4357 found = NULL;
4358 tail = NULL;
4359 nfound = 0;
4360 retval_chain = make_cleanup_free_search_symbols (&found);
4361
4362 ALL_COMPUNITS (objfile, cust)
4363 {
4364 bv = COMPUNIT_BLOCKVECTOR (cust);
4365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4366 {
4367 b = BLOCKVECTOR_BLOCK (bv, i);
4368 ALL_BLOCK_SYMBOLS (b, iter, sym)
4369 {
4370 struct symtab *real_symtab = symbol_symtab (sym);
4371
4372 QUIT;
4373
4374 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4375 a substring of symtab_to_fullname as it may contain "./" etc. */
4376 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4377 || ((basenames_may_differ
4378 || file_matches (lbasename (real_symtab->filename),
4379 files, nfiles, 1))
4380 && file_matches (symtab_to_fullname (real_symtab),
4381 files, nfiles, 0)))
4382 && ((!preg
4383 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4384 NULL, 0) == 0)
4385 && ((kind == VARIABLES_DOMAIN
4386 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4387 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4388 && SYMBOL_CLASS (sym) != LOC_BLOCK
4389 /* LOC_CONST can be used for more than just enums,
4390 e.g., c++ static const members.
4391 We only want to skip enums here. */
4392 && !(SYMBOL_CLASS (sym) == LOC_CONST
4393 && (TYPE_CODE (SYMBOL_TYPE (sym))
4394 == TYPE_CODE_ENUM)))
4395 || (kind == FUNCTIONS_DOMAIN
4396 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4397 || (kind == TYPES_DOMAIN
4398 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4399 {
4400 /* match */
4401 struct symbol_search *psr = XCNEW (struct symbol_search);
4402
4403 psr->block = i;
4404 psr->symbol = sym;
4405 psr->next = NULL;
4406 if (tail == NULL)
4407 found = psr;
4408 else
4409 tail->next = psr;
4410 tail = psr;
4411 nfound ++;
4412 }
4413 }
4414 }
4415 }
4416
4417 if (found != NULL)
4418 {
4419 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4420 /* Note: nfound is no longer useful beyond this point. */
4421 }
4422
4423 /* If there are no eyes, avoid all contact. I mean, if there are
4424 no debug symbols, then add matching minsyms. */
4425
4426 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4427 {
4428 ALL_MSYMBOLS (objfile, msymbol)
4429 {
4430 QUIT;
4431
4432 if (msymbol->created_by_gdb)
4433 continue;
4434
4435 if (MSYMBOL_TYPE (msymbol) == ourtype
4436 || MSYMBOL_TYPE (msymbol) == ourtype2
4437 || MSYMBOL_TYPE (msymbol) == ourtype3
4438 || MSYMBOL_TYPE (msymbol) == ourtype4)
4439 {
4440 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4441 NULL, 0) == 0)
4442 {
4443 /* For functions we can do a quick check of whether the
4444 symbol might be found via find_pc_symtab. */
4445 if (kind != FUNCTIONS_DOMAIN
4446 || (find_pc_compunit_symtab
4447 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4448 {
4449 if (lookup_symbol_in_objfile_from_linkage_name
4450 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4451 .symbol == NULL)
4452 {
4453 /* match */
4454 struct symbol_search *psr = XNEW (struct symbol_search);
4455 psr->block = i;
4456 psr->msymbol.minsym = msymbol;
4457 psr->msymbol.objfile = objfile;
4458 psr->symbol = NULL;
4459 psr->next = NULL;
4460 if (tail == NULL)
4461 found = psr;
4462 else
4463 tail->next = psr;
4464 tail = psr;
4465 }
4466 }
4467 }
4468 }
4469 }
4470 }
4471
4472 discard_cleanups (retval_chain);
4473 do_cleanups (old_chain);
4474 *matches = found;
4475 }
4476
4477 /* Helper function for symtab_symbol_info, this function uses
4478 the data returned from search_symbols() to print information
4479 regarding the match to gdb_stdout. */
4480
4481 static void
4482 print_symbol_info (enum search_domain kind,
4483 struct symbol *sym,
4484 int block, const char *last)
4485 {
4486 struct symtab *s = symbol_symtab (sym);
4487 const char *s_filename = symtab_to_filename_for_display (s);
4488
4489 if (last == NULL || filename_cmp (last, s_filename) != 0)
4490 {
4491 fputs_filtered ("\nFile ", gdb_stdout);
4492 fputs_filtered (s_filename, gdb_stdout);
4493 fputs_filtered (":\n", gdb_stdout);
4494 }
4495
4496 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4497 printf_filtered ("static ");
4498
4499 /* Typedef that is not a C++ class. */
4500 if (kind == TYPES_DOMAIN
4501 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4502 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4503 /* variable, func, or typedef-that-is-c++-class. */
4504 else if (kind < TYPES_DOMAIN
4505 || (kind == TYPES_DOMAIN
4506 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4507 {
4508 type_print (SYMBOL_TYPE (sym),
4509 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4510 ? "" : SYMBOL_PRINT_NAME (sym)),
4511 gdb_stdout, 0);
4512
4513 printf_filtered (";\n");
4514 }
4515 }
4516
4517 /* This help function for symtab_symbol_info() prints information
4518 for non-debugging symbols to gdb_stdout. */
4519
4520 static void
4521 print_msymbol_info (struct bound_minimal_symbol msymbol)
4522 {
4523 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4524 char *tmp;
4525
4526 if (gdbarch_addr_bit (gdbarch) <= 32)
4527 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4528 & (CORE_ADDR) 0xffffffff,
4529 8);
4530 else
4531 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4532 16);
4533 printf_filtered ("%s %s\n",
4534 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4535 }
4536
4537 /* This is the guts of the commands "info functions", "info types", and
