gdb/fortran: Don't include module symbols when searching for types
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 int basenames_may_differ = 0;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, int copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /* See symtab.h. */
1074
1075 void
1076 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 {
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097 }
1098 \f
1099 /* Hash function for the symbol cache. */
1100
1101 static unsigned int
1102 hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104 {
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118 }
1119
1120 /* Equality function for the symbol cache. */
1121
1122 static int
1123 eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194 }
1195
1196 /* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199 static size_t
1200 symbol_cache_byte_size (unsigned int size)
1201 {
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204 }
1205
1206 /* Resize CACHE. */
1207
1208 static void
1209 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 {
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239 }
1240
1241 /* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244 static struct symbol_cache *
1245 get_symbol_cache (struct program_space *pspace)
1246 {
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256 }
1257
1258 /* Set the size of the symbol cache in all program spaces. */
1259
1260 static void
1261 set_symbol_cache_size (unsigned int new_size)
1262 {
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1301 can be used to save the result of a full lookup attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, enum block_enum block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return {};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 *bsc_ptr = bsc;
1329 *slot_ptr = slot;
1330
1331 if (eq_symbol_entry (slot, objfile_context, name, domain))
1332 {
1333 if (symbol_lookup_debug)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "%s block symbol cache hit%s for %s, %s\n",
1336 block == GLOBAL_BLOCK ? "Global" : "Static",
1337 slot->state == SYMBOL_SLOT_NOT_FOUND
1338 ? " (not found)" : "",
1339 name, domain_name (domain));
1340 ++bsc->hits;
1341 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1342 return SYMBOL_LOOKUP_FAILED;
1343 return slot->value.found;
1344 }
1345
1346 /* Symbol is not present in the cache. */
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return {};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache = symbol_cache_key.get (pspace);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache = symbol_cache_key.get (pspace);
1608 if (cache == NULL)
1609 printf_filtered (" empty, no stats available\n");
1610 else
1611 symbol_cache_stats (cache);
1612 }
1613 }
1614
1615 /* This module's 'new_objfile' observer. */
1616
1617 static void
1618 symtab_new_objfile_observer (struct objfile *objfile)
1619 {
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1622 }
1623
1624 /* This module's 'free_objfile' observer. */
1625
1626 static void
1627 symtab_free_objfile_observer (struct objfile *objfile)
1628 {
1629 symbol_cache_flush (objfile->pspace);
1630 }
1631 \f
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1634
1635 void
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1638 {
1639 struct minimal_symbol *msym;
1640
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1668
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1675
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1681
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1686
1687 struct obj_section *s;
1688 int fallback = -1;
1689
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1691 {
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1694
1695 if (fallback == -1)
1696 fallback = idx;
1697
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1700 {
1701 ginfo->section = idx;
1702 return;
1703 }
1704 }
1705
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1709 if (fallback == -1)
1710 ginfo->section = 0;
1711 else
1712 ginfo->section = fallback;
1713 }
1714 }
1715
1716 struct symbol *
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1718 {
1719 CORE_ADDR addr;
1720
1721 if (!sym)
1722 return NULL;
1723
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1725 return sym;
1726
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1730
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1733
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1735 return sym;
1736
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1739
1740 switch (SYMBOL_CLASS (sym))
1741 {
1742 case LOC_STATIC:
1743 case LOC_LABEL:
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1745 break;
1746 case LOC_BLOCK:
1747 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1748 break;
1749
1750 default:
1751 /* Nothing else will be listed in the minsyms -- no use looking
1752 it up. */
1753 return sym;
1754 }
1755
1756 fixup_section (&sym->ginfo, addr, objfile);
1757
1758 return sym;
1759 }
1760
1761 /* See symtab.h. */
1762
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1765 {
1766 demangle_result_storage storage;
1767
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1769 {
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1773
1774 if (without_params != NULL)
1775 {
1776 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1778 lang, storage);
1779 return;
1780 }
1781 }
1782
1783 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1784 m_demangled_name = lookup_name.name ();
1785 else
1786 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1787 lang, storage);
1788 }
1789
1790 /* See symtab.h. */
1791
1792 const lookup_name_info &
1793 lookup_name_info::match_any ()
1794 {
1795 /* Lookup any symbol that "" would complete. I.e., this matches all
1796 symbol names. */
1797 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1798 true);
1799
1800 return lookup_name;
1801 }
1802
1803 /* Compute the demangled form of NAME as used by the various symbol
1804 lookup functions. The result can either be the input NAME
1805 directly, or a pointer to a buffer owned by the STORAGE object.
1806
1807 For Ada, this function just returns NAME, unmodified.
1808 Normally, Ada symbol lookups are performed using the encoded name
1809 rather than the demangled name, and so it might seem to make sense
1810 for this function to return an encoded version of NAME.
1811 Unfortunately, we cannot do this, because this function is used in
1812 circumstances where it is not appropriate to try to encode NAME.
1813 For instance, when displaying the frame info, we demangle the name
1814 of each parameter, and then perform a symbol lookup inside our
1815 function using that demangled name. In Ada, certain functions
1816 have internally-generated parameters whose name contain uppercase
1817 characters. Encoding those name would result in those uppercase
1818 characters to become lowercase, and thus cause the symbol lookup
1819 to fail. */
1820
1821 const char *
1822 demangle_for_lookup (const char *name, enum language lang,
1823 demangle_result_storage &storage)
1824 {
1825 /* If we are using C++, D, or Go, demangle the name before doing a
1826 lookup, so we can always binary search. */
1827 if (lang == language_cplus)
1828 {
1829 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1830 if (demangled_name != NULL)
1831 return storage.set_malloc_ptr (demangled_name);
1832
1833 /* If we were given a non-mangled name, canonicalize it
1834 according to the language (so far only for C++). */
1835 std::string canon = cp_canonicalize_string (name);
1836 if (!canon.empty ())
1837 return storage.swap_string (canon);
1838 }
1839 else if (lang == language_d)
1840 {
1841 char *demangled_name = d_demangle (name, 0);
1842 if (demangled_name != NULL)
1843 return storage.set_malloc_ptr (demangled_name);
1844 }
1845 else if (lang == language_go)
1846 {
1847 char *demangled_name = go_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851
1852 return name;
1853 }
1854
1855 /* See symtab.h. */
1856
1857 unsigned int
1858 search_name_hash (enum language language, const char *search_name)
1859 {
1860 return language_def (language)->la_search_name_hash (search_name);
1861 }
1862
1863 /* See symtab.h.
1864
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1873 code). */
1874
1875 struct block_symbol
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1882
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct block_symbol
1892 lookup_symbol (const char *name, const struct block *block,
1893 domain_enum domain,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1899 }
1900
1901 /* See symtab.h. */
1902
1903 struct block_symbol
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1905 domain_enum domain)
1906 {
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1916 {
1917 if (lang->la_name_of_this == NULL || block == NULL)
1918 return {};
1919
1920 if (symbol_lookup_debug > 1)
1921 {
1922 struct objfile *objfile = lookup_objfile_from_block (block);
1923
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->la_name, host_address_to_string (block),
1927 objfile_debug_name (objfile));
1928 }
1929
1930 while (block)
1931 {
1932 struct symbol *sym;
1933
1934 sym = block_lookup_symbol (block, lang->la_name_of_this,
1935 symbol_name_match_type::SEARCH_NAME,
1936 VAR_DOMAIN);
1937 if (sym != NULL)
1938 {
1939 if (symbol_lookup_debug > 1)
1940 {
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 SYMBOL_PRINT_NAME (sym),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1945 }
1946 return (struct block_symbol) {sym, block};
1947 }
1948 if (BLOCK_FUNCTION (block))
1949 break;
1950 block = BLOCK_SUPERBLOCK (block);
1951 }
1952
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1955 return {};
1956 }
1957
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1961
1962 static int
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 int i;
1967
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1970
1971 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1972 {
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1974
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1976 {
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1979 return 1;
1980 }
1981 }
1982
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1985
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1987 {
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1989 {
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1992 return 1;
1993 }
1994 }
1995
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1998 return 1;
1999
2000 return 0;
2001 }
2002
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2005
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2011 {
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2014
2015 if (symbol_lookup_debug)
2016 {
2017 struct objfile *objfile = lookup_objfile_from_block (block);
2018
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2022 objfile != NULL
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2025 }
2026
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2033
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2050
2051 langdef = language_def (language);
2052
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2055 means. */
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2057 {
2058 result = lookup_language_this (langdef, block);
2059
2060 if (result.symbol)
2061 {
2062 struct type *t = result.symbol->type;
2063
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2069
2070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2071 && TYPE_CODE (t) != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->la_name_of_this);
2074
2075 if (check_field (t, name, is_a_field_of_this))
2076 {
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2081 }
2082 return {};
2083 }
2084 }
2085 }
2086
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2089
2090 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2091 if (result.symbol != NULL)
2092 {
2093 if (symbol_lookup_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2097 }
2098 return result;
2099 }
2100
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2103
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2106 {
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2110 : "NULL");
2111 }
2112 return result;
2113 }
2114
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2124 {
2125 struct symbol *sym;
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2128
2129 /* Check if either no block is specified or it's a global block. */
2130
2131 if (static_block == NULL)
2132 return {};
2133
2134 while (block != static_block)
2135 {
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2137 if (sym != NULL)
2138 return (struct block_symbol) {sym, block};
2139
2140 if (language == language_cplus || language == language_fortran)
2141 {
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2144 domain);
2145
2146 if (blocksym.symbol != NULL)
2147 return blocksym;
2148 }
2149
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2151 break;
2152 block = BLOCK_SUPERBLOCK (block);
2153 }
2154
2155 /* We've reached the end of the function without finding a result. */
2156
2157 return {};
2158 }
2159
2160 /* See symtab.h. */
2161
2162 struct objfile *
2163 lookup_objfile_from_block (const struct block *block)
2164 {
2165 if (block == NULL)
2166 return NULL;
2167
2168 block = block_global_block (block);
2169 /* Look through all blockvectors. */
2170 for (objfile *obj : current_program_space->objfiles ())
2171 {
2172 for (compunit_symtab *cust : obj->compunits ())
2173 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2174 GLOBAL_BLOCK))
2175 {
2176 if (obj->separate_debug_objfile_backlink)
2177 obj = obj->separate_debug_objfile_backlink;
2178
2179 return obj;
2180 }
2181 }
2182
2183 return NULL;
2184 }
2185
2186 /* See symtab.h. */
2187
2188 struct symbol *
2189 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2190 const struct block *block,
2191 const domain_enum domain)
2192 {
2193 struct symbol *sym;
2194
2195 if (symbol_lookup_debug > 1)
2196 {
2197 struct objfile *objfile = lookup_objfile_from_block (block);
2198
2199 fprintf_unfiltered (gdb_stdlog,
2200 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2201 name, host_address_to_string (block),
2202 objfile_debug_name (objfile),
2203 domain_name (domain));
2204 }
2205
2206 sym = block_lookup_symbol (block, name, match_type, domain);
2207 if (sym)
2208 {
2209 if (symbol_lookup_debug > 1)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2212 host_address_to_string (sym));
2213 }
2214 return fixup_symbol_section (sym, NULL);
2215 }
2216
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return NULL;
2220 }
2221
2222 /* See symtab.h. */
2223
2224 struct block_symbol
2225 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2226 enum block_enum block_index,
2227 const char *name,
2228 const domain_enum domain)
2229 {
2230 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2231
2232 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2233 {
2234 struct block_symbol result
2235 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2236
2237 if (result.symbol != nullptr)
2238 return result;
2239 }
2240
2241 return {};
2242 }
2243
2244 /* Check to see if the symbol is defined in one of the OBJFILE's
2245 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2246 depending on whether or not we want to search global symbols or
2247 static symbols. */
2248
2249 static struct block_symbol
2250 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2251 enum block_enum block_index, const char *name,
2252 const domain_enum domain)
2253 {
2254 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2255
2256 if (symbol_lookup_debug > 1)
2257 {
2258 fprintf_unfiltered (gdb_stdlog,
2259 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2260 objfile_debug_name (objfile),
2261 block_index == GLOBAL_BLOCK
2262 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2263 name, domain_name (domain));
2264 }
2265
2266 for (compunit_symtab *cust : objfile->compunits ())
2267 {
2268 const struct blockvector *bv;
2269 const struct block *block;
2270 struct block_symbol result;
2271
2272 bv = COMPUNIT_BLOCKVECTOR (cust);
2273 block = BLOCKVECTOR_BLOCK (bv, block_index);
2274 result.symbol = block_lookup_symbol_primary (block, name, domain);
2275 result.block = block;
2276 if (result.symbol != NULL)
2277 {
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2281 host_address_to_string (result.symbol),
2282 host_address_to_string (block));
2283 }
2284 result.symbol = fixup_symbol_section (result.symbol, objfile);
2285 return result;
2286
2287 }
2288 }
2289
2290 if (symbol_lookup_debug > 1)
2291 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2292 return {};
2293 }
2294
2295 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2296 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2297 and all associated separate debug objfiles.
2298
2299 Normally we only look in OBJFILE, and not any separate debug objfiles
2300 because the outer loop will cause them to be searched too. This case is
2301 different. Here we're called from search_symbols where it will only
2302 call us for the objfile that contains a matching minsym. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2306 const char *linkage_name,
2307 domain_enum domain)
2308 {
2309 enum language lang = current_language->la_language;
2310 struct objfile *main_objfile;
2311
2312 demangle_result_storage storage;
2313 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2314
2315 if (objfile->separate_debug_objfile_backlink)
2316 main_objfile = objfile->separate_debug_objfile_backlink;
2317 else
2318 main_objfile = objfile;
2319
2320 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2321 {
2322 struct block_symbol result;
2323
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol == NULL)
2327 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2328 modified_name, domain);
2329 if (result.symbol != NULL)
2330 return result;
2331 }
2332
2333 return {};
2334 }
2335
2336 /* A helper function that throws an exception when a symbol was found
2337 in a psymtab but not in a symtab. */
2338
2339 static void ATTRIBUTE_NORETURN
2340 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2341 struct compunit_symtab *cust)
2342 {
2343 error (_("\
2344 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2345 %s may be an inlined function, or may be a template function\n \
2346 (if a template, try specifying an instantiation: %s<type>)."),
2347 block_index == GLOBAL_BLOCK ? "global" : "static",
2348 name,
2349 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2350 name, name);
2351 }
2352
2353 /* A helper function for various lookup routines that interfaces with
2354 the "quick" symbol table functions. */
2355
2356 static struct block_symbol
2357 lookup_symbol_via_quick_fns (struct objfile *objfile,
2358 enum block_enum block_index, const char *name,
2359 const domain_enum domain)
2360 {
2361 struct compunit_symtab *cust;
2362 const struct blockvector *bv;
2363 const struct block *block;
2364 struct block_symbol result;
2365
2366 if (!objfile->sf)
2367 return {};
2368
2369 if (symbol_lookup_debug > 1)
2370 {
2371 fprintf_unfiltered (gdb_stdlog,
2372 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2373 objfile_debug_name (objfile),
2374 block_index == GLOBAL_BLOCK
2375 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2376 name, domain_name (domain));
2377 }
2378
2379 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2380 if (cust == NULL)
2381 {
2382 if (symbol_lookup_debug > 1)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "lookup_symbol_via_quick_fns (...) = NULL\n");
2386 }
2387 return {};
2388 }
2389
2390 bv = COMPUNIT_BLOCKVECTOR (cust);
2391 block = BLOCKVECTOR_BLOCK (bv, block_index);
2392 result.symbol = block_lookup_symbol (block, name,
2393 symbol_name_match_type::FULL, domain);
2394 if (result.symbol == NULL)
2395 error_in_psymtab_expansion (block_index, name, cust);
2396
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2401 host_address_to_string (result.symbol),
2402 host_address_to_string (block));
2403 }
2404
2405 result.symbol = fixup_symbol_section (result.symbol, objfile);
2406 result.block = block;
2407 return result;
2408 }
2409
2410 /* See symtab.h. */
2411
2412 struct block_symbol
2413 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2414 const char *name,
2415 const struct block *block,
2416 const domain_enum domain)
2417 {
2418 struct block_symbol result;
2419
2420 /* NOTE: carlton/2003-05-19: The comments below were written when
2421 this (or what turned into this) was part of lookup_symbol_aux;
2422 I'm much less worried about these questions now, since these
2423 decisions have turned out well, but I leave these comments here
2424 for posterity. */
2425
2426 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2427 not it would be appropriate to search the current global block
2428 here as well. (That's what this code used to do before the
2429 is_a_field_of_this check was moved up.) On the one hand, it's
2430 redundant with the lookup in all objfiles search that happens
2431 next. On the other hand, if decode_line_1 is passed an argument
2432 like filename:var, then the user presumably wants 'var' to be
2433 searched for in filename. On the third hand, there shouldn't be
2434 multiple global variables all of which are named 'var', and it's
2435 not like decode_line_1 has ever restricted its search to only
2436 global variables in a single filename. All in all, only
2437 searching the static block here seems best: it's correct and it's
2438 cleanest. */
2439
2440 /* NOTE: carlton/2002-12-05: There's also a possible performance
2441 issue here: if you usually search for global symbols in the
2442 current file, then it would be slightly better to search the
2443 current global block before searching all the symtabs. But there
2444 are other factors that have a much greater effect on performance
2445 than that one, so I don't think we should worry about that for
2446 now. */
2447
2448 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2449 the current objfile. Searching the current objfile first is useful
2450 for both matching user expectations as well as performance. */
2451
2452 result = lookup_symbol_in_static_block (name, block, domain);
2453 if (result.symbol != NULL)
2454 return result;
2455
2456 /* If we didn't find a definition for a builtin type in the static block,
2457 search for it now. This is actually the right thing to do and can be
2458 a massive performance win. E.g., when debugging a program with lots of
2459 shared libraries we could search all of them only to find out the
2460 builtin type isn't defined in any of them. This is common for types
2461 like "void". */
2462 if (domain == VAR_DOMAIN)
2463 {
2464 struct gdbarch *gdbarch;
2465
2466 if (block == NULL)
2467 gdbarch = target_gdbarch ();
2468 else
2469 gdbarch = block_gdbarch (block);
2470 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2471 gdbarch, name);
2472 result.block = NULL;
2473 if (result.symbol != NULL)
2474 return result;
2475 }
2476
2477 return lookup_global_symbol (name, block, domain);
2478 }
2479
2480 /* See symtab.h. */
2481
2482 struct block_symbol
2483 lookup_symbol_in_static_block (const char *name,
2484 const struct block *block,
2485 const domain_enum domain)
2486 {
2487 const struct block *static_block = block_static_block (block);
2488 struct symbol *sym;
2489
2490 if (static_block == NULL)
2491 return {};
2492
2493 if (symbol_lookup_debug)
2494 {
2495 struct objfile *objfile = lookup_objfile_from_block (static_block);
2496
2497 fprintf_unfiltered (gdb_stdlog,
2498 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2499 " %s)\n",
2500 name,
2501 host_address_to_string (block),
2502 objfile_debug_name (objfile),
2503 domain_name (domain));
2504 }
2505
2506 sym = lookup_symbol_in_block (name,
2507 symbol_name_match_type::FULL,
2508 static_block, domain);
2509 if (symbol_lookup_debug)
2510 {
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_static_block (...) = %s\n",
2513 sym != NULL ? host_address_to_string (sym) : "NULL");
2514 }
2515 return (struct block_symbol) {sym, static_block};
2516 }
2517
2518 /* Perform the standard symbol lookup of NAME in OBJFILE:
2519 1) First search expanded symtabs, and if not found
2520 2) Search the "quick" symtabs (partial or .gdb_index).
