gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match. */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs). */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor = is_full_physname_constructor
295 || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
345
346 static void
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
349 {
350 /* A language_specific structure should not have been previously
351 initialized. */
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
354
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
357 }
358
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
363 void
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
365 char *name,
366 struct objfile *objfile)
367 {
368 if (gsymbol->language == language_cplus)
369 {
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
372
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
374 }
375 else
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
377 }
378
379 /* Return the demangled name of GSYMBOL. */
380 char *
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
382 {
383 if (gsymbol->language == language_cplus)
384 {
385 if (gsymbol->language_specific.cplus_specific != NULL)
386 return gsymbol->language_specific.cplus_specific->demangled_name;
387 else
388 return NULL;
389 }
390 else
391 return gsymbol->language_specific.mangled_lang.demangled_name;
392 }
393
394 \f
395 /* Initialize the language dependent portion of a symbol
396 depending upon the language for the symbol. */
397 void
398 symbol_set_language (struct general_symbol_info *gsymbol,
399 enum language language)
400 {
401 gsymbol->language = language;
402 if (gsymbol->language == language_d
403 || gsymbol->language == language_java
404 || gsymbol->language == language_objc
405 || gsymbol->language == language_fortran)
406 {
407 symbol_set_demangled_name (gsymbol, NULL, NULL);
408 }
409 else if (gsymbol->language == language_cplus)
410 gsymbol->language_specific.cplus_specific = NULL;
411 else
412 {
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
415 }
416 }
417
418 /* Functions to initialize a symbol's mangled name. */
419
420 /* Objects of this type are stored in the demangled name hash table. */
421 struct demangled_name_entry
422 {
423 char *mangled;
424 char demangled[1];
425 };
426
427 /* Hash function for the demangled name hash. */
428 static hashval_t
429 hash_demangled_name_entry (const void *data)
430 {
431 const struct demangled_name_entry *e = data;
432
433 return htab_hash_string (e->mangled);
434 }
435
436 /* Equality function for the demangled name hash. */
437 static int
438 eq_demangled_name_entry (const void *a, const void *b)
439 {
440 const struct demangled_name_entry *da = a;
441 const struct demangled_name_entry *db = b;
442
443 return strcmp (da->mangled, db->mangled) == 0;
444 }
445
446 /* Create the hash table used for demangled names. Each hash entry is
447 a pair of strings; one for the mangled name and one for the demangled
448 name. The entry is hashed via just the mangled name. */
449
450 static void
451 create_demangled_names_hash (struct objfile *objfile)
452 {
453 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
454 The hash table code will round this up to the next prime number.
455 Choosing a much larger table size wastes memory, and saves only about
456 1% in symbol reading. */
457
458 objfile->demangled_names_hash = htab_create_alloc
459 (256, hash_demangled_name_entry, eq_demangled_name_entry,
460 NULL, xcalloc, xfree);
461 }
462
463 /* Try to determine the demangled name for a symbol, based on the
464 language of that symbol. If the language is set to language_auto,
465 it will attempt to find any demangling algorithm that works and
466 then set the language appropriately. The returned name is allocated
467 by the demangler and should be xfree'd. */
468
469 static char *
470 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
471 const char *mangled)
472 {
473 char *demangled = NULL;
474
475 if (gsymbol->language == language_unknown)
476 gsymbol->language = language_auto;
477
478 if (gsymbol->language == language_objc
479 || gsymbol->language == language_auto)
480 {
481 demangled =
482 objc_demangle (mangled, 0);
483 if (demangled != NULL)
484 {
485 gsymbol->language = language_objc;
486 return demangled;
487 }
488 }
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_auto)
491 {
492 demangled =
493 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
494 if (demangled != NULL)
495 {
496 gsymbol->language = language_cplus;
497 return demangled;
498 }
499 }
500 if (gsymbol->language == language_java)
501 {
502 demangled =
503 cplus_demangle (mangled,
504 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
505 if (demangled != NULL)
506 {
507 gsymbol->language = language_java;
508 return demangled;
509 }
510 }
511 if (gsymbol->language == language_d
512 || gsymbol->language == language_auto)
513 {
514 demangled = d_demangle(mangled, 0);
515 if (demangled != NULL)
516 {
517 gsymbol->language = language_d;
518 return demangled;
519 }
520 }
521 /* We could support `gsymbol->language == language_fortran' here to provide
522 module namespaces also for inferiors with only minimal symbol table (ELF
523 symbols). Just the mangling standard is not standardized across compilers
524 and there is no DW_AT_producer available for inferiors with only the ELF
525 symbols to check the mangling kind. */
526 return NULL;
527 }
528
529 /* Set both the mangled and demangled (if any) names for GSYMBOL based
530 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
531 objfile's obstack; but if COPY_NAME is 0 and if NAME is
532 NUL-terminated, then this function assumes that NAME is already
533 correctly saved (either permanently or with a lifetime tied to the
534 objfile), and it will not be copied.
535
536 The hash table corresponding to OBJFILE is used, and the memory
537 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
538 so the pointer can be discarded after calling this function. */
539
540 /* We have to be careful when dealing with Java names: when we run
541 into a Java minimal symbol, we don't know it's a Java symbol, so it
542 gets demangled as a C++ name. This is unfortunate, but there's not
543 much we can do about it: but when demangling partial symbols and
544 regular symbols, we'd better not reuse the wrong demangled name.
545 (See PR gdb/1039.) We solve this by putting a distinctive prefix
546 on Java names when storing them in the hash table. */
547
548 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
549 don't mind the Java prefix so much: different languages have
550 different demangling requirements, so it's only natural that we
551 need to keep language data around in our demangling cache. But
552 it's not good that the minimal symbol has the wrong demangled name.
553 Unfortunately, I can't think of any easy solution to that
554 problem. */
555
556 #define JAVA_PREFIX "##JAVA$$"
557 #define JAVA_PREFIX_LEN 8
558
559 void
560 symbol_set_names (struct general_symbol_info *gsymbol,
561 const char *linkage_name, int len, int copy_name,
562 struct objfile *objfile)
563 {
564 struct demangled_name_entry **slot;
565 /* A 0-terminated copy of the linkage name. */
566 const char *linkage_name_copy;
567 /* A copy of the linkage name that might have a special Java prefix
568 added to it, for use when looking names up in the hash table. */
569 const char *lookup_name;
570 /* The length of lookup_name. */
571 int lookup_len;
572 struct demangled_name_entry entry;
573
574 if (gsymbol->language == language_ada)
575 {
576 /* In Ada, we do the symbol lookups using the mangled name, so
577 we can save some space by not storing the demangled name.
578
579 As a side note, we have also observed some overlap between
580 the C++ mangling and Ada mangling, similarly to what has
581 been observed with Java. Because we don't store the demangled
582 name with the symbol, we don't need to use the same trick
583 as Java. */
584 if (!copy_name)
585 gsymbol->name = (char *) linkage_name;
586 else
587 {
588 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
589 memcpy (gsymbol->name, linkage_name, len);
590 gsymbol->name[len] = '\0';
591 }
592 symbol_set_demangled_name (gsymbol, NULL, NULL);
593
594 return;
595 }
596
597 if (objfile->demangled_names_hash == NULL)
598 create_demangled_names_hash (objfile);
599
600 /* The stabs reader generally provides names that are not
601 NUL-terminated; most of the other readers don't do this, so we
602 can just use the given copy, unless we're in the Java case. */
603 if (gsymbol->language == language_java)
604 {
605 char *alloc_name;
606
607 lookup_len = len + JAVA_PREFIX_LEN;
608 alloc_name = alloca (lookup_len + 1);
609 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
610 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
611 alloc_name[lookup_len] = '\0';
612
613 lookup_name = alloc_name;
614 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
615 }
616 else if (linkage_name[len] != '\0')
617 {
618 char *alloc_name;
619
620 lookup_len = len;
621 alloc_name = alloca (lookup_len + 1);
622 memcpy (alloc_name, linkage_name, len);
623 alloc_name[lookup_len] = '\0';
624
625 lookup_name = alloc_name;
626 linkage_name_copy = alloc_name;
627 }
628 else
629 {
630 lookup_len = len;
631 lookup_name = linkage_name;
632 linkage_name_copy = linkage_name;
633 }
634
635 entry.mangled = (char *) lookup_name;
636 slot = ((struct demangled_name_entry **)
637 htab_find_slot (objfile->demangled_names_hash,
638 &entry, INSERT));
639
640 /* If this name is not in the hash table, add it. */
641 if (*slot == NULL)
642 {
643 char *demangled_name = symbol_find_demangled_name (gsymbol,
644 linkage_name_copy);
645 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
646
647 /* Suppose we have demangled_name==NULL, copy_name==0, and
648 lookup_name==linkage_name. In this case, we already have the
649 mangled name saved, and we don't have a demangled name. So,
650 you might think we could save a little space by not recording
651 this in the hash table at all.
652
653 It turns out that it is actually important to still save such
654 an entry in the hash table, because storing this name gives
655 us better bcache hit rates for partial symbols. */
656 if (!copy_name && lookup_name == linkage_name)
657 {
658 *slot = obstack_alloc (&objfile->objfile_obstack,
659 offsetof (struct demangled_name_entry,
660 demangled)
661 + demangled_len + 1);
662 (*slot)->mangled = (char *) lookup_name;
663 }
664 else
665 {
666 /* If we must copy the mangled name, put it directly after
667 the demangled name so we can have a single
668 allocation. */
669 *slot = obstack_alloc (&objfile->objfile_obstack,
670 offsetof (struct demangled_name_entry,
671 demangled)
672 + lookup_len + demangled_len + 2);
673 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
674 strcpy ((*slot)->mangled, lookup_name);
675 }
676
677 if (demangled_name != NULL)
678 {
679 strcpy ((*slot)->demangled, demangled_name);
680 xfree (demangled_name);
681 }
682 else
683 (*slot)->demangled[0] = '\0';
684 }
685
686 gsymbol->name = (*slot)->mangled + lookup_len - len;
687 if ((*slot)->demangled[0] != '\0')
688 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
689 else
690 symbol_set_demangled_name (gsymbol, NULL, objfile);
691 }
692
693 /* Return the source code name of a symbol. In languages where
694 demangling is necessary, this is the demangled name. */
695
696 char *
697 symbol_natural_name (const struct general_symbol_info *gsymbol)
698 {
699 switch (gsymbol->language)
700 {
701 case language_cplus:
702 case language_d:
703 case language_java:
704 case language_objc:
705 case language_fortran:
706 if (symbol_get_demangled_name (gsymbol) != NULL)
707 return symbol_get_demangled_name (gsymbol);
708 break;
709 case language_ada:
710 if (symbol_get_demangled_name (gsymbol) != NULL)
711 return symbol_get_demangled_name (gsymbol);
712 else
713 return ada_decode_symbol (gsymbol);
714 break;
715 default:
716 break;
717 }
718 return gsymbol->name;
719 }
720
721 /* Return the demangled name for a symbol based on the language for
722 that symbol. If no demangled name exists, return NULL. */
723 char *
724 symbol_demangled_name (const struct general_symbol_info *gsymbol)
725 {
726 switch (gsymbol->language)
727 {
728 case language_cplus:
729 case language_d:
730 case language_java:
731 case language_objc:
732 case language_fortran:
733 if (symbol_get_demangled_name (gsymbol) != NULL)
734 return symbol_get_demangled_name (gsymbol);
735 break;
736 case language_ada:
737 if (symbol_get_demangled_name (gsymbol) != NULL)
738 return symbol_get_demangled_name (gsymbol);
739 else
740 return ada_decode_symbol (gsymbol);
741 break;
742 default:
743 break;
744 }
745 return NULL;
746 }
747
748 /* Return the search name of a symbol---generally the demangled or
749 linkage name of the symbol, depending on how it will be searched for.
750 If there is no distinct demangled name, then returns the same value
751 (same pointer) as SYMBOL_LINKAGE_NAME. */
752 char *
753 symbol_search_name (const struct general_symbol_info *gsymbol)
754 {
755 if (gsymbol->language == language_ada)
756 return gsymbol->name;
757 else
758 return symbol_natural_name (gsymbol);
759 }
760
761 /* Initialize the structure fields to zero values. */
762 void
763 init_sal (struct symtab_and_line *sal)
764 {
765 sal->pspace = NULL;
766 sal->symtab = 0;
767 sal->section = 0;
768 sal->line = 0;
769 sal->pc = 0;
770 sal->end = 0;
771 sal->explicit_pc = 0;
772 sal->explicit_line = 0;
773 }
774 \f
775
776 /* Return 1 if the two sections are the same, or if they could
777 plausibly be copies of each other, one in an original object
778 file and another in a separated debug file. */
779
780 int
781 matching_obj_sections (struct obj_section *obj_first,
782 struct obj_section *obj_second)
783 {
784 asection *first = obj_first? obj_first->the_bfd_section : NULL;
785 asection *second = obj_second? obj_second->the_bfd_section : NULL;
786 struct objfile *obj;
787
788 /* If they're the same section, then they match. */
789 if (first == second)
790 return 1;
791
792 /* If either is NULL, give up. */
793 if (first == NULL || second == NULL)
794 return 0;
795
796 /* This doesn't apply to absolute symbols. */
797 if (first->owner == NULL || second->owner == NULL)
798 return 0;
799
800 /* If they're in the same object file, they must be different sections. */
801 if (first->owner == second->owner)
802 return 0;
803
804 /* Check whether the two sections are potentially corresponding. They must
805 have the same size, address, and name. We can't compare section indexes,
806 which would be more reliable, because some sections may have been
807 stripped. */
808 if (bfd_get_section_size (first) != bfd_get_section_size (second))
809 return 0;
810
811 /* In-memory addresses may start at a different offset, relativize them. */
812 if (bfd_get_section_vma (first->owner, first)
813 - bfd_get_start_address (first->owner)
814 != bfd_get_section_vma (second->owner, second)
815 - bfd_get_start_address (second->owner))
816 return 0;
817
818 if (bfd_get_section_name (first->owner, first) == NULL
819 || bfd_get_section_name (second->owner, second) == NULL
820 || strcmp (bfd_get_section_name (first->owner, first),
821 bfd_get_section_name (second->owner, second)) != 0)
822 return 0;
823
824 /* Otherwise check that they are in corresponding objfiles. */
825
826 ALL_OBJFILES (obj)
827 if (obj->obfd == first->owner)
828 break;
829 gdb_assert (obj != NULL);
830
831 if (obj->separate_debug_objfile != NULL
832 && obj->separate_debug_objfile->obfd == second->owner)
833 return 1;
834 if (obj->separate_debug_objfile_backlink != NULL
835 && obj->separate_debug_objfile_backlink->obfd == second->owner)
836 return 1;
837
838 return 0;
839 }
840
841 struct symtab *
842 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
843 {
844 struct objfile *objfile;
845 struct minimal_symbol *msymbol;
846
847 /* If we know that this is not a text address, return failure. This is
848 necessary because we loop based on texthigh and textlow, which do
849 not include the data ranges. */
850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
851 if (msymbol
852 && (MSYMBOL_TYPE (msymbol) == mst_data
853 || MSYMBOL_TYPE (msymbol) == mst_bss
854 || MSYMBOL_TYPE (msymbol) == mst_abs
855 || MSYMBOL_TYPE (msymbol) == mst_file_data
856 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
857 return NULL;
858
859 ALL_OBJFILES (objfile)
860 {
861 struct symtab *result = NULL;
862
863 if (objfile->sf)
864 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
865 pc, section, 0);
866 if (result)
867 return result;
868 }
869
870 return NULL;
871 }
872 \f
873 /* Debug symbols usually don't have section information. We need to dig that
874 out of the minimal symbols and stash that in the debug symbol. */
875
876 void
877 fixup_section (struct general_symbol_info *ginfo,
878 CORE_ADDR addr, struct objfile *objfile)
879 {
880 struct minimal_symbol *msym;
881
882 /* First, check whether a minimal symbol with the same name exists
883 and points to the same address. The address check is required
884 e.g. on PowerPC64, where the minimal symbol for a function will
885 point to the function descriptor, while the debug symbol will
886 point to the actual function code. */
887 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
888 if (msym)
889 {
890 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
891 ginfo->section = SYMBOL_SECTION (msym);
892 }
893 else
894 {
895 /* Static, function-local variables do appear in the linker
896 (minimal) symbols, but are frequently given names that won't
897 be found via lookup_minimal_symbol(). E.g., it has been
898 observed in frv-uclinux (ELF) executables that a static,
899 function-local variable named "foo" might appear in the
900 linker symbols as "foo.6" or "foo.3". Thus, there is no
901 point in attempting to extend the lookup-by-name mechanism to
902 handle this case due to the fact that there can be multiple
903 names.
