8aeabe86b84995b8ce6dcc2b8fd9c9b6def15ece
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* Program space key for finding its symbol cache. */
108
109 static const struct program_space_data *symbol_cache_key;
110
111 /* The default symbol cache size.
112 There is no extra cpu cost for large N (except when flushing the cache,
113 which is rare). The value here is just a first attempt. A better default
114 value may be higher or lower. A prime number can make up for a bad hash
115 computation, so that's why the number is what it is. */
116 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
117
118 /* The maximum symbol cache size.
119 There's no method to the decision of what value to use here, other than
120 there's no point in allowing a user typo to make gdb consume all memory. */
121 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
122
123 /* symbol_cache_lookup returns this if a previous lookup failed to find the
124 symbol in any objfile. */
125 #define SYMBOL_LOOKUP_FAILED \
126 ((struct block_symbol) {(struct symbol *) 1, NULL})
127 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
128
129 /* Recording lookups that don't find the symbol is just as important, if not
130 more so, than recording found symbols. */
131
132 enum symbol_cache_slot_state
133 {
134 SYMBOL_SLOT_UNUSED,
135 SYMBOL_SLOT_NOT_FOUND,
136 SYMBOL_SLOT_FOUND
137 };
138
139 struct symbol_cache_slot
140 {
141 enum symbol_cache_slot_state state;
142
143 /* The objfile that was current when the symbol was looked up.
144 This is only needed for global blocks, but for simplicity's sake
145 we allocate the space for both. If data shows the extra space used
146 for static blocks is a problem, we can split things up then.
147
148 Global blocks need cache lookup to include the objfile context because
149 we need to account for gdbarch_iterate_over_objfiles_in_search_order
150 which can traverse objfiles in, effectively, any order, depending on
151 the current objfile, thus affecting which symbol is found. Normally,
152 only the current objfile is searched first, and then the rest are
153 searched in recorded order; but putting cache lookup inside
154 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
155 Instead we just make the current objfile part of the context of
156 cache lookup. This means we can record the same symbol multiple times,
157 each with a different "current objfile" that was in effect when the
158 lookup was saved in the cache, but cache space is pretty cheap. */
159 const struct objfile *objfile_context;
160
161 union
162 {
163 struct block_symbol found;
164 struct
165 {
166 char *name;
167 domain_enum domain;
168 } not_found;
169 } value;
170 };
171
172 /* Symbols don't specify global vs static block.
173 So keep them in separate caches. */
174
175 struct block_symbol_cache
176 {
177 unsigned int hits;
178 unsigned int misses;
179 unsigned int collisions;
180
181 /* SYMBOLS is a variable length array of this size.
182 One can imagine that in general one cache (global/static) should be a
183 fraction of the size of the other, but there's no data at the moment
184 on which to decide. */
185 unsigned int size;
186
187 struct symbol_cache_slot symbols[1];
188 };
189
190 /* The symbol cache.
191
192 Searching for symbols in the static and global blocks over multiple objfiles
193 again and again can be slow, as can searching very big objfiles. This is a
194 simple cache to improve symbol lookup performance, which is critical to
195 overall gdb performance.
196
197 Symbols are hashed on the name, its domain, and block.
198 They are also hashed on their objfile for objfile-specific lookups. */
199
200 struct symbol_cache
201 {
202 struct block_symbol_cache *global_symbols;
203 struct block_symbol_cache *static_symbols;
204 };
205
206 /* When non-zero, print debugging messages related to symtab creation. */
207 unsigned int symtab_create_debug = 0;
208
209 /* When non-zero, print debugging messages related to symbol lookup. */
210 unsigned int symbol_lookup_debug = 0;
211
212 /* The size of the cache is staged here. */
213 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
214
215 /* The current value of the symbol cache size.
216 This is saved so that if the user enters a value too big we can restore
217 the original value from here. */
218 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* Non-zero if a file may be known by two different basenames.
221 This is the uncommon case, and significantly slows down gdb.
222 Default set to "off" to not slow down the common case. */
223 int basenames_may_differ = 0;
224
225 /* Allow the user to configure the debugger behavior with respect
226 to multiple-choice menus when more than one symbol matches during
227 a symbol lookup. */
228
229 const char multiple_symbols_ask[] = "ask";
230 const char multiple_symbols_all[] = "all";
231 const char multiple_symbols_cancel[] = "cancel";
232 static const char *const multiple_symbols_modes[] =
233 {
234 multiple_symbols_ask,
235 multiple_symbols_all,
236 multiple_symbols_cancel,
237 NULL
238 };
239 static const char *multiple_symbols_mode = multiple_symbols_all;
240
241 /* Read-only accessor to AUTO_SELECT_MODE. */
242
243 const char *
244 multiple_symbols_select_mode (void)
245 {
246 return multiple_symbols_mode;
247 }
248
249 /* Return the name of a domain_enum. */
250
251 const char *
252 domain_name (domain_enum e)
253 {
254 switch (e)
255 {
256 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
257 case VAR_DOMAIN: return "VAR_DOMAIN";
258 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
259 case MODULE_DOMAIN: return "MODULE_DOMAIN";
260 case LABEL_DOMAIN: return "LABEL_DOMAIN";
261 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
262 default: gdb_assert_not_reached ("bad domain_enum");
263 }
264 }
265
266 /* Return the name of a search_domain . */
267
268 const char *
269 search_domain_name (enum search_domain e)
270 {
271 switch (e)
272 {
273 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
274 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
275 case TYPES_DOMAIN: return "TYPES_DOMAIN";
276 case ALL_DOMAIN: return "ALL_DOMAIN";
277 default: gdb_assert_not_reached ("bad search_domain");
278 }
279 }
280
281 /* See symtab.h. */
282
283 struct symtab *
284 compunit_primary_filetab (const struct compunit_symtab *cust)
285 {
286 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
287
288 /* The primary file symtab is the first one in the list. */
289 return COMPUNIT_FILETABS (cust);
290 }
291
292 /* See symtab.h. */
293
294 enum language
295 compunit_language (const struct compunit_symtab *cust)
296 {
297 struct symtab *symtab = compunit_primary_filetab (cust);
298
299 /* The language of the compunit symtab is the language of its primary
300 source file. */
301 return SYMTAB_LANGUAGE (symtab);
302 }
303
304 /* See whether FILENAME matches SEARCH_NAME using the rule that we
305 advertise to the user. (The manual's description of linespecs
306 describes what we advertise). Returns true if they match, false
307 otherwise. */
308
309 int
310 compare_filenames_for_search (const char *filename, const char *search_name)
311 {
312 int len = strlen (filename);
313 size_t search_len = strlen (search_name);
314
315 if (len < search_len)
316 return 0;
317
318 /* The tail of FILENAME must match. */
319 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
320 return 0;
321
322 /* Either the names must completely match, or the character
323 preceding the trailing SEARCH_NAME segment of FILENAME must be a
324 directory separator.
325
326 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
327 cannot match FILENAME "/path//dir/file.c" - as user has requested
328 absolute path. The sama applies for "c:\file.c" possibly
329 incorrectly hypothetically matching "d:\dir\c:\file.c".
330
331 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
332 compatible with SEARCH_NAME "file.c". In such case a compiler had
333 to put the "c:file.c" name into debug info. Such compatibility
334 works only on GDB built for DOS host. */
335 return (len == search_len
336 || (!IS_ABSOLUTE_PATH (search_name)
337 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
338 || (HAS_DRIVE_SPEC (filename)
339 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
340 }
341
342 /* Check for a symtab of a specific name by searching some symtabs.
343 This is a helper function for callbacks of iterate_over_symtabs.
344
345 If NAME is not absolute, then REAL_PATH is NULL
346 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
347
348 The return value, NAME, REAL_PATH, CALLBACK, and DATA
349 are identical to the `map_symtabs_matching_filename' method of
350 quick_symbol_functions.
351
352 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
353 Each symtab within the specified compunit symtab is also searched.
354 AFTER_LAST is one past the last compunit symtab to search; NULL means to
355 search until the end of the list. */
356
357 int
358 iterate_over_some_symtabs (const char *name,
359 const char *real_path,
360 int (*callback) (struct symtab *symtab,
361 void *data),
362 void *data,
363 struct compunit_symtab *first,
364 struct compunit_symtab *after_last)
365 {
366 struct compunit_symtab *cust;
367 struct symtab *s;
368 const char* base_name = lbasename (name);
369
370 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
371 {
372 ALL_COMPUNIT_FILETABS (cust, s)
373 {
374 if (compare_filenames_for_search (s->filename, name))
375 {
376 if (callback (s, data))
377 return 1;
378 continue;
379 }
380
381 /* Before we invoke realpath, which can get expensive when many
382 files are involved, do a quick comparison of the basenames. */
383 if (! basenames_may_differ
384 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
385 continue;
386
387 if (compare_filenames_for_search (symtab_to_fullname (s), name))
388 {
389 if (callback (s, data))
390 return 1;
391 continue;
392 }
393
394 /* If the user gave us an absolute path, try to find the file in
395 this symtab and use its absolute path. */
396 if (real_path != NULL)
397 {
398 const char *fullname = symtab_to_fullname (s);
399
400 gdb_assert (IS_ABSOLUTE_PATH (real_path));
401 gdb_assert (IS_ABSOLUTE_PATH (name));
402 if (FILENAME_CMP (real_path, fullname) == 0)
403 {
404 if (callback (s, data))
405 return 1;
406 continue;
407 }
408 }
409 }
410 }
411
412 return 0;
413 }
414
415 /* Check for a symtab of a specific name; first in symtabs, then in
416 psymtabs. *If* there is no '/' in the name, a match after a '/'
417 in the symtab filename will also work.
418
419 Calls CALLBACK with each symtab that is found and with the supplied
420 DATA. If CALLBACK returns true, the search stops. */
421
422 void
423 iterate_over_symtabs (const char *name,
424 int (*callback) (struct symtab *symtab,
425 void *data),
426 void *data)
427 {
428 struct objfile *objfile;
429 char *real_path = NULL;
430 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
431
432 /* Here we are interested in canonicalizing an absolute path, not
433 absolutizing a relative path. */
434 if (IS_ABSOLUTE_PATH (name))
435 {
436 real_path = gdb_realpath (name);
437 make_cleanup (xfree, real_path);
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 }
440
441 ALL_OBJFILES (objfile)
442 {
443 if (iterate_over_some_symtabs (name, real_path, callback, data,
444 objfile->compunit_symtabs, NULL))
445 {
446 do_cleanups (cleanups);
447 return;
448 }
449 }
450
451 /* Same search rules as above apply here, but now we look thru the
452 psymtabs. */
453
454 ALL_OBJFILES (objfile)
455 {
456 if (objfile->sf
457 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
458 name,
459 real_path,
460 callback,
461 data))
462 {
463 do_cleanups (cleanups);
464 return;
465 }
466 }
467
468 do_cleanups (cleanups);
469 }
470
471 /* The callback function used by lookup_symtab. */
472
473 static int
474 lookup_symtab_callback (struct symtab *symtab, void *data)
475 {
476 struct symtab **result_ptr = data;
477
478 *result_ptr = symtab;
479 return 1;
480 }
481
482 /* A wrapper for iterate_over_symtabs that returns the first matching
483 symtab, or NULL. */
484
485 struct symtab *
486 lookup_symtab (const char *name)
487 {
488 struct symtab *result = NULL;
489
490 iterate_over_symtabs (name, lookup_symtab_callback, &result);
491 return result;
492 }
493
494 \f
495 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
496 full method name, which consist of the class name (from T), the unadorned
497 method name from METHOD_ID, and the signature for the specific overload,
498 specified by SIGNATURE_ID. Note that this function is g++ specific. */
499
500 char *
501 gdb_mangle_name (struct type *type, int method_id, int signature_id)
502 {
503 int mangled_name_len;
504 char *mangled_name;
505 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
506 struct fn_field *method = &f[signature_id];
507 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
508 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
509 const char *newname = type_name_no_tag (type);
510
511 /* Does the form of physname indicate that it is the full mangled name
512 of a constructor (not just the args)? */
513 int is_full_physname_constructor;
514
515 int is_constructor;
516 int is_destructor = is_destructor_name (physname);
517 /* Need a new type prefix. */
518 char *const_prefix = method->is_const ? "C" : "";
519 char *volatile_prefix = method->is_volatile ? "V" : "";
520 char buf[20];
521 int len = (newname == NULL ? 0 : strlen (newname));
522
523 /* Nothing to do if physname already contains a fully mangled v3 abi name
524 or an operator name. */
525 if ((physname[0] == '_' && physname[1] == 'Z')
526 || is_operator_name (field_name))
527 return xstrdup (physname);
528
529 is_full_physname_constructor = is_constructor_name (physname);
530
531 is_constructor = is_full_physname_constructor
532 || (newname && strcmp (field_name, newname) == 0);
533
534 if (!is_destructor)
535 is_destructor = (startswith (physname, "__dt"));
536
537 if (is_destructor || is_full_physname_constructor)
538 {
539 mangled_name = (char *) xmalloc (strlen (physname) + 1);
540 strcpy (mangled_name, physname);
541 return mangled_name;
542 }
543
544 if (len == 0)
545 {
546 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
547 }
548 else if (physname[0] == 't' || physname[0] == 'Q')
549 {
550 /* The physname for template and qualified methods already includes
551 the class name. */
552 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
553 newname = NULL;
554 len = 0;
555 }
556 else
557 {
558 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
559 volatile_prefix, len);
560 }
561 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
562 + strlen (buf) + len + strlen (physname) + 1);
563
564 mangled_name = (char *) xmalloc (mangled_name_len);
565 if (is_constructor)
566 mangled_name[0] = '\0';
567 else
568 strcpy (mangled_name, field_name);
569
570 strcat (mangled_name, buf);
571 /* If the class doesn't have a name, i.e. newname NULL, then we just
572 mangle it using 0 for the length of the class. Thus it gets mangled
573 as something starting with `::' rather than `classname::'. */
574 if (newname != NULL)
575 strcat (mangled_name, newname);
576
577 strcat (mangled_name, physname);
578 return (mangled_name);
579 }
580
581 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
582 correctly allocated. */
583
584 void
585 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
586 const char *name,
587 struct obstack *obstack)
588 {
589 if (gsymbol->language == language_ada)
590 {
591 if (name == NULL)
592 {
593 gsymbol->ada_mangled = 0;
594 gsymbol->language_specific.obstack = obstack;
595 }
596 else
597 {
598 gsymbol->ada_mangled = 1;
599 gsymbol->language_specific.mangled_lang.demangled_name = name;
600 }
601 }
602 else
603 gsymbol->language_specific.mangled_lang.demangled_name = name;
604 }
605
606 /* Return the demangled name of GSYMBOL. */
607
608 const char *
609 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (!gsymbol->ada_mangled)
614 return NULL;
615 /* Fall through. */
616 }
617
618 return gsymbol->language_specific.mangled_lang.demangled_name;
619 }
620
621 \f
622 /* Initialize the language dependent portion of a symbol
623 depending upon the language for the symbol. */
624
625 void
626 symbol_set_language (struct general_symbol_info *gsymbol,
627 enum language language,
628 struct obstack *obstack)
629 {
630 gsymbol->language = language;
631 if (gsymbol->language == language_cplus
632 || gsymbol->language == language_d
633 || gsymbol->language == language_go
634 || gsymbol->language == language_java
635 || gsymbol->language == language_objc
636 || gsymbol->language == language_fortran)
637 {
638 symbol_set_demangled_name (gsymbol, NULL, obstack);
639 }
640 else if (gsymbol->language == language_ada)
641 {
642 gdb_assert (gsymbol->ada_mangled == 0);
643 gsymbol->language_specific.obstack = obstack;
644 }
645 else
646 {
647 memset (&gsymbol->language_specific, 0,
648 sizeof (gsymbol->language_specific));
649 }
650 }
651
652 /* Functions to initialize a symbol's mangled name. */
653
654 /* Objects of this type are stored in the demangled name hash table. */
655 struct demangled_name_entry
656 {
657 const char *mangled;
658 char demangled[1];
659 };
660
661 /* Hash function for the demangled name hash. */
662
663 static hashval_t
664 hash_demangled_name_entry (const void *data)
665 {
666 const struct demangled_name_entry *e = data;
667
668 return htab_hash_string (e->mangled);
669 }
670
671 /* Equality function for the demangled name hash. */
672
673 static int
674 eq_demangled_name_entry (const void *a, const void *b)
675 {
676 const struct demangled_name_entry *da = a;
677 const struct demangled_name_entry *db = b;
678
679 return strcmp (da->mangled, db->mangled) == 0;
680 }
681
682 /* Create the hash table used for demangled names. Each hash entry is
683 a pair of strings; one for the mangled name and one for the demangled
684 name. The entry is hashed via just the mangled name. */
685
686 static void
687 create_demangled_names_hash (struct objfile *objfile)
688 {
689 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
690 The hash table code will round this up to the next prime number.
691 Choosing a much larger table size wastes memory, and saves only about
692 1% in symbol reading. */
693
694 objfile->per_bfd->demangled_names_hash = htab_create_alloc
695 (256, hash_demangled_name_entry, eq_demangled_name_entry,
696 NULL, xcalloc, xfree);
697 }
698
699 /* Try to determine the demangled name for a symbol, based on the
700 language of that symbol. If the language is set to language_auto,
701 it will attempt to find any demangling algorithm that works and
702 then set the language appropriately. The returned name is allocated
703 by the demangler and should be xfree'd. */
704
705 static char *
706 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
707 const char *mangled)
708 {
709 char *demangled = NULL;
710
711 if (gsymbol->language == language_unknown)
712 gsymbol->language = language_auto;
713
714 if (gsymbol->language == language_objc
715 || gsymbol->language == language_auto)
716 {
717 demangled =
718 objc_demangle (mangled, 0);
719 if (demangled != NULL)
720 {
721 gsymbol->language = language_objc;
722 return demangled;
723 }
724 }
725 if (gsymbol->language == language_cplus
726 || gsymbol->language == language_auto)
727 {
728 demangled =
729 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
730 if (demangled != NULL)
731 {
732 gsymbol->language = language_cplus;
733 return demangled;
734 }
735 }
736 if (gsymbol->language == language_java)
737 {
738 demangled =
739 gdb_demangle (mangled,
740 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
741 if (demangled != NULL)
742 {
743 gsymbol->language = language_java;
744 return demangled;
745 }
746 }
747 if (gsymbol->language == language_d
748 || gsymbol->language == language_auto)
749 {
750 demangled = d_demangle(mangled, 0);
751 if (demangled != NULL)
752 {
753 gsymbol->language = language_d;
754 return demangled;
755 }
756 }
757 /* FIXME(dje): Continually adding languages here is clumsy.
758 Better to just call la_demangle if !auto, and if auto then call
759 a utility routine that tries successive languages in turn and reports
760 which one it finds. I realize the la_demangle options may be different
761 for different languages but there's already a FIXME for that. */
762 if (gsymbol->language == language_go
763 || gsymbol->language == language_auto)
764 {
765 demangled = go_demangle (mangled, 0);
766 if (demangled != NULL)
767 {
768 gsymbol->language = language_go;
769 return demangled;
770 }
771 }
772
773 /* We could support `gsymbol->language == language_fortran' here to provide
774 module namespaces also for inferiors with only minimal symbol table (ELF
775 symbols). Just the mangling standard is not standardized across compilers
776 and there is no DW_AT_producer available for inferiors with only the ELF
777 symbols to check the mangling kind. */
778
779 /* Check for Ada symbols last. See comment below explaining why. */
780
781 if (gsymbol->language == language_auto)
782 {
783 const char *demangled = ada_decode (mangled);
784
785 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
786 {
787 /* Set the gsymbol language to Ada, but still return NULL.
788 Two reasons for that:
789
790 1. For Ada, we prefer computing the symbol's decoded name
791 on the fly rather than pre-compute it, in order to save
792 memory (Ada projects are typically very large).
793
794 2. There are some areas in the definition of the GNAT
795 encoding where, with a bit of bad luck, we might be able
796 to decode a non-Ada symbol, generating an incorrect
797 demangled name (Eg: names ending with "TB" for instance
798 are identified as task bodies and so stripped from
799 the decoded name returned).
800
801 Returning NULL, here, helps us get a little bit of
802 the best of both worlds. Because we're last, we should
803 not affect any of the other languages that were able to
804 demangle the symbol before us; we get to correctly tag
805 Ada symbols as such; and even if we incorrectly tagged
806 a non-Ada symbol, which should be rare, any routing
807 through the Ada language should be transparent (Ada
808 tries to behave much like C/C++ with non-Ada symbols). */
809 gsymbol->language = language_ada;
810 return NULL;
811 }
812 }
813
814 return NULL;
815 }
816
817 /* Set both the mangled and demangled (if any) names for GSYMBOL based
818 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
819 objfile's obstack; but if COPY_NAME is 0 and if NAME is
820 NUL-terminated, then this function assumes that NAME is already
821 correctly saved (either permanently or with a lifetime tied to the
822 objfile), and it will not be copied.
823
824 The hash table corresponding to OBJFILE is used, and the memory
825 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
826 so the pointer can be discarded after calling this function. */
827
828 /* We have to be careful when dealing with Java names: when we run
829 into a Java minimal symbol, we don't know it's a Java symbol, so it
830 gets demangled as a C++ name. This is unfortunate, but there's not
831 much we can do about it: but when demangling partial symbols and
832 regular symbols, we'd better not reuse the wrong demangled name.
833 (See PR gdb/1039.) We solve this by putting a distinctive prefix
834 on Java names when storing them in the hash table. */
835
836 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
837 don't mind the Java prefix so much: different languages have
838 different demangling requirements, so it's only natural that we
839 need to keep language data around in our demangling cache. But
840 it's not good that the minimal symbol has the wrong demangled name.
841 Unfortunately, I can't think of any easy solution to that
842 problem. */
843
844 #define JAVA_PREFIX "##JAVA$$"
845 #define JAVA_PREFIX_LEN 8
846
847 void
848 symbol_set_names (struct general_symbol_info *gsymbol,
849 const char *linkage_name, int len, int copy_name,
850 struct objfile *objfile)
851 {
852 struct demangled_name_entry **slot;
853 /* A 0-terminated copy of the linkage name. */
854 const char *linkage_name_copy;
855 /* A copy of the linkage name that might have a special Java prefix
856 added to it, for use when looking names up in the hash table. */
857 const char *lookup_name;
858 /* The length of lookup_name. */
859 int lookup_len;
860 struct demangled_name_entry entry;
861 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
862
863 if (gsymbol->language == language_ada)
864 {
865 /* In Ada, we do the symbol lookups using the mangled name, so
866 we can save some space by not storing the demangled name.