2521 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2522
2523 static struct block_symbol
2524 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2525 const char *name, const domain_enum domain)
2526 {
2527 struct block_symbol result;
2528
2529 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2530
2531 if (symbol_lookup_debug)
2532 {
2533 fprintf_unfiltered (gdb_stdlog,
2534 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2535 objfile_debug_name (objfile),
2536 block_index == GLOBAL_BLOCK
2537 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2538 name, domain_name (domain));
2539 }
2540
2541 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2542 name, domain);
2543 if (result.symbol != NULL)
2544 {
2545 if (symbol_lookup_debug)
2546 {
2547 fprintf_unfiltered (gdb_stdlog,
2548 "lookup_symbol_in_objfile (...) = %s"
2549 " (in symtabs)\n",
2550 host_address_to_string (result.symbol));
2551 }
2552 return result;
2553 }
2554
2555 result = lookup_symbol_via_quick_fns (objfile, block_index,
2556 name, domain);
2557 if (symbol_lookup_debug)
2558 {
2559 fprintf_unfiltered (gdb_stdlog,
2560 "lookup_symbol_in_objfile (...) = %s%s\n",
2561 result.symbol != NULL
2562 ? host_address_to_string (result.symbol)
2563 : "NULL",
2564 result.symbol != NULL ? " (via quick fns)" : "");
2565 }
2566 return result;
2567 }
2568
2569 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2570
2571 struct global_or_static_sym_lookup_data
2572 {
2573 /* The name of the symbol we are searching for. */
2574 const char *name;
2575
2576 /* The domain to use for our search. */
2577 domain_enum domain;
2578
2579 /* The block index in which to search. */
2580 enum block_enum block_index;
2581
2582 /* The field where the callback should store the symbol if found.
2583 It should be initialized to {NULL, NULL} before the search is started. */
2584 struct block_symbol result;
2585 };
2586
2587 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2588 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2589 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2590 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2591
2592 static int
2593 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2594 void *cb_data)
2595 {
2596 struct global_or_static_sym_lookup_data *data =
2597 (struct global_or_static_sym_lookup_data *) cb_data;
2598
2599 gdb_assert (data->result.symbol == NULL
2600 && data->result.block == NULL);
2601
2602 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2603 data->name, data->domain);
2604
2605 /* If we found a match, tell the iterator to stop. Otherwise,
2606 keep going. */
2607 return (data->result.symbol != NULL);
2608 }
2609
2610 /* This function contains the common code of lookup_{global,static}_symbol.
2611 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2612 the objfile to start the lookup in. */
2613
2614 static struct block_symbol
2615 lookup_global_or_static_symbol (const char *name,
2616 enum block_enum block_index,
2617 struct objfile *objfile,
2618 const domain_enum domain)
2619 {
2620 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2621 struct block_symbol result;
2622 struct global_or_static_sym_lookup_data lookup_data;
2623 struct block_symbol_cache *bsc;
2624 struct symbol_cache_slot *slot;
2625
2626 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2627 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2628
2629 /* First see if we can find the symbol in the cache.
2630 This works because we use the current objfile to qualify the lookup. */
2631 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2632 &bsc, &slot);
2633 if (result.symbol != NULL)
2634 {
2635 if (SYMBOL_LOOKUP_FAILED_P (result))
2636 return {};
2637 return result;
2638 }
2639
2640 /* Call library-specific lookup procedure. */
2641 if (objfile != NULL)
2642 result = solib_global_lookup (objfile, name, domain);
2643
2644 /* If that didn't work go a global search (of global blocks, heh). */
2645 if (result.symbol == NULL)
2646 {
2647 memset (&lookup_data, 0, sizeof (lookup_data));
2648 lookup_data.name = name;
2649 lookup_data.block_index = block_index;
2650 lookup_data.domain = domain;
2651 gdbarch_iterate_over_objfiles_in_search_order
2652 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2653 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2654 result = lookup_data.result;
2655 }
2656
2657 if (result.symbol != NULL)
2658 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2659 else
2660 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2661
2662 return result;
2663 }
2664
2665 /* See symtab.h. */
2666
2667 struct block_symbol
2668 lookup_static_symbol (const char *name, const domain_enum domain)
2669 {
2670 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2671 }
2672
2673 /* See symtab.h. */
2674
2675 struct block_symbol
2676 lookup_global_symbol (const char *name,
2677 const struct block *block,
2678 const domain_enum domain)
2679 {
2680 struct objfile *objfile = lookup_objfile_from_block (block);
2681 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2682 }
2683
2684 int
2685 symbol_matches_domain (enum language symbol_language,
2686 domain_enum symbol_domain,
2687 domain_enum domain)
2688 {
2689 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2690 Similarly, any Ada type declaration implicitly defines a typedef. */
2691 if (symbol_language == language_cplus
2692 || symbol_language == language_d
2693 || symbol_language == language_ada
2694 || symbol_language == language_rust)
2695 {
2696 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2697 && symbol_domain == STRUCT_DOMAIN)
2698 return 1;
2699 }
2700 /* For all other languages, strict match is required. */
2701 return (symbol_domain == domain);
2702 }
2703
2704 /* See symtab.h. */
2705
2706 struct type *
2707 lookup_transparent_type (const char *name)
2708 {
2709 return current_language->la_lookup_transparent_type (name);
2710 }
2711
2712 /* A helper for basic_lookup_transparent_type that interfaces with the
2713 "quick" symbol table functions. */
2714
2715 static struct type *
2716 basic_lookup_transparent_type_quick (struct objfile *objfile,
2717 enum block_enum block_index,
2718 const char *name)
2719 {
2720 struct compunit_symtab *cust;
2721 const struct blockvector *bv;
2722 const struct block *block;
2723 struct symbol *sym;
2724
2725 if (!objfile->sf)
2726 return NULL;
2727 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2728 STRUCT_DOMAIN);
2729 if (cust == NULL)
2730 return NULL;
2731
2732 bv = COMPUNIT_BLOCKVECTOR (cust);
2733 block = BLOCKVECTOR_BLOCK (bv, block_index);
2734 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2735 block_find_non_opaque_type, NULL);
2736 if (sym == NULL)
2737 error_in_psymtab_expansion (block_index, name, cust);
2738 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2739 return SYMBOL_TYPE (sym);
2740 }
2741
2742 /* Subroutine of basic_lookup_transparent_type to simplify it.
2743 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2744 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2745
2746 static struct type *
2747 basic_lookup_transparent_type_1 (struct objfile *objfile,
2748 enum block_enum block_index,
2749 const char *name)
2750 {
2751 const struct blockvector *bv;
2752 const struct block *block;
2753 const struct symbol *sym;
2754
2755 for (compunit_symtab *cust : objfile->compunits ())
2756 {
2757 bv = COMPUNIT_BLOCKVECTOR (cust);
2758 block = BLOCKVECTOR_BLOCK (bv, block_index);
2759 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2760 block_find_non_opaque_type, NULL);
2761 if (sym != NULL)
2762 {
2763 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2764 return SYMBOL_TYPE (sym);
2765 }
2766 }
2767
2768 return NULL;
2769 }
2770
2771 /* The standard implementation of lookup_transparent_type. This code
2772 was modeled on lookup_symbol -- the parts not relevant to looking
2773 up types were just left out. In particular it's assumed here that
2774 types are available in STRUCT_DOMAIN and only in file-static or
2775 global blocks. */
2776
2777 struct type *
2778 basic_lookup_transparent_type (const char *name)
2779 {
2780 struct type *t;
2781
2782 /* Now search all the global symbols. Do the symtab's first, then
2783 check the psymtab's. If a psymtab indicates the existence
2784 of the desired name as a global, then do psymtab-to-symtab
2785 conversion on the fly and return the found symbol. */
2786
2787 for (objfile *objfile : current_program_space->objfiles ())
2788 {
2789 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2790 if (t)
2791 return t;
2792 }
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 /* Now search the static file-level symbols.
2802 Not strictly correct, but more useful than an error.
2803 Do the symtab's first, then
2804 check the psymtab's. If a psymtab indicates the existence
2805 of the desired name as a file-level static, then do psymtab-to-symtab
2806 conversion on the fly and return the found symbol. */
2807
2808 for (objfile *objfile : current_program_space->objfiles ())
2809 {
2810 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2811 if (t)
2812 return t;
2813 }
2814
2815 for (objfile *objfile : current_program_space->objfiles ())
2816 {
2817 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2818 if (t)
2819 return t;
2820 }
2821
2822 return (struct type *) 0;
2823 }
2824
2825 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2826
2827 For each symbol that matches, CALLBACK is called. The symbol is
2828 passed to the callback.
2829
2830 If CALLBACK returns false, the iteration ends. Otherwise, the
2831 search continues. */
2832
2833 void
2834 iterate_over_symbols (const struct block *block,
2835 const lookup_name_info &name,
2836 const domain_enum domain,
2837 gdb::function_view<symbol_found_callback_ftype> callback)
2838 {
2839 struct block_iterator iter;
2840 struct symbol *sym;
2841
2842 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2843 {
2844 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2845 SYMBOL_DOMAIN (sym), domain))
2846 {
2847 struct block_symbol block_sym = {sym, block};
2848
2849 if (!callback (&block_sym))
2850 return;
2851 }
2852 }
2853 }
2854
2855 /* Find the compunit symtab associated with PC and SECTION.
2856 This will read in debug info as necessary. */
2857
2858 struct compunit_symtab *
2859 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2860 {
2861 struct compunit_symtab *best_cust = NULL;
2862 CORE_ADDR distance = 0;
2863 struct bound_minimal_symbol msymbol;
2864
2865 /* If we know that this is not a text address, return failure. This is
2866 necessary because we loop based on the block's high and low code
2867 addresses, which do not include the data ranges, and because
2868 we call find_pc_sect_psymtab which has a similar restriction based
2869 on the partial_symtab's texthigh and textlow. */
2870 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2871 if (msymbol.minsym && msymbol.minsym->data_p ())
2872 return NULL;
2873
2874 /* Search all symtabs for the one whose file contains our address, and which
2875 is the smallest of all the ones containing the address. This is designed
2876 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2877 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2878 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2879
2880 This happens for native ecoff format, where code from included files
2881 gets its own symtab. The symtab for the included file should have
2882 been read in already via the dependency mechanism.
2883 It might be swifter to create several symtabs with the same name
2884 like xcoff does (I'm not sure).
2885
2886 It also happens for objfiles that have their functions reordered.
2887 For these, the symtab we are looking for is not necessarily read in. */
2888
2889 for (objfile *obj_file : current_program_space->objfiles ())
2890 {
2891 for (compunit_symtab *cust : obj_file->compunits ())
2892 {
2893 const struct block *b;
2894 const struct blockvector *bv;
2895
2896 bv = COMPUNIT_BLOCKVECTOR (cust);
2897 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2898
2899 if (BLOCK_START (b) <= pc
2900 && BLOCK_END (b) > pc
2901 && (distance == 0
2902 || BLOCK_END (b) - BLOCK_START (b) < distance))
2903 {
2904 /* For an objfile that has its functions reordered,
2905 find_pc_psymtab will find the proper partial symbol table
2906 and we simply return its corresponding symtab. */
2907 /* In order to better support objfiles that contain both
2908 stabs and coff debugging info, we continue on if a psymtab
2909 can't be found. */
2910 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2911 {
2912 struct compunit_symtab *result;
2913
2914 result
2915 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2916 msymbol,
2917 pc,
2918 section,
2919 0);
2920 if (result != NULL)
2921 return result;
2922 }
2923 if (section != 0)
2924 {
2925 struct block_iterator iter;
2926 struct symbol *sym = NULL;
2927
2928 ALL_BLOCK_SYMBOLS (b, iter, sym)
2929 {
2930 fixup_symbol_section (sym, obj_file);
2931 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2932 sym),
2933 section))
2934 break;
2935 }
2936 if (sym == NULL)
2937 continue; /* No symbol in this symtab matches
2938 section. */
2939 }
2940 distance = BLOCK_END (b) - BLOCK_START (b);
2941 best_cust = cust;
2942 }
2943 }
2944 }
2945
2946 if (best_cust != NULL)
2947 return best_cust;
2948
2949 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2950
2951 for (objfile *objf : current_program_space->objfiles ())
2952 {
2953 struct compunit_symtab *result;
2954
2955 if (!objf->sf)
2956 continue;
2957 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2958 msymbol,
2959 pc, section,
2960 1);
2961 if (result != NULL)
2962 return result;
2963 }
2964
2965 return NULL;
2966 }
2967
2968 /* Find the compunit symtab associated with PC.
2969 This will read in debug info as necessary.
2970 Backward compatibility, no section. */
2971
2972 struct compunit_symtab *
2973 find_pc_compunit_symtab (CORE_ADDR pc)
2974 {
2975 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2976 }
2977
2978 /* See symtab.h. */
2979
2980 struct symbol *
2981 find_symbol_at_address (CORE_ADDR address)
2982 {
2983 for (objfile *objfile : current_program_space->objfiles ())
2984 {
2985 if (objfile->sf == NULL
2986 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2987 continue;
2988
2989 struct compunit_symtab *symtab
2990 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2991 if (symtab != NULL)
2992 {
2993 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2994
2995 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2996 {
2997 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2998 struct block_iterator iter;
2999 struct symbol *sym;
3000
3001 ALL_BLOCK_SYMBOLS (b, iter, sym)
3002 {
3003 if (SYMBOL_CLASS (sym) == LOC_STATIC
3004 && SYMBOL_VALUE_ADDRESS (sym) == address)
3005 return sym;
3006 }
3007 }
3008 }
3009 }
3010
3011 return NULL;
3012 }
3013
3014 \f
3015
3016 /* Find the source file and line number for a given PC value and SECTION.
3017 Return a structure containing a symtab pointer, a line number,
3018 and a pc range for the entire source line.