4538 "info variables". It calls search_symbols to find all matches and then
4539 print_[m]symbol_info to print out some useful information about the
4540 matches. */
4541
4542 static void
4543 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4544 {
4545 static const char * const classnames[] =
4546 {"variable", "function", "type"};
4547 struct symbol_search *symbols;
4548 struct symbol_search *p;
4549 struct cleanup *old_chain;
4550 const char *last_filename = NULL;
4551 int first = 1;
4552
4553 gdb_assert (kind <= TYPES_DOMAIN);
4554
4555 /* Must make sure that if we're interrupted, symbols gets freed. */
4556 search_symbols (regexp, kind, 0, NULL, &symbols);
4557 old_chain = make_cleanup_free_search_symbols (&symbols);
4558
4559 if (regexp != NULL)
4560 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4561 classnames[kind], regexp);
4562 else
4563 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4564
4565 for (p = symbols; p != NULL; p = p->next)
4566 {
4567 QUIT;
4568
4569 if (p->msymbol.minsym != NULL)
4570 {
4571 if (first)
4572 {
4573 printf_filtered (_("\nNon-debugging symbols:\n"));
4574 first = 0;
4575 }
4576 print_msymbol_info (p->msymbol);
4577 }
4578 else
4579 {
4580 print_symbol_info (kind,
4581 p->symbol,
4582 p->block,
4583 last_filename);
4584 last_filename
4585 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4586 }
4587 }
4588
4589 do_cleanups (old_chain);
4590 }
4591
4592 static void
4593 variables_info (char *regexp, int from_tty)
4594 {
4595 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4596 }
4597
4598 static void
4599 functions_info (char *regexp, int from_tty)
4600 {
4601 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4602 }
4603
4604
4605 static void
4606 types_info (char *regexp, int from_tty)
4607 {
4608 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4609 }
4610
4611 /* Breakpoint all functions matching regular expression. */
4612
4613 void
4614 rbreak_command_wrapper (char *regexp, int from_tty)
4615 {
4616 rbreak_command (regexp, from_tty);
4617 }
4618
4619 /* A cleanup function that calls end_rbreak_breakpoints. */
4620
4621 static void
4622 do_end_rbreak_breakpoints (void *ignore)
4623 {
4624 end_rbreak_breakpoints ();
4625 }
4626
4627 static void
4628 rbreak_command (char *regexp, int from_tty)
4629 {
4630 struct symbol_search *ss;
4631 struct symbol_search *p;
4632 struct cleanup *old_chain;
4633 char *string = NULL;
4634 int len = 0;
4635 const char **files = NULL;
4636 const char *file_name;
4637 int nfiles = 0;
4638
4639 if (regexp)
4640 {
4641 char *colon = strchr (regexp, ':');
4642
4643 if (colon && *(colon + 1) != ':')
4644 {
4645 int colon_index;
4646 char *local_name;
4647
4648 colon_index = colon - regexp;
4649 local_name = (char *) alloca (colon_index + 1);
4650 memcpy (local_name, regexp, colon_index);
4651 local_name[colon_index--] = 0;
4652 while (isspace (local_name[colon_index]))
4653 local_name[colon_index--] = 0;
4654 file_name = local_name;
4655 files = &file_name;
4656 nfiles = 1;
4657 regexp = skip_spaces (colon + 1);
4658 }
4659 }
4660
4661 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4662 old_chain = make_cleanup_free_search_symbols (&ss);
4663 make_cleanup (free_current_contents, &string);
4664
4665 start_rbreak_breakpoints ();
4666 make_cleanup (do_end_rbreak_breakpoints, NULL);
4667 for (p = ss; p != NULL; p = p->next)
4668 {
4669 if (p->msymbol.minsym == NULL)
4670 {
4671 struct symtab *symtab = symbol_symtab (p->symbol);
4672 const char *fullname = symtab_to_fullname (symtab);
4673
4674 int newlen = (strlen (fullname)
4675 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4676 + 4);
4677
4678 if (newlen > len)
4679 {
4680 string = (char *) xrealloc (string, newlen);
4681 len = newlen;
4682 }
4683 strcpy (string, fullname);
4684 strcat (string, ":'");
4685 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4686 strcat (string, "'");
4687 break_command (string, from_tty);
4688 print_symbol_info (FUNCTIONS_DOMAIN,
4689 p->symbol,
4690 p->block,
4691 symtab_to_filename_for_display (symtab));
4692 }
4693 else
4694 {
4695 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4696
4697 if (newlen > len)
4698 {
4699 string = (char *) xrealloc (string, newlen);
4700 len = newlen;
4701 }
4702 strcpy (string, "'");
4703 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4704 strcat (string, "'");
4705
4706 break_command (string, from_tty);
4707 printf_filtered ("<function, no debug info> %s;\n",
4708 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4709 }
4710 }
4711
4712 do_cleanups (old_chain);
4713 }
4714 \f
4715
4716 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4717
4718 Either sym_text[sym_text_len] != '(' and then we search for any
4719 symbol starting with SYM_TEXT text.
4720
4721 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4722 be terminated at that point. Partial symbol tables do not have parameters
4723 information. */
4724
4725 static int
4726 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4727 {
4728 int (*ncmp) (const char *, const char *, size_t);
4729
4730 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4731
4732 if (ncmp (name, sym_text, sym_text_len) != 0)
4733 return 0;
4734
4735 if (sym_text[sym_text_len] == '(')
4736 {
4737 /* User searches for `name(someth...'. Require NAME to be terminated.