904
905 So, instead, search the section table when lookup by name has
906 failed. The ``addr'' and ``endaddr'' fields may have already
907 been relocated. If so, the relocation offset (i.e. the
908 ANOFFSET value) needs to be subtracted from these values when
909 performing the comparison. We unconditionally subtract it,
910 because, when no relocation has been performed, the ANOFFSET
911 value will simply be zero.
912
913 The address of the symbol whose section we're fixing up HAS
914 NOT BEEN adjusted (relocated) yet. It can't have been since
915 the section isn't yet known and knowing the section is
916 necessary in order to add the correct relocation value. In
917 other words, we wouldn't even be in this function (attempting
918 to compute the section) if it were already known.
919
920 Note that it is possible to search the minimal symbols
921 (subtracting the relocation value if necessary) to find the
922 matching minimal symbol, but this is overkill and much less
923 efficient. It is not necessary to find the matching minimal
924 symbol, only its section.
925
926 Note that this technique (of doing a section table search)
927 can fail when unrelocated section addresses overlap. For
928 this reason, we still attempt a lookup by name prior to doing
929 a search of the section table. */
930
931 struct obj_section *s;
932
933 ALL_OBJFILE_OSECTIONS (objfile, s)
934 {
935 int idx = s->the_bfd_section->index;
936 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
937
938 if (obj_section_addr (s) - offset <= addr
939 && addr < obj_section_endaddr (s) - offset)
940 {
941 ginfo->obj_section = s;
942 ginfo->section = idx;
943 return;
944 }
945 }
946 }
947 }
948
949 struct symbol *
950 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
951 {
952 CORE_ADDR addr;
953
954 if (!sym)
955 return NULL;
956
957 if (SYMBOL_OBJ_SECTION (sym))
958 return sym;
959
960 /* We either have an OBJFILE, or we can get at it from the sym's
961 symtab. Anything else is a bug. */
962 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
963
964 if (objfile == NULL)
965 objfile = SYMBOL_SYMTAB (sym)->objfile;
966
967 /* We should have an objfile by now. */
968 gdb_assert (objfile);
969
970 switch (SYMBOL_CLASS (sym))
971 {
972 case LOC_STATIC:
973 case LOC_LABEL:
974 addr = SYMBOL_VALUE_ADDRESS (sym);
975 break;
976 case LOC_BLOCK:
977 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
978 break;
979
980 default:
981 /* Nothing else will be listed in the minsyms -- no use looking
982 it up. */
983 return sym;
984 }
985
986 fixup_section (&sym->ginfo, addr, objfile);
987
988 return sym;
989 }
990
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
995 NAME is a field of the current implied argument `this'. If so set
996 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
997 BLOCK_FOUND is set to the block in which NAME is found (in the case of
998 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
999
1000 /* This function has a bunch of loops in it and it would seem to be
1001 attractive to put in some QUIT's (though I'm not really sure
1002 whether it can run long enough to be really important). But there
1003 are a few calls for which it would appear to be bad news to quit
1004 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1005 that there is C++ code below which can error(), but that probably
1006 doesn't affect these calls since they are looking for a known
1007 variable and thus can probably assume it will never hit the C++
1008 code). */
1009
1010 struct symbol *
1011 lookup_symbol_in_language (const char *name, const struct block *block,
1012 const domain_enum domain, enum language lang,
1013 int *is_a_field_of_this)
1014 {
1015 char *demangled_name = NULL;
1016 const char *modified_name = NULL;
1017 struct symbol *returnval;
1018 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1019
1020 modified_name = name;
1021
1022 /* If we are using C++, D, or Java, demangle the name before doing a
1023 lookup, so we can always binary search. */
1024 if (lang == language_cplus)
1025 {
1026 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1027 if (demangled_name)
1028 {
1029 modified_name = demangled_name;
1030 make_cleanup (xfree, demangled_name);
1031 }
1032 else
1033 {
1034 /* If we were given a non-mangled name, canonicalize it
1035 according to the language (so far only for C++). */
1036 demangled_name = cp_canonicalize_string (name);
1037 if (demangled_name)
1038 {
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1041 }
1042 }
1043 }
1044 else if (lang == language_java)
1045 {
1046 demangled_name = cplus_demangle (name,
1047 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1048 if (demangled_name)
1049 {
1050 modified_name = demangled_name;
1051 make_cleanup (xfree, demangled_name);
1052 }
1053 }
1054 else if (lang == language_d)
1055 {
1056 demangled_name = d_demangle (name, 0);
1057 if (demangled_name)
1058 {
1059 modified_name = demangled_name;
1060 make_cleanup (xfree, demangled_name);
1061 }
1062 }
1063
1064 if (case_sensitivity == case_sensitive_off)
1065 {
1066 char *copy;
1067 int len, i;
1068
1069 len = strlen (name);
1070 copy = (char *) alloca (len + 1);
1071 for (i= 0; i < len; i++)
1072 copy[i] = tolower (name[i]);
1073 copy[len] = 0;
1074 modified_name = copy;
1075 }
1076
1077 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1078 is_a_field_of_this);
1079 do_cleanups (cleanup);
1080
1081 return returnval;
1082 }
1083
1084 /* Behave like lookup_symbol_in_language, but performed with the
1085 current language. */
1086
1087 struct symbol *
1088 lookup_symbol (const char *name, const struct block *block,
1089 domain_enum domain, int *is_a_field_of_this)
1090 {
1091 return lookup_symbol_in_language (name, block, domain,
1092 current_language->la_language,
1093 is_a_field_of_this);
1094 }
1095
1096 /* Behave like lookup_symbol except that NAME is the natural name
1097 of the symbol that we're looking for and, if LINKAGE_NAME is
1098 non-NULL, ensure that the symbol's linkage name matches as
1099 well. */
1100
1101 static struct symbol *
1102 lookup_symbol_aux (const char *name, const struct block *block,
1103 const domain_enum domain, enum language language,
1104 int *is_a_field_of_this)
1105 {
1106 struct symbol *sym;
1107 const struct language_defn *langdef;
1108
1109 /* Make sure we do something sensible with is_a_field_of_this, since
1110 the callers that set this parameter to some non-null value will
1111 certainly use it later and expect it to be either 0 or 1.
1112 If we don't set it, the contents of is_a_field_of_this are
1113 undefined. */
1114 if (is_a_field_of_this != NULL)
1115 *is_a_field_of_this = 0;
1116
1117 /* Search specified block and its superiors. Don't search
1118 STATIC_BLOCK or GLOBAL_BLOCK. */
1119
1120 sym = lookup_symbol_aux_local (name, block, domain, language);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1125 check to see if NAME is a field of `this'. */
1126
1127 langdef = language_def (language);
1128
1129 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1130 && block != NULL)
1131 {
1132 struct symbol *sym = NULL;
1133 const struct block *function_block = block;
1134
1135 /* 'this' is only defined in the function's block, so find the
1136 enclosing function block. */
1137 for (; function_block && !BLOCK_FUNCTION (function_block);
1138 function_block = BLOCK_SUPERBLOCK (function_block));
1139
1140 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1141 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1142 VAR_DOMAIN);
1143 if (sym)
1144 {
1145 struct type *t = sym->type;
1146
1147 /* I'm not really sure that type of this can ever
1148 be typedefed; just be safe. */
1149 CHECK_TYPEDEF (t);
1150 if (TYPE_CODE (t) == TYPE_CODE_PTR
1151 || TYPE_CODE (t) == TYPE_CODE_REF)
1152 t = TYPE_TARGET_TYPE (t);
1153
1154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1155 && TYPE_CODE (t) != TYPE_CODE_UNION)
1156 error (_("Internal error: `%s' is not an aggregate"),
1157 langdef->la_name_of_this);
1158
1159 if (check_field (t, name))
1160 {
1161 *is_a_field_of_this = 1;
1162 return NULL;
1163 }
1164 }
1165 }
1166
1167 /* Now do whatever is appropriate for LANGUAGE to look
1168 up static and global variables. */
1169
1170 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1171 if (sym != NULL)
1172 return sym;
1173
1174 /* Now search all static file-level symbols. Not strictly correct,
1175 but more useful than an error. */
1176
1177 return lookup_static_symbol_aux (name, domain);
1178 }
1179
1180 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1181 first, then check the psymtabs. If a psymtab indicates the existence of the
1182 desired name as a file-level static, then do psymtab-to-symtab conversion on
1183 the fly and return the found symbol. */
1184
1185 struct symbol *
1186 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1187 {
1188 struct objfile *objfile;
1189 struct symbol *sym;
1190
1191 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1192 if (sym != NULL)
1193 return sym;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1198 if (sym != NULL)
1199 return sym;
1200 }
1201
1202 return NULL;
1203 }
1204
1205 /* Check to see if the symbol is defined in BLOCK or its superiors.
1206 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1207
1208 static struct symbol *
1209 lookup_symbol_aux_local (const char *name, const struct block *block,
1210 const domain_enum domain,
1211 enum language language)
1212 {
1213 struct symbol *sym;
1214 const struct block *static_block = block_static_block (block);
1215 const char *scope = block_scope (block);
1216
1217 /* Check if either no block is specified or it's a global block. */
1218
1219 if (static_block == NULL)
1220 return NULL;
1221
1222 while (block != static_block)
1223 {
1224 sym = lookup_symbol_aux_block (name, block, domain);
1225 if (sym != NULL)
1226 return sym;
1227
1228 if (language == language_cplus || language == language_fortran)
1229 {
1230 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1231 domain);
1232 if (sym != NULL)
1233 return sym;
1234 }
1235
1236 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1237 break;
1238 block = BLOCK_SUPERBLOCK (block);
1239 }
1240
1241 /* We've reached the edge of the function without finding a result. */
1242
1243 return NULL;
1244 }
1245
1246 /* Look up OBJFILE to BLOCK. */
1247
1248 struct objfile *
1249 lookup_objfile_from_block (const struct block *block)
1250 {
1251 struct objfile *obj;
1252 struct symtab *s;
1253
1254 if (block == NULL)
1255 return NULL;
1256
1257 block = block_global_block (block);
1258 /* Go through SYMTABS. */
1259 ALL_SYMTABS (obj, s)
1260 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1261 {
1262 if (obj->separate_debug_objfile_backlink)
1263 obj = obj->separate_debug_objfile_backlink;
1264
1265 return obj;
1266 }
1267
1268 return NULL;
1269 }
1270
1271 /* Look up a symbol in a block; if found, fixup the symbol, and set
1272 block_found appropriately. */
1273
1274 struct symbol *
1275 lookup_symbol_aux_block (const char *name, const struct block *block,
1276 const domain_enum domain)
1277 {
1278 struct symbol *sym;
1279
1280 sym = lookup_block_symbol (block, name, domain);
1281 if (sym)
1282 {
1283 block_found = block;
1284 return fixup_symbol_section (sym, NULL);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Check all global symbols in OBJFILE in symtabs and
1291 psymtabs. */
1292
1293 struct symbol *
1294 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1295 const char *name,
1296 const domain_enum domain)
1297 {
1298 const struct objfile *objfile;
1299 struct symbol *sym;
1300 struct blockvector *bv;
1301 const struct block *block;
1302 struct symtab *s;
1303
1304 for (objfile = main_objfile;
1305 objfile;
1306 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1307 {
1308 /* Go through symtabs. */
1309 ALL_OBJFILE_SYMTABS (objfile, s)
1310 {
1311 bv = BLOCKVECTOR (s);
1312 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1313 sym = lookup_block_symbol (block, name, domain);
1314 if (sym)
1315 {
1316 block_found = block;
1317 return fixup_symbol_section (sym, (struct objfile *)objfile);
1318 }
1319 }
1320
1321 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1322 name, domain);
1323 if (sym)
1324 return sym;
1325 }
1326
1327 return NULL;
1328 }
1329
1330 /* Check to see if the symbol is defined in one of the symtabs.
1331 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1332 depending on whether or not we want to search global symbols or
1333 static symbols. */
1334
1335 static struct symbol *
1336 lookup_symbol_aux_symtabs (int block_index, const char *name,
1337 const domain_enum domain)
1338 {
1339 struct symbol *sym;
1340 struct objfile *objfile;
1341 struct blockvector *bv;
1342 const struct block *block;
1343 struct symtab *s;
1344
1345 ALL_OBJFILES (objfile)
1346 {
1347 if (objfile->sf)
1348 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1349 block_index,
1350 name, domain);
1351
1352 ALL_OBJFILE_SYMTABS (objfile, s)
1353 if (s->primary)
1354 {
1355 bv = BLOCKVECTOR (s);
1356 block = BLOCKVECTOR_BLOCK (bv, block_index);
1357 sym = lookup_block_symbol (block, name, domain);
1358 if (sym)
1359 {
1360 block_found = block;
1361 return fixup_symbol_section (sym, objfile);
1362 }
1363 }
1364 }
1365
1366 return NULL;
1367 }
1368
1369 /* A helper function for lookup_symbol_aux that interfaces with the
1370 "quick" symbol table functions. */
1371
1372 static struct symbol *
1373 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1374 const char *name, const domain_enum domain)
1375 {
1376 struct symtab *symtab;
1377 struct blockvector *bv;
1378 const struct block *block;
1379 struct symbol *sym;
1380
1381 if (!objfile->sf)
1382 return NULL;
1383 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1384 if (!symtab)
1385 return NULL;
1386
1387 bv = BLOCKVECTOR (symtab);
1388 block = BLOCKVECTOR_BLOCK (bv, kind);
1389 sym = lookup_block_symbol (block, name, domain);
1390 if (!sym)
1391 {
1392 /* This shouldn't be necessary, but as a last resort try
1393 looking in the statics even though the psymtab claimed
1394 the symbol was global, or vice-versa. It's possible
1395 that the psymtab gets it wrong in some cases. */
1396
1397 /* FIXME: carlton/2002-09-30: Should we really do that?
1398 If that happens, isn't it likely to be a GDB error, in
1399 which case we should fix the GDB error rather than
1400 silently dealing with it here? So I'd vote for
1401 removing the check for the symbol in the other
1402 block. */
1403 block = BLOCKVECTOR_BLOCK (bv,
1404 kind == GLOBAL_BLOCK ?
1405 STATIC_BLOCK : GLOBAL_BLOCK);
1406 sym = lookup_block_symbol (block, name, domain);
1407 if (!sym)
1408 error (_("\
1409 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1410 %s may be an inlined function, or may be a template function\n\
1411 (if a template, try specifying an instantiation: %s<type>)."),
1412 kind == GLOBAL_BLOCK ? "global" : "static",
1413 name, symtab->filename, name, name);
1414 }
1415 return fixup_symbol_section (sym, objfile);
1416 }
1417
1418 /* A default version of lookup_symbol_nonlocal for use by languages
1419 that can't think of anything better to do. This implements the C
1420 lookup rules. */
1421
1422 struct symbol *
1423 basic_lookup_symbol_nonlocal (const char *name,
1424 const struct block *block,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428
1429 /* NOTE: carlton/2003-05-19: The comments below were written when
1430 this (or what turned into this) was part of lookup_symbol_aux;
1431 I'm much less worried about these questions now, since these
1432 decisions have turned out well, but I leave these comments here
1433 for posterity. */
1434
1435 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1436 not it would be appropriate to search the current global block
1437 here as well. (That's what this code used to do before the
1438 is_a_field_of_this check was moved up.) On the one hand, it's
1439 redundant with the lookup_symbol_aux_symtabs search that happens
1440 next. On the other hand, if decode_line_1 is passed an argument
1441 like filename:var, then the user presumably wants 'var' to be
1442 searched for in filename. On the third hand, there shouldn't be
1443 multiple global variables all of which are named 'var', and it's
1444 not like decode_line_1 has ever restricted its search to only
1445 global variables in a single filename. All in all, only
1446 searching the static block here seems best: it's correct and it's
1447 cleanest. */
1448
1449 /* NOTE: carlton/2002-12-05: There's also a possible performance
1450 issue here: if you usually search for global symbols in the
1451 current file, then it would be slightly better to search the
1452 current global block before searching all the symtabs. But there
1453 are other factors that have a much greater effect on performance
1454 than that one, so I don't think we should worry about that for
1455 now. */
1456
1457 sym = lookup_symbol_static (name, block, domain);
1458 if (sym != NULL)
1459 return sym;
1460
1461 return lookup_symbol_global (name, block, domain);
1462 }
1463
1464 /* Lookup a symbol in the static block associated to BLOCK, if there
1465 is one; do nothing if BLOCK is NULL or a global block. */
1466
1467 struct symbol *
1468 lookup_symbol_static (const char *name,
1469 const struct block *block,
1470 const domain_enum domain)
1471 {
1472 const struct block *static_block = block_static_block (block);
1473
1474 if (static_block != NULL)
1475 return lookup_symbol_aux_block (name, static_block, domain);
1476 else
1477 return NULL;
1478 }
1479
1480 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1481 necessary). */
1482
1483 struct symbol *
1484 lookup_symbol_global (const char *name,
1485 const struct block *block,
1486 const domain_enum domain)
1487 {
1488 struct symbol *sym = NULL;
1489 struct objfile *objfile = NULL;
1490
1491 /* Call library-specific lookup procedure. */
1492 objfile = lookup_objfile_from_block (block);
1493 if (objfile != NULL)
1494 sym = solib_global_lookup (objfile, name, domain);
1495 if (sym != NULL)
1496 return sym;
1497
1498 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1499 if (sym != NULL)
1500 return sym;
1501
1502 ALL_OBJFILES (objfile)
1503 {
1504 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1505 if (sym)
1506 return sym;
1507 }
1508
1509 return NULL;
1510 }
1511
1512 int
1513 symbol_matches_domain (enum language symbol_language,
1514 domain_enum symbol_domain,
1515 domain_enum domain)
1516 {
1517 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1518 A Java class declaration also defines a typedef for the class.