3019 The value's .pc field is NOT the specified pc.
3020 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3021 use the line that ends there. Otherwise, in that case, the line
3022 that begins there is used. */
3023
3024 /* The big complication here is that a line may start in one file, and end just
3025 before the start of another file. This usually occurs when you #include
3026 code in the middle of a subroutine. To properly find the end of a line's PC
3027 range, we must search all symtabs associated with this compilation unit, and
3028 find the one whose first PC is closer than that of the next line in this
3029 symtab. */
3030
3031 struct symtab_and_line
3032 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3033 {
3034 struct compunit_symtab *cust;
3035 struct linetable *l;
3036 int len;
3037 struct linetable_entry *item;
3038 const struct blockvector *bv;
3039 struct bound_minimal_symbol msymbol;
3040
3041 /* Info on best line seen so far, and where it starts, and its file. */
3042
3043 struct linetable_entry *best = NULL;
3044 CORE_ADDR best_end = 0;
3045 struct symtab *best_symtab = 0;
3046
3047 /* Store here the first line number
3048 of a file which contains the line at the smallest pc after PC.
3049 If we don't find a line whose range contains PC,
3050 we will use a line one less than this,
3051 with a range from the start of that file to the first line's pc. */
3052 struct linetable_entry *alt = NULL;
3053
3054 /* Info on best line seen in this file. */
3055
3056 struct linetable_entry *prev;
3057
3058 /* If this pc is not from the current frame,
3059 it is the address of the end of a call instruction.
3060 Quite likely that is the start of the following statement.
3061 But what we want is the statement containing the instruction.
3062 Fudge the pc to make sure we get that. */
3063
3064 /* It's tempting to assume that, if we can't find debugging info for
3065 any function enclosing PC, that we shouldn't search for line
3066 number info, either. However, GAS can emit line number info for
3067 assembly files --- very helpful when debugging hand-written
3068 assembly code. In such a case, we'd have no debug info for the
3069 function, but we would have line info. */
3070
3071 if (notcurrent)
3072 pc -= 1;
3073
3074 /* elz: added this because this function returned the wrong
3075 information if the pc belongs to a stub (import/export)
3076 to call a shlib function. This stub would be anywhere between
3077 two functions in the target, and the line info was erroneously
3078 taken to be the one of the line before the pc. */
3079
3080 /* RT: Further explanation:
3081
3082 * We have stubs (trampolines) inserted between procedures.
3083 *
3084 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3085 * exists in the main image.
3086 *
3087 * In the minimal symbol table, we have a bunch of symbols
3088 * sorted by start address. The stubs are marked as "trampoline",
3089 * the others appear as text. E.g.:
3090 *
3091 * Minimal symbol table for main image
3092 * main: code for main (text symbol)
3093 * shr1: stub (trampoline symbol)
3094 * foo: code for foo (text symbol)
3095 * ...
3096 * Minimal symbol table for "shr1" image:
3097 * ...
3098 * shr1: code for shr1 (text symbol)
3099 * ...
3100 *
3101 * So the code below is trying to detect if we are in the stub
3102 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3103 * and if found, do the symbolization from the real-code address
3104 * rather than the stub address.
3105 *
3106 * Assumptions being made about the minimal symbol table:
3107 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3108 * if we're really in the trampoline.s If we're beyond it (say
3109 * we're in "foo" in the above example), it'll have a closer
3110 * symbol (the "foo" text symbol for example) and will not
3111 * return the trampoline.
3112 * 2. lookup_minimal_symbol_text() will find a real text symbol
3113 * corresponding to the trampoline, and whose address will
3114 * be different than the trampoline address. I put in a sanity
3115 * check for the address being the same, to avoid an
3116 * infinite recursion.
3117 */
3118 msymbol = lookup_minimal_symbol_by_pc (pc);
3119 if (msymbol.minsym != NULL)
3120 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3121 {
3122 struct bound_minimal_symbol mfunsym
3123 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3124 NULL);
3125
3126 if (mfunsym.minsym == NULL)
3127 /* I eliminated this warning since it is coming out
3128 * in the following situation:
3129 * gdb shmain // test program with shared libraries
3130 * (gdb) break shr1 // function in shared lib
3131 * Warning: In stub for ...
3132 * In the above situation, the shared lib is not loaded yet,
3133 * so of course we can't find the real func/line info,
3134 * but the "break" still works, and the warning is annoying.
3135 * So I commented out the warning. RT */
3136 /* warning ("In stub for %s; unable to find real function/line info",
3137 SYMBOL_LINKAGE_NAME (msymbol)); */
3138 ;
3139 /* fall through */
3140 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3141 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3142 /* Avoid infinite recursion */
3143 /* See above comment about why warning is commented out. */
3144 /* warning ("In stub for %s; unable to find real function/line info",
3145 SYMBOL_LINKAGE_NAME (msymbol)); */
3146 ;
3147 /* fall through */
3148 else
3149 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3150 }
3151
3152 symtab_and_line val;
3153 val.pspace = current_program_space;
3154
3155 cust = find_pc_sect_compunit_symtab (pc, section);
3156 if (cust == NULL)
3157 {
3158 /* If no symbol information, return previous pc. */
3159 if (notcurrent)
3160 pc++;
3161 val.pc = pc;
3162 return val;
3163 }
3164
3165 bv = COMPUNIT_BLOCKVECTOR (cust);
3166
3167 /* Look at all the symtabs that share this blockvector.
3168 They all have the same apriori range, that we found was right;
3169 but they have different line tables. */
3170
3171 for (symtab *iter_s : compunit_filetabs (cust))
3172 {
3173 /* Find the best line in this symtab. */
3174 l = SYMTAB_LINETABLE (iter_s);
3175 if (!l)
3176 continue;
3177 len = l->nitems;
3178 if (len <= 0)
3179 {
3180 /* I think len can be zero if the symtab lacks line numbers
3181 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3182 I'm not sure which, and maybe it depends on the symbol
3183 reader). */
3184 continue;
3185 }
3186
3187 prev = NULL;
3188 item = l->item; /* Get first line info. */
3189
3190 /* Is this file's first line closer than the first lines of other files?
3191 If so, record this file, and its first line, as best alternate. */
3192 if (item->pc > pc && (!alt || item->pc < alt->pc))
3193 alt = item;
3194
3195 auto pc_compare = [](const CORE_ADDR & comp_pc,
3196 const struct linetable_entry & lhs)->bool
3197 {
3198 return comp_pc < lhs.pc;
3199 };
3200
3201 struct linetable_entry *first = item;
3202 struct linetable_entry *last = item + len;
3203 item = std::upper_bound (first, last, pc, pc_compare);
3204 if (item != first)
3205 prev = item - 1; /* Found a matching item. */
3206
3207 /* At this point, prev points at the line whose start addr is <= pc, and
3208 item points at the next line. If we ran off the end of the linetable
3209 (pc >= start of the last line), then prev == item. If pc < start of
3210 the first line, prev will not be set. */
3211
3212 /* Is this file's best line closer than the best in the other files?
3213 If so, record this file, and its best line, as best so far. Don't
3214 save prev if it represents the end of a function (i.e. line number
3215 0) instead of a real line. */
3216
3217 if (prev && prev->line && (!best || prev->pc > best->pc))
3218 {
3219 best = prev;
3220 best_symtab = iter_s;
3221
3222 /* Discard BEST_END if it's before the PC of the current BEST. */
3223 if (best_end <= best->pc)
3224 best_end = 0;
3225 }
3226
3227 /* If another line (denoted by ITEM) is in the linetable and its
3228 PC is after BEST's PC, but before the current BEST_END, then
3229 use ITEM's PC as the new best_end. */
3230 if (best && item < last && item->pc > best->pc
3231 && (best_end == 0 || best_end > item->pc))
3232 best_end = item->pc;
3233 }
3234
3235 if (!best_symtab)
3236 {
3237 /* If we didn't find any line number info, just return zeros.
3238 We used to return alt->line - 1 here, but that could be
3239 anywhere; if we don't have line number info for this PC,
3240 don't make some up. */
3241 val.pc = pc;
3242 }
3243 else if (best->line == 0)
3244 {
3245 /* If our best fit is in a range of PC's for which no line
3246 number info is available (line number is zero) then we didn't
3247 find any valid line information. */
3248 val.pc = pc;
3249 }
3250 else
3251 {
3252 val.symtab = best_symtab;
3253 val.line = best->line;
3254 val.pc = best->pc;
3255 if (best_end && (!alt || best_end < alt->pc))
3256 val.end = best_end;
3257 else if (alt)
3258 val.end = alt->pc;
3259 else
3260 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3261 }
3262 val.section = section;
3263 return val;
3264 }
3265
3266 /* Backward compatibility (no section). */
3267
3268 struct symtab_and_line
3269 find_pc_line (CORE_ADDR pc, int notcurrent)
3270 {
3271 struct obj_section *section;
3272
3273 section = find_pc_overlay (pc);
3274 if (pc_in_unmapped_range (pc, section))
3275 pc = overlay_mapped_address (pc, section);
3276 return find_pc_sect_line (pc, section, notcurrent);
3277 }
3278
3279 /* See symtab.h. */
3280
3281 struct symtab *
3282 find_pc_line_symtab (CORE_ADDR pc)
3283 {
3284 struct symtab_and_line sal;
3285
3286 /* This always passes zero for NOTCURRENT to find_pc_line.
3287 There are currently no callers that ever pass non-zero. */
3288 sal = find_pc_line (pc, 0);
3289 return sal.symtab;
3290 }
3291 \f
3292 /* Find line number LINE in any symtab whose name is the same as
3293 SYMTAB.
3294
3295 If found, return the symtab that contains the linetable in which it was
3296 found, set *INDEX to the index in the linetable of the best entry
3297 found, and set *EXACT_MATCH nonzero if the value returned is an
3298 exact match.
3299
3300 If not found, return NULL. */
3301
3302 struct symtab *
3303 find_line_symtab (struct symtab *sym_tab, int line,
3304 int *index, int *exact_match)
3305 {
3306 int exact = 0; /* Initialized here to avoid a compiler warning. */
3307
3308 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3309 so far seen. */
3310
3311 int best_index;
3312 struct linetable *best_linetable;
3313 struct symtab *best_symtab;
3314
3315 /* First try looking it up in the given symtab. */
3316 best_linetable = SYMTAB_LINETABLE (sym_tab);
3317 best_symtab = sym_tab;
3318 best_index = find_line_common (best_linetable, line, &exact, 0);
3319 if (best_index < 0 || !exact)
3320 {
3321 /* Didn't find an exact match. So we better keep looking for
3322 another symtab with the same name. In the case of xcoff,
3323 multiple csects for one source file (produced by IBM's FORTRAN
3324 compiler) produce multiple symtabs (this is unavoidable
3325 assuming csects can be at arbitrary places in memory and that
3326 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3327
3328 /* BEST is the smallest linenumber > LINE so far seen,
3329 or 0 if none has been seen so far.
3330 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3331 int best;
3332
3333 if (best_index >= 0)
3334 best = best_linetable->item[best_index].line;
3335 else
3336 best = 0;
3337
3338 for (objfile *objfile : current_program_space->objfiles ())
3339 {
3340 if (objfile->sf)
3341 objfile->sf->qf->expand_symtabs_with_fullname
3342 (objfile, symtab_to_fullname (sym_tab));
3343 }
3344
3345 for (objfile *objfile : current_program_space->objfiles ())
3346 {
3347 for (compunit_symtab *cu : objfile->compunits ())
3348 {
3349 for (symtab *s : compunit_filetabs (cu))
3350 {
3351 struct linetable *l;
3352 int ind;
3353
3354 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3355 continue;
3356 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3357 symtab_to_fullname (s)) != 0)
3358 continue;
3359 l = SYMTAB_LINETABLE (s);
3360 ind = find_line_common (l, line, &exact, 0);
3361 if (ind >= 0)
3362 {
3363 if (exact)
3364 {
3365 best_index = ind;
3366 best_linetable = l;
3367 best_symtab = s;
3368 goto done;
3369 }
3370 if (best == 0 || l->item[ind].line < best)
3371 {
3372 best = l->item[ind].line;
3373 best_index = ind;
3374 best_linetable = l;
3375 best_symtab = s;
3376 }
3377 }
3378 }
3379 }
3380 }
3381 }
3382 done:
3383 if (best_index < 0)
3384 return NULL;
3385
3386 if (index)
3387 *index = best_index;
3388 if (exact_match)
3389 *exact_match = exact;
3390
3391 return best_symtab;
3392 }
3393
3394 /* Given SYMTAB, returns all the PCs function in the symtab that
3395 exactly match LINE. Returns an empty vector if there are no exact
3396 matches, but updates BEST_ITEM in this case. */
3397
3398 std::vector<CORE_ADDR>
3399 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3400 struct linetable_entry **best_item)
3401 {
3402 int start = 0;
3403 std::vector<CORE_ADDR> result;
3404
3405 /* First, collect all the PCs that are at this line. */
3406 while (1)
3407 {
3408 int was_exact;
3409 int idx;
3410
3411 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3412 start);
3413 if (idx < 0)
3414 break;
3415
3416 if (!was_exact)
3417 {
3418 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3419
3420 if (*best_item == NULL || item->line < (*best_item)->line)
3421 *best_item = item;
3422
3423 break;
3424 }
3425
3426 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3427 start = idx + 1;
3428 }
3429
3430 return result;
3431 }
3432
3433 \f
3434 /* Set the PC value for a given source file and line number and return true.
3435 Returns zero for invalid line number (and sets the PC to 0).
3436 The source file is specified with a struct symtab. */
3437
3438 int
3439 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3440 {
3441 struct linetable *l;
3442 int ind;
3443
3444 *pc = 0;
3445 if (symtab == 0)
3446 return 0;
3447
3448 symtab = find_line_symtab (symtab, line, &ind, NULL);
3449 if (symtab != NULL)
3450 {
3451 l = SYMTAB_LINETABLE (symtab);
3452 *pc = l->item[ind].pc;
3453 return 1;
3454 }
3455 else
3456 return 0;
3457 }
3458
3459 /* Find the range of pc values in a line.
3460 Store the starting pc of the line into *STARTPTR
3461 and the ending pc (start of next line) into *ENDPTR.
3462 Returns 1 to indicate success.
3463 Returns 0 if could not find the specified line. */
3464
3465 int
3466 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3467 CORE_ADDR *endptr)
3468 {
3469 CORE_ADDR startaddr;
3470 struct symtab_and_line found_sal;
3471
3472 startaddr = sal.pc;
3473 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3474 return 0;
3475
3476 /* This whole function is based on address. For example, if line 10 has
3477 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3478 "info line *0x123" should say the line goes from 0x100 to 0x200
3479 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3480 This also insures that we never give a range like "starts at 0x134
3481 and ends at 0x12c". */
3482
3483 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3484 if (found_sal.line != sal.line)
3485 {
3486 /* The specified line (sal) has zero bytes. */
3487 *startptr = found_sal.pc;
3488 *endptr = found_sal.pc;
3489 }
3490 else
3491 {
3492 *startptr = found_sal.pc;
3493 *endptr = found_sal.end;
3494 }
3495 return 1;
3496 }
3497
3498 /* Given a line table and a line number, return the index into the line
3499 table for the pc of the nearest line whose number is >= the specified one.
3500 Return -1 if none is found. The value is >= 0 if it is an index.
3501 START is the index at which to start searching the line table.
3502
3503 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3504
3505 static int
3506 find_line_common (struct linetable *l, int lineno,
3507 int *exact_match, int start)
3508 {
3509 int i;
3510 int len;
3511
3512 /* BEST is the smallest linenumber > LINENO so far seen,
3513 or 0 if none has been seen so far.
3514 BEST_INDEX identifies the item for it. */
3515
3516 int best_index = -1;
3517 int best = 0;
3518
3519 *exact_match = 0;
3520
3521 if (lineno <= 0)
3522 return -1;
3523 if (l == 0)
3524 return -1;
3525
3526 len = l->nitems;
3527 for (i = start; i < len; i++)
3528 {
3529 struct linetable_entry *item = &(l->item[i]);
3530
3531 if (item->line == lineno)
3532 {
3533 /* Return the first (lowest address) entry which matches. */
3534 *exact_match = 1;
3535 return i;
3536 }
3537
3538 if (item->line > lineno && (best == 0 || item->line < best))
3539 {
3540 best = item->line;
3541 best_index = i;
3542 }
3543 }
3544
3545 /* If we got here, we didn't get an exact match. */
3546 return best_index;
3547 }
3548
3549 int
3550 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3551 {
3552 struct symtab_and_line sal;
3553
3554 sal = find_pc_line (pc, 0);
3555 *startptr = sal.pc;
3556 *endptr = sal.end;
3557 return sal.symtab != 0;
3558 }
3559
3560 /* Helper for find_function_start_sal. Does most of the work, except
3561 setting the sal's symbol. */
3562
3563 static symtab_and_line
3564 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3565 bool funfirstline)
3566 {
3567 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3568
3569 if (funfirstline && sal.symtab != NULL
3570 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3571 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3572 {
3573 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3574
3575 sal.pc = func_addr;
3576 if (gdbarch_skip_entrypoint_p (gdbarch))
3577 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3578 return sal;
3579 }
3580
3581 /* We always should have a line for the function start address.