867
868 As a side note, we have also observed some overlap between
869 the C++ mangling and Ada mangling, similarly to what has
870 been observed with Java. Because we don't store the demangled
871 name with the symbol, we don't need to use the same trick
872 as Java. */
873 if (!copy_name)
874 gsymbol->name = linkage_name;
875 else
876 {
877 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
878
879 memcpy (name, linkage_name, len);
880 name[len] = '\0';
881 gsymbol->name = name;
882 }
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884
885 return;
886 }
887
888 if (per_bfd->demangled_names_hash == NULL)
889 create_demangled_names_hash (objfile);
890
891 /* The stabs reader generally provides names that are not
892 NUL-terminated; most of the other readers don't do this, so we
893 can just use the given copy, unless we're in the Java case. */
894 if (gsymbol->language == language_java)
895 {
896 char *alloc_name;
897
898 lookup_len = len + JAVA_PREFIX_LEN;
899 alloc_name = alloca (lookup_len + 1);
900 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
901 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
902 alloc_name[lookup_len] = '\0';
903
904 lookup_name = alloc_name;
905 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
906 }
907 else if (linkage_name[len] != '\0')
908 {
909 char *alloc_name;
910
911 lookup_len = len;
912 alloc_name = alloca (lookup_len + 1);
913 memcpy (alloc_name, linkage_name, len);
914 alloc_name[lookup_len] = '\0';
915
916 lookup_name = alloc_name;
917 linkage_name_copy = alloc_name;
918 }
919 else
920 {
921 lookup_len = len;
922 lookup_name = linkage_name;
923 linkage_name_copy = linkage_name;
924 }
925
926 entry.mangled = lookup_name;
927 slot = ((struct demangled_name_entry **)
928 htab_find_slot (per_bfd->demangled_names_hash,
929 &entry, INSERT));
930
931 /* If this name is not in the hash table, add it. */
932 if (*slot == NULL
933 /* A C version of the symbol may have already snuck into the table.
934 This happens to, e.g., main.init (__go_init_main). Cope. */
935 || (gsymbol->language == language_go
936 && (*slot)->demangled[0] == '\0'))
937 {
938 char *demangled_name = symbol_find_demangled_name (gsymbol,
939 linkage_name_copy);
940 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
941
942 /* Suppose we have demangled_name==NULL, copy_name==0, and
943 lookup_name==linkage_name. In this case, we already have the
944 mangled name saved, and we don't have a demangled name. So,
945 you might think we could save a little space by not recording
946 this in the hash table at all.
947
948 It turns out that it is actually important to still save such
949 an entry in the hash table, because storing this name gives
950 us better bcache hit rates for partial symbols. */
951 if (!copy_name && lookup_name == linkage_name)
952 {
953 *slot = obstack_alloc (&per_bfd->storage_obstack,
954 offsetof (struct demangled_name_entry,
955 demangled)
956 + demangled_len + 1);
957 (*slot)->mangled = lookup_name;
958 }
959 else
960 {
961 char *mangled_ptr;
962
963 /* If we must copy the mangled name, put it directly after
964 the demangled name so we can have a single
965 allocation. */
966 *slot = obstack_alloc (&per_bfd->storage_obstack,
967 offsetof (struct demangled_name_entry,
968 demangled)
969 + lookup_len + demangled_len + 2);
970 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
971 strcpy (mangled_ptr, lookup_name);
972 (*slot)->mangled = mangled_ptr;
973 }
974
975 if (demangled_name != NULL)
976 {
977 strcpy ((*slot)->demangled, demangled_name);
978 xfree (demangled_name);
979 }
980 else
981 (*slot)->demangled[0] = '\0';
982 }
983
984 gsymbol->name = (*slot)->mangled + lookup_len - len;
985 if ((*slot)->demangled[0] != '\0')
986 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
987 &per_bfd->storage_obstack);
988 else
989 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
990 }
991
992 /* Return the source code name of a symbol. In languages where
993 demangling is necessary, this is the demangled name. */
994
995 const char *
996 symbol_natural_name (const struct general_symbol_info *gsymbol)
997 {
998 switch (gsymbol->language)
999 {
1000 case language_cplus:
1001 case language_d:
1002 case language_go:
1003 case language_java:
1004 case language_objc:
1005 case language_fortran:
1006 if (symbol_get_demangled_name (gsymbol) != NULL)
1007 return symbol_get_demangled_name (gsymbol);
1008 break;
1009 case language_ada:
1010 return ada_decode_symbol (gsymbol);
1011 default:
1012 break;
1013 }
1014 return gsymbol->name;
1015 }
1016
1017 /* Return the demangled name for a symbol based on the language for
1018 that symbol. If no demangled name exists, return NULL. */
1019
1020 const char *
1021 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1022 {
1023 const char *dem_name = NULL;
1024
1025 switch (gsymbol->language)
1026 {
1027 case language_cplus:
1028 case language_d:
1029 case language_go:
1030 case language_java:
1031 case language_objc:
1032 case language_fortran:
1033 dem_name = symbol_get_demangled_name (gsymbol);
1034 break;
1035 case language_ada:
1036 dem_name = ada_decode_symbol (gsymbol);
1037 break;
1038 default:
1039 break;
1040 }
1041 return dem_name;
1042 }
1043
1044 /* Return the search name of a symbol---generally the demangled or
1045 linkage name of the symbol, depending on how it will be searched for.
1046 If there is no distinct demangled name, then returns the same value
1047 (same pointer) as SYMBOL_LINKAGE_NAME. */
1048
1049 const char *
1050 symbol_search_name (const struct general_symbol_info *gsymbol)
1051 {
1052 if (gsymbol->language == language_ada)
1053 return gsymbol->name;
1054 else
1055 return symbol_natural_name (gsymbol);
1056 }
1057
1058 /* Initialize the structure fields to zero values. */
1059
1060 void
1061 init_sal (struct symtab_and_line *sal)
1062 {
1063 memset (sal, 0, sizeof (*sal));
1064 }
1065 \f
1066
1067 /* Return 1 if the two sections are the same, or if they could
1068 plausibly be copies of each other, one in an original object
1069 file and another in a separated debug file. */
1070
1071 int
1072 matching_obj_sections (struct obj_section *obj_first,
1073 struct obj_section *obj_second)
1074 {
1075 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1076 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1077 struct objfile *obj;
1078
1079 /* If they're the same section, then they match. */
1080 if (first == second)
1081 return 1;
1082
1083 /* If either is NULL, give up. */
1084 if (first == NULL || second == NULL)
1085 return 0;
1086
1087 /* This doesn't apply to absolute symbols. */
1088 if (first->owner == NULL || second->owner == NULL)
1089 return 0;
1090
1091 /* If they're in the same object file, they must be different sections. */
1092 if (first->owner == second->owner)
1093 return 0;
1094
1095 /* Check whether the two sections are potentially corresponding. They must
1096 have the same size, address, and name. We can't compare section indexes,
1097 which would be more reliable, because some sections may have been
1098 stripped. */
1099 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1100 return 0;
1101
1102 /* In-memory addresses may start at a different offset, relativize them. */
1103 if (bfd_get_section_vma (first->owner, first)
1104 - bfd_get_start_address (first->owner)
1105 != bfd_get_section_vma (second->owner, second)
1106 - bfd_get_start_address (second->owner))
1107 return 0;
1108
1109 if (bfd_get_section_name (first->owner, first) == NULL
1110 || bfd_get_section_name (second->owner, second) == NULL
1111 || strcmp (bfd_get_section_name (first->owner, first),
1112 bfd_get_section_name (second->owner, second)) != 0)
1113 return 0;
1114
1115 /* Otherwise check that they are in corresponding objfiles. */
1116
1117 ALL_OBJFILES (obj)
1118 if (obj->obfd == first->owner)
1119 break;
1120 gdb_assert (obj != NULL);
1121
1122 if (obj->separate_debug_objfile != NULL
1123 && obj->separate_debug_objfile->obfd == second->owner)
1124 return 1;
1125 if (obj->separate_debug_objfile_backlink != NULL
1126 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1127 return 1;
1128
1129 return 0;
1130 }
1131
1132 /* See symtab.h. */
1133
1134 void
1135 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1136 {
1137 struct objfile *objfile;
1138 struct bound_minimal_symbol msymbol;
1139
1140 /* If we know that this is not a text address, return failure. This is
1141 necessary because we loop based on texthigh and textlow, which do
1142 not include the data ranges. */
1143 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1144 if (msymbol.minsym
1145 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1146 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1147 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1148 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1150 return;
1151
1152 ALL_OBJFILES (objfile)
1153 {
1154 struct compunit_symtab *cust = NULL;
1155
1156 if (objfile->sf)
1157 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1158 pc, section, 0);
1159 if (cust)
1160 return;
1161 }
1162 }
1163 \f
1164 /* Hash function for the symbol cache. */
1165
1166 static unsigned int
1167 hash_symbol_entry (const struct objfile *objfile_context,
1168 const char *name, domain_enum domain)
1169 {
1170 unsigned int hash = (uintptr_t) objfile_context;
1171
1172 if (name != NULL)
1173 hash += htab_hash_string (name);
1174
1175 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1176 to map to the same slot. */
1177 if (domain == STRUCT_DOMAIN)
1178 hash += VAR_DOMAIN * 7;
1179 else
1180 hash += domain * 7;
1181
1182 return hash;
1183 }
1184
1185 /* Equality function for the symbol cache. */
1186
1187 static int
1188 eq_symbol_entry (const struct symbol_cache_slot *slot,
1189 const struct objfile *objfile_context,
1190 const char *name, domain_enum domain)
1191 {
1192 const char *slot_name;
1193 domain_enum slot_domain;
1194
1195 if (slot->state == SYMBOL_SLOT_UNUSED)
1196 return 0;
1197
1198 if (slot->objfile_context != objfile_context)
1199 return 0;
1200
1201 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1202 {
1203 slot_name = slot->value.not_found.name;
1204 slot_domain = slot->value.not_found.domain;
1205 }
1206 else
1207 {
1208 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1209 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1210 }
1211
1212 /* NULL names match. */
1213 if (slot_name == NULL && name == NULL)
1214 {
1215 /* But there's no point in calling symbol_matches_domain in the
1216 SYMBOL_SLOT_FOUND case. */
1217 if (slot_domain != domain)
1218 return 0;
1219 }
1220 else if (slot_name != NULL && name != NULL)
1221 {
1222 /* It's important that we use the same comparison that was done the
1223 first time through. If the slot records a found symbol, then this
1224 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1225 It also means using symbol_matches_domain for found symbols.
1226 See block.c.
1227
1228 If the slot records a not-found symbol, then require a precise match.
1229 We could still be lax with whitespace like strcmp_iw though. */
1230
1231 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1232 {
1233 if (strcmp (slot_name, name) != 0)
1234 return 0;
1235 if (slot_domain != domain)
1236 return 0;
1237 }
1238 else
1239 {
1240 struct symbol *sym = slot->value.found.symbol;
1241
1242 if (strcmp_iw (slot_name, name) != 0)
1243 return 0;
1244 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1245 slot_domain, domain))
1246 return 0;
1247 }
1248 }
1249 else
1250 {
1251 /* Only one name is NULL. */
1252 return 0;
1253 }
1254
1255 return 1;
1256 }
1257
1258 /* Given a cache of size SIZE, return the size of the struct (with variable
1259 length array) in bytes. */
1260
1261 static size_t
1262 symbol_cache_byte_size (unsigned int size)
1263 {
1264 return (sizeof (struct block_symbol_cache)
1265 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1266 }
1267
1268 /* Resize CACHE. */
1269
1270 static void
1271 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1272 {
1273 /* If there's no change in size, don't do anything.
1274 All caches have the same size, so we can just compare with the size
1275 of the global symbols cache. */
1276 if ((cache->global_symbols != NULL
1277 && cache->global_symbols->size == new_size)
1278 || (cache->global_symbols == NULL
1279 && new_size == 0))
1280 return;
1281
1282 xfree (cache->global_symbols);
1283 xfree (cache->static_symbols);
1284
1285 if (new_size == 0)
1286 {
1287 cache->global_symbols = NULL;
1288 cache->static_symbols = NULL;
1289 }
1290 else
1291 {
1292 size_t total_size = symbol_cache_byte_size (new_size);
1293
1294 cache->global_symbols = xcalloc (1, total_size);
1295 cache->static_symbols = xcalloc (1, total_size);
1296 cache->global_symbols->size = new_size;
1297 cache->static_symbols->size = new_size;
1298 }
1299 }
1300
1301 /* Make a symbol cache of size SIZE. */
1302
1303 static struct symbol_cache *
1304 make_symbol_cache (unsigned int size)
1305 {
1306 struct symbol_cache *cache;
1307
1308 cache = XCNEW (struct symbol_cache);
1309 resize_symbol_cache (cache, symbol_cache_size);
1310 return cache;
1311 }
1312
1313 /* Free the space used by CACHE. */
1314
1315 static void
1316 free_symbol_cache (struct symbol_cache *cache)
1317 {
1318 xfree (cache->global_symbols);
1319 xfree (cache->static_symbols);
1320 xfree (cache);
1321 }
1322
1323 /* Return the symbol cache of PSPACE.
1324 Create one if it doesn't exist yet. */
1325
1326 static struct symbol_cache *
1327 get_symbol_cache (struct program_space *pspace)
1328 {
1329 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1330
1331 if (cache == NULL)
1332 {
1333 cache = make_symbol_cache (symbol_cache_size);
1334 set_program_space_data (pspace, symbol_cache_key, cache);
1335 }
1336
1337 return cache;
1338 }
1339
1340 /* Delete the symbol cache of PSPACE.
1341 Called when PSPACE is destroyed. */
1342
1343 static void
1344 symbol_cache_cleanup (struct program_space *pspace, void *data)
1345 {
1346 struct symbol_cache *cache = data;
1347
1348 free_symbol_cache (cache);
1349 }
1350
1351 /* Set the size of the symbol cache in all program spaces. */
1352
1353 static void
1354 set_symbol_cache_size (unsigned int new_size)
1355 {
1356 struct program_space *pspace;
1357
1358 ALL_PSPACES (pspace)
1359 {
1360 struct symbol_cache *cache
1361 = program_space_data (pspace, symbol_cache_key);
1362
1363 /* The pspace could have been created but not have a cache yet. */
1364 if (cache != NULL)
1365 resize_symbol_cache (cache, new_size);
1366 }
1367 }
1368
1369 /* Called when symbol-cache-size is set. */
1370
1371 static void
1372 set_symbol_cache_size_handler (char *args, int from_tty,
1373 struct cmd_list_element *c)
1374 {
1375 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1376 {
1377 /* Restore the previous value.
1378 This is the value the "show" command prints. */
1379 new_symbol_cache_size = symbol_cache_size;
1380
1381 error (_("Symbol cache size is too large, max is %u."),
1382 MAX_SYMBOL_CACHE_SIZE);
1383 }
1384 symbol_cache_size = new_symbol_cache_size;
1385
1386 set_symbol_cache_size (symbol_cache_size);
1387 }
1388
1389 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1390 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1391 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1392 failed (and thus this one will too), or NULL if the symbol is not present
1393 in the cache.
1394 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1395 set to the cache and slot of the symbol to save the result of a full lookup
1396 attempt. */
1397
1398 static struct block_symbol
1399 symbol_cache_lookup (struct symbol_cache *cache,
1400 struct objfile *objfile_context, int block,
1401 const char *name, domain_enum domain,
1402 struct block_symbol_cache **bsc_ptr,
1403 struct symbol_cache_slot **slot_ptr)
1404 {
1405 struct block_symbol_cache *bsc;
1406 unsigned int hash;
1407 struct symbol_cache_slot *slot;
1408
1409 if (block == GLOBAL_BLOCK)
1410 bsc = cache->global_symbols;
1411 else
1412 bsc = cache->static_symbols;
1413 if (bsc == NULL)
1414 {
1415 *bsc_ptr = NULL;
1416 *slot_ptr = NULL;
1417 return (struct block_symbol) {NULL, NULL};
1418 }
1419
1420 hash = hash_symbol_entry (objfile_context, name, domain);
1421 slot = bsc->symbols + hash % bsc->size;
1422
1423 if (eq_symbol_entry (slot, objfile_context, name, domain))
1424 {
1425 if (symbol_lookup_debug)
1426 fprintf_unfiltered (gdb_stdlog,
1427 "%s block symbol cache hit%s for %s, %s\n",
1428 block == GLOBAL_BLOCK ? "Global" : "Static",
1429 slot->state == SYMBOL_SLOT_NOT_FOUND
1430 ? " (not found)" : "",
1431 name, domain_name (domain));
1432 ++bsc->hits;
1433 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1434 return SYMBOL_LOOKUP_FAILED;
1435 return slot->value.found;
1436 }
1437
1438 /* Symbol is not present in the cache. */
1439
1440 *bsc_ptr = bsc;
1441 *slot_ptr = slot;
1442
1443 if (symbol_lookup_debug)
1444 {
1445 fprintf_unfiltered (gdb_stdlog,
1446 "%s block symbol cache miss for %s, %s\n",
1447 block == GLOBAL_BLOCK ? "Global" : "Static",
1448 name, domain_name (domain));
1449 }
1450 ++bsc->misses;
1451 return (struct block_symbol) {NULL, NULL};
1452 }
1453
1454 /* Clear out SLOT. */
1455
1456 static void
1457 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1458 {
1459 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1460 xfree (slot->value.not_found.name);
1461 slot->state = SYMBOL_SLOT_UNUSED;
1462 }
1463
1464 /* Mark SYMBOL as found in SLOT.
1465 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1466 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1467 necessarily the objfile the symbol was found in. */
1468
1469 static void
1470 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1471 struct symbol_cache_slot *slot,
1472 struct objfile *objfile_context,
1473 struct symbol *symbol,
1474 const struct block *block)
1475 {
1476 if (bsc == NULL)
1477 return;
1478 if (slot->state != SYMBOL_SLOT_UNUSED)
1479 {
1480 ++bsc->collisions;
1481 symbol_cache_clear_slot (slot);
1482 }
1483 slot->state = SYMBOL_SLOT_FOUND;
1484 slot->objfile_context = objfile_context;
1485 slot->value.found.symbol = symbol;
1486 slot->value.found.block = block;
1487 }
1488
1489 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1490 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1491 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1492
1493 static void
1494 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1495 struct symbol_cache_slot *slot,
1496 struct objfile *objfile_context,
1497 const char *name, domain_enum domain)
1498 {
1499 if (bsc == NULL)
1500 return;
1501 if (slot->state != SYMBOL_SLOT_UNUSED)
1502 {
1503 ++bsc->collisions;
1504 symbol_cache_clear_slot (slot);
1505 }
1506 slot->state = SYMBOL_SLOT_NOT_FOUND;
1507 slot->objfile_context = objfile_context;
1508 slot->value.not_found.name = xstrdup (name);
1509 slot->value.not_found.domain = domain;
1510 }
1511
1512 /* Flush the symbol cache of PSPACE. */
1513
1514 static void
1515 symbol_cache_flush (struct program_space *pspace)
1516 {
1517 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1518 int pass;
1519 size_t total_size;
1520
1521 if (cache == NULL)
1522 return;
1523 if (cache->global_symbols == NULL)
1524 {
1525 gdb_assert (symbol_cache_size == 0);
1526 gdb_assert (cache->static_symbols == NULL);
1527 return;
1528 }
1529
1530 /* If the cache is untouched since the last flush, early exit.
1531 This is important for performance during the startup of a program linked
1532 with 100s (or 1000s) of shared libraries. */
1533 if (cache->global_symbols->misses == 0
1534 && cache->static_symbols->misses == 0)
1535 return;
1536
1537 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1538 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1539
1540 for (pass = 0; pass < 2; ++pass)
1541 {
1542 struct block_symbol_cache *bsc
1543 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1544 unsigned int i;
1545
1546 for (i = 0; i < bsc->size; ++i)
1547 symbol_cache_clear_slot (&bsc->symbols[i]);
1548 }
1549
1550 cache->global_symbols->hits = 0;
1551 cache->global_symbols->misses = 0;
1552 cache->global_symbols->collisions = 0;
1553 cache->static_symbols->hits = 0;
1554 cache->static_symbols->misses = 0;
1555 cache->static_symbols->collisions = 0;
1556 }
1557
1558 /* Dump CACHE. */
1559
1560 static void
1561 symbol_cache_dump (const struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575 unsigned int i;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global symbols:\n");
1579 else
1580 printf_filtered ("Static symbols:\n");
1581
1582 for (i = 0; i < bsc->size; ++i)
1583 {
1584 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1585
1586 QUIT;
1587
1588 switch (slot->state)
1589 {
1590 case SYMBOL_SLOT_UNUSED:
1591 break;
1592 case SYMBOL_SLOT_NOT_FOUND:
1593 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1594 host_address_to_string (slot->objfile_context),
1595 slot->value.not_found.name,
1596 domain_name (slot->value.not_found.domain));
1597 break;
1598 case SYMBOL_SLOT_FOUND:
1599 {
1600 struct symbol *found = slot->value.found.symbol;
1601 const struct objfile *context = slot->objfile_context;
1602
1603 printf_filtered (" [%4u] = %s, %s %s\n", i,
1604 host_address_to_string (context),
1605 SYMBOL_PRINT_NAME (found),
1606 domain_name (SYMBOL_DOMAIN (found)));
1607 break;
1608 }
1609 }
1610 }
1611 }
1612 }
1613
1614 /* The "mt print symbol-cache" command. */
1615
1616 static void
1617 maintenance_print_symbol_cache (char *args, int from_tty)
1618 {
1619 struct program_space *pspace;
1620
1621 ALL_PSPACES (pspace)
1622 {
1623 struct symbol_cache *cache;
1624
1625 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1626 pspace->num,
1627 pspace->symfile_object_file != NULL
1628 ? objfile_name (pspace->symfile_object_file)
1629 : "(no object file)");
1630
1631 /* If the cache hasn't been created yet, avoid creating one. */
1632 cache = program_space_data (pspace, symbol_cache_key);
1633 if (cache == NULL)
1634 printf_filtered (" <empty>\n");
1635 else
1636 symbol_cache_dump (cache);
1637 }
1638 }
1639
1640 /* The "mt flush-symbol-cache" command. */
1641
1642 static void
1643 maintenance_flush_symbol_cache (char *args, int from_tty)
1644 {
1645 struct program_space *pspace;
1646
1647 ALL_PSPACES (pspace)
1648 {
1649 symbol_cache_flush (pspace);
1650 }
1651 }
1652
1653 /* Print usage statistics of CACHE. */
1654
1655 static void
1656 symbol_cache_stats (struct symbol_cache *cache)
1657 {
1658 int pass;
1659
1660 if (cache->global_symbols == NULL)
1661 {
1662 printf_filtered (" <disabled>\n");
1663 return;
1664 }
1665
1666 for (pass = 0; pass < 2; ++pass)
1667 {
1668 const struct block_symbol_cache *bsc
1669 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1670
1671 QUIT;
1672
1673 if (pass == 0)
1674 printf_filtered ("Global block cache stats:\n");
1675 else
1676 printf_filtered ("Static block cache stats:\n");
1677
1678 printf_filtered (" size: %u\n", bsc->size);
1679 printf_filtered (" hits: %u\n", bsc->hits);
1680 printf_filtered (" misses: %u\n", bsc->misses);
1681 printf_filtered (" collisions: %u\n", bsc->collisions);
1682 }
1683 }
1684
1685 /* The "mt print symbol-cache-statistics" command. */
1686
1687 static void
1688 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1689 {
1690 struct program_space *pspace;
1691
1692 ALL_PSPACES (pspace)
1693 {
1694 struct symbol_cache *cache;
1695
1696 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1697 pspace->num,
1698 pspace->symfile_object_file != NULL
1699 ? objfile_name (pspace->symfile_object_file)
1700 : "(no object file)");
1701
1702 /* If the cache hasn't been created yet, avoid creating one. */
1703 cache = program_space_data (pspace, symbol_cache_key);
1704 if (cache == NULL)
1705 printf_filtered (" empty, no stats available\n");
1706 else
1707 symbol_cache_stats (cache);
1708 }
1709 }
1710
1711 /* This module's 'new_objfile' observer. */
1712
1713 static void
1714 symtab_new_objfile_observer (struct objfile *objfile)
1715 {
1716 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1717 symbol_cache_flush (current_program_space);
1718 }
1719
1720 /* This module's 'free_objfile' observer. */
1721
1722 static void
1723 symtab_free_objfile_observer (struct objfile *objfile)
1724 {
1725 symbol_cache_flush (objfile->pspace);
1726 }
1727 \f
1728 /* Debug symbols usually don't have section information. We need to dig that
1729 out of the minimal symbols and stash that in the debug symbol. */
1730
1731 void
1732 fixup_section (struct general_symbol_info *ginfo,
1733 CORE_ADDR addr, struct objfile *objfile)
1734 {
1735 struct minimal_symbol *msym;
1736
1737 /* First, check whether a minimal symbol with the same name exists
1738 and points to the same address. The address check is required
1739 e.g. on PowerPC64, where the minimal symbol for a function will
1740 point to the function descriptor, while the debug symbol will
1741 point to the actual function code. */
1742 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1743 if (msym)
1744 ginfo->section = MSYMBOL_SECTION (msym);
1745 else
1746 {
1747 /* Static, function-local variables do appear in the linker
1748 (minimal) symbols, but are frequently given names that won't
1749 be found via lookup_minimal_symbol(). E.g., it has been
1750 observed in frv-uclinux (ELF) executables that a static,
1751 function-local variable named "foo" might appear in the
1752 linker symbols as "foo.6" or "foo.3". Thus, there is no
1753 point in attempting to extend the lookup-by-name mechanism to
1754 handle this case due to the fact that there can be multiple
1755 names.