1519 Similarly, any Ada type declaration implicitly defines a typedef. */
1520 if (symbol_language == language_cplus
1521 || symbol_language == language_d
1522 || symbol_language == language_java
1523 || symbol_language == language_ada)
1524 {
1525 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1526 && symbol_domain == STRUCT_DOMAIN)
1527 return 1;
1528 }
1529 /* For all other languages, strict match is required. */
1530 return (symbol_domain == domain);
1531 }
1532
1533 /* Look up a type named NAME in the struct_domain. The type returned
1534 must not be opaque -- i.e., must have at least one field
1535 defined. */
1536
1537 struct type *
1538 lookup_transparent_type (const char *name)
1539 {
1540 return current_language->la_lookup_transparent_type (name);
1541 }
1542
1543 /* A helper for basic_lookup_transparent_type that interfaces with the
1544 "quick" symbol table functions. */
1545
1546 static struct type *
1547 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1548 const char *name)
1549 {
1550 struct symtab *symtab;
1551 struct blockvector *bv;
1552 struct block *block;
1553 struct symbol *sym;
1554
1555 if (!objfile->sf)
1556 return NULL;
1557 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1558 if (!symtab)
1559 return NULL;
1560
1561 bv = BLOCKVECTOR (symtab);
1562 block = BLOCKVECTOR_BLOCK (bv, kind);
1563 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1564 if (!sym)
1565 {
1566 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1567
1568 /* This shouldn't be necessary, but as a last resort
1569 * try looking in the 'other kind' even though the psymtab
1570 * claimed the symbol was one thing. It's possible that
1571 * the psymtab gets it wrong in some cases.
1572 */
1573 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1574 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1575 if (!sym)
1576 /* FIXME; error is wrong in one case. */
1577 error (_("\
1578 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1579 %s may be an inlined function, or may be a template function\n\
1580 (if a template, try specifying an instantiation: %s<type>)."),
1581 name, symtab->filename, name, name);
1582 }
1583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1584 return SYMBOL_TYPE (sym);
1585
1586 return NULL;
1587 }
1588
1589 /* The standard implementation of lookup_transparent_type. This code
1590 was modeled on lookup_symbol -- the parts not relevant to looking
1591 up types were just left out. In particular it's assumed here that
1592 types are available in struct_domain and only at file-static or
1593 global blocks. */
1594
1595 struct type *
1596 basic_lookup_transparent_type (const char *name)
1597 {
1598 struct symbol *sym;
1599 struct symtab *s = NULL;
1600 struct blockvector *bv;
1601 struct objfile *objfile;
1602 struct block *block;
1603 struct type *t;
1604
1605 /* Now search all the global symbols. Do the symtab's first, then
1606 check the psymtab's. If a psymtab indicates the existence
1607 of the desired name as a global, then do psymtab-to-symtab
1608 conversion on the fly and return the found symbol. */
1609
1610 ALL_OBJFILES (objfile)
1611 {
1612 if (objfile->sf)
1613 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1614 GLOBAL_BLOCK,
1615 name, STRUCT_DOMAIN);
1616
1617 ALL_OBJFILE_SYMTABS (objfile, s)
1618 if (s->primary)
1619 {
1620 bv = BLOCKVECTOR (s);
1621 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1622 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1623 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1624 {
1625 return SYMBOL_TYPE (sym);
1626 }
1627 }
1628 }
1629
1630 ALL_OBJFILES (objfile)
1631 {
1632 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1633 if (t)
1634 return t;
1635 }
1636
1637 /* Now search the static file-level symbols.
1638 Not strictly correct, but more useful than an error.
1639 Do the symtab's first, then
1640 check the psymtab's. If a psymtab indicates the existence
1641 of the desired name as a file-level static, then do psymtab-to-symtab
1642 conversion on the fly and return the found symbol. */
1643
1644 ALL_OBJFILES (objfile)
1645 {
1646 if (objfile->sf)
1647 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1648 name, STRUCT_DOMAIN);
1649
1650 ALL_OBJFILE_SYMTABS (objfile, s)
1651 {
1652 bv = BLOCKVECTOR (s);
1653 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1654 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1655 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1656 {
1657 return SYMBOL_TYPE (sym);
1658 }
1659 }
1660 }
1661
1662 ALL_OBJFILES (objfile)
1663 {
1664 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1665 if (t)
1666 return t;
1667 }
1668
1669 return (struct type *) 0;
1670 }
1671
1672
1673 /* Find the name of the file containing main(). */
1674 /* FIXME: What about languages without main() or specially linked
1675 executables that have no main() ? */
1676
1677 const char *
1678 find_main_filename (void)
1679 {
1680 struct objfile *objfile;
1681 char *name = main_name ();
1682
1683 ALL_OBJFILES (objfile)
1684 {
1685 const char *result;
1686
1687 if (!objfile->sf)
1688 continue;
1689 result = objfile->sf->qf->find_symbol_file (objfile, name);
1690 if (result)
1691 return result;
1692 }
1693 return (NULL);
1694 }
1695
1696 /* Search BLOCK for symbol NAME in DOMAIN.
1697
1698 Note that if NAME is the demangled form of a C++ symbol, we will fail
1699 to find a match during the binary search of the non-encoded names, but
1700 for now we don't worry about the slight inefficiency of looking for
1701 a match we'll never find, since it will go pretty quick. Once the
1702 binary search terminates, we drop through and do a straight linear
1703 search on the symbols. Each symbol which is marked as being a ObjC/C++
1704 symbol (language_cplus or language_objc set) has both the encoded and
1705 non-encoded names tested for a match. */
1706
1707 struct symbol *
1708 lookup_block_symbol (const struct block *block, const char *name,
1709 const domain_enum domain)
1710 {
1711 struct dict_iterator iter;
1712 struct symbol *sym;
1713
1714 if (!BLOCK_FUNCTION (block))
1715 {
1716 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1717 sym != NULL;
1718 sym = dict_iter_name_next (name, &iter))
1719 {
1720 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1721 SYMBOL_DOMAIN (sym), domain))
1722 return sym;
1723 }
1724 return NULL;
1725 }
1726 else
1727 {
1728 /* Note that parameter symbols do not always show up last in the
1729 list; this loop makes sure to take anything else other than
1730 parameter symbols first; it only uses parameter symbols as a
1731 last resort. Note that this only takes up extra computation
1732 time on a match. */
1733
1734 struct symbol *sym_found = NULL;
1735
1736 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1737 sym != NULL;
1738 sym = dict_iter_name_next (name, &iter))
1739 {
1740 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1741 SYMBOL_DOMAIN (sym), domain))
1742 {
1743 sym_found = sym;
1744 if (!SYMBOL_IS_ARGUMENT (sym))
1745 {
1746 break;
1747 }
1748 }
1749 }
1750 return (sym_found); /* Will be NULL if not found. */
1751 }
1752 }
1753
1754 /* Find the symtab associated with PC and SECTION. Look through the
1755 psymtabs and read in another symtab if necessary. */
1756
1757 struct symtab *
1758 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1759 {
1760 struct block *b;
1761 struct blockvector *bv;
1762 struct symtab *s = NULL;
1763 struct symtab *best_s = NULL;
1764 struct objfile *objfile;
1765 struct program_space *pspace;
1766 CORE_ADDR distance = 0;
1767 struct minimal_symbol *msymbol;
1768
1769 pspace = current_program_space;
1770
1771 /* If we know that this is not a text address, return failure. This is
1772 necessary because we loop based on the block's high and low code
1773 addresses, which do not include the data ranges, and because
1774 we call find_pc_sect_psymtab which has a similar restriction based
1775 on the partial_symtab's texthigh and textlow. */
1776 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1777 if (msymbol
1778 && (MSYMBOL_TYPE (msymbol) == mst_data
1779 || MSYMBOL_TYPE (msymbol) == mst_bss
1780 || MSYMBOL_TYPE (msymbol) == mst_abs
1781 || MSYMBOL_TYPE (msymbol) == mst_file_data
1782 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1783 return NULL;
1784
1785 /* Search all symtabs for the one whose file contains our address, and which
1786 is the smallest of all the ones containing the address. This is designed
1787 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1788 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1789 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1790
1791 This happens for native ecoff format, where code from included files
1792 gets its own symtab. The symtab for the included file should have
1793 been read in already via the dependency mechanism.
1794 It might be swifter to create several symtabs with the same name
1795 like xcoff does (I'm not sure).
1796
1797 It also happens for objfiles that have their functions reordered.
1798 For these, the symtab we are looking for is not necessarily read in. */
1799
1800 ALL_PRIMARY_SYMTABS (objfile, s)
1801 {
1802 bv = BLOCKVECTOR (s);
1803 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1804
1805 if (BLOCK_START (b) <= pc
1806 && BLOCK_END (b) > pc
1807 && (distance == 0
1808 || BLOCK_END (b) - BLOCK_START (b) < distance))
1809 {
1810 /* For an objfile that has its functions reordered,
1811 find_pc_psymtab will find the proper partial symbol table
1812 and we simply return its corresponding symtab. */
1813 /* In order to better support objfiles that contain both
1814 stabs and coff debugging info, we continue on if a psymtab
1815 can't be found. */
1816 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1817 {
1818 struct symtab *result;
1819
1820 result
1821 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1822 msymbol,
1823 pc, section,
1824 0);
1825 if (result)
1826 return result;
1827 }
1828 if (section != 0)
1829 {
1830 struct dict_iterator iter;
1831 struct symbol *sym = NULL;
1832
1833 ALL_BLOCK_SYMBOLS (b, iter, sym)
1834 {
1835 fixup_symbol_section (sym, objfile);
1836 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1837 break;
1838 }
1839 if (sym == NULL)
1840 continue; /* No symbol in this symtab matches
1841 section. */
1842 }
1843 distance = BLOCK_END (b) - BLOCK_START (b);
1844 best_s = s;
1845 }
1846 }
1847
1848 if (best_s != NULL)
1849 return (best_s);
1850
1851 ALL_OBJFILES (objfile)
1852 {
1853 struct symtab *result;
1854
1855 if (!objfile->sf)
1856 continue;
1857 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1858 msymbol,
1859 pc, section,
1860 1);
1861 if (result)
1862 return result;
1863 }
1864
1865 return NULL;
1866 }
1867
1868 /* Find the symtab associated with PC. Look through the psymtabs and read
1869 in another symtab if necessary. Backward compatibility, no section. */
1870
1871 struct symtab *
1872 find_pc_symtab (CORE_ADDR pc)
1873 {
1874 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1875 }
1876 \f
1877
1878 /* Find the source file and line number for a given PC value and SECTION.
1879 Return a structure containing a symtab pointer, a line number,
1880 and a pc range for the entire source line.
1881 The value's .pc field is NOT the specified pc.
1882 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1883 use the line that ends there. Otherwise, in that case, the line
1884 that begins there is used. */
1885
1886 /* The big complication here is that a line may start in one file, and end just
1887 before the start of another file. This usually occurs when you #include
1888 code in the middle of a subroutine. To properly find the end of a line's PC
1889 range, we must search all symtabs associated with this compilation unit, and
1890 find the one whose first PC is closer than that of the next line in this
1891 symtab. */
1892
1893 /* If it's worth the effort, we could be using a binary search. */
1894
1895 struct symtab_and_line
1896 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1897 {
1898 struct symtab *s;
1899 struct linetable *l;
1900 int len;
1901 int i;
1902 struct linetable_entry *item;
1903 struct symtab_and_line val;
1904 struct blockvector *bv;
1905 struct minimal_symbol *msymbol;
1906 struct minimal_symbol *mfunsym;
1907 struct objfile *objfile;
1908
1909 /* Info on best line seen so far, and where it starts, and its file. */
1910
1911 struct linetable_entry *best = NULL;
1912 CORE_ADDR best_end = 0;
1913 struct symtab *best_symtab = 0;
1914
1915 /* Store here the first line number
1916 of a file which contains the line at the smallest pc after PC.
1917 If we don't find a line whose range contains PC,
1918 we will use a line one less than this,
1919 with a range from the start of that file to the first line's pc. */
1920 struct linetable_entry *alt = NULL;
1921 struct symtab *alt_symtab = 0;
1922
1923 /* Info on best line seen in this file. */
1924
1925 struct linetable_entry *prev;
1926
1927 /* If this pc is not from the current frame,
1928 it is the address of the end of a call instruction.
1929 Quite likely that is the start of the following statement.
1930 But what we want is the statement containing the instruction.
1931 Fudge the pc to make sure we get that. */
1932
1933 init_sal (&val); /* initialize to zeroes */
1934
1935 val.pspace = current_program_space;
1936
1937 /* It's tempting to assume that, if we can't find debugging info for
1938 any function enclosing PC, that we shouldn't search for line
1939 number info, either. However, GAS can emit line number info for
1940 assembly files --- very helpful when debugging hand-written
1941 assembly code. In such a case, we'd have no debug info for the
1942 function, but we would have line info. */
1943
1944 if (notcurrent)
1945 pc -= 1;
1946
1947 /* elz: added this because this function returned the wrong
1948 information if the pc belongs to a stub (import/export)
1949 to call a shlib function. This stub would be anywhere between
1950 two functions in the target, and the line info was erroneously
1951 taken to be the one of the line before the pc. */
1952
1953 /* RT: Further explanation:
1954
1955 * We have stubs (trampolines) inserted between procedures.
1956 *
1957 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1958 * exists in the main image.
1959 *
1960 * In the minimal symbol table, we have a bunch of symbols
1961 * sorted by start address. The stubs are marked as "trampoline",
1962 * the others appear as text. E.g.:
1963 *
1964 * Minimal symbol table for main image
1965 * main: code for main (text symbol)
1966 * shr1: stub (trampoline symbol)
1967 * foo: code for foo (text symbol)
1968 * ...
1969 * Minimal symbol table for "shr1" image:
1970 * ...
1971 * shr1: code for shr1 (text symbol)
1972 * ...
1973 *
1974 * So the code below is trying to detect if we are in the stub
1975 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1976 * and if found, do the symbolization from the real-code address
1977 * rather than the stub address.
1978 *
1979 * Assumptions being made about the minimal symbol table:
1980 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1981 * if we're really in the trampoline.s If we're beyond it (say
1982 * we're in "foo" in the above example), it'll have a closer
1983 * symbol (the "foo" text symbol for example) and will not
1984 * return the trampoline.
1985 * 2. lookup_minimal_symbol_text() will find a real text symbol
1986 * corresponding to the trampoline, and whose address will
1987 * be different than the trampoline address. I put in a sanity
1988 * check for the address being the same, to avoid an
1989 * infinite recursion.
1990 */
1991 msymbol = lookup_minimal_symbol_by_pc (pc);
1992 if (msymbol != NULL)
1993 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1994 {
1995 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1996 NULL);
1997 if (mfunsym == NULL)
1998 /* I eliminated this warning since it is coming out
1999 * in the following situation:
2000 * gdb shmain // test program with shared libraries
2001 * (gdb) break shr1 // function in shared lib
2002 * Warning: In stub for ...