4738 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4739 present but accept even parameters presence. In this case this
4740 function is in fact strcmp_iw but whitespace skipping is not supported
4741 for tab completion. */
4742
4743 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4744 return 0;
4745 }
4746
4747 return 1;
4748 }
4749
4750 /* Test to see if the symbol specified by SYMNAME (which is already
4751 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4752 characters. If so, add it to the current completion list. */
4753
4754 static void
4755 completion_list_add_name (completion_tracker &tracker,
4756 const char *symname,
4757 const char *sym_text, int sym_text_len,
4758 const char *text, const char *word)
4759 {
4760 /* Clip symbols that cannot match. */
4761 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4762 return;
4763
4764 /* We have a match for a completion, so add SYMNAME to the current list
4765 of matches. Note that the name is moved to freshly malloc'd space. */
4766
4767 {
4768 char *newobj;
4769
4770 if (word == sym_text)
4771 {
4772 newobj = (char *) xmalloc (strlen (symname) + 5);
4773 strcpy (newobj, symname);
4774 }
4775 else if (word > sym_text)
4776 {
4777 /* Return some portion of symname. */
4778 newobj = (char *) xmalloc (strlen (symname) + 5);
4779 strcpy (newobj, symname + (word - sym_text));
4780 }
4781 else
4782 {
4783 /* Return some of SYM_TEXT plus symname. */
4784 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4785 strncpy (newobj, word, sym_text - word);
4786 newobj[sym_text - word] = '\0';
4787 strcat (newobj, symname);
4788 }
4789
4790 gdb::unique_xmalloc_ptr<char> completion (newobj);
4791
4792 tracker.add_completion (std::move (completion));
4793 }
4794 }
4795
4796 /* completion_list_add_name wrapper for struct symbol. */
4797
4798 static void
4799 completion_list_add_symbol (completion_tracker &tracker,
4800 symbol *sym,
4801 const char *sym_text, int sym_text_len,
4802 const char *text, const char *word)
4803 {
4804 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4805 sym_text, sym_text_len, text, word);
4806 }
4807
4808 /* completion_list_add_name wrapper for struct minimal_symbol. */
4809
4810 static void
4811 completion_list_add_msymbol (completion_tracker &tracker,
4812 minimal_symbol *sym,
4813 const char *sym_text, int sym_text_len,
4814 const char *text, const char *word)
4815 {
4816 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4817 sym_text, sym_text_len, text, word);
4818 }
4819
4820 /* ObjC: In case we are completing on a selector, look as the msymbol
4821 again and feed all the selectors into the mill. */
4822
4823 static void
4824 completion_list_objc_symbol (completion_tracker &tracker,
4825 struct minimal_symbol *msymbol,
4826 const char *sym_text, int sym_text_len,
4827 const char *text, const char *word)
4828 {
4829 static char *tmp = NULL;
4830 static unsigned int tmplen = 0;
4831
4832 const char *method, *category, *selector;
4833 char *tmp2 = NULL;
4834
4835 method = MSYMBOL_NATURAL_NAME (msymbol);
4836
4837 /* Is it a method? */
4838 if ((method[0] != '-') && (method[0] != '+'))
4839 return;
4840
4841 if (sym_text[0] == '[')
4842 /* Complete on shortened method method. */
4843 completion_list_add_name (tracker, method + 1,
4844 sym_text, sym_text_len, text, word);
4845
4846 while ((strlen (method) + 1) >= tmplen)
4847 {
4848 if (tmplen == 0)
4849 tmplen = 1024;
4850 else
4851 tmplen *= 2;
4852 tmp = (char *) xrealloc (tmp, tmplen);
4853 }
4854 selector = strchr (method, ' ');
4855 if (selector != NULL)
4856 selector++;
4857
4858 category = strchr (method, '(');
4859
4860 if ((category != NULL) && (selector != NULL))
4861 {
4862 memcpy (tmp, method, (category - method));
4863 tmp[category - method] = ' ';
4864 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4865 completion_list_add_name (tracker, tmp,
4866 sym_text, sym_text_len, text, word);
4867 if (sym_text[0] == '[')
4868 completion_list_add_name (tracker, tmp + 1,
4869 sym_text, sym_text_len, text, word);
4870 }
4871
4872 if (selector != NULL)
4873 {
4874 /* Complete on selector only. */
4875 strcpy (tmp, selector);
4876 tmp2 = strchr (tmp, ']');
4877 if (tmp2 != NULL)
4878 *tmp2 = '\0';
4879
4880 completion_list_add_name (tracker, tmp,
4881 sym_text, sym_text_len, text, word);
4882 }
4883 }
4884
4885 /* Break the non-quoted text based on the characters which are in
4886 symbols. FIXME: This should probably be language-specific. */
4887
4888 static const char *
4889 language_search_unquoted_string (const char *text, const char *p)
4890 {
4891 for (; p > text; --p)
4892 {
4893 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4894 continue;
4895 else
4896 {
4897 if ((current_language->la_language == language_objc))
4898 {
4899 if (p[-1] == ':') /* Might be part of a method name. */
4900 continue;
4901 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4902 p -= 2; /* Beginning of a method name. */
4903 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4904 { /* Might be part of a method name. */
4905 const char *t = p;
4906
4907 /* Seeing a ' ' or a '(' is not conclusive evidence
4908 that we are in the middle of a method name. However,
4909 finding "-[" or "+[" should be pretty un-ambiguous.