1756
1757 So, instead, search the section table when lookup by name has
1758 failed. The ``addr'' and ``endaddr'' fields may have already
1759 been relocated. If so, the relocation offset (i.e. the
1760 ANOFFSET value) needs to be subtracted from these values when
1761 performing the comparison. We unconditionally subtract it,
1762 because, when no relocation has been performed, the ANOFFSET
1763 value will simply be zero.
1764
1765 The address of the symbol whose section we're fixing up HAS
1766 NOT BEEN adjusted (relocated) yet. It can't have been since
1767 the section isn't yet known and knowing the section is
1768 necessary in order to add the correct relocation value. In
1769 other words, we wouldn't even be in this function (attempting
1770 to compute the section) if it were already known.
1771
1772 Note that it is possible to search the minimal symbols
1773 (subtracting the relocation value if necessary) to find the
1774 matching minimal symbol, but this is overkill and much less
1775 efficient. It is not necessary to find the matching minimal
1776 symbol, only its section.
1777
1778 Note that this technique (of doing a section table search)
1779 can fail when unrelocated section addresses overlap. For
1780 this reason, we still attempt a lookup by name prior to doing
1781 a search of the section table. */
1782
1783 struct obj_section *s;
1784 int fallback = -1;
1785
1786 ALL_OBJFILE_OSECTIONS (objfile, s)
1787 {
1788 int idx = s - objfile->sections;
1789 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1790
1791 if (fallback == -1)
1792 fallback = idx;
1793
1794 if (obj_section_addr (s) - offset <= addr
1795 && addr < obj_section_endaddr (s) - offset)
1796 {
1797 ginfo->section = idx;
1798 return;
1799 }
1800 }
1801
1802 /* If we didn't find the section, assume it is in the first
1803 section. If there is no allocated section, then it hardly
1804 matters what we pick, so just pick zero. */
1805 if (fallback == -1)
1806 ginfo->section = 0;
1807 else
1808 ginfo->section = fallback;
1809 }
1810 }
1811
1812 struct symbol *
1813 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1814 {
1815 CORE_ADDR addr;
1816
1817 if (!sym)
1818 return NULL;
1819
1820 if (!SYMBOL_OBJFILE_OWNED (sym))
1821 return sym;
1822
1823 /* We either have an OBJFILE, or we can get at it from the sym's
1824 symtab. Anything else is a bug. */
1825 gdb_assert (objfile || symbol_symtab (sym));
1826
1827 if (objfile == NULL)
1828 objfile = symbol_objfile (sym);
1829
1830 if (SYMBOL_OBJ_SECTION (objfile, sym))
1831 return sym;
1832
1833 /* We should have an objfile by now. */
1834 gdb_assert (objfile);
1835
1836 switch (SYMBOL_CLASS (sym))
1837 {
1838 case LOC_STATIC:
1839 case LOC_LABEL:
1840 addr = SYMBOL_VALUE_ADDRESS (sym);
1841 break;
1842 case LOC_BLOCK:
1843 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1844 break;
1845
1846 default:
1847 /* Nothing else will be listed in the minsyms -- no use looking
1848 it up. */
1849 return sym;
1850 }
1851
1852 fixup_section (&sym->ginfo, addr, objfile);
1853
1854 return sym;
1855 }
1856
1857 /* Compute the demangled form of NAME as used by the various symbol
1858 lookup functions. The result is stored in *RESULT_NAME. Returns a
1859 cleanup which can be used to clean up the result.
1860
1861 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1862 Normally, Ada symbol lookups are performed using the encoded name
1863 rather than the demangled name, and so it might seem to make sense
1864 for this function to return an encoded version of NAME.
1865 Unfortunately, we cannot do this, because this function is used in
1866 circumstances where it is not appropriate to try to encode NAME.
1867 For instance, when displaying the frame info, we demangle the name
1868 of each parameter, and then perform a symbol lookup inside our
1869 function using that demangled name. In Ada, certain functions
1870 have internally-generated parameters whose name contain uppercase
1871 characters. Encoding those name would result in those uppercase
1872 characters to become lowercase, and thus cause the symbol lookup
1873 to fail. */
1874
1875 struct cleanup *
1876 demangle_for_lookup (const char *name, enum language lang,
1877 const char **result_name)
1878 {
1879 char *demangled_name = NULL;
1880 const char *modified_name = NULL;
1881 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1882
1883 modified_name = name;
1884
1885 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1886 lookup, so we can always binary search. */
1887 if (lang == language_cplus)
1888 {
1889 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1890 if (demangled_name)
1891 {
1892 modified_name = demangled_name;
1893 make_cleanup (xfree, demangled_name);
1894 }
1895 else
1896 {
1897 /* If we were given a non-mangled name, canonicalize it
1898 according to the language (so far only for C++). */
1899 demangled_name = cp_canonicalize_string (name);
1900 if (demangled_name)
1901 {
1902 modified_name = demangled_name;
1903 make_cleanup (xfree, demangled_name);
1904 }
1905 }
1906 }
1907 else if (lang == language_java)
1908 {
1909 demangled_name = gdb_demangle (name,
1910 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1911 if (demangled_name)
1912 {
1913 modified_name = demangled_name;
1914 make_cleanup (xfree, demangled_name);
1915 }
1916 }
1917 else if (lang == language_d)
1918 {
1919 demangled_name = d_demangle (name, 0);
1920 if (demangled_name)
1921 {
1922 modified_name = demangled_name;
1923 make_cleanup (xfree, demangled_name);
1924 }
1925 }
1926 else if (lang == language_go)
1927 {
1928 demangled_name = go_demangle (name, 0);
1929 if (demangled_name)
1930 {
1931 modified_name = demangled_name;
1932 make_cleanup (xfree, demangled_name);
1933 }
1934 }
1935
1936 *result_name = modified_name;
1937 return cleanup;
1938 }
1939
1940 /* See symtab.h.
1941
1942 This function (or rather its subordinates) have a bunch of loops and
1943 it would seem to be attractive to put in some QUIT's (though I'm not really
1944 sure whether it can run long enough to be really important). But there
1945 are a few calls for which it would appear to be bad news to quit
1946 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1947 that there is C++ code below which can error(), but that probably
1948 doesn't affect these calls since they are looking for a known
1949 variable and thus can probably assume it will never hit the C++
1950 code). */
1951
1952 struct block_symbol
1953 lookup_symbol_in_language (const char *name, const struct block *block,
1954 const domain_enum domain, enum language lang,
1955 struct field_of_this_result *is_a_field_of_this)
1956 {
1957 const char *modified_name;
1958 struct block_symbol returnval;
1959 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1960
1961 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1962 is_a_field_of_this);
1963 do_cleanups (cleanup);
1964
1965 return returnval;
1966 }
1967
1968 /* See symtab.h. */
1969
1970 struct block_symbol
1971 lookup_symbol (const char *name, const struct block *block,
1972 domain_enum domain,
1973 struct field_of_this_result *is_a_field_of_this)
1974 {
1975 return lookup_symbol_in_language (name, block, domain,
1976 current_language->la_language,
1977 is_a_field_of_this);
1978 }
1979
1980 /* See symtab.h. */
1981
1982 struct block_symbol
1983 lookup_language_this (const struct language_defn *lang,
1984 const struct block *block)
1985 {
1986 if (lang->la_name_of_this == NULL || block == NULL)
1987 return (struct block_symbol) {NULL, NULL};
1988
1989 if (symbol_lookup_debug > 1)
1990 {
1991 struct objfile *objfile = lookup_objfile_from_block (block);
1992
1993 fprintf_unfiltered (gdb_stdlog,
1994 "lookup_language_this (%s, %s (objfile %s))",
1995 lang->la_name, host_address_to_string (block),
1996 objfile_debug_name (objfile));
1997 }
1998
1999 while (block)
2000 {
2001 struct symbol *sym;
2002
2003 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2004 if (sym != NULL)
2005 {
2006 if (symbol_lookup_debug > 1)
2007 {
2008 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2009 SYMBOL_PRINT_NAME (sym),
2010 host_address_to_string (sym),
2011 host_address_to_string (block));
2012 }
2013 return (struct block_symbol) {sym, block};
2014 }
2015 if (BLOCK_FUNCTION (block))
2016 break;
2017 block = BLOCK_SUPERBLOCK (block);
2018 }
2019
2020 if (symbol_lookup_debug > 1)
2021 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2022 return (struct block_symbol) {NULL, NULL};
2023 }
2024
2025 /* Given TYPE, a structure/union,
2026 return 1 if the component named NAME from the ultimate target
2027 structure/union is defined, otherwise, return 0. */
2028
2029 static int
2030 check_field (struct type *type, const char *name,
2031 struct field_of_this_result *is_a_field_of_this)
2032 {
2033 int i;
2034
2035 /* The type may be a stub. */
2036 type = check_typedef (type);
2037
2038 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2039 {
2040 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2041
2042 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2043 {
2044 is_a_field_of_this->type = type;
2045 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2046 return 1;
2047 }
2048 }
2049
2050 /* C++: If it was not found as a data field, then try to return it
2051 as a pointer to a method. */
2052
2053 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2054 {
2055 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2056 {
2057 is_a_field_of_this->type = type;
2058 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2059 return 1;
2060 }
2061 }
2062
2063 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2064 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2065 return 1;
2066
2067 return 0;
2068 }
2069
2070 /* Behave like lookup_symbol except that NAME is the natural name
2071 (e.g., demangled name) of the symbol that we're looking for. */
2072
2073 static struct block_symbol
2074 lookup_symbol_aux (const char *name, const struct block *block,
2075 const domain_enum domain, enum language language,
2076 struct field_of_this_result *is_a_field_of_this)
2077 {
2078 struct block_symbol result;
2079 const struct language_defn *langdef;
2080
2081 if (symbol_lookup_debug)
2082 {
2083 struct objfile *objfile = lookup_objfile_from_block (block);
2084
2085 fprintf_unfiltered (gdb_stdlog,
2086 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2087 name, host_address_to_string (block),
2088 objfile != NULL
2089 ? objfile_debug_name (objfile) : "NULL",
2090 domain_name (domain), language_str (language));
2091 }
2092
2093 /* Make sure we do something sensible with is_a_field_of_this, since
2094 the callers that set this parameter to some non-null value will
2095 certainly use it later. If we don't set it, the contents of
2096 is_a_field_of_this are undefined. */
2097 if (is_a_field_of_this != NULL)
2098 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2099
2100 /* Search specified block and its superiors. Don't search
2101 STATIC_BLOCK or GLOBAL_BLOCK. */
2102
2103 result = lookup_local_symbol (name, block, domain, language);
2104 if (result.symbol != NULL)
2105 {
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 host_address_to_string (result.symbol));
2110 }
2111 return result;
2112 }
2113
2114 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2115 check to see if NAME is a field of `this'. */
2116
2117 langdef = language_def (language);
2118
2119 /* Don't do this check if we are searching for a struct. It will
2120 not be found by check_field, but will be found by other
2121 means. */
2122 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2123 {
2124 result = lookup_language_this (langdef, block);
2125
2126 if (result.symbol)
2127 {
2128 struct type *t = result.symbol->type;
2129
2130 /* I'm not really sure that type of this can ever
2131 be typedefed; just be safe. */
2132 t = check_typedef (t);
2133 if (TYPE_CODE (t) == TYPE_CODE_PTR
2134 || TYPE_CODE (t) == TYPE_CODE_REF)
2135 t = TYPE_TARGET_TYPE (t);
2136
2137 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2138 && TYPE_CODE (t) != TYPE_CODE_UNION)
2139 error (_("Internal error: `%s' is not an aggregate"),
2140 langdef->la_name_of_this);
2141
2142 if (check_field (t, name, is_a_field_of_this))
2143 {
2144 if (symbol_lookup_debug)
2145 {
2146 fprintf_unfiltered (gdb_stdlog,
2147 "lookup_symbol_aux (...) = NULL\n");
2148 }
2149 return (struct block_symbol) {NULL, NULL};
2150 }
2151 }
2152 }
2153
2154 /* Now do whatever is appropriate for LANGUAGE to look
2155 up static and global variables. */
2156
2157 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2158 if (result.symbol != NULL)
2159 {
2160 if (symbol_lookup_debug)
2161 {
2162 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2163 host_address_to_string (result.symbol));
2164 }
2165 return result;
2166 }
2167
2168 /* Now search all static file-level symbols. Not strictly correct,
2169 but more useful than an error. */
2170
2171 result = lookup_static_symbol (name, domain);
2172 if (symbol_lookup_debug)
2173 {
2174 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2175 result.symbol != NULL
2176 ? host_address_to_string (result.symbol)
2177 : "NULL");
2178 }
2179 return result;
2180 }
2181
2182 /* Check to see if the symbol is defined in BLOCK or its superiors.
2183 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2184
2185 static struct block_symbol
2186 lookup_local_symbol (const char *name, const struct block *block,
2187 const domain_enum domain,
2188 enum language language)
2189 {
2190 struct symbol *sym;
2191 const struct block *static_block = block_static_block (block);
2192 const char *scope = block_scope (block);
2193
2194 /* Check if either no block is specified or it's a global block. */
2195
2196 if (static_block == NULL)
2197 return (struct block_symbol) {NULL, NULL};
2198
2199 while (block != static_block)
2200 {
2201 sym = lookup_symbol_in_block (name, block, domain);
2202 if (sym != NULL)
2203 return (struct block_symbol) {sym, block};
2204
2205 if (language == language_cplus || language == language_fortran)
2206 {
2207 struct block_symbol sym
2208 = cp_lookup_symbol_imports_or_template (scope, name, block,
2209 domain);
2210
2211 if (sym.symbol != NULL)
2212 return sym;
2213 }
2214
2215 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2216 break;
2217 block = BLOCK_SUPERBLOCK (block);
2218 }
2219
2220 /* We've reached the end of the function without finding a result. */
2221
2222 return (struct block_symbol) {NULL, NULL};
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct objfile *
2228 lookup_objfile_from_block (const struct block *block)
2229 {
2230 struct objfile *obj;
2231 struct compunit_symtab *cust;
2232
2233 if (block == NULL)
2234 return NULL;
2235
2236 block = block_global_block (block);
2237 /* Look through all blockvectors. */
2238 ALL_COMPUNITS (obj, cust)
2239 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2240 GLOBAL_BLOCK))
2241 {
2242 if (obj->separate_debug_objfile_backlink)
2243 obj = obj->separate_debug_objfile_backlink;
2244
2245 return obj;
2246 }
2247
2248 return NULL;
2249 }
2250
2251 /* See symtab.h. */
2252
2253 struct symbol *
2254 lookup_symbol_in_block (const char *name, const struct block *block,
2255 const domain_enum domain)
2256 {
2257 struct symbol *sym;
2258
2259 if (symbol_lookup_debug > 1)
2260 {
2261 struct objfile *objfile = lookup_objfile_from_block (block);
2262
2263 fprintf_unfiltered (gdb_stdlog,
2264 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2265 name, host_address_to_string (block),
2266 objfile_debug_name (objfile),
2267 domain_name (domain));
2268 }
2269
2270 sym = block_lookup_symbol (block, name, domain);
2271 if (sym)
2272 {
2273 if (symbol_lookup_debug > 1)
2274 {
2275 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2276 host_address_to_string (sym));
2277 }
2278 return fixup_symbol_section (sym, NULL);
2279 }
2280
2281 if (symbol_lookup_debug > 1)
2282 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2283 return NULL;
2284 }
2285
2286 /* See symtab.h. */
2287
2288 struct block_symbol
2289 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2290 const char *name,
2291 const domain_enum domain)
2292 {
2293 struct objfile *objfile;
2294
2295 for (objfile = main_objfile;
2296 objfile;
2297 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2298 {
2299 struct block_symbol result
2300 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2301
2302 if (result.symbol != NULL)
2303 return result;
2304 }
2305
2306 return (struct block_symbol) {NULL, NULL};
2307 }
2308
2309 /* Check to see if the symbol is defined in one of the OBJFILE's
2310 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2311 depending on whether or not we want to search global symbols or
2312 static symbols. */
2313
2314 static struct block_symbol
2315 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2316 const char *name, const domain_enum domain)
2317 {
2318 struct compunit_symtab *cust;
2319
2320 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2321
2322 if (symbol_lookup_debug > 1)
2323 {
2324 fprintf_unfiltered (gdb_stdlog,
2325 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2326 objfile_debug_name (objfile),
2327 block_index == GLOBAL_BLOCK
2328 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2329 name, domain_name (domain));
2330 }
2331
2332 ALL_OBJFILE_COMPUNITS (objfile, cust)
2333 {
2334 const struct blockvector *bv;
2335 const struct block *block;
2336 struct block_symbol result;
2337
2338 bv = COMPUNIT_BLOCKVECTOR (cust);
2339 block = BLOCKVECTOR_BLOCK (bv, block_index);
2340 result.symbol = block_lookup_symbol_primary (block, name, domain);
2341 result.block = block;
2342 if (result.symbol != NULL)
2343 {
2344 if (symbol_lookup_debug > 1)
2345 {
2346 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2347 host_address_to_string (result.symbol),
2348 host_address_to_string (block));
2349 }
2350 result.symbol = fixup_symbol_section (result.symbol, objfile);
2351 return result;
2352
2353 }
2354 }
2355
2356 if (symbol_lookup_debug > 1)
2357 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2358 return (struct block_symbol) {NULL, NULL};
2359 }
2360
2361 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2362 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2363 and all associated separate debug objfiles.