2003 * In the above situation, the shared lib is not loaded yet,
2004 * so of course we can't find the real func/line info,
2005 * but the "break" still works, and the warning is annoying.
2006 * So I commented out the warning. RT */
2007 /* warning ("In stub for %s; unable to find real function/line info",
2008 SYMBOL_LINKAGE_NAME (msymbol)); */
2009 ;
2010 /* fall through */
2011 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2012 == SYMBOL_VALUE_ADDRESS (msymbol))
2013 /* Avoid infinite recursion */
2014 /* See above comment about why warning is commented out. */
2015 /* warning ("In stub for %s; unable to find real function/line info",
2016 SYMBOL_LINKAGE_NAME (msymbol)); */
2017 ;
2018 /* fall through */
2019 else
2020 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2021 }
2022
2023
2024 s = find_pc_sect_symtab (pc, section);
2025 if (!s)
2026 {
2027 /* If no symbol information, return previous pc. */
2028 if (notcurrent)
2029 pc++;
2030 val.pc = pc;
2031 return val;
2032 }
2033
2034 bv = BLOCKVECTOR (s);
2035 objfile = s->objfile;
2036
2037 /* Look at all the symtabs that share this blockvector.
2038 They all have the same apriori range, that we found was right;
2039 but they have different line tables. */
2040
2041 ALL_OBJFILE_SYMTABS (objfile, s)
2042 {
2043 if (BLOCKVECTOR (s) != bv)
2044 continue;
2045
2046 /* Find the best line in this symtab. */
2047 l = LINETABLE (s);
2048 if (!l)
2049 continue;
2050 len = l->nitems;
2051 if (len <= 0)
2052 {
2053 /* I think len can be zero if the symtab lacks line numbers
2054 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2055 I'm not sure which, and maybe it depends on the symbol
2056 reader). */
2057 continue;
2058 }
2059
2060 prev = NULL;
2061 item = l->item; /* Get first line info. */
2062
2063 /* Is this file's first line closer than the first lines of other files?
2064 If so, record this file, and its first line, as best alternate. */
2065 if (item->pc > pc && (!alt || item->pc < alt->pc))
2066 {
2067 alt = item;
2068 alt_symtab = s;
2069 }
2070
2071 for (i = 0; i < len; i++, item++)
2072 {
2073 /* Leave prev pointing to the linetable entry for the last line
2074 that started at or before PC. */
2075 if (item->pc > pc)
2076 break;
2077
2078 prev = item;
2079 }
2080
2081 /* At this point, prev points at the line whose start addr is <= pc, and
2082 item points at the next line. If we ran off the end of the linetable
2083 (pc >= start of the last line), then prev == item. If pc < start of
2084 the first line, prev will not be set. */
2085
2086 /* Is this file's best line closer than the best in the other files?
2087 If so, record this file, and its best line, as best so far. Don't
2088 save prev if it represents the end of a function (i.e. line number
2089 0) instead of a real line. */
2090
2091 if (prev && prev->line && (!best || prev->pc > best->pc))
2092 {
2093 best = prev;
2094 best_symtab = s;
2095
2096 /* Discard BEST_END if it's before the PC of the current BEST. */
2097 if (best_end <= best->pc)
2098 best_end = 0;
2099 }
2100
2101 /* If another line (denoted by ITEM) is in the linetable and its
2102 PC is after BEST's PC, but before the current BEST_END, then
2103 use ITEM's PC as the new best_end. */
2104 if (best && i < len && item->pc > best->pc
2105 && (best_end == 0 || best_end > item->pc))
2106 best_end = item->pc;
2107 }
2108
2109 if (!best_symtab)
2110 {
2111 /* If we didn't find any line number info, just return zeros.
2112 We used to return alt->line - 1 here, but that could be
2113 anywhere; if we don't have line number info for this PC,
2114 don't make some up. */
2115 val.pc = pc;
2116 }
2117 else if (best->line == 0)
2118 {
2119 /* If our best fit is in a range of PC's for which no line
2120 number info is available (line number is zero) then we didn't
2121 find any valid line information. */
2122 val.pc = pc;
2123 }
2124 else
2125 {
2126 val.symtab = best_symtab;
2127 val.line = best->line;
2128 val.pc = best->pc;
2129 if (best_end && (!alt || best_end < alt->pc))
2130 val.end = best_end;
2131 else if (alt)
2132 val.end = alt->pc;
2133 else
2134 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2135 }
2136 val.section = section;
2137 return val;
2138 }
2139
2140 /* Backward compatibility (no section). */
2141
2142 struct symtab_and_line
2143 find_pc_line (CORE_ADDR pc, int notcurrent)
2144 {
2145 struct obj_section *section;
2146
2147 section = find_pc_overlay (pc);
2148 if (pc_in_unmapped_range (pc, section))
2149 pc = overlay_mapped_address (pc, section);
2150 return find_pc_sect_line (pc, section, notcurrent);
2151 }
2152 \f
2153 /* Find line number LINE in any symtab whose name is the same as
2154 SYMTAB.
2155
2156 If found, return the symtab that contains the linetable in which it was
2157 found, set *INDEX to the index in the linetable of the best entry
2158 found, and set *EXACT_MATCH nonzero if the value returned is an
2159 exact match.
2160
2161 If not found, return NULL. */
2162
2163 struct symtab *
2164 find_line_symtab (struct symtab *symtab, int line,
2165 int *index, int *exact_match)
2166 {
2167 int exact = 0; /* Initialized here to avoid a compiler warning. */
2168
2169 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2170 so far seen. */
2171
2172 int best_index;
2173 struct linetable *best_linetable;
2174 struct symtab *best_symtab;
2175
2176 /* First try looking it up in the given symtab. */
2177 best_linetable = LINETABLE (symtab);
2178 best_symtab = symtab;
2179 best_index = find_line_common (best_linetable, line, &exact);
2180 if (best_index < 0 || !exact)
2181 {
2182 /* Didn't find an exact match. So we better keep looking for
2183 another symtab with the same name. In the case of xcoff,
2184 multiple csects for one source file (produced by IBM's FORTRAN
2185 compiler) produce multiple symtabs (this is unavoidable
2186 assuming csects can be at arbitrary places in memory and that
2187 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2188
2189 /* BEST is the smallest linenumber > LINE so far seen,
2190 or 0 if none has been seen so far.
2191 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2192 int best;
2193
2194 struct objfile *objfile;
2195 struct symtab *s;
2196
2197 if (best_index >= 0)
2198 best = best_linetable->item[best_index].line;
2199 else
2200 best = 0;
2201
2202 ALL_OBJFILES (objfile)
2203 {
2204 if (objfile->sf)
2205 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2206 symtab->filename);
2207 }
2208
2209 /* Get symbol full file name if possible. */
2210 symtab_to_fullname (symtab);
2211
2212 ALL_SYMTABS (objfile, s)
2213 {
2214 struct linetable *l;
2215 int ind;
2216
2217 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2218 continue;
2219 if (symtab->fullname != NULL
2220 && symtab_to_fullname (s) != NULL
2221 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2222 continue;
2223 l = LINETABLE (s);
2224 ind = find_line_common (l, line, &exact);
2225 if (ind >= 0)
2226 {
2227 if (exact)
2228 {
2229 best_index = ind;
2230 best_linetable = l;
2231 best_symtab = s;
2232 goto done;
2233 }
2234 if (best == 0 || l->item[ind].line < best)
2235 {
2236 best = l->item[ind].line;
2237 best_index = ind;
2238 best_linetable = l;
2239 best_symtab = s;
2240 }
2241 }
2242 }
2243 }
2244 done:
2245 if (best_index < 0)
2246 return NULL;
2247
2248 if (index)
2249 *index = best_index;
2250 if (exact_match)
2251 *exact_match = exact;
2252
2253 return best_symtab;
2254 }
2255 \f
2256 /* Set the PC value for a given source file and line number and return true.
2257 Returns zero for invalid line number (and sets the PC to 0).
2258 The source file is specified with a struct symtab. */
2259
2260 int
2261 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2262 {
2263 struct linetable *l;
2264 int ind;
2265
2266 *pc = 0;
2267 if (symtab == 0)
2268 return 0;
2269
2270 symtab = find_line_symtab (symtab, line, &ind, NULL);
2271 if (symtab != NULL)
2272 {
2273 l = LINETABLE (symtab);
2274 *pc = l->item[ind].pc;
2275 return 1;
2276 }
2277 else
2278 return 0;
2279 }
2280
2281 /* Find the range of pc values in a line.
2282 Store the starting pc of the line into *STARTPTR
2283 and the ending pc (start of next line) into *ENDPTR.
2284 Returns 1 to indicate success.
2285 Returns 0 if could not find the specified line. */
2286
2287 int
2288 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2289 CORE_ADDR *endptr)
2290 {
2291 CORE_ADDR startaddr;
2292 struct symtab_and_line found_sal;
2293
2294 startaddr = sal.pc;
2295 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2296 return 0;
2297
2298 /* This whole function is based on address. For example, if line 10 has
2299 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2300 "info line *0x123" should say the line goes from 0x100 to 0x200
2301 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2302 This also insures that we never give a range like "starts at 0x134
2303 and ends at 0x12c". */
2304
2305 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2306 if (found_sal.line != sal.line)
2307 {
2308 /* The specified line (sal) has zero bytes. */
2309 *startptr = found_sal.pc;
2310 *endptr = found_sal.pc;
2311 }
2312 else
2313 {
2314 *startptr = found_sal.pc;
2315 *endptr = found_sal.end;
2316 }
2317 return 1;
2318 }
2319
2320 /* Given a line table and a line number, return the index into the line
2321 table for the pc of the nearest line whose number is >= the specified one.
2322 Return -1 if none is found. The value is >= 0 if it is an index.
2323
2324 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2325
2326 static int
2327 find_line_common (struct linetable *l, int lineno,
2328 int *exact_match)
2329 {
2330 int i;
2331 int len;
2332
2333 /* BEST is the smallest linenumber > LINENO so far seen,
2334 or 0 if none has been seen so far.
2335 BEST_INDEX identifies the item for it. */
2336
2337 int best_index = -1;
2338 int best = 0;
2339
2340 *exact_match = 0;
2341
2342 if (lineno <= 0)
2343 return -1;
2344 if (l == 0)
2345 return -1;
2346
2347 len = l->nitems;
2348 for (i = 0; i < len; i++)
2349 {
2350 struct linetable_entry *item = &(l->item[i]);
2351
2352 if (item->line == lineno)
2353 {
2354 /* Return the first (lowest address) entry which matches. */
2355 *exact_match = 1;
2356 return i;
2357 }
2358
2359 if (item->line > lineno && (best == 0 || item->line < best))
2360 {
2361 best = item->line;
2362 best_index = i;
2363 }
2364 }
2365
2366 /* If we got here, we didn't get an exact match. */
2367 return best_index;
2368 }
2369
2370 int
2371 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2372 {
2373 struct symtab_and_line sal;
2374
2375 sal = find_pc_line (pc, 0);
2376 *startptr = sal.pc;
2377 *endptr = sal.end;
2378 return sal.symtab != 0;
2379 }
2380
2381 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2382 address for that function that has an entry in SYMTAB's line info
2383 table. If such an entry cannot be found, return FUNC_ADDR
2384 unaltered. */
2385 CORE_ADDR
2386 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2387 {
2388 CORE_ADDR func_start, func_end;
2389 struct linetable *l;
2390 int i;
2391
2392 /* Give up if this symbol has no lineinfo table. */
2393 l = LINETABLE (symtab);
2394 if (l == NULL)
2395 return func_addr;
2396
2397 /* Get the range for the function's PC values, or give up if we
2398 cannot, for some reason. */
2399 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2400 return func_addr;
2401
2402 /* Linetable entries are ordered by PC values, see the commentary in
2403 symtab.h where `struct linetable' is defined. Thus, the first
2404 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2405 address we are looking for. */
2406 for (i = 0; i < l->nitems; i++)
2407 {
2408 struct linetable_entry *item = &(l->item[i]);
2409
2410 /* Don't use line numbers of zero, they mark special entries in
2411 the table. See the commentary on symtab.h before the
2412 definition of struct linetable. */
2413 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2414 return item->pc;
2415 }
2416
2417 return func_addr;
2418 }
2419
2420 /* Given a function symbol SYM, find the symtab and line for the start
2421 of the function.
2422 If the argument FUNFIRSTLINE is nonzero, we want the first line
2423 of real code inside the function. */
2424
2425 struct symtab_and_line
2426 find_function_start_sal (struct symbol *sym, int funfirstline)
2427 {
2428 struct symtab_and_line sal;
2429
2430 fixup_symbol_section (sym, NULL);
2431 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2432 SYMBOL_OBJ_SECTION (sym), 0);
2433
2434 /* We always should have a line for the function start address.
2435 If we don't, something is odd. Create a plain SAL refering
2436 just the PC and hope that skip_prologue_sal (if requested)
2437 can find a line number for after the prologue. */
2438 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2439 {
2440 init_sal (&sal);
2441 sal.pspace = current_program_space;
2442 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2443 sal.section = SYMBOL_OBJ_SECTION (sym);
2444 }
2445
2446 if (funfirstline)
2447 skip_prologue_sal (&sal);
2448
2449 return sal;
2450 }
2451
2452 /* Adjust SAL to the first instruction past the function prologue.
2453 If the PC was explicitly specified, the SAL is not changed.
2454 If the line number was explicitly specified, at most the SAL's PC
2455 is updated. If SAL is already past the prologue, then do nothing. */
2456 void
2457 skip_prologue_sal (struct symtab_and_line *sal)
2458 {
2459 struct symbol *sym;
2460 struct symtab_and_line start_sal;
2461 struct cleanup *old_chain;
2462 CORE_ADDR pc;
2463 struct obj_section *section;
2464 const char *name;
2465 struct objfile *objfile;
2466 struct gdbarch *gdbarch;
2467 struct block *b, *function_block;
2468
2469 /* Do not change the SAL is PC was specified explicitly. */
2470 if (sal->explicit_pc)
2471 return;
2472
2473 old_chain = save_current_space_and_thread ();
2474 switch_to_program_space_and_thread (sal->pspace);
2475
2476 sym = find_pc_sect_function (sal->pc, sal->section);
2477 if (sym != NULL)
2478 {
2479 fixup_symbol_section (sym, NULL);
2480
2481 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2482 section = SYMBOL_OBJ_SECTION (sym);
2483 name = SYMBOL_LINKAGE_NAME (sym);
2484 objfile = SYMBOL_SYMTAB (sym)->objfile;
2485 }
2486 else
2487 {
2488 struct minimal_symbol *msymbol
2489 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2490
2491 if (msymbol == NULL)
2492 {
2493 do_cleanups (old_chain);
2494 return;
2495 }
2496
2497 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2498 section = SYMBOL_OBJ_SECTION (msymbol);
2499 name = SYMBOL_LINKAGE_NAME (msymbol);
2500 objfile = msymbol_objfile (msymbol);
2501 }
2502
2503 gdbarch = get_objfile_arch (objfile);
2504
2505 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2506 so that gdbarch_skip_prologue has something unique to work on. */
2507 if (section_is_overlay (section) && !section_is_mapped (section))
2508 pc = overlay_unmapped_address (pc, section);
2509
2510 /* Skip "first line" of function (which is actually its prologue). */
2511 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2512 pc = gdbarch_skip_prologue (gdbarch, pc);
2513
2514 /* For overlays, map pc back into its mapped VMA range. */
2515 pc = overlay_mapped_address (pc, section);
2516
2517 /* Calculate line number. */
2518 start_sal = find_pc_sect_line (pc, section, 0);
2519
2520 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2521 line is still part of the same function. */
2522 if (start_sal.pc != pc
2523 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2524 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2525 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2526 == lookup_minimal_symbol_by_pc_section (pc, section))))
2527 {
2528 /* First pc of next line */
2529 pc = start_sal.end;
2530 /* Recalculate the line number (might not be N+1). */
2531 start_sal = find_pc_sect_line (pc, section, 0);
2532 }
2533
2534 /* On targets with executable formats that don't have a concept of
2535 constructors (ELF with .init has, PE doesn't), gcc emits a call
2536 to `__main' in `main' between the prologue and before user
2537 code. */
2538 if (gdbarch_skip_main_prologue_p (gdbarch)
2539 && name && strcmp (name, "main") == 0)
2540 {
2541 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2542 /* Recalculate the line number (might not be N+1). */
2543 start_sal = find_pc_sect_line (pc, section, 0);
2544 }
2545
2546 /* If we still don't have a valid source line, try to find the first
2547 PC in the lineinfo table that belongs to the same function. This
2548 happens with COFF debug info, which does not seem to have an
2549 entry in lineinfo table for the code after the prologue which has
2550 no direct relation to source. For example, this was found to be
2551 the case with the DJGPP target using "gcc -gcoff" when the
2552 compiler inserted code after the prologue to make sure the stack
2553 is aligned. */
2554 if (sym && start_sal.symtab == NULL)
2555 {
2556 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2557 /* Recalculate the line number. */
2558 start_sal = find_pc_sect_line (pc, section, 0);
2559 }
2560
2561 do_cleanups (old_chain);
2562
2563 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2564 forward SAL to the end of the prologue. */
2565 if (sal->pc >= pc)
2566 return;
2567
2568 sal->pc = pc;
2569 sal->section = section;
2570
2571 /* Unless the explicit_line flag was set, update the SAL line
2572 and symtab to correspond to the modified PC location. */
2573 if (sal->explicit_line)
2574 return;
2575
2576 sal->symtab = start_sal.symtab;
2577 sal->line = start_sal.line;
2578 sal->end = start_sal.end;
2579
2580 /* Check if we are now inside an inlined function. If we can,
2581 use the call site of the function instead. */
2582 b = block_for_pc_sect (sal->pc, sal->section);
2583 function_block = NULL;
2584 while (b != NULL)
2585 {
2586 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2587 function_block = b;
2588 else if (BLOCK_FUNCTION (b) != NULL)
2589 break;
2590 b = BLOCK_SUPERBLOCK (b);
2591 }
2592 if (function_block != NULL
2593 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2594 {
2595 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2596 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2597 }
2598 }
2599
2600 /* If P is of the form "operator[ \t]+..." where `...' is
2601 some legitimate operator text, return a pointer to the
2602 beginning of the substring of the operator text.