3582 If we don't, something is odd. Create a plain SAL referring
3583 just the PC and hope that skip_prologue_sal (if requested)
3584 can find a line number for after the prologue. */
3585 if (sal.pc < func_addr)
3586 {
3587 sal = {};
3588 sal.pspace = current_program_space;
3589 sal.pc = func_addr;
3590 sal.section = section;
3591 }
3592
3593 if (funfirstline)
3594 skip_prologue_sal (&sal);
3595
3596 return sal;
3597 }
3598
3599 /* See symtab.h. */
3600
3601 symtab_and_line
3602 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3603 bool funfirstline)
3604 {
3605 symtab_and_line sal
3606 = find_function_start_sal_1 (func_addr, section, funfirstline);
3607
3608 /* find_function_start_sal_1 does a linetable search, so it finds
3609 the symtab and linenumber, but not a symbol. Fill in the
3610 function symbol too. */
3611 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (symbol *sym, bool funfirstline)
3620 {
3621 fixup_symbol_section (sym, NULL);
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3624 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3625 funfirstline);
3626 sal.symbol = sym;
3627 return sal;
3628 }
3629
3630
3631 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3632 address for that function that has an entry in SYMTAB's line info
3633 table. If such an entry cannot be found, return FUNC_ADDR
3634 unaltered. */
3635
3636 static CORE_ADDR
3637 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3638 {
3639 CORE_ADDR func_start, func_end;
3640 struct linetable *l;
3641 int i;
3642
3643 /* Give up if this symbol has no lineinfo table. */
3644 l = SYMTAB_LINETABLE (symtab);
3645 if (l == NULL)
3646 return func_addr;
3647
3648 /* Get the range for the function's PC values, or give up if we
3649 cannot, for some reason. */
3650 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3651 return func_addr;
3652
3653 /* Linetable entries are ordered by PC values, see the commentary in
3654 symtab.h where `struct linetable' is defined. Thus, the first
3655 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3656 address we are looking for. */
3657 for (i = 0; i < l->nitems; i++)
3658 {
3659 struct linetable_entry *item = &(l->item[i]);
3660
3661 /* Don't use line numbers of zero, they mark special entries in
3662 the table. See the commentary on symtab.h before the
3663 definition of struct linetable. */
3664 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3665 return item->pc;
3666 }
3667
3668 return func_addr;
3669 }
3670
3671 /* Adjust SAL to the first instruction past the function prologue.
3672 If the PC was explicitly specified, the SAL is not changed.
3673 If the line number was explicitly specified then the SAL can still be
3674 updated, unless the language for SAL is assembler, in which case the SAL
3675 will be left unchanged.
3676 If SAL is already past the prologue, then do nothing. */
3677
3678 void
3679 skip_prologue_sal (struct symtab_and_line *sal)
3680 {
3681 struct symbol *sym;
3682 struct symtab_and_line start_sal;
3683 CORE_ADDR pc, saved_pc;
3684 struct obj_section *section;
3685 const char *name;
3686 struct objfile *objfile;
3687 struct gdbarch *gdbarch;
3688 const struct block *b, *function_block;
3689 int force_skip, skip;
3690
3691 /* Do not change the SAL if PC was specified explicitly. */
3692 if (sal->explicit_pc)
3693 return;
3694
3695 /* In assembly code, if the user asks for a specific line then we should
3696 not adjust the SAL. The user already has instruction level
3697 visibility in this case, so selecting a line other than one requested
3698 is likely to be the wrong choice. */
3699 if (sal->symtab != nullptr
3700 && sal->explicit_line
3701 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3702 return;
3703
3704 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3705
3706 switch_to_program_space_and_thread (sal->pspace);
3707
3708 sym = find_pc_sect_function (sal->pc, sal->section);
3709 if (sym != NULL)
3710 {
3711 fixup_symbol_section (sym, NULL);
3712
3713 objfile = symbol_objfile (sym);
3714 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3715 section = SYMBOL_OBJ_SECTION (objfile, sym);
3716 name = SYMBOL_LINKAGE_NAME (sym);
3717 }
3718 else
3719 {
3720 struct bound_minimal_symbol msymbol
3721 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3722
3723 if (msymbol.minsym == NULL)
3724 return;
3725
3726 objfile = msymbol.objfile;
3727 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3728 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3729 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3730 }
3731
3732 gdbarch = get_objfile_arch (objfile);
3733
3734 /* Process the prologue in two passes. In the first pass try to skip the
3735 prologue (SKIP is true) and verify there is a real need for it (indicated
3736 by FORCE_SKIP). If no such reason was found run a second pass where the
3737 prologue is not skipped (SKIP is false). */
3738
3739 skip = 1;
3740 force_skip = 1;
3741
3742 /* Be conservative - allow direct PC (without skipping prologue) only if we
3743 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3744 have to be set by the caller so we use SYM instead. */
3745 if (sym != NULL
3746 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3747 force_skip = 0;
3748
3749 saved_pc = pc;
3750 do
3751 {
3752 pc = saved_pc;
3753
3754 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3755 so that gdbarch_skip_prologue has something unique to work on. */
3756 if (section_is_overlay (section) && !section_is_mapped (section))
3757 pc = overlay_unmapped_address (pc, section);
3758
3759 /* Skip "first line" of function (which is actually its prologue). */
3760 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3761 if (gdbarch_skip_entrypoint_p (gdbarch))
3762 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3763 if (skip)
3764 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3765
3766 /* For overlays, map pc back into its mapped VMA range. */
3767 pc = overlay_mapped_address (pc, section);
3768
3769 /* Calculate line number. */
3770 start_sal = find_pc_sect_line (pc, section, 0);
3771
3772 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3773 line is still part of the same function. */
3774 if (skip && start_sal.pc != pc
3775 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3776 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3777 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3778 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3779 {
3780 /* First pc of next line */
3781 pc = start_sal.end;
3782 /* Recalculate the line number (might not be N+1). */
3783 start_sal = find_pc_sect_line (pc, section, 0);
3784 }
3785
3786 /* On targets with executable formats that don't have a concept of
3787 constructors (ELF with .init has, PE doesn't), gcc emits a call
3788 to `__main' in `main' between the prologue and before user
3789 code. */
3790 if (gdbarch_skip_main_prologue_p (gdbarch)
3791 && name && strcmp_iw (name, "main") == 0)
3792 {
3793 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3794 /* Recalculate the line number (might not be N+1). */
3795 start_sal = find_pc_sect_line (pc, section, 0);
3796 force_skip = 1;
3797 }
3798 }
3799 while (!force_skip && skip--);
3800
3801 /* If we still don't have a valid source line, try to find the first
3802 PC in the lineinfo table that belongs to the same function. This
3803 happens with COFF debug info, which does not seem to have an
3804 entry in lineinfo table for the code after the prologue which has
3805 no direct relation to source. For example, this was found to be
3806 the case with the DJGPP target using "gcc -gcoff" when the
3807 compiler inserted code after the prologue to make sure the stack
3808 is aligned. */
3809 if (!force_skip && sym && start_sal.symtab == NULL)
3810 {
3811 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3812 /* Recalculate the line number. */
3813 start_sal = find_pc_sect_line (pc, section, 0);
3814 }
3815
3816 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3817 forward SAL to the end of the prologue. */
3818 if (sal->pc >= pc)
3819 return;
3820
3821 sal->pc = pc;
3822 sal->section = section;
3823 sal->symtab = start_sal.symtab;
3824 sal->line = start_sal.line;
3825 sal->end = start_sal.end;
3826
3827 /* Check if we are now inside an inlined function. If we can,
3828 use the call site of the function instead. */
3829 b = block_for_pc_sect (sal->pc, sal->section);
3830 function_block = NULL;
3831 while (b != NULL)
3832 {
3833 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3834 function_block = b;
3835 else if (BLOCK_FUNCTION (b) != NULL)
3836 break;
3837 b = BLOCK_SUPERBLOCK (b);
3838 }
3839 if (function_block != NULL
3840 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3841 {
3842 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3843 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3844 }
3845 }
3846
3847 /* Given PC at the function's start address, attempt to find the
3848 prologue end using SAL information. Return zero if the skip fails.
3849
3850 A non-optimized prologue traditionally has one SAL for the function
3851 and a second for the function body. A single line function has
3852 them both pointing at the same line.
3853
3854 An optimized prologue is similar but the prologue may contain
3855 instructions (SALs) from the instruction body. Need to skip those
3856 while not getting into the function body.
3857
3858 The functions end point and an increasing SAL line are used as
3859 indicators of the prologue's endpoint.
3860
3861 This code is based on the function refine_prologue_limit
3862 (found in ia64). */
3863
3864 CORE_ADDR
3865 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3866 {
3867 struct symtab_and_line prologue_sal;
3868 CORE_ADDR start_pc;
3869 CORE_ADDR end_pc;
3870 const struct block *bl;
3871
3872 /* Get an initial range for the function. */
3873 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3874 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3875
3876 prologue_sal = find_pc_line (start_pc, 0);
3877 if (prologue_sal.line != 0)
3878 {
3879 /* For languages other than assembly, treat two consecutive line
3880 entries at the same address as a zero-instruction prologue.
3881 The GNU assembler emits separate line notes for each instruction
3882 in a multi-instruction macro, but compilers generally will not
3883 do this. */
3884 if (prologue_sal.symtab->language != language_asm)
3885 {
3886 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3887 int idx = 0;
3888
3889 /* Skip any earlier lines, and any end-of-sequence marker
3890 from a previous function. */
3891 while (linetable->item[idx].pc != prologue_sal.pc
3892 || linetable->item[idx].line == 0)
3893 idx++;
3894
3895 if (idx+1 < linetable->nitems
3896 && linetable->item[idx+1].line != 0
3897 && linetable->item[idx+1].pc == start_pc)
3898 return start_pc;
3899 }
3900
3901 /* If there is only one sal that covers the entire function,
3902 then it is probably a single line function, like
3903 "foo(){}". */
3904 if (prologue_sal.end >= end_pc)
3905 return 0;
3906
3907 while (prologue_sal.end < end_pc)
3908 {
3909 struct symtab_and_line sal;
3910
3911 sal = find_pc_line (prologue_sal.end, 0);
3912 if (sal.line == 0)
3913 break;
3914 /* Assume that a consecutive SAL for the same (or larger)
3915 line mark the prologue -> body transition. */
3916 if (sal.line >= prologue_sal.line)
3917 break;
3918 /* Likewise if we are in a different symtab altogether
3919 (e.g. within a file included via #include).  */
3920 if (sal.symtab != prologue_sal.symtab)
3921 break;
3922
3923 /* The line number is smaller. Check that it's from the
3924 same function, not something inlined. If it's inlined,
3925 then there is no point comparing the line numbers. */
3926 bl = block_for_pc (prologue_sal.end);
3927 while (bl)
3928 {
3929 if (block_inlined_p (bl))
3930 break;
3931 if (BLOCK_FUNCTION (bl))
3932 {
3933 bl = NULL;
3934 break;
3935 }
3936 bl = BLOCK_SUPERBLOCK (bl);
3937 }
3938 if (bl != NULL)
3939 break;
3940
3941 /* The case in which compiler's optimizer/scheduler has
3942 moved instructions into the prologue. We look ahead in
3943 the function looking for address ranges whose
3944 corresponding line number is less the first one that we
3945 found for the function. This is more conservative then
3946 refine_prologue_limit which scans a large number of SALs
3947 looking for any in the prologue. */
3948 prologue_sal = sal;
3949 }
3950 }
3951
3952 if (prologue_sal.end < end_pc)
3953 /* Return the end of this line, or zero if we could not find a
3954 line. */
3955 return prologue_sal.end;
3956 else
3957 /* Don't return END_PC, which is past the end of the function. */
3958 return prologue_sal.pc;
3959 }
3960
3961 /* See symtab.h. */
3962
3963 symbol *
3964 find_function_alias_target (bound_minimal_symbol msymbol)
3965 {
3966 CORE_ADDR func_addr;
3967 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3968 return NULL;
3969
3970 symbol *sym = find_pc_function (func_addr);
3971 if (sym != NULL
3972 && SYMBOL_CLASS (sym) == LOC_BLOCK
3973 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3974 return sym;
3975
3976 return NULL;
3977 }
3978
3979 \f
3980 /* If P is of the form "operator[ \t]+..." where `...' is
3981 some legitimate operator text, return a pointer to the
3982 beginning of the substring of the operator text.
3983 Otherwise, return "". */
3984
3985 static const char *
3986 operator_chars (const char *p, const char **end)
3987 {
3988 *end = "";
3989 if (!startswith (p, CP_OPERATOR_STR))
3990 return *end;
3991 p += CP_OPERATOR_LEN;
3992
3993 /* Don't get faked out by `operator' being part of a longer
3994 identifier. */
3995 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3996 return *end;
3997
3998 /* Allow some whitespace between `operator' and the operator symbol. */
3999 while (*p == ' ' || *p == '\t')
4000 p++;
4001
4002 /* Recognize 'operator TYPENAME'. */
4003
4004 if (isalpha (*p) || *p == '_' || *p == '$')
4005 {
4006 const char *q = p + 1;
4007
4008 while (isalnum (*q) || *q == '_' || *q == '$')
4009 q++;
4010 *end = q;
4011 return p;
4012 }
4013
4014 while (*p)
4015 switch (*p)
4016 {
4017 case '\\': /* regexp quoting */
4018 if (p[1] == '*')
4019 {
4020 if (p[2] == '=') /* 'operator\*=' */
4021 *end = p + 3;
4022 else /* 'operator\*' */
4023 *end = p + 2;
4024 return p;
4025 }
4026 else if (p[1] == '[')
4027 {
4028 if (p[2] == ']')
4029 error (_("mismatched quoting on brackets, "
4030 "try 'operator\\[\\]'"));
4031 else if (p[2] == '\\' && p[3] == ']')
4032 {
4033 *end = p + 4; /* 'operator\[\]' */
4034 return p;
4035 }
4036 else
4037 error (_("nothing is allowed between '[' and ']'"));
4038 }
4039 else
4040 {
4041 /* Gratuitous qoute: skip it and move on. */
4042 p++;
4043 continue;
4044 }
4045 break;
4046 case '!':
4047 case '=':
4048 case '*':
4049 case '/':
4050 case '%':
4051 case '^':
4052 if (p[1] == '=')
4053 *end = p + 2;
4054 else
4055 *end = p + 1;
4056 return p;
4057 case '<':
4058 case '>':
4059 case '+':
4060 case '-':
4061 case '&':
4062 case '|':
4063 if (p[0] == '-' && p[1] == '>')
4064 {
4065 /* Struct pointer member operator 'operator->'. */
4066 if (p[2] == '*')
4067 {
4068 *end = p + 3; /* 'operator->*' */
4069 return p;
4070 }
4071 else if (p[2] == '\\')
4072 {
4073 *end = p + 4; /* Hopefully 'operator->\*' */
4074 return p;
4075 }
4076 else
4077 {
4078 *end = p + 2; /* 'operator->' */
4079 return p;
4080 }
4081 }
4082 if (p[1] == '=' || p[1] == p[0])
4083 *end = p + 2;
4084 else
4085 *end = p + 1;
4086 return p;
4087 case '~':
4088 case ',':
4089 *end = p + 1;
4090 return p;
4091 case '(':
4092 if (p[1] != ')')
4093 error (_("`operator ()' must be specified "
4094 "without whitespace in `()'"));
4095 *end = p + 2;
4096 return p;
4097 case '?':
4098 if (p[1] != ':')
4099 error (_("`operator ?:' must be specified "
4100 "without whitespace in `?:'"));
4101 *end = p + 2;
4102 return p;
4103 case '[':
4104 if (p[1] != ']')
4105 error (_("`operator []' must be specified "
4106 "without whitespace in `[]'"));
4107 *end = p + 2;
4108 return p;
4109 default:
4110 error (_("`operator %s' not supported"), p);
4111 break;
4112 }
4113
4114 *end = "";
4115 return *end;
4116 }
4117 \f
4118
4119 /* What part to match in a file name. */
4120
4121 struct filename_partial_match_opts
4122 {
4123 /* Only match the directory name part. */
4124 int dirname = false;
4125
4126 /* Only match the basename part. */
4127 int basename = false;
4128 };
4129
4130 /* Data structure to maintain printing state for output_source_filename. */
4131
4132 struct output_source_filename_data
4133 {
4134 /* Output only filenames matching REGEXP. */
4135 std::string regexp;
4136 gdb::optional<compiled_regex> c_regexp;
4137 /* Possibly only match a part of the filename. */
4138 filename_partial_match_opts partial_match;
4139
4140
4141 /* Cache of what we've seen so far. */
4142 struct filename_seen_cache *filename_seen_cache;
4143
4144 /* Flag of whether we're printing the first one. */
4145 int first;
4146 };
4147
4148 /* Slave routine for sources_info. Force line breaks at ,'s.