2364
2365 Normally we only look in OBJFILE, and not any separate debug objfiles
2366 because the outer loop will cause them to be searched too. This case is
2367 different. Here we're called from search_symbols where it will only
2368 call us for the the objfile that contains a matching minsym. */
2369
2370 static struct block_symbol
2371 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2372 const char *linkage_name,
2373 domain_enum domain)
2374 {
2375 enum language lang = current_language->la_language;
2376 const char *modified_name;
2377 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2378 &modified_name);
2379 struct objfile *main_objfile, *cur_objfile;
2380
2381 if (objfile->separate_debug_objfile_backlink)
2382 main_objfile = objfile->separate_debug_objfile_backlink;
2383 else
2384 main_objfile = objfile;
2385
2386 for (cur_objfile = main_objfile;
2387 cur_objfile;
2388 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2389 {
2390 struct block_symbol result;
2391
2392 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2393 modified_name, domain);
2394 if (result.symbol == NULL)
2395 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2396 modified_name, domain);
2397 if (result.symbol != NULL)
2398 {
2399 do_cleanups (cleanup);
2400 return result;
2401 }
2402 }
2403
2404 do_cleanups (cleanup);
2405 return (struct block_symbol) {NULL, NULL};
2406 }
2407
2408 /* A helper function that throws an exception when a symbol was found
2409 in a psymtab but not in a symtab. */
2410
2411 static void ATTRIBUTE_NORETURN
2412 error_in_psymtab_expansion (int block_index, const char *name,
2413 struct compunit_symtab *cust)
2414 {
2415 error (_("\
2416 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2417 %s may be an inlined function, or may be a template function\n \
2418 (if a template, try specifying an instantiation: %s<type>)."),
2419 block_index == GLOBAL_BLOCK ? "global" : "static",
2420 name,
2421 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2422 name, name);
2423 }
2424
2425 /* A helper function for various lookup routines that interfaces with
2426 the "quick" symbol table functions. */
2427
2428 static struct block_symbol
2429 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2430 const char *name, const domain_enum domain)
2431 {
2432 struct compunit_symtab *cust;
2433 const struct blockvector *bv;
2434 const struct block *block;
2435 struct block_symbol result;
2436
2437 if (!objfile->sf)
2438 return (struct block_symbol) {NULL, NULL};
2439
2440 if (symbol_lookup_debug > 1)
2441 {
2442 fprintf_unfiltered (gdb_stdlog,
2443 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2444 objfile_debug_name (objfile),
2445 block_index == GLOBAL_BLOCK
2446 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2447 name, domain_name (domain));
2448 }
2449
2450 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2451 if (cust == NULL)
2452 {
2453 if (symbol_lookup_debug > 1)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "lookup_symbol_via_quick_fns (...) = NULL\n");
2457 }
2458 return (struct block_symbol) {NULL, NULL};
2459 }
2460
2461 bv = COMPUNIT_BLOCKVECTOR (cust);
2462 block = BLOCKVECTOR_BLOCK (bv, block_index);
2463 result.symbol = block_lookup_symbol (block, name, domain);
2464 if (result.symbol == NULL)
2465 error_in_psymtab_expansion (block_index, name, cust);
2466
2467 if (symbol_lookup_debug > 1)
2468 {
2469 fprintf_unfiltered (gdb_stdlog,
2470 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2471 host_address_to_string (result.symbol),
2472 host_address_to_string (block));
2473 }
2474
2475 result.symbol = fixup_symbol_section (result.symbol, objfile);
2476 result.block = block;
2477 return result;
2478 }
2479
2480 /* See symtab.h. */
2481
2482 struct block_symbol
2483 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2484 const char *name,
2485 const struct block *block,
2486 const domain_enum domain)
2487 {
2488 struct block_symbol result;
2489
2490 /* NOTE: carlton/2003-05-19: The comments below were written when
2491 this (or what turned into this) was part of lookup_symbol_aux;
2492 I'm much less worried about these questions now, since these
2493 decisions have turned out well, but I leave these comments here
2494 for posterity. */
2495
2496 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2497 not it would be appropriate to search the current global block
2498 here as well. (That's what this code used to do before the
2499 is_a_field_of_this check was moved up.) On the one hand, it's
2500 redundant with the lookup in all objfiles search that happens
2501 next. On the other hand, if decode_line_1 is passed an argument
2502 like filename:var, then the user presumably wants 'var' to be
2503 searched for in filename. On the third hand, there shouldn't be
2504 multiple global variables all of which are named 'var', and it's
2505 not like decode_line_1 has ever restricted its search to only
2506 global variables in a single filename. All in all, only
2507 searching the static block here seems best: it's correct and it's
2508 cleanest. */
2509
2510 /* NOTE: carlton/2002-12-05: There's also a possible performance
2511 issue here: if you usually search for global symbols in the
2512 current file, then it would be slightly better to search the
2513 current global block before searching all the symtabs. But there
2514 are other factors that have a much greater effect on performance
2515 than that one, so I don't think we should worry about that for
2516 now. */
2517
2518 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2519 the current objfile. Searching the current objfile first is useful
2520 for both matching user expectations as well as performance. */
2521
2522 result = lookup_symbol_in_static_block (name, block, domain);
2523 if (result.symbol != NULL)
2524 return result;
2525
2526 /* If we didn't find a definition for a builtin type in the static block,
2527 search for it now. This is actually the right thing to do and can be
2528 a massive performance win. E.g., when debugging a program with lots of
2529 shared libraries we could search all of them only to find out the
2530 builtin type isn't defined in any of them. This is common for types
2531 like "void". */
2532 if (domain == VAR_DOMAIN)
2533 {
2534 struct gdbarch *gdbarch;
2535
2536 if (block == NULL)
2537 gdbarch = target_gdbarch ();
2538 else
2539 gdbarch = block_gdbarch (block);
2540 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2541 gdbarch, name);
2542 result.block = NULL;
2543 if (result.symbol != NULL)
2544 return result;
2545 }
2546
2547 return lookup_global_symbol (name, block, domain);
2548 }
2549
2550 /* See symtab.h. */
2551
2552 struct block_symbol
2553 lookup_symbol_in_static_block (const char *name,
2554 const struct block *block,
2555 const domain_enum domain)
2556 {
2557 const struct block *static_block = block_static_block (block);
2558 struct symbol *sym;
2559
2560 if (static_block == NULL)
2561 return (struct block_symbol) {NULL, NULL};
2562
2563 if (symbol_lookup_debug)
2564 {
2565 struct objfile *objfile = lookup_objfile_from_block (static_block);
2566
2567 fprintf_unfiltered (gdb_stdlog,
2568 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2569 " %s)\n",
2570 name,
2571 host_address_to_string (block),
2572 objfile_debug_name (objfile),
2573 domain_name (domain));
2574 }
2575
2576 sym = lookup_symbol_in_block (name, static_block, domain);
2577 if (symbol_lookup_debug)
2578 {
2579 fprintf_unfiltered (gdb_stdlog,
2580 "lookup_symbol_in_static_block (...) = %s\n",
2581 sym != NULL ? host_address_to_string (sym) : "NULL");
2582 }
2583 return (struct block_symbol) {sym, static_block};
2584 }
2585
2586 /* Perform the standard symbol lookup of NAME in OBJFILE:
2587 1) First search expanded symtabs, and if not found
2588 2) Search the "quick" symtabs (partial or .gdb_index).
2589 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2590
2591 static struct block_symbol
2592 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2593 const char *name, const domain_enum domain)
2594 {
2595 struct block_symbol result;
2596
2597 if (symbol_lookup_debug)
2598 {
2599 fprintf_unfiltered (gdb_stdlog,
2600 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2601 objfile_debug_name (objfile),
2602 block_index == GLOBAL_BLOCK
2603 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2604 name, domain_name (domain));
2605 }
2606
2607 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2608 name, domain);
2609 if (result.symbol != NULL)
2610 {
2611 if (symbol_lookup_debug)
2612 {
2613 fprintf_unfiltered (gdb_stdlog,
2614 "lookup_symbol_in_objfile (...) = %s"
2615 " (in symtabs)\n",
2616 host_address_to_string (result.symbol));
2617 }
2618 return result;
2619 }
2620
2621 result = lookup_symbol_via_quick_fns (objfile, block_index,
2622 name, domain);
2623 if (symbol_lookup_debug)
2624 {
2625 fprintf_unfiltered (gdb_stdlog,
2626 "lookup_symbol_in_objfile (...) = %s%s\n",
2627 result.symbol != NULL
2628 ? host_address_to_string (result.symbol)
2629 : "NULL",
2630 result.symbol != NULL ? " (via quick fns)" : "");
2631 }
2632 return result;
2633 }
2634
2635 /* See symtab.h. */
2636
2637 struct block_symbol
2638 lookup_static_symbol (const char *name, const domain_enum domain)
2639 {
2640 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2641 struct objfile *objfile;
2642 struct block_symbol result;
2643 struct block_symbol_cache *bsc;
2644 struct symbol_cache_slot *slot;
2645
2646 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2647 NULL for OBJFILE_CONTEXT. */
2648 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2649 &bsc, &slot);
2650 if (result.symbol != NULL)
2651 {
2652 if (SYMBOL_LOOKUP_FAILED_P (result))
2653 return (struct block_symbol) {NULL, NULL};
2654 return result;
2655 }
2656
2657 ALL_OBJFILES (objfile)
2658 {
2659 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2660 if (result.symbol != NULL)
2661 {
2662 /* Still pass NULL for OBJFILE_CONTEXT here. */
2663 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2664 result.block);
2665 return result;
2666 }
2667 }
2668
2669 /* Still pass NULL for OBJFILE_CONTEXT here. */
2670 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2671 return (struct block_symbol) {NULL, NULL};
2672 }
2673
2674 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2675
2676 struct global_sym_lookup_data
2677 {
2678 /* The name of the symbol we are searching for. */
2679 const char *name;
2680
2681 /* The domain to use for our search. */
2682 domain_enum domain;
2683
2684 /* The field where the callback should store the symbol if found.
2685 It should be initialized to {NULL, NULL} before the search is started. */
2686 struct block_symbol result;
2687 };
2688
2689 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2690 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2691 OBJFILE. The arguments for the search are passed via CB_DATA,
2692 which in reality is a pointer to struct global_sym_lookup_data. */
2693
2694 static int
2695 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2696 void *cb_data)
2697 {
2698 struct global_sym_lookup_data *data =
2699 (struct global_sym_lookup_data *) cb_data;
2700
2701 gdb_assert (data->result.symbol == NULL
2702 && data->result.block == NULL);
2703
2704 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2705 data->name, data->domain);
2706
2707 /* If we found a match, tell the iterator to stop. Otherwise,
2708 keep going. */
2709 return (data->result.symbol != NULL);
2710 }
2711
2712 /* See symtab.h. */
2713
2714 struct block_symbol
2715 lookup_global_symbol (const char *name,
2716 const struct block *block,
2717 const domain_enum domain)
2718 {
2719 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2720 struct block_symbol result;
2721 struct objfile *objfile;
2722 struct global_sym_lookup_data lookup_data;
2723 struct block_symbol_cache *bsc;
2724 struct symbol_cache_slot *slot;
2725
2726 objfile = lookup_objfile_from_block (block);
2727
2728 /* First see if we can find the symbol in the cache.
2729 This works because we use the current objfile to qualify the lookup. */
2730 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2731 &bsc, &slot);
2732 if (result.symbol != NULL)
2733 {
2734 if (SYMBOL_LOOKUP_FAILED_P (result))
2735 return (struct block_symbol) {NULL, NULL};
2736 return result;
2737 }
2738
2739 /* Call library-specific lookup procedure. */
2740 if (objfile != NULL)
2741 result = solib_global_lookup (objfile, name, domain);
2742
2743 /* If that didn't work go a global search (of global blocks, heh). */
2744 if (result.symbol == NULL)
2745 {
2746 memset (&lookup_data, 0, sizeof (lookup_data));
2747 lookup_data.name = name;
2748 lookup_data.domain = domain;
2749 gdbarch_iterate_over_objfiles_in_search_order
2750 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2751 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2752 result = lookup_data.result;
2753 }
2754
2755 if (result.symbol != NULL)
2756 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2757 else
2758 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2759
2760 return result;
2761 }
2762
2763 int
2764 symbol_matches_domain (enum language symbol_language,
2765 domain_enum symbol_domain,
2766 domain_enum domain)
2767 {
2768 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2769 A Java class declaration also defines a typedef for the class.
2770 Similarly, any Ada type declaration implicitly defines a typedef. */
2771 if (symbol_language == language_cplus
2772 || symbol_language == language_d
2773 || symbol_language == language_java
2774 || symbol_language == language_ada)
2775 {
2776 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2777 && symbol_domain == STRUCT_DOMAIN)
2778 return 1;
2779 }
2780 /* For all other languages, strict match is required. */
2781 return (symbol_domain == domain);
2782 }
2783
2784 /* See symtab.h. */
2785
2786 struct type *
2787 lookup_transparent_type (const char *name)
2788 {
2789 return current_language->la_lookup_transparent_type (name);
2790 }
2791
2792 /* A helper for basic_lookup_transparent_type that interfaces with the
2793 "quick" symbol table functions. */
2794
2795 static struct type *
2796 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2797 const char *name)
2798 {
2799 struct compunit_symtab *cust;
2800 const struct blockvector *bv;
2801 struct block *block;
2802 struct symbol *sym;
2803
2804 if (!objfile->sf)
2805 return NULL;
2806 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2807 STRUCT_DOMAIN);
2808 if (cust == NULL)
2809 return NULL;
2810
2811 bv = COMPUNIT_BLOCKVECTOR (cust);
2812 block = BLOCKVECTOR_BLOCK (bv, block_index);
2813 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2814 block_find_non_opaque_type, NULL);
2815 if (sym == NULL)
2816 error_in_psymtab_expansion (block_index, name, cust);
2817 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2818 return SYMBOL_TYPE (sym);
2819 }
2820
2821 /* Subroutine of basic_lookup_transparent_type to simplify it.
2822 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2823 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2824
2825 static struct type *
2826 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2827 const char *name)
2828 {
2829 const struct compunit_symtab *cust;
2830 const struct blockvector *bv;
2831 const struct block *block;
2832 const struct symbol *sym;
2833
2834 ALL_OBJFILE_COMPUNITS (objfile, cust)
2835 {
2836 bv = COMPUNIT_BLOCKVECTOR (cust);
2837 block = BLOCKVECTOR_BLOCK (bv, block_index);
2838 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2839 block_find_non_opaque_type, NULL);
2840 if (sym != NULL)
2841 {
2842 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2843 return SYMBOL_TYPE (sym);
2844 }
2845 }
2846
2847 return NULL;
2848 }
2849
2850 /* The standard implementation of lookup_transparent_type. This code
2851 was modeled on lookup_symbol -- the parts not relevant to looking
2852 up types were just left out. In particular it's assumed here that
2853 types are available in STRUCT_DOMAIN and only in file-static or
2854 global blocks. */
2855
2856 struct type *
2857 basic_lookup_transparent_type (const char *name)
2858 {
2859 struct symbol *sym;
2860 struct compunit_symtab *cust;
2861 const struct blockvector *bv;
2862 struct objfile *objfile;
2863 struct block *block;
2864 struct type *t;
2865
2866 /* Now search all the global symbols. Do the symtab's first, then
2867 check the psymtab's. If a psymtab indicates the existence
2868 of the desired name as a global, then do psymtab-to-symtab
2869 conversion on the fly and return the found symbol. */
2870
2871 ALL_OBJFILES (objfile)
2872 {
2873 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2874 if (t)
2875 return t;
2876 }
2877
2878 ALL_OBJFILES (objfile)
2879 {
2880 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2881 if (t)
2882 return t;
2883 }
2884
2885 /* Now search the static file-level symbols.
2886 Not strictly correct, but more useful than an error.
2887 Do the symtab's first, then
2888 check the psymtab's. If a psymtab indicates the existence
2889 of the desired name as a file-level static, then do psymtab-to-symtab
2890 conversion on the fly and return the found symbol. */
2891
2892 ALL_OBJFILES (objfile)
2893 {
2894 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2895 if (t)
2896 return t;
2897 }
2898
2899 ALL_OBJFILES (objfile)
2900 {
2901 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2902 if (t)
2903 return t;
2904 }
2905
2906 return (struct type *) 0;
2907 }
2908
2909 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2910
2911 For each symbol that matches, CALLBACK is called. The symbol and
2912 DATA are passed to the callback.
2913
2914 If CALLBACK returns zero, the iteration ends. Otherwise, the
2915 search continues. */
2916
2917 void
2918 iterate_over_symbols (const struct block *block, const char *name,
2919 const domain_enum domain,
2920 symbol_found_callback_ftype *callback,
2921 void *data)
2922 {
2923 struct block_iterator iter;
2924 struct symbol *sym;
2925
2926 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2927 {
2928 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2929 SYMBOL_DOMAIN (sym), domain))
2930 {
2931 if (!callback (sym, data))
2932 return;
2933 }
2934 }
2935 }
2936
2937 /* Find the compunit symtab associated with PC and SECTION.
2938 This will read in debug info as necessary. */
2939
2940 struct compunit_symtab *
2941 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2942 {
2943 struct compunit_symtab *cust;
2944 struct compunit_symtab *best_cust = NULL;
2945 struct objfile *objfile;
2946 CORE_ADDR distance = 0;
2947 struct bound_minimal_symbol msymbol;
2948
2949 /* If we know that this is not a text address, return failure. This is
2950 necessary because we loop based on the block's high and low code
2951 addresses, which do not include the data ranges, and because
2952 we call find_pc_sect_psymtab which has a similar restriction based
2953 on the partial_symtab's texthigh and textlow. */
2954 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2955 if (msymbol.minsym
2956 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2957 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2958 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2959 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2960 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2961 return NULL;
2962
2963 /* Search all symtabs for the one whose file contains our address, and which
2964 is the smallest of all the ones containing the address. This is designed
2965 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2966 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2967 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2968
2969 This happens for native ecoff format, where code from included files
2970 gets its own symtab. The symtab for the included file should have
2971 been read in already via the dependency mechanism.
2972 It might be swifter to create several symtabs with the same name
2973 like xcoff does (I'm not sure).
2974
2975 It also happens for objfiles that have their functions reordered.
2976 For these, the symtab we are looking for is not necessarily read in. */
2977
2978 ALL_COMPUNITS (objfile, cust)
2979 {
2980 struct block *b;
2981 const struct blockvector *bv;
2982
2983 bv = COMPUNIT_BLOCKVECTOR (cust);
2984 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2985
2986 if (BLOCK_START (b) <= pc
2987 && BLOCK_END (b) > pc
2988 && (distance == 0
2989 || BLOCK_END (b) - BLOCK_START (b) < distance))
2990 {
2991 /* For an objfile that has its functions reordered,
2992 find_pc_psymtab will find the proper partial symbol table
2993 and we simply return its corresponding symtab. */
2994 /* In order to better support objfiles that contain both
2995 stabs and coff debugging info, we continue on if a psymtab
2996 can't be found. */
2997 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2998 {
2999 struct compunit_symtab *result;
3000
3001 result
3002 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3003 msymbol,
3004 pc, section,
3005 0);
3006 if (result != NULL)
3007 return result;
3008 }
3009 if (section != 0)
3010 {
3011 struct block_iterator iter;
3012 struct symbol *sym = NULL;
3013
3014 ALL_BLOCK_SYMBOLS (b, iter, sym)
3015 {
3016 fixup_symbol_section (sym, objfile);
3017 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3018 section))
3019 break;
3020 }
3021 if (sym == NULL)
3022 continue; /* No symbol in this symtab matches
3023 section. */
3024 }
3025 distance = BLOCK_END (b) - BLOCK_START (b);
3026 best_cust = cust;
3027 }
3028 }
3029
3030 if (best_cust != NULL)
3031 return best_cust;
3032
3033 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3034
3035 ALL_OBJFILES (objfile)
3036 {
3037 struct compunit_symtab *result;
3038
3039 if (!objfile->sf)
3040 continue;
3041 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3042 msymbol,
3043 pc, section,
3044 1);
3045 if (result != NULL)
3046 return result;
3047 }
3048
3049 return NULL;
3050 }
3051
3052 /* Find the compunit symtab associated with PC.
3053 This will read in debug info as necessary.
3054 Backward compatibility, no section. */
3055
3056 struct compunit_symtab *
3057 find_pc_compunit_symtab (CORE_ADDR pc)
3058 {
3059 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3060 }
3061 \f
3062
3063 /* Find the source file and line number for a given PC value and SECTION.
3064 Return a structure containing a symtab pointer, a line number,
3065 and a pc range for the entire source line.
3066 The value's .pc field is NOT the specified pc.
3067 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3068 use the line that ends there. Otherwise, in that case, the line
3069 that begins there is used. */
3070
3071 /* The big complication here is that a line may start in one file, and end just
3072 before the start of another file. This usually occurs when you #include
3073 code in the middle of a subroutine. To properly find the end of a line's PC
3074 range, we must search all symtabs associated with this compilation unit, and
3075 find the one whose first PC is closer than that of the next line in this
3076 symtab. */
3077
3078 /* If it's worth the effort, we could be using a binary search. */
3079
3080 struct symtab_and_line
3081 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3082 {
3083 struct compunit_symtab *cust;
3084 struct symtab *iter_s;
3085 struct linetable *l;
3086 int len;
3087 int i;
3088 struct linetable_entry *item;
3089 struct symtab_and_line val;
3090 const struct blockvector *bv;
3091 struct bound_minimal_symbol msymbol;
3092
3093 /* Info on best line seen so far, and where it starts, and its file. */
3094
3095 struct linetable_entry *best = NULL;
3096 CORE_ADDR best_end = 0;
3097 struct symtab *best_symtab = 0;
3098
3099 /* Store here the first line number
3100 of a file which contains the line at the smallest pc after PC.
3101 If we don't find a line whose range contains PC,
3102 we will use a line one less than this,
3103 with a range from the start of that file to the first line's pc. */
3104 struct linetable_entry *alt = NULL;
3105
3106 /* Info on best line seen in this file. */
3107
3108 struct linetable_entry *prev;
3109
3110 /* If this pc is not from the current frame,
3111 it is the address of the end of a call instruction.
3112 Quite likely that is the start of the following statement.
3113 But what we want is the statement containing the instruction.
3114 Fudge the pc to make sure we get that. */
3115
3116 init_sal (&val); /* initialize to zeroes */
3117
3118 val.pspace = current_program_space;
3119
3120 /* It's tempting to assume that, if we can't find debugging info for
3121 any function enclosing PC, that we shouldn't search for line
3122 number info, either. However, GAS can emit line number info for
3123 assembly files --- very helpful when debugging hand-written
3124 assembly code. In such a case, we'd have no debug info for the
3125 function, but we would have line info. */
3126
3127 if (notcurrent)
3128 pc -= 1;
3129
3130 /* elz: added this because this function returned the wrong
3131 information if the pc belongs to a stub (import/export)
3132 to call a shlib function. This stub would be anywhere between
3133 two functions in the target, and the line info was erroneously
3134 taken to be the one of the line before the pc. */
3135
3136 /* RT: Further explanation:
3137
3138 * We have stubs (trampolines) inserted between procedures.
3139 *
3140 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3141 * exists in the main image.
3142 *
3143 * In the minimal symbol table, we have a bunch of symbols
3144 * sorted by start address. The stubs are marked as "trampoline",
3145 * the others appear as text. E.g.:
3146 *
3147 * Minimal symbol table for main image
3148 * main: code for main (text symbol)
3149 * shr1: stub (trampoline symbol)
3150 * foo: code for foo (text symbol)
3151 * ...
3152 * Minimal symbol table for "shr1" image:
3153 * ...
3154 * shr1: code for shr1 (text symbol)
3155 * ...
3156 *
3157 * So the code below is trying to detect if we are in the stub
3158 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3159 * and if found, do the symbolization from the real-code address
3160 * rather than the stub address.
3161 *
3162 * Assumptions being made about the minimal symbol table:
3163 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3164 * if we're really in the trampoline.s If we're beyond it (say
3165 * we're in "foo" in the above example), it'll have a closer
3166 * symbol (the "foo" text symbol for example) and will not
3167 * return the trampoline.
3168 * 2. lookup_minimal_symbol_text() will find a real text symbol
3169 * corresponding to the trampoline, and whose address will
3170 * be different than the trampoline address. I put in a sanity
3171 * check for the address being the same, to avoid an
3172 * infinite recursion.
3173 */
3174 msymbol = lookup_minimal_symbol_by_pc (pc);
3175 if (msymbol.minsym != NULL)
3176 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3177 {
3178 struct bound_minimal_symbol mfunsym
3179 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3180 NULL);
3181
3182 if (mfunsym.minsym == NULL)
3183 /* I eliminated this warning since it is coming out
3184 * in the following situation:
3185 * gdb shmain // test program with shared libraries
3186 * (gdb) break shr1 // function in shared lib
3187 * Warning: In stub for ...
3188 * In the above situation, the shared lib is not loaded yet,
3189 * so of course we can't find the real func/line info,
3190 * but the "break" still works, and the warning is annoying.
3191 * So I commented out the warning. RT */
3192 /* warning ("In stub for %s; unable to find real function/line info",
3193 SYMBOL_LINKAGE_NAME (msymbol)); */
3194 ;
3195 /* fall through */
3196 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3197 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3198 /* Avoid infinite recursion */
3199 /* See above comment about why warning is commented out. */
3200 /* warning ("In stub for %s; unable to find real function/line info",
3201 SYMBOL_LINKAGE_NAME (msymbol)); */
3202 ;
3203 /* fall through */
3204 else
3205 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3206 }
3207
3208
3209 cust = find_pc_sect_compunit_symtab (pc, section);
3210 if (cust == NULL)
3211 {
3212 /* If no symbol information, return previous pc. */
3213 if (notcurrent)
3214 pc++;
3215 val.pc = pc;
3216 return val;
3217 }
3218
3219 bv = COMPUNIT_BLOCKVECTOR (cust);
3220
3221 /* Look at all the symtabs that share this blockvector.
3222 They all have the same apriori range, that we found was right;
3223 but they have different line tables. */
3224
3225 ALL_COMPUNIT_FILETABS (cust, iter_s)
3226 {
3227 /* Find the best line in this symtab. */
3228 l = SYMTAB_LINETABLE (iter_s);
3229 if (!l)
3230 continue;
3231 len = l->nitems;
3232 if (len <= 0)
3233 {
3234 /* I think len can be zero if the symtab lacks line numbers
3235 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3236 I'm not sure which, and maybe it depends on the symbol
3237 reader). */
3238 continue;
3239 }
3240
3241 prev = NULL;
3242 item = l->item; /* Get first line info. */
3243
3244 /* Is this file's first line closer than the first lines of other files?