4910 Unfortunately we have to find it now to decide. */
4911
4912 while (t > text)
4913 if (isalnum (t[-1]) || t[-1] == '_' ||
4914 t[-1] == ' ' || t[-1] == ':' ||
4915 t[-1] == '(' || t[-1] == ')')
4916 --t;
4917 else
4918 break;
4919
4920 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4921 p = t - 2; /* Method name detected. */
4922 /* Else we leave with p unchanged. */
4923 }
4924 }
4925 break;
4926 }
4927 }
4928 return p;
4929 }
4930
4931 static void
4932 completion_list_add_fields (completion_tracker &tracker,
4933 struct symbol *sym,
4934 const char *sym_text, int sym_text_len,
4935 const char *text, const char *word)
4936 {
4937 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4938 {
4939 struct type *t = SYMBOL_TYPE (sym);
4940 enum type_code c = TYPE_CODE (t);
4941 int j;
4942
4943 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4944 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4945 if (TYPE_FIELD_NAME (t, j))
4946 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4947 sym_text, sym_text_len, text, word);
4948 }
4949 }
4950
4951 /* Add matching symbols from SYMTAB to the current completion list. */
4952
4953 static void
4954 add_symtab_completions (struct compunit_symtab *cust,
4955 completion_tracker &tracker,
4956 const char *sym_text, int sym_text_len,
4957 const char *text, const char *word,
4958 enum type_code code)
4959 {
4960 struct symbol *sym;
4961 const struct block *b;
4962 struct block_iterator iter;
4963 int i;
4964
4965 if (cust == NULL)
4966 return;
4967
4968 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4969 {
4970 QUIT;
4971 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4972 ALL_BLOCK_SYMBOLS (b, iter, sym)
4973 {
4974 if (code == TYPE_CODE_UNDEF
4975 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4976 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4977 completion_list_add_symbol (tracker, sym,
4978 sym_text, sym_text_len,
4979 text, word);
4980 }
4981 }
4982 }
4983
4984 void
4985 default_collect_symbol_completion_matches_break_on
4986 (completion_tracker &tracker,
4987 const char *text, const char *word,
4988 const char *break_on, enum type_code code)
4989 {
4990 /* Problem: All of the symbols have to be copied because readline
4991 frees them. I'm not going to worry about this; hopefully there
4992 won't be that many. */
4993
4994 struct symbol *sym;
4995 struct compunit_symtab *cust;
4996 struct minimal_symbol *msymbol;
4997 struct objfile *objfile;
4998 const struct block *b;
4999 const struct block *surrounding_static_block, *surrounding_global_block;
5000 struct block_iterator iter;
5001 /* The symbol we are completing on. Points in same buffer as text. */
5002 const char *sym_text;
5003 /* Length of sym_text. */
5004 int sym_text_len;
5005
5006 /* Now look for the symbol we are supposed to complete on. */
5007 {
5008 const char *p;
5009 char quote_found;
5010 const char *quote_pos = NULL;
5011
5012 /* First see if this is a quoted string. */
5013 quote_found = '\0';
5014 for (p = text; *p != '\0'; ++p)
5015 {
5016 if (quote_found != '\0')
5017 {
5018 if (*p == quote_found)
5019 /* Found close quote. */
5020 quote_found = '\0';
5021 else if (*p == '\\' && p[1] == quote_found)
5022 /* A backslash followed by the quote character
5023 doesn't end the string. */
5024 ++p;
5025 }
5026 else if (*p == '\'' || *p == '"')
5027 {
5028 quote_found = *p;
5029 quote_pos = p;
5030 }
5031 }
5032 if (quote_found == '\'')
5033 /* A string within single quotes can be a symbol, so complete on it. */
5034 sym_text = quote_pos + 1;
5035 else if (quote_found == '"')
5036 /* A double-quoted string is never a symbol, nor does it make sense
5037 to complete it any other way. */
5038 {
5039 return;
5040 }
5041 else
5042 {
5043 /* It is not a quoted string. Break it based on the characters
5044 which are in symbols. */
5045 while (p > text)
5046 {
5047 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5048 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5049 --p;
5050 else
5051 break;
5052 }
5053 sym_text = p;
5054 }
5055 }
5056
5057 sym_text_len = strlen (sym_text);
5058
5059 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5060
5061 if (current_language->la_language == language_cplus
5062 || current_language->la_language == language_fortran)
5063 {
5064 /* These languages may have parameters entered by user but they are never
5065 present in the partial symbol tables. */
5066
5067 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5068
5069 if (cs)
5070 sym_text_len = cs - sym_text;
5071 }
5072 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5073
5074 /* At this point scan through the misc symbol vectors and add each
5075 symbol you find to the list. Eventually we want to ignore
5076 anything that isn't a text symbol (everything else will be
5077 handled by the psymtab code below). */
5078
5079 if (code == TYPE_CODE_UNDEF)
5080 {
5081 ALL_MSYMBOLS (objfile, msymbol)
5082 {
5083 QUIT;
5084
5085 completion_list_add_msymbol (tracker,
5086 msymbol, sym_text, sym_text_len,
5087 text, word);
5088
5089 completion_list_objc_symbol (tracker,
5090 msymbol, sym_text, sym_text_len,
5091 text, word);
5092 }
5093 }
5094
5095 /* Add completions for all currently loaded symbol tables. */
5096 ALL_COMPUNITS (objfile, cust)
5097 add_symtab_completions (cust, tracker,
5098 sym_text, sym_text_len, text, word, code);
5099
5100 /* Look through the partial symtabs for all symbols which begin by
5101 matching SYM_TEXT. Expand all CUs that you find to the list. */
5102 expand_symtabs_matching (NULL,
5103 [&] (const char *name) /* symbol matcher */
5104 {
5105 return compare_symbol_name (name,
5106 sym_text,
5107 sym_text_len);
5108 },
5109 [&] (compunit_symtab *symtab) /* expansion notify */
5110 {
5111 add_symtab_completions (symtab,
5112 tracker,
5113 sym_text, sym_text_len,
5114 text, word, code);
5115 },
5116 ALL_DOMAIN);
5117
5118 /* Search upwards from currently selected frame (so that we can
5119 complete on local vars). Also catch fields of types defined in
5120 this places which match our text string. Only complete on types
5121 visible from current context. */
5122
5123 b = get_selected_block (0);
5124 surrounding_static_block = block_static_block (b);
5125 surrounding_global_block = block_global_block (b);
5126 if (surrounding_static_block != NULL)
5127 while (b != surrounding_static_block)
5128 {
5129 QUIT;
5130
5131 ALL_BLOCK_SYMBOLS (b, iter, sym)
5132 {
5133 if (code == TYPE_CODE_UNDEF)
5134 {
5135 completion_list_add_symbol (tracker, sym,
5136 sym_text, sym_text_len, text,
5137 word);
5138 completion_list_add_fields (tracker, sym,
5139 sym_text, sym_text_len, text,
5140 word);
5141 }
5142 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5143 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5144 completion_list_add_symbol (tracker, sym,
5145 sym_text, sym_text_len, text,
5146 word);
5147 }