4149 NAME is the name to print.
4150 DATA contains the state for printing and watching for duplicates. */
4151
4152 static void
4153 output_source_filename (const char *name,
4154 struct output_source_filename_data *data)
4155 {
4156 /* Since a single source file can result in several partial symbol
4157 tables, we need to avoid printing it more than once. Note: if
4158 some of the psymtabs are read in and some are not, it gets
4159 printed both under "Source files for which symbols have been
4160 read" and "Source files for which symbols will be read in on
4161 demand". I consider this a reasonable way to deal with the
4162 situation. I'm not sure whether this can also happen for
4163 symtabs; it doesn't hurt to check. */
4164
4165 /* Was NAME already seen? */
4166 if (data->filename_seen_cache->seen (name))
4167 {
4168 /* Yes; don't print it again. */
4169 return;
4170 }
4171
4172 /* Does it match data->regexp? */
4173 if (data->c_regexp.has_value ())
4174 {
4175 const char *to_match;
4176 std::string dirname;
4177
4178 if (data->partial_match.dirname)
4179 {
4180 dirname = ldirname (name);
4181 to_match = dirname.c_str ();
4182 }
4183 else if (data->partial_match.basename)
4184 to_match = lbasename (name);
4185 else
4186 to_match = name;
4187
4188 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4189 return;
4190 }
4191
4192 /* Print it and reset *FIRST. */
4193 if (! data->first)
4194 printf_filtered (", ");
4195 data->first = 0;
4196
4197 wrap_here ("");
4198 fputs_styled (name, file_name_style.style (), gdb_stdout);
4199 }
4200
4201 /* A callback for map_partial_symbol_filenames. */
4202
4203 static void
4204 output_partial_symbol_filename (const char *filename, const char *fullname,
4205 void *data)
4206 {
4207 output_source_filename (fullname ? fullname : filename,
4208 (struct output_source_filename_data *) data);
4209 }
4210
4211 using isrc_flag_option_def
4212 = gdb::option::flag_option_def<filename_partial_match_opts>;
4213
4214 static const gdb::option::option_def info_sources_option_defs[] = {
4215
4216 isrc_flag_option_def {
4217 "dirname",
4218 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4219 N_("Show only the files having a dirname matching REGEXP."),
4220 },
4221
4222 isrc_flag_option_def {
4223 "basename",
4224 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4225 N_("Show only the files having a basename matching REGEXP."),
4226 },
4227
4228 };
4229
4230 /* Create an option_def_group for the "info sources" options, with
4231 ISRC_OPTS as context. */
4232
4233 static inline gdb::option::option_def_group
4234 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4235 {
4236 return {{info_sources_option_defs}, isrc_opts};
4237 }
4238
4239 /* Prints the header message for the source files that will be printed
4240 with the matching info present in DATA. SYMBOL_MSG is a message
4241 that tells what will or has been done with the symbols of the
4242 matching source files. */
4243
4244 static void
4245 print_info_sources_header (const char *symbol_msg,
4246 const struct output_source_filename_data *data)
4247 {
4248 puts_filtered (symbol_msg);
4249 if (!data->regexp.empty ())
4250 {
4251 if (data->partial_match.dirname)
4252 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4253 data->regexp.c_str ());
4254 else if (data->partial_match.basename)
4255 printf_filtered (_("(basename matching regular expression \"%s\")"),
4256 data->regexp.c_str ());
4257 else
4258 printf_filtered (_("(filename matching regular expression \"%s\")"),
4259 data->regexp.c_str ());
4260 }
4261 puts_filtered ("\n");
4262 }
4263
4264 /* Completer for "info sources". */
4265
4266 static void
4267 info_sources_command_completer (cmd_list_element *ignore,
4268 completion_tracker &tracker,
4269 const char *text, const char *word)
4270 {
4271 const auto group = make_info_sources_options_def_group (nullptr);
4272 if (gdb::option::complete_options
4273 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4274 return;
4275 }
4276
4277 static void
4278 info_sources_command (const char *args, int from_tty)
4279 {
4280 struct output_source_filename_data data;
4281
4282 if (!have_full_symbols () && !have_partial_symbols ())
4283 {
4284 error (_("No symbol table is loaded. Use the \"file\" command."));
4285 }
4286
4287 filename_seen_cache filenames_seen;
4288
4289 auto group = make_info_sources_options_def_group (&data.partial_match);
4290
4291 gdb::option::process_options
4292 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4293
4294 if (args != NULL && *args != '\000')
4295 data.regexp = args;
4296
4297 data.filename_seen_cache = &filenames_seen;
4298 data.first = 1;
4299
4300 if (data.partial_match.dirname && data.partial_match.basename)
4301 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4302 if ((data.partial_match.dirname || data.partial_match.basename)
4303 && data.regexp.empty ())
4304 error (_("Missing REGEXP for 'info sources'."));
4305
4306 if (data.regexp.empty ())
4307 data.c_regexp.reset ();
4308 else
4309 {
4310 int cflags = REG_NOSUB;
4311 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4312 cflags |= REG_ICASE;
4313 #endif
4314 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4315 _("Invalid regexp"));
4316 }
4317
4318 print_info_sources_header
4319 (_("Source files for which symbols have been read in:\n"), &data);
4320
4321 for (objfile *objfile : current_program_space->objfiles ())
4322 {
4323 for (compunit_symtab *cu : objfile->compunits ())
4324 {
4325 for (symtab *s : compunit_filetabs (cu))
4326 {
4327 const char *fullname = symtab_to_fullname (s);
4328
4329 output_source_filename (fullname, &data);
4330 }
4331 }
4332 }
4333 printf_filtered ("\n\n");
4334
4335 print_info_sources_header
4336 (_("Source files for which symbols will be read in on demand:\n"), &data);
4337
4338 filenames_seen.clear ();
4339 data.first = 1;
4340 map_symbol_filenames (output_partial_symbol_filename, &data,
4341 1 /*need_fullname*/);
4342 printf_filtered ("\n");
4343 }
4344
4345 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4346 non-zero compare only lbasename of FILES. */
4347
4348 static int
4349 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4350 {
4351 int i;
4352
4353 if (file != NULL && nfiles != 0)
4354 {
4355 for (i = 0; i < nfiles; i++)
4356 {
4357 if (compare_filenames_for_search (file, (basenames
4358 ? lbasename (files[i])
4359 : files[i])))
4360 return 1;
4361 }
4362 }
4363 else if (nfiles == 0)
4364 return 1;
4365 return 0;
4366 }
4367
4368 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4369 sort symbols, not minimal symbols. */
4370
4371 int
4372 symbol_search::compare_search_syms (const symbol_search &sym_a,
4373 const symbol_search &sym_b)
4374 {
4375 int c;
4376
4377 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4378 symbol_symtab (sym_b.symbol)->filename);
4379 if (c != 0)
4380 return c;
4381
4382 if (sym_a.block != sym_b.block)
4383 return sym_a.block - sym_b.block;
4384
4385 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4386 SYMBOL_PRINT_NAME (sym_b.symbol));
4387 }
4388
4389 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4390 If SYM has no symbol_type or symbol_name, returns false. */
4391
4392 bool
4393 treg_matches_sym_type_name (const compiled_regex &treg,
4394 const struct symbol *sym)
4395 {
4396 struct type *sym_type;
4397 std::string printed_sym_type_name;
4398
4399 if (symbol_lookup_debug > 1)
4400 {
4401 fprintf_unfiltered (gdb_stdlog,
4402 "treg_matches_sym_type_name\n sym %s\n",
4403 SYMBOL_NATURAL_NAME (sym));
4404 }
4405
4406 sym_type = SYMBOL_TYPE (sym);
4407 if (sym_type == NULL)
4408 return false;
4409
4410 {
4411 scoped_switch_to_sym_language_if_auto l (sym);
4412
4413 printed_sym_type_name = type_to_string (sym_type);
4414 }
4415
4416
4417 if (symbol_lookup_debug > 1)
4418 {
4419 fprintf_unfiltered (gdb_stdlog,
4420 " sym_type_name %s\n",
4421 printed_sym_type_name.c_str ());
4422 }
4423
4424
4425 if (printed_sym_type_name.empty ())
4426 return false;
4427
4428 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4429 }
4430
4431
4432 /* Sort the symbols in RESULT and remove duplicates. */
4433
4434 static void
4435 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4436 {
4437 std::sort (result->begin (), result->end ());
4438 result->erase (std::unique (result->begin (), result->end ()),
4439 result->end ());
4440 }
4441
4442 /* Search the symbol table for matches to the regular expression REGEXP,
4443 returning the results.
4444
4445 Only symbols of KIND are searched:
4446 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4447 and constants (enums).
4448 if T_REGEXP is not NULL, only returns var that have
4449 a type matching regular expression T_REGEXP.
4450 FUNCTIONS_DOMAIN - search all functions
4451 TYPES_DOMAIN - search all type names
4452 ALL_DOMAIN - an internal error for this function
4453
4454 Within each file the results are sorted locally; each symtab's global and
4455 static blocks are separately alphabetized.
4456 Duplicate entries are removed.
4457
4458 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4459 otherwise they are excluded. */
4460
4461 std::vector<symbol_search>
4462 search_symbols (const char *regexp, enum search_domain kind,
4463 const char *t_regexp,
4464 int nfiles, const char *files[],
4465 bool exclude_minsyms)
4466 {
4467 const struct blockvector *bv;
4468 const struct block *b;
4469 int i = 0;
4470 struct block_iterator iter;
4471 struct symbol *sym;
4472 int found_misc = 0;
4473 static const enum minimal_symbol_type types[]
4474 = {mst_data, mst_text, mst_unknown};
4475 static const enum minimal_symbol_type types2[]
4476 = {mst_bss, mst_file_text, mst_unknown};
4477 static const enum minimal_symbol_type types3[]
4478 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4479 static const enum minimal_symbol_type types4[]
4480 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4481 enum minimal_symbol_type ourtype;
4482 enum minimal_symbol_type ourtype2;
4483 enum minimal_symbol_type ourtype3;
4484 enum minimal_symbol_type ourtype4;
4485 std::vector<symbol_search> result;
4486 gdb::optional<compiled_regex> preg;
4487 gdb::optional<compiled_regex> treg;
4488
4489 gdb_assert (kind <= TYPES_DOMAIN);
4490
4491 ourtype = types[kind];
4492 ourtype2 = types2[kind];
4493 ourtype3 = types3[kind];
4494 ourtype4 = types4[kind];
4495
4496 if (regexp != NULL)
4497 {
4498 /* Make sure spacing is right for C++ operators.
4499 This is just a courtesy to make the matching less sensitive
4500 to how many spaces the user leaves between 'operator'
4501 and <TYPENAME> or <OPERATOR>. */
4502 const char *opend;
4503 const char *opname = operator_chars (regexp, &opend);
4504
4505 if (*opname)
4506 {
4507 int fix = -1; /* -1 means ok; otherwise number of
4508 spaces needed. */
4509
4510 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4511 {
4512 /* There should 1 space between 'operator' and 'TYPENAME'. */
4513 if (opname[-1] != ' ' || opname[-2] == ' ')
4514 fix = 1;
4515 }
4516 else
4517 {
4518 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4519 if (opname[-1] == ' ')
4520 fix = 0;
4521 }
4522 /* If wrong number of spaces, fix it. */
4523 if (fix >= 0)
4524 {
4525 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4526
4527 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4528 regexp = tmp;
4529 }
4530 }
4531
4532 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4533 ? REG_ICASE : 0);
4534 preg.emplace (regexp, cflags, _("Invalid regexp"));
4535 }
4536
4537 if (t_regexp != NULL)
4538 {
4539 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4540 ? REG_ICASE : 0);
4541 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4542 }
4543
4544 /* Search through the partial symtabs *first* for all symbols
4545 matching the regexp. That way we don't have to reproduce all of
4546 the machinery below. */
4547 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4548 {
4549 return file_matches (filename, files, nfiles,
4550 basenames);
4551 },
4552 lookup_name_info::match_any (),
4553 [&] (const char *symname)
4554 {
4555 return (!preg.has_value ()
4556 || preg->exec (symname,
4557 0, NULL, 0) == 0);
4558 },
4559 NULL,
4560 kind);
4561
4562 /* Here, we search through the minimal symbol tables for functions
4563 and variables that match, and force their symbols to be read.
4564 This is in particular necessary for demangled variable names,
4565 which are no longer put into the partial symbol tables.
4566 The symbol will then be found during the scan of symtabs below.
4567
4568 For functions, find_pc_symtab should succeed if we have debug info
4569 for the function, for variables we have to call
4570 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4571 has debug info.
4572 If the lookup fails, set found_misc so that we will rescan to print
4573 any matching symbols without debug info.
4574 We only search the objfile the msymbol came from, we no longer search
4575 all objfiles. In large programs (1000s of shared libs) searching all
4576 objfiles is not worth the pain. */
4577
4578 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4579 {
4580 for (objfile *objfile : current_program_space->objfiles ())
4581 {
4582 for (minimal_symbol *msymbol : objfile->msymbols ())
4583 {
4584 QUIT;
4585
4586 if (msymbol->created_by_gdb)
4587 continue;
4588
4589 if (MSYMBOL_TYPE (msymbol) == ourtype
4590 || MSYMBOL_TYPE (msymbol) == ourtype2
4591 || MSYMBOL_TYPE (msymbol) == ourtype3
4592 || MSYMBOL_TYPE (msymbol) == ourtype4)
4593 {
4594 if (!preg.has_value ()
4595 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4596 NULL, 0) == 0)
4597 {
4598 /* Note: An important side-effect of these
4599 lookup functions is to expand the symbol
4600 table if msymbol is found, for the benefit of
4601 the next loop on compunits. */
4602 if (kind == FUNCTIONS_DOMAIN
4603 ? (find_pc_compunit_symtab
4604 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4605 == NULL)
4606 : (lookup_symbol_in_objfile_from_linkage_name
4607 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4608 VAR_DOMAIN)
4609 .symbol == NULL))
4610 found_misc = 1;
4611 }
4612 }
4613 }
4614 }
4615 }
4616
4617 for (objfile *objfile : current_program_space->objfiles ())
4618 {
4619 for (compunit_symtab *cust : objfile->compunits ())
4620 {
4621 bv = COMPUNIT_BLOCKVECTOR (cust);
4622 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4623 {
4624 b = BLOCKVECTOR_BLOCK (bv, i);
4625 ALL_BLOCK_SYMBOLS (b, iter, sym)
4626 {
4627 struct symtab *real_symtab = symbol_symtab (sym);
4628
4629 QUIT;
4630
4631 /* Check first sole REAL_SYMTAB->FILENAME. It does
4632 not need to be a substring of symtab_to_fullname as
4633 it may contain "./" etc. */
4634 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4635 || ((basenames_may_differ
4636 || file_matches (lbasename (real_symtab->filename),
4637 files, nfiles, 1))
4638 && file_matches (symtab_to_fullname (real_symtab),
4639 files, nfiles, 0)))
4640 && ((!preg.has_value ()
4641 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4642 NULL, 0) == 0)
4643 && ((kind == VARIABLES_DOMAIN
4644 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4645 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4646 && SYMBOL_CLASS (sym) != LOC_BLOCK
4647 /* LOC_CONST can be used for more than
4648 just enums, e.g., c++ static const
4649 members. We only want to skip enums
4650 here. */
4651 && !(SYMBOL_CLASS (sym) == LOC_CONST
4652 && (TYPE_CODE (SYMBOL_TYPE (sym))
4653 == TYPE_CODE_ENUM))
4654 && (!treg.has_value ()
4655 || treg_matches_sym_type_name (*treg, sym)))
4656 || (kind == FUNCTIONS_DOMAIN
4657 && SYMBOL_CLASS (sym) == LOC_BLOCK
4658 && (!treg.has_value ()
4659 || treg_matches_sym_type_name (*treg,
4660 sym)))
4661 || (kind == TYPES_DOMAIN
4662 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4663 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4664 {
4665 /* match */
4666 result.emplace_back (i, sym);
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 if (!result.empty ())
4674 sort_search_symbols_remove_dups (&result);
4675
4676 /* If there are no eyes, avoid all contact. I mean, if there are
4677 no debug symbols, then add matching minsyms. But if the user wants
4678 to see symbols matching a type regexp, then never give a minimal symbol,
4679 as we assume that a minimal symbol does not have a type. */
4680
4681 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4682 && !exclude_minsyms
4683 && !treg.has_value ())
4684 {
4685 for (objfile *objfile : current_program_space->objfiles ())
4686 {
4687 for (minimal_symbol *msymbol : objfile->msymbols ())
4688 {
4689 QUIT;
4690
4691 if (msymbol->created_by_gdb)
4692 continue;
4693
4694 if (MSYMBOL_TYPE (msymbol) == ourtype
4695 || MSYMBOL_TYPE (msymbol) == ourtype2
4696 || MSYMBOL_TYPE (msymbol) == ourtype3
4697 || MSYMBOL_TYPE (msymbol) == ourtype4)
4698 {
4699 if (!preg.has_value ()
4700 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4701 NULL, 0) == 0)
4702 {
4703 /* For functions we can do a quick check of whether the
4704 symbol might be found via find_pc_symtab. */
4705 if (kind != FUNCTIONS_DOMAIN
4706 || (find_pc_compunit_symtab
4707 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4708 == NULL))
4709 {
4710 if (lookup_symbol_in_objfile_from_linkage_name
4711 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4712 VAR_DOMAIN)
4713 .symbol == NULL)
4714 {
4715 /* match */
4716 result.emplace_back (i, msymbol, objfile);
4717 }
4718 }
4719 }
4720 }
4721 }
4722 }
4723 }
4724
4725 return result;
4726 }
4727
4728 /* Helper function for symtab_symbol_info, this function uses
4729 the data returned from search_symbols() to print information
4730 regarding the match to gdb_stdout. If LAST is not NULL,
4731 print file and line number information for the symbol as
4732 well. Skip printing the filename if it matches LAST. */
4733
4734 static void
4735 print_symbol_info (enum search_domain kind,
4736 struct symbol *sym,
4737 int block, const char *last)
4738 {
4739 scoped_switch_to_sym_language_if_auto l (sym);
4740 struct symtab *s = symbol_symtab (sym);
4741
4742 if (last != NULL)
4743 {
4744 const char *s_filename = symtab_to_filename_for_display (s);
4745
4746 if (filename_cmp (last, s_filename) != 0)
4747 {
4748 fputs_filtered ("\nFile ", gdb_stdout);
4749 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4750 fputs_filtered (":\n", gdb_stdout);
4751 }
4752
4753 if (SYMBOL_LINE (sym) != 0)
4754 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4755 else
4756 puts_filtered ("\t");
4757 }
4758
4759 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4760 printf_filtered ("static ");
4761
4762 /* Typedef that is not a C++ class. */
4763 if (kind == TYPES_DOMAIN
4764 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4765 {
4766 /* FIXME: For C (and C++) we end up with a difference in output here
4767 between how a typedef is printed, and non-typedefs are printed.