3245 If so, record this file, and its first line, as best alternate. */
3246 if (item->pc > pc && (!alt || item->pc < alt->pc))
3247 alt = item;
3248
3249 for (i = 0; i < len; i++, item++)
3250 {
3251 /* Leave prev pointing to the linetable entry for the last line
3252 that started at or before PC. */
3253 if (item->pc > pc)
3254 break;
3255
3256 prev = item;
3257 }
3258
3259 /* At this point, prev points at the line whose start addr is <= pc, and
3260 item points at the next line. If we ran off the end of the linetable
3261 (pc >= start of the last line), then prev == item. If pc < start of
3262 the first line, prev will not be set. */
3263
3264 /* Is this file's best line closer than the best in the other files?
3265 If so, record this file, and its best line, as best so far. Don't
3266 save prev if it represents the end of a function (i.e. line number
3267 0) instead of a real line. */
3268
3269 if (prev && prev->line && (!best || prev->pc > best->pc))
3270 {
3271 best = prev;
3272 best_symtab = iter_s;
3273
3274 /* Discard BEST_END if it's before the PC of the current BEST. */
3275 if (best_end <= best->pc)
3276 best_end = 0;
3277 }
3278
3279 /* If another line (denoted by ITEM) is in the linetable and its
3280 PC is after BEST's PC, but before the current BEST_END, then
3281 use ITEM's PC as the new best_end. */
3282 if (best && i < len && item->pc > best->pc
3283 && (best_end == 0 || best_end > item->pc))
3284 best_end = item->pc;
3285 }
3286
3287 if (!best_symtab)
3288 {
3289 /* If we didn't find any line number info, just return zeros.
3290 We used to return alt->line - 1 here, but that could be
3291 anywhere; if we don't have line number info for this PC,
3292 don't make some up. */
3293 val.pc = pc;
3294 }
3295 else if (best->line == 0)
3296 {
3297 /* If our best fit is in a range of PC's for which no line
3298 number info is available (line number is zero) then we didn't
3299 find any valid line information. */
3300 val.pc = pc;
3301 }
3302 else
3303 {
3304 val.symtab = best_symtab;
3305 val.line = best->line;
3306 val.pc = best->pc;
3307 if (best_end && (!alt || best_end < alt->pc))
3308 val.end = best_end;
3309 else if (alt)
3310 val.end = alt->pc;
3311 else
3312 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3313 }
3314 val.section = section;
3315 return val;
3316 }
3317
3318 /* Backward compatibility (no section). */
3319
3320 struct symtab_and_line
3321 find_pc_line (CORE_ADDR pc, int notcurrent)
3322 {
3323 struct obj_section *section;
3324
3325 section = find_pc_overlay (pc);
3326 if (pc_in_unmapped_range (pc, section))
3327 pc = overlay_mapped_address (pc, section);
3328 return find_pc_sect_line (pc, section, notcurrent);
3329 }
3330
3331 /* See symtab.h. */
3332
3333 struct symtab *
3334 find_pc_line_symtab (CORE_ADDR pc)
3335 {
3336 struct symtab_and_line sal;
3337
3338 /* This always passes zero for NOTCURRENT to find_pc_line.
3339 There are currently no callers that ever pass non-zero. */
3340 sal = find_pc_line (pc, 0);
3341 return sal.symtab;
3342 }
3343 \f
3344 /* Find line number LINE in any symtab whose name is the same as
3345 SYMTAB.
3346
3347 If found, return the symtab that contains the linetable in which it was
3348 found, set *INDEX to the index in the linetable of the best entry
3349 found, and set *EXACT_MATCH nonzero if the value returned is an
3350 exact match.
3351
3352 If not found, return NULL. */
3353
3354 struct symtab *
3355 find_line_symtab (struct symtab *symtab, int line,
3356 int *index, int *exact_match)
3357 {
3358 int exact = 0; /* Initialized here to avoid a compiler warning. */
3359
3360 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3361 so far seen. */
3362
3363 int best_index;
3364 struct linetable *best_linetable;
3365 struct symtab *best_symtab;
3366
3367 /* First try looking it up in the given symtab. */
3368 best_linetable = SYMTAB_LINETABLE (symtab);
3369 best_symtab = symtab;
3370 best_index = find_line_common (best_linetable, line, &exact, 0);
3371 if (best_index < 0 || !exact)
3372 {
3373 /* Didn't find an exact match. So we better keep looking for
3374 another symtab with the same name. In the case of xcoff,
3375 multiple csects for one source file (produced by IBM's FORTRAN
3376 compiler) produce multiple symtabs (this is unavoidable
3377 assuming csects can be at arbitrary places in memory and that
3378 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3379
3380 /* BEST is the smallest linenumber > LINE so far seen,
3381 or 0 if none has been seen so far.
3382 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3383 int best;
3384
3385 struct objfile *objfile;
3386 struct compunit_symtab *cu;
3387 struct symtab *s;
3388
3389 if (best_index >= 0)
3390 best = best_linetable->item[best_index].line;
3391 else
3392 best = 0;
3393
3394 ALL_OBJFILES (objfile)
3395 {
3396 if (objfile->sf)
3397 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3398 symtab_to_fullname (symtab));
3399 }
3400
3401 ALL_FILETABS (objfile, cu, s)
3402 {
3403 struct linetable *l;
3404 int ind;
3405
3406 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3407 continue;
3408 if (FILENAME_CMP (symtab_to_fullname (symtab),
3409 symtab_to_fullname (s)) != 0)
3410 continue;
3411 l = SYMTAB_LINETABLE (s);
3412 ind = find_line_common (l, line, &exact, 0);
3413 if (ind >= 0)
3414 {
3415 if (exact)
3416 {
3417 best_index = ind;
3418 best_linetable = l;
3419 best_symtab = s;
3420 goto done;
3421 }
3422 if (best == 0 || l->item[ind].line < best)
3423 {
3424 best = l->item[ind].line;
3425 best_index = ind;
3426 best_linetable = l;
3427 best_symtab = s;
3428 }
3429 }
3430 }
3431 }
3432 done:
3433 if (best_index < 0)
3434 return NULL;
3435
3436 if (index)
3437 *index = best_index;
3438 if (exact_match)
3439 *exact_match = exact;
3440
3441 return best_symtab;
3442 }
3443
3444 /* Given SYMTAB, returns all the PCs function in the symtab that
3445 exactly match LINE. Returns NULL if there are no exact matches,
3446 but updates BEST_ITEM in this case. */
3447
3448 VEC (CORE_ADDR) *
3449 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3450 struct linetable_entry **best_item)
3451 {
3452 int start = 0;
3453 VEC (CORE_ADDR) *result = NULL;
3454
3455 /* First, collect all the PCs that are at this line. */
3456 while (1)
3457 {
3458 int was_exact;
3459 int idx;
3460
3461 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3462 start);
3463 if (idx < 0)
3464 break;
3465
3466 if (!was_exact)
3467 {
3468 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3469
3470 if (*best_item == NULL || item->line < (*best_item)->line)
3471 *best_item = item;
3472
3473 break;
3474 }
3475
3476 VEC_safe_push (CORE_ADDR, result,
3477 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3478 start = idx + 1;
3479 }
3480
3481 return result;
3482 }
3483
3484 \f
3485 /* Set the PC value for a given source file and line number and return true.
3486 Returns zero for invalid line number (and sets the PC to 0).
3487 The source file is specified with a struct symtab. */
3488
3489 int
3490 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3491 {
3492 struct linetable *l;
3493 int ind;
3494
3495 *pc = 0;
3496 if (symtab == 0)
3497 return 0;
3498
3499 symtab = find_line_symtab (symtab, line, &ind, NULL);
3500 if (symtab != NULL)
3501 {
3502 l = SYMTAB_LINETABLE (symtab);
3503 *pc = l->item[ind].pc;
3504 return 1;
3505 }
3506 else
3507 return 0;
3508 }
3509
3510 /* Find the range of pc values in a line.
3511 Store the starting pc of the line into *STARTPTR
3512 and the ending pc (start of next line) into *ENDPTR.
3513 Returns 1 to indicate success.
3514 Returns 0 if could not find the specified line. */
3515
3516 int
3517 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3518 CORE_ADDR *endptr)
3519 {
3520 CORE_ADDR startaddr;
3521 struct symtab_and_line found_sal;
3522
3523 startaddr = sal.pc;
3524 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3525 return 0;
3526
3527 /* This whole function is based on address. For example, if line 10 has
3528 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3529 "info line *0x123" should say the line goes from 0x100 to 0x200
3530 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3531 This also insures that we never give a range like "starts at 0x134
3532 and ends at 0x12c". */
3533
3534 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3535 if (found_sal.line != sal.line)
3536 {
3537 /* The specified line (sal) has zero bytes. */
3538 *startptr = found_sal.pc;
3539 *endptr = found_sal.pc;
3540 }
3541 else
3542 {
3543 *startptr = found_sal.pc;
3544 *endptr = found_sal.end;
3545 }
3546 return 1;
3547 }
3548
3549 /* Given a line table and a line number, return the index into the line
3550 table for the pc of the nearest line whose number is >= the specified one.
3551 Return -1 if none is found. The value is >= 0 if it is an index.
3552 START is the index at which to start searching the line table.
3553
3554 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3555
3556 static int
3557 find_line_common (struct linetable *l, int lineno,
3558 int *exact_match, int start)
3559 {
3560 int i;
3561 int len;
3562
3563 /* BEST is the smallest linenumber > LINENO so far seen,
3564 or 0 if none has been seen so far.
3565 BEST_INDEX identifies the item for it. */
3566
3567 int best_index = -1;
3568 int best = 0;
3569
3570 *exact_match = 0;
3571
3572 if (lineno <= 0)
3573 return -1;
3574 if (l == 0)
3575 return -1;
3576
3577 len = l->nitems;
3578 for (i = start; i < len; i++)
3579 {
3580 struct linetable_entry *item = &(l->item[i]);
3581
3582 if (item->line == lineno)
3583 {
3584 /* Return the first (lowest address) entry which matches. */
3585 *exact_match = 1;
3586 return i;
3587 }
3588
3589 if (item->line > lineno && (best == 0 || item->line < best))
3590 {
3591 best = item->line;
3592 best_index = i;
3593 }
3594 }
3595
3596 /* If we got here, we didn't get an exact match. */
3597 return best_index;
3598 }
3599
3600 int
3601 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3602 {
3603 struct symtab_and_line sal;
3604
3605 sal = find_pc_line (pc, 0);
3606 *startptr = sal.pc;
3607 *endptr = sal.end;
3608 return sal.symtab != 0;
3609 }
3610
3611 /* Given a function symbol SYM, find the symtab and line for the start
3612 of the function.
3613 If the argument FUNFIRSTLINE is nonzero, we want the first line
3614 of real code inside the function.
3615 This function should return SALs matching those from minsym_found,
3616 otherwise false multiple-locations breakpoints could be placed. */
3617
3618 struct symtab_and_line
3619 find_function_start_sal (struct symbol *sym, int funfirstline)
3620 {
3621 struct symtab_and_line sal;
3622 struct obj_section *section;
3623
3624 fixup_symbol_section (sym, NULL);
3625 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3626 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3627
3628 if (funfirstline && sal.symtab != NULL
3629 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3630 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3631 {
3632 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3633 return sal;
3634 }
3635
3636 /* We always should have a line for the function start address.
3637 If we don't, something is odd. Create a plain SAL refering
3638 just the PC and hope that skip_prologue_sal (if requested)
3639 can find a line number for after the prologue. */
3640 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3641 {
3642 init_sal (&sal);
3643 sal.pspace = current_program_space;
3644 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3645 sal.section = section;
3646 }
3647
3648 if (funfirstline)
3649 skip_prologue_sal (&sal);
3650
3651 return sal;
3652 }
3653
3654 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3655 address for that function that has an entry in SYMTAB's line info
3656 table. If such an entry cannot be found, return FUNC_ADDR
3657 unaltered. */
3658
3659 static CORE_ADDR
3660 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3661 {
3662 CORE_ADDR func_start, func_end;
3663 struct linetable *l;
3664 int i;
3665
3666 /* Give up if this symbol has no lineinfo table. */
3667 l = SYMTAB_LINETABLE (symtab);
3668 if (l == NULL)
3669 return func_addr;
3670
3671 /* Get the range for the function's PC values, or give up if we
3672 cannot, for some reason. */
3673 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3674 return func_addr;
3675
3676 /* Linetable entries are ordered by PC values, see the commentary in
3677 symtab.h where `struct linetable' is defined. Thus, the first
3678 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3679 address we are looking for. */
3680 for (i = 0; i < l->nitems; i++)
3681 {
3682 struct linetable_entry *item = &(l->item[i]);
3683
3684 /* Don't use line numbers of zero, they mark special entries in
3685 the table. See the commentary on symtab.h before the
3686 definition of struct linetable. */
3687 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3688 return item->pc;
3689 }
3690
3691 return func_addr;
3692 }
3693
3694 /* Adjust SAL to the first instruction past the function prologue.
3695 If the PC was explicitly specified, the SAL is not changed.
3696 If the line number was explicitly specified, at most the SAL's PC
3697 is updated. If SAL is already past the prologue, then do nothing. */
3698
3699 void
3700 skip_prologue_sal (struct symtab_and_line *sal)
3701 {
3702 struct symbol *sym;
3703 struct symtab_and_line start_sal;
3704 struct cleanup *old_chain;
3705 CORE_ADDR pc, saved_pc;
3706 struct obj_section *section;
3707 const char *name;
3708 struct objfile *objfile;
3709 struct gdbarch *gdbarch;
3710 const struct block *b, *function_block;
3711 int force_skip, skip;
3712
3713 /* Do not change the SAL if PC was specified explicitly. */
3714 if (sal->explicit_pc)
3715 return;
3716
3717 old_chain = save_current_space_and_thread ();
3718 switch_to_program_space_and_thread (sal->pspace);
3719
3720 sym = find_pc_sect_function (sal->pc, sal->section);
3721 if (sym != NULL)
3722 {
3723 fixup_symbol_section (sym, NULL);
3724
3725 objfile = symbol_objfile (sym);
3726 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3727 section = SYMBOL_OBJ_SECTION (objfile, sym);
3728 name = SYMBOL_LINKAGE_NAME (sym);
3729 }
3730 else
3731 {
3732 struct bound_minimal_symbol msymbol
3733 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3734
3735 if (msymbol.minsym == NULL)
3736 {
3737 do_cleanups (old_chain);
3738 return;
3739 }
3740
3741 objfile = msymbol.objfile;
3742 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3743 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3744 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3745 }
3746
3747 gdbarch = get_objfile_arch (objfile);
3748
3749 /* Process the prologue in two passes. In the first pass try to skip the
3750 prologue (SKIP is true) and verify there is a real need for it (indicated
3751 by FORCE_SKIP). If no such reason was found run a second pass where the
3752 prologue is not skipped (SKIP is false). */
3753
3754 skip = 1;
3755 force_skip = 1;
3756
3757 /* Be conservative - allow direct PC (without skipping prologue) only if we
3758 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3759 have to be set by the caller so we use SYM instead. */
3760 if (sym != NULL
3761 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3762 force_skip = 0;
3763
3764 saved_pc = pc;
3765 do
3766 {
3767 pc = saved_pc;
3768
3769 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3770 so that gdbarch_skip_prologue has something unique to work on. */
3771 if (section_is_overlay (section) && !section_is_mapped (section))
3772 pc = overlay_unmapped_address (pc, section);
3773
3774 /* Skip "first line" of function (which is actually its prologue). */
3775 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3776 if (gdbarch_skip_entrypoint_p (gdbarch))
3777 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3778 if (skip)
3779 pc = gdbarch_skip_prologue (gdbarch, pc);
3780
3781 /* For overlays, map pc back into its mapped VMA range. */
3782 pc = overlay_mapped_address (pc, section);
3783
3784 /* Calculate line number. */
3785 start_sal = find_pc_sect_line (pc, section, 0);
3786
3787 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3788 line is still part of the same function. */
3789 if (skip && start_sal.pc != pc
3790 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3791 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3792 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3793 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3794 {
3795 /* First pc of next line */
3796 pc = start_sal.end;
3797 /* Recalculate the line number (might not be N+1). */
3798 start_sal = find_pc_sect_line (pc, section, 0);
3799 }
3800
3801 /* On targets with executable formats that don't have a concept of
3802 constructors (ELF with .init has, PE doesn't), gcc emits a call
3803 to `__main' in `main' between the prologue and before user
3804 code. */
3805 if (gdbarch_skip_main_prologue_p (gdbarch)
3806 && name && strcmp_iw (name, "main") == 0)
3807 {
3808 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3809 /* Recalculate the line number (might not be N+1). */
3810 start_sal = find_pc_sect_line (pc, section, 0);
3811 force_skip = 1;
3812 }
3813 }
3814 while (!force_skip && skip--);
3815
3816 /* If we still don't have a valid source line, try to find the first
3817 PC in the lineinfo table that belongs to the same function. This
3818 happens with COFF debug info, which does not seem to have an
3819 entry in lineinfo table for the code after the prologue which has
3820 no direct relation to source. For example, this was found to be
3821 the case with the DJGPP target using "gcc -gcoff" when the
3822 compiler inserted code after the prologue to make sure the stack
3823 is aligned. */
3824 if (!force_skip && sym && start_sal.symtab == NULL)
3825 {
3826 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3827 /* Recalculate the line number. */
3828 start_sal = find_pc_sect_line (pc, section, 0);
3829 }
3830
3831 do_cleanups (old_chain);
3832
3833 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3834 forward SAL to the end of the prologue. */
3835 if (sal->pc >= pc)
3836 return;
3837
3838 sal->pc = pc;
3839 sal->section = section;
3840
3841 /* Unless the explicit_line flag was set, update the SAL line
3842 and symtab to correspond to the modified PC location. */
3843 if (sal->explicit_line)
3844 return;
3845
3846 sal->symtab = start_sal.symtab;
3847 sal->line = start_sal.line;
3848 sal->end = start_sal.end;
3849
3850 /* Check if we are now inside an inlined function. If we can,
3851 use the call site of the function instead. */
3852 b = block_for_pc_sect (sal->pc, sal->section);
3853 function_block = NULL;
3854 while (b != NULL)
3855 {
3856 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3857 function_block = b;
3858 else if (BLOCK_FUNCTION (b) != NULL)
3859 break;
3860 b = BLOCK_SUPERBLOCK (b);
3861 }
3862 if (function_block != NULL
3863 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3864 {
3865 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3866 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3867 }
3868 }
3869
3870 /* Given PC at the function's start address, attempt to find the
3871 prologue end using SAL information. Return zero if the skip fails.
3872
3873 A non-optimized prologue traditionally has one SAL for the function
3874 and a second for the function body. A single line function has
3875 them both pointing at the same line.
3876
3877 An optimized prologue is similar but the prologue may contain
3878 instructions (SALs) from the instruction body. Need to skip those
3879 while not getting into the function body.
3880
3881 The functions end point and an increasing SAL line are used as
3882 indicators of the prologue's endpoint.
3883
3884 This code is based on the function refine_prologue_limit
3885 (found in ia64). */
3886
3887 CORE_ADDR
3888 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3889 {
3890 struct symtab_and_line prologue_sal;
3891 CORE_ADDR start_pc;
3892 CORE_ADDR end_pc;
3893 const struct block *bl;
3894
3895 /* Get an initial range for the function. */
3896 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3897 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3898
3899 prologue_sal = find_pc_line (start_pc, 0);
3900 if (prologue_sal.line != 0)
3901 {
3902 /* For languages other than assembly, treat two consecutive line
3903 entries at the same address as a zero-instruction prologue.
3904 The GNU assembler emits separate line notes for each instruction
3905 in a multi-instruction macro, but compilers generally will not
3906 do this. */
3907 if (prologue_sal.symtab->language != language_asm)
3908 {
3909 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3910 int idx = 0;
3911
3912 /* Skip any earlier lines, and any end-of-sequence marker
3913 from a previous function. */
3914 while (linetable->item[idx].pc != prologue_sal.pc
3915 || linetable->item[idx].line == 0)
3916 idx++;
3917
3918 if (idx+1 < linetable->nitems
3919 && linetable->item[idx+1].line != 0
3920 && linetable->item[idx+1].pc == start_pc)
3921 return start_pc;
3922 }
3923
3924 /* If there is only one sal that covers the entire function,
3925 then it is probably a single line function, like
3926 "foo(){}". */
3927 if (prologue_sal.end >= end_pc)
3928 return 0;
3929
3930 while (prologue_sal.end < end_pc)
3931 {
3932 struct symtab_and_line sal;
3933
3934 sal = find_pc_line (prologue_sal.end, 0);
3935 if (sal.line == 0)
3936 break;
3937 /* Assume that a consecutive SAL for the same (or larger)
3938 line mark the prologue -> body transition. */
3939 if (sal.line >= prologue_sal.line)
3940 break;
3941 /* Likewise if we are in a different symtab altogether
3942 (e.g. within a file included via #include).  */
3943 if (sal.symtab != prologue_sal.symtab)
3944 break;
3945
3946 /* The line number is smaller. Check that it's from the
3947 same function, not something inlined. If it's inlined,
3948 then there is no point comparing the line numbers. */
3949 bl = block_for_pc (prologue_sal.end);
3950 while (bl)
3951 {
3952 if (block_inlined_p (bl))
3953 break;
3954 if (BLOCK_FUNCTION (bl))
3955 {
3956 bl = NULL;
3957 break;
3958 }
3959 bl = BLOCK_SUPERBLOCK (bl);
3960 }
3961 if (bl != NULL)
3962 break;
3963
3964 /* The case in which compiler's optimizer/scheduler has
3965 moved instructions into the prologue. We look ahead in
3966 the function looking for address ranges whose
3967 corresponding line number is less the first one that we
3968 found for the function. This is more conservative then
3969 refine_prologue_limit which scans a large number of SALs
3970 looking for any in the prologue. */
3971 prologue_sal = sal;
3972 }
3973 }
3974
3975 if (prologue_sal.end < end_pc)
3976 /* Return the end of this line, or zero if we could not find a
3977 line. */
3978 return prologue_sal.end;
3979 else
3980 /* Don't return END_PC, which is past the end of the function. */
3981 return prologue_sal.pc;
3982 }
3983 \f
3984 /* If P is of the form "operator[ \t]+..." where `...' is
3985 some legitimate operator text, return a pointer to the
3986 beginning of the substring of the operator text.