5148
5149 /* Stop when we encounter an enclosing function. Do not stop for
5150 non-inlined functions - the locals of the enclosing function
5151 are in scope for a nested function. */
5152 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5153 break;
5154 b = BLOCK_SUPERBLOCK (b);
5155 }
5156
5157 /* Add fields from the file's types; symbols will be added below. */
5158
5159 if (code == TYPE_CODE_UNDEF)
5160 {
5161 if (surrounding_static_block != NULL)
5162 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5163 completion_list_add_fields (tracker, sym,
5164 sym_text, sym_text_len, text, word);
5165
5166 if (surrounding_global_block != NULL)
5167 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5168 completion_list_add_fields (tracker, sym,
5169 sym_text, sym_text_len, text, word);
5170 }
5171
5172 /* Skip macros if we are completing a struct tag -- arguable but
5173 usually what is expected. */
5174 if (current_language->la_macro_expansion == macro_expansion_c
5175 && code == TYPE_CODE_UNDEF)
5176 {
5177 struct macro_scope *scope;
5178
5179 /* This adds a macro's name to the current completion list. */
5180 auto add_macro_name = [&] (const char *macro_name,
5181 const macro_definition *,
5182 macro_source_file *,
5183 int)
5184 {
5185 completion_list_add_name (tracker, macro_name,
5186 sym_text, sym_text_len,
5187 text, word);
5188 };
5189
5190 /* Add any macros visible in the default scope. Note that this
5191 may yield the occasional wrong result, because an expression
5192 might be evaluated in a scope other than the default. For
5193 example, if the user types "break file:line if <TAB>", the
5194 resulting expression will be evaluated at "file:line" -- but
5195 at there does not seem to be a way to detect this at
5196 completion time. */
5197 scope = default_macro_scope ();
5198 if (scope)
5199 {
5200 macro_for_each_in_scope (scope->file, scope->line,
5201 add_macro_name);
5202 xfree (scope);
5203 }
5204
5205 /* User-defined macros are always visible. */
5206 macro_for_each (macro_user_macros, add_macro_name);
5207 }
5208 }
5209
5210 void
5211 default_collect_symbol_completion_matches (completion_tracker &tracker,
5212 const char *text, const char *word,
5213 enum type_code code)
5214 {
5215 return default_collect_symbol_completion_matches_break_on (tracker,
5216 text, word, "",
5217 code);
5218 }
5219
5220 /* Collect all symbols (regardless of class) which begin by matching
5221 TEXT. */
5222
5223 void
5224 collect_symbol_completion_matches (completion_tracker &tracker,
5225 const char *text, const char *word)
5226 {
5227 current_language->la_collect_symbol_completion_matches (tracker,
5228 text, word,
5229 TYPE_CODE_UNDEF);
5230 }
5231
5232 /* Like collect_symbol_completion_matches, but only collect
5233 STRUCT_DOMAIN symbols whose type code is CODE. */
5234
5235 void
5236 collect_symbol_completion_matches_type (completion_tracker &tracker,
5237 const char *text, const char *word,
5238 enum type_code code)
5239 {
5240 gdb_assert (code == TYPE_CODE_UNION
5241 || code == TYPE_CODE_STRUCT
5242 || code == TYPE_CODE_ENUM);
5243 current_language->la_collect_symbol_completion_matches (tracker,
5244 text, word, code);
5245 }
5246
5247 /* Like collect_symbol_completion_matches, but collects a list of
5248 symbols defined in all source files named SRCFILE. */
5249
5250 void
5251 collect_file_symbol_completion_matches (completion_tracker &tracker,
5252 const char *text, const char *word,
5253 const char *srcfile)
5254 {
5255 /* The symbol we are completing on. Points in same buffer as text. */
5256 const char *sym_text;
5257 /* Length of sym_text. */
5258 int sym_text_len;
5259
5260 /* Now look for the symbol we are supposed to complete on.
5261 FIXME: This should be language-specific. */
5262 {
5263 const char *p;
5264 char quote_found;
5265 const char *quote_pos = NULL;
5266
5267 /* First see if this is a quoted string. */
5268 quote_found = '\0';
5269 for (p = text; *p != '\0'; ++p)
5270 {
5271 if (quote_found != '\0')
5272 {
5273 if (*p == quote_found)
5274 /* Found close quote. */
5275 quote_found = '\0';
5276 else if (*p == '\\' && p[1] == quote_found)
5277 /* A backslash followed by the quote character
5278 doesn't end the string. */
5279 ++p;
5280 }
5281 else if (*p == '\'' || *p == '"')
5282 {
5283 quote_found = *p;
5284 quote_pos = p;
5285 }
5286 }
5287 if (quote_found == '\'')
5288 /* A string within single quotes can be a symbol, so complete on it. */
5289 sym_text = quote_pos + 1;
5290 else if (quote_found == '"')
5291 /* A double-quoted string is never a symbol, nor does it make sense
5292 to complete it any other way. */
5293 {
5294 return;
5295 }
5296 else
5297 {
5298 /* Not a quoted string. */
5299 sym_text = language_search_unquoted_string (text, p);
5300 }
5301 }
5302
5303 sym_text_len = strlen (sym_text);
5304
5305 /* Go through symtabs for SRCFILE and check the externs and statics
5306 for symbols which match. */
5307 iterate_over_symtabs (srcfile, [&] (symtab *s)
5308 {
5309 add_symtab_completions (SYMTAB_COMPUNIT (s),
5310 tracker,
5311 sym_text, sym_text_len,
5312 text, word, TYPE_CODE_UNDEF);
5313 return false;
5314 });
5315 }
5316
5317 /* A helper function for make_source_files_completion_list. It adds
5318 another file name to a list of possible completions, growing the
5319 list as necessary. */
5320
5321 static void
5322 add_filename_to_list (const char *fname, const char *text, const char *word,
5323 completion_list *list)
5324 {
5325 char *newobj;
5326 size_t fnlen = strlen (fname);
5327
5328 if (word == text)
5329 {
5330 /* Return exactly fname. */
5331 newobj = (char *) xmalloc (fnlen + 5);
5332 strcpy (newobj, fname);
5333 }
5334 else if (word > text)
5335 {
5336 /* Return some portion of fname. */
5337 newobj = (char *) xmalloc (fnlen + 5);
5338 strcpy (newobj, fname + (word - text));
5339 }
5340 else
5341 {
5342 /* Return some of TEXT plus fname. */
5343 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5344 strncpy (newobj, word, text - word);
5345 newobj[text - word] = '\0';
5346 strcat (newobj, fname);
5347 }
5348 list->emplace_back (newobj);
5349 }
5350
5351 static int
5352 not_interesting_fname (const char *fname)
5353 {
5354 static const char *illegal_aliens[] = {
5355 "_globals_", /* inserted by coff_symtab_read */
5356 NULL
5357 };
5358 int i;
5359
5360 for (i = 0; illegal_aliens[i]; i++)
5361 {
5362 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5363 return 1;
5364 }
5365 return 0;
5366 }
5367
5368 /* An object of this type is passed as the user_data argument to
5369 map_partial_symbol_filenames. */
5370 struct add_partial_filename_data
5371 {
5372 struct filename_seen_cache *filename_seen_cache;
5373 const char *text;
5374 const char *word;
5375 int text_len;
5376 completion_list *list;
5377 };
5378
5379 /* A callback for map_partial_symbol_filenames. */
5380
5381 static void