4768 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4769 appear C-like, while TYPE_PRINT doesn't.
4770
4771 For the struct printing case below, things are worse, we force
4772 printing of the ";" in this function, which is going to be wrong
4773 for languages that don't require a ";" between statements. */
4774 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4775 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4776 else
4777 {
4778 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4779 printf_filtered ("\n");
4780 }
4781 }
4782 /* variable, func, or typedef-that-is-c++-class. */
4783 else if (kind < TYPES_DOMAIN
4784 || (kind == TYPES_DOMAIN
4785 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4786 {
4787 type_print (SYMBOL_TYPE (sym),
4788 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4789 ? "" : SYMBOL_PRINT_NAME (sym)),
4790 gdb_stdout, 0);
4791
4792 printf_filtered (";\n");
4793 }
4794 }
4795
4796 /* This help function for symtab_symbol_info() prints information
4797 for non-debugging symbols to gdb_stdout. */
4798
4799 static void
4800 print_msymbol_info (struct bound_minimal_symbol msymbol)
4801 {
4802 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4803 char *tmp;
4804
4805 if (gdbarch_addr_bit (gdbarch) <= 32)
4806 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4807 & (CORE_ADDR) 0xffffffff,
4808 8);
4809 else
4810 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4811 16);
4812 fputs_styled (tmp, address_style.style (), gdb_stdout);
4813 fputs_filtered (" ", gdb_stdout);
4814 if (msymbol.minsym->text_p ())
4815 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4816 function_name_style.style (),
4817 gdb_stdout);
4818 else
4819 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4820 fputs_filtered ("\n", gdb_stdout);
4821 }
4822
4823 /* This is the guts of the commands "info functions", "info types", and
4824 "info variables". It calls search_symbols to find all matches and then
4825 print_[m]symbol_info to print out some useful information about the
4826 matches. */
4827
4828 static void
4829 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4830 const char *regexp, enum search_domain kind,
4831 const char *t_regexp, int from_tty)
4832 {
4833 static const char * const classnames[] =
4834 {"variable", "function", "type"};
4835 const char *last_filename = "";
4836 int first = 1;
4837
4838 gdb_assert (kind <= TYPES_DOMAIN);
4839
4840 if (regexp != nullptr && *regexp == '\0')
4841 regexp = nullptr;
4842
4843 /* Must make sure that if we're interrupted, symbols gets freed. */
4844 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4845 t_regexp, 0, NULL,
4846 exclude_minsyms);
4847
4848 if (!quiet)
4849 {
4850 if (regexp != NULL)
4851 {
4852 if (t_regexp != NULL)
4853 printf_filtered
4854 (_("All %ss matching regular expression \"%s\""
4855 " with type matching regular expression \"%s\":\n"),
4856 classnames[kind], regexp, t_regexp);
4857 else
4858 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4859 classnames[kind], regexp);
4860 }
4861 else
4862 {
4863 if (t_regexp != NULL)
4864 printf_filtered
4865 (_("All defined %ss"
4866 " with type matching regular expression \"%s\" :\n"),
4867 classnames[kind], t_regexp);
4868 else
4869 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4870 }
4871 }
4872
4873 for (const symbol_search &p : symbols)
4874 {
4875 QUIT;
4876
4877 if (p.msymbol.minsym != NULL)
4878 {
4879 if (first)
4880 {
4881 if (!quiet)
4882 printf_filtered (_("\nNon-debugging symbols:\n"));
4883 first = 0;
4884 }
4885 print_msymbol_info (p.msymbol);
4886 }
4887 else
4888 {
4889 print_symbol_info (kind,
4890 p.symbol,
4891 p.block,
4892 last_filename);
4893 last_filename
4894 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4895 }
4896 }
4897 }
4898
4899 /* Structure to hold the values of the options used by the 'info variables'
4900 and 'info functions' commands. These correspond to the -q, -t, and -n
4901 options. */
4902
4903 struct info_print_options
4904 {
4905 int quiet = false;
4906 int exclude_minsyms = false;
4907 char *type_regexp = nullptr;
4908
4909 ~info_print_options ()
4910 {
4911 xfree (type_regexp);
4912 }
4913 };
4914
4915 /* The options used by the 'info variables' and 'info functions'
4916 commands. */
4917
4918 static const gdb::option::option_def info_print_options_defs[] = {
4919 gdb::option::boolean_option_def<info_print_options> {
4920 "q",
4921 [] (info_print_options *opt) { return &opt->quiet; },
4922 nullptr, /* show_cmd_cb */
4923 nullptr /* set_doc */
4924 },
4925
4926 gdb::option::boolean_option_def<info_print_options> {
4927 "n",
4928 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4929 nullptr, /* show_cmd_cb */
4930 nullptr /* set_doc */
4931 },
4932
4933 gdb::option::string_option_def<info_print_options> {
4934 "t",
4935 [] (info_print_options *opt) { return &opt->type_regexp; },
4936 nullptr, /* show_cmd_cb */
4937 nullptr /* set_doc */
4938 }
4939 };
4940
4941 /* Returns the option group used by 'info variables' and 'info
4942 functions'. */
4943
4944 static gdb::option::option_def_group
4945 make_info_print_options_def_group (info_print_options *opts)
4946 {
4947 return {{info_print_options_defs}, opts};
4948 }
4949
4950 /* Command completer for 'info variables' and 'info functions'. */
4951
4952 static void
4953 info_print_command_completer (struct cmd_list_element *ignore,
4954 completion_tracker &tracker,
4955 const char *text, const char * /* word */)
4956 {
4957 const auto group
4958 = make_info_print_options_def_group (nullptr);
4959 if (gdb::option::complete_options
4960 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4961 return;
4962
4963 const char *word = advance_to_expression_complete_word_point (tracker, text);
4964 symbol_completer (ignore, tracker, text, word);
4965 }
4966
4967 /* Implement the 'info variables' command. */
4968
4969 static void
4970 info_variables_command (const char *args, int from_tty)
4971 {
4972 info_print_options opts;
4973 auto grp = make_info_print_options_def_group (&opts);
4974 gdb::option::process_options
4975 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4976 if (args != nullptr && *args == '\0')
4977 args = nullptr;
4978
4979 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4980 opts.type_regexp, from_tty);
4981 }
4982
4983 /* Implement the 'info functions' command. */
4984
4985 static void
4986 info_functions_command (const char *args, int from_tty)
4987 {
4988 info_print_options opts;
4989 auto grp = make_info_print_options_def_group (&opts);
4990 gdb::option::process_options
4991 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4992 if (args != nullptr && *args == '\0')
4993 args = nullptr;
4994
4995 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4996 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
4997 }
4998
4999 /* Holds the -q option for the 'info types' command. */
5000
5001 struct info_types_options
5002 {
5003 int quiet = false;
5004 };
5005
5006 /* The options used by the 'info types' command. */
5007
5008 static const gdb::option::option_def info_types_options_defs[] = {
5009 gdb::option::boolean_option_def<info_types_options> {
5010 "q",
5011 [] (info_types_options *opt) { return &opt->quiet; },
5012 nullptr, /* show_cmd_cb */
5013 nullptr /* set_doc */
5014 }
5015 };
5016
5017 /* Returns the option group used by 'info types'. */
5018
5019 static gdb::option::option_def_group
5020 make_info_types_options_def_group (info_types_options *opts)
5021 {
5022 return {{info_types_options_defs}, opts};
5023 }
5024
5025 /* Implement the 'info types' command. */
5026
5027 static void
5028 info_types_command (const char *args, int from_tty)
5029 {
5030 info_types_options opts;
5031
5032 auto grp = make_info_types_options_def_group (&opts);
5033 gdb::option::process_options
5034 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5035 if (args != nullptr && *args == '\0')
5036 args = nullptr;
5037 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5038 }
5039
5040 /* Command completer for 'info types' command. */
5041
5042 static void
5043 info_types_command_completer (struct cmd_list_element *ignore,
5044 completion_tracker &tracker,
5045 const char *text, const char * /* word */)
5046 {
5047 const auto group
5048 = make_info_types_options_def_group (nullptr);
5049 if (gdb::option::complete_options
5050 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5051 return;
5052
5053 const char *word = advance_to_expression_complete_word_point (tracker, text);
5054 symbol_completer (ignore, tracker, text, word);
5055 }
5056
5057 /* Breakpoint all functions matching regular expression. */
5058
5059 void
5060 rbreak_command_wrapper (char *regexp, int from_tty)
5061 {
5062 rbreak_command (regexp, from_tty);
5063 }
5064
5065 static void
5066 rbreak_command (const char *regexp, int from_tty)
5067 {
5068 std::string string;
5069 const char **files = NULL;
5070 const char *file_name;
5071 int nfiles = 0;
5072
5073 if (regexp)
5074 {
5075 const char *colon = strchr (regexp, ':');
5076
5077 if (colon && *(colon + 1) != ':')
5078 {
5079 int colon_index;
5080 char *local_name;
5081
5082 colon_index = colon - regexp;
5083 local_name = (char *) alloca (colon_index + 1);
5084 memcpy (local_name, regexp, colon_index);
5085 local_name[colon_index--] = 0;
5086 while (isspace (local_name[colon_index]))
5087 local_name[colon_index--] = 0;
5088 file_name = local_name;
5089 files = &file_name;
5090 nfiles = 1;
5091 regexp = skip_spaces (colon + 1);
5092 }
5093 }
5094
5095 std::vector<symbol_search> symbols = search_symbols (regexp,
5096 FUNCTIONS_DOMAIN,
5097 NULL,
5098 nfiles, files,
5099 false);
5100
5101 scoped_rbreak_breakpoints finalize;
5102 for (const symbol_search &p : symbols)
5103 {
5104 if (p.msymbol.minsym == NULL)
5105 {
5106 struct symtab *symtab = symbol_symtab (p.symbol);
5107 const char *fullname = symtab_to_fullname (symtab);
5108
5109 string = string_printf ("%s:'%s'", fullname,
5110 SYMBOL_LINKAGE_NAME (p.symbol));
5111 break_command (&string[0], from_tty);
5112 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5113 }
5114 else
5115 {
5116 string = string_printf ("'%s'",
5117 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5118
5119 break_command (&string[0], from_tty);
5120 printf_filtered ("<function, no debug info> %s;\n",
5121 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5122 }
5123 }
5124 }
5125 \f
5126
5127 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5128
5129 static int
5130 compare_symbol_name (const char *symbol_name, language symbol_language,
5131 const lookup_name_info &lookup_name,
5132 completion_match_result &match_res)
5133 {
5134 const language_defn *lang = language_def (symbol_language);
5135
5136 symbol_name_matcher_ftype *name_match
5137 = get_symbol_name_matcher (lang, lookup_name);
5138
5139 return name_match (symbol_name, lookup_name, &match_res);
5140 }
5141
5142 /* See symtab.h. */
5143
5144 void
5145 completion_list_add_name (completion_tracker &tracker,
5146 language symbol_language,
5147 const char *symname,
5148 const lookup_name_info &lookup_name,
5149 const char *text, const char *word)
5150 {
5151 completion_match_result &match_res
5152 = tracker.reset_completion_match_result ();
5153
5154 /* Clip symbols that cannot match. */
5155 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5156 return;
5157
5158 /* Refresh SYMNAME from the match string. It's potentially
5159 different depending on language. (E.g., on Ada, the match may be
5160 the encoded symbol name wrapped in "<>"). */
5161 symname = match_res.match.match ();
5162 gdb_assert (symname != NULL);
5163
5164 /* We have a match for a completion, so add SYMNAME to the current list
5165 of matches. Note that the name is moved to freshly malloc'd space. */
5166
5167 {
5168 gdb::unique_xmalloc_ptr<char> completion
5169 = make_completion_match_str (symname, text, word);
5170
5171 /* Here we pass the match-for-lcd object to add_completion. Some
5172 languages match the user text against substrings of symbol
5173 names in some cases. E.g., in C++, "b push_ba" completes to
5174 "std::vector::push_back", "std::string::push_back", etc., and
5175 in this case we want the completion lowest common denominator
5176 to be "push_back" instead of "std::". */
5177 tracker.add_completion (std::move (completion),
5178 &match_res.match_for_lcd, text, word);
5179 }
5180 }
5181
5182 /* completion_list_add_name wrapper for struct symbol. */
5183
5184 static void
5185 completion_list_add_symbol (completion_tracker &tracker,
5186 symbol *sym,
5187 const lookup_name_info &lookup_name,
5188 const char *text, const char *word)
5189 {
5190 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5191 SYMBOL_NATURAL_NAME (sym),
5192 lookup_name, text, word);
5193 }
5194
5195 /* completion_list_add_name wrapper for struct minimal_symbol. */
5196
5197 static void
5198 completion_list_add_msymbol (completion_tracker &tracker,
5199 minimal_symbol *sym,
5200 const lookup_name_info &lookup_name,
5201 const char *text, const char *word)
5202 {
5203 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5204 MSYMBOL_NATURAL_NAME (sym),
5205 lookup_name, text, word);
5206 }
5207
5208
5209 /* ObjC: In case we are completing on a selector, look as the msymbol
5210 again and feed all the selectors into the mill. */
5211
5212 static void
5213 completion_list_objc_symbol (completion_tracker &tracker,
5214 struct minimal_symbol *msymbol,
5215 const lookup_name_info &lookup_name,
5216 const char *text, const char *word)
5217 {
5218 static char *tmp = NULL;
5219 static unsigned int tmplen = 0;
5220
5221 const char *method, *category, *selector;
5222 char *tmp2 = NULL;
5223
5224 method = MSYMBOL_NATURAL_NAME (msymbol);
5225
5226 /* Is it a method? */
5227 if ((method[0] != '-') && (method[0] != '+'))
5228 return;
5229
5230 if (text[0] == '[')
5231 /* Complete on shortened method method. */
5232 completion_list_add_name (tracker, language_objc,
5233 method + 1,
5234 lookup_name,
5235 text, word);
5236
5237 while ((strlen (method) + 1) >= tmplen)
5238 {
5239 if (tmplen == 0)
5240 tmplen = 1024;
5241 else
5242 tmplen *= 2;
5243 tmp = (char *) xrealloc (tmp, tmplen);
5244 }
5245 selector = strchr (method, ' ');
5246 if (selector != NULL)
5247 selector++;
5248
5249 category = strchr (method, '(');
5250
5251 if ((category != NULL) && (selector != NULL))
5252 {
5253 memcpy (tmp, method, (category - method));
5254 tmp[category - method] = ' ';
5255 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5256 completion_list_add_name (tracker, language_objc, tmp,
5257 lookup_name, text, word);
5258 if (text[0] == '[')
5259 completion_list_add_name (tracker, language_objc, tmp + 1,
5260 lookup_name, text, word);
5261 }
5262
5263 if (selector != NULL)
5264 {
5265 /* Complete on selector only. */
5266 strcpy (tmp, selector);
5267 tmp2 = strchr (tmp, ']');
5268 if (tmp2 != NULL)
5269 *tmp2 = '\0';
5270
5271 completion_list_add_name (tracker, language_objc, tmp,
5272 lookup_name, text, word);
5273 }
5274 }
5275
5276 /* Break the non-quoted text based on the characters which are in
5277 symbols. FIXME: This should probably be language-specific. */
5278
5279 static const char *
5280 language_search_unquoted_string (const char *text, const char *p)
5281 {
5282 for (; p > text; --p)
5283 {
5284 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5285 continue;
5286 else
5287 {
5288 if ((current_language->la_language == language_objc))
5289 {
5290 if (p[-1] == ':') /* Might be part of a method name. */
5291 continue;
5292 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5293 p -= 2; /* Beginning of a method name. */
5294 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5295 { /* Might be part of a method name. */
5296 const char *t = p;
5297
5298 /* Seeing a ' ' or a '(' is not conclusive evidence
5299 that we are in the middle of a method name. However,
5300 finding "-[" or "+[" should be pretty un-ambiguous.