2603 Otherwise, return "". */
2604 char *
2605 operator_chars (char *p, char **end)
2606 {
2607 *end = "";
2608 if (strncmp (p, "operator", 8))
2609 return *end;
2610 p += 8;
2611
2612 /* Don't get faked out by `operator' being part of a longer
2613 identifier. */
2614 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2615 return *end;
2616
2617 /* Allow some whitespace between `operator' and the operator symbol. */
2618 while (*p == ' ' || *p == '\t')
2619 p++;
2620
2621 /* Recognize 'operator TYPENAME'. */
2622
2623 if (isalpha (*p) || *p == '_' || *p == '$')
2624 {
2625 char *q = p + 1;
2626
2627 while (isalnum (*q) || *q == '_' || *q == '$')
2628 q++;
2629 *end = q;
2630 return p;
2631 }
2632
2633 while (*p)
2634 switch (*p)
2635 {
2636 case '\\': /* regexp quoting */
2637 if (p[1] == '*')
2638 {
2639 if (p[2] == '=') /* 'operator\*=' */
2640 *end = p + 3;
2641 else /* 'operator\*' */
2642 *end = p + 2;
2643 return p;
2644 }
2645 else if (p[1] == '[')
2646 {
2647 if (p[2] == ']')
2648 error (_("mismatched quoting on brackets, "
2649 "try 'operator\\[\\]'"));
2650 else if (p[2] == '\\' && p[3] == ']')
2651 {
2652 *end = p + 4; /* 'operator\[\]' */
2653 return p;
2654 }
2655 else
2656 error (_("nothing is allowed between '[' and ']'"));
2657 }
2658 else
2659 {
2660 /* Gratuitous qoute: skip it and move on. */
2661 p++;
2662 continue;
2663 }
2664 break;
2665 case '!':
2666 case '=':
2667 case '*':
2668 case '/':
2669 case '%':
2670 case '^':
2671 if (p[1] == '=')
2672 *end = p + 2;
2673 else
2674 *end = p + 1;
2675 return p;
2676 case '<':
2677 case '>':
2678 case '+':
2679 case '-':
2680 case '&':
2681 case '|':
2682 if (p[0] == '-' && p[1] == '>')
2683 {
2684 /* Struct pointer member operator 'operator->'. */
2685 if (p[2] == '*')
2686 {
2687 *end = p + 3; /* 'operator->*' */
2688 return p;
2689 }
2690 else if (p[2] == '\\')
2691 {
2692 *end = p + 4; /* Hopefully 'operator->\*' */
2693 return p;
2694 }
2695 else
2696 {
2697 *end = p + 2; /* 'operator->' */
2698 return p;
2699 }
2700 }
2701 if (p[1] == '=' || p[1] == p[0])
2702 *end = p + 2;
2703 else
2704 *end = p + 1;
2705 return p;
2706 case '~':
2707 case ',':
2708 *end = p + 1;
2709 return p;
2710 case '(':
2711 if (p[1] != ')')
2712 error (_("`operator ()' must be specified "
2713 "without whitespace in `()'"));
2714 *end = p + 2;
2715 return p;
2716 case '?':
2717 if (p[1] != ':')
2718 error (_("`operator ?:' must be specified "
2719 "without whitespace in `?:'"));
2720 *end = p + 2;
2721 return p;
2722 case '[':
2723 if (p[1] != ']')
2724 error (_("`operator []' must be specified "
2725 "without whitespace in `[]'"));
2726 *end = p + 2;
2727 return p;
2728 default:
2729 error (_("`operator %s' not supported"), p);
2730 break;
2731 }
2732
2733 *end = "";
2734 return *end;
2735 }
2736 \f
2737
2738 /* If FILE is not already in the table of files, return zero;
2739 otherwise return non-zero. Optionally add FILE to the table if ADD
2740 is non-zero. If *FIRST is non-zero, forget the old table
2741 contents. */
2742 static int
2743 filename_seen (const char *file, int add, int *first)
2744 {
2745 /* Table of files seen so far. */
2746 static const char **tab = NULL;
2747 /* Allocated size of tab in elements.
2748 Start with one 256-byte block (when using GNU malloc.c).
2749 24 is the malloc overhead when range checking is in effect. */
2750 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2751 /* Current size of tab in elements. */
2752 static int tab_cur_size;
2753 const char **p;
2754
2755 if (*first)
2756 {
2757 if (tab == NULL)
2758 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2759 tab_cur_size = 0;
2760 }
2761
2762 /* Is FILE in tab? */
2763 for (p = tab; p < tab + tab_cur_size; p++)
2764 if (filename_cmp (*p, file) == 0)
2765 return 1;
2766
2767 /* No; maybe add it to tab. */
2768 if (add)
2769 {
2770 if (tab_cur_size == tab_alloc_size)
2771 {
2772 tab_alloc_size *= 2;
2773 tab = (const char **) xrealloc ((char *) tab,
2774 tab_alloc_size * sizeof (*tab));
2775 }
2776 tab[tab_cur_size++] = file;
2777 }
2778
2779 return 0;
2780 }
2781
2782 /* Slave routine for sources_info. Force line breaks at ,'s.
2783 NAME is the name to print and *FIRST is nonzero if this is the first
2784 name printed. Set *FIRST to zero. */
2785 static void
2786 output_source_filename (const char *name, int *first)
2787 {
2788 /* Since a single source file can result in several partial symbol
2789 tables, we need to avoid printing it more than once. Note: if
2790 some of the psymtabs are read in and some are not, it gets
2791 printed both under "Source files for which symbols have been
2792 read" and "Source files for which symbols will be read in on
2793 demand". I consider this a reasonable way to deal with the
2794 situation. I'm not sure whether this can also happen for
2795 symtabs; it doesn't hurt to check. */
2796
2797 /* Was NAME already seen? */
2798 if (filename_seen (name, 1, first))
2799 {
2800 /* Yes; don't print it again. */
2801 return;
2802 }
2803 /* No; print it and reset *FIRST. */
2804 if (*first)
2805 {
2806 *first = 0;
2807 }
2808 else
2809 {
2810 printf_filtered (", ");
2811 }
2812
2813 wrap_here ("");
2814 fputs_filtered (name, gdb_stdout);
2815 }
2816
2817 /* A callback for map_partial_symbol_filenames. */
2818 static void
2819 output_partial_symbol_filename (const char *fullname, const char *filename,
2820 void *data)
2821 {
2822 output_source_filename (fullname ? fullname : filename, data);
2823 }
2824
2825 static void
2826 sources_info (char *ignore, int from_tty)
2827 {
2828 struct symtab *s;
2829 struct objfile *objfile;
2830 int first;
2831
2832 if (!have_full_symbols () && !have_partial_symbols ())
2833 {
2834 error (_("No symbol table is loaded. Use the \"file\" command."));
2835 }
2836
2837 printf_filtered ("Source files for which symbols have been read in:\n\n");
2838
2839 first = 1;
2840 ALL_SYMTABS (objfile, s)
2841 {
2842 const char *fullname = symtab_to_fullname (s);
2843
2844 output_source_filename (fullname ? fullname : s->filename, &first);
2845 }
2846 printf_filtered ("\n\n");
2847
2848 printf_filtered ("Source files for which symbols "
2849 "will be read in on demand:\n\n");
2850
2851 first = 1;
2852 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2853 printf_filtered ("\n");
2854 }
2855
2856 static int
2857 file_matches (const char *file, char *files[], int nfiles)
2858 {
2859 int i;
2860
2861 if (file != NULL && nfiles != 0)
2862 {
2863 for (i = 0; i < nfiles; i++)
2864 {
2865 if (filename_cmp (files[i], lbasename (file)) == 0)
2866 return 1;
2867 }
2868 }
2869 else if (nfiles == 0)
2870 return 1;
2871 return 0;
2872 }
2873
2874 /* Free any memory associated with a search. */
2875 void
2876 free_search_symbols (struct symbol_search *symbols)
2877 {
2878 struct symbol_search *p;
2879 struct symbol_search *next;
2880
2881 for (p = symbols; p != NULL; p = next)
2882 {
2883 next = p->next;
2884 xfree (p);
2885 }
2886 }
2887
2888 static void
2889 do_free_search_symbols_cleanup (void *symbols)
2890 {
2891 free_search_symbols (symbols);
2892 }
2893
2894 struct cleanup *
2895 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2896 {
2897 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2898 }
2899
2900 /* Helper function for sort_search_symbols and qsort. Can only
2901 sort symbols, not minimal symbols. */
2902 static int
2903 compare_search_syms (const void *sa, const void *sb)
2904 {
2905 struct symbol_search **sym_a = (struct symbol_search **) sa;
2906 struct symbol_search **sym_b = (struct symbol_search **) sb;
2907
2908 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2909 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2910 }
2911
2912 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2913 prevtail where it is, but update its next pointer to point to
2914 the first of the sorted symbols. */
2915 static struct symbol_search *
2916 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2917 {
2918 struct symbol_search **symbols, *symp, *old_next;
2919 int i;
2920
2921 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2922 * nfound);
2923 symp = prevtail->next;
2924 for (i = 0; i < nfound; i++)
2925 {
2926 symbols[i] = symp;
2927 symp = symp->next;
2928 }
2929 /* Generally NULL. */
2930 old_next = symp;
2931
2932 qsort (symbols, nfound, sizeof (struct symbol_search *),
2933 compare_search_syms);
2934
2935 symp = prevtail;
2936 for (i = 0; i < nfound; i++)
2937 {
2938 symp->next = symbols[i];
2939 symp = symp->next;
2940 }
2941 symp->next = old_next;
2942
2943 xfree (symbols);
2944 return symp;
2945 }
2946
2947 /* An object of this type is passed as the user_data to the
2948 expand_symtabs_matching method. */
2949 struct search_symbols_data
2950 {
2951 int nfiles;
2952 char **files;
2953 char *regexp;
2954 };
2955
2956 /* A callback for expand_symtabs_matching. */
2957 static int
2958 search_symbols_file_matches (const char *filename, void *user_data)
2959 {
2960 struct search_symbols_data *data = user_data;
2961
2962 return file_matches (filename, data->files, data->nfiles);
2963 }
2964
2965 /* A callback for expand_symtabs_matching. */
2966 static int
2967 search_symbols_name_matches (const char *symname, void *user_data)
2968 {
2969 struct search_symbols_data *data = user_data;
2970
2971 return data->regexp == NULL || re_exec (symname);
2972 }
2973
2974 /* Search the symbol table for matches to the regular expression REGEXP,
2975 returning the results in *MATCHES.
2976
2977 Only symbols of KIND are searched:
2978 FUNCTIONS_DOMAIN - search all functions
2979 TYPES_DOMAIN - search all type names
2980 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2981 and constants (enums)
2982
2983 free_search_symbols should be called when *MATCHES is no longer needed.
2984
2985 The results are sorted locally; each symtab's global and static blocks are
2986 separately alphabetized. */
2987
2988 void
2989 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2990 struct symbol_search **matches)
2991 {
2992 struct symtab *s;
2993 struct blockvector *bv;
2994 struct block *b;
2995 int i = 0;
2996 struct dict_iterator iter;
2997 struct symbol *sym;
2998 struct objfile *objfile;
2999 struct minimal_symbol *msymbol;
3000 char *val;
3001 int found_misc = 0;
3002 static const enum minimal_symbol_type types[]
3003 = {mst_data, mst_text, mst_abs, mst_unknown};
3004 static const enum minimal_symbol_type types2[]
3005 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
3006 static const enum minimal_symbol_type types3[]
3007 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3008 static const enum minimal_symbol_type types4[]
3009 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs, mst_unknown};
3010 enum minimal_symbol_type ourtype;
3011 enum minimal_symbol_type ourtype2;
3012 enum minimal_symbol_type ourtype3;
3013 enum minimal_symbol_type ourtype4;
3014 struct symbol_search *sr;
3015 struct symbol_search *psr;
3016 struct symbol_search *tail;
3017 struct cleanup *old_chain = NULL;
3018 struct search_symbols_data datum;
3019
3020 if (kind < VARIABLES_DOMAIN)
3021 error (_("must search on specific domain"));
3022
3023 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3024 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3025 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3026 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3027
3028 sr = *matches = NULL;
3029 tail = NULL;
3030
3031 if (regexp != NULL)
3032 {
3033 /* Make sure spacing is right for C++ operators.
3034 This is just a courtesy to make the matching less sensitive
3035 to how many spaces the user leaves between 'operator'
3036 and <TYPENAME> or <OPERATOR>. */
3037 char *opend;
3038 char *opname = operator_chars (regexp, &opend);
3039
3040 if (*opname)
3041 {
3042 int fix = -1; /* -1 means ok; otherwise number of
3043 spaces needed. */
3044
3045 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3046 {
3047 /* There should 1 space between 'operator' and 'TYPENAME'. */
3048 if (opname[-1] != ' ' || opname[-2] == ' ')
3049 fix = 1;
3050 }
3051 else
3052 {
3053 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3054 if (opname[-1] == ' ')
3055 fix = 0;
3056 }
3057 /* If wrong number of spaces, fix it. */
3058 if (fix >= 0)
3059 {
3060 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3061
3062 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3063 regexp = tmp;
3064 }
3065 }
3066
3067 if (0 != (val = re_comp (regexp)))
3068 error (_("Invalid regexp (%s): %s"), val, regexp);
3069 }
3070
3071 /* Search through the partial symtabs *first* for all symbols
3072 matching the regexp. That way we don't have to reproduce all of
3073 the machinery below. */
3074
3075 datum.nfiles = nfiles;
3076 datum.files = files;
3077 datum.regexp = regexp;
3078 ALL_OBJFILES (objfile)
3079 {
3080 if (objfile->sf)
3081 objfile->sf->qf->expand_symtabs_matching (objfile,
3082 search_symbols_file_matches,
3083 search_symbols_name_matches,
3084 kind,
3085 &datum);
3086 }
3087
3088 /* Here, we search through the minimal symbol tables for functions
3089 and variables that match, and force their symbols to be read.
3090 This is in particular necessary for demangled variable names,
3091 which are no longer put into the partial symbol tables.
3092 The symbol will then be found during the scan of symtabs below.
3093
3094 For functions, find_pc_symtab should succeed if we have debug info
3095 for the function, for variables we have to call lookup_symbol
3096 to determine if the variable has debug info.