5382 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5383 void *user_data)
5384 {
5385 struct add_partial_filename_data *data
5386 = (struct add_partial_filename_data *) user_data;
5387
5388 if (not_interesting_fname (filename))
5389 return;
5390 if (!data->filename_seen_cache->seen (filename)
5391 && filename_ncmp (filename, data->text, data->text_len) == 0)
5392 {
5393 /* This file matches for a completion; add it to the
5394 current list of matches. */
5395 add_filename_to_list (filename, data->text, data->word, data->list);
5396 }
5397 else
5398 {
5399 const char *base_name = lbasename (filename);
5400
5401 if (base_name != filename
5402 && !data->filename_seen_cache->seen (base_name)
5403 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5404 add_filename_to_list (base_name, data->text, data->word, data->list);
5405 }
5406 }
5407
5408 /* Return a list of all source files whose names begin with matching
5409 TEXT. The file names are looked up in the symbol tables of this
5410 program. */
5411
5412 completion_list
5413 make_source_files_completion_list (const char *text, const char *word)
5414 {
5415 struct compunit_symtab *cu;
5416 struct symtab *s;
5417 struct objfile *objfile;
5418 size_t text_len = strlen (text);
5419 completion_list list;
5420 const char *base_name;
5421 struct add_partial_filename_data datum;
5422 struct cleanup *back_to;
5423
5424 if (!have_full_symbols () && !have_partial_symbols ())
5425 return list;
5426
5427 filename_seen_cache filenames_seen;
5428
5429 ALL_FILETABS (objfile, cu, s)
5430 {
5431 if (not_interesting_fname (s->filename))
5432 continue;
5433 if (!filenames_seen.seen (s->filename)
5434 && filename_ncmp (s->filename, text, text_len) == 0)
5435 {
5436 /* This file matches for a completion; add it to the current
5437 list of matches. */
5438 add_filename_to_list (s->filename, text, word, &list);
5439 }
5440 else
5441 {
5442 /* NOTE: We allow the user to type a base name when the
5443 debug info records leading directories, but not the other
5444 way around. This is what subroutines of breakpoint
5445 command do when they parse file names. */
5446 base_name = lbasename (s->filename);
5447 if (base_name != s->filename
5448 && !filenames_seen.seen (base_name)
5449 && filename_ncmp (base_name, text, text_len) == 0)
5450 add_filename_to_list (base_name, text, word, &list);
5451 }
5452 }
5453
5454 datum.filename_seen_cache = &filenames_seen;
5455 datum.text = text;
5456 datum.word = word;
5457 datum.text_len = text_len;
5458 datum.list = &list;
5459 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5460 0 /*need_fullname*/);
5461
5462 return list;
5463 }
5464 \f
5465 /* Track MAIN */
5466
5467 /* Return the "main_info" object for the current program space. If
5468 the object has not yet been created, create it and fill in some
5469 default values. */
5470
5471 static struct main_info *
5472 get_main_info (void)
5473 {
5474 struct main_info *info
5475 = (struct main_info *) program_space_data (current_program_space,
5476 main_progspace_key);
5477
5478 if (info == NULL)
5479 {
5480 /* It may seem strange to store the main name in the progspace
5481 and also in whatever objfile happens to see a main name in
5482 its debug info. The reason for this is mainly historical:
5483 gdb returned "main" as the name even if no function named
5484 "main" was defined the program; and this approach lets us
5485 keep compatibility. */
5486 info = XCNEW (struct main_info);
5487 info->language_of_main = language_unknown;
5488 set_program_space_data (current_program_space, main_progspace_key,
5489 info);
5490 }
5491
5492 return info;
5493 }
5494
5495 /* A cleanup to destroy a struct main_info when a progspace is
5496 destroyed. */
5497
5498 static void
5499 main_info_cleanup (struct program_space *pspace, void *data)
5500 {
5501 struct main_info *info = (struct main_info *) data;
5502
5503 if (info != NULL)
5504 xfree (info->name_of_main);
5505 xfree (info);
5506 }
5507
5508 static void
5509 set_main_name (const char *name, enum language lang)
5510 {
5511 struct main_info *info = get_main_info ();
5512
5513 if (info->name_of_main != NULL)
5514 {
5515 xfree (info->name_of_main);
5516 info->name_of_main = NULL;
5517 info->language_of_main = language_unknown;
5518 }
5519 if (name != NULL)
5520 {
5521 info->name_of_main = xstrdup (name);
5522 info->language_of_main = lang;
5523 }
5524 }
5525
5526 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5527 accordingly. */
5528
5529 static void
5530 find_main_name (void)
5531 {
5532 const char *new_main_name;
5533 struct objfile *objfile;
5534
5535 /* First check the objfiles to see whether a debuginfo reader has
5536 picked up the appropriate main name. Historically the main name
5537 was found in a more or less random way; this approach instead
5538 relies on the order of objfile creation -- which still isn't
5539 guaranteed to get the correct answer, but is just probably more
5540 accurate. */
5541 ALL_OBJFILES (objfile)
5542 {
5543 if (objfile->per_bfd->name_of_main != NULL)
5544 {
5545 set_main_name (objfile->per_bfd->name_of_main,
5546 objfile->per_bfd->language_of_main);
5547 return;
5548 }
5549 }
5550
5551 /* Try to see if the main procedure is in Ada. */
5552 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5553 be to add a new method in the language vector, and call this
5554 method for each language until one of them returns a non-empty
5555 name. This would allow us to remove this hard-coded call to
5556 an Ada function. It is not clear that this is a better approach
5557 at this point, because all methods need to be written in a way
5558 such that false positives never be returned. For instance, it is
5559 important that a method does not return a wrong name for the main
5560 procedure if the main procedure is actually written in a different
5561 language. It is easy to guaranty this with Ada, since we use a
5562 special symbol generated only when the main in Ada to find the name
5563 of the main procedure. It is difficult however to see how this can
5564 be guarantied for languages such as C, for instance. This suggests
5565 that order of call for these methods becomes important, which means
5566 a more complicated approach. */
5567 new_main_name = ada_main_name ();
5568 if (new_main_name != NULL)
5569 {
5570 set_main_name (new_main_name, language_ada);
5571 return;
5572 }
5573
5574 new_main_name = d_main_name ();
5575 if (new_main_name != NULL)
5576 {
5577 set_main_name (new_main_name, language_d);
5578 return;
5579 }
5580
5581 new_main_name = go_main_name ();
5582 if (new_main_name != NULL)
5583 {
5584 set_main_name (new_main_name, language_go);
5585 return;
5586 }
5587
5588 new_main_name = pascal_main_name ();
5589 if (new_main_name != NULL)
5590 {
5591 set_main_name (new_main_name, language_pascal);
5592 return;
5593 }
5594
5595 /* The languages above didn't identify the name of the main procedure.