5301 Unfortunately we have to find it now to decide. */
5302
5303 while (t > text)
5304 if (isalnum (t[-1]) || t[-1] == '_' ||
5305 t[-1] == ' ' || t[-1] == ':' ||
5306 t[-1] == '(' || t[-1] == ')')
5307 --t;
5308 else
5309 break;
5310
5311 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5312 p = t - 2; /* Method name detected. */
5313 /* Else we leave with p unchanged. */
5314 }
5315 }
5316 break;
5317 }
5318 }
5319 return p;
5320 }
5321
5322 static void
5323 completion_list_add_fields (completion_tracker &tracker,
5324 struct symbol *sym,
5325 const lookup_name_info &lookup_name,
5326 const char *text, const char *word)
5327 {
5328 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5329 {
5330 struct type *t = SYMBOL_TYPE (sym);
5331 enum type_code c = TYPE_CODE (t);
5332 int j;
5333
5334 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5335 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5336 if (TYPE_FIELD_NAME (t, j))
5337 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5338 TYPE_FIELD_NAME (t, j),
5339 lookup_name, text, word);
5340 }
5341 }
5342
5343 /* See symtab.h. */
5344
5345 bool
5346 symbol_is_function_or_method (symbol *sym)
5347 {
5348 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5349 {
5350 case TYPE_CODE_FUNC:
5351 case TYPE_CODE_METHOD:
5352 return true;
5353 default:
5354 return false;
5355 }
5356 }
5357
5358 /* See symtab.h. */
5359
5360 bool
5361 symbol_is_function_or_method (minimal_symbol *msymbol)
5362 {
5363 switch (MSYMBOL_TYPE (msymbol))
5364 {
5365 case mst_text:
5366 case mst_text_gnu_ifunc:
5367 case mst_solib_trampoline:
5368 case mst_file_text:
5369 return true;
5370 default:
5371 return false;
5372 }
5373 }
5374
5375 /* See symtab.h. */
5376
5377 bound_minimal_symbol
5378 find_gnu_ifunc (const symbol *sym)
5379 {
5380 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5381 return {};
5382
5383 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5384 symbol_name_match_type::SEARCH_NAME);
5385 struct objfile *objfile = symbol_objfile (sym);
5386
5387 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5388 minimal_symbol *ifunc = NULL;
5389
5390 iterate_over_minimal_symbols (objfile, lookup_name,
5391 [&] (minimal_symbol *minsym)
5392 {
5393 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5394 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5395 {
5396 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5397 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5398 {
5399 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5400 msym_addr
5401 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5402 msym_addr,
5403 current_top_target ());
5404 }
5405 if (msym_addr == address)
5406 {
5407 ifunc = minsym;
5408 return true;
5409 }
5410 }
5411 return false;
5412 });
5413
5414 if (ifunc != NULL)
5415 return {ifunc, objfile};
5416 return {};
5417 }
5418
5419 /* Add matching symbols from SYMTAB to the current completion list. */
5420
5421 static void
5422 add_symtab_completions (struct compunit_symtab *cust,
5423 completion_tracker &tracker,
5424 complete_symbol_mode mode,
5425 const lookup_name_info &lookup_name,
5426 const char *text, const char *word,
5427 enum type_code code)
5428 {
5429 struct symbol *sym;
5430 const struct block *b;
5431 struct block_iterator iter;
5432 int i;
5433
5434 if (cust == NULL)
5435 return;
5436
5437 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5438 {
5439 QUIT;
5440 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5441 ALL_BLOCK_SYMBOLS (b, iter, sym)
5442 {
5443 if (completion_skip_symbol (mode, sym))
5444 continue;
5445
5446 if (code == TYPE_CODE_UNDEF
5447 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5448 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5449 completion_list_add_symbol (tracker, sym,
5450 lookup_name,
5451 text, word);
5452 }
5453 }
5454 }
5455
5456 void
5457 default_collect_symbol_completion_matches_break_on
5458 (completion_tracker &tracker, complete_symbol_mode mode,
5459 symbol_name_match_type name_match_type,
5460 const char *text, const char *word,
5461 const char *break_on, enum type_code code)
5462 {
5463 /* Problem: All of the symbols have to be copied because readline
5464 frees them. I'm not going to worry about this; hopefully there
5465 won't be that many. */
5466
5467 struct symbol *sym;
5468 const struct block *b;
5469 const struct block *surrounding_static_block, *surrounding_global_block;
5470 struct block_iterator iter;
5471 /* The symbol we are completing on. Points in same buffer as text. */
5472 const char *sym_text;
5473
5474 /* Now look for the symbol we are supposed to complete on. */
5475 if (mode == complete_symbol_mode::LINESPEC)
5476 sym_text = text;
5477 else
5478 {
5479 const char *p;
5480 char quote_found;
5481 const char *quote_pos = NULL;
5482
5483 /* First see if this is a quoted string. */
5484 quote_found = '\0';
5485 for (p = text; *p != '\0'; ++p)
5486 {
5487 if (quote_found != '\0')
5488 {
5489 if (*p == quote_found)
5490 /* Found close quote. */
5491 quote_found = '\0';
5492 else if (*p == '\\' && p[1] == quote_found)
5493 /* A backslash followed by the quote character
5494 doesn't end the string. */
5495 ++p;
5496 }
5497 else if (*p == '\'' || *p == '"')
5498 {
5499 quote_found = *p;
5500 quote_pos = p;
5501 }
5502 }
5503 if (quote_found == '\'')
5504 /* A string within single quotes can be a symbol, so complete on it. */
5505 sym_text = quote_pos + 1;
5506 else if (quote_found == '"')
5507 /* A double-quoted string is never a symbol, nor does it make sense
5508 to complete it any other way. */
5509 {
5510 return;
5511 }
5512 else
5513 {
5514 /* It is not a quoted string. Break it based on the characters
5515 which are in symbols. */
5516 while (p > text)
5517 {
5518 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5519 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5520 --p;
5521 else
5522 break;
5523 }
5524 sym_text = p;
5525 }
5526 }
5527
5528 lookup_name_info lookup_name (sym_text, name_match_type, true);
5529
5530 /* At this point scan through the misc symbol vectors and add each
5531 symbol you find to the list. Eventually we want to ignore
5532 anything that isn't a text symbol (everything else will be
5533 handled by the psymtab code below). */
5534
5535 if (code == TYPE_CODE_UNDEF)
5536 {
5537 for (objfile *objfile : current_program_space->objfiles ())
5538 {
5539 for (minimal_symbol *msymbol : objfile->msymbols ())
5540 {
5541 QUIT;
5542
5543 if (completion_skip_symbol (mode, msymbol))
5544 continue;
5545
5546 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5547 sym_text, word);
5548
5549 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5550 sym_text, word);
5551 }
5552 }
5553 }
5554
5555 /* Add completions for all currently loaded symbol tables. */
5556 for (objfile *objfile : current_program_space->objfiles ())
5557 {
5558 for (compunit_symtab *cust : objfile->compunits ())
5559 add_symtab_completions (cust, tracker, mode, lookup_name,
5560 sym_text, word, code);
5561 }
5562
5563 /* Look through the partial symtabs for all symbols which begin by
5564 matching SYM_TEXT. Expand all CUs that you find to the list. */
5565 expand_symtabs_matching (NULL,
5566 lookup_name,
5567 NULL,
5568 [&] (compunit_symtab *symtab) /* expansion notify */
5569 {
5570 add_symtab_completions (symtab,
5571 tracker, mode, lookup_name,
5572 sym_text, word, code);
5573 },
5574 ALL_DOMAIN);
5575
5576 /* Search upwards from currently selected frame (so that we can
5577 complete on local vars). Also catch fields of types defined in
5578 this places which match our text string. Only complete on types
5579 visible from current context. */
5580
5581 b = get_selected_block (0);
5582 surrounding_static_block = block_static_block (b);
5583 surrounding_global_block = block_global_block (b);
5584 if (surrounding_static_block != NULL)
5585 while (b != surrounding_static_block)
5586 {
5587 QUIT;
5588
5589 ALL_BLOCK_SYMBOLS (b, iter, sym)
5590 {
5591 if (code == TYPE_CODE_UNDEF)
5592 {
5593 completion_list_add_symbol (tracker, sym, lookup_name,
5594 sym_text, word);
5595 completion_list_add_fields (tracker, sym, lookup_name,
5596 sym_text, word);
5597 }
5598 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5599 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5600 completion_list_add_symbol (tracker, sym, lookup_name,
5601 sym_text, word);
5602 }
5603
5604 /* Stop when we encounter an enclosing function. Do not stop for
5605 non-inlined functions - the locals of the enclosing function
5606 are in scope for a nested function. */
5607 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5608 break;
5609 b = BLOCK_SUPERBLOCK (b);
5610 }
5611
5612 /* Add fields from the file's types; symbols will be added below. */
5613
5614 if (code == TYPE_CODE_UNDEF)
5615 {
5616 if (surrounding_static_block != NULL)
5617 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5618 completion_list_add_fields (tracker, sym, lookup_name,
5619 sym_text, word);
5620
5621 if (surrounding_global_block != NULL)
5622 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5623 completion_list_add_fields (tracker, sym, lookup_name,
5624 sym_text, word);
5625 }
5626
5627 /* Skip macros if we are completing a struct tag -- arguable but
5628 usually what is expected. */
5629 if (current_language->la_macro_expansion == macro_expansion_c
5630 && code == TYPE_CODE_UNDEF)
5631 {
5632 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5633
5634 /* This adds a macro's name to the current completion list. */
5635 auto add_macro_name = [&] (const char *macro_name,
5636 const macro_definition *,
5637 macro_source_file *,
5638 int)
5639 {
5640 completion_list_add_name (tracker, language_c, macro_name,
5641 lookup_name, sym_text, word);
5642 };
5643
5644 /* Add any macros visible in the default scope. Note that this
5645 may yield the occasional wrong result, because an expression
5646 might be evaluated in a scope other than the default. For
5647 example, if the user types "break file:line if <TAB>", the
5648 resulting expression will be evaluated at "file:line" -- but
5649 at there does not seem to be a way to detect this at
5650 completion time. */
5651 scope = default_macro_scope ();
5652 if (scope)
5653 macro_for_each_in_scope (scope->file, scope->line,
5654 add_macro_name);
5655
5656 /* User-defined macros are always visible. */
5657 macro_for_each (macro_user_macros, add_macro_name);
5658 }
5659 }
5660
5661 void
5662 default_collect_symbol_completion_matches (completion_tracker &tracker,
5663 complete_symbol_mode mode,
5664 symbol_name_match_type name_match_type,
5665 const char *text, const char *word,
5666 enum type_code code)
5667 {
5668 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5669 name_match_type,
5670 text, word, "",
5671 code);
5672 }
5673
5674 /* Collect all symbols (regardless of class) which begin by matching
5675 TEXT. */
5676
5677 void
5678 collect_symbol_completion_matches (completion_tracker &tracker,
5679 complete_symbol_mode mode,
5680 symbol_name_match_type name_match_type,
5681 const char *text, const char *word)
5682 {
5683 current_language->la_collect_symbol_completion_matches (tracker, mode,
5684 name_match_type,
5685 text, word,
5686 TYPE_CODE_UNDEF);
5687 }
5688
5689 /* Like collect_symbol_completion_matches, but only collect
5690 STRUCT_DOMAIN symbols whose type code is CODE. */
5691
5692 void
5693 collect_symbol_completion_matches_type (completion_tracker &tracker,
5694 const char *text, const char *word,
5695 enum type_code code)
5696 {
5697 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5698 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5699
5700 gdb_assert (code == TYPE_CODE_UNION
5701 || code == TYPE_CODE_STRUCT
5702 || code == TYPE_CODE_ENUM);
5703 current_language->la_collect_symbol_completion_matches (tracker, mode,
5704 name_match_type,
5705 text, word, code);
5706 }
5707
5708 /* Like collect_symbol_completion_matches, but collects a list of
5709 symbols defined in all source files named SRCFILE. */
5710
5711 void
5712 collect_file_symbol_completion_matches (completion_tracker &tracker,
5713 complete_symbol_mode mode,
5714 symbol_name_match_type name_match_type,
5715 const char *text, const char *word,
5716 const char *srcfile)
5717 {
5718 /* The symbol we are completing on. Points in same buffer as text. */
5719 const char *sym_text;
5720
5721 /* Now look for the symbol we are supposed to complete on.