3987 Otherwise, return "". */
3988
3989 static const char *
3990 operator_chars (const char *p, const char **end)
3991 {
3992 *end = "";
3993 if (!startswith (p, "operator"))
3994 return *end;
3995 p += 8;
3996
3997 /* Don't get faked out by `operator' being part of a longer
3998 identifier. */
3999 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4000 return *end;
4001
4002 /* Allow some whitespace between `operator' and the operator symbol. */
4003 while (*p == ' ' || *p == '\t')
4004 p++;
4005
4006 /* Recognize 'operator TYPENAME'. */
4007
4008 if (isalpha (*p) || *p == '_' || *p == '$')
4009 {
4010 const char *q = p + 1;
4011
4012 while (isalnum (*q) || *q == '_' || *q == '$')
4013 q++;
4014 *end = q;
4015 return p;
4016 }
4017
4018 while (*p)
4019 switch (*p)
4020 {
4021 case '\\': /* regexp quoting */
4022 if (p[1] == '*')
4023 {
4024 if (p[2] == '=') /* 'operator\*=' */
4025 *end = p + 3;
4026 else /* 'operator\*' */
4027 *end = p + 2;
4028 return p;
4029 }
4030 else if (p[1] == '[')
4031 {
4032 if (p[2] == ']')
4033 error (_("mismatched quoting on brackets, "
4034 "try 'operator\\[\\]'"));
4035 else if (p[2] == '\\' && p[3] == ']')
4036 {
4037 *end = p + 4; /* 'operator\[\]' */
4038 return p;
4039 }
4040 else
4041 error (_("nothing is allowed between '[' and ']'"));
4042 }
4043 else
4044 {
4045 /* Gratuitous qoute: skip it and move on. */
4046 p++;
4047 continue;
4048 }
4049 break;
4050 case '!':
4051 case '=':
4052 case '*':
4053 case '/':
4054 case '%':
4055 case '^':
4056 if (p[1] == '=')
4057 *end = p + 2;
4058 else
4059 *end = p + 1;
4060 return p;
4061 case '<':
4062 case '>':
4063 case '+':
4064 case '-':
4065 case '&':
4066 case '|':
4067 if (p[0] == '-' && p[1] == '>')
4068 {
4069 /* Struct pointer member operator 'operator->'. */
4070 if (p[2] == '*')
4071 {
4072 *end = p + 3; /* 'operator->*' */
4073 return p;
4074 }
4075 else if (p[2] == '\\')
4076 {
4077 *end = p + 4; /* Hopefully 'operator->\*' */
4078 return p;
4079 }
4080 else
4081 {
4082 *end = p + 2; /* 'operator->' */
4083 return p;
4084 }
4085 }
4086 if (p[1] == '=' || p[1] == p[0])
4087 *end = p + 2;
4088 else
4089 *end = p + 1;
4090 return p;
4091 case '~':
4092 case ',':
4093 *end = p + 1;
4094 return p;
4095 case '(':
4096 if (p[1] != ')')
4097 error (_("`operator ()' must be specified "
4098 "without whitespace in `()'"));
4099 *end = p + 2;
4100 return p;
4101 case '?':
4102 if (p[1] != ':')
4103 error (_("`operator ?:' must be specified "
4104 "without whitespace in `?:'"));
4105 *end = p + 2;
4106 return p;
4107 case '[':
4108 if (p[1] != ']')
4109 error (_("`operator []' must be specified "
4110 "without whitespace in `[]'"));
4111 *end = p + 2;
4112 return p;
4113 default:
4114 error (_("`operator %s' not supported"), p);
4115 break;
4116 }
4117
4118 *end = "";
4119 return *end;
4120 }
4121 \f
4122
4123 /* Cache to watch for file names already seen by filename_seen. */
4124
4125 struct filename_seen_cache
4126 {
4127 /* Table of files seen so far. */
4128 htab_t tab;
4129 /* Initial size of the table. It automagically grows from here. */
4130 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4131 };
4132
4133 /* filename_seen_cache constructor. */
4134
4135 static struct filename_seen_cache *
4136 create_filename_seen_cache (void)
4137 {
4138 struct filename_seen_cache *cache;
4139
4140 cache = XNEW (struct filename_seen_cache);
4141 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4142 filename_hash, filename_eq,
4143 NULL, xcalloc, xfree);
4144
4145 return cache;
4146 }
4147
4148 /* Empty the cache, but do not delete it. */
4149
4150 static void
4151 clear_filename_seen_cache (struct filename_seen_cache *cache)
4152 {
4153 htab_empty (cache->tab);
4154 }
4155
4156 /* filename_seen_cache destructor.
4157 This takes a void * argument as it is generally used as a cleanup. */
4158
4159 static void
4160 delete_filename_seen_cache (void *ptr)
4161 {
4162 struct filename_seen_cache *cache = ptr;
4163
4164 htab_delete (cache->tab);
4165 xfree (cache);
4166 }
4167
4168 /* If FILE is not already in the table of files in CACHE, return zero;
4169 otherwise return non-zero. Optionally add FILE to the table if ADD
4170 is non-zero.
4171
4172 NOTE: We don't manage space for FILE, we assume FILE lives as long
4173 as the caller needs. */
4174
4175 static int
4176 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4177 {
4178 void **slot;
4179
4180 /* Is FILE in tab? */
4181 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4182 if (*slot != NULL)
4183 return 1;
4184
4185 /* No; maybe add it to tab. */
4186 if (add)
4187 *slot = (char *) file;
4188
4189 return 0;
4190 }
4191
4192 /* Data structure to maintain printing state for output_source_filename. */
4193
4194 struct output_source_filename_data
4195 {
4196 /* Cache of what we've seen so far. */
4197 struct filename_seen_cache *filename_seen_cache;
4198
4199 /* Flag of whether we're printing the first one. */
4200 int first;
4201 };
4202
4203 /* Slave routine for sources_info. Force line breaks at ,'s.
4204 NAME is the name to print.
4205 DATA contains the state for printing and watching for duplicates. */
4206
4207 static void
4208 output_source_filename (const char *name,
4209 struct output_source_filename_data *data)
4210 {
4211 /* Since a single source file can result in several partial symbol
4212 tables, we need to avoid printing it more than once. Note: if
4213 some of the psymtabs are read in and some are not, it gets
4214 printed both under "Source files for which symbols have been
4215 read" and "Source files for which symbols will be read in on
4216 demand". I consider this a reasonable way to deal with the
4217 situation. I'm not sure whether this can also happen for
4218 symtabs; it doesn't hurt to check. */
4219
4220 /* Was NAME already seen? */
4221 if (filename_seen (data->filename_seen_cache, name, 1))
4222 {
4223 /* Yes; don't print it again. */
4224 return;
4225 }
4226
4227 /* No; print it and reset *FIRST. */
4228 if (! data->first)
4229 printf_filtered (", ");
4230 data->first = 0;
4231
4232 wrap_here ("");
4233 fputs_filtered (name, gdb_stdout);
4234 }
4235
4236 /* A callback for map_partial_symbol_filenames. */
4237
4238 static void
4239 output_partial_symbol_filename (const char *filename, const char *fullname,
4240 void *data)
4241 {
4242 output_source_filename (fullname ? fullname : filename, data);
4243 }
4244
4245 static void
4246 sources_info (char *ignore, int from_tty)
4247 {
4248 struct compunit_symtab *cu;
4249 struct symtab *s;
4250 struct objfile *objfile;
4251 struct output_source_filename_data data;
4252 struct cleanup *cleanups;
4253
4254 if (!have_full_symbols () && !have_partial_symbols ())
4255 {
4256 error (_("No symbol table is loaded. Use the \"file\" command."));
4257 }
4258
4259 data.filename_seen_cache = create_filename_seen_cache ();
4260 cleanups = make_cleanup (delete_filename_seen_cache,
4261 data.filename_seen_cache);
4262
4263 printf_filtered ("Source files for which symbols have been read in:\n\n");
4264
4265 data.first = 1;
4266 ALL_FILETABS (objfile, cu, s)
4267 {
4268 const char *fullname = symtab_to_fullname (s);
4269
4270 output_source_filename (fullname, &data);
4271 }
4272 printf_filtered ("\n\n");
4273
4274 printf_filtered ("Source files for which symbols "
4275 "will be read in on demand:\n\n");
4276
4277 clear_filename_seen_cache (data.filename_seen_cache);
4278 data.first = 1;
4279 map_symbol_filenames (output_partial_symbol_filename, &data,
4280 1 /*need_fullname*/);
4281 printf_filtered ("\n");
4282
4283 do_cleanups (cleanups);
4284 }
4285
4286 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4287 non-zero compare only lbasename of FILES. */
4288
4289 static int
4290 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4291 {
4292 int i;
4293
4294 if (file != NULL && nfiles != 0)
4295 {
4296 for (i = 0; i < nfiles; i++)
4297 {
4298 if (compare_filenames_for_search (file, (basenames
4299 ? lbasename (files[i])
4300 : files[i])))
4301 return 1;
4302 }
4303 }
4304 else if (nfiles == 0)
4305 return 1;
4306 return 0;
4307 }
4308
4309 /* Free any memory associated with a search. */
4310
4311 void
4312 free_search_symbols (struct symbol_search *symbols)
4313 {
4314 struct symbol_search *p;
4315 struct symbol_search *next;
4316
4317 for (p = symbols; p != NULL; p = next)
4318 {
4319 next = p->next;
4320 xfree (p);
4321 }
4322 }
4323
4324 static void
4325 do_free_search_symbols_cleanup (void *symbolsp)
4326 {
4327 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4328
4329 free_search_symbols (symbols);
4330 }
4331
4332 struct cleanup *
4333 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4334 {
4335 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4336 }
4337
4338 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4339 sort symbols, not minimal symbols. */
4340
4341 static int
4342 compare_search_syms (const void *sa, const void *sb)
4343 {
4344 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4345 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4346 int c;
4347
4348 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4349 symbol_symtab (sym_b->symbol)->filename);
4350 if (c != 0)
4351 return c;
4352
4353 if (sym_a->block != sym_b->block)
4354 return sym_a->block - sym_b->block;
4355
4356 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4357 SYMBOL_PRINT_NAME (sym_b->symbol));
4358 }
4359
4360 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4361 The duplicates are freed, and the new list is returned in
4362 *NEW_HEAD, *NEW_TAIL. */
4363
4364 static void
4365 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4366 struct symbol_search **new_head,
4367 struct symbol_search **new_tail)
4368 {
4369 struct symbol_search **symbols, *symp, *old_next;
4370 int i, j, nunique;
4371
4372 gdb_assert (found != NULL && nfound > 0);
4373
4374 /* Build an array out of the list so we can easily sort them. */
4375 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4376 * nfound);
4377 symp = found;
4378 for (i = 0; i < nfound; i++)
4379 {
4380 gdb_assert (symp != NULL);
4381 gdb_assert (symp->block >= 0 && symp->block <= 1);
4382 symbols[i] = symp;
4383 symp = symp->next;
4384 }
4385 gdb_assert (symp == NULL);
4386
4387 qsort (symbols, nfound, sizeof (struct symbol_search *),
4388 compare_search_syms);
4389
4390 /* Collapse out the dups. */
4391 for (i = 1, j = 1; i < nfound; ++i)
4392 {
4393 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4394 symbols[j++] = symbols[i];
4395 else
4396 xfree (symbols[i]);
4397 }
4398 nunique = j;
4399 symbols[j - 1]->next = NULL;
4400
4401 /* Rebuild the linked list. */
4402 for (i = 0; i < nunique - 1; i++)
4403 symbols[i]->next = symbols[i + 1];
4404 symbols[nunique - 1]->next = NULL;
4405
4406 *new_head = symbols[0];
4407 *new_tail = symbols[nunique - 1];
4408 xfree (symbols);
4409 }
4410
4411 /* An object of this type is passed as the user_data to the
4412 expand_symtabs_matching method. */
4413 struct search_symbols_data
4414 {
4415 int nfiles;
4416 const char **files;
4417
4418 /* It is true if PREG contains valid data, false otherwise. */
4419 unsigned preg_p : 1;
4420 regex_t preg;
4421 };
4422
4423 /* A callback for expand_symtabs_matching. */
4424
4425 static int
4426 search_symbols_file_matches (const char *filename, void *user_data,
4427 int basenames)
4428 {
4429 struct search_symbols_data *data = user_data;
4430
4431 return file_matches (filename, data->files, data->nfiles, basenames);
4432 }
4433
4434 /* A callback for expand_symtabs_matching. */
4435
4436 static int
4437 search_symbols_name_matches (const char *symname, void *user_data)
4438 {
4439 struct search_symbols_data *data = user_data;
4440
4441 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4442 }
4443
4444 /* Search the symbol table for matches to the regular expression REGEXP,
4445 returning the results in *MATCHES.
4446
4447 Only symbols of KIND are searched:
4448 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4449 and constants (enums)
4450 FUNCTIONS_DOMAIN - search all functions
4451 TYPES_DOMAIN - search all type names
4452 ALL_DOMAIN - an internal error for this function
4453
4454 free_search_symbols should be called when *MATCHES is no longer needed.
4455
4456 Within each file the results are sorted locally; each symtab's global and
4457 static blocks are separately alphabetized.
4458 Duplicate entries are removed. */
4459
4460 void
4461 search_symbols (const char *regexp, enum search_domain kind,
4462 int nfiles, const char *files[],
4463 struct symbol_search **matches)
4464 {
4465 struct compunit_symtab *cust;
4466 const struct blockvector *bv;
4467 struct block *b;
4468 int i = 0;
4469 struct block_iterator iter;
4470 struct symbol *sym;
4471 struct objfile *objfile;
4472 struct minimal_symbol *msymbol;
4473 int found_misc = 0;
4474 static const enum minimal_symbol_type types[]
4475 = {mst_data, mst_text, mst_abs};
4476 static const enum minimal_symbol_type types2[]
4477 = {mst_bss, mst_file_text, mst_abs};
4478 static const enum minimal_symbol_type types3[]
4479 = {mst_file_data, mst_solib_trampoline, mst_abs};
4480 static const enum minimal_symbol_type types4[]
4481 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4482 enum minimal_symbol_type ourtype;
4483 enum minimal_symbol_type ourtype2;
4484 enum minimal_symbol_type ourtype3;
4485 enum minimal_symbol_type ourtype4;
4486 struct symbol_search *found;
4487 struct symbol_search *tail;
4488 struct search_symbols_data datum;
4489 int nfound;
4490
4491 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4492 CLEANUP_CHAIN is freed only in the case of an error. */
4493 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4494 struct cleanup *retval_chain;
4495
4496 gdb_assert (kind <= TYPES_DOMAIN);
4497
4498 ourtype = types[kind];
4499 ourtype2 = types2[kind];
4500 ourtype3 = types3[kind];
4501 ourtype4 = types4[kind];
4502
4503 *matches = NULL;
4504 datum.preg_p = 0;
4505
4506 if (regexp != NULL)
4507 {
4508 /* Make sure spacing is right for C++ operators.
4509 This is just a courtesy to make the matching less sensitive
4510 to how many spaces the user leaves between 'operator'
4511 and <TYPENAME> or <OPERATOR>. */
4512 const char *opend;
4513 const char *opname = operator_chars (regexp, &opend);
4514 int errcode;
4515
4516 if (*opname)
4517 {
4518 int fix = -1; /* -1 means ok; otherwise number of
4519 spaces needed. */
4520
4521 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4522 {
4523 /* There should 1 space between 'operator' and 'TYPENAME'. */
4524 if (opname[-1] != ' ' || opname[-2] == ' ')
4525 fix = 1;
4526 }
4527 else
4528 {
4529 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4530 if (opname[-1] == ' ')
4531 fix = 0;
4532 }
4533 /* If wrong number of spaces, fix it. */
4534 if (fix >= 0)
4535 {
4536 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4537
4538 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4539 regexp = tmp;
4540 }
4541 }
4542
4543 errcode = regcomp (&datum.preg, regexp,
4544 REG_NOSUB | (case_sensitivity == case_sensitive_off
4545 ? REG_ICASE : 0));
4546 if (errcode != 0)
4547 {
4548 char *err = get_regcomp_error (errcode, &datum.preg);
4549
4550 make_cleanup (xfree, err);
4551 error (_("Invalid regexp (%s): %s"), err, regexp);
4552 }
4553 datum.preg_p = 1;
4554 make_regfree_cleanup (&datum.preg);
4555 }
4556
4557 /* Search through the partial symtabs *first* for all symbols
4558 matching the regexp. That way we don't have to reproduce all of
4559 the machinery below. */
4560
4561 datum.nfiles = nfiles;
4562 datum.files = files;
4563 expand_symtabs_matching ((nfiles == 0
4564 ? NULL
4565 : search_symbols_file_matches),
4566 search_symbols_name_matches,
4567 NULL, kind, &datum);
4568
4569 /* Here, we search through the minimal symbol tables for functions
4570 and variables that match, and force their symbols to be read.
4571 This is in particular necessary for demangled variable names,
4572 which are no longer put into the partial symbol tables.
4573 The symbol will then be found during the scan of symtabs below.
4574
4575 For functions, find_pc_symtab should succeed if we have debug info
4576 for the function, for variables we have to call
4577 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4578 has debug info.
4579 If the lookup fails, set found_misc so that we will rescan to print
4580 any matching symbols without debug info.
4581 We only search the objfile the msymbol came from, we no longer search
4582 all objfiles. In large programs (1000s of shared libs) searching all
4583 objfiles is not worth the pain. */
4584
4585 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4586 {
4587 ALL_MSYMBOLS (objfile, msymbol)
4588 {
4589 QUIT;
4590
4591 if (msymbol->created_by_gdb)
4592 continue;
4593
4594 if (MSYMBOL_TYPE (msymbol) == ourtype
4595 || MSYMBOL_TYPE (msymbol) == ourtype2
4596 || MSYMBOL_TYPE (msymbol) == ourtype3
4597 || MSYMBOL_TYPE (msymbol) == ourtype4)
4598 {
4599 if (!datum.preg_p
4600 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4601 NULL, 0) == 0)
4602 {
4603 /* Note: An important side-effect of these lookup functions
4604 is to expand the symbol table if msymbol is found, for the
4605 benefit of the next loop on ALL_COMPUNITS. */
4606 if (kind == FUNCTIONS_DOMAIN
4607 ? (find_pc_compunit_symtab
4608 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4609 : (lookup_symbol_in_objfile_from_linkage_name
4610 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4611 .symbol == NULL))
4612 found_misc = 1;
4613 }
4614 }
4615 }
4616 }
4617
4618 found = NULL;
4619 tail = NULL;
4620 nfound = 0;
4621 retval_chain = make_cleanup_free_search_symbols (&found);
4622
4623 ALL_COMPUNITS (objfile, cust)
4624 {
4625 bv = COMPUNIT_BLOCKVECTOR (cust);
4626 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4627 {
4628 b = BLOCKVECTOR_BLOCK (bv, i);
4629 ALL_BLOCK_SYMBOLS (b, iter, sym)
4630 {
4631 struct symtab *real_symtab = symbol_symtab (sym);
4632
4633 QUIT;
4634
4635 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4636 a substring of symtab_to_fullname as it may contain "./" etc. */
4637 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4638 || ((basenames_may_differ
4639 || file_matches (lbasename (real_symtab->filename),
4640 files, nfiles, 1))
4641 && file_matches (symtab_to_fullname (real_symtab),
4642 files, nfiles, 0)))
4643 && ((!datum.preg_p
4644 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4645 NULL, 0) == 0)
4646 && ((kind == VARIABLES_DOMAIN
4647 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4648 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4649 && SYMBOL_CLASS (sym) != LOC_BLOCK
4650 /* LOC_CONST can be used for more than just enums,
4651 e.g., c++ static const members.