3097 If the lookup fails, set found_misc so that we will rescan to print
3098 any matching symbols without debug info. */
3099
3100 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3101 {
3102 ALL_MSYMBOLS (objfile, msymbol)
3103 {
3104 QUIT;
3105
3106 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3107 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3108 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3109 MSYMBOL_TYPE (msymbol) == ourtype4)
3110 {
3111 if (regexp == NULL
3112 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3113 {
3114 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3115 {
3116 /* FIXME: carlton/2003-02-04: Given that the
3117 semantics of lookup_symbol keeps on changing
3118 slightly, it would be a nice idea if we had a
3119 function lookup_symbol_minsym that found the
3120 symbol associated to a given minimal symbol (if
3121 any). */
3122 if (kind == FUNCTIONS_DOMAIN
3123 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3124 (struct block *) NULL,
3125 VAR_DOMAIN, 0)
3126 == NULL)
3127 found_misc = 1;
3128 }
3129 }
3130 }
3131 }
3132 }
3133
3134 ALL_PRIMARY_SYMTABS (objfile, s)
3135 {
3136 bv = BLOCKVECTOR (s);
3137 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3138 {
3139 struct symbol_search *prevtail = tail;
3140 int nfound = 0;
3141
3142 b = BLOCKVECTOR_BLOCK (bv, i);
3143 ALL_BLOCK_SYMBOLS (b, iter, sym)
3144 {
3145 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3146
3147 QUIT;
3148
3149 if (file_matches (real_symtab->filename, files, nfiles)
3150 && ((regexp == NULL
3151 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3152 && ((kind == VARIABLES_DOMAIN
3153 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3154 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3155 && SYMBOL_CLASS (sym) != LOC_BLOCK
3156 /* LOC_CONST can be used for more than just enums,
3157 e.g., c++ static const members.
3158 We only want to skip enums here. */
3159 && !(SYMBOL_CLASS (sym) == LOC_CONST
3160 && TYPE_CODE (SYMBOL_TYPE (sym))
3161 == TYPE_CODE_ENUM))
3162 || (kind == FUNCTIONS_DOMAIN
3163 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3164 || (kind == TYPES_DOMAIN
3165 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3166 {
3167 /* match */
3168 psr = (struct symbol_search *)
3169 xmalloc (sizeof (struct symbol_search));
3170 psr->block = i;
3171 psr->symtab = real_symtab;
3172 psr->symbol = sym;
3173 psr->msymbol = NULL;
3174 psr->next = NULL;
3175 if (tail == NULL)
3176 sr = psr;
3177 else
3178 tail->next = psr;
3179 tail = psr;
3180 nfound ++;
3181 }
3182 }
3183 if (nfound > 0)
3184 {
3185 if (prevtail == NULL)
3186 {
3187 struct symbol_search dummy;
3188
3189 dummy.next = sr;
3190 tail = sort_search_symbols (&dummy, nfound);
3191 sr = dummy.next;
3192
3193 old_chain = make_cleanup_free_search_symbols (sr);
3194 }
3195 else
3196 tail = sort_search_symbols (prevtail, nfound);
3197 }
3198 }
3199 }
3200
3201 /* If there are no eyes, avoid all contact. I mean, if there are
3202 no debug symbols, then print directly from the msymbol_vector. */
3203
3204 if (found_misc || kind != FUNCTIONS_DOMAIN)
3205 {
3206 ALL_MSYMBOLS (objfile, msymbol)
3207 {
3208 QUIT;
3209
3210 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3211 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3212 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3213 MSYMBOL_TYPE (msymbol) == ourtype4)
3214 {
3215 if (regexp == NULL
3216 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3217 {
3218 /* Functions: Look up by address. */
3219 if (kind != FUNCTIONS_DOMAIN ||
3220 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3221 {
3222 /* Variables/Absolutes: Look up by name. */
3223 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3224 (struct block *) NULL, VAR_DOMAIN, 0)
3225 == NULL)
3226 {
3227 /* match */
3228 psr = (struct symbol_search *)
3229 xmalloc (sizeof (struct symbol_search));
3230 psr->block = i;
3231 psr->msymbol = msymbol;
3232 psr->symtab = NULL;
3233 psr->symbol = NULL;
3234 psr->next = NULL;
3235 if (tail == NULL)
3236 {
3237 sr = psr;
3238 old_chain = make_cleanup_free_search_symbols (sr);
3239 }
3240 else
3241 tail->next = psr;
3242 tail = psr;
3243 }
3244 }
3245 }
3246 }
3247 }
3248 }
3249
3250 *matches = sr;
3251 if (sr != NULL)
3252 discard_cleanups (old_chain);
3253 }
3254
3255 /* Helper function for symtab_symbol_info, this function uses
3256 the data returned from search_symbols() to print information
3257 regarding the match to gdb_stdout. */
3258
3259 static void
3260 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3261 int block, char *last)
3262 {
3263 if (last == NULL || filename_cmp (last, s->filename) != 0)
3264 {
3265 fputs_filtered ("\nFile ", gdb_stdout);
3266 fputs_filtered (s->filename, gdb_stdout);
3267 fputs_filtered (":\n", gdb_stdout);
3268 }
3269
3270 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3271 printf_filtered ("static ");
3272
3273 /* Typedef that is not a C++ class. */
3274 if (kind == TYPES_DOMAIN
3275 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3276 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3277 /* variable, func, or typedef-that-is-c++-class. */
3278 else if (kind < TYPES_DOMAIN ||
3279 (kind == TYPES_DOMAIN &&
3280 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3281 {
3282 type_print (SYMBOL_TYPE (sym),
3283 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3284 ? "" : SYMBOL_PRINT_NAME (sym)),
3285 gdb_stdout, 0);
3286
3287 printf_filtered (";\n");
3288 }
3289 }
3290
3291 /* This help function for symtab_symbol_info() prints information
3292 for non-debugging symbols to gdb_stdout. */
3293
3294 static void
3295 print_msymbol_info (struct minimal_symbol *msymbol)
3296 {
3297 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3298 char *tmp;
3299
3300 if (gdbarch_addr_bit (gdbarch) <= 32)
3301 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3302 & (CORE_ADDR) 0xffffffff,
3303 8);
3304 else
3305 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3306 16);
3307 printf_filtered ("%s %s\n",
3308 tmp, SYMBOL_PRINT_NAME (msymbol));
3309 }
3310
3311 /* This is the guts of the commands "info functions", "info types", and
3312 "info variables". It calls search_symbols to find all matches and then
3313 print_[m]symbol_info to print out some useful information about the
3314 matches. */
3315
3316 static void
3317 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3318 {
3319 static const char * const classnames[] =
3320 {"variable", "function", "type", "method"};
3321 struct symbol_search *symbols;
3322 struct symbol_search *p;
3323 struct cleanup *old_chain;
3324 char *last_filename = NULL;
3325 int first = 1;
3326
3327 /* Must make sure that if we're interrupted, symbols gets freed. */
3328 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3329 old_chain = make_cleanup_free_search_symbols (symbols);
3330
3331 printf_filtered (regexp
3332 ? "All %ss matching regular expression \"%s\":\n"
3333 : "All defined %ss:\n",
3334 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3335
3336 for (p = symbols; p != NULL; p = p->next)
3337 {
3338 QUIT;
3339
3340 if (p->msymbol != NULL)
3341 {
3342 if (first)
3343 {
3344 printf_filtered ("\nNon-debugging symbols:\n");
3345 first = 0;
3346 }
3347 print_msymbol_info (p->msymbol);
3348 }
3349 else
3350 {
3351 print_symbol_info (kind,
3352 p->symtab,
3353 p->symbol,
3354 p->block,
3355 last_filename);
3356 last_filename = p->symtab->filename;
3357 }
3358 }
3359
3360 do_cleanups (old_chain);
3361 }
3362
3363 static void
3364 variables_info (char *regexp, int from_tty)
3365 {
3366 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3367 }
3368
3369 static void
3370 functions_info (char *regexp, int from_tty)
3371 {
3372 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3373 }
3374
3375
3376 static void
3377 types_info (char *regexp, int from_tty)
3378 {
3379 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3380 }
3381
3382 /* Breakpoint all functions matching regular expression. */
3383
3384 void
3385 rbreak_command_wrapper (char *regexp, int from_tty)
3386 {
3387 rbreak_command (regexp, from_tty);
3388 }
3389
3390 /* A cleanup function that calls end_rbreak_breakpoints. */
3391
3392 static void
3393 do_end_rbreak_breakpoints (void *ignore)
3394 {
3395 end_rbreak_breakpoints ();
3396 }
3397
3398 static void
3399 rbreak_command (char *regexp, int from_tty)
3400 {
3401 struct symbol_search *ss;
3402 struct symbol_search *p;
3403 struct cleanup *old_chain;
3404 char *string = NULL;
3405 int len = 0;
3406 char **files = NULL, *file_name;
3407 int nfiles = 0;
3408
3409 if (regexp)
3410 {
3411 char *colon = strchr (regexp, ':');
3412
3413 if (colon && *(colon + 1) != ':')
3414 {
3415 int colon_index;
3416
3417 colon_index = colon - regexp;
3418 file_name = alloca (colon_index + 1);
3419 memcpy (file_name, regexp, colon_index);
3420 file_name[colon_index--] = 0;
3421 while (isspace (file_name[colon_index]))
3422 file_name[colon_index--] = 0;
3423 files = &file_name;
3424 nfiles = 1;
3425 regexp = colon + 1;
3426 while (isspace (*regexp)) regexp++;
3427 }
3428 }
3429
3430 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3431 old_chain = make_cleanup_free_search_symbols (ss);
3432 make_cleanup (free_current_contents, &string);
3433
3434 start_rbreak_breakpoints ();
3435 make_cleanup (do_end_rbreak_breakpoints, NULL);
3436 for (p = ss; p != NULL; p = p->next)
3437 {
3438 if (p->msymbol == NULL)
3439 {
3440 int newlen = (strlen (p->symtab->filename)
3441 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3442 + 4);
3443
3444 if (newlen > len)
3445 {
3446 string = xrealloc (string, newlen);
3447 len = newlen;
3448 }
3449 strcpy (string, p->symtab->filename);
3450 strcat (string, ":'");
3451 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3452 strcat (string, "'");
3453 break_command (string, from_tty);
3454 print_symbol_info (FUNCTIONS_DOMAIN,
3455 p->symtab,
3456 p->symbol,
3457 p->block,
3458 p->symtab->filename);
3459 }
3460 else
3461 {
3462 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3463
3464 if (newlen > len)
3465 {
3466 string = xrealloc (string, newlen);
3467 len = newlen;
3468 }
3469 strcpy (string, "'");
3470 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3471 strcat (string, "'");
3472
3473 break_command (string, from_tty);
3474 printf_filtered ("<function, no debug info> %s;\n",
3475 SYMBOL_PRINT_NAME (p->msymbol));
3476 }
3477 }
3478
3479 do_cleanups (old_chain);
3480 }
3481 \f
3482
3483 /* Helper routine for make_symbol_completion_list. */
3484
3485 static int return_val_size;
3486 static int return_val_index;
3487 static char **return_val;
3488
3489 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3490 completion_list_add_name \
3491 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3492
3493 /* Test to see if the symbol specified by SYMNAME (which is already
3494 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3495 characters. If so, add it to the current completion list. */
3496
3497 static void
3498 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3499 char *text, char *word)
3500 {
3501 int newsize;
3502
3503 /* Clip symbols that cannot match. */
3504
3505 if (strncmp (symname, sym_text, sym_text_len) != 0)
3506 {
3507 return;
3508 }
3509
3510 /* We have a match for a completion, so add SYMNAME to the current list
3511 of matches. Note that the name is moved to freshly malloc'd space. */
3512
3513 {
3514 char *new;
3515
3516 if (word == sym_text)
3517 {
3518 new = xmalloc (strlen (symname) + 5);
3519 strcpy (new, symname);
3520 }
3521 else if (word > sym_text)
3522 {
3523 /* Return some portion of symname. */
3524 new = xmalloc (strlen (symname) + 5);
3525 strcpy (new, symname + (word - sym_text));
3526 }
3527 else
3528 {
3529 /* Return some of SYM_TEXT plus symname. */
3530 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3531 strncpy (new, word, sym_text - word);
3532 new[sym_text - word] = '\0';
3533 strcat (new, symname);
3534 }
3535
3536 if (return_val_index + 3 > return_val_size)
3537 {
3538 newsize = (return_val_size *= 2) * sizeof (char *);
3539 return_val = (char **) xrealloc ((char *) return_val, newsize);
3540 }
3541 return_val[return_val_index++] = new;
3542 return_val[return_val_index] = NULL;
3543 }
3544 }
3545
3546 /* ObjC: In case we are completing on a selector, look as the msymbol
3547 again and feed all the selectors into the mill. */
3548
3549 static void
3550 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3551 int sym_text_len, char *text, char *word)
3552 {
3553 static char *tmp = NULL;
3554 static unsigned int tmplen = 0;
3555
3556 char *method, *category, *selector;
3557 char *tmp2 = NULL;
3558
3559 method = SYMBOL_NATURAL_NAME (msymbol);
3560
3561 /* Is it a method? */
3562 if ((method[0] != '-') && (method[0] != '+'))
3563 return;
3564
3565 if (sym_text[0] == '[')
3566 /* Complete on shortened method method. */
3567 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3568
3569 while ((strlen (method) + 1) >= tmplen)
3570 {
3571 if (tmplen == 0)
3572 tmplen = 1024;
3573 else
3574 tmplen *= 2;
3575 tmp = xrealloc (tmp, tmplen);
3576 }
3577 selector = strchr (method, ' ');
3578 if (selector != NULL)
3579 selector++;
3580
3581 category = strchr (method, '(');
3582
3583 if ((category != NULL) && (selector != NULL))
3584 {
3585 memcpy (tmp, method, (category - method));
3586 tmp[category - method] = ' ';
3587 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3588 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3589 if (sym_text[0] == '[')
3590 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3591 }
3592
3593 if (selector != NULL)
3594 {
3595 /* Complete on selector only. */
3596 strcpy (tmp, selector);
3597 tmp2 = strchr (tmp, ']');
3598 if (tmp2 != NULL)
3599 *tmp2 = '\0';
3600
3601 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3602 }
3603 }
3604
3605 /* Break the non-quoted text based on the characters which are in
3606 symbols. FIXME: This should probably be language-specific. */
3607
3608 static char *
3609 language_search_unquoted_string (char *text, char *p)
3610 {
3611 for (; p > text; --p)
3612 {
3613 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3614 continue;
3615 else
3616 {
3617 if ((current_language->la_language == language_objc))
3618 {
3619 if (p[-1] == ':') /* Might be part of a method name. */
3620 continue;
3621 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3622 p -= 2; /* Beginning of a method name. */
3623 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3624 { /* Might be part of a method name. */
3625 char *t = p;
3626
3627 /* Seeing a ' ' or a '(' is not conclusive evidence
3628 that we are in the middle of a method name. However,
3629 finding "-[" or "+[" should be pretty un-ambiguous.
3630 Unfortunately we have to find it now to decide. */
3631
3632 while (t > text)
3633 if (isalnum (t[-1]) || t[-1] == '_' ||
3634 t[-1] == ' ' || t[-1] == ':' ||
3635 t[-1] == '(' || t[-1] == ')')
3636 --t;
3637 else
3638 break;
3639
3640 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3641 p = t - 2; /* Method name detected. */
3642 /* Else we leave with p unchanged. */
3643 }
3644 }
3645 break;
3646 }
3647 }
3648 return p;
3649 }
3650
3651 static void
3652 completion_list_add_fields (struct symbol *sym, char *sym_text,
3653 int sym_text_len, char *text, char *word)
3654 {
3655 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3656 {
3657 struct type *t = SYMBOL_TYPE (sym);
3658 enum type_code c = TYPE_CODE (t);
3659 int j;
3660
3661 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3662 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3663 if (TYPE_FIELD_NAME (t, j))
3664 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3665 sym_text, sym_text_len, text, word);
3666 }
3667 }
3668
3669 /* Type of the user_data argument passed to add_macro_name or
3670 add_partial_symbol_name. The contents are simply whatever is
3671 needed by completion_list_add_name. */
3672 struct add_name_data
3673 {
3674 char *sym_text;
3675 int sym_text_len;
3676 char *text;
3677 char *word;
3678 };
3679
3680 /* A callback used with macro_for_each and macro_for_each_in_scope.