5722 FIXME: This should be language-specific. */
5723 if (mode == complete_symbol_mode::LINESPEC)
5724 sym_text = text;
5725 else
5726 {
5727 const char *p;
5728 char quote_found;
5729 const char *quote_pos = NULL;
5730
5731 /* First see if this is a quoted string. */
5732 quote_found = '\0';
5733 for (p = text; *p != '\0'; ++p)
5734 {
5735 if (quote_found != '\0')
5736 {
5737 if (*p == quote_found)
5738 /* Found close quote. */
5739 quote_found = '\0';
5740 else if (*p == '\\' && p[1] == quote_found)
5741 /* A backslash followed by the quote character
5742 doesn't end the string. */
5743 ++p;
5744 }
5745 else if (*p == '\'' || *p == '"')
5746 {
5747 quote_found = *p;
5748 quote_pos = p;
5749 }
5750 }
5751 if (quote_found == '\'')
5752 /* A string within single quotes can be a symbol, so complete on it. */
5753 sym_text = quote_pos + 1;
5754 else if (quote_found == '"')
5755 /* A double-quoted string is never a symbol, nor does it make sense
5756 to complete it any other way. */
5757 {
5758 return;
5759 }
5760 else
5761 {
5762 /* Not a quoted string. */
5763 sym_text = language_search_unquoted_string (text, p);
5764 }
5765 }
5766
5767 lookup_name_info lookup_name (sym_text, name_match_type, true);
5768
5769 /* Go through symtabs for SRCFILE and check the externs and statics
5770 for symbols which match. */
5771 iterate_over_symtabs (srcfile, [&] (symtab *s)
5772 {
5773 add_symtab_completions (SYMTAB_COMPUNIT (s),
5774 tracker, mode, lookup_name,
5775 sym_text, word, TYPE_CODE_UNDEF);
5776 return false;
5777 });
5778 }
5779
5780 /* A helper function for make_source_files_completion_list. It adds
5781 another file name to a list of possible completions, growing the
5782 list as necessary. */
5783
5784 static void
5785 add_filename_to_list (const char *fname, const char *text, const char *word,
5786 completion_list *list)
5787 {
5788 list->emplace_back (make_completion_match_str (fname, text, word));
5789 }
5790
5791 static int
5792 not_interesting_fname (const char *fname)
5793 {
5794 static const char *illegal_aliens[] = {
5795 "_globals_", /* inserted by coff_symtab_read */
5796 NULL
5797 };
5798 int i;
5799
5800 for (i = 0; illegal_aliens[i]; i++)
5801 {
5802 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5803 return 1;
5804 }
5805 return 0;
5806 }
5807
5808 /* An object of this type is passed as the user_data argument to
5809 map_partial_symbol_filenames. */
5810 struct add_partial_filename_data
5811 {
5812 struct filename_seen_cache *filename_seen_cache;
5813 const char *text;
5814 const char *word;
5815 int text_len;
5816 completion_list *list;
5817 };
5818
5819 /* A callback for map_partial_symbol_filenames. */
5820
5821 static void
5822 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5823 void *user_data)
5824 {
5825 struct add_partial_filename_data *data
5826 = (struct add_partial_filename_data *) user_data;
5827
5828 if (not_interesting_fname (filename))
5829 return;
5830 if (!data->filename_seen_cache->seen (filename)
5831 && filename_ncmp (filename, data->text, data->text_len) == 0)
5832 {
5833 /* This file matches for a completion; add it to the
5834 current list of matches. */
5835 add_filename_to_list (filename, data->text, data->word, data->list);
5836 }
5837 else
5838 {
5839 const char *base_name = lbasename (filename);
5840
5841 if (base_name != filename
5842 && !data->filename_seen_cache->seen (base_name)
5843 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5844 add_filename_to_list (base_name, data->text, data->word, data->list);
5845 }
5846 }
5847
5848 /* Return a list of all source files whose names begin with matching
5849 TEXT. The file names are looked up in the symbol tables of this
5850 program. */
5851
5852 completion_list
5853 make_source_files_completion_list (const char *text, const char *word)
5854 {
5855 size_t text_len = strlen (text);
5856 completion_list list;
5857 const char *base_name;
5858 struct add_partial_filename_data datum;
5859
5860 if (!have_full_symbols () && !have_partial_symbols ())
5861 return list;
5862
5863 filename_seen_cache filenames_seen;
5864
5865 for (objfile *objfile : current_program_space->objfiles ())
5866 {
5867 for (compunit_symtab *cu : objfile->compunits ())
5868 {
5869 for (symtab *s : compunit_filetabs (cu))
5870 {
5871 if (not_interesting_fname (s->filename))
5872 continue;
5873 if (!filenames_seen.seen (s->filename)
5874 && filename_ncmp (s->filename, text, text_len) == 0)
5875 {
5876 /* This file matches for a completion; add it to the current
5877 list of matches. */
5878 add_filename_to_list (s->filename, text, word, &list);
5879 }
5880 else
5881 {
5882 /* NOTE: We allow the user to type a base name when the
5883 debug info records leading directories, but not the other
5884 way around. This is what subroutines of breakpoint
5885 command do when they parse file names. */
5886 base_name = lbasename (s->filename);
5887 if (base_name != s->filename
5888 && !filenames_seen.seen (base_name)
5889 && filename_ncmp (base_name, text, text_len) == 0)
5890 add_filename_to_list (base_name, text, word, &list);
5891 }
5892 }
5893 }
5894 }
5895
5896 datum.filename_seen_cache = &filenames_seen;
5897 datum.text = text;
5898 datum.word = word;
5899 datum.text_len = text_len;
5900 datum.list = &list;
5901 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5902 0 /*need_fullname*/);
5903
5904 return list;
5905 }
5906 \f
5907 /* Track MAIN */
5908
5909 /* Return the "main_info" object for the current program space. If
5910 the object has not yet been created, create it and fill in some
5911 default values. */
5912
5913 static struct main_info *
5914 get_main_info (void)
5915 {
5916 struct main_info *info = main_progspace_key.get (current_program_space);
5917
5918 if (info == NULL)
5919 {
5920 /* It may seem strange to store the main name in the progspace
5921 and also in whatever objfile happens to see a main name in
5922 its debug info. The reason for this is mainly historical:
5923 gdb returned "main" as the name even if no function named
5924 "main" was defined the program; and this approach lets us
5925 keep compatibility. */
5926 info = main_progspace_key.emplace (current_program_space);
5927 }
5928
5929 return info;
5930 }
5931
5932 static void
5933 set_main_name (const char *name, enum language lang)
5934 {
5935 struct main_info *info = get_main_info ();
5936
5937 if (info->name_of_main != NULL)
5938 {
5939 xfree (info->name_of_main);
5940 info->name_of_main = NULL;
5941 info->language_of_main = language_unknown;
5942 }
5943 if (name != NULL)
5944 {
5945 info->name_of_main = xstrdup (name);
5946 info->language_of_main = lang;
5947 }
5948 }
5949
5950 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5951 accordingly. */
5952
5953 static void
5954 find_main_name (void)
5955 {
5956 const char *new_main_name;
5957
5958 /* First check the objfiles to see whether a debuginfo reader has
5959 picked up the appropriate main name. Historically the main name
5960 was found in a more or less random way; this approach instead
5961 relies on the order of objfile creation -- which still isn't
5962 guaranteed to get the correct answer, but is just probably more
5963 accurate. */
5964 for (objfile *objfile : current_program_space->objfiles ())
5965 {
5966 if (objfile->per_bfd->name_of_main != NULL)
5967 {
5968 set_main_name (objfile->per_bfd->name_of_main,
5969 objfile->per_bfd->language_of_main);
5970 return;
5971 }
5972 }
5973
5974 /* Try to see if the main procedure is in Ada. */
5975 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5976 be to add a new method in the language vector, and call this
5977 method for each language until one of them returns a non-empty
5978 name. This would allow us to remove this hard-coded call to
5979 an Ada function. It is not clear that this is a better approach
5980 at this point, because all methods need to be written in a way
5981 such that false positives never be returned. For instance, it is
5982 important that a method does not return a wrong name for the main
5983 procedure if the main procedure is actually written in a different
5984 language. It is easy to guaranty this with Ada, since we use a
5985 special symbol generated only when the main in Ada to find the name
5986 of the main procedure. It is difficult however to see how this can
5987 be guarantied for languages such as C, for instance. This suggests
5988 that order of call for these methods becomes important, which means
5989 a more complicated approach. */
5990 new_main_name = ada_main_name ();
5991 if (new_main_name != NULL)
5992 {
5993 set_main_name (new_main_name, language_ada);
5994 return;
5995 }
5996
5997 new_main_name = d_main_name ();
5998 if (new_main_name != NULL)
5999 {
6000 set_main_name (new_main_name, language_d);
6001 return;
6002 }
6003
6004 new_main_name = go_main_name ();
6005 if (new_main_name != NULL)
6006 {
6007 set_main_name (new_main_name, language_go);
6008 return;
6009 }
6010
6011 new_main_name = pascal_main_name ();
6012 if (new_main_name != NULL)
6013 {
6014 set_main_name (new_main_name, language_pascal);
6015 return;
6016 }
6017
6018 /* The languages above didn't identify the name of the main procedure.
6019 Fallback to "main". */
6020 set_main_name ("main", language_unknown);
6021 }
6022
6023 /* See symtab.h. */
6024
6025 const char *
6026 main_name ()
6027 {
6028 struct main_info *info = get_main_info ();
6029
6030 if (info->name_of_main == NULL)
6031 find_main_name ();
6032
6033 return info->name_of_main;
6034 }
6035
6036 /* Return the language of the main function. If it is not known,
6037 return language_unknown. */
6038
6039 enum language
6040 main_language (void)
6041 {
6042 struct main_info *info = get_main_info ();
6043
6044 if (info->name_of_main == NULL)
6045 find_main_name ();
6046
6047 return info->language_of_main;
6048 }
6049
6050 /* Handle ``executable_changed'' events for the symtab module. */
6051
6052 static void
6053 symtab_observer_executable_changed (void)
6054 {
6055 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6056 set_main_name (NULL, language_unknown);
6057 }
6058
6059 /* Return 1 if the supplied producer string matches the ARM RealView
6060 compiler (armcc). */
6061
6062 int
6063 producer_is_realview (const char *producer)
6064 {
6065 static const char *const arm_idents[] = {
6066 "ARM C Compiler, ADS",
6067 "Thumb C Compiler, ADS",
6068 "ARM C++ Compiler, ADS",
6069 "Thumb C++ Compiler, ADS",
6070 "ARM/Thumb C/C++ Compiler, RVCT",
6071 "ARM C/C++ Compiler, RVCT"
6072 };
6073 int i;
6074
6075 if (producer == NULL)
6076 return 0;
6077
6078 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6079 if (startswith (producer, arm_idents[i]))
6080 return 1;
6081
6082 return 0;
6083 }
6084
6085 \f
6086
6087 /* The next index to hand out in response to a registration request. */
6088
6089 static int next_aclass_value = LOC_FINAL_VALUE;
6090
6091 /* The maximum number of "aclass" registrations we support. This is
6092 constant for convenience. */
6093 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6094
6095 /* The objects representing the various "aclass" values. The elements
6096 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6097 elements are those registered at gdb initialization time. */
6098
6099 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6100
6101 /* The globally visible pointer. This is separate from 'symbol_impl'
6102 so that it can be const. */
6103
6104 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6105
6106 /* Make sure we saved enough room in struct symbol. */
6107
6108 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6109
6110 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6111 is the ops vector associated with this index. This returns the new
6112 index, which should be used as the aclass_index field for symbols
6113 of this type. */
6114
6115 int
6116 register_symbol_computed_impl (enum address_class aclass,
6117 const struct symbol_computed_ops *ops)
6118 {
6119 int result = next_aclass_value++;
6120
6121 gdb_assert (aclass == LOC_COMPUTED);
6122 gdb_assert (result < MAX_SYMBOL_IMPLS);
6123 symbol_impl[result].aclass = aclass;
6124 symbol_impl[result].ops_computed = ops;
6125
6126 /* Sanity check OPS. */
6127 gdb_assert (ops != NULL);
6128 gdb_assert (ops->tracepoint_var_ref != NULL);
6129 gdb_assert (ops->describe_location != NULL);
6130 gdb_assert (ops->get_symbol_read_needs != NULL);
6131 gdb_assert (ops->read_variable != NULL);
6132
6133 return result;
6134 }
6135
6136 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6137 OPS is the ops vector associated with this index. This returns the
6138 new index, which should be used as the aclass_index field for symbols
6139 of this type. */
6140
6141 int
6142 register_symbol_block_impl (enum address_class aclass,
6143 const struct symbol_block_ops *ops)
6144 {
6145 int result = next_aclass_value++;
6146
6147 gdb_assert (aclass == LOC_BLOCK);
6148 gdb_assert (result < MAX_SYMBOL_IMPLS);
6149 symbol_impl[result].aclass = aclass;
6150 symbol_impl[result].ops_block = ops;
6151
6152 /* Sanity check OPS. */
6153 gdb_assert (ops != NULL);
6154 gdb_assert (ops->find_frame_base_location != NULL);
6155
6156 return result;
6157 }
6158
6159 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6160 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6161 this index. This returns the new index, which should be used as
6162 the aclass_index field for symbols of this type. */
6163
6164 int
6165 register_symbol_register_impl (enum address_class aclass,
6166 const struct symbol_register_ops *ops)
6167 {
6168 int result = next_aclass_value++;
6169
6170 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6171 gdb_assert (result < MAX_SYMBOL_IMPLS);
6172 symbol_impl[result].aclass = aclass;
6173 symbol_impl[result].ops_register = ops;
6174
6175 return result;
6176 }
6177
6178 /* Initialize elements of 'symbol_impl' for the constants in enum
6179 address_class. */
6180
6181 static void
6182 initialize_ordinary_address_classes (void)
6183 {
6184 int i;
6185
6186 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6187 symbol_impl[i].aclass = (enum address_class) i;
6188 }
6189
6190 \f
6191
6192 /* Helper function to initialize the fields of an objfile-owned symbol.
6193 It assumed that *SYM is already all zeroes. */
6194
6195 static void
6196 initialize_objfile_symbol_1 (struct symbol *sym)
6197 {
6198 SYMBOL_OBJFILE_OWNED (sym) = 1;
6199 SYMBOL_SECTION (sym) = -1;
6200 }
6201
6202 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6203
6204 void
6205 initialize_objfile_symbol (struct symbol *sym)
6206 {
6207 memset (sym, 0, sizeof (*sym));
6208 initialize_objfile_symbol_1 (sym);
6209 }
6210
6211 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6212 obstack. */
6213
6214 struct symbol *
6215 allocate_symbol (struct objfile *objfile)
6216 {
6217 struct symbol *result;
6218
6219 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6220 initialize_objfile_symbol_1 (result);
6221
6222 return result;
6223 }
6224
6225 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6226 obstack. */
6227
6228 struct template_symbol *
6229 allocate_template_symbol (struct objfile *objfile)
6230 {
6231 struct template_symbol *result;
6232
6233 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6234 initialize_objfile_symbol_1 (result);
6235
6236 return result;
6237 }
6238
6239 /* See symtab.h. */
6240
6241 struct objfile *
6242 symbol_objfile (const struct symbol *symbol)
6243 {
6244 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6245 return SYMTAB_OBJFILE (symbol->owner.symtab);
6246 }
6247
6248 /* See symtab.h. */
6249
6250 struct gdbarch *
6251 symbol_arch (const struct symbol *symbol)
6252 {
6253 if (!SYMBOL_OBJFILE_OWNED (symbol))
6254 return symbol->owner.arch;
6255 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6256 }
6257
6258 /* See symtab.h. */
6259
6260 struct symtab *
6261 symbol_symtab (const struct symbol *symbol)
6262 {
6263 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6264 return symbol->owner.symtab;
6265 }
6266
6267 /* See symtab.h. */
6268
6269 void
6270 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6271 {
6272 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6273 symbol->owner.symtab = symtab;
6274 }
6275
6276 \f
6277
6278 void
6279 _initialize_symtab (void)
6280 {
6281 cmd_list_element *c;
6282
6283 initialize_ordinary_address_classes ();
6284
6285 c = add_info ("variables", info_variables_command,
6286 info_print_args_help (_("\
6287 All global and static variable names or those matching REGEXPs.\n\
6288 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6289 Prints the global and static variables.\n"),
6290 _("global and static variables"),
6291 true));
6292 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6293 if (dbx_commands)
6294 {
6295 c = add_com ("whereis", class_info, info_variables_command,
6296 info_print_args_help (_("\
6297 All global and static variable names, or those matching REGEXPs.\n\
6298 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6299 Prints the global and static variables.\n"),
6300 _("global and static variables"),
6301 true));
6302 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6303 }
6304
6305 c = add_info ("functions", info_functions_command,
6306 info_print_args_help (_("\
6307 All function names or those matching REGEXPs.\n\
6308 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6309 Prints the functions.\n"),
6310 _("functions"),
6311 true));
6312 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6313
6314 c = add_info ("types", info_types_command, _("\
6315 All type names, or those matching REGEXP.\n\
6316 Usage: info types [-q] [REGEXP]\n\
6317 Print information about all types matching REGEXP, or all types if no\n\
6318 REGEXP is given. The optional flag -q disables printing of headers."));
6319 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6320
6321 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6322
6323 static std::string info_sources_help
6324 = gdb::option::build_help (_("\
6325 All source files in the program or those matching REGEXP.\n\
6326 Usage: info sources [OPTION]... [REGEXP]\n\
6327 By default, REGEXP is used to match anywhere in the filename.\n\
6328 \n\
6329 Options:\n\
6330 %OPTIONS%"),
6331 info_sources_opts);
6332
6333 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6334 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6335
6336 add_com ("rbreak", class_breakpoint, rbreak_command,
6337 _("Set a breakpoint for all functions matching REGEXP."));
6338
6339 add_setshow_enum_cmd ("multiple-symbols", no_class,
6340 multiple_symbols_modes, &multiple_symbols_mode,
6341 _("\
6342 Set how the debugger handles ambiguities in expressions."), _("\
6343 Show how the debugger handles ambiguities in expressions."), _("\
6344 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6345 NULL, NULL, &setlist, &showlist);
6346
6347 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6348 &basenames_may_differ, _("\
6349 Set whether a source file may have multiple base names."), _("\
6350 Show whether a source file may have multiple base names."), _("\
6351 (A \"base name\" is the name of a file with the directory part removed.\n\
6352 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6353 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6354 before comparing them. Canonicalization is an expensive operation,\n\
6355 but it allows the same file be known by more than one base name.\n\
6356 If not set (the default), all source files are assumed to have just\n\
6357 one base name, and gdb will do file name comparisons more efficiently."),
6358 NULL, NULL,
6359 &setlist, &showlist);
6360
6361 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6362 _("Set debugging of symbol table creation."),
6363 _("Show debugging of symbol table creation."), _("\
6364 When enabled (non-zero), debugging messages are printed when building\n\
6365 symbol tables. A value of 1 (one) normally provides enough information.\n\
6366 A value greater than 1 provides more verbose information."),
6367 NULL,
6368 NULL,
6369 &setdebuglist, &showdebuglist);
6370
6371 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6372 _("\
6373 Set debugging of symbol lookup."), _("\
6374 Show debugging of symbol lookup."), _("\
6375 When enabled (non-zero), symbol lookups are logged."),
6376 NULL, NULL,
6377 &setdebuglist, &showdebuglist);
6378
6379 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6380 &new_symbol_cache_size,
6381 _("Set the size of the symbol cache."),
6382 _("Show the size of the symbol cache."), _("\
6383 The size of the symbol cache.\n\
6384 If zero then the symbol cache is disabled."),
6385 set_symbol_cache_size_handler, NULL,
6386 &maintenance_set_cmdlist,
6387 &maintenance_show_cmdlist);
6388
6389 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6390 _("Dump the symbol cache for each program space."),
6391 &maintenanceprintlist);
6392
6393 add_cmd ("symbol-cache-statistics", class_maintenance,
6394 maintenance_print_symbol_cache_statistics,
6395 _("Print symbol cache statistics for each program space."),
6396 &maintenanceprintlist);
6397
6398 add_cmd ("flush-symbol-cache", class_maintenance,
6399 maintenance_flush_symbol_cache,
6400 _("Flush the symbol cache for each program space."),
6401 &maintenancelist);
6402
6403 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6404 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6405 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6406 }
This page took 0.165224 seconds and 4 git commands to generate.