4652 We only want to skip enums here. */
4653 && !(SYMBOL_CLASS (sym) == LOC_CONST
4654 && (TYPE_CODE (SYMBOL_TYPE (sym))
4655 == TYPE_CODE_ENUM)))
4656 || (kind == FUNCTIONS_DOMAIN
4657 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4658 || (kind == TYPES_DOMAIN
4659 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4660 {
4661 /* match */
4662 struct symbol_search *psr = (struct symbol_search *)
4663 xmalloc (sizeof (struct symbol_search));
4664 psr->block = i;
4665 psr->symbol = sym;
4666 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4667 psr->next = NULL;
4668 if (tail == NULL)
4669 found = psr;
4670 else
4671 tail->next = psr;
4672 tail = psr;
4673 nfound ++;
4674 }
4675 }
4676 }
4677 }
4678
4679 if (found != NULL)
4680 {
4681 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4682 /* Note: nfound is no longer useful beyond this point. */
4683 }
4684
4685 /* If there are no eyes, avoid all contact. I mean, if there are
4686 no debug symbols, then add matching minsyms. */
4687
4688 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4689 {
4690 ALL_MSYMBOLS (objfile, msymbol)
4691 {
4692 QUIT;
4693
4694 if (msymbol->created_by_gdb)
4695 continue;
4696
4697 if (MSYMBOL_TYPE (msymbol) == ourtype
4698 || MSYMBOL_TYPE (msymbol) == ourtype2
4699 || MSYMBOL_TYPE (msymbol) == ourtype3
4700 || MSYMBOL_TYPE (msymbol) == ourtype4)
4701 {
4702 if (!datum.preg_p
4703 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4704 NULL, 0) == 0)
4705 {
4706 /* For functions we can do a quick check of whether the
4707 symbol might be found via find_pc_symtab. */
4708 if (kind != FUNCTIONS_DOMAIN
4709 || (find_pc_compunit_symtab
4710 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4711 {
4712 if (lookup_symbol_in_objfile_from_linkage_name
4713 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4714 .symbol == NULL)
4715 {
4716 /* match */
4717 struct symbol_search *psr = (struct symbol_search *)
4718 xmalloc (sizeof (struct symbol_search));
4719 psr->block = i;
4720 psr->msymbol.minsym = msymbol;
4721 psr->msymbol.objfile = objfile;
4722 psr->symbol = NULL;
4723 psr->next = NULL;
4724 if (tail == NULL)
4725 found = psr;
4726 else
4727 tail->next = psr;
4728 tail = psr;
4729 }
4730 }
4731 }
4732 }
4733 }
4734 }
4735
4736 discard_cleanups (retval_chain);
4737 do_cleanups (old_chain);
4738 *matches = found;
4739 }
4740
4741 /* Helper function for symtab_symbol_info, this function uses
4742 the data returned from search_symbols() to print information
4743 regarding the match to gdb_stdout. */
4744
4745 static void
4746 print_symbol_info (enum search_domain kind,
4747 struct symbol *sym,
4748 int block, const char *last)
4749 {
4750 struct symtab *s = symbol_symtab (sym);
4751 const char *s_filename = symtab_to_filename_for_display (s);
4752
4753 if (last == NULL || filename_cmp (last, s_filename) != 0)
4754 {
4755 fputs_filtered ("\nFile ", gdb_stdout);
4756 fputs_filtered (s_filename, gdb_stdout);
4757 fputs_filtered (":\n", gdb_stdout);
4758 }
4759
4760 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4761 printf_filtered ("static ");
4762
4763 /* Typedef that is not a C++ class. */
4764 if (kind == TYPES_DOMAIN
4765 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4766 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4767 /* variable, func, or typedef-that-is-c++-class. */
4768 else if (kind < TYPES_DOMAIN
4769 || (kind == TYPES_DOMAIN
4770 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4771 {
4772 type_print (SYMBOL_TYPE (sym),
4773 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4774 ? "" : SYMBOL_PRINT_NAME (sym)),
4775 gdb_stdout, 0);
4776
4777 printf_filtered (";\n");
4778 }
4779 }
4780
4781 /* This help function for symtab_symbol_info() prints information
4782 for non-debugging symbols to gdb_stdout. */
4783
4784 static void
4785 print_msymbol_info (struct bound_minimal_symbol msymbol)
4786 {
4787 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4788 char *tmp;
4789
4790 if (gdbarch_addr_bit (gdbarch) <= 32)
4791 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4792 & (CORE_ADDR) 0xffffffff,
4793 8);
4794 else
4795 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4796 16);
4797 printf_filtered ("%s %s\n",
4798 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4799 }
4800
4801 /* This is the guts of the commands "info functions", "info types", and
4802 "info variables". It calls search_symbols to find all matches and then
4803 print_[m]symbol_info to print out some useful information about the
4804 matches. */
4805
4806 static void
4807 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4808 {
4809 static const char * const classnames[] =
4810 {"variable", "function", "type"};
4811 struct symbol_search *symbols;
4812 struct symbol_search *p;
4813 struct cleanup *old_chain;
4814 const char *last_filename = NULL;
4815 int first = 1;
4816
4817 gdb_assert (kind <= TYPES_DOMAIN);
4818
4819 /* Must make sure that if we're interrupted, symbols gets freed. */
4820 search_symbols (regexp, kind, 0, NULL, &symbols);
4821 old_chain = make_cleanup_free_search_symbols (&symbols);
4822
4823 if (regexp != NULL)
4824 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4825 classnames[kind], regexp);
4826 else
4827 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4828
4829 for (p = symbols; p != NULL; p = p->next)
4830 {
4831 QUIT;
4832
4833 if (p->msymbol.minsym != NULL)
4834 {
4835 if (first)
4836 {
4837 printf_filtered (_("\nNon-debugging symbols:\n"));
4838 first = 0;
4839 }
4840 print_msymbol_info (p->msymbol);
4841 }
4842 else
4843 {
4844 print_symbol_info (kind,
4845 p->symbol,
4846 p->block,
4847 last_filename);
4848 last_filename
4849 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4850 }
4851 }
4852
4853 do_cleanups (old_chain);
4854 }
4855
4856 static void
4857 variables_info (char *regexp, int from_tty)
4858 {
4859 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4860 }
4861
4862 static void
4863 functions_info (char *regexp, int from_tty)
4864 {
4865 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4866 }
4867
4868
4869 static void
4870 types_info (char *regexp, int from_tty)
4871 {
4872 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4873 }
4874
4875 /* Breakpoint all functions matching regular expression. */
4876
4877 void
4878 rbreak_command_wrapper (char *regexp, int from_tty)
4879 {
4880 rbreak_command (regexp, from_tty);
4881 }
4882
4883 /* A cleanup function that calls end_rbreak_breakpoints. */
4884
4885 static void
4886 do_end_rbreak_breakpoints (void *ignore)
4887 {
4888 end_rbreak_breakpoints ();
4889 }
4890
4891 static void
4892 rbreak_command (char *regexp, int from_tty)
4893 {
4894 struct symbol_search *ss;
4895 struct symbol_search *p;
4896 struct cleanup *old_chain;
4897 char *string = NULL;
4898 int len = 0;
4899 const char **files = NULL;
4900 const char *file_name;
4901 int nfiles = 0;
4902
4903 if (regexp)
4904 {
4905 char *colon = strchr (regexp, ':');
4906
4907 if (colon && *(colon + 1) != ':')
4908 {
4909 int colon_index;
4910 char *local_name;
4911
4912 colon_index = colon - regexp;
4913 local_name = alloca (colon_index + 1);
4914 memcpy (local_name, regexp, colon_index);
4915 local_name[colon_index--] = 0;
4916 while (isspace (local_name[colon_index]))
4917 local_name[colon_index--] = 0;
4918 file_name = local_name;
4919 files = &file_name;
4920 nfiles = 1;
4921 regexp = skip_spaces (colon + 1);
4922 }
4923 }
4924
4925 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4926 old_chain = make_cleanup_free_search_symbols (&ss);
4927 make_cleanup (free_current_contents, &string);
4928
4929 start_rbreak_breakpoints ();
4930 make_cleanup (do_end_rbreak_breakpoints, NULL);
4931 for (p = ss; p != NULL; p = p->next)
4932 {
4933 if (p->msymbol.minsym == NULL)
4934 {
4935 struct symtab *symtab = symbol_symtab (p->symbol);
4936 const char *fullname = symtab_to_fullname (symtab);
4937
4938 int newlen = (strlen (fullname)
4939 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4940 + 4);
4941
4942 if (newlen > len)
4943 {
4944 string = xrealloc (string, newlen);
4945 len = newlen;
4946 }
4947 strcpy (string, fullname);
4948 strcat (string, ":'");
4949 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4950 strcat (string, "'");
4951 break_command (string, from_tty);
4952 print_symbol_info (FUNCTIONS_DOMAIN,
4953 p->symbol,
4954 p->block,
4955 symtab_to_filename_for_display (symtab));
4956 }
4957 else
4958 {
4959 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4960
4961 if (newlen > len)
4962 {
4963 string = xrealloc (string, newlen);
4964 len = newlen;
4965 }
4966 strcpy (string, "'");
4967 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4968 strcat (string, "'");
4969
4970 break_command (string, from_tty);
4971 printf_filtered ("<function, no debug info> %s;\n",
4972 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4973 }
4974 }
4975
4976 do_cleanups (old_chain);
4977 }
4978 \f
4979
4980 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4981
4982 Either sym_text[sym_text_len] != '(' and then we search for any
4983 symbol starting with SYM_TEXT text.
4984
4985 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4986 be terminated at that point. Partial symbol tables do not have parameters
4987 information. */
4988
4989 static int
4990 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4991 {
4992 int (*ncmp) (const char *, const char *, size_t);
4993
4994 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4995
4996 if (ncmp (name, sym_text, sym_text_len) != 0)
4997 return 0;
4998
4999 if (sym_text[sym_text_len] == '(')
5000 {
5001 /* User searches for `name(someth...'. Require NAME to be terminated.
5002 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5003 present but accept even parameters presence. In this case this
5004 function is in fact strcmp_iw but whitespace skipping is not supported
5005 for tab completion. */
5006
5007 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5008 return 0;
5009 }
5010
5011 return 1;
5012 }
5013
5014 /* Free any memory associated with a completion list. */
5015
5016 static void
5017 free_completion_list (VEC (char_ptr) **list_ptr)
5018 {
5019 int i;
5020 char *p;
5021
5022 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5023 xfree (p);
5024 VEC_free (char_ptr, *list_ptr);
5025 }
5026
5027 /* Callback for make_cleanup. */
5028
5029 static void
5030 do_free_completion_list (void *list)
5031 {
5032 free_completion_list (list);
5033 }
5034
5035 /* Helper routine for make_symbol_completion_list. */
5036
5037 static VEC (char_ptr) *return_val;
5038
5039 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5040 completion_list_add_name \
5041 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5042
5043 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5044 completion_list_add_name \
5045 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5046
5047 /* Tracker for how many unique completions have been generated. Used
5048 to terminate completion list generation early if the list has grown
5049 to a size so large as to be useless. This helps avoid GDB seeming
5050 to lock up in the event the user requests to complete on something
5051 vague that necessitates the time consuming expansion of many symbol
5052 tables. */
5053
5054 static completion_tracker_t completion_tracker;
5055
5056 /* Test to see if the symbol specified by SYMNAME (which is already
5057 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5058 characters. If so, add it to the current completion list. */
5059
5060 static void
5061 completion_list_add_name (const char *symname,
5062 const char *sym_text, int sym_text_len,
5063 const char *text, const char *word)
5064 {
5065 /* Clip symbols that cannot match. */
5066 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5067 return;
5068
5069 /* We have a match for a completion, so add SYMNAME to the current list
5070 of matches. Note that the name is moved to freshly malloc'd space. */
5071
5072 {
5073 char *newobj;
5074 enum maybe_add_completion_enum add_status;
5075
5076 if (word == sym_text)
5077 {
5078 newobj = xmalloc (strlen (symname) + 5);
5079 strcpy (newobj, symname);
5080 }
5081 else if (word > sym_text)
5082 {
5083 /* Return some portion of symname. */
5084 newobj = xmalloc (strlen (symname) + 5);
5085 strcpy (newobj, symname + (word - sym_text));
5086 }
5087 else
5088 {
5089 /* Return some of SYM_TEXT plus symname. */
5090 newobj = xmalloc (strlen (symname) + (sym_text - word) + 5);
5091 strncpy (newobj, word, sym_text - word);
5092 newobj[sym_text - word] = '\0';
5093 strcat (newobj, symname);
5094 }
5095
5096 add_status = maybe_add_completion (completion_tracker, newobj);
5097
5098 switch (add_status)
5099 {
5100 case MAYBE_ADD_COMPLETION_OK:
5101 VEC_safe_push (char_ptr, return_val, newobj);
5102 break;
5103 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5104 VEC_safe_push (char_ptr, return_val, newobj);
5105 throw_max_completions_reached_error ();
5106 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5107 xfree (newobj);
5108 throw_max_completions_reached_error ();
5109 case MAYBE_ADD_COMPLETION_DUPLICATE:
5110 xfree (newobj);
5111 break;
5112 }
5113 }
5114 }
5115
5116 /* ObjC: In case we are completing on a selector, look as the msymbol
5117 again and feed all the selectors into the mill. */
5118
5119 static void
5120 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5121 const char *sym_text, int sym_text_len,
5122 const char *text, const char *word)
5123 {
5124 static char *tmp = NULL;
5125 static unsigned int tmplen = 0;
5126
5127 const char *method, *category, *selector;
5128 char *tmp2 = NULL;
5129
5130 method = MSYMBOL_NATURAL_NAME (msymbol);
5131
5132 /* Is it a method? */
5133 if ((method[0] != '-') && (method[0] != '+'))
5134 return;
5135
5136 if (sym_text[0] == '[')
5137 /* Complete on shortened method method. */
5138 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5139
5140 while ((strlen (method) + 1) >= tmplen)
5141 {
5142 if (tmplen == 0)
5143 tmplen = 1024;
5144 else
5145 tmplen *= 2;
5146 tmp = xrealloc (tmp, tmplen);
5147 }
5148 selector = strchr (method, ' ');
5149 if (selector != NULL)
5150 selector++;
5151
5152 category = strchr (method, '(');
5153
5154 if ((category != NULL) && (selector != NULL))
5155 {
5156 memcpy (tmp, method, (category - method));
5157 tmp[category - method] = ' ';
5158 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5159 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5160 if (sym_text[0] == '[')
5161 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5162 }
5163
5164 if (selector != NULL)
5165 {
5166 /* Complete on selector only. */
5167 strcpy (tmp, selector);
5168 tmp2 = strchr (tmp, ']');
5169 if (tmp2 != NULL)
5170 *tmp2 = '\0';
5171
5172 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5173 }
5174 }
5175
5176 /* Break the non-quoted text based on the characters which are in
5177 symbols. FIXME: This should probably be language-specific. */
5178
5179 static const char *
5180 language_search_unquoted_string (const char *text, const char *p)
5181 {
5182 for (; p > text; --p)
5183 {
5184 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5185 continue;
5186 else
5187 {
5188 if ((current_language->la_language == language_objc))
5189 {
5190 if (p[-1] == ':') /* Might be part of a method name. */
5191 continue;
5192 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5193 p -= 2; /* Beginning of a method name. */
5194 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5195 { /* Might be part of a method name. */
5196 const char *t = p;
5197
5198 /* Seeing a ' ' or a '(' is not conclusive evidence
5199 that we are in the middle of a method name. However,
5200 finding "-[" or "+[" should be pretty un-ambiguous.
5201 Unfortunately we have to find it now to decide. */
5202
5203 while (t > text)
5204 if (isalnum (t[-1]) || t[-1] == '_' ||
5205 t[-1] == ' ' || t[-1] == ':' ||
5206 t[-1] == '(' || t[-1] == ')')
5207 --t;
5208 else
5209 break;
5210
5211 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5212 p = t - 2; /* Method name detected. */
5213 /* Else we leave with p unchanged. */
5214 }
5215 }
5216 break;
5217 }
5218 }
5219 return p;
5220 }
5221
5222 static void
5223 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5224 int sym_text_len, const char *text,
5225 const char *word)
5226 {
5227 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5228 {
5229 struct type *t = SYMBOL_TYPE (sym);
5230 enum type_code c = TYPE_CODE (t);
5231 int j;
5232
5233 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5234 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5235 if (TYPE_FIELD_NAME (t, j))
5236 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5237 sym_text, sym_text_len, text, word);
5238 }
5239 }
5240
5241 /* Type of the user_data argument passed to add_macro_name,
5242 symbol_completion_matcher and symtab_expansion_callback. */
5243
5244 struct add_name_data
5245 {
5246 /* Arguments required by completion_list_add_name. */
5247 const char *sym_text;
5248 int sym_text_len;
5249 const char *text;
5250 const char *word;
5251
5252 /* Extra argument required for add_symtab_completions. */
5253 enum type_code code;
5254 };
5255
5256 /* A callback used with macro_for_each and macro_for_each_in_scope.
5257 This adds a macro's name to the current completion list. */
5258
5259 static void
5260 add_macro_name (const char *name, const struct macro_definition *ignore,
5261 struct macro_source_file *ignore2, int ignore3,
5262 void *user_data)
5263 {
5264 struct add_name_data *datum = (struct add_name_data *) user_data;
5265
5266 completion_list_add_name (name,
5267 datum->sym_text, datum->sym_text_len,
5268 datum->text, datum->word);
5269 }
5270
5271 /* A callback for expand_symtabs_matching. */
5272
5273 static int
5274 symbol_completion_matcher (const char *name, void *user_data)
5275 {
5276 struct add_name_data *datum = (struct add_name_data *) user_data;
5277
5278 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5279 }
5280
5281 /* Add matching symbols from SYMTAB to the current completion list. */
5282
5283 static void
5284 add_symtab_completions (struct compunit_symtab *cust,
5285 const char *sym_text, int sym_text_len,
5286 const char *text, const char *word,
5287 enum type_code code)
5288 {
5289 struct symbol *sym;
5290 const struct block *b;
5291 struct block_iterator iter;
5292 int i;
5293
5294 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5295 {
5296 QUIT;
5297 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5298 ALL_BLOCK_SYMBOLS (b, iter, sym)
5299 {
5300 if (code == TYPE_CODE_UNDEF
5301 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5302 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5303 COMPLETION_LIST_ADD_SYMBOL (sym,
5304 sym_text, sym_text_len,
5305 text, word);
5306 }
5307 }
5308 }
5309
5310 /* Callback to add completions to the current list when symbol tables
5311 are expanded during completion list generation. */
5312
5313 static void
5314 symtab_expansion_callback (struct compunit_symtab *symtab,
5315 void *user_data)
5316 {
5317 struct add_name_data *datum = (struct add_name_data *) user_data;
5318
5319 add_symtab_completions (symtab,
5320 datum->sym_text, datum->sym_text_len,
5321 datum->text, datum->word,
5322 datum->code);
5323 }
5324
5325 static void
5326 default_make_symbol_completion_list_break_on_1 (const char *text,
5327 const char *word,
5328 const char *break_on,
5329 enum type_code code)
5330 {
5331 /* Problem: All of the symbols have to be copied because readline
5332 frees them. I'm not going to worry about this; hopefully there
5333 won't be that many. */
5334
5335 struct symbol *sym;
5336 struct compunit_symtab *cust;
5337 struct minimal_symbol *msymbol;
5338 struct objfile *objfile;
5339 const struct block *b;
5340 const struct block *surrounding_static_block, *surrounding_global_block;
5341 struct block_iterator iter;
5342 /* The symbol we are completing on. Points in same buffer as text. */
5343 const char *sym_text;
5344 /* Length of sym_text. */
5345 int sym_text_len;
5346 struct add_name_data datum;
5347 struct cleanup *cleanups;
5348
5349 /* Now look for the symbol we are supposed to complete on. */
5350 {
5351 const char *p;
5352 char quote_found;
5353 const char *quote_pos = NULL;
5354
5355 /* First see if this is a quoted string. */
5356 quote_found = '\0';
5357 for (p = text; *p != '\0'; ++p)
5358 {
5359 if (quote_found != '\0')
5360 {
5361 if (*p == quote_found)
5362 /* Found close quote. */
5363 quote_found = '\0';
5364 else if (*p == '\\' && p[1] == quote_found)
5365 /* A backslash followed by the quote character
5366 doesn't end the string. */
5367 ++p;
5368 }
5369 else if (*p == '\'' || *p == '"')
5370 {
5371 quote_found = *p;
5372 quote_pos = p;
5373 }
5374 }
5375 if (quote_found == '\'')
5376 /* A string within single quotes can be a symbol, so complete on it. */
5377 sym_text = quote_pos + 1;
5378 else if (quote_found == '"')
5379 /* A double-quoted string is never a symbol, nor does it make sense
5380 to complete it any other way. */
5381 {
5382 return;
5383 }
5384 else
5385 {
5386 /* It is not a quoted string. Break it based on the characters
5387 which are in symbols. */
5388 while (p > text)
5389 {
5390 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5391 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5392 --p;
5393 else
5394 break;
5395 }
5396 sym_text = p;
5397 }
5398 }
5399
5400 sym_text_len = strlen (sym_text);
5401
5402 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5403
5404 if (current_language->la_language == language_cplus
5405 || current_language->la_language == language_java
5406 || current_language->la_language == language_fortran)
5407 {
5408 /* These languages may have parameters entered by user but they are never
5409 present in the partial symbol tables. */
5410
5411 const char *cs = memchr (sym_text, '(', sym_text_len);
5412
5413 if (cs)
5414 sym_text_len = cs - sym_text;
5415 }
5416 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5417
5418 completion_tracker = new_completion_tracker ();
5419 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5420
5421 datum.sym_text = sym_text;
5422 datum.sym_text_len = sym_text_len;
5423 datum.text = text;
5424 datum.word = word;
5425 datum.code = code;
5426
5427 /* At this point scan through the misc symbol vectors and add each
5428 symbol you find to the list. Eventually we want to ignore
5429 anything that isn't a text symbol (everything else will be
5430 handled by the psymtab code below). */
5431
5432 if (code == TYPE_CODE_UNDEF)
5433 {
5434 ALL_MSYMBOLS (objfile, msymbol)
5435 {
5436 QUIT;
5437 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5438 word);
5439
5440 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5441 word);
5442 }
5443 }
5444
5445 /* Add completions for all currently loaded symbol tables. */
5446 ALL_COMPUNITS (objfile, cust)
5447 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5448 code);
5449
5450 /* Look through the partial symtabs for all symbols which begin
5451 by matching SYM_TEXT. Expand all CUs that you find to the list.
5452 symtab_expansion_callback is called for each expanded symtab,
5453 causing those symtab's completions to be added to the list too. */
5454 expand_symtabs_matching (NULL, symbol_completion_matcher,
5455 symtab_expansion_callback, ALL_DOMAIN,
5456 &datum);
5457
5458 /* Search upwards from currently selected frame (so that we can
5459 complete on local vars). Also catch fields of types defined in
5460 this places which match our text string. Only complete on types
5461 visible from current context. */
5462
5463 b = get_selected_block (0);
5464 surrounding_static_block = block_static_block (b);
5465 surrounding_global_block = block_global_block (b);
5466 if (surrounding_static_block != NULL)
5467 while (b != surrounding_static_block)
5468 {
5469 QUIT;
5470
5471 ALL_BLOCK_SYMBOLS (b, iter, sym)
5472 {
5473 if (code == TYPE_CODE_UNDEF)
5474 {
5475 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5476 word);
5477 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5478 word);
5479 }
5480 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5481 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5482 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5483 word);
5484 }
5485
5486 /* Stop when we encounter an enclosing function. Do not stop for
5487 non-inlined functions - the locals of the enclosing function
5488 are in scope for a nested function. */
5489 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5490 break;
5491 b = BLOCK_SUPERBLOCK (b);
5492 }
5493
5494 /* Add fields from the file's types; symbols will be added below. */
5495
5496 if (code == TYPE_CODE_UNDEF)
5497 {
5498 if (surrounding_static_block != NULL)
5499 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5500 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5501
5502 if (surrounding_global_block != NULL)
5503 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5504 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5505 }
5506
5507 /* Skip macros if we are completing a struct tag -- arguable but
5508 usually what is expected. */
5509 if (current_language->la_macro_expansion == macro_expansion_c
5510 && code == TYPE_CODE_UNDEF)
5511 {
5512 struct macro_scope *scope;
5513
5514 /* Add any macros visible in the default scope. Note that this
5515 may yield the occasional wrong result, because an expression
5516 might be evaluated in a scope other than the default. For
5517 example, if the user types "break file:line if <TAB>", the
5518 resulting expression will be evaluated at "file:line" -- but
5519 at there does not seem to be a way to detect this at
5520 completion time. */
5521 scope = default_macro_scope ();
5522 if (scope)
5523 {
5524 macro_for_each_in_scope (scope->file, scope->line,
5525 add_macro_name, &datum);
5526 xfree (scope);
5527 }
5528
5529 /* User-defined macros are always visible. */
5530 macro_for_each (macro_user_macros, add_macro_name, &datum);
5531 }
5532
5533 do_cleanups (cleanups);
5534 }
5535
5536 VEC (char_ptr) *
5537 default_make_symbol_completion_list_break_on (const char *text,
5538 const char *word,
5539 const char *break_on,
5540 enum type_code code)
5541 {
5542 struct cleanup *back_to;
5543
5544 return_val = NULL;
5545 back_to = make_cleanup (do_free_completion_list, &return_val);
5546
5547 TRY
5548 {
5549 default_make_symbol_completion_list_break_on_1 (text, word,
5550 break_on, code);
5551 }
5552 CATCH (except, RETURN_MASK_ERROR)
5553 {
5554 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5555 throw_exception (except);
5556 }
5557 END_CATCH
5558
5559 discard_cleanups (back_to);
5560 return return_val;
5561 }
5562
5563 VEC (char_ptr) *
5564 default_make_symbol_completion_list (const char *text, const char *word,
5565 enum type_code code)
5566 {
5567 return default_make_symbol_completion_list_break_on (text, word, "", code);
5568 }
5569
5570 /* Return a vector of all symbols (regardless of class) which begin by
5571 matching TEXT. If the answer is no symbols, then the return value
5572 is NULL. */
5573
5574 VEC (char_ptr) *
5575 make_symbol_completion_list (const char *text, const char *word)
5576 {
5577 return current_language->la_make_symbol_completion_list (text, word,
5578 TYPE_CODE_UNDEF);
5579 }
5580
5581 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5582 symbols whose type code is CODE. */
5583
5584 VEC (char_ptr) *
5585 make_symbol_completion_type (const char *text, const char *word,
5586 enum type_code code)
5587 {
5588 gdb_assert (code == TYPE_CODE_UNION
5589 || code == TYPE_CODE_STRUCT
5590 || code == TYPE_CODE_ENUM);
5591 return current_language->la_make_symbol_completion_list (text, word, code);
5592 }
5593
5594 /* Like make_symbol_completion_list, but suitable for use as a
5595 completion function. */
5596
5597 VEC (char_ptr) *
5598 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5599 const char *text, const char *word)
5600 {
5601 return make_symbol_completion_list (text, word);
5602 }
5603
5604 /* Like make_symbol_completion_list, but returns a list of symbols
5605 defined in a source file FILE. */
5606
5607 VEC (char_ptr) *
5608 make_file_symbol_completion_list (const char *text, const char *word,
5609 const char *srcfile)
5610 {
5611 struct symbol *sym;
5612 struct symtab *s;
5613 struct block *b;
5614 struct block_iterator iter;
5615 /* The symbol we are completing on. Points in same buffer as text. */
5616 const char *sym_text;
5617 /* Length of sym_text. */
5618 int sym_text_len;
5619
5620 /* Now look for the symbol we are supposed to complete on.