3681 This adds a macro's name to the current completion list. */
3682 static void
3683 add_macro_name (const char *name, const struct macro_definition *ignore,
3684 void *user_data)
3685 {
3686 struct add_name_data *datum = (struct add_name_data *) user_data;
3687
3688 completion_list_add_name ((char *) name,
3689 datum->sym_text, datum->sym_text_len,
3690 datum->text, datum->word);
3691 }
3692
3693 /* A callback for map_partial_symbol_names. */
3694 static void
3695 add_partial_symbol_name (const char *name, void *user_data)
3696 {
3697 struct add_name_data *datum = (struct add_name_data *) user_data;
3698
3699 completion_list_add_name ((char *) name,
3700 datum->sym_text, datum->sym_text_len,
3701 datum->text, datum->word);
3702 }
3703
3704 char **
3705 default_make_symbol_completion_list_break_on (char *text, char *word,
3706 const char *break_on)
3707 {
3708 /* Problem: All of the symbols have to be copied because readline
3709 frees them. I'm not going to worry about this; hopefully there
3710 won't be that many. */
3711
3712 struct symbol *sym;
3713 struct symtab *s;
3714 struct minimal_symbol *msymbol;
3715 struct objfile *objfile;
3716 struct block *b;
3717 const struct block *surrounding_static_block, *surrounding_global_block;
3718 struct dict_iterator iter;
3719 /* The symbol we are completing on. Points in same buffer as text. */
3720 char *sym_text;
3721 /* Length of sym_text. */
3722 int sym_text_len;
3723 struct add_name_data datum;
3724
3725 /* Now look for the symbol we are supposed to complete on. */
3726 {
3727 char *p;
3728 char quote_found;
3729 char *quote_pos = NULL;
3730
3731 /* First see if this is a quoted string. */
3732 quote_found = '\0';
3733 for (p = text; *p != '\0'; ++p)
3734 {
3735 if (quote_found != '\0')
3736 {
3737 if (*p == quote_found)
3738 /* Found close quote. */
3739 quote_found = '\0';
3740 else if (*p == '\\' && p[1] == quote_found)
3741 /* A backslash followed by the quote character
3742 doesn't end the string. */
3743 ++p;
3744 }
3745 else if (*p == '\'' || *p == '"')
3746 {
3747 quote_found = *p;
3748 quote_pos = p;
3749 }
3750 }
3751 if (quote_found == '\'')
3752 /* A string within single quotes can be a symbol, so complete on it. */
3753 sym_text = quote_pos + 1;
3754 else if (quote_found == '"')
3755 /* A double-quoted string is never a symbol, nor does it make sense
3756 to complete it any other way. */
3757 {
3758 return_val = (char **) xmalloc (sizeof (char *));
3759 return_val[0] = NULL;
3760 return return_val;
3761 }
3762 else
3763 {
3764 /* It is not a quoted string. Break it based on the characters
3765 which are in symbols. */
3766 while (p > text)
3767 {
3768 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3769 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3770 --p;
3771 else
3772 break;
3773 }
3774 sym_text = p;
3775 }
3776 }
3777
3778 sym_text_len = strlen (sym_text);
3779
3780 return_val_size = 100;
3781 return_val_index = 0;
3782 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3783 return_val[0] = NULL;
3784
3785 datum.sym_text = sym_text;
3786 datum.sym_text_len = sym_text_len;
3787 datum.text = text;
3788 datum.word = word;
3789
3790 /* Look through the partial symtabs for all symbols which begin
3791 by matching SYM_TEXT. Add each one that you find to the list. */
3792 map_partial_symbol_names (add_partial_symbol_name, &datum);
3793
3794 /* At this point scan through the misc symbol vectors and add each
3795 symbol you find to the list. Eventually we want to ignore
3796 anything that isn't a text symbol (everything else will be
3797 handled by the psymtab code above). */
3798
3799 ALL_MSYMBOLS (objfile, msymbol)
3800 {
3801 QUIT;
3802 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3803
3804 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3805 }
3806
3807 /* Search upwards from currently selected frame (so that we can
3808 complete on local vars). Also catch fields of types defined in
3809 this places which match our text string. Only complete on types
3810 visible from current context. */
3811
3812 b = get_selected_block (0);
3813 surrounding_static_block = block_static_block (b);
3814 surrounding_global_block = block_global_block (b);
3815 if (surrounding_static_block != NULL)
3816 while (b != surrounding_static_block)
3817 {
3818 QUIT;
3819
3820 ALL_BLOCK_SYMBOLS (b, iter, sym)
3821 {
3822 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3823 word);
3824 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3825 word);
3826 }
3827
3828 /* Stop when we encounter an enclosing function. Do not stop for
3829 non-inlined functions - the locals of the enclosing function
3830 are in scope for a nested function. */
3831 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3832 break;
3833 b = BLOCK_SUPERBLOCK (b);
3834 }
3835
3836 /* Add fields from the file's types; symbols will be added below. */
3837
3838 if (surrounding_static_block != NULL)
3839 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3840 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3841
3842 if (surrounding_global_block != NULL)
3843 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3844 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3845
3846 /* Go through the symtabs and check the externs and statics for
3847 symbols which match. */
3848
3849 ALL_PRIMARY_SYMTABS (objfile, s)
3850 {
3851 QUIT;
3852 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3853 ALL_BLOCK_SYMBOLS (b, iter, sym)
3854 {
3855 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3856 }
3857 }
3858
3859 ALL_PRIMARY_SYMTABS (objfile, s)
3860 {
3861 QUIT;
3862 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3863 ALL_BLOCK_SYMBOLS (b, iter, sym)
3864 {
3865 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3866 }
3867 }
3868
3869 if (current_language->la_macro_expansion == macro_expansion_c)
3870 {
3871 struct macro_scope *scope;
3872
3873 /* Add any macros visible in the default scope. Note that this
3874 may yield the occasional wrong result, because an expression
3875 might be evaluated in a scope other than the default. For
3876 example, if the user types "break file:line if <TAB>", the
3877 resulting expression will be evaluated at "file:line" -- but
3878 at there does not seem to be a way to detect this at
3879 completion time. */
3880 scope = default_macro_scope ();
3881 if (scope)
3882 {
3883 macro_for_each_in_scope (scope->file, scope->line,
3884 add_macro_name, &datum);
3885 xfree (scope);
3886 }
3887
3888 /* User-defined macros are always visible. */
3889 macro_for_each (macro_user_macros, add_macro_name, &datum);
3890 }
3891
3892 return (return_val);
3893 }
3894
3895 char **
3896 default_make_symbol_completion_list (char *text, char *word)
3897 {
3898 return default_make_symbol_completion_list_break_on (text, word, "");
3899 }
3900
3901 /* Return a NULL terminated array of all symbols (regardless of class)
3902 which begin by matching TEXT. If the answer is no symbols, then
3903 the return value is an array which contains only a NULL pointer. */
3904
3905 char **
3906 make_symbol_completion_list (char *text, char *word)
3907 {
3908 return current_language->la_make_symbol_completion_list (text, word);
3909 }
3910
3911 /* Like make_symbol_completion_list, but suitable for use as a
3912 completion function. */
3913
3914 char **
3915 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3916 char *text, char *word)
3917 {
3918 return make_symbol_completion_list (text, word);
3919 }
3920
3921 /* Like make_symbol_completion_list, but returns a list of symbols
3922 defined in a source file FILE. */
3923
3924 char **
3925 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3926 {
3927 struct symbol *sym;
3928 struct symtab *s;
3929 struct block *b;
3930 struct dict_iterator iter;
3931 /* The symbol we are completing on. Points in same buffer as text. */
3932 char *sym_text;
3933 /* Length of sym_text. */
3934 int sym_text_len;
3935
3936 /* Now look for the symbol we are supposed to complete on.
3937 FIXME: This should be language-specific. */
3938 {
3939 char *p;
3940 char quote_found;
3941 char *quote_pos = NULL;
3942
3943 /* First see if this is a quoted string. */
3944 quote_found = '\0';
3945 for (p = text; *p != '\0'; ++p)
3946 {
3947 if (quote_found != '\0')
3948 {
3949 if (*p == quote_found)
3950 /* Found close quote. */
3951 quote_found = '\0';
3952 else if (*p == '\\' && p[1] == quote_found)
3953 /* A backslash followed by the quote character
3954 doesn't end the string. */
3955 ++p;
3956 }
3957 else if (*p == '\'' || *p == '"')
3958 {
3959 quote_found = *p;
3960 quote_pos = p;
3961 }
3962 }
3963 if (quote_found == '\'')
3964 /* A string within single quotes can be a symbol, so complete on it. */
3965 sym_text = quote_pos + 1;
3966 else if (quote_found == '"')
3967 /* A double-quoted string is never a symbol, nor does it make sense
3968 to complete it any other way. */
3969 {
3970 return_val = (char **) xmalloc (sizeof (char *));
3971 return_val[0] = NULL;
3972 return return_val;
3973 }
3974 else
3975 {
3976 /* Not a quoted string. */
3977 sym_text = language_search_unquoted_string (text, p);
3978 }
3979 }
3980
3981 sym_text_len = strlen (sym_text);
3982
3983 return_val_size = 10;
3984 return_val_index = 0;
3985 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3986 return_val[0] = NULL;
3987
3988 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3989 in). */
3990 s = lookup_symtab (srcfile);
3991 if (s == NULL)
3992 {
3993 /* Maybe they typed the file with leading directories, while the
3994 symbol tables record only its basename. */
3995 const char *tail = lbasename (srcfile);
3996
3997 if (tail > srcfile)
3998 s = lookup_symtab (tail);
3999 }
4000
4001 /* If we have no symtab for that file, return an empty list. */
4002 if (s == NULL)
4003 return (return_val);
4004
4005 /* Go through this symtab and check the externs and statics for
4006 symbols which match. */
4007
4008 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4009 ALL_BLOCK_SYMBOLS (b, iter, sym)
4010 {
4011 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4012 }
4013
4014 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4015 ALL_BLOCK_SYMBOLS (b, iter, sym)
4016 {
4017 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4018 }
4019
4020 return (return_val);
4021 }
4022
4023 /* A helper function for make_source_files_completion_list. It adds
4024 another file name to a list of possible completions, growing the
4025 list as necessary. */
4026
4027 static void
4028 add_filename_to_list (const char *fname, char *text, char *word,
4029 char ***list, int *list_used, int *list_alloced)
4030 {
4031 char *new;
4032 size_t fnlen = strlen (fname);
4033
4034 if (*list_used + 1 >= *list_alloced)
4035 {
4036 *list_alloced *= 2;
4037 *list = (char **) xrealloc ((char *) *list,
4038 *list_alloced * sizeof (char *));
4039 }
4040
4041 if (word == text)
4042 {
4043 /* Return exactly fname. */
4044 new = xmalloc (fnlen + 5);
4045 strcpy (new, fname);
4046 }
4047 else if (word > text)
4048 {
4049 /* Return some portion of fname. */
4050 new = xmalloc (fnlen + 5);
4051 strcpy (new, fname + (word - text));
4052 }
4053 else
4054 {
4055 /* Return some of TEXT plus fname. */
4056 new = xmalloc (fnlen + (text - word) + 5);
4057 strncpy (new, word, text - word);
4058 new[text - word] = '\0';
4059 strcat (new, fname);
4060 }
4061 (*list)[*list_used] = new;
4062 (*list)[++*list_used] = NULL;
4063 }
4064
4065 static int
4066 not_interesting_fname (const char *fname)
4067 {
4068 static const char *illegal_aliens[] = {
4069 "_globals_", /* inserted by coff_symtab_read */
4070 NULL
4071 };
4072 int i;
4073
4074 for (i = 0; illegal_aliens[i]; i++)
4075 {
4076 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4077 return 1;
4078 }
4079 return 0;
4080 }
4081
4082 /* An object of this type is passed as the user_data argument to
4083 map_partial_symbol_filenames. */
4084 struct add_partial_filename_data
4085 {
4086 int *first;
4087 char *text;
4088 char *word;
4089 int text_len;
4090 char ***list;
4091 int *list_used;
4092 int *list_alloced;
4093 };
4094
4095 /* A callback for map_partial_symbol_filenames. */
4096 static void
4097 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4098 void *user_data)
4099 {
4100 struct add_partial_filename_data *data = user_data;
4101
4102 if (not_interesting_fname (filename))
4103 return;
4104 if (!filename_seen (filename, 1, data->first)
4105 && filename_ncmp (filename, data->text, data->text_len) == 0)
4106 {
4107 /* This file matches for a completion; add it to the
4108 current list of matches. */
4109 add_filename_to_list (filename, data->text, data->word,
4110 data->list, data->list_used, data->list_alloced);
4111 }
4112 else
4113 {
4114 const char *base_name = lbasename (filename);
4115
4116 if (base_name != filename
4117 && !filename_seen (base_name, 1, data->first)
4118 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4119 add_filename_to_list (base_name, data->text, data->word,
4120 data->list, data->list_used, data->list_alloced);
4121 }
4122 }
4123
4124 /* Return a NULL terminated array of all source files whose names
4125 begin with matching TEXT. The file names are looked up in the
4126 symbol tables of this program. If the answer is no matchess, then
4127 the return value is an array which contains only a NULL pointer. */
4128
4129 char **
4130 make_source_files_completion_list (char *text, char *word)
4131 {
4132 struct symtab *s;
4133 struct objfile *objfile;
4134 int first = 1;
4135 int list_alloced = 1;
4136 int list_used = 0;
4137 size_t text_len = strlen (text);
4138 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4139 const char *base_name;
4140 struct add_partial_filename_data datum;
4141
4142 list[0] = NULL;
4143
4144 if (!have_full_symbols () && !have_partial_symbols ())
4145 return list;
4146
4147 ALL_SYMTABS (objfile, s)
4148 {
4149 if (not_interesting_fname (s->filename))
4150 continue;
4151 if (!filename_seen (s->filename, 1, &first)
4152 && filename_ncmp (s->filename, text, text_len) == 0)
4153 {
4154 /* This file matches for a completion; add it to the current
4155 list of matches. */
4156 add_filename_to_list (s->filename, text, word,
4157 &list, &list_used, &list_alloced);
4158 }
4159 else
4160 {
4161 /* NOTE: We allow the user to type a base name when the
4162 debug info records leading directories, but not the other
4163 way around. This is what subroutines of breakpoint
4164 command do when they parse file names. */
4165 base_name = lbasename (s->filename);
4166 if (base_name != s->filename
4167 && !filename_seen (base_name, 1, &first)
4168 && filename_ncmp (base_name, text, text_len) == 0)
4169 add_filename_to_list (base_name, text, word,
4170 &list, &list_used, &list_alloced);
4171 }
4172 }
4173
4174 datum.first = &first;
4175 datum.text = text;
4176 datum.word = word;
4177 datum.text_len = text_len;
4178 datum.list = &list;
4179 datum.list_used = &list_used;
4180 datum.list_alloced = &list_alloced;
4181 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4182
4183 return list;
4184 }
4185
4186 /* Determine if PC is in the prologue of a function. The prologue is the area
4187 between the first instruction of a function, and the first executable line.
4188 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4189
4190 If non-zero, func_start is where we think the prologue starts, possibly
4191 by previous examination of symbol table information. */
4192
4193 int
4194 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4195 {
4196 struct symtab_and_line sal;
4197 CORE_ADDR func_addr, func_end;
4198
4199 /* We have several sources of information we can consult to figure
4200 this out.
4201 - Compilers usually emit line number info that marks the prologue
4202 as its own "source line". So the ending address of that "line"
4203 is the end of the prologue. If available, this is the most
4204 reliable method.
4205 - The minimal symbols and partial symbols, which can usually tell
4206 us the starting and ending addresses of a function.
4207 - If we know the function's start address, we can call the
4208 architecture-defined gdbarch_skip_prologue function to analyze the
4209 instruction stream and guess where the prologue ends.
4210 - Our `func_start' argument; if non-zero, this is the caller's
4211 best guess as to the function's entry point. At the time of
4212 this writing, handle_inferior_event doesn't get this right, so
4213 it should be our last resort. */
4214
4215 /* Consult the partial symbol table, to find which function
4216 the PC is in. */
4217 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4218 {
4219 CORE_ADDR prologue_end;
4220
4221 /* We don't even have minsym information, so fall back to using
4222 func_start, if given. */
4223 if (! func_start)
4224 return 1; /* We *might* be in a prologue. */
4225
4226 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4227
4228 return func_start <= pc && pc < prologue_end;
4229 }
4230
4231 /* If we have line number information for the function, that's
4232 usually pretty reliable. */
4233 sal = find_pc_line (func_addr, 0);
4234
4235 /* Now sal describes the source line at the function's entry point,
4236 which (by convention) is the prologue. The end of that "line",
4237 sal.end, is the end of the prologue.
4238
4239 Note that, for functions whose source code is all on a single
4240 line, the line number information doesn't always end up this way.