5596 Fallback to "main". */
5597 set_main_name ("main", language_unknown);
5598 }
5599
5600 char *
5601 main_name (void)
5602 {
5603 struct main_info *info = get_main_info ();
5604
5605 if (info->name_of_main == NULL)
5606 find_main_name ();
5607
5608 return info->name_of_main;
5609 }
5610
5611 /* Return the language of the main function. If it is not known,
5612 return language_unknown. */
5613
5614 enum language
5615 main_language (void)
5616 {
5617 struct main_info *info = get_main_info ();
5618
5619 if (info->name_of_main == NULL)
5620 find_main_name ();
5621
5622 return info->language_of_main;
5623 }
5624
5625 /* Handle ``executable_changed'' events for the symtab module. */
5626
5627 static void
5628 symtab_observer_executable_changed (void)
5629 {
5630 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5631 set_main_name (NULL, language_unknown);
5632 }
5633
5634 /* Return 1 if the supplied producer string matches the ARM RealView
5635 compiler (armcc). */
5636
5637 int
5638 producer_is_realview (const char *producer)
5639 {
5640 static const char *const arm_idents[] = {
5641 "ARM C Compiler, ADS",
5642 "Thumb C Compiler, ADS",
5643 "ARM C++ Compiler, ADS",
5644 "Thumb C++ Compiler, ADS",
5645 "ARM/Thumb C/C++ Compiler, RVCT",
5646 "ARM C/C++ Compiler, RVCT"
5647 };
5648 int i;
5649
5650 if (producer == NULL)
5651 return 0;
5652
5653 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5654 if (startswith (producer, arm_idents[i]))
5655 return 1;
5656
5657 return 0;
5658 }
5659
5660 \f
5661
5662 /* The next index to hand out in response to a registration request. */
5663
5664 static int next_aclass_value = LOC_FINAL_VALUE;
5665
5666 /* The maximum number of "aclass" registrations we support. This is
5667 constant for convenience. */
5668 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5669
5670 /* The objects representing the various "aclass" values. The elements
5671 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5672 elements are those registered at gdb initialization time. */
5673
5674 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5675
5676 /* The globally visible pointer. This is separate from 'symbol_impl'
5677 so that it can be const. */
5678
5679 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5680
5681 /* Make sure we saved enough room in struct symbol. */
5682
5683 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5684
5685 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5686 is the ops vector associated with this index. This returns the new
5687 index, which should be used as the aclass_index field for symbols
5688 of this type. */
5689
5690 int
5691 register_symbol_computed_impl (enum address_class aclass,
5692 const struct symbol_computed_ops *ops)
5693 {
5694 int result = next_aclass_value++;
5695
5696 gdb_assert (aclass == LOC_COMPUTED);
5697 gdb_assert (result < MAX_SYMBOL_IMPLS);
5698 symbol_impl[result].aclass = aclass;
5699 symbol_impl[result].ops_computed = ops;
5700
5701 /* Sanity check OPS. */
5702 gdb_assert (ops != NULL);
5703 gdb_assert (ops->tracepoint_var_ref != NULL);
5704 gdb_assert (ops->describe_location != NULL);
5705 gdb_assert (ops->get_symbol_read_needs != NULL);
5706 gdb_assert (ops->read_variable != NULL);
5707
5708 return result;
5709 }
5710
5711 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5712 OPS is the ops vector associated with this index. This returns the
5713 new index, which should be used as the aclass_index field for symbols
5714 of this type. */
5715
5716 int
5717 register_symbol_block_impl (enum address_class aclass,
5718 const struct symbol_block_ops *ops)
5719 {
5720 int result = next_aclass_value++;
5721
5722 gdb_assert (aclass == LOC_BLOCK);
5723 gdb_assert (result < MAX_SYMBOL_IMPLS);
5724 symbol_impl[result].aclass = aclass;
5725 symbol_impl[result].ops_block = ops;
5726
5727 /* Sanity check OPS. */
5728 gdb_assert (ops != NULL);
5729 gdb_assert (ops->find_frame_base_location != NULL);
5730
5731 return result;
5732 }
5733
5734 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5735 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5736 this index. This returns the new index, which should be used as
5737 the aclass_index field for symbols of this type. */
5738
5739 int
5740 register_symbol_register_impl (enum address_class aclass,
5741 const struct symbol_register_ops *ops)
5742 {
5743 int result = next_aclass_value++;
5744
5745 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5746 gdb_assert (result < MAX_SYMBOL_IMPLS);
5747 symbol_impl[result].aclass = aclass;
5748 symbol_impl[result].ops_register = ops;
5749
5750 return result;
5751 }
5752
5753 /* Initialize elements of 'symbol_impl' for the constants in enum
5754 address_class. */
5755
5756 static void
5757 initialize_ordinary_address_classes (void)
5758 {
5759 int i;
5760
5761 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5762 symbol_impl[i].aclass = (enum address_class) i;
5763 }
5764
5765 \f
5766
5767 /* Helper function to initialize the fields of an objfile-owned symbol.