5621 FIXME: This should be language-specific. */
5622 {
5623 const char *p;
5624 char quote_found;
5625 const char *quote_pos = NULL;
5626
5627 /* First see if this is a quoted string. */
5628 quote_found = '\0';
5629 for (p = text; *p != '\0'; ++p)
5630 {
5631 if (quote_found != '\0')
5632 {
5633 if (*p == quote_found)
5634 /* Found close quote. */
5635 quote_found = '\0';
5636 else if (*p == '\\' && p[1] == quote_found)
5637 /* A backslash followed by the quote character
5638 doesn't end the string. */
5639 ++p;
5640 }
5641 else if (*p == '\'' || *p == '"')
5642 {
5643 quote_found = *p;
5644 quote_pos = p;
5645 }
5646 }
5647 if (quote_found == '\'')
5648 /* A string within single quotes can be a symbol, so complete on it. */
5649 sym_text = quote_pos + 1;
5650 else if (quote_found == '"')
5651 /* A double-quoted string is never a symbol, nor does it make sense
5652 to complete it any other way. */
5653 {
5654 return NULL;
5655 }
5656 else
5657 {
5658 /* Not a quoted string. */
5659 sym_text = language_search_unquoted_string (text, p);
5660 }
5661 }
5662
5663 sym_text_len = strlen (sym_text);
5664
5665 return_val = NULL;
5666
5667 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5668 in). */
5669 s = lookup_symtab (srcfile);
5670 if (s == NULL)
5671 {
5672 /* Maybe they typed the file with leading directories, while the
5673 symbol tables record only its basename. */
5674 const char *tail = lbasename (srcfile);
5675
5676 if (tail > srcfile)
5677 s = lookup_symtab (tail);
5678 }
5679
5680 /* If we have no symtab for that file, return an empty list. */
5681 if (s == NULL)
5682 return (return_val);
5683
5684 /* Go through this symtab and check the externs and statics for
5685 symbols which match. */
5686
5687 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5688 ALL_BLOCK_SYMBOLS (b, iter, sym)
5689 {
5690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5691 }
5692
5693 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5694 ALL_BLOCK_SYMBOLS (b, iter, sym)
5695 {
5696 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5697 }
5698
5699 return (return_val);
5700 }
5701
5702 /* A helper function for make_source_files_completion_list. It adds
5703 another file name to a list of possible completions, growing the
5704 list as necessary. */
5705
5706 static void
5707 add_filename_to_list (const char *fname, const char *text, const char *word,
5708 VEC (char_ptr) **list)
5709 {
5710 char *newobj;
5711 size_t fnlen = strlen (fname);
5712
5713 if (word == text)
5714 {
5715 /* Return exactly fname. */
5716 newobj = xmalloc (fnlen + 5);
5717 strcpy (newobj, fname);
5718 }
5719 else if (word > text)
5720 {
5721 /* Return some portion of fname. */
5722 newobj = xmalloc (fnlen + 5);
5723 strcpy (newobj, fname + (word - text));
5724 }
5725 else
5726 {
5727 /* Return some of TEXT plus fname. */
5728 newobj = xmalloc (fnlen + (text - word) + 5);
5729 strncpy (newobj, word, text - word);
5730 newobj[text - word] = '\0';
5731 strcat (newobj, fname);
5732 }
5733 VEC_safe_push (char_ptr, *list, newobj);
5734 }
5735
5736 static int
5737 not_interesting_fname (const char *fname)
5738 {
5739 static const char *illegal_aliens[] = {
5740 "_globals_", /* inserted by coff_symtab_read */
5741 NULL
5742 };
5743 int i;
5744
5745 for (i = 0; illegal_aliens[i]; i++)
5746 {
5747 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5748 return 1;
5749 }
5750 return 0;
5751 }
5752
5753 /* An object of this type is passed as the user_data argument to
5754 map_partial_symbol_filenames. */
5755 struct add_partial_filename_data
5756 {
5757 struct filename_seen_cache *filename_seen_cache;
5758 const char *text;
5759 const char *word;
5760 int text_len;
5761 VEC (char_ptr) **list;
5762 };
5763
5764 /* A callback for map_partial_symbol_filenames. */
5765
5766 static void
5767 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5768 void *user_data)
5769 {
5770 struct add_partial_filename_data *data = user_data;
5771
5772 if (not_interesting_fname (filename))
5773 return;
5774 if (!filename_seen (data->filename_seen_cache, filename, 1)
5775 && filename_ncmp (filename, data->text, data->text_len) == 0)
5776 {
5777 /* This file matches for a completion; add it to the
5778 current list of matches. */
5779 add_filename_to_list (filename, data->text, data->word, data->list);
5780 }
5781 else
5782 {
5783 const char *base_name = lbasename (filename);
5784
5785 if (base_name != filename
5786 && !filename_seen (data->filename_seen_cache, base_name, 1)
5787 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5788 add_filename_to_list (base_name, data->text, data->word, data->list);
5789 }
5790 }
5791
5792 /* Return a vector of all source files whose names begin with matching
5793 TEXT. The file names are looked up in the symbol tables of this
5794 program. If the answer is no matchess, then the return value is
5795 NULL. */
5796
5797 VEC (char_ptr) *
5798 make_source_files_completion_list (const char *text, const char *word)
5799 {
5800 struct compunit_symtab *cu;
5801 struct symtab *s;
5802 struct objfile *objfile;
5803 size_t text_len = strlen (text);
5804 VEC (char_ptr) *list = NULL;
5805 const char *base_name;
5806 struct add_partial_filename_data datum;
5807 struct filename_seen_cache *filename_seen_cache;
5808 struct cleanup *back_to, *cache_cleanup;
5809
5810 if (!have_full_symbols () && !have_partial_symbols ())
5811 return list;
5812
5813 back_to = make_cleanup (do_free_completion_list, &list);
5814
5815 filename_seen_cache = create_filename_seen_cache ();
5816 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5817 filename_seen_cache);
5818
5819 ALL_FILETABS (objfile, cu, s)
5820 {
5821 if (not_interesting_fname (s->filename))
5822 continue;
5823 if (!filename_seen (filename_seen_cache, s->filename, 1)
5824 && filename_ncmp (s->filename, text, text_len) == 0)
5825 {
5826 /* This file matches for a completion; add it to the current
5827 list of matches. */
5828 add_filename_to_list (s->filename, text, word, &list);
5829 }
5830 else
5831 {
5832 /* NOTE: We allow the user to type a base name when the
5833 debug info records leading directories, but not the other
5834 way around. This is what subroutines of breakpoint
5835 command do when they parse file names. */
5836 base_name = lbasename (s->filename);
5837 if (base_name != s->filename
5838 && !filename_seen (filename_seen_cache, base_name, 1)
5839 && filename_ncmp (base_name, text, text_len) == 0)
5840 add_filename_to_list (base_name, text, word, &list);
5841 }
5842 }
5843
5844 datum.filename_seen_cache = filename_seen_cache;
5845 datum.text = text;
5846 datum.word = word;
5847 datum.text_len = text_len;
5848 datum.list = &list;
5849 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5850 0 /*need_fullname*/);
5851
5852 do_cleanups (cache_cleanup);
5853 discard_cleanups (back_to);
5854
5855 return list;
5856 }
5857 \f
5858 /* Track MAIN */
5859
5860 /* Return the "main_info" object for the current program space. If
5861 the object has not yet been created, create it and fill in some
5862 default values. */
5863
5864 static struct main_info *
5865 get_main_info (void)
5866 {
5867 struct main_info *info = program_space_data (current_program_space,
5868 main_progspace_key);
5869
5870 if (info == NULL)
5871 {
5872 /* It may seem strange to store the main name in the progspace
5873 and also in whatever objfile happens to see a main name in
5874 its debug info. The reason for this is mainly historical:
5875 gdb returned "main" as the name even if no function named
5876 "main" was defined the program; and this approach lets us
5877 keep compatibility. */
5878 info = XCNEW (struct main_info);
5879 info->language_of_main = language_unknown;
5880 set_program_space_data (current_program_space, main_progspace_key,
5881 info);
5882 }
5883
5884 return info;
5885 }
5886
5887 /* A cleanup to destroy a struct main_info when a progspace is
5888 destroyed. */
5889
5890 static void
5891 main_info_cleanup (struct program_space *pspace, void *data)
5892 {
5893 struct main_info *info = data;
5894
5895 if (info != NULL)
5896 xfree (info->name_of_main);
5897 xfree (info);
5898 }
5899
5900 static void
5901 set_main_name (const char *name, enum language lang)
5902 {
5903 struct main_info *info = get_main_info ();
5904
5905 if (info->name_of_main != NULL)
5906 {
5907 xfree (info->name_of_main);
5908 info->name_of_main = NULL;
5909 info->language_of_main = language_unknown;
5910 }
5911 if (name != NULL)
5912 {
5913 info->name_of_main = xstrdup (name);
5914 info->language_of_main = lang;
5915 }
5916 }
5917
5918 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5919 accordingly. */
5920
5921 static void
5922 find_main_name (void)
5923 {
5924 const char *new_main_name;
5925 struct objfile *objfile;
5926
5927 /* First check the objfiles to see whether a debuginfo reader has
5928 picked up the appropriate main name. Historically the main name
5929 was found in a more or less random way; this approach instead
5930 relies on the order of objfile creation -- which still isn't
5931 guaranteed to get the correct answer, but is just probably more
5932 accurate. */
5933 ALL_OBJFILES (objfile)
5934 {
5935 if (objfile->per_bfd->name_of_main != NULL)
5936 {
5937 set_main_name (objfile->per_bfd->name_of_main,
5938 objfile->per_bfd->language_of_main);
5939 return;
5940 }
5941 }
5942
5943 /* Try to see if the main procedure is in Ada. */
5944 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5945 be to add a new method in the language vector, and call this
5946 method for each language until one of them returns a non-empty
5947 name. This would allow us to remove this hard-coded call to
5948 an Ada function. It is not clear that this is a better approach
5949 at this point, because all methods need to be written in a way
5950 such that false positives never be returned. For instance, it is
5951 important that a method does not return a wrong name for the main
5952 procedure if the main procedure is actually written in a different
5953 language. It is easy to guaranty this with Ada, since we use a
5954 special symbol generated only when the main in Ada to find the name
5955 of the main procedure. It is difficult however to see how this can
5956 be guarantied for languages such as C, for instance. This suggests
5957 that order of call for these methods becomes important, which means
5958 a more complicated approach. */
5959 new_main_name = ada_main_name ();
5960 if (new_main_name != NULL)
5961 {
5962 set_main_name (new_main_name, language_ada);
5963 return;
5964 }
5965
5966 new_main_name = d_main_name ();
5967 if (new_main_name != NULL)
5968 {
5969 set_main_name (new_main_name, language_d);
5970 return;
5971 }
5972
5973 new_main_name = go_main_name ();
5974 if (new_main_name != NULL)
5975 {
5976 set_main_name (new_main_name, language_go);
5977 return;
5978 }
5979
5980 new_main_name = pascal_main_name ();
5981 if (new_main_name != NULL)
5982 {
5983 set_main_name (new_main_name, language_pascal);
5984 return;
5985 }
5986
5987 /* The languages above didn't identify the name of the main procedure.
5988 Fallback to "main". */
5989 set_main_name ("main", language_unknown);
5990 }
5991
5992 char *
5993 main_name (void)
5994 {
5995 struct main_info *info = get_main_info ();
5996
5997 if (info->name_of_main == NULL)
5998 find_main_name ();
5999
6000 return info->name_of_main;
6001 }
6002
6003 /* Return the language of the main function. If it is not known,
6004 return language_unknown. */
6005
6006 enum language
6007 main_language (void)
6008 {
6009 struct main_info *info = get_main_info ();
6010
6011 if (info->name_of_main == NULL)
6012 find_main_name ();
6013
6014 return info->language_of_main;
6015 }
6016
6017 /* Handle ``executable_changed'' events for the symtab module. */
6018
6019 static void
6020 symtab_observer_executable_changed (void)
6021 {
6022 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6023 set_main_name (NULL, language_unknown);
6024 }
6025
6026 /* Return 1 if the supplied producer string matches the ARM RealView
6027 compiler (armcc). */
6028
6029 int
6030 producer_is_realview (const char *producer)
6031 {
6032 static const char *const arm_idents[] = {
6033 "ARM C Compiler, ADS",
6034 "Thumb C Compiler, ADS",
6035 "ARM C++ Compiler, ADS",
6036 "Thumb C++ Compiler, ADS",
6037 "ARM/Thumb C/C++ Compiler, RVCT",
6038 "ARM C/C++ Compiler, RVCT"
6039 };
6040 int i;
6041
6042 if (producer == NULL)
6043 return 0;
6044
6045 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6046 if (startswith (producer, arm_idents[i]))
6047 return 1;
6048
6049 return 0;
6050 }
6051
6052 \f
6053
6054 /* The next index to hand out in response to a registration request. */
6055
6056 static int next_aclass_value = LOC_FINAL_VALUE;
6057
6058 /* The maximum number of "aclass" registrations we support. This is
6059 constant for convenience. */
6060 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6061
6062 /* The objects representing the various "aclass" values. The elements
6063 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6064 elements are those registered at gdb initialization time. */
6065
6066 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6067
6068 /* The globally visible pointer. This is separate from 'symbol_impl'
6069 so that it can be const. */
6070
6071 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6072
6073 /* Make sure we saved enough room in struct symbol. */
6074
6075 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6076
6077 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6078 is the ops vector associated with this index. This returns the new
6079 index, which should be used as the aclass_index field for symbols
6080 of this type. */
6081
6082 int
6083 register_symbol_computed_impl (enum address_class aclass,
6084 const struct symbol_computed_ops *ops)
6085 {
6086 int result = next_aclass_value++;
6087
6088 gdb_assert (aclass == LOC_COMPUTED);
6089 gdb_assert (result < MAX_SYMBOL_IMPLS);
6090 symbol_impl[result].aclass = aclass;
6091 symbol_impl[result].ops_computed = ops;
6092
6093 /* Sanity check OPS. */
6094 gdb_assert (ops != NULL);
6095 gdb_assert (ops->tracepoint_var_ref != NULL);
6096 gdb_assert (ops->describe_location != NULL);
6097 gdb_assert (ops->read_needs_frame != NULL);
6098 gdb_assert (ops->read_variable != NULL);
6099
6100 return result;
6101 }
6102
6103 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6104 OPS is the ops vector associated with this index. This returns the
6105 new index, which should be used as the aclass_index field for symbols
6106 of this type. */
6107
6108 int
6109 register_symbol_block_impl (enum address_class aclass,
6110 const struct symbol_block_ops *ops)
6111 {
6112 int result = next_aclass_value++;
6113
6114 gdb_assert (aclass == LOC_BLOCK);
6115 gdb_assert (result < MAX_SYMBOL_IMPLS);
6116 symbol_impl[result].aclass = aclass;
6117 symbol_impl[result].ops_block = ops;
6118
6119 /* Sanity check OPS. */
6120 gdb_assert (ops != NULL);
6121 gdb_assert (ops->find_frame_base_location != NULL);
6122
6123 return result;
6124 }
6125
6126 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6127 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6128 this index. This returns the new index, which should be used as
6129 the aclass_index field for symbols of this type. */
6130
6131 int
6132 register_symbol_register_impl (enum address_class aclass,
6133 const struct symbol_register_ops *ops)
6134 {
6135 int result = next_aclass_value++;
6136
6137 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6138 gdb_assert (result < MAX_SYMBOL_IMPLS);
6139 symbol_impl[result].aclass = aclass;
6140 symbol_impl[result].ops_register = ops;
6141
6142 return result;
6143 }
6144
6145 /* Initialize elements of 'symbol_impl' for the constants in enum
6146 address_class. */
6147
6148 static void
6149 initialize_ordinary_address_classes (void)
6150 {
6151 int i;
6152
6153 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6154 symbol_impl[i].aclass = i;
6155 }
6156
6157 \f
6158
6159 /* Helper function to initialize the fields of an objfile-owned symbol.
6160 It assumed that *SYM is already all zeroes. */
6161
6162 static void
6163 initialize_objfile_symbol_1 (struct symbol *sym)
6164 {
6165 SYMBOL_OBJFILE_OWNED (sym) = 1;
6166 SYMBOL_SECTION (sym) = -1;
6167 }
6168
6169 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6170
6171 void
6172 initialize_objfile_symbol (struct symbol *sym)
6173 {
6174 memset (sym, 0, sizeof (*sym));
6175 initialize_objfile_symbol_1 (sym);
6176 }
6177
6178 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6179 obstack. */
6180
6181 struct symbol *
6182 allocate_symbol (struct objfile *objfile)
6183 {
6184 struct symbol *result;
6185
6186 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6187 initialize_objfile_symbol_1 (result);
6188
6189 return result;
6190 }
6191
6192 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6193 obstack. */
6194
6195 struct template_symbol *
6196 allocate_template_symbol (struct objfile *objfile)
6197 {
6198 struct template_symbol *result;
6199
6200 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6201 initialize_objfile_symbol_1 (&result->base);
6202
6203 return result;
6204 }
6205
6206 /* See symtab.h. */
6207
6208 struct objfile *
6209 symbol_objfile (const struct symbol *symbol)
6210 {
6211 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6212 return SYMTAB_OBJFILE (symbol->owner.symtab);
6213 }
6214
6215 /* See symtab.h. */
6216
6217 struct gdbarch *
6218 symbol_arch (const struct symbol *symbol)
6219 {
6220 if (!SYMBOL_OBJFILE_OWNED (symbol))
6221 return symbol->owner.arch;
6222 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6223 }
6224
6225 /* See symtab.h. */
6226
6227 struct symtab *
6228 symbol_symtab (const struct symbol *symbol)
6229 {
6230 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6231 return symbol->owner.symtab;
6232 }
6233
6234 /* See symtab.h. */
6235
6236 void
6237 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6238 {
6239 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6240 symbol->owner.symtab = symtab;
6241 }
6242
6243 \f
6244
6245 void
6246 _initialize_symtab (void)
6247 {
6248 initialize_ordinary_address_classes ();
6249
6250 main_progspace_key
6251 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6252
6253 symbol_cache_key
6254 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6255
6256 add_info ("variables", variables_info, _("\
6257 All global and static variable names, or those matching REGEXP."));
6258 if (dbx_commands)
6259 add_com ("whereis", class_info, variables_info, _("\
6260 All global and static variable names, or those matching REGEXP."));
6261
6262 add_info ("functions", functions_info,
6263 _("All function names, or those matching REGEXP."));
6264
6265 /* FIXME: This command has at least the following problems:
6266 1. It prints builtin types (in a very strange and confusing fashion).
6267 2. It doesn't print right, e.g. with
6268 typedef struct foo *FOO
6269 type_print prints "FOO" when we want to make it (in this situation)
6270 print "struct foo *".
6271 I also think "ptype" or "whatis" is more likely to be useful (but if
6272 there is much disagreement "info types" can be fixed). */
6273 add_info ("types", types_info,
6274 _("All type names, or those matching REGEXP."));
6275
6276 add_info ("sources", sources_info,
6277 _("Source files in the program."));
6278
6279 add_com ("rbreak", class_breakpoint, rbreak_command,
6280 _("Set a breakpoint for all functions matching REGEXP."));
6281
6282 add_setshow_enum_cmd ("multiple-symbols", no_class,
6283 multiple_symbols_modes, &multiple_symbols_mode,
6284 _("\
6285 Set the debugger behavior when more than one symbol are possible matches\n\
6286 in an expression."), _("\
6287 Show how the debugger handles ambiguities in expressions."), _("\
6288 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6289 NULL, NULL, &setlist, &showlist);
6290
6291 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6292 &basenames_may_differ, _("\
6293 Set whether a source file may have multiple base names."), _("\
6294 Show whether a source file may have multiple base names."), _("\
6295 (A \"base name\" is the name of a file with the directory part removed.\n\
6296 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6297 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6298 before comparing them. Canonicalization is an expensive operation,\n\
6299 but it allows the same file be known by more than one base name.\n\
6300 If not set (the default), all source files are assumed to have just\n\
6301 one base name, and gdb will do file name comparisons more efficiently."),
6302 NULL, NULL,
6303 &setlist, &showlist);
6304
6305 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6306 _("Set debugging of symbol table creation."),
6307 _("Show debugging of symbol table creation."), _("\
6308 When enabled (non-zero), debugging messages are printed when building\n\
6309 symbol tables. A value of 1 (one) normally provides enough information.\n\
6310 A value greater than 1 provides more verbose information."),
6311 NULL,
6312 NULL,
6313 &setdebuglist, &showdebuglist);
6314
6315 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6316 _("\
6317 Set debugging of symbol lookup."), _("\
6318 Show debugging of symbol lookup."), _("\
6319 When enabled (non-zero), symbol lookups are logged."),
6320 NULL, NULL,
6321 &setdebuglist, &showdebuglist);
6322
6323 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6324 &new_symbol_cache_size,
6325 _("Set the size of the symbol cache."),
6326 _("Show the size of the symbol cache."), _("\
6327 The size of the symbol cache.\n\
6328 If zero then the symbol cache is disabled."),
6329 set_symbol_cache_size_handler, NULL,
6330 &maintenance_set_cmdlist,
6331 &maintenance_show_cmdlist);
6332
6333 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6334 _("Dump the symbol cache for each program space."),
6335 &maintenanceprintlist);
6336
6337 add_cmd ("symbol-cache-statistics", class_maintenance,
6338 maintenance_print_symbol_cache_statistics,
6339 _("Print symbol cache statistics for each program space."),
6340 &maintenanceprintlist);
6341
6342 add_cmd ("flush-symbol-cache", class_maintenance,
6343 maintenance_flush_symbol_cache,
6344 _("Flush the symbol cache for each program space."),
6345 &maintenancelist);
6346
6347 observer_attach_executable_changed (symtab_observer_executable_changed);
6348 observer_attach_new_objfile (symtab_new_objfile_observer);
6349 observer_attach_free_objfile (symtab_free_objfile_observer);
6350 }
This page took 0.181222 seconds and 3 git commands to generate.