4241 So we must verify that our purported end-of-prologue address is
4242 *within* the function, not at its start or end. */
4243 if (sal.line == 0
4244 || sal.end <= func_addr
4245 || func_end <= sal.end)
4246 {
4247 /* We don't have any good line number info, so use the minsym
4248 information, together with the architecture-specific prologue
4249 scanning code. */
4250 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4251
4252 return func_addr <= pc && pc < prologue_end;
4253 }
4254
4255 /* We have line number info, and it looks good. */
4256 return func_addr <= pc && pc < sal.end;
4257 }
4258
4259 /* Given PC at the function's start address, attempt to find the
4260 prologue end using SAL information. Return zero if the skip fails.
4261
4262 A non-optimized prologue traditionally has one SAL for the function
4263 and a second for the function body. A single line function has
4264 them both pointing at the same line.
4265
4266 An optimized prologue is similar but the prologue may contain
4267 instructions (SALs) from the instruction body. Need to skip those
4268 while not getting into the function body.
4269
4270 The functions end point and an increasing SAL line are used as
4271 indicators of the prologue's endpoint.
4272
4273 This code is based on the function refine_prologue_limit (versions
4274 found in both ia64 and ppc). */
4275
4276 CORE_ADDR
4277 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4278 {
4279 struct symtab_and_line prologue_sal;
4280 CORE_ADDR start_pc;
4281 CORE_ADDR end_pc;
4282 struct block *bl;
4283
4284 /* Get an initial range for the function. */
4285 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4286 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4287
4288 prologue_sal = find_pc_line (start_pc, 0);
4289 if (prologue_sal.line != 0)
4290 {
4291 /* For langauges other than assembly, treat two consecutive line
4292 entries at the same address as a zero-instruction prologue.
4293 The GNU assembler emits separate line notes for each instruction
4294 in a multi-instruction macro, but compilers generally will not
4295 do this. */
4296 if (prologue_sal.symtab->language != language_asm)
4297 {
4298 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4299 int idx = 0;
4300
4301 /* Skip any earlier lines, and any end-of-sequence marker
4302 from a previous function. */
4303 while (linetable->item[idx].pc != prologue_sal.pc
4304 || linetable->item[idx].line == 0)
4305 idx++;
4306
4307 if (idx+1 < linetable->nitems
4308 && linetable->item[idx+1].line != 0
4309 && linetable->item[idx+1].pc == start_pc)
4310 return start_pc;
4311 }
4312
4313 /* If there is only one sal that covers the entire function,
4314 then it is probably a single line function, like
4315 "foo(){}". */
4316 if (prologue_sal.end >= end_pc)
4317 return 0;
4318
4319 while (prologue_sal.end < end_pc)
4320 {
4321 struct symtab_and_line sal;
4322
4323 sal = find_pc_line (prologue_sal.end, 0);
4324 if (sal.line == 0)
4325 break;
4326 /* Assume that a consecutive SAL for the same (or larger)
4327 line mark the prologue -> body transition. */
4328 if (sal.line >= prologue_sal.line)
4329 break;
4330
4331 /* The line number is smaller. Check that it's from the
4332 same function, not something inlined. If it's inlined,
4333 then there is no point comparing the line numbers. */
4334 bl = block_for_pc (prologue_sal.end);
4335 while (bl)
4336 {
4337 if (block_inlined_p (bl))
4338 break;
4339 if (BLOCK_FUNCTION (bl))
4340 {
4341 bl = NULL;
4342 break;
4343 }
4344 bl = BLOCK_SUPERBLOCK (bl);
4345 }
4346 if (bl != NULL)
4347 break;
4348
4349 /* The case in which compiler's optimizer/scheduler has
4350 moved instructions into the prologue. We look ahead in
4351 the function looking for address ranges whose
4352 corresponding line number is less the first one that we
4353 found for the function. This is more conservative then
4354 refine_prologue_limit which scans a large number of SALs
4355 looking for any in the prologue. */
4356 prologue_sal = sal;
4357 }
4358 }
4359
4360 if (prologue_sal.end < end_pc)
4361 /* Return the end of this line, or zero if we could not find a
4362 line. */
4363 return prologue_sal.end;
4364 else
4365 /* Don't return END_PC, which is past the end of the function. */
4366 return prologue_sal.pc;
4367 }
4368 \f
4369 struct symtabs_and_lines
4370 decode_line_spec (char *string, int funfirstline)
4371 {
4372 struct symtabs_and_lines sals;
4373 struct symtab_and_line cursal;
4374
4375 if (string == 0)
4376 error (_("Empty line specification."));
4377
4378 /* We use whatever is set as the current source line. We do not try
4379 and get a default or it will recursively call us! */
4380 cursal = get_current_source_symtab_and_line ();
4381
4382 sals = decode_line_1 (&string, funfirstline,
4383 cursal.symtab, cursal.line,
4384 NULL, NULL);
4385
4386 if (*string)
4387 error (_("Junk at end of line specification: %s"), string);
4388 return sals;
4389 }
4390
4391 /* Track MAIN */
4392 static char *name_of_main;
4393 enum language language_of_main = language_unknown;
4394
4395 void
4396 set_main_name (const char *name)
4397 {
4398 if (name_of_main != NULL)
4399 {
4400 xfree (name_of_main);
4401 name_of_main = NULL;
4402 language_of_main = language_unknown;
4403 }
4404 if (name != NULL)
4405 {
4406 name_of_main = xstrdup (name);
4407 language_of_main = language_unknown;
4408 }
4409 }
4410
4411 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4412 accordingly. */
4413
4414 static void
4415 find_main_name (void)
4416 {
4417 const char *new_main_name;
4418
4419 /* Try to see if the main procedure is in Ada. */
4420 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4421 be to add a new method in the language vector, and call this
4422 method for each language until one of them returns a non-empty
4423 name. This would allow us to remove this hard-coded call to
4424 an Ada function. It is not clear that this is a better approach
4425 at this point, because all methods need to be written in a way
4426 such that false positives never be returned. For instance, it is
4427 important that a method does not return a wrong name for the main
4428 procedure if the main procedure is actually written in a different
4429 language. It is easy to guaranty this with Ada, since we use a
4430 special symbol generated only when the main in Ada to find the name
4431 of the main procedure. It is difficult however to see how this can
4432 be guarantied for languages such as C, for instance. This suggests
4433 that order of call for these methods becomes important, which means
4434 a more complicated approach. */
4435 new_main_name = ada_main_name ();
4436 if (new_main_name != NULL)
4437 {
4438 set_main_name (new_main_name);
4439 return;
4440 }
4441
4442 new_main_name = pascal_main_name ();
4443 if (new_main_name != NULL)
4444 {
4445 set_main_name (new_main_name);
4446 return;
4447 }
4448
4449 /* The languages above didn't identify the name of the main procedure.
4450 Fallback to "main". */
4451 set_main_name ("main");
4452 }
4453
4454 char *
4455 main_name (void)
4456 {
4457 if (name_of_main == NULL)
4458 find_main_name ();
4459
4460 return name_of_main;
4461 }
4462
4463 /* Handle ``executable_changed'' events for the symtab module. */
4464
4465 static void
4466 symtab_observer_executable_changed (void)
4467 {
4468 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4469 set_main_name (NULL);
4470 }
4471
4472 /* Helper to expand_line_sal below. Appends new sal to SAL,
4473 initializing it from SYMTAB, LINENO and PC. */
4474 static void
4475 append_expanded_sal (struct symtabs_and_lines *sal,
4476 struct program_space *pspace,
4477 struct symtab *symtab,
4478 int lineno, CORE_ADDR pc)
4479 {
4480 sal->sals = xrealloc (sal->sals,
4481 sizeof (sal->sals[0])
4482 * (sal->nelts + 1));
4483 init_sal (sal->sals + sal->nelts);
4484 sal->sals[sal->nelts].pspace = pspace;
4485 sal->sals[sal->nelts].symtab = symtab;
4486 sal->sals[sal->nelts].section = NULL;
4487 sal->sals[sal->nelts].end = 0;
4488 sal->sals[sal->nelts].line = lineno;
4489 sal->sals[sal->nelts].pc = pc;
4490 ++sal->nelts;
4491 }
4492
4493 /* Helper to expand_line_sal below. Search in the symtabs for any
4494 linetable entry that exactly matches FULLNAME and LINENO and append
4495 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4496 use FILENAME and LINENO instead. If there is at least one match,
4497 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4498 and BEST_SYMTAB. */
4499
4500 static int
4501 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4502 struct symtabs_and_lines *ret,
4503 struct linetable_entry **best_item,
4504 struct symtab **best_symtab)
4505 {
4506 struct program_space *pspace;
4507 struct objfile *objfile;
4508 struct symtab *symtab;
4509 int exact = 0;
4510 int j;
4511 *best_item = 0;
4512 *best_symtab = 0;
4513
4514 ALL_PSPACES (pspace)
4515 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4516 {
4517 if (FILENAME_CMP (filename, symtab->filename) == 0)
4518 {
4519 struct linetable *l;
4520 int len;
4521
4522 if (fullname != NULL
4523 && symtab_to_fullname (symtab) != NULL
4524 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4525 continue;
4526 l = LINETABLE (symtab);
4527 if (!l)
4528 continue;
4529 len = l->nitems;
4530
4531 for (j = 0; j < len; j++)
4532 {
4533 struct linetable_entry *item = &(l->item[j]);
4534
4535 if (item->line == lineno)
4536 {
4537 exact = 1;
4538 append_expanded_sal (ret, objfile->pspace,
4539 symtab, lineno, item->pc);
4540 }
4541 else if (!exact && item->line > lineno
4542 && (*best_item == NULL
4543 || item->line < (*best_item)->line))
4544 {
4545 *best_item = item;
4546 *best_symtab = symtab;
4547 }
4548 }
4549 }
4550 }
4551 return exact;
4552 }
4553
4554 /* Compute a set of all sals in all program spaces that correspond to
4555 same file and line as SAL and return those. If there are several
4556 sals that belong to the same block, only one sal for the block is
4557 included in results. */
4558
4559 struct symtabs_and_lines
4560 expand_line_sal (struct symtab_and_line sal)
4561 {
4562 struct symtabs_and_lines ret;
4563 int i, j;
4564 struct objfile *objfile;
4565 int lineno;
4566 int deleted = 0;
4567 struct block **blocks = NULL;
4568 int *filter;
4569 struct cleanup *old_chain;
4570
4571 ret.nelts = 0;
4572 ret.sals = NULL;
4573
4574 /* Only expand sals that represent file.c:line. */
4575 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4576 {
4577 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4578 ret.sals[0] = sal;
4579 ret.nelts = 1;
4580 return ret;
4581 }
4582 else
4583 {
4584 struct program_space *pspace;
4585 struct linetable_entry *best_item = 0;
4586 struct symtab *best_symtab = 0;
4587 int exact = 0;
4588 char *match_filename;
4589
4590 lineno = sal.line;
4591 match_filename = sal.symtab->filename;
4592
4593 /* We need to find all symtabs for a file which name
4594 is described by sal. We cannot just directly
4595 iterate over symtabs, since a symtab might not be
4596 yet created. We also cannot iterate over psymtabs,
4597 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4598 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4599 corresponding to an included file. Therefore, we do
4600 first pass over psymtabs, reading in those with
4601 the right name. Then, we iterate over symtabs, knowing
4602 that all symtabs we're interested in are loaded. */
4603
4604 old_chain = save_current_program_space ();
4605 ALL_PSPACES (pspace)
4606 {
4607 set_current_program_space (pspace);
4608 ALL_PSPACE_OBJFILES (pspace, objfile)
4609 {
4610 if (objfile->sf)
4611 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4612 sal.symtab->filename);
4613 }
4614 }
4615 do_cleanups (old_chain);
4616
4617 /* Now search the symtab for exact matches and append them. If
4618 none is found, append the best_item and all its exact
4619 matches. */
4620 symtab_to_fullname (sal.symtab);
4621 exact = append_exact_match_to_sals (sal.symtab->filename,
4622 sal.symtab->fullname, lineno,
4623 &ret, &best_item, &best_symtab);
4624 if (!exact && best_item)
4625 append_exact_match_to_sals (best_symtab->filename,
4626 best_symtab->fullname, best_item->line,
4627 &ret, &best_item, &best_symtab);
4628 }
4629
4630 /* For optimized code, compiler can scatter one source line accross
4631 disjoint ranges of PC values, even when no duplicate functions
4632 or inline functions are involved. For example, 'for (;;)' inside
4633 non-template non-inline non-ctor-or-dtor function can result
4634 in two PC ranges. In this case, we don't want to set breakpoint
4635 on first PC of each range. To filter such cases, we use containing
4636 blocks -- for each PC found above we see if there are other PCs
4637 that are in the same block. If yes, the other PCs are filtered out. */
4638
4639 old_chain = save_current_program_space ();
4640 filter = alloca (ret.nelts * sizeof (int));
4641 blocks = alloca (ret.nelts * sizeof (struct block *));
4642 for (i = 0; i < ret.nelts; ++i)
4643 {
4644 set_current_program_space (ret.sals[i].pspace);
4645
4646 filter[i] = 1;
4647 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4648
4649 }
4650 do_cleanups (old_chain);
4651
4652 for (i = 0; i < ret.nelts; ++i)
4653 if (blocks[i] != NULL)
4654 for (j = i+1; j < ret.nelts; ++j)
4655 if (blocks[j] == blocks[i])
4656 {
4657 filter[j] = 0;
4658 ++deleted;
4659 break;
4660 }
4661
4662 {
4663 struct symtab_and_line *final =
4664 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4665
4666 for (i = 0, j = 0; i < ret.nelts; ++i)
4667 if (filter[i])
4668 final[j++] = ret.sals[i];
4669
4670 ret.nelts -= deleted;
4671 xfree (ret.sals);
4672 ret.sals = final;
4673 }
4674
4675 return ret;
4676 }
4677
4678 /* Return 1 if the supplied producer string matches the ARM RealView
4679 compiler (armcc). */
4680
4681 int
4682 producer_is_realview (const char *producer)
4683 {
4684 static const char *const arm_idents[] = {
4685 "ARM C Compiler, ADS",
4686 "Thumb C Compiler, ADS",
4687 "ARM C++ Compiler, ADS",
4688 "Thumb C++ Compiler, ADS",
4689 "ARM/Thumb C/C++ Compiler, RVCT",
4690 "ARM C/C++ Compiler, RVCT"
4691 };
4692 int i;
4693
4694 if (producer == NULL)
4695 return 0;
4696
4697 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4698 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4699 return 1;
4700
4701 return 0;
4702 }
4703
4704 void
4705 _initialize_symtab (void)
4706 {
4707 add_info ("variables", variables_info, _("\
4708 All global and static variable names, or those matching REGEXP."));
4709 if (dbx_commands)
4710 add_com ("whereis", class_info, variables_info, _("\
4711 All global and static variable names, or those matching REGEXP."));
4712
4713 add_info ("functions", functions_info,
4714 _("All function names, or those matching REGEXP."));
4715
4716 /* FIXME: This command has at least the following problems:
4717 1. It prints builtin types (in a very strange and confusing fashion).
4718 2. It doesn't print right, e.g. with
4719 typedef struct foo *FOO
4720 type_print prints "FOO" when we want to make it (in this situation)
4721 print "struct foo *".
4722 I also think "ptype" or "whatis" is more likely to be useful (but if
4723 there is much disagreement "info types" can be fixed). */
4724 add_info ("types", types_info,
4725 _("All type names, or those matching REGEXP."));
4726
4727 add_info ("sources", sources_info,
4728 _("Source files in the program."));
4729
4730 add_com ("rbreak", class_breakpoint, rbreak_command,
4731 _("Set a breakpoint for all functions matching REGEXP."));
4732
4733 if (xdb_commands)
4734 {
4735 add_com ("lf", class_info, sources_info,
4736 _("Source files in the program"));
4737 add_com ("lg", class_info, variables_info, _("\
4738 All global and static variable names, or those matching REGEXP."));
4739 }
4740
4741 add_setshow_enum_cmd ("multiple-symbols", no_class,
4742 multiple_symbols_modes, &multiple_symbols_mode,
4743 _("\
4744 Set the debugger behavior when more than one symbol are possible matches\n\
4745 in an expression."), _("\
4746 Show how the debugger handles ambiguities in expressions."), _("\
4747 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4748 NULL, NULL, &setlist, &showlist);
4749
4750 observer_attach_executable_changed (symtab_observer_executable_changed);
4751 }
This page took 0.182272 seconds and 4 git commands to generate.