5768 It assumed that *SYM is already all zeroes. */
5769
5770 static void
5771 initialize_objfile_symbol_1 (struct symbol *sym)
5772 {
5773 SYMBOL_OBJFILE_OWNED (sym) = 1;
5774 SYMBOL_SECTION (sym) = -1;
5775 }
5776
5777 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5778
5779 void
5780 initialize_objfile_symbol (struct symbol *sym)
5781 {
5782 memset (sym, 0, sizeof (*sym));
5783 initialize_objfile_symbol_1 (sym);
5784 }
5785
5786 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5787 obstack. */
5788
5789 struct symbol *
5790 allocate_symbol (struct objfile *objfile)
5791 {
5792 struct symbol *result;
5793
5794 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5795 initialize_objfile_symbol_1 (result);
5796
5797 return result;
5798 }
5799
5800 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5801 obstack. */
5802
5803 struct template_symbol *
5804 allocate_template_symbol (struct objfile *objfile)
5805 {
5806 struct template_symbol *result;
5807
5808 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5809 initialize_objfile_symbol_1 (&result->base);
5810
5811 return result;
5812 }
5813
5814 /* See symtab.h. */
5815
5816 struct objfile *
5817 symbol_objfile (const struct symbol *symbol)
5818 {
5819 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5820 return SYMTAB_OBJFILE (symbol->owner.symtab);
5821 }
5822
5823 /* See symtab.h. */
5824
5825 struct gdbarch *
5826 symbol_arch (const struct symbol *symbol)
5827 {
5828 if (!SYMBOL_OBJFILE_OWNED (symbol))
5829 return symbol->owner.arch;
5830 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5831 }
5832
5833 /* See symtab.h. */
5834
5835 struct symtab *
5836 symbol_symtab (const struct symbol *symbol)
5837 {
5838 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5839 return symbol->owner.symtab;
5840 }
5841
5842 /* See symtab.h. */
5843
5844 void
5845 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5846 {
5847 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5848 symbol->owner.symtab = symtab;
5849 }
5850
5851 \f
5852
5853 void
5854 _initialize_symtab (void)
5855 {
5856 initialize_ordinary_address_classes ();
5857
5858 main_progspace_key
5859 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5860
5861 symbol_cache_key
5862 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5863
5864 add_info ("variables", variables_info, _("\
5865 All global and static variable names, or those matching REGEXP."));
5866 if (dbx_commands)
5867 add_com ("whereis", class_info, variables_info, _("\
5868 All global and static variable names, or those matching REGEXP."));
5869
5870 add_info ("functions", functions_info,
5871 _("All function names, or those matching REGEXP."));
5872
5873 /* FIXME: This command has at least the following problems:
5874 1. It prints builtin types (in a very strange and confusing fashion).
5875 2. It doesn't print right, e.g. with
5876 typedef struct foo *FOO
5877 type_print prints "FOO" when we want to make it (in this situation)
5878 print "struct foo *".
5879 I also think "ptype" or "whatis" is more likely to be useful (but if
5880 there is much disagreement "info types" can be fixed). */
5881 add_info ("types", types_info,
5882 _("All type names, or those matching REGEXP."));
5883
5884 add_info ("sources", sources_info,
5885 _("Source files in the program."));
5886
5887 add_com ("rbreak", class_breakpoint, rbreak_command,
5888 _("Set a breakpoint for all functions matching REGEXP."));
5889
5890 add_setshow_enum_cmd ("multiple-symbols", no_class,
5891 multiple_symbols_modes, &multiple_symbols_mode,
5892 _("\
5893 Set the debugger behavior when more than one symbol are possible matches\n\
5894 in an expression."), _("\
5895 Show how the debugger handles ambiguities in expressions."), _("\
5896 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5897 NULL, NULL, &setlist, &showlist);
5898
5899 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5900 &basenames_may_differ, _("\
5901 Set whether a source file may have multiple base names."), _("\
5902 Show whether a source file may have multiple base names."), _("\
5903 (A \"base name\" is the name of a file with the directory part removed.\n\
5904 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5905 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5906 before comparing them. Canonicalization is an expensive operation,\n\
5907 but it allows the same file be known by more than one base name.\n\
5908 If not set (the default), all source files are assumed to have just\n\
5909 one base name, and gdb will do file name comparisons more efficiently."),
5910 NULL, NULL,
5911 &setlist, &showlist);
5912
5913 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5914 _("Set debugging of symbol table creation."),
5915 _("Show debugging of symbol table creation."), _("\
5916 When enabled (non-zero), debugging messages are printed when building\n\
5917 symbol tables. A value of 1 (one) normally provides enough information.\n\
5918 A value greater than 1 provides more verbose information."),
5919 NULL,
5920 NULL,
5921 &setdebuglist, &showdebuglist);
5922
5923 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5924 _("\
5925 Set debugging of symbol lookup."), _("\
5926 Show debugging of symbol lookup."), _("\
5927 When enabled (non-zero), symbol lookups are logged."),
5928 NULL, NULL,
5929 &setdebuglist, &showdebuglist);
5930
5931 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5932 &new_symbol_cache_size,
5933 _("Set the size of the symbol cache."),
5934 _("Show the size of the symbol cache."), _("\
5935 The size of the symbol cache.\n\
5936 If zero then the symbol cache is disabled."),
5937 set_symbol_cache_size_handler, NULL,
5938 &maintenance_set_cmdlist,
5939 &maintenance_show_cmdlist);
5940
5941 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5942 _("Dump the symbol cache for each program space."),
5943 &maintenanceprintlist);
5944
5945 add_cmd ("symbol-cache-statistics", class_maintenance,
5946 maintenance_print_symbol_cache_statistics,
5947 _("Print symbol cache statistics for each program space."),
5948 &maintenanceprintlist);
5949
5950 add_cmd ("flush-symbol-cache", class_maintenance,
5951 maintenance_flush_symbol_cache,
5952 _("Flush the symbol cache for each program space."),
5953 &maintenancelist);
5954
5955 observer_attach_executable_changed (symtab_observer_executable_changed);
5956 observer_attach_new_objfile (symtab_new_objfile_observer);
5957 observer_attach_free_objfile (symtab_free_objfile_observer);
5958 }
This page took 0.202543 seconds and 4 git commands to generate.